Species richness alters spatial nutrient heterogeneity effects on above-ground plant biomass.
Xi, Nianxun; Zhang, Chunhui; Bloor, Juliette M G
2017-12-01
Previous studies have suggested that spatial nutrient heterogeneity promotes plant nutrient capture and growth. However, little is known about how spatial nutrient heterogeneity interacts with key community attributes to affect plant community production. We conducted a meta-analysis to investigate how nitrogen heterogeneity effects vary with species richness and plant density. Effect size was calculated using the natural log of the ratio in plant biomass between heterogeneous and homogeneous conditions. Effect sizes were significantly above zero, reflecting positive effects of spatial nutrient heterogeneity on community production. However, species richness decreased the magnitude of heterogeneity effects on above-ground biomass. The magnitude of heterogeneity effects on below-ground biomass did not vary with species richness. Moreover, we detected no modification in heterogeneity effects with plant density. Our results highlight the importance of species richness for ecosystem function. Asynchrony between above- and below-ground responses to spatial nutrient heterogeneity and species richness could have significant implications for biotic interactions and biogeochemical cycling in the long term. © 2017 The Author(s).
Daniele Tonina; Alberto Bellin
2008-01-01
Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentration ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these...
Schuler, Matthew S; Chase, Jonathan M; Knight, Tiffany M
2017-06-01
Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity. © 2017 by the Ecological Society of America.
ERIC Educational Resources Information Center
Luh, Wei-Ming; Guo, Jiin-Huarng
2011-01-01
Sample size determination is an important issue in planning research. In the context of one-way fixed-effect analysis of variance, the conventional sample size formula cannot be applied for the heterogeneous variance cases. This study discusses the sample size requirement for the Welch test in the one-way fixed-effect analysis of variance with…
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
Allocating Sample Sizes to Reduce Budget for Fixed-Effect 2×2 Heterogeneous Analysis of Variance
ERIC Educational Resources Information Center
Luh, Wei-Ming; Guo, Jiin-Huarng
2016-01-01
This article discusses the sample size requirements for the interaction, row, and column effects, respectively, by forming a linear contrast for a 2×2 factorial design for fixed-effects heterogeneous analysis of variance. The proposed method uses the Welch t test and its corresponding degrees of freedom to calculate the final sample size in a…
Link, W.A.
2003-01-01
Heterogeneity in detection probabilities has long been recognized as problematic in mark-recapture studies, and numerous models developed to accommodate its effects. Individual heterogeneity is especially problematic, in that reasonable alternative models may predict essentially identical observations from populations of substantially different sizes. Thus even with very large samples, the analyst will not be able to distinguish among reasonable models of heterogeneity, even though these yield quite distinct inferences about population size. The problem is illustrated with models for closed and open populations.
Cummings, Jonathon N; Kiesler, Sara; Bosagh Zadeh, Reza; Balakrishnan, Aruna D
2013-06-01
Heterogeneous groups are valuable, but differences among members can weaken group identification. Weak group identification may be especially problematic in larger groups, which, in contrast with smaller groups, require more attention to motivating members and coordinating their tasks. We hypothesized that as groups increase in size, productivity would decrease with greater heterogeneity. We studied the longitudinal productivity of 549 research groups varying in disciplinary heterogeneity, institutional heterogeneity, and size. We examined their publication and citation productivity before their projects started and 5 to 9 years later. Larger groups were more productive than smaller groups, but their marginal productivity declined as their heterogeneity increased, either because their members belonged to more disciplines or to more institutions. These results provide evidence that group heterogeneity moderates the effects of group size, and they suggest that desirable diversity in groups may be better leveraged in smaller, more cohesive units.
Reproductive consequences of farmland heterogeneity in little owls (Athene noctua).
Michel, Vanja T; Naef-Daenzer, Beat; Keil, Herbert; Grüebler, Martin U
2017-04-01
The amount of high-quality habitat patches, their distribution, and the resource accessibility therein play a key role in regulating habitat effects on reproductive success. Heterogeneous habitats offer non-substitutable resources (e.g. nest sites and food) and substitutable resources (e.g. different types of food) in close proximity, thereby facilitating landscape complementation and supplementation. However, it remains poorly understood how spatial resource separation in homogeneous agricultural landscapes affects reproductive success. To fill this gap, we investigated the relationships between farmland heterogeneity and little owl (Athene noctua) reproductive success, including potential indirect effects of the heterogeneity-dependent home-range size on reproduction. Little owl home-ranges were related to field heterogeneity in summer and to structural heterogeneity in winter. Clutch size was correlated with the amount of food-rich habitat close to the nest irrespective of female home-range size, suggesting importance of landscape complementation. Nestling survival was positively correlated with male home-range size, suggesting importance of landscape supplementation. At the same time, fledgling condition was negatively correlated with male home-range size. We conclude that decreasing farmland heterogeneity constrains population productivity by two processes: increasing separation of food resources from nest or roost sites results in low landscape complementation, and reduction of alternative food resources limits landscape supplementation. Our results suggest that structural heterogeneity affects landscape complementation, whereas the heterogeneity and management of farmland fields affect landscape supplementation. Thus, to what extent a reduction of the heterogeneity within agricultural landscapes results in species-specific habitat degradation depends on the ecological processes (i.e. landscape complementation or supplementation) which are affected.
Heterogeneity Coefficients for Mahalanobis' D as a Multivariate Effect Size.
Del Giudice, Marco
2017-01-01
The Mahalanobis distance D is the multivariate generalization of Cohen's d and can be used as a standardized effect size for multivariate differences between groups. An important issue in the interpretation of D is heterogeneity, that is, the extent to which contributions to the overall effect size are concentrated in a small subset of variables rather than evenly distributed across the whole set. Here I present two heterogeneity coefficients for D based on the Gini coefficient, a well-known index of inequality among values of a distribution. I discuss the properties and limitations of the two coefficients and illustrate their use by reanalyzing some published findings from studies of gender differences.
Effects of Heterogeneous Diffuse Fibrosis on Arrhythmia Dynamics and Mechanism
Kazbanov, Ivan V.; ten Tusscher, Kirsten H. W. J.; Panfilov, Alexander V.
2016-01-01
Myocardial fibrosis is an important risk factor for cardiac arrhythmias. Previous experimental and numerical studies have shown that the texture and spatial distribution of fibrosis may play an important role in arrhythmia onset. Here, we investigate how spatial heterogeneity of fibrosis affects arrhythmia onset using numerical methods. We generate various tissue textures that differ by the mean amount of fibrosis, the degree of heterogeneity and the characteristic size of heterogeneity. We study the onset of arrhythmias using a burst pacing protocol. We confirm that spatial heterogeneity of fibrosis increases the probability of arrhythmia induction. This effect is more pronounced with the increase of both the spatial size and the degree of heterogeneity. The induced arrhythmias have a regular structure with the period being mostly determined by the maximal local fibrosis level. We perform ablations of the induced fibrillatory patterns to classify their type. We show that in fibrotic tissue fibrillation is usually of the mother rotor type but becomes of the multiple wavelet type with increase in tissue size. Overall, we conclude that the most important factor determining the formation and dynamics of arrhythmia in heterogeneous fibrotic tissue is the value of maximal local fibrosis. PMID:26861111
ERIC Educational Resources Information Center
Moody, Judith D.; Gifford, Vernon D.
This study investigated the grouping effect on student achievement in a chemistry laboratory when homogeneous and heterogeneous formal reasoning ability, high and low levels of formal reasoning ability, group sizes of two and four, and homogeneous and heterogeneous gender were used for grouping factors. The sample consisted of all eight intact…
Estimating finite-population reproductive numbers in heterogeneous populations.
Keegan, Lindsay T; Dushoff, Jonathan
2016-05-21
The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Influence of Small Class Size, Duration, Intensity, and Heterogeneity on Head Start Fade
ERIC Educational Resources Information Center
Huss, Christopher D.
2010-01-01
The researcher conducted a nonexperimental study to investigate and analyze the influence of reduced class sizes, intensity (all day and every day), duration (five years), and heterogeneity (random class assignment) on the Head Start Fade effect. The researcher employed retrospective data analysis using a longitudinal explanatory design on data…
Sales, J
2014-06-01
Consumer preference for poultry meat from free-range birds is not justified by scientific evidence. Inconsistency in results among studies on the effects of access to pasture on performance, carcass composition, and meat quality has led to a meta-analysis to quantify effects. After identification of studies where response variables were directly compared between birds with and without access to pasture, standardized effect sizes were used to calculate differences. The effect size for growth combined according to a fixed effect model did not present heterogeneity (P = 0.116). However, with feed intake and feed efficiency, variability among studies (heterogeneity with P-values of below 0.10) was influenced by more than sampling error. Carcass yield was the only carcass component that showed heterogeneity (P = 0.008), whereas numerous response variables related to meat quality were not homogenous. The use of subgroup analysis and meta-regression to evaluate the sources of heterogeneity was limited by ill-defined explanatory variables and few values available within response variables. Consequently, between-study variability was accounted for by use of random effects models to combine effect sizes. According to these, few response variables were influenced by pasture access. Fat concentrations in breast (mean effect size = -0.500; 95% CI = -0.825 to -0.175; 11 studies; 14 comparisons), thigh (mean effect size = -0.908; 95% CI = -1.710 to -0.105; 4 studies; 5 comparisons) and drum (mean effect size = -1.223; 95% CI = -2.210 to -0.237; 3 studies; 3 comparisons) muscles were decreased in free-range birds. Access to pasture increased (P < 0.05) or tended to increase (P < 0.10) protein concentrations in the respective commercial cuts. It is concluded that factors other than enhanced meat quality could be responsible for consumer preference for meat from free-range poultry. Poultry Science Association Inc.
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Does precision decrease with set size?
Mazyar, Helga; van den Berg, Ronald; Ma, Wei Ji
2012-01-01
The brain encodes visual information with limited precision. Contradictory evidence exists as to whether the precision with which an item is encoded depends on the number of stimuli in a display (set size). Some studies have found evidence that precision decreases with set size, but others have reported constant precision. These groups of studies differed in two ways. The studies that reported a decrease used displays with heterogeneous stimuli and tasks with a short-term memory component, while the ones that reported constancy used homogeneous stimuli and tasks that did not require short-term memory. To disentangle the effects of heterogeneity and short-memory involvement, we conducted two main experiments. In Experiment 1, stimuli were heterogeneous, and we compared a condition in which target identity was revealed before the stimulus display with one in which it was revealed afterward. In Experiment 2, target identity was fixed, and we compared heterogeneous and homogeneous distractor conditions. In both experiments, we compared an optimal-observer model in which precision is constant with set size with one in which it depends on set size. We found that precision decreases with set size when the distractors are heterogeneous, regardless of whether short-term memory is involved, but not when it is homogeneous. This suggests that heterogeneity, not short-term memory, is the critical factor. In addition, we found that precision exhibits variability across items and trials, which may partly be caused by attentional fluctuations. PMID:22685337
Ritter, James A; Pan, Huanhua; Balbuena, Perla B
2010-09-07
Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.
Examining the influence of heterogeneous porosity fields on conservative solute transport
Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong
2009-01-01
It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.
Class Size Effects on Student Achievement: Heterogeneity across Abilities and Fields
ERIC Educational Resources Information Center
De Paola, Maria; Ponzo, Michela; Scoppa, Vincenzo
2013-01-01
In this paper, we analyze class size effects on college students exploiting data from a project offering special remedial courses in mathematics and language skills to freshmen enrolled at an Italian medium-sized public university. To estimate the effects of class size, we exploit the fact that students and teachers are virtually randomly assigned…
Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B
2013-09-08
Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver spoon effects was on par with the influence of contemporary regional habitat productivity, which showed that both temporal and spatial influences explain in part body size patterns in grizzly bears. Because smaller bears were found in colder and less-productive environments, we hypothesize that warming global temperatures may positively affect body mass of interior bears.
Scammacca, Nancy; Roberts, Greg; Stuebing, Karla K.
2013-01-01
Previous research has shown that treating dependent effect sizes as independent inflates the variance of the mean effect size and introduces bias by giving studies with more effect sizes more weight in the meta-analysis. This article summarizes the different approaches to handling dependence that have been advocated by methodologists, some of which are more feasible to implement with education research studies than others. A case study using effect sizes from a recent meta-analysis of reading interventions is presented to compare the results obtained from different approaches to dealing with dependence. Overall, mean effect sizes and variance estimates were found to be similar, but estimates of indexes of heterogeneity varied. Meta-analysts are advised to explore the effect of the method of handling dependence on the heterogeneity estimates before conducting moderator analyses and to choose the approach to dependence that is best suited to their research question and their data set. PMID:25309002
Accounting for heterogeneity in meta-analysis using a multiplicative model-an empirical study.
Mawdsley, David; Higgins, Julian P T; Sutton, Alex J; Abrams, Keith R
2017-03-01
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In this paper, we compare the two models using a random sample of 448 meta-analyses drawn from the Cochrane Database of Systematic Reviews. In general, differences in goodness of fit are modest. The multiplicative model tends to give results that are closer to the null, with a narrower confidence interval. Both approaches make different assumptions about the outcome of the meta-analysis. In our opinion, the selection of the more appropriate model will often be guided by whether the multiplicative model's assumption of a single effect size is plausible. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Landscape heterogeneity-biodiversity relationship: effect of range size.
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes--particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales.
Montoro, Pedro R; Luna, Dolores
2009-10-01
Previous studies on the processing of hierarchical patterns (Luna & Montoro, 2008) have shown that altering the spatial relationships between the local elements affected processing dominance by decreasing global advantage. In the present article, the authors examine whether heterogeneity or a sparse distribution of the local elements was the responsible factor for this effect. In Experiments 1 and 2, the distance between the local elements was increased in a similar way, but between-element distance was homogeneous in Experiment 1 and heterogeneous in Experiment 2. In Experiment 3, local elements' size was varied by presenting global patterns composed of similar large or small local elements and of different large and small sizes. The results of the present research showed that, instead of element sparsity, spatial heterogeneity that could change the appearance of the global form as well as the salience of the local elements was the main determiner of impairing global processing.
Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates
Heino, Jani
2013-01-01
Both environmental heterogeneity and mode of dispersal may affect species co-occurrence in metacommunities. Aquatic invertebrates were sampled in 20–30 streams in each of three drainage basins, differing considerably in environmental heterogeneity. Each drainage basin was further divided into two equally sized sets of sites, again differing profoundly in environmental heterogeneity. Benthic invertebrate data were divided into three groups of taxa based on overland dispersal modes: passive dispersers with aquatic adults, passive dispersers with terrestrial winged adults, and active dispersers with terrestrial winged adults. The co-occurrence of taxa in each dispersal mode group, drainage basin, and heterogeneity site subset was measured using the C-score and its standardized effect size. The probability of finding high levels of species segregation tended to increase with environmental heterogeneity across the drainage basins. These patterns were, however, contingent on both dispersal mode and drainage basin. It thus appears that environmental heterogeneity and dispersal mode interact in affecting co-occurrence in metacommunities, with passive dispersers with aquatic adults showing random patterns irrespective of environmental heterogeneity, and active dispersers with terrestrial winged adults showing increasing segregation with increasing environmental heterogeneity. PMID:23467653
Landscape Heterogeneity–Biodiversity Relationship: Effect of Range Size
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes—particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales. PMID:24675969
Ensemble representations: effects of set size and item heterogeneity on average size perception.
Marchant, Alexander P; Simons, Daniel J; de Fockert, Jan W
2013-02-01
Observers can accurately perceive and evaluate the statistical properties of a set of objects, forming what is now known as an ensemble representation. The accuracy and speed with which people can judge the mean size of a set of objects have led to the proposal that ensemble representations of average size can be computed in parallel when attention is distributed across the display. Consistent with this idea, judgments of mean size show little or no decrement in accuracy when the number of objects in the set increases. However, the lack of a set size effect might result from the regularity of the item sizes used in previous studies. Here, we replicate these previous findings, but show that judgments of mean set size become less accurate when set size increases and the heterogeneity of the item sizes increases. This pattern can be explained by assuming that average size judgments are computed using a limited capacity sampling strategy, and it does not necessitate an ensemble representation computed in parallel across all items in a display. Copyright © 2012 Elsevier B.V. All rights reserved.
Particle size and support effects in electrocatalysis.
Hayden, Brian E
2013-08-20
Researchers increasingly recognize that, as with standard supported heterogeneous catalysts, the activity and selectivity of supported metal electrocatalysts are influenced by particle size, particle structure, and catalyst support. Studies using model supported heterogeneous catalysts have provided information about these effects. Similarly, model electrochemical studies on supported metal electrocatalysts can provide insight into the factors determining catalytic activity. High-throughput methods for catalyst synthesis and screening can determine systematic trends in activity as a function of support and particle size with excellent statistical certainty. In this Account, we describe several such studies investigating methods for dispersing precious metals on both carbon and oxide supports, with particular emphasis on the prospects for the development of low-temperature fuel-cell electrocatalysts. One key finding is a decrease in catalytic activity with decreasing particle size independent of the support for both oxygen reduction and CO oxidation on supported gold and platinum. For these reactions, there appears to be an intrinsic particle size effect that results in a loss of activity at particle sizes below 2-3 nm. A titania support, however, also increases activity of gold particles in the electrooxidation of CO and in the reduction of oxygen, with an optimum at 3 nm particle size. This optimum may represent the superposition of competing effects: a titania-induced enhanced activity versus deactivation at small particle sizes. The titania support shows catalytic activity at potentials where carbon-supported and bulk-gold surfaces are normally oxidized and CO electrooxidation is poisoned. On the other hand, platinum on amorphous titania shows a different effect: the oxidation reduction reaction is strongly poisoned in the same particle size range. We correlated the influence of the titania support with titania-induced changes in the surface redox behavior of the platinum particles. For both supported gold and platinum particles in electrocatalysis, we observe parallels to the effects of particle size and support in the equivalent heterogeneous catalysts. Studies of model supported-metal electrocatalysts, performs efficiently using high throughput synthetic and screening methodologies, will lead to a better understanding of the mechanisms responsible for support and particle size effects in electrocatalysis, and will drive the development of more effective and robust catalysts in the future.
Xin, Xiu; Wang, Hailong; Han, Lingling; Wang, Mingzhen; Fang, Hui; Hao, Yao; Li, Jiadai; Zhang, Hu; Zheng, Congyi; Shen, Chao
2018-05-01
Viral infection and replication are affected by host cell heterogeneity, but the mechanisms underlying the effects remain unclear. Using single-cell analysis, we investigated the effects of host cell heterogeneity, including cell size, inclusion, and cell cycle, on foot-and-mouth disease virus (FMDV) infection (acute and persistent infections) and replication. We detected various viral genome replication levels in FMDV-infected cells. Large cells and cells with a high number of inclusions generated more viral RNA copies and viral protein and a higher proportion of infectious cells than other cells. Additionally, we found that the viral titer was 10- to 100-fold higher in cells in G 2 /M than those in other cell cycle phases and identified a strong correlation between cell size, inclusion, and cell cycle heterogeneity, which all affected the infection and replication of FMDV. Furthermore, we demonstrated that host cell heterogeneity influenced the adsorption of FMDV due to differences in the levels of FMDV integrin receptors expression. Collectively, these results further our understanding of the evolution of a virus in a single host cell. IMPORTANCE It is important to understand how host cell heterogeneity affects viral infection and replication. Using single-cell analysis, we found that viral genome replication levels exhibited dramatic variability in foot-and-mouth disease virus (FMDV)-infected cells. We also found a strong correlation between heterogeneity in cell size, inclusion number, and cell cycle status and that all of these characteristics affect the infection and replication of FMDV. Moreover, we found that host cell heterogeneity influenced the viral adsorption as differences in the levels of FMDV integrin receptors' expression. This study provided new ideas for the studies of correlation between FMDV infection mechanisms and host cells. Copyright © 2018 American Society for Microbiology.
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
Interpreting Meta-Analyses of Genome-Wide Association Studies
Han, Buhm; Eskin, Eleazar
2012-01-01
Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect. PMID:22396665
Effects of Class Size on Alternative Educational Outcomes across Disciplines
ERIC Educational Resources Information Center
Cheng, Dorothy A.
2011-01-01
This is the first study to use self-reported ratings of student learning, instructor recommendations, and course recommendations as the outcome measure to estimate class size effects, doing so across 24 disciplines. Fixed-effects models controlling for heterogeneous courses and instructors reveal that increasing enrollment has negative and…
Incorporating heterogeneity into the transmission dynamics of a waterborne disease model.
Collins, O C; Govinder, K S
2014-09-07
We formulate a mathematical model that captures the essential dynamics of waterborne disease transmission to study the effects of heterogeneity on the spread of the disease. The effects of heterogeneity on some important mathematical features of the model such as the basic reproduction number, type reproduction number and final outbreak size are analysed accordingly. We conduct a real-world application of this model by using it to investigate the heterogeneity in transmission in the recent cholera outbreak in Haiti. By evaluating the measure of heterogeneity between the administrative departments in Haiti, we discover a significant difference in the dynamics of the cholera outbreak between the departments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Lifeng; Chu, Haitao; Hodges, James S.
2016-01-01
Summary Meta-analysis has become a widely used tool to combine results from independent studies. The collected studies are homogeneous if they share a common underlying true effect size; otherwise, they are heterogeneous. A fixed-effect model is customarily used when the studies are deemed homogeneous, while a random-effects model is used for heterogeneous studies. Assessing heterogeneity in meta-analysis is critical for model selection and decision making. Ideally, if heterogeneity is present, it should permeate the entire collection of studies, instead of being limited to a small number of outlying studies. Outliers can have great impact on conventional measures of heterogeneity and the conclusions of a meta-analysis. However, no widely accepted guidelines exist for handling outliers. This article proposes several new heterogeneity measures. In the presence of outliers, the proposed measures are less affected than the conventional ones. The performance of the proposed and conventional heterogeneity measures are compared theoretically, by studying their asymptotic properties, and empirically, using simulations and case studies. PMID:27167143
Pay-for-Performance: Disappointing Results or Masked Heterogeneity?
Markovitz, Adam A.; Ryan, Andrew M.
2018-01-01
Research on the effects of pay-for-performance (P4P) in health care indicates largely disappointing results. This central finding, however, may mask important heterogeneity in the effects of P4P. We conducted a literature review to assess whether hospital and physician performance in P4P varied by patient and catchment area factors, organizational and structural capabilities, and P4P program characteristics. Several findings emerged: organizational size, practice type, teaching status, and physician age and gender modify performance in P4P. For physician practices and hospitals, a higher proportion of poor and minority patients is consistently associated with worse performance. Other theoretically influential characteristics – including information technology and staffing levels – yield mixed results. Inconsistent and contradictory effects of bonus likelihood, bonus size, and marginal costs on performance in P4P suggest organizations have not responded strategically to financial incentives. We conclude that extant heterogeneity in the effects of P4P does not fundamentally alter current assessments about its effectiveness. PMID:26743502
NASA Astrophysics Data System (ADS)
Liu, B.; Liang, Y.
2017-12-01
The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.
Sample size calculations for comparative clinical trials with over-dispersed Poisson process data.
Matsui, Shigeyuki
2005-05-15
This paper develops a new formula for sample size calculations for comparative clinical trials with Poisson or over-dispersed Poisson process data. The criteria for sample size calculations is developed on the basis of asymptotic approximations for a two-sample non-parametric test to compare the empirical event rate function between treatment groups. This formula can accommodate time heterogeneity, inter-patient heterogeneity in event rate, and also, time-varying treatment effects. An application of the formula to a trial for chronic granulomatous disease is provided. Copyright 2004 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
Movement ecology: size-specific behavioral response of an invasive snail to food availability.
Snider, Sunny B; Gilliam, James F
2008-07-01
Immigration, emigration, migration, and redistribution describe processes that involve movement of individuals. These movements are an essential part of contemporary ecological models, and understanding how movement is affected by biotic and abiotic factors is important for effectively modeling ecological processes that depend on movement. We asked how phenotypic heterogeneity (body size) and environmental heterogeneity (food resource level) affect the movement behavior of an aquatic snail (Tarebia granifera), and whether including these phenotypic and environmental effects improves advection-diffusion models of movement. We postulated various elaborations of the basic advection diffusion model as a priori working hypotheses. To test our hypotheses we measured individual snail movements in experimental streams at high- and low-food resource treatments. Using these experimental movement data, we examined the dependency of model selection on resource level and body size using Akaike's Information Criterion (AIC). At low resources, large individuals moved faster than small individuals, producing a platykurtic movement distribution; including size dependency in the model improved model performance. In stark contrast, at high resources, individuals moved upstream together as a wave, and body size differences largely disappeared. The model selection exercise indicated that population heterogeneity is best described by the advection component of movement for this species, because the top-ranked model included size dependency in advection, but not diffusion. Also, all probable models included resource dependency. Thus population and environmental heterogeneities both influence individual movement behaviors and the population-level distribution kernels, and their interaction may drive variation in movement behaviors in terms of both advection rates and diffusion rates. A behaviorally informed modeling framework will integrate the sentient response of individuals in terms of movement and enhance our ability to accurately model ecological processes that depend on animal movement.
Determination of the mechanical characteristics of nanomaterials under tension and compression
NASA Astrophysics Data System (ADS)
Filippov, A. A.; Fomin, V. M.
2018-04-01
In this paper, new method for determining the mechanical characteristics of nanoparticles in a heterogeneous mixture is proposed. The heterogeneous mixture consists of a thermosetting epoxy resin and silicon dioxide powder of different dispersity. The mechanical characteristics of such a material at a constant concentration for nanopowder are experimentally determined. Using existing formulas for obtaining effective characteristics, the Lame coefficients for nanoparticles of various sizes are calculated. The dependence of the elastic characteristics on the particle size is obtained.
Linking Different Exposure Patterns to Internal Lung Dose for Heterogeneous Ambient Aerosols
Particulate matter (PM) in the ambient air is a complex mixture of particles with different sizes and chemical compositions. Because potential health effects are known to be different for different size particles, specific dose of size-fractionated PM under realistic exposure con...
Symmetric wetting heterogeneity suppresses fluid displacement hysteresis in granular piles
NASA Astrophysics Data System (ADS)
Moosavi, R.; Schröter, M.; Herminghaus, S.
2018-02-01
We investigate experimentally the impact of heterogeneity on the capillary pressure hysteresis in fluid invasion of model porous media. We focus on symmetric heterogeneity, where the contact angles the fluid interface makes with the oil-wet (θ1) and the water-wet (θ2) beads add up to π . While enhanced heterogeneity is usually known to increase hysteresis phenomena, we find that hysteresis is greatly reduced when heterogeneities in wettability are introduced. On the contrary, geometric heterogeneity (like bidisperse particle size) does not lead to such an effect. We provide a qualitative explanation of this surprising result, resting on rather general geometric arguments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Shang, Jianying; Shan, Huimei
2014-02-04
The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relativelymore » homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.« less
Meta-Analysis of Workplace Physical Activity Interventions
Conn, Vicki S.; Hafdahl, Adam R.; Cooper, Pamela S.; Brown, Lori M.; Lusk, Sally L.
2009-01-01
Context Most adults do not achieve adequate physical activity. Despite the potential benefits of worksite health promotion, no previous comprehensive meta-analysis has summarized health and physical activity behavior outcomes from these programs. This comprehensive meta-analysis integrated the extant wide range of worksite physical activity intervention research. Evidence acquisition Extensive searching located published and unpublished intervention studies reported from 1969 through 2007. Results were coded from primary studies. Random-effects meta-analytic procedures, including moderator analyses, were completed in 2008. Evidence synthesis Effects on most variables were substantially heterogeneous because diverse studies were included. Standardized mean difference (d) effect sizes were synthesized across approximately 38,231 subjects. Significantly positive effects were observed for physical activity behavior (0.21), fitness (0.57), lipids (0.13), anthropometric measures (0.08), work attendance (0.19), and job stress (0.33). The significant effect size for diabetes risk (0.98) is more tentative given small sample sizes. Significant heterogeneity documents intervention effects varied across studies. The mean effect size for fitness corresponds to a difference between treatment minus control subjects' means on V02max of 3.5 mL/kg/min; for lipids, −0.2 on total cholesterol:HDL; and for diabetes risk, −12.6 mg/dL on fasting glucose. Conclusions These findings document that some workplace physical activity interventions can improve both health and important worksite outcomes. Effects were variable for most outcomes, reflecting the diversity of primary studies. Future primary research should compare interventions to confirm causal relationships and further explore heterogeneity. PMID:19765506
Offspring size effects mediate competitive interactions in a colonial marine invertebrate.
Marshall, Dustin J; Cook, Carly N; Emlet, Richard B
2006-01-01
Over the past 30 years, numerous attempts to understand the relationship between offspring size and fitness have been made, and it has become clear that this critical relationship is strongly affected by environmental heterogeneity. For marine invertebrates, there has been a long-standing interest in the evolution of offspring size, but there have been very few empirical and theoretical examinations of post-metamorphic offspring size effects, and almost none have considered the effect of environmental heterogeneity on the offspring size/fitness relationship. We investigated the post-metamorphic effects of offspring size in the field for the colonial marine invertebrate Botrylloides violaceus. We also examined how the relationship between offspring size and performance was affected by three different types of intraspecific competition. We found strong and persistent effects of offspring size on survival and growth, but these effects depended on the level and type of intraspecific competition. Generally, competition strengthened the advantages of increasing maternal investment. Interestingly, we found that offspring size determined the outcome of competitive interaction: juveniles that had more maternal investment were more likely to encroach on another juvenile's territory. This suggests that mothers have the previously unrecognized potential to influence the outcome of competitive interactions in benthic marine invertebrates. We created a simple optimality model, which utilized the data generated from our field experiments, and found that increasing intraspecific competition resulted in an increase in predicted optimal size. Our results suggest that the relationship between offspring size and fitness is highly variable in the marine environment and strongly dependent on the density of conspecifics.
Influence of non-homogeneous mixing on final epidemic size in a meta-population model.
Cui, Jingan; Zhang, Yanan; Feng, Zhilan
2018-06-18
In meta-population models for infectious diseases, the basic reproduction number [Formula: see text] can be as much as 70% larger in the case of preferential mixing than that in homogeneous mixing [J.W. Glasser, Z. Feng, S.B. Omer, P.J. Smith, and L.E. Rodewald, The effect of heterogeneity in uptake of the measles, mumps, and rubella vaccine on the potential for outbreaks of measles: A modelling study, Lancet ID 16 (2016), pp. 599-605. doi: 10.1016/S1473-3099(16)00004-9 ]. This suggests that realistic mixing can be an important factor to consider in order for the models to provide a reliable assessment of intervention strategies. The influence of mixing is more significant when the population is highly heterogeneous. In this paper, another quantity, the final epidemic size ([Formula: see text]) of an outbreak, is considered to examine the influence of mixing and population heterogeneity. Final size relation is derived for a meta-population model accounting for a general mixing. The results show that [Formula: see text] can be influenced by the pattern of mixing in a significant way. Another interesting finding is that, heterogeneity in various sub-population characteristics may have the opposite effect on [Formula: see text] and [Formula: see text].
Wang, Zhen; Alahdab, Fares; Almasri, Jehad; Haydour, Qusay; Mohammed, Khaled; Abu Dabrh, Abd Moain; Prokop, Larry J; Alfarkh, Wedad; Lakis, Sumaya; Montori, Victor M; Murad, Mohammad Hassan
2016-04-01
To evaluate the presence of extreme findings and fluctuation in effect size in endocrinology. We systematically identified all meta-analyses published in 2014 in the field of endocrinology. Within each meta-analysis, the effect size of the primary binary outcome was compared across studies according to their order of publication. We pooled studies using the DerSimonian and Laird random-effects method. Heterogeneity was evaluated using the I(2) and tau(2). Twelve percent of the included 100 meta-analyses reported the largest effect size in the very first published study. The largest effect size occurred in the first 2 earliest studies in 31% of meta-analyses. When the effect size was the largest in the first published study, it was three times larger than the final pooled effect (ratio of rates, 3.26; 95% confidence interval: 1.80, 5.90). The largest heterogeneity measured by I(2) was observed in 18% of the included meta-analyses when combining the first 2 studies or 17% when combing the first 3 studies. In endocrinology, early studies reported extreme findings with large variability. This behavior of the evidence needs to be taken into account when used to formulate clinical policies. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Bo; Wang, Jianjun; Liu, Zhiping; Zhang, Xianren
2014-01-01
The application of Cassie equation to microscopic droplets is recently under intense debate because the microdroplet dimension is often of the same order of magnitude as the characteristic size of substrate heterogeneities, and the mechanism to describe the contact angle of microdroplets is not clear. By representing real surfaces statistically as an ensemble of patterned surfaces with randomly or regularly distributed heterogeneities (patches), lattice Boltzmann simulations here show that the contact angle of microdroplets has a wide distribution, either continuous or discrete, depending on the patch size. The origin of multiple contact angles observed is ascribed to the contact line pinning effect induced by substrate heterogeneities. We demonstrate that the local feature of substrate structure near the contact line determines the range of contact angles that can be stabilized, while the certain contact angle observed is closely related to the contact line width. PMID:25059292
Zhang, Tao; Yang, Xiaojun
2013-01-01
Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.
Heterogeneity effects in visual search predicted from the group scanning model.
Macquistan, A D
1994-12-01
The group scanning model of feature integration theory (Treisman & Gormican, 1988) suggests that subjects search visual displays serially by groups, but process items within each group in parallel. The size of these groups is determined by the discriminability of the targets in the background of distractors. When the target is poorly discriminable, the size of the scanned group will be small, and search will be slow. The model predicts that group size will be smallest when targets of an intermediate value on a perceptual dimension are presented in a heterogeneous background of distractors that have higher and lower values on the same dimension. Experiment 1 demonstrates this effect. Experiment 2 controls for a possible confound of decision complexity in Experiment 1. For simple feature targets, the group scanning model provides a good account of the visual search process.
2014-01-01
Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations include avoidance of cluster merges where possible, discontinuation of clusters following heterogeneous merges, allowance for potential loss of clusters and additional variability in cluster size in the original sample size calculation, and use of appropriate ICC estimates that reflect cluster size. PMID:24884591
Basics of meta-analysis: I2 is not an absolute measure of heterogeneity.
Borenstein, Michael; Higgins, Julian P T; Hedges, Larry V; Rothstein, Hannah R
2017-03-01
When we speak about heterogeneity in a meta-analysis, our intent is usually to understand the substantive implications of the heterogeneity. If an intervention yields a mean effect size of 50 points, we want to know if the effect size in different populations varies from 40 to 60, or from 10 to 90, because this speaks to the potential utility of the intervention. While there is a common belief that the I 2 statistic provides this information, it actually does not. In this example, if we are told that I 2 is 50%, we have no way of knowing if the effects range from 40 to 60, or from 10 to 90, or across some other range. Rather, if we want to communicate the predicted range of effects, then we should simply report this range. This gives readers the information they think is being captured by I 2 and does so in a way that is concise and unambiguous. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.; Bangia, A.K.; Kevrekidis, I.G.
1996-12-05
Spatiotemporal dynamics in reaction-diffusion systems can be altered through the properties (reactivity, diffusivity) of the medium in which they occur. We construct active heterogeneous media (composite catalytic surfaces with inert as well as active illusions) using microelectronics fabrication techniques and study the spatiotemporal dynamics of heterogeneous catalytic reactions on these catalysts. In parallel, we perform simulations as well as numerical stability and bifurcation analysis of these patterns using mechanistic models. At the limit of large heterogeneity `grain size` (compared to the wavelength of spontaneously arising structures) the interaction patterns with inert or active boundaries dominates (e.g., pinning, transmission, and boundarymore » breakup of spirals, interaction of pulses with corners, `pacemaker` effects). At the opposite limit of very small or very finely distributed heterogeneity, effective behavior is observed (slight modulation of pulses, nearly uniform oscillations, effective spirals). Some representative studies of transitions between the two limits are presented. 48 refs., 11 figs.« less
ERIC Educational Resources Information Center
Hess, Brian; Olejnik, Stephen; Huberty, Carl J.
2001-01-01
Studied the efficacy of two improvement-over-chance or "I" effect sizes derived from predictive discriminant analysis and logistic regression analysis for two-group univariate mean comparisons through simulation. Discusses the ways in which the usefulness of each of the indices depends on the population characteristics. (SLD)
An Effective Cache Algorithm for Heterogeneous Storage Systems
Li, Yong; Feng, Dan
2013-01-01
Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890
PDF-based heterogeneous multiscale filtration model.
Gong, Jian; Rutland, Christopher J
2015-04-21
Motivated by modeling of gasoline particulate filters (GPFs), a probability density function (PDF) based heterogeneous multiscale filtration (HMF) model is developed to calculate filtration efficiency of clean particulate filters. A new methodology based on statistical theory and classic filtration theory is developed in the HMF model. Based on the analysis of experimental porosimetry data, a pore size probability density function is introduced to represent heterogeneity and multiscale characteristics of the porous wall. The filtration efficiency of a filter can be calculated as the sum of the contributions of individual collectors. The resulting HMF model overcomes the limitations of classic mean filtration models which rely on tuning of the mean collector size. Sensitivity analysis shows that the HMF model recovers the classical mean model when the pore size variance is very small. The HMF model is validated by fundamental filtration experimental data from different scales of filter samples. The model shows a good agreement with experimental data at various operating conditions. The effects of the microstructure of filters on filtration efficiency as well as the most penetrating particle size are correctly predicted by the model.
Effect of distance-related heterogeneity on population size estimates from point counts
Efford, Murray G.; Dawson, Deanna K.
2009-01-01
Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.
The Effect of Heterogeneity on Numerical Ordering in Rhesus Monkeys
ERIC Educational Resources Information Center
Cantlon, Jessica F.; Brannon, Elizabeth M.
2006-01-01
We investigated how within-stimulus heterogeneity affects the ability of rhesus monkeys to order pairs of the numerosities 1 through 9. Two rhesus monkeys were tested in a touch screen task where the variability of elements within each visual array was systematically varied by allowing elements to vary in color, size, shape, or any combination of…
Modeling electrostatic and heterogeneity effects on proton dissociation from humic substances
Tipping, E.; Reddy, M.M.; Hurley, M.A.
1990-01-01
The apparent acid dissociation constant of humic substances increases by 2-4 pK units as ionization of the humic carboxylate groups proceeds. This change in apparent acid strength is due in part to the increase in electrical charge on the humic molecules as protons are shed. In addition, proton dissociation reactions are complicated because humic substances are heterogeneous with respect to proton dissociating groups and molecular size. In this paper, we use the Debye-Hu??ckel theory to describe the effects of electrostatic interactions on proton dissociation of humic substances. Simulations show that, for a size-heterogeneous system of molecules, the weight-average molecular weight is preferable to the number-average value for averaging the effects of electrostatic interactions. Analysis of published data on the proton dissociation of fulvic acid from the Suwannee River shows that the electrostatic interactions can be satisfactorily described by a hypothetical homogeneous compound having a molecular weight of 1000 (similar to the experimentally determined weight-average value). Titration data at three ionic strengths, for several fulvic acid concentrations, and in the pH range from 2.9 to 6.4 can be fitted with three adjustable parameters (pK??int values), given information on molecular size and carboxylate group content. ?? 1990 American Chemical Society.
NASA Astrophysics Data System (ADS)
Johnson, William; Farnsworth, Anna; Vanness, Kurt; Hilpert, Markus
2017-04-01
The key element of a mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment) is representation of the nano-scale surface heterogeneity (herein called discrete heterogeneity) that drives colloid attachment under unfavorable conditions. The observed modes of colloid attachment under unfavorable conditions emerge from simulations that incorporate discrete heterogeneity. Quantitative prediction of attachment (and detachment) requires capturing the sizes, spatial frequencies, and other properties of roughness asperities and charge heterodomains in discrete heterogeneity representations of different surfaces. The fact that a given discrete heterogeneity representation will interact differently with different-sized colloids as well as different ionic strengths for a given sized colloid allows backing out representative discrete heterogeneity via comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has been achieved on unfavorable smooth surfaces yielding quantitative prediction of attachment, and qualitative prediction of detachment in response to ionic strength or flow perturbations. Extending this treatment to rough surfaces, and representing the contributions of nanoscale roughness as well as charge heterogeneity is a focus of this talk. Another focus of this talk is the upscaling the pore scale simulations to produce contrasting breakthrough-elution behaviors at the continuum (column) scale that are observed, for example, for different-sized colloids, or same-sized colloids under different ionic strength conditions. The outcome of mechanistic pore scale simulations incorporating discrete heterogeneity and subsequent upscaling is that temporal processes such as blocking and ripening will emerge organically from these simulations, since these processes fundamentally stem from the limited sites available for attachment as represented in discrete heterogeneity.
Abdelsayed, Victor; El-Shall, M Samy
2014-08-07
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelsayed, Victor; Samy El-Shall, M., E-mail: mselshal@vcu.edu
This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicatesmore » that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.« less
Advection by ocean currents modifies phytoplankton size structure.
Font-Muñoz, Joan S; Jordi, Antoni; Tuval, Idan; Arrieta, Jorge; Anglès, Sílvia; Basterretxea, Gotzon
2017-05-01
Advection by ocean currents modifies phytoplankton size structure at small scales (1-10 cm) by aggregating cells in different regions of the flow depending on their size. This effect is caused by the inertia of the cells relative to the displaced fluid. It is considered that, at larger scales (greater than or equal to 1 km), biological processes regulate the heterogeneity in size structure. Here, we provide observational evidence of heterogeneity in phytoplankton size structure driven by ocean currents at relatively large scales (1-10 km). Our results reveal changes in the phytoplankton size distribution associated with the coastal circulation patterns. A numerical model that incorporates the inertial properties of phytoplankton confirms the role of advection on the distribution of phytoplankton according to their size except in areas with enhanced nutrient inputs where phytoplankton dynamics is ruled by other processes. The observed preferential concentration mechanism has important ecological consequences that range from the phytoplankton level to the whole ecosystem. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Rubin, Alan E.; Ziegler, Karen; Young, Edward D.
2008-02-01
Literature data demonstrate that on a global, asteroid-wide scale (plausibly on the order of 100 km), ordinary chondrites (OC) have heterogeneous oxidation states and O-isotopic compositions (represented, respectively, by the mean olivine Fa and bulk Δ 17O compositions of equilibrated samples). Samples analyzed here include: (a) two H5 chondrite Antarctic finds (ALHA79046 and TIL 82415) that have the same cosmic-ray exposure age (7.6 Ma) and were probably within ˜1 km of each other when they were excavated from the H-chondrite parent body, (b) different individual stones from the Holbrook L/LL6 fall that were probably within ˜1 m of each other when their parent meteoroid penetrated the Earth's atmosphere, and (c) drill cores from a large slab of the Estacado H6 find located within a few tens of centimeters of each other. Our results indicate that OC are heterogeneous in their bulk oxidation state and O-isotopic composition on 100-km-size scales, but homogeneous on meter-, decimeter- and centimeter-size scales. (On kilometer size scales, oxidation state is heterogeneous, but O isotopes appear to be homogeneous.) The asteroid-wide heterogeneity in oxidation state and O-isotopic composition was inherited from the solar nebula. The homogeneity on small size scales was probably caused in part by fluid-assisted metamorphism and mainly by impact-gardening processes (which are most effective at mixing target materials on scales of ⩽1 m).
Nyflot, Matthew J.; Yang, Fei; Byrd, Darrin; Bowen, Stephen R.; Sandison, George A.; Kinahan, Paul E.
2015-01-01
Abstract. Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes. PMID:26251842
Nyflot, Matthew J; Yang, Fei; Byrd, Darrin; Bowen, Stephen R; Sandison, George A; Kinahan, Paul E
2015-10-01
Image heterogeneity metrics such as textural features are an active area of research for evaluating clinical outcomes with positron emission tomography (PET) imaging and other modalities. However, the effects of stochastic image acquisition noise on these metrics are poorly understood. We performed a simulation study by generating 50 statistically independent PET images of the NEMA IQ phantom with realistic noise and resolution properties. Heterogeneity metrics based on gray-level intensity histograms, co-occurrence matrices, neighborhood difference matrices, and zone size matrices were evaluated within regions of interest surrounding the lesions. The impact of stochastic variability was evaluated with percent difference from the mean of the 50 realizations, coefficient of variation and estimated sample size for clinical trials. Additionally, sensitivity studies were performed to simulate the effects of patient size and image reconstruction method on the quantitative performance of these metrics. Complex trends in variability were revealed as a function of textural feature, lesion size, patient size, and reconstruction parameters. In conclusion, the sensitivity of PET textural features to normal stochastic image variation and imaging parameters can be large and is feature-dependent. Standards are needed to ensure that prospective studies that incorporate textural features are properly designed to measure true effects that may impact clinical outcomes.
Ficks, Courtney A; Waldman, Irwin D
2014-09-01
Variation in central serotonin levels due to genetic mutations or experimental modifications has been associated with the manifestation of aggression in humans and animals. Many studies have examined whether common variants in serotonergic genes are implicated in aggressive or antisocial behaviors (ASB) in human samples. The two most commonly studied polymorphisms have been the serotonin transporter linked polymorphic region of the serotonin transporter gene (5HTTLPR) and the 30 base pair variable number of tandem repeats of the monoamine oxidase A gene (MAOA-uVNTR). Despite the aforementioned theoretical justification for these polymorphisms, findings across studies have been mixed and are thus difficult to interpret. A meta-analysis of associations of the 5HTTLPR and MAOA-uVNTR with ASB was conducted to determine: (1) the overall magnitude of effects for each polymorphism, (2) the extent of heterogeneity in effect sizes across studies and the likelihood of publication bias, and (3) whether sample-level or study-level characteristics could explain observed heterogeneity across studies. Both the 5HTTLPR and the MAOA-uVNTR were significantly associated with ASB across studies. There was also significant and substantial heterogeneity in the effect sizes for both markers, but this heterogeneity was not explained by any sample-level or study-level characteristics examined. We did not find any evidence for publication bias across studies for the MAOA-uVNTR, but there was evidence for an oversampling of statistically significant effect sizes for the 5HTTLPR. These findings provide support for the modest role of common serotonergic variants in ASB. Implications regarding the role of serotonin in antisocial behavior and the conceptualization of antisocial and aggressive phenotypes are discussed.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less
Area-based tests for association between spatial patterns
NASA Astrophysics Data System (ADS)
Maruca, Susan L.; Jacquez, Geoffrey M.
Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.
Lindholm, C; Jönsson, J; Calais, A; Middelkoop, A; Yngwe, N; Berndtson, E; Lees, J J; Hult, E; Altimiras, J
2017-01-01
Uniform growth is a desirable trait in all large-scale animal production systems because it simplifies animal management and increases profitability. In parental broiler flocks, so-called broiler breeders, low growth uniformity is largely attributed to the feed competition that arises from quantitatively restricted feeding. As feed restriction is crucial to maintaining healthy and fertile breeders, several practices for reducing feed competition and the associated growth heterogeneity have been suggested and range from nutrient dilution by increasing fiber content in feed to intermittent fasting with increased portion size ("skip a day"), but no practice appears to be entirely effective. The fact that a large part of the heterogeneity remains even when feed competition is minimized suggests that some growth variation is caused by other factors. We investigated whether this variation arises during embryonic development (as measured by size at hatch) or during posthatch development by following the growth and body composition of birds of varying hatch sizes. Our results support the posthatch alternative, with animals that later grow to be small or large (here defined as >1 SD lighter or heavier than mean BW of the flock) being significantly different in size as early as 1 d after gaining access to feed ( < 0.05). We then investigated 2 possible causes for different postnatal growth: that high growth performance is linked 1) to interindividual variations in metabolism (as measured by cloacal temperature and verified by respirometry) or 2) to higher levels of social motivation (as measured in a social reinstatement T-maze), which should reduce the stress of being reared in large-scale commercial flocks. Neither of these follow-up hypotheses could account for the observed heterogeneity in growth. We suggest that the basis of growth heterogeneity in broiler breeder pullets may already be determined at the time of hatch in the form of qualitatively different maternal investments or immediately thereafter as an indirect result of differences in incubation conditions, hatching time, and resulting fasting time. Although this potential difference in maternal investment is not seen in body mass, tarsometatarsal length, or full body length of day-old chicks arriving at the farm, it may influence the development of differential feed and water intake during the first day of feeding, which in turn has direct effects on growth heterogeneity.
Choi, Yoonha; Liu, Tiffany Ting; Pankratz, Daniel G; Colby, Thomas V; Barth, Neil M; Lynch, David A; Walsh, P Sean; Raghu, Ganesh; Kennedy, Giulia C; Huang, Jing
2018-05-09
We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.
Gao, Kai; Chung, Eric T.; Gibson, Richard L.; ...
2015-06-05
The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less
Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung
2017-12-01
Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jayewardene, Wasantha P; Lohrmann, David K; Erbe, Ryan G; Torabi, Mohammad R
2017-03-01
Empirical evidence suggested that mind-body interventions can be effectively delivered online. This study aimed to examine whether preventive online mindfulness interventions (POMI) for non-clinical populations improve short- and long-term outcomes for perceived-stress (primary) and mindfulness (secondary). Systematic search of four electronic databases, manuscript reference lists, and journal content lists was conducted in 2016, using 21 search-terms. Eight randomized controlled trials (RCTs) evaluating effects of POMI in non-clinical populations with adequately reported perceived-stress and mindfulness measures pre- and post-intervention were included. Random-effects models utilized for all effect-size estimations with meta-regression performed for mean age and %females. Participants were volunteers (adults; predominantly female) from academic, workplace, or community settings. Most interventions utilized simplified Mindfulness-Based Stress Reduction protocols over 2-12 week periods. Post-intervention, significant medium effect found for perceived-stress (g = 0.432), with moderate heterogeneity and significant, but small, effect size for mindfulness (g = 0.275) with low heterogeneity; highest effects were for middle-aged individuals. At follow-up, significant large effect found for perceived-stress (g = 0.699) with low heterogeneity and significant medium effect (g = 0.466) for mindfulness with high heterogeneity. No publication bias was found for perceived-stress; publication bias found for mindfulness outcomes led to underestimation of effects, not overestimation. Number of eligible RCTs was low with inadequate data reporting in some studies. POMI had substantial stress reduction effects and some mindfulness improvement effects. POMI can be a more convenient and cost-effective strategy, compared to traditional face-to-face interventions, especially in the context of busy, hard-to-reach, but digitally-accessible populations.
Mathur, Sonal; Allakhverdiev, Suleyman I; Jajoo, Anjana
2011-01-01
This study demonstrates the effect of high temperature stress on the heterogeneous behavior of PSII in Wheat (Triticum aestivum) leaves. Photosystem II in green plant chloroplasts displays heterogeneity both in the composition of its light harvesting antenna i.e. on the basis of antenna size (α, β and γ centers) and in the ability to reduce the plastoquinone pool i.e. the reducing side of the reaction centers (Q(B)-reducing centers and Q(B)-non-reducing centers). Detached wheat leaves were subjected to high temperature stress of 35°C, 40°C and 45°C. The chlorophyll a (Chl a) fluorescence transient were recorded in vivo with high time resolution and analyzed according to JIP test which can quantify PS II behavior using Plant efficiency analyzer (PEA). Other than PEA, Biolyzer HP-3 software was used to evaluate different types of heterogeneity in wheat leaves. The results revealed that at high temperature, there was a change in the relative amounts of PSII α, β and γ centers. As judged from the complementary area growth curve, it seemed that with increasing temperature the PSII(β) and PSII(γ) centers increased at the expense of PSII(α) centers. The reducing side heterogeneity was also affected as shown by an increase in the number of Q(B)-non-reducing centers at high temperatures. The reversibility of high temperature induced damage on PSII heterogeneity was also studied. Antenna size heterogeneity was recovered fully up to 40°C while reducing side heterogeneity showed partial recovery at 40°C. An irreversible damage to both the types of heterogeneity was observed at 45°C. The work is a significant contribution to understand the basic mechanism involved in the adaptation of crop plants to stress conditions. Copyright © 2010 Elsevier B.V. All rights reserved.
Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Grunewald, E.; Knight, R.
2008-12-01
The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.
Thermal conduction in particle packs via finite elements
NASA Astrophysics Data System (ADS)
Lechman, Jeremy B.; Yarrington, Cole; Erikson, William; Noble, David R.
2013-06-01
Conductive transport in heterogeneous materials composed of discrete particles is a fundamental problem for a number of applications. While analytical results and rigorous bounds on effective conductivity in mono-sized particle dispersions are well established in the literature, the methods used to arrive at these results often fail when the average size of particle clusters becomes large (i.e., near the percolation transition where particle contact networks dominate the bulk conductivity). Our aim is to develop general, efficient numerical methods that would allow us to explore this behavior and compare to a recent microstructural description of conduction in this regime. To this end, we present a finite element analysis approach to modeling heat transfer in granular media with the goal of predicting effective bulk thermal conductivities of particle-based heterogeneous composites. Our approach is verified against theoretical predictions for random isotropic dispersions of mono-disperse particles at various volume fractions up to close packing. Finally, we present results for the probability distribution of the effective conductivity in particle dispersions generated by Brownian dynamics, and suggest how this might be useful in developing stochastic models of effective properties based on the dynamical process involved in creating heterogeneous dispersions.
Collins, Alyson A; Lindström, Esther R; Compton, Donald L
Researchers have increasingly investigated sources of variance in reading comprehension test scores, particularly with students with reading difficulties (RD). The purpose of this meta-analysis was to determine if the achievement gap between students with RD and typically developing (TD) students varies as a function of different reading comprehension response formats (e.g., multiple choice, cloze). A systematic literature review identified 82 eligible studies. All studies administered reading comprehension assessments to students with RD and TD students in Grades K-12. Hedge's g standardized mean difference effect sizes were calculated, and random effects robust variance estimation techniques were used to aggregate average weighted effect sizes for each response format. Results indicated that the achievement gap between students with RD and TD students was larger for some response formats (e.g., picture selection ES g = -1.80) than others (e.g., retell ES g = -0.60). Moreover, for multiple-choice, cloze, and open-ended question response formats, single-predictor metaregression models explored potential moderators of heterogeneity in effect sizes. No clear patterns, however, emerged in regard to moderators of heterogeneity in effect sizes across response formats. Findings suggest that the use of different response formats may lead to variability in the achievement gap between students with RD and TD students.
Johansen, Mette; Bahrt, Henriette; Altman, Roy D; Bartels, Else M; Juhl, Carsten B; Bliddal, Henning; Lund, Hans; Christensen, Robin
2016-08-01
The aim was to identify factors explaining inconsistent observations concerning the efficacy of intra-articular hyaluronic acid compared to intra-articular sham/control, or non-intervention control, in patients with symptomatic osteoarthritis, based on randomized clinical trials (RCTs). A systematic review and meta-regression analyses of available randomized trials were conducted. The outcome, pain, was assessed according to a pre-specified hierarchy of potentially available outcomes. Hedges׳s standardized mean difference [SMD (95% CI)] served as effect size. REstricted Maximum Likelihood (REML) mixed-effects models were used to combine study results, and heterogeneity was calculated and interpreted as Tau-squared and I-squared, respectively. Overall, 99 studies (14,804 patients) met the inclusion criteria: Of these, only 71 studies (72%), including 85 comparisons (11,216 patients), had adequate data available for inclusion in the primary meta-analysis. Overall, compared with placebo, intra-articular hyaluronic acid reduced pain with an effect size of -0.39 [-0.47 to -0.31; P < 0.001], combining very heterogeneous trial findings (I(2) = 73%). The three most important covariates in reducing heterogeneity were overall risk of bias, blinding of personnel and trial size, reducing heterogeneity with 26%, 26%, and 25%, respectively (Interaction: P ≤ 0.001). Adjusting for publication/selective outcome reporting bias (by imputing "null effects") in 24 of the comparisons with no data available reduced the combined estimate to -0.30 [-0.36 to -0.23; P < 0.001] still in favor of hyaluronic acid. Based on available trial data, intra-articular hyaluronic acid showed a better effect than intra-articular saline on pain reduction in osteoarthritis. Publication bias and the risk of selective outcome reporting suggest only small clinical effect compared to saline. Copyright © 2016 Elsevier Inc. All rights reserved.
Predatory birds and ants partition caterpillar prey by body size and diet breadth.
Singer, Michael S; Clark, Robert E; Lichter-Marck, Issac H; Johnson, Emily R; Mooney, Kailen A
2017-10-01
The effects of predator assemblages on herbivores are predicted to depend critically on predator-predator interactions and the extent to which predators partition prey resources. The role of prey heterogeneity in generating such multiple predator effects has received limited attention. Vertebrate and arthropod insectivores constitute two co-dominant predatory taxa in many ecosystems, and the emergent properties of their joint effects on insect herbivores inform theory on multiple predator effects as well as biological control of insect herbivores. Here we use a large-scale factorial manipulation to assess the extent to which birds and ants engage in antagonistic predator-predator interactions and the consequences of heterogeneity in herbivore body size and diet breadth (i.e. the diversity of host plants used) for prey partitioning. We excluded birds and reduced ant density (by 60%) in the canopies of eight northeastern USA deciduous tree species during two consecutive years and measured the community composition and traits of lepidopteran larvae (caterpillars). Birds did not affect ant density, implying limited intraguild predation between these taxa in this system. Birds preyed selectively upon large-bodied caterpillars (reducing mean caterpillar length by 12%) and ants preyed selectively upon small-bodied caterpillars (increasing mean caterpillar length by 6%). Birds and ants also partitioned caterpillar prey by diet breadth. Birds reduced the frequency dietary generalist caterpillars by 24%, while ants had no effect. In contrast, ants reduced the frequency of dietary specialists by 20%, while birds had no effect, but these effects were non-additive; under bird exclusion, ants had no detectable effect, while in the presence of birds, they reduced the frequency of specialists by 40%. As a likely result of prey partitioning by body size and diet breadth, the combined effects of birds and ants on total caterpillar density were additive, with birds and ants reducing caterpillar density by 44% and 20% respectively. These results show evidence for the role of prey heterogeneity in driving functional complementarity among predators and enhanced top-down control. Heterogeneity in herbivore body size and diet breadth, as well as other prey traits, may represent key predictors of the strength of top-down control from predator communities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Lee, Yun-Kyung; Hur, Jin
2017-08-01
Knowledge of the heterogeneous distribution of humic substances (HS) reactivities along a continuum of molecular weight (MW) is crucial for the systems where the HS MW is subject to change. In this study, two dimensional correlation spectroscopy combined with size exclusion chromatography (2D-CoSEC) was first utilized to obtain a continuous and heterogeneous presence of copper binding characteristics within bulk HS with respect to MW. HS solutions with varying copper concentrations were directly injected into a size exclusion chromatography (SEC) system with Tris-HCl buffer as a mobile phase. Several validation tests confirmed neither structural disruption of HS nor competition effect of the mobile phase used. Similar to batch systems, fluorescence quenching was observed in the chromatograms over a wide range of HS MW. 2D-CoSEC maps of a soil-derived HS (Elliot soil humic acid) showed the greater fluorescence quenching degrees with respect to the apparent MW on the order of 12500 Da > 10600 Da > 7000 Da > 15800 Da. The binding constants calculated based on modified Stern-Volmer equation were consistent with the 2D-CoSEC results. More heterogeneity of copper binding affinities within bulk HS was found for the soil-derived HS versus an aquatic HS. The traditional fluorescence quenching titration method using ultrafiltered HS size fractions failed to delineate detailed distribution of the copper binding characteristics, exhibiting a much shorter range of the binding constants than those obtained from the 2D-CoSEC. Our proposed technique demonstrated a great potential to describe metal binding characteristics of HS at high MW resolution, providing a clear picture of the size-dependent metal-HS interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai
2012-03-01
Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna
2016-08-01
Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.
Likelihood-Based Random-Effect Meta-Analysis of Binary Events.
Amatya, Anup; Bhaumik, Dulal K; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D
2015-01-01
Meta-analysis has been used extensively for evaluation of efficacy and safety of medical interventions. Its advantages and utilities are well known. However, recent studies have raised questions about the accuracy of the commonly used moment-based meta-analytic methods in general and for rare binary outcomes in particular. The issue is further complicated for studies with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alternative to moment-based methods such as inverse-variance weighted fixed- and random-effects estimators. In this article, we compare and contrast different mixed-effect modeling strategies in the context of meta-analysis. Their performance in estimation and testing of overall effect and heterogeneity are evaluated when combining results from studies with a binary outcome. Models that allow heterogeneity in both baseline rate and treatment effect across studies have low type I and type II error rates, and their estimates are the least biased among the models considered.
Kuiper, Rebecca M; Nederhoff, Tim; Klugkist, Irene
2015-05-01
In this paper, the performance of six types of techniques for comparisons of means is examined. These six emerge from the distinction between the method employed (hypothesis testing, model selection using information criteria, or Bayesian model selection) and the set of hypotheses that is investigated (a classical, exploration-based set of hypotheses containing equality constraints on the means, or a theory-based limited set of hypotheses with equality and/or order restrictions). A simulation study is conducted to examine the performance of these techniques. We demonstrate that, if one has specific, a priori specified hypotheses, confirmation (i.e., investigating theory-based hypotheses) has advantages over exploration (i.e., examining all possible equality-constrained hypotheses). Furthermore, examining reasonable order-restricted hypotheses has more power to detect the true effect/non-null hypothesis than evaluating only equality restrictions. Additionally, when investigating more than one theory-based hypothesis, model selection is preferred over hypothesis testing. Because of the first two results, we further examine the techniques that are able to evaluate order restrictions in a confirmatory fashion by examining their performance when the homogeneity of variance assumption is violated. Results show that the techniques are robust to heterogeneity when the sample sizes are equal. When the sample sizes are unequal, the performance is affected by heterogeneity. The size and direction of the deviations from the baseline, where there is no heterogeneity, depend on the effect size (of the means) and on the trend in the group variances with respect to the ordering of the group sizes. Importantly, the deviations are less pronounced when the group variances and sizes exhibit the same trend (e.g., are both increasing with group number). © 2014 The British Psychological Society.
Understanding the lessons and limitations of conservation and development.
Oldekop, Johan A; Bebbington, Anthony J; Brockington, Dan; Preziosi, Richard F
2010-04-01
The lack of concrete instances in which conservation and development have been successfully merged has strengthened arguments for strict exclusionist conservation policies. Research has focused more on social cooperation and conflict of different management regimes and less on how these factors actually affect the natural environments they seek to conserve. Consequently, it is still unknown which strategies yield better conservation outcomes? We conducted a meta-analysis of 116 published case studies on common resource management regimes from Africa, south and central America, and southern and Southeast Asia. Using ranked sociodemographic, political, and ecological data, we analyzed the effect of land tenure, population size, social heterogeneity, as well as internally devised resource-management rules and regulations (institutions) on conservation outcome. Although land tenure, population size, and social heterogeneity did not significantly affect conservation outcome, institutions were positively associated with better conservation outcomes. There was also a significant interaction effect between population size and institutions, which implies complex relationships between population size and conservation outcome. Our results suggest that communities managing a common resource can play a significant role in conservation and that institutions lead to management regimes with lower environmental impacts.
Applicability of the Effective-Medium Approximation to Heterogeneous Aerosol Particles.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Liu, Li
2016-01-01
The effective-medium approximation (EMA) is based on the assumption that a heterogeneous particle can have a homogeneous counterpart possessing similar scattering and absorption properties. We analyze the numerical accuracy of the EMA by comparing superposition T-matrix computations for spherical aerosol particles filled with numerous randomly distributed small inclusions and Lorenz-Mie computations based on the Maxwell-Garnett mixing rule. We verify numerically that the EMA can indeed be realized for inclusion size parameters smaller than a threshold value. The threshold size parameter depends on the refractive-index contrast between the host and inclusion materials and quite often does not exceed several tenths, especially in calculations of the scattering matrix and the absorption cross section. As the inclusion size parameter approaches the threshold value, the scattering-matrix errors of the EMA start to grow with increasing the host size parameter and or the number of inclusions. We confirm, in particular, the existence of the effective-medium regime in the important case of dust aerosols with hematite or air-bubble inclusions, but then the large refractive-index contrast necessitates inclusion size parameters of the order of a few tenths. Irrespective of the highly restricted conditions of applicability of the EMA, our results provide further evidence that the effective-medium regime must be a direct corollary of the macroscopic Maxwell equations under specific assumptions.
Ando, Tadashi; Yu, Isseki; Feig, Michael; Sugita, Yuji
2016-11-23
The cytoplasm of a cell is crowded with many different kinds of macromolecules. The macromolecular crowding affects the thermodynamics and kinetics of biological reactions in a living cell, such as protein folding, association, and diffusion. Theoretical and simulation studies using simplified models focus on the essential features of the crowding effects and provide a basis for analyzing experimental data. In most of the previous studies on the crowding effects, a uniform crowder size is assumed, which is in contrast to the inhomogeneous size distribution of macromolecules in a living cell. Here, we evaluate the free energy changes upon macromolecular association in a cell-like inhomogeneous crowding system via a theory of hard-sphere fluids and free energy calculations using Brownian dynamics trajectories. The inhomogeneous crowding model based on 41 different types of macromolecules represented by spheres with different radii mimics the physiological concentrations of macromolecules in the cytoplasm of Mycoplasma genitalium. The free energy changes of macromolecular association evaluated by the theory and simulations were in good agreement with each other. The crowder size distribution affects both specific and nonspecific molecular associations, suggesting that not only the volume fraction but also the size distribution of macromolecules are important factors for evaluating in vivo crowding effects. This study relates in vitro experiments on macromolecular crowding to in vivo crowding effects by using the theory of hard-sphere fluids with crowder-size heterogeneity.
Planetarium instructional efficacy: A research synthesis
NASA Astrophysics Data System (ADS)
Brazell, Bruce D.
The purpose of the current study was to explore the instructional effectiveness of the planetarium in astronomy education using meta-analysis. A review of the literature revealed 46 studies related to planetarium efficacy. However, only 19 of the studies satisfied selection criteria for inclusion in the meta-analysis. Selected studies were then subjected to coding procedures, which extracted information such as subject characteristics, experimental design, and outcome measures. From these data, 24 effect sizes were calculated in the area of student achievement and five effect sizes were determined in the area of student attitudes using reported statistical information. Mean effect sizes were calculated for both the achievement and the attitude distributions. Additionally, each effect size distribution was subjected to homogeneity analysis. The attitude distribution was found to be homogeneous with a mean effect size of -0.09, which was not significant, p = .2535. The achievement distribution was found to be heterogeneous with a statistically significant mean effect size of +0.28, p < .05. Since the achievement distribution was heterogeneous, the analog to the ANOVA procedure was employed to explore variability in this distribution in terms of the coded variables. The analog to the ANOVA procedure revealed that the variability introduced by the coded variables did not fully explain the variability in the achievement distribution beyond subject-level sampling error under a fixed effects model. Therefore, a random effects model analysis was performed which resulted in a mean effect size of +0.18, which was not significant, p = .2363. However, a large random effect variance component was determined indicating that the differences between studies were systematic and yet to be revealed. The findings of this meta-analysis showed that the planetarium has been an effective instructional tool in astronomy education in terms of student achievement. However, the meta-analysis revealed that the planetarium has not been a very effective tool for improving student attitudes towards astronomy.
Habitat heterogeneity hypothesis and edge effects in model metacommunities.
Hamm, Michaela; Drossel, Barbara
2017-08-07
Spatial heterogeneity is an inherent property of any living environment and is expected to favour biodiversity due to a broader niche space. Furthermore, edges between different habitats can provide additional possibilities for species coexistence. Using computer simulations, this study examines metacommunities consisting of several trophic levels in heterogeneous environments in order to explore the above hypotheses on a community level. We model heterogeneous landscapes by using two different sized resource pools and evaluate the combined effect of dispersal and heterogeneity on local and regional species diversity. This diversity is obtained by running population dynamics and evaluating the robustness (i.e., the fraction of surviving species). The main results for regional robustness are in agreement with the habitat heterogeneity hypothesis, as the largest robustness is found in heterogeneous systems with intermediate dispersal rates. This robustness is larger than in homogeneous systems with the same total amount of resources. We study the edge effect by arranging the two types of resources in two homogeneous blocks. Different edge responses in diversity are observed, depending on dispersal strength. Local robustness is highest for edge habitats that contain the smaller amount of resource in combination with intermediate dispersal. The results show that dispersal is relevant to correctly identify edge responses on community level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lagarde, Mylene; Pagaiya, Nonglak; Tangcharoensathian, Viroj; Blaauw, Duane
2013-12-01
This study investigates heterogeneity in Thai doctors' job preferences at the beginning of their career, with a view to inform the design of effective policies to retain them in rural areas. A discrete choice experiment was designed and administered to 198 young doctors. We analysed the data using several specifications of a random parameter model to account for various sources of preference heterogeneity. By modelling preference heterogeneity, we showed how sensitivity to different incentives varied in different sections of the population. In particular, doctors from rural backgrounds were more sensitive than others to a 45% salary increase and having a post near their home province, but they were less sensitive to a reduction in the number of on-call nights. On the basis of the model results, the effects of two types of interventions were simulated: introducing various incentives and modifying the population structure. The results of the simulations provide multiple elements for consideration for policy-makers interested in designing effective interventions. They also underline the interest of modelling preference heterogeneity carefully. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Neng; Xia, Shuman
2017-01-01
A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.
Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik
2012-01-01
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299
Lee, Chin; Hunsche, Elke; Balshaw, Robert; Kong, Sheldon X; Schnitzer, Thomas J
2005-08-15
To evaluate the role of common internal controls in a meta-analysis of the relative efficacy of cyclooxygenase 2-selective inhibitors (coxibs) in the treatment of osteoarthritis (OA). A systematic search of Medline and US Food and Drug Administration electronic databases was performed to identify randomized, placebo-controlled clinical trials of coxibs (etoricoxib, celecoxib, rofecoxib, valdecoxib) in patients with hip and/or knee OA. The effect size for coxibs and common active internal controls (nonsteroidal antiinflammatory drugs [NSAIDs], naproxen) were determined by the mean changes from baseline in Western Ontario and McMaster Universities Osteoarthritis Index pain subscores as compared with placebo. The effect size for all coxib groups combined (0.44) indicated greater efficacy as compared with placebo, but significant heterogeneity (P < 0.0001) was observed. Rofecoxib at dosages of 12.5 mg/day and 25 mg/day and etoricoxib at a dosage of 60 mg/day had similar effect sizes (0.68 and 0.73, respectively), but these effect sizes were comparatively greater than those for both celecoxib at dosages of 200 mg/day and 100 mg twice daily or valdecoxib at a dosage of 10 mg/day (0.26 and 0.16, respectively). The effect sizes for NSAIDs or naproxen versus placebo, as determined using data from rofecoxib/etoricoxib trials, were consistently higher than the effect sizes derived from trials of celecoxib/valdecoxib. Significant heterogeneity was present in the overall effect size for NSAIDs (P = 0.007) and naproxen (P = 0.04) groups based on data available from all coxib trials. Coxibs and common active internal controls showed larger effect sizes versus placebo in the rofecoxib/etoricoxib trials than in the celecoxib/valdecoxib trials. These findings suggest systematic differences among published coxib trials and emphasize the need for direct-comparison trials. In the absence of such trials, common internal controls should be assessed when performing indirect meta-analytic comparisons.
NASA Astrophysics Data System (ADS)
Singh, Abhishek Kumar; Das, Amrita; Parween, Zeenat; Chattopadhyay, Amares
2015-10-01
The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.
Testing for qualitative heterogeneity: An application to composite endpoints in survival analysis.
Oulhaj, Abderrahim; El Ghouch, Anouar; Holman, Rury R
2017-01-01
Composite endpoints are frequently used in clinical outcome trials to provide more endpoints, thereby increasing statistical power. A key requirement for a composite endpoint to be meaningful is the absence of the so-called qualitative heterogeneity to ensure a valid overall interpretation of any treatment effect identified. Qualitative heterogeneity occurs when individual components of a composite endpoint exhibit differences in the direction of a treatment effect. In this paper, we develop a general statistical method to test for qualitative heterogeneity, that is to test whether a given set of parameters share the same sign. This method is based on the intersection-union principle and, provided that the sample size is large, is valid whatever the model used for parameters estimation. We propose two versions of our testing procedure, one based on a random sampling from a Gaussian distribution and another version based on bootstrapping. Our work covers both the case of completely observed data and the case where some observations are censored which is an important issue in many clinical trials. We evaluated the size and power of our proposed tests by carrying out some extensive Monte Carlo simulations in the case of multivariate time to event data. The simulations were designed under a variety of conditions on dimensionality, censoring rate, sample size and correlation structure. Our testing procedure showed very good performances in terms of statistical power and type I error. The proposed test was applied to a data set from a single-center, randomized, double-blind controlled trial in the area of Alzheimer's disease.
Inferring population-level contact heterogeneity from common epidemic data
Stack, J. Conrad; Bansal, Shweta; Kumar, V. S. Anil; Grenfell, Bryan
2013-01-01
Models of infectious disease spread that incorporate contact heterogeneity through contact networks are an important tool for epidemiologists studying disease dynamics and assessing intervention strategies. One of the challenges of contact network epidemiology has been the difficulty of collecting individual and population-level data needed to develop an accurate representation of the underlying host population's contact structure. In this study, we evaluate the utility of common epidemiological measures (R0, epidemic peak size, duration and final size) for inferring the degree of heterogeneity in a population's unobserved contact structure through a Bayesian approach. We test the method using ground truth data and find that some of these epidemiological metrics are effective at classifying contact heterogeneity. The classification is also consistent across pathogen transmission probabilities, and so can be applied even when this characteristic is unknown. In particular, the reproductive number, R0, turns out to be a poor classifier of the degree heterogeneity, while, unexpectedly, final epidemic size is a powerful predictor of network structure across the range of heterogeneity. We also evaluate our framework on empirical epidemiological data from past and recent outbreaks to demonstrate its application in practice and to gather insights about the relevance of particular contact structures for both specific systems and general classes of infectious disease. We thus introduce a simple approach that can shed light on the unobserved connectivity of a host population given epidemic data. Our study has the potential to inform future data-collection efforts and study design by driving our understanding of germane epidemic measures, and highlights a general inferential approach to learning about host contact structure in contemporary or historic populations of humans and animals. PMID:23034353
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
Neither fixed nor random: weighted least squares meta-analysis.
Stanley, T D; Doucouliagos, Hristos
2015-06-15
This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.
de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M
2013-10-15
Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.
EFFECTS OF LANDSCAPE CHARACTERISTICS ON LAND-COVER CLASS ACCURACY
Utilizing land-cover data gathered as part of the National Land-Cover Data (NLCD) set accuracy assessment, several logistic regression models were formulated to analyze the effects of patch size and land-cover heterogeneity on classification accuracy. Specific land-cover ...
Performance of Between-Study Heterogeneity Measures in the Cochrane Library.
Ma, Xiaoyue; Lin, Lifeng; Qu, Zhiyong; Zhu, Motao; Chu, Haitao
2018-05-29
The growth in comparative effectiveness research and evidence-based medicine has increased attention to systematic reviews and meta-analyses. Meta-analysis synthesizes and contrasts evidence from multiple independent studies to improve statistical efficiency and reduce bias. Assessing heterogeneity is critical for performing a meta-analysis and interpreting results. As a widely used heterogeneity measure, the I statistic quantifies the proportion of total variation across studies that is due to real differences in effect size. The presence of outlying studies can seriously exaggerate the I statistic. Two alternative heterogeneity measures, the Ir and Im, have been recently proposed to reduce the impact of outlying studies. To evaluate these measures' performance empirically, we applied them to 20,599 meta-analyses in the Cochrane Library. We found that the Ir and Im have strong agreement with the I, while they are more robust than the I when outlying studies appear.
Elmasry, Mohamed; Liu, Fan; Jiang, Yao; Mao, Ze Ning; Liu, Ying; Wang, Jing Tao
2017-01-01
The catalyzing effect on nucleation of recrystallization from existing grains resulting from previous lower temperature deformation is analyzed, analogous to the size effect of foreign nucleus in heterogeneous nucleation. Analytical formulation of the effective nucleation site for recrystallization leads to a negative temperature dependence of recrystallized grain size of metals. Non-isochronal annealing—where annealing time is set just enough for the completion of recrystallization at different temperatures—is conducted on pure copper after severe plastic deformation. More homogeneous and smaller grains are obtained at higher annealing temperature. The good fit between analytical and experimental results unveils the intrinsic feature of this negative temperature dependence of recrystallized grain size. PMID:28772676
Meta-analysis of workplace physical activity interventions.
Conn, Vicki S; Hafdahl, Adam R; Cooper, Pamela S; Brown, Lori M; Lusk, Sally L
2009-10-01
Most adults do not achieve adequate physical activity levels. Despite the potential benefits of worksite health promotion, no previous comprehensive meta-analysis has summarized health and physical activity behavior outcomes from such programs. This comprehensive meta-analysis integrated the extant wide range of worksite physical activity intervention research. Extensive searching located published and unpublished intervention studies reported from 1969 through 2007. Results were coded from primary studies. Random-effects meta-analytic procedures, including moderator analyses, were completed in 2008. Effects on most variables were substantially heterogeneous because diverse studies were included. Standardized mean difference (d) effect sizes were synthesized across approximately 38,231 subjects. Significantly positive effects were observed for physical activity behavior (0.21); fitness (0.57); lipids (0.13); anthropometric measures (0.08); work attendance (0.19); and job stress (0.33). The significant effect size for diabetes risk (0.98) is less robust given small sample sizes. The mean effect size for fitness corresponds to a difference between treatment minus control subjects' means on VO2max of 3.5 mL/kg/min; for lipids, -0.2 on the ratio of total cholesterol to high-density lipoprotein; and for diabetes risk, -12.6 mg/dL on fasting glucose. These findings document that some workplace physical activity interventions can improve both health and important worksite outcomes. Effects were variable for most outcomes, reflecting the diversity of primary studies. Future primary research should compare interventions to confirm causal relationships and further explore heterogeneity.
Sequential change detection and monitoring of temporal trends in random-effects meta-analysis.
Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena
2017-06-01
Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter τ 2 . In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Thorman, Staffan
1986-03-01
The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.
Urlacher, Samuel S; Liebert, Melissa A; Josh Snodgrass, J; Blackwell, Aaron D; Cepon-Robins, Tara J; Gildner, Theresa E; Madimenos, Felicia C; Amir, Dorsa; Bribiescas, Richard G; Sugiyama, Lawrence S
2016-07-01
Market integration (MI)-increasing production for and consumption from a market-based economy-is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. This study examines the impact of MI on sub-adult body size and nutritional status at the population, regional and household levels among the Shuar of Amazonian Ecuador. Anthropometric data were collected between 2005-2014 from 2164 Shuar (aged 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle and dietary data were collected from a sub-sample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region and specific aspects of household MI. Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth and health among the Shuar and other indigenous Amazonian populations.
Urlacher, Samuel S.; Liebert, Melissa A.; Snodgrass, J. Josh; Blackwell, Aaron D.; Cepon-Robins, Tara J.; Gildner, Theresa E.; Madimenos, Felicia C.; Amir, Dorsa; Bribiescas, Richard G.; Sugiyama, Lawrence S.
2016-01-01
Background Market integration (MI) – increasing production for and consumption from a market-based economy – is drastically altering traditional ways of life and environmental conditions among indigenous Amazonian peoples. The effects of MI on the biology and health of Amazonian children and adolescents, however, remain unclear. Aim This study examines the impact of MI on subadult body size and nutritional status at the population, regional, and household levels among the Shuar of Amazonian Ecuador. Subjects and Methods Anthropometric data were collected between 2005 and 2014 from 2,164 Shuar (age 2-19 years) living in two geographic regions differing in general degree of MI. High-resolution household economic, lifestyle, and dietary data were collected from a subsample of 631 participants. Analyses were performed to investigate relationships between body size and year of data collection, region, and specific aspects of household MI. Results Results from temporal and regional analyses suggest that MI has a significant and overall positive impact on Shuar body size and nutritional status. However, household-level results exhibit nuanced and heterogeneous specific effects of MI underlying these overarching relationships. Conclusion This study provides novel insight into the complex socio-ecological pathways linking MI, physical growth, and health among the Shuar and other indigenous Amazonian populations. PMID:27230632
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Pore-scale Investigation of Surfactant Induced Mobilization for the Remediation of LNAPL
NASA Astrophysics Data System (ADS)
Ghosh, J.; Tick, G. R.
2011-12-01
The presence of nonaqueous phase liquids within the subsurface can significantly limit the effectiveness of groundwater remediation. Specifically, light nonaqueous phase liquids (LNAPLs) present unique challenges as they can become "smeared" within zones above and below the water table. The aim of this research is to understand the interfacial phenomena at the pore scale influencing residual saturation of LNAPL distribution as function of media heterogeneity and remediation processes from various aquifer systems. A series of columns were packed with three types of unconsolidated sand of increasing heterogeneity in grain size distribution and were established with residual saturations of light and heavy crude oil fractions, respectively. These columns were then subjected to flooding with 0.1% anionic surfactant solution in various episodes to initiate mobilization and enhanced recovery of NAPL phase contamination. Synchrotron X-ray microtomography (SXM) imaging technology was used to study three-dimensional (3-D) distributions of crude-oil-blobs before and after sequential surfactant flooding events. Results showed that LNAPL blob distributions became more heterogeneous after each subsequent surfactant flooding episode for all porous-media systems. NAPL recovery was most effective from the homogenous porous medium whereby 100% recovery resulted after 5 pore volumes (PVs) of flushing. LNAPL within the mildly heterogeneous porous medium produced a limited but consistent reduction in saturation after each surfactant flooding episode (23% and 43% recovery for light and heavy after the 5-PV flood). The highly heterogeneous porous medium showed greater NAPL recovery potential (42% and 16% for light and heavy) only after multiple pore volumes of flushing, at which point the NAPL blobs become fragmented into the smaller fragments in response to the reduced interfacial tension. The heterogeneity of the porous media (i.e. grain-size distribution) was a dominant control on the NAPL-blob-size-distribution trapped as residual saturation. The mobility of the NAPL blobs, as a result of surfactant flooding, was primarily controlled by the relative permeability of the medium and the reduction of interfacial tension between the wetting phase (water) and NAPL phase.
Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock
NASA Astrophysics Data System (ADS)
Shah, S. M.
2017-12-01
Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.
Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi
2018-01-01
Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964. PMID:29423027
Sugimori, Michiya; Hayakawa, Yumiko; Koh, Masaki; Hayashi, Tomohide; Tamura, Ryoi; Kuroda, Satoshi
2018-01-09
Glioblastoma resists chemoradiotherapy, then, recurs to be a fatal space-occupying lesion. The recurrence is caused by re-growing cell populations such as glioma stem cells (GSCs), suggesting that GSC populations should be targeted. This study addressed whether a novel anti-cancer drug, OTS964, an inhibitor for T-LAK cell originated protein kinase (TOPK), is effective in reducing the size of the heterogeneous GSC populations, a power-law coded heterogeneous GSC populations consisting of glioma sphere (GS) clones, by detailing quantitative growth properties. We found that OTS964 killed GS clones while suppressing the growth of surviving GS clones, thus identifying clone-eliminating and growth-disturbing efficacies of OTS964. The efficacies led to a significant size reduction in GS populations in a dose-dependent manner. The surviving GS clones reconstructed GS populations in the following generations; the recovery of GS populations fits a recurrence after the chemotherapy. The recovering GS clones resisted the clone-eliminating effect of OTS964 in sequential exposure during the growth recovery. However, surprisingly, the resistant properties of the recovered-GS clones had been plastically canceled during self-renewal, and then the GS clones had become re-sensitive to OTS964. Thus, OTS964 targets GSCs to eliminate them or suppress their growth, resulting in shrinkage of the power-law coded GSC populations. We propose a therapy focusing on long-term control in recurrence of glioblastoma via reducing the size of the GSC populations by OTS964.
Impact of aortic root size on left ventricular afterload and stroke volume.
Sahlén, Anders; Hamid, Nadira; Amanullah, Mohammed Rizwan; Fam, Jiang Ming; Yeo, Khung Keong; Lau, Yee How; Lam, Carolyn S P; Ding, Zee Pin
2016-07-01
The left ventricle (LV) ejects blood into the proximal aorta. Age and hypertension are associated with stiffening and dilation of the aortic root, typically viewed as indicative of adverse remodeling. Based on analytical considerations, we hypothesized that a larger aortic root should be associated with lower global afterload (effective arterial elastance, EA) and larger stroke volume (SV). Moreover, as antihypertensive drugs differ in their effect on central blood pressure, we examined the role of antihypertensive drugs for the relation between aortic root size and afterload. We studied a large group of patients (n = 1250; 61 ± 12 years; 78 % males; 64 % hypertensives) from a single-center registry with known or suspected coronary artery disease. Aortic root size was measured by echocardiography as the diameter of the tubular portion of the ascending aorta. LV outflow tract Doppler was used to record SV. In the population as a whole, after adjusting for key covariates in separate regression models, aortic root size was an independent determinant of both SV and EA. This association was found to be heterogeneous and stronger in patients taking a calcium channel blocker (CCB; 10.6 % of entire population; aortic root size accounted for 8 % of the explained variance of EA). Larger aortic root size is an independent determinant of EA and SV. This association was heterogeneous and stronger in patients on CCB therapy.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Systemic risk and heterogeneous leverage in banking networks
NASA Astrophysics Data System (ADS)
Kuzubaş, Tolga Umut; Saltoğlu, Burak; Sever, Can
2016-11-01
This study probes systemic risk implications of leverage heterogeneity in banking networks. We show that the presence of heterogeneous leverages drastically changes the systemic effects of defaults and the nature of the contagion in interbank markets. Using financial leverage data from the US banking system, through simulations, we analyze the systemic significance of different types of borrowers, the evolution of the network, the consequences of interbank market size and the impact of market segmentation. Our study is related to the recent Basel III regulations on systemic risk and the treatment of the Global Systemically Important Banks (GSIBs). We also assess the extent to which the recent capital surcharges on GSIBs may curb financial fragility. We show the effectiveness of surcharge policy for the most-levered banks vis-a-vis uniform capital injection.
Qian, Ma; Ma, Jie
2009-06-07
Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.
Defauw, Arne; Dawyndt, Peter; Panfilov, Alexander V
2013-12-01
In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important factors underlying the onset of spiral waves and determining their type. In this paper, we numerically model heterogeneity of realistic size and value and study formation and dynamics of spiral waves around such heterogeneity. We find that the only sustained pattern obtained is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt regional increase in the period of excitation occurring as a bifurcation. We study factors determining spatial distribution of excitation periods of anchored spiral waves and discuss consequences of such dynamics for cardiac arrhythmias and possibilities for experimental testings of our predictions.
T-cell stimuli independently sum to regulate an inherited clonal division fate
Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.
2016-01-01
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196
Chemical and seismological constraints on mantle heterogeneity.
Helffrich, George
2002-11-15
Recent seismological studies that use scattered waves to detect heterogeneities in the mantle reveal the presence of a small, distributed elastic heterogeneity in the lower mantle which does not appear to be thermal in nature. The characteristic size of these heterogeneities appears to be ca. 8 km, suggesting that they represent subducted recycled oceanic crust. With this stimulus, old ideas that the mantle is heterogeneous in structure, rather than stratified, are reinterpreted and a simple, end-member model for the heterogeneity structure is proposed. The volumetrically largest components in the model are recycled oceanic crust, which contains the heat-producing elements, and mantle depleted of these and other incompatible trace elements. About 10% of the mantle's mass is made up of recycled oceanic crust, which is associated with the observed small-scale seismic heterogeneity. The way this heterogeneity is distributed is in convectively stretched and thinned bodies ranging downwards in size from 8 km. With the present techniques to detect small bodies through scattering, only ca. 55% of the mantle's small-scale heterogeneities are detectable seismically.
Constructing compact and effective graphs for recommender systems via node and edge aggregations
Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo
2014-12-10
Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less
Hedge, L H; Dafforn, K A; Simpson, S L; Johnston, E L
2017-06-30
Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Limiting similarity and functional diversity along environmental gradients
Schwilk, D.W.; Ackerly, D.D.
2005-01-01
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.
2015-01-01
Altitudinal clines in body size can result from the effects of natural and sexual selection on growth rates and developing times in seasonal environments. Short growing and reproductive seasons constrain the body size that adults can attain and their reproductive success. Little is known about the effects of altitudinal climatic variation on the diversification of Neotropical insects. In central Mexico, in addition to altitude, highly heterogeneous topography generates diverse climates that can occur even at the same latitude. Altitudinal variation and heterogeneous topography open an opportunity to test the relative impact of climatic variation on body size adaptations. In this study, we investigated the relationship between altitudinal climatic variation and body size, and the divergence rates of sexual size dimorphism (SSD) in Neotropical grasshoppers of the genus Sphenarium using a phylogenetic comparative approach. In order to distinguish the relative impact of natural and sexual selection on the diversification of the group, we also tracked the altitudinal distribution of the species and trends of both body size and SSD on the phylogeny of Sphenarium. The correlative evidence suggests no relationship between altitude and body size. However, larger species were associated with places having a warmer winter season in which the temporal window for development and reproduction can be longer. Nonetheless, the largest species were also associated with highly seasonal environments. Moreover, large body size and high levels of SSD have evolved independently several times throughout the history of the group and male body size has experienced a greater evolutionary divergence than females. These lines of evidence suggest that natural selection, associated with seasonality and sexual selection, on maturation time and body size could have enhanced the diversification of this insect group. PMID:26684616
Class Size and Sorting in Market Equilibrium: Theory and Evidence. NBER Working Paper No. 13303
ERIC Educational Resources Information Center
Urquiola, Miguel; Verhoogen, Eric
2007-01-01
This paper examines how schools choose class size and how households sort in response to those choices. Focusing on the highly liberalized Chilean education market, we develop a model in which schools are heterogeneous in an underlying productivity parameter, class size is a component of school quality, households are heterogeneous in income and…
IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...
Kanematsu, Nobuyuki; Komori, Masataka; Yonai, Shunsuke; Ishizaki, Azusa
2009-04-07
The pencil-beam algorithm is valid only when elementary Gaussian beams are small enough compared to the lateral heterogeneity of a medium, which is not always true in actual radiotherapy with protons and ions. This work addresses a solution for the problem. We found approximate self-similarity of Gaussian distributions, with which Gaussian beams can split into narrower and deflecting daughter beams when their sizes have overreached lateral heterogeneity in the beam-transport calculation. The effectiveness was assessed in a carbon-ion beam experiment in the presence of steep range compensation, where the splitting calculation reproduced a detour effect amounting to about 10% in dose or as large as the lateral particle disequilibrium effect. The efficiency was analyzed in calculations for carbon-ion and proton radiations with a heterogeneous phantom model, where the beam splitting increased computing times by factors of 4.7 and 3.2. The present method generally improves the accuracy of the pencil-beam algorithm without severe inefficiency. It will therefore be useful for treatment planning and potentially other demanding applications.
Bolme, C A; Ramos, K J
2013-08-01
A line-imaging velocity interferometer was implemented on a single-stage light gas gun to probe the spatial heterogeneity of mechanical response, chemical reaction, and initiation of detonation in explosives. The instrument is described in detail, and then data are presented on several shock-compressed materials to demonstrate the instrument performance on both homogeneous and heterogeneous samples. The noise floor of this diagnostic was determined to be 0.24 rad with a shot on elastically compressed sapphire. The diagnostic was then applied to two heterogeneous plastic bonded explosives: 3,3(')-diaminoazoxyfurazan (DAAF) and PBX 9501, where significant spatial velocity heterogeneity was observed during the build up to detonation. In PBX 9501, the velocity heterogeneity was consistent with the explosive grain size, however in DAAF, we observed heterogeneity on a much larger length scale than the grain size that was similar to the imaging resolution of the instrument.
NASA Astrophysics Data System (ADS)
Bolme, C. A.; Ramos, K. J.
2013-08-01
A line-imaging velocity interferometer was implemented on a single-stage light gas gun to probe the spatial heterogeneity of mechanical response, chemical reaction, and initiation of detonation in explosives. The instrument is described in detail, and then data are presented on several shock-compressed materials to demonstrate the instrument performance on both homogeneous and heterogeneous samples. The noise floor of this diagnostic was determined to be 0.24 rad with a shot on elastically compressed sapphire. The diagnostic was then applied to two heterogeneous plastic bonded explosives: 3,3'-diaminoazoxyfurazan (DAAF) and PBX 9501, where significant spatial velocity heterogeneity was observed during the build up to detonation. In PBX 9501, the velocity heterogeneity was consistent with the explosive grain size, however in DAAF, we observed heterogeneity on a much larger length scale than the grain size that was similar to the imaging resolution of the instrument.
Meta-Analysis of Planetarium Efficacy Research
ERIC Educational Resources Information Center
Brazell, Bruce D.; Espinoza, Sue
2009-01-01
In this study, the instructional effectiveness of the planetarium in astronomy education was explored through a meta-analysis of 19 studies. This analysis resulted in a heterogeneous distribution of 24 effect sizes with a mean of +0.28, p less than 0.05. The variability in this distribution was not fully explained under a fixed effect model. As a…
Hiremath, Swapnil; Dangas, George; Mehran, Roxana; Brar, Simerjeet K.; Leon, Martin B.
2009-01-01
Background and objectives: Infusion of sodium bicarbonate has been suggested as a preventative strategy but reports are conflicting on its efficacy. The aim of this study was to assess the effectiveness of hydration with sodium bicarbonate for the prevention of contrast-induced acute kidney injury (CI-AKI). Design, setting, participants, & measurements: Medline, EMBASE, Cochrane library, and the Internet were searched for randomized controlled trials comparing hydration between sodium bicarbonate and chloride for the prevention of CI-AKI between 1966 and November 2008. Fourteen trials that included 2290 patients were identified. There was significant heterogeneity between studies (P heterogeneity = 0.02; I2 = 47.8%), which was largely accounted for by trial size (P = 0.016). Trials were therefore classified by size. Results: Three trials were categorized as large (n = 1145) and 12 as small (n = 1145). Among the large trials, the incidence of CI-AKI for sodium bicarbonate and sodium chloride was 10.7 and 12.5%, respectively; the relative risk (RR) [95% confidence interval (CI)] was 0.85 (0.63 to 1.16) without evidence of heterogeneity (P = 0.89, I2 = 0%). The pooled RR (95% CI) among the 12 small trials was 0.50 (0.27 to 0.93) with significant between-trial heterogeneity (P = 0.01; I2 = 56%). The small trials were more likely to be of lower methodological quality. Conclusions: A significant clinical and statistical heterogeneity was observed that was largely explained by trial size and published status. Among the large randomized trials there was no evidence of benefit for hydration with sodium bicarbonate compared with sodium chloride for the prevention of CI-AKI. The benefit of sodium bicarbonate was limited to small trials of lower methodological quality. PMID:19713291
Robertson, Suzanne L; Eisenberg, Marisa C; Tien, Joseph H
2013-01-01
Many factors influencing disease transmission vary throughout and across populations. For diseases spread through multiple transmission pathways, sources of variation may affect each transmission pathway differently. In this paper we consider a disease that can be spread via direct and indirect transmission, such as the waterborne disease cholera. Specifically, we consider a system of multiple patches with direct transmission occurring entirely within patch and indirect transmission via a single shared water source. We investigate the effect of heterogeneity in dual transmission pathways on the spread of the disease. We first present a 2-patch model for which we examine the effect of variation in each pathway separately and propose a measure of heterogeneity that incorporates both transmission mechanisms and is predictive of R(0). We also explore how heterogeneity affects the final outbreak size and the efficacy of intervention measures. We conclude by extending several results to a more general n-patch setting.
Length scales and pinning of interfaces
Tan, Likun
2016-01-01
The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068
IMPACTS OF PATCH SIZE AND LAND COVER HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY
Landscape characteristics such as small patch size and land cover heterogeneity have been hypothesized to increase the likelihood of miss-classifying pixels during thematic image classification. However, there has been a lack of empirical evidence to support these hypotheses,...
Zhang, Jingtao; Pei, Yi; Zhang, Hangchun; Wang, Lei; Arrington, Leticia; Zhang, Ye; Glass, Angela; Leone, Anthony M
2013-01-07
A primary consideration when developing lipid nanoparticle (LNP) based small interfering RNA (siRNA) therapeutics is formulation polydispersity or heterogeneity. The level of heterogeneity of physicochemical properties within a pharmaceutical batch could greatly affect the bioperformance, quality, and ability of a manufacturer to consistently control and reproduce the formulations. This article studied the heterogeneity in the size, composition, and in vitro performance of siRNA containing LNPs, by conducting preparative scale fractionation using a sephacryl S-1000 based size-exclusion chromatography (SEC) method. Eight LNPs with size in the range of 60-190 nm were first evaluated by the SEC method for size polydispersity characterization, and it was found that LNPs in the range of 60-150 nm could be well-resolved. Two LNPs (LNP A and LNP B) with similar bulk properties were fractionated, and fractions were studied in-depth for potential presence of polydispersity in size, composition, and in vitro silencing, as well as cytotoxicity. LNP A was deemed to be monodisperse following results of a semipreparative SEC fractionation that showed similar size, chemical composition, in vitro silencing activity, and cytotoxicity across the fractions. Therefore, LNP A represents a relatively homogeneous formulation and offers less of a challenge in its pharmaceutical development. In contrast, LNP B fractions were shown to be significantly more polydisperse in size distribution. Interestingly, LNP B SEC fractions also exhibited profound compositional variations (e.g., 5 fold difference in N/P ratio and 3 fold difference in lipid composition) along with up to 40 fold differences in the in vitro silencing activity. The impact of LNP size and formulation composition on in vitro performance is also discussed. The present results demonstrate the complexity and potential for presence of heterogeneity in LNP-based siRNA drug products. This underscores the need for tools that yield a detailed characterization of LNP formulations. This capability in tandem with the pursuit of improved formulation and process design can lead to more facile development of LNP-based siRNA pharmaceuticals of higher quality.
2017-01-01
Objective: Prisoners worldwide have substantial mental health needs, but the efficacy of psychological therapy in prisons is unknown. We aimed to systematically review psychological therapies with mental health outcomes in prisoners and qualitatively summarize difficulties in conducting randomized clinical trials (RCTs). Method: We systematically identified RCTs of psychological therapies with mental health outcomes in prisoners (37 studies). Effect sizes were calculated and meta-analyzed. Eligible studies were assessed for quality. Subgroup and metaregression analyses were conducted to examine sources of between-study heterogeneity. Thematic analysis reviewed difficulties in conducting prison RCTs. Results: In 37 identified studies, psychological therapies showed a medium effect size (0.50, 95% CI [0.34, 0.66]) with high levels of heterogeneity with the most evidence for CBT and mindfulness-based trials. Studies that used no treatment (0.77, 95% CI [0.50, 1.03]) or waitlist controls (0.71, 95% CI [0.43, 1.00]) had larger effect sizes than those that had treatment-as-usual or other psychological therapies as controls (0.21, 95% CI [0.01, 0.41]). Effects were not sustained on follow-up at 3 and 6 months. No differences were found between group and individual therapy, or different treatment types. The use of a fidelity measure was associated with lower effect sizes. Qualitative analysis identified difficulties with follow-up and institutional constraints on scheduling and implementation of trials. Conclusions: CBT and mindfulness-based therapies are modestly effective in prisoners for depression and anxiety outcomes. In prisons with existing psychological therapies, more evidence is required before additional therapies can be recommended. PMID:28569518
Alahdab, Fares; Farah, Wigdan; Almasri, Jehad; Barrionuevo, Patricia; Zaiem, Feras; Benkhadra, Raed; Asi, Noor; Alsawas, Mouaz; Pang, Yifan; Ahmed, Ahmed T; Rajjo, Tamim; Kanwar, Amrit; Benkhadra, Khalid; Razouki, Zayd; Murad, M Hassan; Wang, Zhen
2018-03-01
To determine whether the early trials in chronic medical conditions demonstrate an effect size that is larger than that in subsequent trials. We identified randomized controlled trials (RCTs) evaluating a drug or device in patients with chronic medical conditions through meta-analyses (MAs) published between January 1, 2007, and June 23, 2015, in the 10 general medical journals with highest impact factor. We estimated the prevalence of having the largest effect size or heterogeneity in the first 2 published trials. We evaluated the association of the exaggerated early effect with several a priori hypothesized explanatory variables. We included 70 MAs that had included a total of 930 trials (average of 13 [range, 5-48] RCTs per MA) with average follow-up of 24 (range, 1-168) months. The prevalence of the exaggerated early effect (ie, proportion of MAs with largest effect or heterogeneity in the first 2 trials) was 37%. These early trials had an effect size that was on average 2.67 times larger than the overall pooled effect size (ratio of relative effects, 2.67; 95% CI, 2.12-3.37). The presence of exaggerated effect was not significantly associated with trial size; number of events; length of follow-up; intervention duration; number of study sites; inpatient versus outpatient setting; funding source; stopping a trial early; adequacy of random sequence generation, allocation concealment, or blinding; loss to follow-up or the test for publication bias. Trials evaluating treatments of chronic medical conditions published early in the chain of evidence commonly demonstrate an exaggerated treatment effect compared with subsequent trials. At the present time, this phenomenon remains unpredictable. Considering the increasing morbidity and mortality of chronic medical conditions, decision makers should act on early evidence with caution. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gottlieb, C.; Günther, T.; Wilsch, G.
2018-04-01
In civil engineering concrete is the most used building material for making infrastructures like bridges and parking decks worldwide. It is as a porous and multiphase material made of aggregates with a defined grain size distribution, cement and water as well as different additives and admixtures depending on the application. Different grain sizes are important to ensure the needed density and compressive strength. The resulting porous cement matrix contains a mixture of flour grains (aggregates with a grain size below 125 μm) and cement particles (particle size ≈ 50μm). Harmful species like chlorides may penetrate together with water through the capillary pore space and may trigger different damage processes. The damage assessment of concrete structures in Germany is estimated due to the quantification of harmful elements regarding to the cement content only. In the evaluation of concrete using LIBS a two-dimensional scanning is necessary to consider the heterogeneity caused by the aggregates. Therefore, a LIBS system operating with a low energy NdCr:YAG laser, a pulse energy of 3 mJ, a wavelength of 1064 nm, a pulse width of 1.5 ns and a repetition rate of 100 Hz has been used. Different Czerny-Turner spectrometers with CCD detectors in the UV and NIR range have been used for the detection. Large aggregates (macro-heterogeneity) can be excluded from the evaluation, whereas small aggregates in the range of the laser spot size (flour grains) cannot be spatially resolved. In this work the micro heterogeneity caused by flour grains and their impact on the quantification with LIBS will be discussed. To analyze the effect of changing grain sizes and ratios, the ablation behavior has been determined and compared. Samples with defined grain sizes were made and analyzed using LIBS. The grain size distributions were analyzed with laser diffraction (LDA).
The Effects of Maternal Social Phobia on Mother-Infant Interactions and Infant Social Responsiveness
ERIC Educational Resources Information Center
Murray, Lynne; Cooper, Peter; Creswell, Cathy; Schofield, Elizabeth; Sack, Caroline
2007-01-01
Background: Social phobia aggregates in families. The genetic contribution to intergenerational transmission is modest, and parenting is considered important. Research on the effects of social phobia on parenting has been subject to problems of small sample size, heterogeneity of samples and lack of specificity of observational frameworks. We…
Modeling optimal treatment strategies in a heterogeneous mixing model.
Choe, Seoyun; Lee, Sunmi
2015-11-25
Many mathematical models assume random or homogeneous mixing for various infectious diseases. Homogeneous mixing can be generalized to mathematical models with multi-patches or age structure by incorporating contact matrices to capture the dynamics of the heterogeneously mixing populations. Contact or mixing patterns are difficult to measure in many infectious diseases including influenza. Mixing patterns are considered to be one of the critical factors for infectious disease modeling. A two-group influenza model is considered to evaluate the impact of heterogeneous mixing on the influenza transmission dynamics. Heterogeneous mixing between two groups with two different activity levels includes proportionate mixing, preferred mixing and like-with-like mixing. Furthermore, the optimal control problem is formulated in this two-group influenza model to identify the group-specific optimal treatment strategies at a minimal cost. We investigate group-specific optimal treatment strategies under various mixing scenarios. The characteristics of the two-group influenza dynamics have been investigated in terms of the basic reproduction number and the final epidemic size under various mixing scenarios. As the mixing patterns become proportionate mixing, the basic reproduction number becomes smaller; however, the final epidemic size becomes larger. This is due to the fact that the number of infected people increases only slightly in the higher activity level group, while the number of infected people increases more significantly in the lower activity level group. Our results indicate that more intensive treatment of both groups at the early stage is the most effective treatment regardless of the mixing scenario. However, proportionate mixing requires more treated cases for all combinations of different group activity levels and group population sizes. Mixing patterns can play a critical role in the effectiveness of optimal treatments. As the mixing becomes more like-with-like mixing, treating the higher activity group in the population is almost as effective as treating the entire populations since it reduces the number of disease cases effectively but only requires similar treatments. The gain becomes more pronounced as the basic reproduction number increases. This can be a critical issue which must be considered for future pandemic influenza interventions, especially when there are limited resources available.
Quantification of type I error probabilities for heterogeneity LOD scores.
Abreu, Paula C; Hodge, Susan E; Greenberg, David A
2002-02-01
Locus heterogeneity is a major confounding factor in linkage analysis. When no prior knowledge of linkage exists, and one aims to detect linkage and heterogeneity simultaneously, classical distribution theory of log-likelihood ratios does not hold. Despite some theoretical work on this problem, no generally accepted practical guidelines exist. Nor has anyone rigorously examined the combined effect of testing for linkage and heterogeneity and simultaneously maximizing over two genetic models (dominant, recessive). The effect of linkage phase represents another uninvestigated issue. Using computer simulation, we investigated type I error (P value) of the "admixture" heterogeneity LOD (HLOD) score, i.e., the LOD score maximized over both recombination fraction theta and admixture parameter alpha and we compared this with the P values when one maximizes only with respect to theta (i.e., the standard LOD score). We generated datasets of phase-known and -unknown nuclear families, sizes k = 2, 4, and 6 children, under fully penetrant autosomal dominant inheritance. We analyzed these datasets (1) assuming a single genetic model, and maximizing the HLOD over theta and alpha; and (2) maximizing the HLOD additionally over two dominance models (dominant vs. recessive), then subtracting a 0.3 correction. For both (1) and (2), P values increased with family size k; rose less for phase-unknown families than for phase-known ones, with the former approaching the latter as k increased; and did not exceed the one-sided mixture distribution xi = (1/2) chi1(2) + (1/2) chi2(2). Thus, maximizing the HLOD over theta and alpha appears to add considerably less than an additional degree of freedom to the associated chi1(2) distribution. We conclude with practical guidelines for linkage investigators. Copyright 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Menafoglio, A.; Guadagnini, A.; Secchi, P.
2016-08-01
We address the problem of stochastic simulation of soil particle-size curves (PSCs) in heterogeneous aquifer systems. Unlike traditional approaches that focus solely on a few selected features of PSCs (e.g., selected quantiles), our approach considers the entire particle-size curves and can optionally include conditioning on available data. We rely on our prior work to model PSCs as cumulative distribution functions and interpret their density functions as functional compositions. We thus approximate the latter through an expansion over an appropriate basis of functions. This enables us to (a) effectively deal with the data dimensionality and constraints and (b) to develop a simulation method for PSCs based upon a suitable and well defined projection procedure. The new theoretical framework allows representing and reproducing the complete information content embedded in PSC data. As a first field application, we demonstrate the quality of unconditional and conditional simulations obtained with our methodology by considering a set of particle-size curves collected within a shallow alluvial aquifer in the Neckar river valley, Germany.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
Reproducibility of preclinical animal research improves with heterogeneity of study samples
Vogt, Lucile; Sena, Emily S.; Würbel, Hanno
2018-01-01
Single-laboratory studies conducted under highly standardized conditions are the gold standard in preclinical animal research. Using simulations based on 440 preclinical studies across 13 different interventions in animal models of stroke, myocardial infarction, and breast cancer, we compared the accuracy of effect size estimates between single-laboratory and multi-laboratory study designs. Single-laboratory studies generally failed to predict effect size accurately, and larger sample sizes rendered effect size estimates even less accurate. By contrast, multi-laboratory designs including as few as 2 to 4 laboratories increased coverage probability by up to 42 percentage points without a need for larger sample sizes. These findings demonstrate that within-study standardization is a major cause of poor reproducibility. More representative study samples are required to improve the external validity and reproducibility of preclinical animal research and to prevent wasting animals and resources for inconclusive research. PMID:29470495
Study on effect of microparticle's size on cavitation erosion in solid-liquid system
NASA Astrophysics Data System (ADS)
Chen, Haosheng; Liu, Shihan; Wang, Jiadao; Chen, Darong
2007-05-01
Five different solutions containing microparticles in different sizes were tested in a vibration cavitation erosion experiment. After the experiment, the number of erosion pits on sample surfaces, free radicals HO• in solutions, and mass loss all show that the cavitation erosion strength is strongly related to the particle size, and 500nm particles cause more severe cavitation erosion than other smaller or larger particles do. A model is presented to explain such result considering both nucleation and bubble-particle collision effects. Particle of a proper size will increase the number of heterogeneous nucleation and at the same time reduce the number of bubble-particle combinations, which results in more free bubbles in the solution to generate stronger cavitation erosion.
Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu
2016-01-08
Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.
Trauscht, Jacob; Pazmino, Eddy; Johnson, William P
2015-09-01
Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.
Effects of topoclimatic complexity on the composition of woody plant communities.
Oldfather, Meagan F; Britton, Matthew N; Papper, Prahlad D; Koontz, Michael J; Halbur, Michelle M; Dodge, Celeste; Flint, Alan L; Flint, Lorriane E; Ackerly, David D
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. Published by Oxford University Press on behalf of the Annals of Botany Company.
Effects of topoclimatic complexity on the composition of woody plant communities
Oldfather, Meagan F.; Britton, Matthew N.; Papper, Prahlad D.; Koontz, Michael J.; Halbur, Michelle M.; Dodge, Celeste; Flint, Alan L.; Flint, Lorriane E.; Ackerly, David D.
2016-01-01
Topography can create substantial environmental variation at fine spatial scales. Shaped by slope, aspect, hill-position and elevation, topoclimate heterogeneity may increase ecological diversity, and act as a spatial buffer for vegetation responding to climate change. Strong links have been observed between climate heterogeneity and species diversity at broader scales, but the importance of topoclimate for woody vegetation across small spatial extents merits closer examination. We established woody vegetation monitoring plots in mixed evergreen-deciduous woodlands that spanned topoclimate gradients of a topographically heterogeneous landscape in northern California. We investigated the association between the structure of adult and regenerating size classes of woody vegetation and multidimensional topoclimate at a fine scale. We found a significant effect of topoclimate on both single-species distributions and community composition. Effects of topoclimate were evident in the regenerating size class for all dominant species (four Quercus spp., Umbellularia californica and Pseudotsuga menziesii) but only in two dominant species (Quercus agrifolia and Quercus garryana) for the adult size class. Adult abundance was correlated with water balance parameters (e.g. climatic water deficit) and recruit abundance was correlated with an interaction between the topoclimate parameters and conspecific adult abundance (likely reflecting local seed dispersal). However, in all cases, the topoclimate signal was weak. The magnitude of environmental variation across our study site may be small relative to the tolerance of long-lived woody species. Dispersal limitations, management practices and patchy disturbance regimes also may interact with topoclimate, weakening its influence on woody vegetation distributions. Our study supports the biological relevance of multidimensional topoclimate for mixed woodland communities, but highlights that this relationship might be mediated by interacting factors at local scales. PMID:27339048
The Effectiveness of Daily Behavior Report Cards for Children With ADHD: A Meta-Analysis.
Iznardo, Michelle; Rogers, Maria A; Volpe, Robert J; Labelle, Patrick R; Robaey, Philippe
2017-11-01
This meta-analysis examined group-design studies investigating the effectiveness of Daily Behavior Report Cards (DBRC) as a school-based intervention to manage the classroom behavior of students with ADHD. A search of three article databases (PsycINFO, ERIC and Medline) identified seven group design evaluations of DBRC interventions. This meta-analysis included a total of 272 participants, with an average age of 7.9 years old. Three of the studies compared a control group to a treatment group with randomized group assignment, one study compared a control group to three treatment groups, two studies compared pre-and post-treatment scores in the same group, and one study compared pre-and post-treatment results of two intervention groups without random assignment. Dependent measures for these studies were teacher ratings (n = 5) and systematic direct observation of student academic and social behaviour (n = 2). Standardized mean differences ( Hedge's g) were calculated to obtain a pooled effect size using fixed effects. DBRCs were associated with reductions teacher-rated ADHD symptoms, with a Hedge's g of 0.36 (95% CI: 0.12-0.60, z=2.93, p ≤ .005) with low heterogeneity (Q-value: 2.40, I 2 = 0.00). This result excluded two studies that used observational coding instead of standardized tests to evaluate the effects of the intervention. A moderator analysis indicated that the effect size for systematic direct observation was large ( Hedge's G = 1.05[95% CI: 0.66-1.44, z=5.25, p ≤ .00]), with very high heterogeneity (Q-value: 46.34, I 2 : 93.53). A second moderator analysis found differences in the effects of DBRCs for comorbid externalizing symptoms with an overall effect size of 0.34 (95%CI: -0.04-0.72, z=1.76 p =0.08) with high heterogeneity (Q-value: 3.98, I 2 : 74.85). DBRCs effectively reduce the frequency and severity of ADHD symptoms in classroom settings. Additionally, they have a significant effect on co-occuring externalizing behaviors. It appears that systematic direct observation may be a more sensitive measure of treatment effects compared to teacher ratings of ADHD symptoms.
Hu, Chuan; Cun, Xingli; Ruan, Shaobo; Liu, Rui; Xiao, Wei; Yang, Xiaotong; Yang, Yuanyuan; Yang, Chuanyao; Gao, Huile
2018-06-01
Chemotherapy remains restricted by poor drug delivery efficacy due to the heterogenous nature of tumor. Herein, we presented a novel nanoparticle that could not only response to the tumor microenvironment but also modulate it for deep tumor penetration and combination therapy. The intelligent nanoparticle (IDDHN) was engineered by hyaluronidase (HAase)-triggered size shrinkable hyaluronic acid shells, which were modified with NIR laser sensitive nitric oxide donor (HN), small-sized dendrimeric prodrug (IDD) of doxorubicin (DOX) as chemotherapy agent and indocyanine green (ICG) as photothermal agent into a single nanoparticle. IDDHN displayed synergistic deep penetration both in vitro and in vivo, owing to the enzymatically degradable HN shell mediated by HAase and laser-enhanced NO release triggered deep penetration upon strong hyperthermia effect of ICG under the NIR laser irradiation. The therapeutic effect of IDDHN was verified in 4T1 xenograft tumor model, and IDDHN showed a much better antitumor efficiency with few side effects upon NIR laser irradiation. Therefore, the valid of this study might provide a novel tactic for engineering nanoparticles both response to and modulate the tumor microenvironment for improving penetration and heterogeneity distribution of therapeutic agents in tumor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effects of Buffer Size and Shape on Associations between the Built Environment and Energy Balance
Berrigan, David; Hart, Jaime E.; Hipp, J. Aaron; Hoehner, Christine M.; Kerr, Jacqueline; Major, Jacqueline M.; Oka, Masayoshi; Laden, Francine
2014-01-01
Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. PMID:24607875
Inducible defenses in prey intensify predator cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Nishimura, Kinya; Ohgushi, Takayuki
2009-11-01
Trophic cascades are often a potent force in ecological communities, but abiotic and biotic heterogeneity can diffuse their influence. For example, inducible defenses in many species create variation in prey edibility, and size-structured interactions, such as cannibalism, can shift predator diets away from heterospecific prey. Although both factors diffuse cascade strength by adding heterogeneity to trophic interactions, the consequences of their interactioh remain poorly understood. We show that inducible defenses in tadpole prey greatly intensify cannibalism in predatory larval salamanders. The likelihood of cannibalism was also strongly influenced by asymmetries in salamander size that appear to be most important in the presence of defended prey. Hence, variation in prey edibility and the size structure of the predator may synergistically affect predator-prey population dynamics by reducing prey mortality and increasing predator mortality via cannibalism. We also suggest that the indirect effects of prey defenses may shape the evolution of predator traits that determine diet breadth and how trophic dynamics unfold in natural systems.
2011-01-01
Background The relationship between urbanicity and adolescent health is a critical issue for which little empirical evidence has been reported. Although an association has been suggested, a dichotomous rural versus urban comparison may not succeed in identifying differences between adolescent contexts. This study aims to assess the influence of locality size on risk behaviors in a national sample of young Mexicans living in low-income households, while considering the moderating effect of socioeconomic status (SES). Methods This is a secondary analysis of three national surveys of low-income households in Mexico in different settings: rural, semi-urban and urban areas. We analyzed risk behaviors in 15-21-year-olds and their potential relation to urbanicity. The risk behaviors explored were: tobacco and alcohol consumption, sexual initiation and condom use. The adolescents' localities of residence were classified according to the number of inhabitants in each locality. We used a logistical model to identify an association between locality size and risk behaviors, including an interaction term with SES. Results The final sample included 17,974 adolescents from 704 localities in Mexico. Locality size was associated with tobacco and alcohol consumption, showing a similar effect throughout all SES levels: the larger the size of the locality, the lower the risk of consuming tobacco or alcohol compared with rural settings. The effect of locality size on sexual behavior was more complex. The odds of adolescent condom use were higher in larger localities only among adolescents in the lowest SES levels. We found no statically significant association between locality size and sexual initiation. Conclusions The results suggest that in this sample of adolescents from low-income areas in Mexico, risk behaviors are related to locality size (number of inhabitants). Furthermore, for condom use, this relation is moderated by SES. Such heterogeneity suggests the need for more detailed analyses of both the effects of urbanicity on behavior, and the responses--which are also heterogeneous--required to address this situation. PMID:22129110
Turner, Rebecca M; Davey, Jonathan; Clarke, Mike J; Thompson, Simon G; Higgins, Julian PT
2012-01-01
Background Many meta-analyses contain only a small number of studies, which makes it difficult to estimate the extent of between-study heterogeneity. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, and offers advantages over conventional random-effects meta-analysis. To assist in this, we provide empirical evidence on the likely extent of heterogeneity in particular areas of health care. Methods Our analyses included 14 886 meta-analyses from the Cochrane Database of Systematic Reviews. We classified each meta-analysis according to the type of outcome, type of intervention comparison and medical specialty. By modelling the study data from all meta-analyses simultaneously, using the log odds ratio scale, we investigated the impact of meta-analysis characteristics on the underlying between-study heterogeneity variance. Predictive distributions were obtained for the heterogeneity expected in future meta-analyses. Results Between-study heterogeneity variances for meta-analyses in which the outcome was all-cause mortality were found to be on average 17% (95% CI 10–26) of variances for other outcomes. In meta-analyses comparing two active pharmacological interventions, heterogeneity was on average 75% (95% CI 58–95) of variances for non-pharmacological interventions. Meta-analysis size was found to have only a small effect on heterogeneity. Predictive distributions are presented for nine different settings, defined by type of outcome and type of intervention comparison. For example, for a planned meta-analysis comparing a pharmacological intervention against placebo or control with a subjectively measured outcome, the predictive distribution for heterogeneity is a log-normal (−2.13, 1.582) distribution, which has a median value of 0.12. In an example of meta-analysis of six studies, incorporating external evidence led to a smaller heterogeneity estimate and a narrower confidence interval for the combined intervention effect. Conclusions Meta-analysis characteristics were strongly associated with the degree of between-study heterogeneity, and predictive distributions for heterogeneity differed substantially across settings. The informative priors provided will be very beneficial in future meta-analyses including few studies. PMID:22461129
Coalescence-induced jumping of micro-droplets on heterogeneous superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Attarzadeh, Reza; Dolatabadi, Ali
2017-01-01
The phenomenon of droplets coalescence-induced self-propelled jumping on homogeneous and heterogeneous superhydrophobic surfaces was numerically modeled using the volume of fluid method coupled with a dynamic contact angle model. The heterogeneity of the surface was directly modeled as a series of micro-patterned pillars. To resolve the influence of air around a droplet and between the pillars, extensive simulations were performed for different droplet sizes on a textured surface. Parallel computations with the OpenMP algorithm were used to accelerate computation speed to meet the convergence criteria. The composition of the air-solid surface underneath the droplet facilitated capturing the transition from a no-slip/no-penetration to a partial-slip with penetration as the contact line at triple point started moving to the air pockets. The wettability effect from the nanoscopic roughness and the coating was included in the model by using the intrinsic contact angle obtained from a previously published study. As the coalescence started, the radial velocity of the coalescing liquid bridge was partially reverted to the upward direction due to the counter-action of the surface. However, we found that the velocity varied with the size of the droplets. A part of the droplet kinetic energy was dissipated as the merged droplet started penetrating into the cavities. This was due to a different area in contact between the liquid and solid and, consequently, a higher viscous dissipation rate in the system. We showed that the effect of surface roughness is strongly significant when the size of the micro-droplet is comparable with the size of the roughness features. In addition, the relevance of droplet size to surface roughness (critical relative roughness) was numerically quantified. We also found that regardless of the viscous cutoff radius, as the relative roughness approached the value of 44, the direct inclusion of surface topography was crucial in the modeling of the droplet-surface interaction. Finally, we validated our model against existing experimental data in the literature, verifying the effect of relative roughness on the jumping velocity of a merged droplet.
Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.
Deng, Qian; Liu, Liping; Sharma, Pradeep
2014-07-01
Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.
Heterogeneously integrated microsystem-on-a-chip
Chanchani, Rajen [Albuquerque, NM
2008-02-26
A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.
Post-processing of metal matrix composites by friction stir processing
NASA Astrophysics Data System (ADS)
Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra
2018-05-01
In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.
Coherent Power Analysis in Multi-Level Studies Using Design Parameters from Surveys
ERIC Educational Resources Information Center
Rhoads, Christopher
2016-01-01
Current practice for conducting power analyses in hierarchical trials using survey based ICC and effect size estimates may be misestimating power because ICCs are not being adjusted to account for treatment effect heterogeneity. Results presented in Table 1 show that the necessary adjustments can be quite large or quite small. Furthermore, power…
Yamaguchi, Tsuyoshi
2016-03-28
Theoretical calculations of the rheological properties of coarse-grained model ionic liquids were performed using mode-coupling theory. The nonpolar part of the cation was systematically increased in order to clarify the effects of the heterogeneous structure on shear viscosity. The shear viscosity showed a minimum as the function of the size of the nonpolar part, as had been reported in literatures. The minimum was ascribed to the interplay between the increase in the shear relaxation time and the decrease in the high-frequency shear modulus with increasing the size of the nonpolar part of the cation. The ionic liquids with symmetric charge distribution of cations were less viscous than those with asymmetric cations, which is also in harmony with experiments. The theoretical analysis demonstrated that there are two mechanisms for the higher viscosity of the asymmetric model. The first one is the direct coupling between the domain dynamics and the shear stress. The second one is that the microscopic dynamics within the polar domain is retarded due to the nonlinear coupling with the heterogeneous structure.
Groundwater pumping by heterogeneous users
NASA Astrophysics Data System (ADS)
Saak, Alexander E.; Peterson, Jeffrey M.
2012-08-01
Farm size is a significant determinant of both groundwater-irrigated farm acreage and groundwater-irrigation-application rates per unit land area. This paper analyzes the patterns of groundwater exploitation when resource users in the area overlying a common aquifer are heterogeneous. In the presence of user heterogeneity, the common resource problem consists of inefficient dynamic and spatial allocation of groundwater because it impacts income distribution not only across periods but also across farmers. Under competitive allocation, smaller farmers pump groundwater faster if farmers have a constant marginal periodic utility of income. However, it is possible that larger farmers pump faster if the Arrow-Pratt coefficient of relative risk-aversion is sufficiently decreasing in income. A greater farm-size inequality may either moderate or amplify income inequality among farmers. Its effect on welfare depends on the curvature properties of the agricultural output function and the farmer utility of income. Also, it is shown that a flat-rate quota policy that limits the quantity of groundwater extraction per unit land area may have unintended consequences for the income distribution among farmers.
Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization
Liu, Jin; Huang, Jian; Ma, Shuangge
2013-01-01
Summary In cancer diagnosis studies, high-throughput gene profiling has been extensively conducted, searching for genes whose expressions may serve as markers. Data generated from such studies have the “large d, small n” feature, with the number of genes profiled much larger than the sample size. Penalization has been extensively adopted for simultaneous estimation and marker selection. Because of small sample sizes, markers identified from the analysis of single datasets can be unsatisfactory. A cost-effective remedy is to conduct integrative analysis of multiple heterogeneous datasets. In this article, we investigate composite penalization methods for estimation and marker selection in integrative analysis. The proposed methods use the minimax concave penalty (MCP) as the outer penalty. Under the homogeneity model, the ridge penalty is adopted as the inner penalty. Under the heterogeneity model, the Lasso penalty and MCP are adopted as the inner penalty. Effective computational algorithms based on coordinate descent are developed. Numerical studies, including simulation and analysis of practical cancer datasets, show satisfactory performance of the proposed methods. PMID:24578589
Local extinction and recolonization, species effective population size, and modern human origins.
Eller, Elise; Hawks, John; Relethford, John H
2004-10-01
A primary objection from a population genetics perspective to a multiregional model of modern human origins is that the model posits a large census size, whereas genetic data suggest a small effective population size. The relationship between census size and effective size is complex, but arguments based on an island model of migration show that if the effective population size reflects the number of breeding individuals and the effects of population subdivision, then an effective population size of 10,000 is inconsistent with the census size of 500,000 to 1,000,000 that has been suggested by archeological evidence. However, these models have ignored the effects of population extinction and recolonization, which increase the expected variance among demes and reduce the inbreeding effective population size. Using models developed for population extinction and recolonization, we show that a large census size consistent with the multiregional model can be reconciled with an effective population size of 10,000, but genetic variation among demes must be high, reflecting low interdeme migration rates and a colonization process that involves a small number of colonists or kin-structured colonization. Ethnographic and archeological evidence is insufficient to determine whether such demographic conditions existed among Pleistocene human populations, and further work needs to be done. More realistic models that incorporate isolation by distance and heterogeneity in extinction rates and effective deme sizes also need to be developed. However, if true, a process of population extinction and recolonization has interesting implications for human demographic history.
van 't Riet, Jonathan; Crutzen, Rik; Lu, Amy Shirong
2014-10-01
Two recent systematic reviews have surveyed the existing evidence for the effectiveness of active videogames in children/adolescents and in elderly people. In the present study, effect sizes were added to these systematic reviews, and meta-analyses were performed. All reviewed studies were considered for inclusion in the meta-analyses, but only studies were included that investigated the effectiveness of active videogames, used an experimental design, and used actual health outcomes as the outcome measures (body mass index for children/adolescents [k=5] and functional balance for the elderly [k=6]). The average effect of active videogames in children and adolescents was small and nonsignificant: Hedges' g=0.20 (95 percent confidence interval, -0.08 to 0.48). Limited heterogeneity was observed, and no moderator analyses were performed. For the effect of active videogames on functional balance in the elderly, the analyses revealed a medium-sized and significant effect of g=0.68 (95 percent confidence interval, 0.13-1.24). For the elderly studies, substantial heterogeneity was observed. Moderator analyses showed that there were no significant effects of using a no-treatment control group versus an alternative treatment control group or of using games that were especially created for health-promotion purposes versus off-the-shelf games. Also, intervention duration and frequency, sample size, study quality, and dropout did not significantly moderate the effect of active videogames. The results of these meta-analyses provide preliminary evidence that active videogames can have positive effects on relevant outcome measures in children/adolescents and elderly individuals.
Characterizing the genetic influences on risk aversion.
Harrati, Amal
2014-01-01
Risk aversion has long been cited as an important factor in retirement decisions, investment behavior, and health. Some of the heterogeneity in individual risk tolerance is well understood, reflecting age gradients, wealth gradients, and similar effects, but much remains unexplained. This study explores genetic contributions to heterogeneity in risk aversion among older Americans. Using over 2 million genetic markers per individual from the U.S. Health and Retirement Study, I report results from a genome-wide association study (GWAS) on risk preferences using a sample of 10,455 adults. None of the single-nucleotide polymorphisms (SNPs) are found to be statistically significant determinants of risk preferences at levels stricter than 5 × 10(-8). These results suggest that risk aversion is a complex trait that is highly polygenic. The analysis leads to upper bounds on the number of genetic effects that could exceed certain thresholds of significance and still remain undetected at the current sample size. The findings suggest that the known heritability in risk aversion is likely to be driven by large numbers of genetic variants, each with a small effect size.
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
Vaccine effects on heterogeneity in susceptibility and implications for population health management
Langwig, Kate E.; Wargo, Andrew R.; Jones, Darbi R.; Viss, Jessie R.; Rutan, Barbara J.; Egan, Nicholas A.; Sá-Guimarães, Pedro; Min Sun Kim,; Kurath, Gael; Gomes, M. Gabriela M.; Lipsitch, Marc; Bansal, Shweta; Pettigrew, Melinda M.
2017-01-01
Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility.
Large-scale replication and heterogeneity in Parkinson disease genetic loci
Ioannidis, John P.A.; Aasly, Jan O.; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M.; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pramstaller, Peter P.; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Satake, Wataru; Silburn, Peter A.; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-01-01
Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Methods: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Conclusion: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667 PMID:22786590
Large-scale replication and heterogeneity in Parkinson disease genetic loci.
Sharma, Manu; Ioannidis, John P A; Aasly, Jan O; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M; Hicks, Andrew A; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D; Morrison, Karen E; Opala, Grzegorz; Pramstaller, Peter P; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A; Stefanis, Leonidas; Stockton, Joanne D; Satake, Wataru; Silburn, Peter A; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-08-14
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity.
Milidonis, Xenios; Marshall, Ian; Macleod, Malcolm R; Sena, Emily S
2015-03-01
Because the new era of preclinical stroke research demands improvements in validity and generalizability of findings, moving from single site to multicenter studies could be pivotal. However, the conduct of magnetic resonance imaging (MRI) in stroke remains ill-defined. We sought to assess the variability in the use of MRI for evaluating lesions post stroke and to examine the possibility as an alternative to gold standard histology for measuring the infarct size. We identified animal studies of ischemic stroke reporting lesion sizes using MRI. We assessed the degree of heterogeneity and reporting of scanning protocols, postprocessing methods, study design characteristics, and study quality. Studies performing histological evaluation of infarct size were further selected to compare with corresponding MRI using meta-regression. Fifty-four articles undertaking a total of 78 different MRI scanning protocols met the inclusion criteria. T2-weighted imaging was most frequently used (83% of the studies), followed by diffusion-weighted imaging (43%). Reporting of the imaging parameters was adequate, but heterogeneity between studies was high. Twelve studies assessed the infarct size using both MRI and histology at corresponding time points, with T2-weighted imaging-based treatment effect having a significant positive correlation with histology (; P<0.001). Guidelines for standardized use and reporting of MRI in preclinical stroke are urgently needed. T2-weighted imaging could be used as an effective in vivo alternative to histology for estimating treatment effects based on the extent of infarction; however, additional studies are needed to explore the effect of individual parameters. © 2015 American Heart Association, Inc.
Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin
2018-01-01
Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Financing and organisation of veterinary services.
Gallacher, M; Barcos, L
2012-08-01
This paper analyses the different ways of financing official Veterinary Services (VS) and the effects of these choices on the performance of such Services. The links between governance, organisational effectiveness and financing arrangements are seen as particularly important. The paper comments on some of the advantages and disadvantages of financing VS with service fees, as compared to budget transfers from general government revenues. Evidence is presented on the considerable heterogeneity in the size of VS and on the impact of this heterogeneity on organisation and financing. The paper concludes with a stylised case study, which emphasises the importance of collaboration and the division of labour between the official and the private sector of the veterinary profession.
Evaluation of trap capture in a geographically closed population of brown treesnakes on Guam
Tyrrell, C.L.; Christy, M.T.; Rodda, G.H.; Yackel Adams, A.A.; Ellingson, A.R.; Savidge, J.A.; Dean-Bradley, K.; Bischof, R.
2009-01-01
1. Open population mark-recapture analysis of unbounded populations accommodates some types of closure violations (e.g. emigration, immigration). In contrast, closed population analysis of such populations readily allows estimation of capture heterogeneity and behavioural response, but requires crucial assumptions about closure (e.g. no permanent emigration) that are suspect and rarely tested empirically. 2. In 2003, we erected a double-sided barrier to prevent movement of snakes in or out of a 5-ha semi-forested study site in northern Guam. This geographically closed population of >100 snakes was monitored using a series of transects for visual searches and a 13 ?? 13 trapping array, with the aim of marking all snakes within the site. Forty-five marked snakes were also supplemented into the resident population to quantify the efficacy of our sampling methods. We used the program mark to analyse trap captures (101 occasions), referenced to census data from visual surveys, and quantified heterogeneity, behavioural response, and size bias in trappability. Analytical inclusion of untrapped individuals greatly improved precision in the estimation of some covariate effects. 3. A novel discovery was that trap captures for individual snakes consisted of asynchronous bouts of high capture probability lasting about 7 days (ephemeral behavioural effect). There was modest behavioural response (trap happiness) and significant latent (unexplained) heterogeneity, with small influences on capture success of date, gender, residency status (translocated or not), and body condition. 4. Trapping was shown to be an effective tool for eradicating large brown treesnakes Boiga irregularis (>900 mm snout-vent length, SVL). 5. Synthesis and applications. Mark-recapture modelling is commonly used by ecological managers to estimate populations. However, existing models involve making assumptions about either closure violations or response to capture. Physical closure of our population on a landscape scale allowed us to determine the relative importance of covariates influencing capture probability (body size, trappability periods, and latent heterogeneity). This information was used to develop models in which different segments of the population could be assigned different probabilities of capture, and suggests that modelling of open populations should incorporate easily measured, but potentially overlooked, parameters such as body size or condition. ?? 2008 The Authors.
Hajizadeh, Maryam; Hashemi Oskouei, Alireza; Ghalichi, Farzan; Sole, Gisela
2016-06-01
Biomechanical changes have been reported for patients with anterior cruciate ligament deficiency (ACLD) and anterior cruciate ligament (ACL reconstruction) (ACLR), likely due to loss of stability and changes in proprioception and neuromotor control. This review evaluated kinematics and kinetics of ACLD and ACLR knees, compared with those on the contralateral uninjured sides, as well as and those in asymptomatic controls during stair navigation. This is a systematic review and meta-analysis. Electronic database searches were conducted from their original available dates to January 2015. Studies that included participants with ACLD or ACLR and reported knee joint angles or moments during stair ascent or descent were included. Nine studies met the inclusion criteria, and the methodological quality of these was assessed with a modified Downs and Black checklist. Effect sizes for differences between injured leg and uninjured contralateral leg or controls were calculated, and meta-analyses were performed if two or more studies considered the same variable. Quality assessment showed an average (± standard deviation) of 70.3% ± 7.2%. Meta-analysis showed less knee flexion at initial contact for ACLR knees compared with that in contralateral knees during stair ascent, with a moderate effect size and minimal heterogeneity. Knees with ACLD showed less peak knee flexion compared with that on contralateral sides during stair ascent, with minimal heterogeneity. External knee flexion moments were lower for ACLR compared with those in controls and contralateral sides during ascent and descent, whereas these moments were decreased for the ACLD compared with controls only during ascent. Meta-analysis results exhibited moderate/high heterogeneity or small/trivial effect sizes. Differences for kinematics and kinetics for the ACL-injured knees indicate long-term compensatory and asymmetric movement patterns while ascending and descending stairs. Due to the heterogeneity as well as the small numbers of available studies, the consequences of these differences in terms of long-term function or posttraumatic osteoarthritis need further exploration. Copyright © 2016. Published by Elsevier Inc.
Cognitive fatigue effects on physical performance: A systematic review and meta-analysis.
McMorris, Terry; Barwood, Martin; Hale, Beverley J; Dicks, Matt; Corbett, Jo
2018-05-01
Recent research has examined the effect that undertaking a cognitively fatiguing task for ≤90 min has on subsequent physical performance. Cognitive fatigue is claimed to affect subsequent physical performance by inducing energy depletion in the brain, depletion of brain catecholamine neurotransmitters or changes in motivation. Observation of the psychophysiology and neurochemistry literature questions the ability of 90 min' cognitive activity to deplete energy or catecholamine resources. The purpose of this study, therefore, was to examine the evidence for cognitive fatigue having an effect on subsequent physical performance. A systematic, meta-analytic review was undertaken. We found a small but significant pooled effect size based on comparison between physical performance post-cognitive fatigue compared to post-control (g = -0.27, SE = -0.12, 95% CI -0.49 to -0.04, Z(10) = -2.283, p < 0.05). However, the results were not heterogenous (Q(10) = 2.789, p > 0.10, Τ 2 < 0.001), suggesting that the pooled effect size does not amount to a real effect and differences are due to random error. No publication bias was evident (Kendall's τ = -0.07, p > 0.05). Thus, the results are somewhat contradictory. The pooled effect size shows a small but significant negative effect of cognitive fatigue, however tests of heterogeneity show that the results are due to random error. Future research should use neuroscientific tests to ensure that cognitive fatigue has been achieved. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sinha, P. R.; Manchanda, R. K.; Kaskaoutis, D. G.; Sreenivasan, S.; Krishna Moorthy, K.; Suresh Babu, S.
2011-09-01
This work examines the aerosol physical properties and size distribution measured in the Marine Atmospheric Boundary Layer (MABL) over entire Bay of Bengal (BoB) and Northern Indian Ocean (NIO) during the Winter Integrated Campaign on Aerosols, Gases and Radiation Budget (W-ICARB). The measurements were taken using the GRIMM optical particle counter from 27th December 2008 to 30th January 2009. The results show large spatial heterogeneities regarding both the total aerosol number concentrations ( N T) and the size distributions over BoB, which in turn indicates the variations in the source strength or advection from different regions. The aerosol number size distribution seems to be bi-modal in the 72% of the cases and can also be parameterized by uni-modal or by a combination of power-law and uni-modal distributions for the rest of the cases. The mode radius for accumulation and coarse-mode particles ranges from ˜0.1-0.2 μm and ˜0.6-0.8 μm, respectively. In the northern BoB and along the Indian coast, the aerosols are mainly of sub-micron size with effective radius ( Reff) ranging between 0.25 and 0.3 μm highlighting the strong anthropogenic influence, while in the open oceanic areas they are much higher (0.4-0.6 μm). It was also found that the sea-surface wind plays a considerable role in the super-micron number concentration, Reff and mode radius for coarse-mode aerosols. Using the relation between N T and columnar AOD from Terra and Aqua-MODIS we found that the majority of the aerosols are within the lower MABL, while in some areas vertical heterogeneities also exist.
Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.
Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R
2015-12-01
The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.
ERIC Educational Resources Information Center
Spearing, Debra; Woehlke, Paula
To assess the effect on discriminant analysis in terms of correct classification into two groups, the following parameters were systematically altered using Monte Carlo techniques: sample sizes; proportions of one group to the other; number of independent variables; and covariance matrices. The pairing of the off diagonals (or covariances) with…
Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J
2018-05-21
Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.
Marteleto, Letícia J; de Souza, Laetícia R
2012-11-01
Researchers have long been interested in the influence of family size on children's educational outcomes. Simply put, theories have suggested that resources are diluted within families that have more children. Although the empirical literature on developed countries has generally confirmed the theoretical prediction that family size is negatively related to children's education, studies focusing on developing societies have reported heterogeneity in this association. Recent studies addressing the endogeneity between family size and children's education have also cast doubt on the homogeneity of the negative role of family size on children's education. The goal of this study is to examine the causal effect of family size on children's education in Brazil over a 30-year period marked by important social and demographic change, and across extremely different regions within the country. We implement a twin birth instrumental variable approach to the nationally representative 1977-2009 PNAD data. Our results suggest an effect of family size on education that is not uniform throughout a period of significant social, economic, and demographic change. Rather, the causal effect of family size on adolescents' schooling resembles a gradient that ranges from positive to no effect, trending to negative.
Chen, Yuping; Fanchiang, HsinChen D; Howard, Ayanna
2018-01-01
Researchers recently investigated the effectiveness of virtual reality (VR) in helping children with cerebral palsy (CP) to improve motor function. A systematic review of randomized controlled trials (RCTs) using a meta-analytic method to examine the effectiveness of VR in children with CP was thus needed. The purpose of this study was to update the current evidence about VR by systematically examining the research literature. A systematic literature search of PubMed, CINAHL, Cochrane Central Register of Controlled Trials, ERIC, PsycINFO, and Web of Science up to December 2016 was conducted. Studies with an RCT design, children with CP, comparisons of VR with other interventions, and movement-related outcomes were included. A template was created to systematically code the demographic, methodological, and miscellaneous variables of each RCT. The Physiotherapy Evidence Database (PEDro) scale was used to evaluate the study quality. Effect size was computed and combined using meta-analysis software. Moderator analyses were also used to explain the heterogeneity of the effect sizes in all RCTs. . The literature search yielded 19 RCT studies with fair to good methodological quality. Overall, VR provided a large effect size (d = 0.861) when compared with other interventions. A large effect of VR on arm function (d = 0.835) and postural control (d = 1.003) and a medium effect on ambulation (d = 0.755) were also found. Only the VR type affected the overall VR effect: an engineer-built system was more effective than a commercial system. The RCTs included in this study were of fair to good quality, had a high level of heterogeneity and small sample sizes, and used various intervention protocols. Then compared with other interventions, VR seems to be an effective intervention for improving motor function in children with CP. © 2017 American Physical Therapy Association
Effects of childhood body size on breast cancer tumour characteristics
2010-01-01
Introduction Although a role of childhood body size in postmenopausal breast cancer risk has been established, less is known about its influence on tumour characteristics. Methods We studied the relationships between childhood body size and tumour characteristics in a Swedish population-based case-control study consisting of 2,818 breast cancer cases and 3,111 controls. Our classification of childhood body size was derived from a nine-level somatotype. Relative risks were estimated by odds ratios with 95% confidence intervals, derived from fitting unconditional logistic regression models. Association between somatotype at age 7 and tumour characteristics were evaluated in a case-only analysis where P values for heterogeneity were obtained by performing one degree of freedom trend tests. Results A large somatotype at age 7 was found to be associated with decreased postmenopausal breast cancer risk. Although strongly associated with other risk factors such as age of menarche, adult body mass index and mammographic density, somatotype at age 7 remained a significant protective factor (odds ratio (OR) comparing large to lean somatotype at age 7 = 0.73, 95% confidence interval (CI) = 0.58-0.91, P trend = 0.004) after adjustment. The significant protective effect was observed within all subgroups defined by estrogen receptor (ER) and progesterone receptor (PR) status, with a stronger effect for ER-negative (0.40, 95% CI = 0.21-0.75, P trend = 0.002), than for ER-positive (0.80, 95% CI = 0.62-1.05, P trend = 0.062), tumours (P heterogeneity = 0.046). Somatotype at age 7 was not associated with tumour size, histology, grade or the presence or absence of metastatic nodes. Conclusions Greater body size at age 7 is associated with a decreased risk of postmenopausal breast cancer, and the associated protective effect is stronger for the ER-negative breast cancer subtype than for the ER-positive subtype. PMID:20398298
NASA Astrophysics Data System (ADS)
España, Samuel; Paganetti, Harald
2011-07-01
Dose calculation for lung tumors can be challenging due to the low density and the fine structure of the geometry. The latter is not fully considered in the CT image resolution used in treatment planning causing the prediction of a more homogeneous tissue distribution. In proton therapy, this could result in predicting an unrealistically sharp distal dose falloff, i.e. an underestimation of the distal dose falloff degradation. The goal of this work was the quantification of such effects. Two computational phantoms resembling a two-dimensional heterogeneous random lung geometry and a swine lung were considered applying a variety of voxel sizes for dose calculation. Monte Carlo simulations were used to compare the dose distributions predicted with the voxel size typically used for the treatment planning procedure with those expected to be delivered using the finest resolution. The results show, for example, distal falloff position differences of up to 4 mm between planned and expected dose at the 90% level for the heterogeneous random lung (assuming treatment plan on a 2 × 2 × 2.5 mm3 grid). For the swine lung, differences of up to 38 mm were seen when airways are present in the beam path when the treatment plan was done on a 0.8 × 0.8 × 2.4 mm3 grid. The two-dimensional heterogeneous random lung phantom apparently does not describe the impact of the geometry adequately because of the lack of heterogeneities in the axial direction. The differences observed in the swine lung between planned and expected dose are presumably due to the poor axial resolution of the CT images used in clinical routine. In conclusion, when assigning margins for treatment planning for lung cancer, proton range uncertainties due to the heterogeneous lung geometry and CT image resolution need to be considered.
2017-01-01
Core–shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core–shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core–shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency. PMID:28980799
Liu, Shanqiu; Eijkelenkamp, Rik; Duvigneau, Joost; Vancso, G Julius
2017-11-01
Core-shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO 2 -blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO 2 -philicity. The successful synthesis of core-shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core-shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO 2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO 2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.
Determining Sample Sizes for Precise Contrast Analysis with Heterogeneous Variances
ERIC Educational Resources Information Center
Jan, Show-Li; Shieh, Gwowen
2014-01-01
The analysis of variance (ANOVA) is one of the most frequently used statistical analyses in practical applications. Accordingly, the single and multiple comparison procedures are frequently applied to assess the differences among mean effects. However, the underlying assumption of homogeneous variances may not always be tenable. This study…
The Efficacy of Mindfulness-Based Interventions in Primary Care: A Meta-Analytic Review.
Demarzo, Marcelo M P; Montero-Marin, Jesús; Cuijpers, Pim; Zabaleta-del-Olmo, Edurne; Mahtani, Kamal R; Vellinga, Akke; Vicens, Caterina; López-del-Hoyo, Yolanda; García-Campayo, Javier
2015-11-01
Positive effects have been reported after mindfulness-based interventions (MBIs) in diverse clinical and nonclinical populations. Primary care is a key health care setting for addressing common chronic conditions, and an effective MBI designed for this setting could benefit countless people worldwide. Meta-analyses of MBIs have become popular, but little is known about their efficacy in primary care. Our aim was to investigate the application and efficacy of MBIs that address primary care patients. We performed a meta-analytic review of randomized controlled trials addressing the effect of MBIs in adult patients recruited from primary care settings. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and Cochrane guidelines were followed. Effect sizes were calculated with the Hedges g in random effects models. The meta-analyses were based on 6 trials having a total of 553 patients. The overall effect size of MBI compared with a control condition for improving general health was moderate (g = 0.48; P = .002), with moderate heterogeneity (I(2) = 59; P <.05). We found no indication of publication bias in the overall estimates. MBIs were efficacious for improving mental health (g = 0.56; P = .007), with a high heterogeneity (I(2) = 78; P <.01), and for improving quality of life (g = 0.29; P = .002), with a low heterogeneity (I(2) = 0; P >.05). Although the number of randomized controlled trials applying MBIs in primary care is still limited, our results suggest that these interventions are promising for the mental health and quality of life of primary care patients. We discuss innovative approaches for implementing MBIs, such as complex intervention and stepped care. © 2015 Annals of Family Medicine, Inc.
The Efficacy of Mindfulness-Based Interventions in Primary Care: A Meta-Analytic Review
Demarzo, Marcelo M.P.; Montero-Marin, Jesús; Cuijpers, Pim; Zabaleta-del-Olmo, Edurne; Mahtani, Kamal R.; Vellinga, Akke; Vicens, Caterina; López-del-Hoyo, Yolanda; García-Campayo, Javier
2015-01-01
PURPOSE Positive effects have been reported after mindfulness-based interventions (MBIs) in diverse clinical and nonclinical populations. Primary care is a key health care setting for addressing common chronic conditions, and an effective MBI designed for this setting could benefit countless people worldwide. Meta-analyses of MBIs have become popular, but little is known about their efficacy in primary care. Our aim was to investigate the application and efficacy of MBIs that address primary care patients. METHODS We performed a meta-analytic review of randomized controlled trials addressing the effect of MBIs in adult patients recruited from primary care settings. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and Cochrane guidelines were followed. Effect sizes were calculated with the Hedges g in random effects models. RESULTS The meta-analyses were based on 6 trials having a total of 553 patients. The overall effect size of MBI compared with a control condition for improving general health was moderate (g = 0.48; P = .002), with moderate heterogeneity (I2 = 59; P <.05). We found no indication of publication bias in the overall estimates. MBIs were efficacious for improving mental health (g = 0.56; P = .007), with a high heterogeneity (I2 = 78; P <.01), and for improving quality of life (g = 0.29; P = .002), with a low heterogeneity (I2 = 0; P >.05). CONCLUSIONS Although the number of randomized controlled trials applying MBIs in primary care is still limited, our results suggest that these interventions are promising for the mental health and quality of life of primary care patients. We discuss innovative approaches for implementing MBIs, such as complex intervention and stepped care. PMID:26553897
Swindell, William R
2017-08-01
Rapamycin has favorable effects on aging in mice and may eventually be applied to encourage "healthy aging" in humans. This study analyzed raw data from 29 survival studies of rapamycin- and control-treated mice, with the goals of estimating summary statistics and identifying factors associated with effect size heterogeneity. Meta-analysis demonstrated significant heterogeneity across studies, with hazard ratio (HR) estimates ranging from 0.22 (95% confidence interval [CI]: 0.06-0.82) to 0.92 (95% CI: 0.65-1.28). Sex was the major factor accounting for effect size variation, and mortality was decreased more in females (HR = 0.41; 95% CI: 0.35-0.48) as compared with males (HR = 0.63; 95% CI: 0.55-0.71). Rapamycin effects were also genotype dependent, however, with stronger survivorship increases in hybrid mice (14.4%; 95% CI: 12.5-16.3%) relative to pure inbred strains (8.8%; 95% CI: 6.2-11.6%). Number needed to treat was applied as an effect size metric, which consistently identified early senescence as the age of peak treatment benefit. These results provide synthesis of existing data to support the potential translation of findings from mouse to primate species. Because rapamycin's effect on survival depends on sex and genotype, further work is justified to understand how these factors shape treatment response. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu
2016-01-01
Small fields smaller than 4×4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model‐based algorithms, X‐ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS‐Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth‐of‐dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth‐dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1×1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1×1 cm2 field showed maximum deviation, except in 6 MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower‐density materials compared to high‐density materials. PACS numbers: 87.53.Bn, 87.53.kn, 87.56.bd, 87.55.Kd, 87.56.jf PMID:26894345
Effects of buffer size and shape on associations between the built environment and energy balance.
James, Peter; Berrigan, David; Hart, Jaime E; Hipp, J Aaron; Hoehner, Christine M; Kerr, Jacqueline; Major, Jacqueline M; Oka, Masayoshi; Laden, Francine
2014-05-01
Uncertainty in the relevant spatial context may drive heterogeneity in findings on the built environment and energy balance. To estimate the effect of this uncertainty, we conducted a sensitivity analysis defining intersection and business densities and counts within different buffer sizes and shapes on associations with self-reported walking and body mass index. Linear regression results indicated that the scale and shape of buffers influenced study results and may partly explain the inconsistent findings in the built environment and energy balance literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bolzoni, Leandro; Xia, Mingxu; Babu, Nadendla Hari
2016-01-01
The design of chemical compositions containing potent nuclei for the enhancement of heterogeneous nucleation in aluminium, especially cast alloys such as Al-Si alloys, is a matter of importance in order to achieve homogeneous properties in castings with complex geometries. We identified that Al3Nb/NbB2 compounds are effective heterogeneous nuclei and are successfully produced in the form of Al-2Nb-xB (x = 0.5, 1 and 2) master alloys. Our study shows that the inoculation of Al-10Si braze alloy with these compounds effectively promotes the heterogeneous nucleation of primary α-Al crystals and reduces the undercooling needed for solidification to take place. Moreover, we present evidences that these Nb-based compounds prevent the growth of columnar crystals and permit to obtain, for the first time, fine and equiaxed crystals in directionally solidified Al-10Si braze alloy. As a consequence of the potent heterogeneous particles, the size of the α-Al crystals was found to be less dependent on the processing conditions, especially the thermal gradient. Finally, we also demonstrate that the enhanced nucleation leads to the refinement of secondary phases such as eutectic silicon and primary silicon particles. PMID:28008967
A Phase Field Study of the Effect of Microstructure Grain Size Heterogeneity on Grain Growth
NASA Astrophysics Data System (ADS)
Crist, David J. D.
Recent studies conducted with sharp-interface models suggest a link between the spatial distribution of grain size variance and average grain growth rate. This relationship and its effect on grain growth rate was examined using the diffuse-interface Phase Field Method on a series of microstructures with different degrees of grain size gradation. Results from this work indicate that the average grain growth rate has a positive correlation with the average grain size dispersion for phase field simulations, confirming previous observations. It is also shown that the grain growth rate in microstructures with skewed grain size distributions is better measured through the change in the volume-weighted average grain size than statistical mean grain size. This material is based upon work supported by the National Science Foundation under Grant No. 1334283. The NSF project title is "DMREF: Real Time Control of Grain Growth in Metals" and was awarded by the Civil, Mechanical and Manufacturing Innovation division under the Designing Materials to Revolutionize and Engineer our Future (DMREF) program.
Lukianova-Hleb, Ekaterina Y.; Mutonga, Martin B. G.; Lapotko, Dmitri O.
2012-01-01
Current methods of cell processing for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in highly heterogeneous cell systems. Using the cell-specific generation of plasmonic nanobubbles of different sizes around cell-targeted gold nanoshells and nanospheres, we achieved simultaneous multifunctional cell-specific processing in a rapid single 70 ps laser pulse bulk treatment of heterogeneous cell suspension. This method supported the detection of cells, delivery of external molecular cargo to one type of cells and the concomitant destruction of another type of cells without damaging other cells in suspension, and real-time guidance of the two above cellular effects. PMID:23167546
Impact of spatially correlated pore-scale heterogeneity on drying porous media
NASA Astrophysics Data System (ADS)
Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran
2017-07-01
We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.
Competing Distractors Facilitate Visual Search in Heterogeneous Displays.
Kong, Garry; Alais, David; Van der Burg, Erik
2016-01-01
In the present study, we examine how observers search among complex displays. Participants were asked to search for a big red horizontal line among 119 distractor lines of various sizes, orientations and colours, leading to 36 different feature combinations. To understand how people search in such a heterogeneous display, we evolved the search display by using a genetic algorithm (Experiment 1). The best displays (i.e., displays corresponding to the fastest reaction times) were selected and combined to create new, evolved displays. Search times declined over generations. Results show that items sharing the same colour and orientation as the target disappeared over generations, implying they interfered with search, but items sharing the same colour and were 12.5° different in orientation only interfered if they were also the same size. Furthermore, and inconsistent with most dominant visual search theories, we found that non-red horizontal distractors increased over generations, indicating that these distractors facilitated visual search while participants were searching for a big red horizontally oriented target. In Experiments 2 and 3, we replicated these results using conventional, factorial experiments. Interestingly, in Experiment 4, we found that this facilitation effect was only present when the displays were very heterogeneous. While current models of visual search are able to successfully describe search in homogeneous displays, our results challenge the ability of these models to describe visual search in heterogeneous environments.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
Crutzen, Rik; Lu, Amy Shirong
2014-01-01
Abstract Objective: Two recent systematic reviews have surveyed the existing evidence for the effectiveness of active videogames in children/adolescents and in elderly people. In the present study, effect sizes were added to these systematic reviews, and meta-analyses were performed. Materials and Methods: All reviewed studies were considered for inclusion in the meta-analyses, but only studies were included that investigated the effectiveness of active videogames, used an experimental design, and used actual health outcomes as the outcome measures (body mass index for children/adolescents [k=5] and functional balance for the elderly [k=6]). Results: The average effect of active videogames in children and adolescents was small and nonsignificant: Hedges' g=0.20 (95 percent confidence interval, −0.08 to 0.48). Limited heterogeneity was observed, and no moderator analyses were performed. For the effect of active videogames on functional balance in the elderly, the analyses revealed a medium-sized and significant effect of g=0.68 (95 percent confidence interval, 0.13–1.24). For the elderly studies, substantial heterogeneity was observed. Moderator analyses showed that there were no significant effects of using a no-treatment control group versus an alternative treatment control group or of using games that were especially created for health-promotion purposes versus off-the-shelf games. Also, intervention duration and frequency, sample size, study quality, and dropout did not significantly moderate the effect of active videogames. Conclusions: The results of these meta-analyses provide preliminary evidence that active videogames can have positive effects on relevant outcome measures in children/adolescents and elderly individuals. PMID:26192486
Trevizol, Alisson Paulino; Shiozawa, Pedro; Cook, Ian A; Sato, Isa Albuquerque; Kaku, Caio Barbosa; Guimarães, Fernanda Bs; Sachdev, Perminder; Sarkhel, Sujit; Cordeiro, Quirino
2016-12-01
Transcranial magnetic stimulation (TMS) is a promising noninvasive brain stimulation intervention. Transcranial magnetic stimulation has been proposed for obsessive-compulsive disorder (OCD) with auspicious results. To assess the efficacy of TMS for OCD in randomized clinical trials (RCTs). Systematic review using MEDLINE and EMBASE from the first RCT available until March 11, 2016. The main outcome was the Hedges g for continuous scores for Yale-Brown Obsessive Compulsive Scale in a random-effects model. Heterogeneity was evaluated with the I and the χ test. Publication bias was evaluated using the Begg funnel plot. Metaregression was performed using the random-effects model modified by Knapp and Hartung. We included 15 RCTs (n = 483), most had small-to-modest sample sizes. Comparing active versus sham TMS, active stimulation was significantly superior for OCD symptoms (Hedges g = 0.45; 95% confidence interval, 0.2-0.71). The funnel plot showed that the risk of publication bias was low and between-study heterogeneity was low (I = 43%, P = 0.039 for the χ test). Metaregression showed no particular influence of any variable on the results. Transcranial magnetic stimulation active was superior to sham stimulation for the amelioration of OCD symptoms. Trials had moderate heterogeneity results, despite different protocols of stimulation used. Further RCTs with larger sample sizes are fundamentally needed to clarify the precise impact of TMS in OCD symptoms.
Velázquez, Eduardo; Escudero, Adrián; de la Cruz, Marcelino
2018-01-01
We assessed the relative importance of dispersal limitation, environmental heterogeneity and their joint effects as determinants of the spatial patterns of 229 species in the moist tropical forest of Barro Colorado Island (Panama). We differentiated five types of species according to their dispersal syndrome; autochorous, anemochorous, and zoochorous species with small, medium-size and large fruits. We characterized the spatial patterns of each species and we checked whether they were best fitted by Inhomogeneous Poisson (IPP), Homogeneous Poisson cluster (HPCP) and Inhomogeneous Poisson cluster processes (IPCP) by means of the Akaike Information Criterion. We also assessed the influence of species’ dispersal mode in the average cluster size. We found that 63% of the species were best fitted by IPCP regardless of their dispersal syndrome, although anemochorous species were best described by HPCP. Our results indicate that spatial patterns of tree species in this forest cannot be explained only by dispersal limitation, but by the joint effects of dispersal limitation and environmental heterogeneity. The absence of relationships between dispersal mode and degree of clustering suggests that several processes modify the original spatial pattern generated by seed dispersal. These findings emphasize the importance of fitting point process models with a different biological meaning when studying the main determinants of spatial structure in plant communities. PMID:29451871
NASA Astrophysics Data System (ADS)
Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai
2017-09-01
The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.
Overload cascading failure on complex networks with heterogeneous load redistribution
NASA Astrophysics Data System (ADS)
Hou, Yueyi; Xing, Xiaoyun; Li, Menghui; Zeng, An; Wang, Yougui
2017-09-01
Many real systems including the Internet, power-grid and financial networks experience rare but large overload cascading failures triggered by small initial shocks. Many models on complex networks have been developed to investigate this phenomenon. Most of these models are based on the load redistribution process and assume that the load on a failed node shifts to nearby nodes in the networks either evenly or according to the load distribution rule before the cascade. Inspired by the fact that real power-grid tends to place the excess load on the nodes with high remaining capacities, we study a heterogeneous load redistribution mechanism in a simplified sandpile model in this paper. We find that weak heterogeneity in load redistribution can effectively mitigate the cascade while strong heterogeneity in load redistribution may even enlarge the size of the final failure. With a parameter θ to control the degree of the redistribution heterogeneity, we identify a rather robust optimal θ∗ = 1. Finally, we find that θ∗ tends to shift to a larger value if the initial sand distribution is homogeneous.
Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength
NASA Astrophysics Data System (ADS)
Hong, Hyunsuk
2017-07-01
We consider a mean-field model of coupled phase oscillators with random heterogeneity in the coupling strength. The system that we investigate here is a minimal model that contains randomness in diverse values of the coupling strength, and it is found to return to the original Kuramoto model [Y. Kuramoto, Prog. Theor. Phys. Suppl. 79, 223 (1984), 10.1143/PTPS.79.223] when the coupling heterogeneity disappears. According to one recent paper [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015), 10.1103/PhysRevE.92.022122], when the natural frequency of the oscillator in the system is "deterministically" chosen, with no randomness in it, the system is found to exhibit the finite-size scaling exponent ν ¯=5 /4 . Also, the critical exponent for the dynamic fluctuation of the order parameter is found to be given by γ =1 /4 , which is different from the critical exponents for the Kuramoto model with the natural frequencies randomly chosen. Originally, the unusual finite-size scaling behavior of the Kuramoto model was reported by Hong et al. [H. Hong, H. Chaté, H. Park, and L.-H. Tang, Phys. Rev. Lett. 99, 184101 (2007), 10.1103/PhysRevLett.99.184101], where the scaling behavior is found to be characterized by the unusual exponent ν ¯=5 /2 . On the other hand, if the randomness in the natural frequency is removed, it is found that the finite-size scaling behavior is characterized by a different exponent, ν ¯=5 /4 [H. Hong, H. Chaté, L.-H. Tang, and H. Park, Phys. Rev. E 92, 022122 (2015), 10.1103/PhysRevE.92.022122]. Those findings brought about our curiosity and led us to explore the effects of the randomness on the finite-size scaling behavior. In this paper, we pay particular attention to investigating the finite-size scaling and dynamic fluctuation when the randomness in the coupling strength is considered.
Gerger, H; Munder, T; Gemperli, A; Nüesch, E; Trelle, S; Jüni, P; Barth, J
2014-11-01
To summarize the available evidence on the effectiveness of psychological interventions for patients with post-traumatic stress disorder (PTSD). We searched bibliographic databases and reference lists of relevant systematic reviews and meta-analyses for randomized controlled trials that compared specific psychological interventions for adults with PTSD symptoms either head-to-head or against control interventions using non-specific intervention components, or against wait-list control. Two investigators independently extracted the data and assessed trial characteristics. The analyses included 4190 patients in 66 trials. An initial network meta-analysis showed large effect sizes (ESs) for all specific psychological interventions (ESs between -1.10 and -1.37) and moderate effects of psychological interventions that were used to control for non-specific intervention effects (ESs -0.58 and -0.62). ES differences between various types of specific psychological interventions were absent to small (ES differences between 0.00 and 0.27). Considerable between-trial heterogeneity occurred (τ²= 0.30). Stratified analyses revealed that trials that adhered to DSM-III/IV criteria for PTSD were associated with larger ESs. However, considerable heterogeneity remained. Heterogeneity was reduced in trials with adequate concealment of allocation and in large-sized trials. We found evidence for small-study bias. Our findings show that patients with a formal diagnosis of PTSD and those with subclinical PTSD symptoms benefit from different psychological interventions. We did not identify any intervention that was consistently superior to other specific psychological interventions. However, the robustness of evidence varies considerably between different psychological interventions for PTSD, with most robust evidence for cognitive behavioral and exposure therapies.
The Fireball integrated code package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, D.; Powers, D.A.; Harper, F.T.
1997-07-01
Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less
NASA Astrophysics Data System (ADS)
Ecrepont, Stephane; Cudennec, Christophe; Jaffrezic, Anne; de Lavenne, Alban
2017-04-01
Towards hydrochemical PUB - stable vs. heterogeneous NO3 and DOC signatures across hydrographic structure and size Ecrepont, S.1Cudennec, C.1 Jaffrézic, A.1 de Lavenne, A.2 1UMR SAS, Agrocampus Ouest, Rennes, France 2 HBAN, Irstea, Antony, France Intensive agriculture is a major disturbing factor for water quality in Brittany, France. Observations of chemical data from 350 catchments over a 15 year period show that the high variability of hydrochemical dynamics between catchments in relation to geographic characteristics and farming practices, decreases with an increase in the catchment size. A stable signature of nitrate and DOC dynamics does emerge for bigger catchments, and was evidenced statistically. We adapted a modified version of the standard deviation formula to calculate an index on mean inter-annual winter nitrate and dissolved organic carbon concentrations to characterize each catchment. The method was applied to the whole sample of catchments, some of them nested, to investigate variation of our new index across scales and regions. Results show an increasing and non-linear relationship between the criterion and the surface, with threshold effects. The stability of the thresholds across river basins in Brittany, and across seasons and years is explored. This emergence relates to the progressive connection of streams with heterogeneous characteristic chemical signatures into a mixing dominant effect. The better assessment of this relationship opens two major perspectives: i) to define a geomorphology-based PUB (Prediction in Ungauged Basins) approach for hydrochemistry; ii) to identify the most critical sub-catchments for mitigating actions in terms of farming and landscape practices towards water quality recovery.
Structure and characteristics of heterogeneous detonation
NASA Astrophysics Data System (ADS)
Nicholls, J. A.; Sichel, M.; Kauffman, C. W.
1983-09-01
The emphasis of this research program centered around the structure of heterogeneous detonation waves, inasmuch as this had been found to be very important to the detonation characteristics of heterogeneous mixtures. On the experimental side, a vertical detonation tube was used wherein liquid fuel drops, all of one size, were generated at the top of the tube and allowed to fall vertically into the desired gaseous mixture. A strong blast wave was transmitted into the mixture through use of an auxiliary shock tube. The propagation of the resultant wave was monitored by pressure switches, pressure transducers, and photography. The low vapor pressure liquid fuel, decane (400 micrometer drop size) was used for most of the experiments. Attention was given to wave structure, wave velocity, and initiation energy. Three atmospheres (100% O2; 40% O2/60% N2; and air) and a number of equivalence ratios were investigated. Holographic pictures and streak photography were employed to study the drop shattering process and the structure of the front. Other experiments investigated the addition of the sensitizer, normal propyl nitrate (NPN), to the decane. The important aspect of vapor pressure was studied by heating the entire tube to various elevated temperatures and then noting the effect on detonability.
Collective action problem in heterogeneous groups
Gavrilets, Sergey
2015-01-01
I review the theoretical and experimental literature on the collective action problem in groups whose members differ in various characteristics affecting individual costs, benefits and preferences in collective actions. I focus on evolutionary models that predict how individual efforts and fitnesses, group efforts and the amount of produced collective goods depend on the group's size and heterogeneity, as well as on the benefit and cost functions and parameters. I consider collective actions that aim to overcome the challenges from nature or win competition with neighbouring groups of co-specifics. I show that the largest contributors towards production of collective goods will typically be group members with the highest stake in it or for whom the effort is least costly, or those who have the largest capability or initial endowment. Under some conditions, such group members end up with smaller net pay-offs than the rest of the group. That is, they effectively behave as altruists. With weak nonlinearity in benefit and cost functions, the group effort typically decreases with group size and increases with within-group heterogeneity. With strong nonlinearity in benefit and cost functions, these patterns are reversed. I discuss the implications of theoretical results for animal behaviour, human origins and psychology. PMID:26503689
Effects of diffusion on total biomass in heterogeneous continuous and discrete-patch systems
DeAngelis, Donald L.; Ming Ni, Wei; Zhang, Bo
2016-01-01
Theoretical models of populations on a system of two connected patches previously have shown that when the two patches differ in maximum growth rate and carrying capacity, and in the limit of high diffusion, conditions exist for which the total population size at equilibrium exceeds that of the ideal free distribution, which predicts that the total population would equal the total carrying capacity of the two patches. However, this result has only been shown for the Pearl-Verhulst growth function on two patches and for a single-parameter growth function in continuous space. Here, we provide a general criterion for total population size to exceed total carrying capacity for three commonly used population growth rates for both heterogeneous continuous and multi-patch heterogeneous landscapes with high population diffusion. We show that a sufficient condition for this situation is that there is a convex positive relationship between the maximum growth rate and the parameter that, by itself or together with the maximum growth rate, determines the carrying capacity, as both vary across a spatial region. This relationship occurs in some biological populations, though not in others, so the result has ecological implications.
Detonation Propagation through Nitromethane Embedded Metal Foam
NASA Astrophysics Data System (ADS)
Lieberthal, Brandon; Maines, Warren R.; Stewart, D. Scott
2015-11-01
There is considerable interest in developing a better understanding of dynamic behaviors of multicomponent systems. We report results of Eulerian hydrodynamic simulations of shock waves propagating through metal foam at approximately 20% relative density and various porosities using a reactive flow model in the ALE3D software package. We investigate the applied pressure and energy of the shock wave and its effects on the fluid and the inert material interface. By varying pore sizes, as well as metal impedance, we predict the overall effects of heterogeneous material systems at the mesoscale. In addition, we observe a radially expanding blast front in these heterogeneous models and apply the theory of Detonation Shock Dynamics to the convergence behavior of the lead shock.
Measuring habitat heterogeneity reveals new insights into bird community composition.
Stirnemann, Ingrid A; Ikin, Karen; Gibbons, Philip; Blanchard, Wade; Lindenmayer, David B
2015-03-01
Fine-scale vegetation cover is a common variable used to explain animal occurrence, but we know less about the effects of fine-scale vegetation heterogeneity. Theoretically, fine-scale vegetation heterogeneity is an important driver of biodiversity because it captures the range of resources available in a given area. In this study we investigated how bird species richness and birds grouped by various ecological traits responded to vegetation cover and heterogeneity. We found that both fine-scale vegetation cover (of tall trees, medium-sized trees and shrubs) and heterogeneity (of tall trees, and shrubs) were important predictors of bird richness, but the direction of the response of bird richness to shrub heterogeneity differed between sites with different proportions of tall tree cover. For example, bird richness increased with shrub heterogeneity in sites with high levels of tall tree cover, but declined in sites with low levels of tall tree cover. Our findings indicated that an increase in vegetation heterogeneity will not always result in an increase in resources and niches, and associated higher species richness. We also found birds grouped by traits responded in a predictable way to vegetation heterogeneity. For example, we found small birds benefited from increased shrub heterogeneity supporting the textual discontinuity hypothesis and non-arboreal (ground or shrub) nesting species were associated with high vegetation cover (low heterogeneity). Our results indicated that focusing solely on increasing vegetation cover (e.g. through restoration) may be detrimental to particular animal groups. Findings from this investigation can help guide habitat management for different functional groups of birds.
Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.
Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin
2018-04-01
We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.
NASA Astrophysics Data System (ADS)
Song, Yongjia; Hu, Hengshan; Rudnicki, John W.; Duan, Yunda
2016-09-01
An exact analytical solution is presented for the effective dynamic transverse shear modulus in a heterogeneous fluid-filled porous solid containing cylindrical inclusions. The complex and frequency-dependent properties of the dynamic shear modulus are caused by the physical mechanism of mesoscopic-scale wave-induced fluid flow whose scale is smaller than wavelength but larger than the size of pores. Our model consists of three phases: a long cylindrical inclusion, a cylindrical shell of poroelastic matrix material with different mechanical and/or hydraulic properties than the inclusion and an outer region of effective homogeneous medium of laterally infinite extent. The behavior of both the inclusion and the matrix is described by Biot's consolidation equations, whereas the surrounding effective medium which is used to describe the effective transverse shear properties of the inner poroelastic composite is assumed to be a viscoelastic solid whose complex transverse shear modulus needs to be determined. The determined effective transverse shear modulus is used to quantify the S-wave attenuation and velocity dispersion in heterogeneous fluid-filled poroelastic rocks. The calculation shows the relaxation frequency and relative position of various fluid saturation dispersion curves predicted by this study exhibit very good agreement with those of a previous 2-D finite-element simulation. For the double-porosity model (inclusions having a different solid frame than the matrix but the same pore fluid as the matrix) the effective shear modulus also exhibits a size-dependent characteristic that the relaxation frequency moves to lower frequencies by two orders of magnitude if the radius of the cylindrical poroelastic composite increases by one order of magnitude. For the patchy-saturation model (inclusions having the same solid frame as the matrix but with a different pore fluid from the matrix), the heterogeneity in pore fluid cannot cause any attenuation in the transverse shear modulus at all. A comparison with the case of spherical inclusions illustrates that the transverse shear modulus for the cylindrical inclusion exhibits more S-wave attenuation than spherical inclusions.
Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.
2016-01-01
An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673
Heterogeneity and anisotropy in the lithospheric mantle
NASA Astrophysics Data System (ADS)
Tommasi, Andréa; Vauchez, Alain
2015-10-01
The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.
Thermal behavior and ice-table depth within the north polar erg of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.
2014-02-01
We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg's thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg's thermal behavior.
Thermal behavior and ice-table depth within the north polar erg of Mars
Putzig, Nathaniel E.; Mellon, Michael T.; Herkenhoff, Kenneth E.; Phillips, Roger J.; Davis, Brian J.; Ewer, Kenneth J.; Bowers, Lauren M.
2014-01-01
We fully resolve a long-standing thermal discrepancy concerning the north polar erg of Mars. Several recent studies have shown that the erg’s thermal properties are consistent with normal basaltic sand overlying shallow ground ice or ice-cemented sand. Our findings bolster that conclusion by thoroughly characterizing the thermal behavior of the erg, demonstrating that other likely forms of physical heterogeneity play only a minor role, and obviating the need to invoke exotic materials. Thermal inertia as calculated from orbital temperature observations of the dunes has previously been found to be more consistent with dust-sized materials than with sand. Since theory and laboratory data show that dunes will only form out of sand-sized particles, exotic sand-sized agglomerations of dust have been invoked to explain the low values of thermal inertia. However, the polar dunes exhibit the same darker appearance and color as that of dunes found elsewhere on the planet that have thermal inertia consistent with normal sand-sized basaltic grains, whereas Martian dust deposits are generally lighter and redder. The alternative explanation for the discrepancy as a thermal effect of a shallow ice table is supported by our analysis of observations from the Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System and by forward modeling of physical heterogeneity. In addition, our results exclude a uniform composition of dark dust-sized materials, and they show that the thermal effects of the dune slopes and bright interdune materials evident in high-resolution images cannot account for the erg’s thermal behavior.
Morphological effects on sensitivity of heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.
2017-06-01
The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.
Effects of heterogeneous convergence rate on consensus in opinion dynamics
NASA Astrophysics Data System (ADS)
Huang, Changwei; Dai, Qionglin; Han, Wenchen; Feng, Yuee; Cheng, Hongyan; Li, Haihong
2018-06-01
The Deffuant model has attracted much attention in the study of opinion dynamics. Here, we propose a modified version by introducing into the model a heterogeneous convergence rate which is dependent on the opinion difference between interacting agents and a tunable parameter κ. We study the effects of heterogeneous convergence rate on consensus by investigating the probability of complete consensus, the size of the largest opinion cluster, the number of opinion clusters, and the relaxation time. We find that the decrease of the convergence rate is favorable to decreasing the confidence threshold for the population to always reach complete consensus, and there exists optimal κ resulting in the minimal bounded confidence threshold. Moreover, we find that there exists a window before the threshold of confidence in which complete consensus may be reached with a nonzero probability when κ is not too large. We also find that, within a certain confidence range, decreasing the convergence rate will reduce the relaxation time, which is somewhat counterintuitive.
Haghighatdoost, Fahimeh; Bellissimo, Nick; Totosy de Zepetnek, Julia O; Rouhani, Mohammad Hossein
2017-10-01
Vegetarian diets contain various anti-inflammatory components. We aimed to investigate the effects of vegetarianism on inflammatory biomarkers when compared with omnivores. Systematic review and meta-analysis. Literature search was conducted in Science Direct, Proquest, MEDLINE and Google Scholar up to June 2016. Summary estimates and corresponding 95 % CI were derived via the DerSimonian and Laird method using random effects, subgroup analyses were run to find the source of heterogeneity and a fixed-effect model examined between-subgroup heterogeneity. Studies were included if they evaluated effects of any type of vegetarianism compared with omnivores on circulating levels of inflammatory biomarkers. No restriction was made in terms of language or the date of study publications. Eighteen articles were included. Pooled effect size showed no difference in high-sensitivity C-reactive protein (hs-CRP) levels in vegetarians v. omnivores (Hedges' g=-0·15; 95 % CI -0·35, 0·05), with high heterogeneity (I 2=75·6 %, P<0·01). A subgroup analysis by minimum duration of vegetarianism showed that a minimum duration of 2 years vegetarianism was associated with lower hs-CRP levels v. omnivores (Hedges' g=-0·29; 95 % CI -0·59, 0·01), with moderate heterogeneity (I 2=68·9 %, P<0·01). No significant effect was found in studies using a minimum duration of 6 months of vegetarianism, with low heterogeneity. Vegetarianism was associated with increased IL-6 concentrations (0·21 pg/ml; 95 % CI 0·18, 0·25), with no heterogeneity (I 2=0·0 %, P=0·60). The meta-analysis provides evidence that vegetarianism is associated with lower serum concentrations of hs-CRP when individuals follow a vegetarian diet for at least 2 years. Further research is necessary to draw appropriate conclusions regarding potential associations between vegetarianism and IL-6 levels. A vegetarian diet might be a useful approach to manage inflammaging in the long term.
NASA Astrophysics Data System (ADS)
Zhang, Yihuai; Lebedev, Maxim; Al-Yaseri, Ahmed; Yu, Hongyan; Nwidee, Lezorgia N.; Sarmadivaleh, Mohammad; Barifcani, Ahmed; Iglauer, Stefan
2018-03-01
Pore-scale analysis of carbonate rock is of great relevance to the oil and gas industry owing to their vast application potentials. Although, efficient fluid flow at pore scale is often disrupted owing to the tight rock matrix and complex heterogeneity of limestone microstructures, factors such as porosity, permeability and effective stress greatly impact the rock microstructures; as such an understanding of the effect of these variables is vital for various natural and engineered processes. In this study, the Savonnières limestone as a carbonate mineral was evaluated at micro scales using X-ray micro-computed tomography at high resolutions (3.43 μm and 1.25 μm voxel size) under different effective stress (0 MPa, 20 MPa) to ascertain limestone microstructure and gas permeability and porosity effect. The waterflooding (5 wt% NaCl) test was conducted using microCT in-situ scanning and nanoindentation test was also performed to evaluate microscale geomechanical heterogeneity of the rock. The nanoindentation test results showed that the nano/micro scale geomechanical properties are quite heterogeneous where the indentation modulus for the weak consolidated area was as low as 1 GPa. We observed that the fluid flow easily broke some less-consolidated areas (low indentation modulus) area, coupled with increase in porosity; and consistent with fines/particles migration and re-sedimentation were identified, although the effective stress showed only a minor effect on the rock microstructure.
NASA Astrophysics Data System (ADS)
Buda, A.; Demco, D. E.; Jagadeesh, B.; Blümich, B.
2005-01-01
The molecular dynamic heterogeneity of monolayer to submonolayer thin lecithin films confined to submicron cylindrical pores were investigated by 1H magnetization exchange nuclear magnetic resonance. In this experiment a z-magnetization gradient was generated by a double-quantum dipolar filter. The magnetization-exchange decay and buildup curves were interpreted with the help of a theoretical model based on the approximation of a one-dimensional spin-diffusion process in a three-domain morphology. The dynamic heterogeneity of the fatty acid chains and the effects of the surface area per molecule, the diameter of the pores, and the temperature were characterized with the help of local spin-diffusion coefficients. The effect of various parameters on the molecular dynamics of the mobile region of the fatty acid chains was quantified by introducing an ad hoc Gaussian distribution function of the 1H residual dipolar couplings. For the lipid films investigated in this study, the surface induced order and the geometrical confinement affect the chain dynamics of the entire molecule. Therefore, each part of the chain independently reflects the effect of surface coverage, pore size, and temperature.
Occupational styrene exposure and acquired dyschromatopsia: A systematic review and meta-analysis.
Choi, Ariel R; Braun, Joseph M; Papandonatos, George D; Greenberg, Paul B
2017-11-01
Styrene is a chemical used in the manufacture of plastic-based products worldwide. We systematically reviewed eligible studies of occupational styrene-induced dyschromatopsia, qualitatively synthesizing their findings and estimating the exposure effect through meta-analysis. PubMed, EMBASE, and Web of Science databases were queried for eligible studies. Using a random effects model, we compared measures of dyschromatopsia between exposed and non-exposed workers to calculate the standardized mean difference (Hedges'g). We also assessed between-study heterogeneity and publication bias. Styrene-exposed subjects demonstrated poorer color vision than did the non-exposed (Hedges' g = 0.56; 95%CI: 0.37, 0.76; P < 0.0001). A non-significant Cochran's Q test result (Q = 23.2; P = 0.171) and an I 2 of 32.2% (0.0%, 69.9%) indicated low-to-moderate between-study heterogeneity. Funnel plot and trim-and-fill analyses suggested publication bias. This review confirms the hypothesis of occupational styrene-induced dyschromatopsia, suggesting a modest effect size with mild heterogeneity between studies. © 2017 Wiley Periodicals, Inc.
Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan
2007-01-01
Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854
Collective Motion in Behaviorally Heterogeneous Systems
NASA Astrophysics Data System (ADS)
Copenhagen, Katherine
Collective motion is a widespread phenomenon in nature where individuals actively propel themselves, gather together and move as a group. Some examples of collective motion are bird flocks, fish schools, bacteria swarms, cell clusters, and crowds of people. Many models seek to understand the effects of activity in collective systems including things such as environmental disorder, density, and interaction details primarily at infinite size limits and with uniform populations. In this dissertation I investigate the effects of finite sizes and behavioral heterogeneity as it exists in nature. Behavioral heterogeneity can originate from several different sources. Mixed populations of individuals can have inherently different behaviors such as mutant bacteria, injured fish, or agents that prefer individualistic behavior over coordinated motion. Alternatively, agents may modify their own behavior based on some local environmental dependency, such as local substrate, or density. In cases such as mutant cheaters in bacteria or malfunctioning drones in swarms, mixed populations of behaviorally heterogeneous agents can be modelled as arising in the form of aligning and non-aligning agents. When this kind of heterogeneity is introduced, there is a critical carrying capacity of non-aligners above which the system is unable to form a cohesive ordered group. However, if the cohesion of the group is relaxed to allow for fracture, the system will actively sort out non-aligning agents the system will exist at a critical non-aligner fraction. A similar heterogeneity could result in a mixture of high and low noise individuals. In this case there is also a critical carry capacity beyond which the system is unable to reach an ordered state, however the nature of this transition depends on the model details. Agents which are part of an ordered collective may vary their behavior as the group changes environments such as a flock of birds flying into a cloud. Using a unique model of a flock where the group behaves as a rigid disk reveals interesting behaviors as the system crosses a boundary between interfaces. The collective rotates and reorients or becomes stuck on the boundary as it crosses. I also investigate the effects of variable behavior depending on local density, and find that a frustration driven transient rotational phase arises in clusters where agents with low local density move faster than those with high local density as in cell clusters. All together I have shown that behavioral heterogeneity in collective motion can lead to unique phases and behaviors that are not seen in their homogeneous counterparts.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Long-term effective population size dynamics of an intensively monitored vertebrate population
Mueller, A-K; Chakarov, N; Krüger, O; Hoffman, J I
2016-01-01
Long-term genetic data from intensively monitored natural populations are important for understanding how effective population sizes (Ne) can vary over time. We therefore genotyped 1622 common buzzard (Buteo buteo) chicks sampled over 12 consecutive years (2002–2013 inclusive) at 15 microsatellite loci. This data set allowed us to both compare single-sample with temporal approaches and explore temporal patterns in the effective number of parents that produced each cohort in relation to the observed population dynamics. We found reasonable consistency between linkage disequilibrium-based single-sample and temporal estimators, particularly during the latter half of the study, but no clear relationship between annual Ne estimates () and census sizes. We also documented a 14-fold increase in between 2008 and 2011, a period during which the census size doubled, probably reflecting a combination of higher adult survival and immigration from further afield. Our study thus reveals appreciable temporal heterogeneity in the effective population size of a natural vertebrate population, confirms the need for long-term studies and cautions against drawing conclusions from a single sample. PMID:27553455
NASA Astrophysics Data System (ADS)
Vasoya, Manish; Unni, Aparna Beena; Leblond, Jean-Baptiste; Lazarus, Veronique; Ponson, Laurent
2016-04-01
Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.
Saber, Deborah A
2014-01-01
Frontline registered nurses' job satisfaction is important because it is tied to retention, organizational commitment, workforce safety, patient safety, and cost savings. The purpose of this study was to comprehensively, quantitatively examine the largest, moderate, and smallest predictors of frontline registered nurse job satisfaction from 1980 to 2009. A non-a priori meta-analysis was used to analyze studies that met inclusion. Sixty-two studies and 27 job satisfaction predictors met inclusion for analysis. The largest effect sizes were found for task requirements (r = .61), empowerment (r = .55), and control (r = .52), and moderate effect sizes were found for 10 predictors. Fail-safe N indicates high reliability. Heterogeneity between studies was present in all of the 27 predictor analyses. The largest predictors of job satisfaction for the frontline registered nurse may be different than previously thought. Supporting past research, autonomy and stress were found to be moderate predictors of satisfaction. Heterogeneity indicates study differences or moderator influence in studies. Copyright © 2014 Elsevier Inc. All rights reserved.
García-Hermoso, Antonio; Saavedra, Jose M; Escalante, Yolanda; Sánchez-López, Mairena; Martínez-Vizcaíno, Vicente
2014-10-01
The purpose of this meta-analysis was to examine the evidence for the effectiveness of aerobic exercise interventions on reducing insulin resistance markers in obese children and/or adolescents. A secondary outcome was change in percentage of body fat. A computerized search was made from seven databases: CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, ERIC, MEDLINE, PsycINFO, and Science Citation Index. The analysis was restricted to randomized controlled trials that examined the effect of aerobic exercise on insulin resistance markers in obese youth. Two independent reviewers screened studies and extracted data. Effect sizes (ES) and 95% confidence interval (CI) were calculated, and the heterogeneity of the studies was estimated using Cochran's Q-statistic. Nine studies were selected for meta-analysis as they fulfilled the inclusion criteria (n=367). Aerobic exercise interventions resulted in decreases in fasting glucose (ES=-0.39; low heterogeneity) and insulin (ES=-0.40; low heterogeneity) and in percentage of body fat (ES=-0.35; low heterogeneity). These improvements were specifically accentuated in adolescents (only in fasting insulin), or through programs lasting more than 12 weeks, three sessions per week, and over 60 min of aerobic exercise per session. This meta-analysis provides insights into the effectiveness of aerobic exercise interventions on insulin resistance markers in the obese youth population. © 2014 European Society of Endocrinology.
NASA Astrophysics Data System (ADS)
Zeng, You-Zhi; Zhang, Ning
2016-12-01
This paper proposes a new full velocity difference model considering the driver’s heterogeneity of the disturbance risk preference for car-following theory to investigate the effects of the driver’s heterogeneity of the disturbance risk preference on traffic flow instability when the driver reacts to the relative velocity. We obtain traffic flow instability condition and the calculation method of the unstable region headway range and the probability of traffic congestion caused by a small disturbance. The analysis shows that has important effects the driver’s heterogeneity of the disturbance risk preference on traffic flow instability: (1) traffic flow instability is independent of the absolute size of the driver’s disturbance risk preference coefficient and depends on the ratio of the preceding vehicle driver’s disturbance risk preference coefficient to the following vehicle driver’s disturbance risk preference coefficient; (2) the smaller the ratio of the preceding vehicle driver’s disturbance risk preference coefficient to the following vehicle driver’s disturbance risk preference coefficient, the smaller traffic flow instability and vice versa. It provides some viable ideas to suppress traffic congestion.
Influence of exposure differences on city-to-city heterogeneity ...
Multi-city population-based epidemiological studies have observed heterogeneity between city-specific fine particulate matter (PM2.5)-mortality effect estimates. These studies typically use ambient monitoring data as a surrogate for exposure leading to potential exposure misclassification. The level of exposure misclassification can differ by city affecting the observed health effect estimate. The objective of this analysis is to evaluate whether previously developed residential infiltration-based city clusters can explain city-to-city heterogeneity in PM2.5 mortality risk estimates. In a prior paper 94 cities were clustered based on residential infiltration factors (e.g. home age/size, prevalence of air conditioning (AC)), resulting in 5 clusters. For this analysis, the association between PM2.5 and all-cause mortality was first determined in 77 cities across the United States for 2001–2005. Next, a second stage analysis was conducted evaluating the influence of cluster assignment on heterogeneity in the risk estimates. Associations between a 2-day (lag 0–1 days) moving average of PM2.5 concentrations and non-accidental mortality were determined for each city. Estimated effects ranged from −3.2 to 5.1% with a pooled estimate of 0.33% (95% CI: 0.13, 0.53) increase in mortality per 10 μg/m3 increase in PM2.5. The second stage analysis determined that cluster assignment was marginally significant in explaining the city-to-city heterogeneity. The health effe
NASA Astrophysics Data System (ADS)
Korus, Jesse T.; Gilmore, Troy E.; Waszgis, Michele M.; Mittelstet, Aaron R.
2018-03-01
The hydrologic function of riverbeds is greatly dependent upon the spatiotemporal distribution of hydraulic conductivity and grain size. Vertical hydraulic conductivity ( K v) is highly variable in space and time, and controls the rate of stream-aquifer interaction. Links between sedimentary processes, deposits, and K v heterogeneity have not been well established from field studies. Unit bars are building blocks of fluvial deposits and are key to understanding controls on heterogeneity. This study links unit bar migration to K v and grain size variability in a sand-dominated, low-sinuosity stream in Nebraska (USA) during a single 10-day hydrologic event. An incipient bar formed parallel to the thalweg and was highly permeable and homogenous. During high flow, this bar was submerged under 10-20 cm of water and migrated 100 m downstream and toward the channel margin, where it became markedly heterogeneous. Low- K v zones formed in the subsequent heterogeneous bar downstream of the original 15-40-cm-thick bar front and past abandoned bridge pilings. These low- K v zones correspond to a discontinuous 1-cm layer of fine sand and silt deposited in the bar trough. Findings show that K v heterogeneity relates chiefly to the deposition of suspended materials in low-velocity zones downstream of the bar and obstructions, and to their subsequent burial by migration of the bar during high flow. Deposition of the unit bar itself, although it emplaced the vast majority of the sediment volume, was secondary to bar-trough deposition as a control on the overall pattern of heterogeneity.
NASA Astrophysics Data System (ADS)
Reid, Andrew C. E.; Olson, Gregory B.
2000-03-01
Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.
Vaccine Effects on Heterogeneity in Susceptibility and Implications for Population Health Management
Wargo, Andrew R.; Jones, Darbi R.; Viss, Jessie R.; Rutan, Barbara J.; Egan, Nicholas A.; Sá-Guimarães, Pedro; Kim, Min Sun; Kurath, Gael; Gomes, M. Gabriela M.
2017-01-01
ABSTRACT Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility. PMID:29162706
NASA Astrophysics Data System (ADS)
Marske, Jared P.; Pietruszka, Aaron J.; Weis, Dominique; Garcia, Michael O.; Rhodes, J. Michael
2007-07-01
Recent Kilauea and Mauna Loa lavas provide a snapshot of the size, shape, and distribution of compositional heterogeneities within the Hawaiian mantle plume. Here we present a study of the Pb, Sr, and Nd isotope ratios of two suites of young prehistoric lavas from these volcanoes: (1) Kilauea summit lavas erupted from AD 900 to 1400, and (2) 14C-dated Mauna Loa flows erupted from ˜ 2580-140 yr before present (relative to AD 1950). These lavas display systematic isotopic fluctuations, and the Kilauea lavas span the Pb isotopic divide that was previously thought to exist between these two volcanoes. For a brief period from AD 250 to 1400, the 206Pb/ 204Pb and 87Sr/ 86Sr isotope ratios and ɛNd values of Kilauea and Mauna Loa lavas departed from values typical for each volcano (based on historical and other young prehistoric lavas), moved towards an intermediate composition, and subsequently returned to typical values. This is the only known period in the eruptive history of these volcanoes when such a simultaneous convergence of Pb, Sr, and Nd isotope ratios has occurred. The common isotopic composition of lavas erupted from both Kilauea and Mauna Loa during this transient magmatic event was probably caused by the rapid passage of a small-scale compositional heterogeneity through the melting regions of both volcanoes. This heterogeneity is thought to have been either a single body (˜ 35 km long based on the distance between the summits of these volcanoes) or the plume matrix itself (which would be expected to be present beneath both volcanoes). The time scale of this event (centuries) is much shorter than previously noted for variations in the isotopic composition of Hawaiian lavas due to the upwelling of heterogeneities within the plume (thousands to tens of thousands of years). Calculations based on the timing of the isotopic convergence suggest a maximum thickness for the melting region (and thus, the heterogeneity) of ˜ 5-10 km. The small size of the heterogeneity indicates that melt can be extracted from small regions within the Hawaiian plume with minimal subsequent chemical modification (beyond the effects of crystal fractionation). This would be most effective if melt transport in the mantle beneath Hawaiian shield volcanoes occurs mostly in chemically isolated channels.
de Souza, Laetícia R.
2015-01-01
Researchers have long been interested in the influence of family size on children’s educational outcomes. Simply put, theories have suggested that resources are diluted within families that have more children. Although the empirical literature on developed countries has generally confirmed the theoretical prediction that family size is negatively related to children’s education, studies focusing on developing societies have reported heterogeneity in this association. Recent studies addressing the endogeneity between family size and children’s education have also cast doubt on the homogeneity of the negative role of family size on children’s education. The goal of this study is to examine the causal effect of family size on children’s education in Brazil over a 30-year period marked by important social and demographic change, and across extremely different regions within the country. We implement a twin birth instrumental variable approach to the nationally representative 1977–2009 PNAD data. Our results suggest an effect of family size on education that is not uniform throughout a period of significant social, economic, and demographic change. Rather, the causal effect of family size on adolescents’ schooling resembles a gradient that ranges from positive to no effect, trending to negative. PMID:22810834
Pitfalls in setting up genetic studies on preeclampsia.
Laivuori, Hannele
2013-04-01
This presentation will consider approaches to discover susceptibility genes for a complex genetic disorder such as preeclampsia. The clinical disease presumably results from the additive effects of multiple sequence variants from the mother and the foetus together with environmental factors. Disease heterogeneity and underpowered study designs are likely to be behind non-reproducible results in candidate gene association studies. To avoid spurious findings, sample size and characteristics of the study populations as well as replication studies in an independent study population should be an essential part of a study design. In family-based linkage studies relationship with genotype and phenotype may be modified by a variety of factors. The large number of families needed in discovering genetic variants with modest effect sizes is difficult to attain. Moreover, the identification of underlying mutations has proven difficult. When pooling data or performing meta-analyses from different populations, disease and locus heterogeneity may become a major issue. First genome-wide association studies (GWAS) have identified risk loci for preeclampsia. Adequately powered replication studies are critical in order to replicate the initial GWAS findings. This approach requires rigorous multiple testing correction. The expected effect sizes of individual sequence variants on preeclampsia are small, but this approach is likely to decipher new clues to the pathogenesis. The rare variants, gene-gene and gene-environmental interactions as well as noncoding genetic variations and epigenetics are expected to explain the missing heritability. Next-generation sequencing technologies will make large amount of data on genomes and transcriptomes available. Complexity of the data poses a challenge. Different depths of coverage might be chosen depending on the design of the study, and validation of the results by different methods is mandatory. In order to minimize disease heterogeneity in genetic studies of preeclampsia, identification of subtypes and intermediate phenotypes would be highly desirable. Copyright © 2013. Published by Elsevier B.V.
A review of factors that affect contact angle and implications for flotation practice.
Chau, T T; Bruckard, W J; Koh, P T L; Nguyen, A V
2009-09-30
Contact angle and the wetting behaviour of solid particles are influenced by many physical and chemical factors such as surface roughness and heterogeneity as well as particle shape and size. A significant amount of effort has been invested in order to probe the correlation between these factors and surface wettability. Some of the key investigations reported in the literature are reviewed here. It is clear from the papers reviewed that, depending on many experimental conditions such as the size of the surface heterogeneities and asperities, surface cleanliness, and the resolution of measuring equipment and data interpretation, obtaining meaningful contact angle values is extremely difficult and such values are reliant on careful experimental control. Surface wetting behaviour depends on not only surface texture (roughness and particle shape), and surface chemistry (heterogeneity) but also on hydrodynamic conditions in the preparation route. The inability to distinguish the effects of each factor may be due to the interplay and/or overlap of two or more factors in each system. From this review, it was concluded that: Surface geometry (and surface roughness of different scales) can be used to tune the contact angle; with increasing surface roughness the apparent contact angle decreases for hydrophilic materials and increases for hydrophobic materials. For non-ideal surfaces, such as mineral surfaces in the flotation process, kinetics plays a more important role than thermodynamics in dictating wettability. Particle size encountered in flotation (10-200 microm) showed no significant effect on contact angle but has a strong effect on flotation rate constant. There is a lack of a rigid quantitative correlation between factors affecting wetting, wetting behaviour and contact angle on minerals; and hence their implication for flotation process. Specifically, universal correlation of contact angle to flotation recovery is still difficult to predict from first principles. Other advanced techniques and measures complementary to contact angle will be essential to establish the link between research and practice in flotation.
NASA Astrophysics Data System (ADS)
Herega, Alexander; Sukhanov, Volodymyr; Vyrovoy, Valery
2017-12-01
It is known that the multifocal mechanism of genesis of structure of heterogeneous materials provokes intensive formation of internal boundaries. In the present papers, the dependence of the structure and properties of material on the characteristic size and shape, the number and size distribution, and the character of interaction of individual internal boundaries and their clusters is studied. The limitation on the applicability of the material damage coefficient is established; the effective information descriptor of internal boundaries is proposed. An idea of the effect of long-range interaction in irradiated solids on the realization of the second-order phase transition is introduced; a phenomenological percolation model of the effect is proposed.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.
2017-12-01
Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.
[C57BL/6 mice open field behaviour qualitatively depends on arena size].
Lebedev, I V; Pleskacheva, M G; Anokhin, K V
2012-01-01
Open field behavior is well known to depend on physical characteristics of the apparatus. However many of such effects are poorly described especially with using of modern methods of behavioral registration and analysis. The previous results of experiments on the effect of arena size on behavior are not numerous and contradictory. We compared the behavioral scores of four groups of C57BL/6 mice in round open field arenas of four different sizes (diameter 35, 75, 150 and 220 cm). The behavior was registered and analyzed using Noldus EthoVision, WinTrack and SegmentAnalyzer software. A significant effect of arena size was found. Traveled distance and velocity increased, but not in proportion to increase of arena size. Moreover a significant effect on segment characteristics of the trajectory was revealed. Detailed behavior analysis revealed drastic differences in trajectory structure and number of rears between smaller (35 and 75 cm) and bigger (150 and 220 cm) arenas. We conclude, that the character of exploration in smaller and bigger arenas depends on relative size of central open zone in arena. Apparently its extension increases the motivational heterogeneity of space, that requires another than in smaller arenas, strategy of exploration.
NASA Astrophysics Data System (ADS)
Guo, Zhichao; Li, Liye; Han, Wenxiang; Li, Jiawei; Wang, Baodong; Xiao, Yongfeng
2017-10-01
The effects of microwave on the induction time of CaSO4 are studied experimentally and theoretically. In the experiments, calcium sulfate is precipitated by mixing aqueous CaCl2 solution and Na2SO4 solution. The induction time is measured by recording the change of turbidity in solution. Various energy inputs are used to investigate the effect of energy input on nucleation. The results show that the induction time decreases with increasing supersaturation and increasing energy input. Employing the classical nucleation theory, the interfacial tension is estimated. In addition, the microwave effects on nucleation order (n) and nucleation coefficient (kN) are also investigated, and the corresponding values of homogeneous nucleation are compared with the values of heterogeneous nucleation in the microwave field. A cluster coagulation model, which brings together the classic nucleation models and the theories describing the behavior of colloidal suspension, was applied to estimate the induction time under various energy inputs. It is found that when nucleation is prominently homogeneous, the microwave energy input does not change the number of monomers in dominating clusters. And when nucleation is prominently heterogeneous, although the dominating cluster size increases with supersaturation increasing, at the same supersaturation level, the dominating cluster size remains constant in the microwave field.
Hunter, Paul R
2009-12-01
Household water treatment (HWT) is being widely promoted as an appropriate intervention for reducing the burden of waterborne disease in poor communities in developing countries. A recent study has raised concerns about the effectiveness of HWT, in part because of concerns over the lack of blinding and in part because of considerable heterogeneity in the reported effectiveness of randomized controlled trials. This study set out to attempt to investigate the causes of this heterogeneity and so identify factors associated with good health gains. Studies identified in an earlier systematic review and meta-analysis were supplemented with more recently published randomized controlled trials. A total of 28 separate studies of randomized controlled trials of HWT with 39 intervention arms were included in the analysis. Heterogeneity was studied using the "metareg" command in Stata. Initial analyses with single candidate predictors were undertaken and all variables significant at the P < 0.2 level were included in a final regression model. Further analyses were done to estimate the effect of the interventions over time by MonteCarlo modeling using @Risk and the parameter estimates from the final regression model. The overall effect size of all unblinded studies was relative risk = 0.56 (95% confidence intervals 0.51-0.63), but after adjusting for bias due to lack of blinding the effect size was much lower (RR = 0.85, 95% CI = 0.76-0.97). Four main variables were significant predictors of effectiveness of intervention in a multipredictor meta regression model: Log duration of study follow-up (regression coefficient of log effect size = 0.186, standard error (SE) = 0.072), whether or not the study was blinded (coefficient 0.251, SE 0.066) and being conducted in an emergency setting (coefficient -0.351, SE 0.076) were all significant predictors of effect size in the final model. Compared to the ceramic filter all other interventions were much less effective (Biosand 0.247, 0.073; chlorine and safe waste storage 0.295, 0.061; combined coagulant-chlorine 0.2349, 0.067; SODIS 0.302, 0.068). A Monte Carlo model predicted that over 12 months ceramic filters were likely to be still effective at reducing disease, whereas SODIS, chlorination, and coagulation-chlorination had little if any benefit. Indeed these three interventions are predicted to have the same or less effect than what may be expected due purely to reporting bias in unblinded studies With the currently available evidence ceramic filters are the most effective form of HWT in the longterm, disinfection-only interventions including SODIS appear to have poor if any longterm public health benefit.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Effectiveness of Xylitol in Reducing Dental Caries in Children.
Marghalani, Abdullah A; Guinto, Emilie; Phan, Minhthu; Dhar, Vineet; Tinanoff, Norman
2017-03-15
The purpose of this study was to evaluate the effectiveness of xylitol in reducing dental caries in children compared to no treatment, a placebo, or preventive strategies. MEDLINE via PubMed, Web of Science, and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from January 1, 1995 through Sept. 26, 2016 for randomized and controlled trials on children consuming xylitol for at least 12 months. The primary endpoint was caries reduction measured by mean decayed, missing, and filled primary and permanent surfaces/ teeth (dmfs/t, DMFS/T, respectively). The I2 and chi-square test for heterogeneity were used to detect trial heterogeneity. Meta-analyses were performed and quality was evaluated using GRADE profiler software. Analysis of five randomized controlled trials (RCTs) showed that xylitol had a small effect on reducing dental caries (standardized mean difference [SMD] equals -0.24; 95 percent confidence interval [CI] equals -0.48 to 0.01; P = 0.06) with a very low quality of evidence and considerable heterogeneity. Studies with higher xylitol doses (greater than four grams per day) demonstrated a medium caries reduction (SMD equals -0.54; 95 percent CI equals -1.14 to 0.05; P = 0.07), with these studies also having considerable heterogeneity and very low quality of evidence. The present systematic review examining the effectiveness of xylitol on caries incidence in children showed a small effect size in randomized controlled trials and a very low quality of evidence that makes preventive action of xylitol uncertain.
Cheng, Rebecca Wing-yi; Lam, Shui-fong; Chan, Joanne Chung-yan
2008-06-01
There has been an ongoing debate about the inconsistent effects of heterogeneous ability grouping on students in small group work such as project-based learning. The present research investigated the roles of group heterogeneity and processes in project-based learning. At the student level, we examined the interaction effect between students' within-group achievement and group processes on their self- and collective efficacy. At the group level, we examined how group heterogeneity was associated with the average self- and collective efficacy reported by the groups. The participants were 1,921 Hong Kong secondary students in 367 project-based learning groups. Student achievement was determined by school examination marks. Group processes, self-efficacy and collective efficacy were measured by a student-report questionnaire. Hierarchical linear modelling was used to analyse the nested data. When individual students in each group were taken as the unit of analysis, results indicated an interaction effect of group processes and students' within-group achievement on the discrepancy between collective- and self-efficacy. When compared with low achievers, high achievers reported lower collective efficacy than self-efficacy when group processes were of low quality. However, both low and high achievers reported higher collective efficacy than self-efficacy when group processes were of high quality. With 367 groups taken as the unit of analysis, the results showed that group heterogeneity, group gender composition and group size were not related to the discrepancy between collective- and self-efficacy reported by the students. Group heterogeneity was not a determinant factor in students' learning efficacy. Instead, the quality of group processes played a pivotal role because both high and low achievers were able to benefit when group processes were of high quality.
Iniesta-Sepúlveda, Marina; Rosa-Alcázar, Ana I; Sánchez-Meca, Julio; Parada-Navas, José L; Rosa-Alcázar, Ángel
2017-06-01
A meta-analysis on the efficacy of cognitive-behavior-family treatment (CBFT) on children and adolescents with obsessive-compulsive disorder (OCD) was accomplished. The purposes of the study were: (a) to estimate the effect magnitude of CBFT in ameliorating obsessive-compulsive symptoms and reducing family accommodation on pediatric OCD and (b) to identify potential moderator variables of the effect sizes. A literature search enabled us to identify 27 studies that fulfilled our selection criteria. The effect size index was the standardized pretest-postest mean change index. For obsessive-compulsive symptoms, the adjusted mean effect size for CBFT was clinically relevant and statistically significant in the posttest (d adj =1.464). For family accommodation the adjusted mean effect size was also positive and statistically significant, but in a lesser extent than for obsessive-compulsive symptoms (d adj =0.511). Publication bias was discarded as a threat against the validity of the meta-analytic results. Large heterogeneity among effect sizes was found. Better results were found when CBFT was individually applied than in group (d + =2.429 and 1.409, respectively). CBFT is effective to reduce obsessive-compulsive symptoms, but offers a limited effect for family accommodation. Additional modules must be included in CBFT to improve its effectiveness on family accommodation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of meter-scale heterogeneities inside 67P nucleus on CONSERT data
NASA Astrophysics Data System (ADS)
Ciarletti, Valérie; Lasue, Jérémie; Lemonnier, Florentin; Kofman, Wlodek; Levasseur-Regourd, Anny-Chantal; Herique, Alain; Guiffaut, Christophe
2016-10-01
Since their arrival at comet 67P in August 2014, a number of instruments onboard Rosetta's main spacecraft and Philae lander have been observing the surface of the nucleus and revealed details of amazing surficial structures (hundreds of meters deep pits and cliffs, surface roughness of the order of a couple of meters in size, non-continuous apparent layers on both lobes of the comet). After two years of observations, the activity of the comet has also been better constrained, while the origin of sporadic jet activities remains debated. This surficial information is complemented by relevant measurements assessing the nucleus internal structure that have been collected by the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) experiment in order to constrain the nucleus formation and evolution.The CONSERT experiment is a bistatic radar with receivers and transmitters on-board both Rosetta's main spacecraft and the Philae lander. The instrument transmits electromagnetic waves at 90 MHz (10 MHz bandwidth) between Philae and Rosetta. The signal propagated through the small lobe of 67P over distances ranging from approximately 200 to 800 meters depending on the spacecraft location and probed a maximum depth of about one hundred meters in the vicinity of the final landing site Abydos. The CONSERT data have been used to obtain an estimate of the permittivity mean value. Thanks to the 10 MHz frequency bandwidth of the signal used by the instrument, a spatial resolution around 10m is obtained inside the sounded volume of the nucleus.In this work, we analyze the effect of internal heterogeneities of 67P on the CONSERT data by simulating the propagation of the signal through a fractal model of the comet interior. We considered for the simulations a range of realistic permittivity values and characteristic sizes of the material heterogeneities. The different parameters values used have an impact on the width of the signal propagating through the modeled nucleus. Comparison with the values measured by CONSERT will allow us to determine the possible permittivity variations and heterogeneities size compatible with 67P internal structure.
Delayed frost growth on jumping-drop superhydrophobic surfaces.
Boreyko, Jonathan B; Collier, C Patrick
2013-02-26
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.
The immersion freezing behavior of size-segregated soot and kaolinite particles
NASA Astrophysics Data System (ADS)
Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.
2011-12-01
Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of Lüönd et al. (2010) and Murray et al. (2011). Heterogeneous ice nucleation rate coefficients are derived which can be used to describe the immersion freezing process size-segregated in cloud microphysical models.
What is the effect of area size when using local area practice style as an instrument?
Brooks, John M; Tang, Yuexin; Chapman, Cole G; Cook, Elizabeth A; Chrischilles, Elizabeth A
2013-08-01
Discuss the tradeoffs inherent in choosing a local area size when using a measure of local area practice style as an instrument in instrumental variable estimation when assessing treatment effectiveness. Assess the effectiveness of angiotensin converting-enzyme inhibitors and angiotensin receptor blockers on survival after acute myocardial infarction for Medicare beneficiaries using practice style instruments based on different-sized local areas around patients. We contrasted treatment effect estimates using different local area sizes in terms of the strength of the relationship between local area practice styles and individual patient treatment choices; and indirect assessments of the assumption violations. Using smaller local areas to measure practice styles exploits more treatment variation and results in smaller standard errors. However, if treatment effects are heterogeneous, the use of smaller local areas may increase the risk that local practice style measures are dominated by differences in average treatment effectiveness across areas and bias results toward greater effectiveness. Local area practice style measures can be useful instruments in instrumental variable analysis, but the use of smaller local area sizes to generate greater treatment variation may result in treatment effect estimates that are biased toward higher effectiveness. Assessment of whether ecological bias can be mitigated by changing local area size requires the use of outside data sources. Copyright © 2013 Elsevier Inc. All rights reserved.
Restoration of the fire-grazing interaction in Artemisia filifolia shrubland
Winter, S.L.; Fuhlendorf, S.D.; Goad, C.L.; Davis, C.A.; Hickman, K.R.; Leslie, David M.
2012-01-01
Patterns of landscape heterogeneity are crucial to the maintenance of biodiversity in shrublands and grasslands, yet management practices in these ecosystems typically seek to homogenize landscapes. Furthermore, there is limited understanding of how the interaction of ecological processes, such as fire and grazing, affects patterns of heterogeneity at different spatial scales. We conducted research in Artemisia filifolia (Asteraceae) shrublands located in the southern Great Plains of North America to determine the effect of restoring the fire-grazing interaction on vegetation structure. Data were collected for 3years in replicated pastures grazed by cattle Bos taurus where the fire-grazing interaction had been restored (fire and grazing=treatment pastures) and in pastures that were grazed but remained unburned (grazing only, no fire=control pastures). The effect of the fire-grazing interaction on heterogeneity (variance) of vegetation structure was assessed at scales from 12??5m 2 to 609ha. Most measurements of vegetation structure within treatment pastures differed from control pastures for 1-3years after being burned but were thereafter similar to the values found in unburned control pastures. Treatment pastures were characterized by a lower amount of total heterogeneity and a lower amount of heterogeneity through time. Heterogeneity of vegetation structure tended to decrease as the scale of measurement increased in both treatment and control pastures. There was deviation from this trend, however, in the treatment pastures that exhibited much higher heterogeneity at the patch scale (mean patch size=202ha) of measurement, the scale at which patch fires were conducted. Synthesis and applications.Vegetation structure in A. filifolia shrublands of our study was readily altered by the fire-grazing interaction but also demonstrated substantial resilience to these effects. The fire-grazing interaction also changed the total amount of heterogeneity characterizing this system, the scale at which heterogeneity in this system was expressed and the amount of heterogeneity expressed through time. Land managers seeking to impose a shifting mosaic of heterogeneity on this vegetation type can do so by restoring the fire-grazing interaction with potential conservation benefits similar to what has been achieved in other ecosystems where historic cycles of disturbance and rest have been restored. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
Engineering the architectural diversity of heterogeneous metallic nanocrystals.
Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang
2013-01-01
Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.
Service Delivery for High School Students with High Incidence Disabilities: Issues and Challenges
ERIC Educational Resources Information Center
Schultz, Edward; Simpson, Cynthia; Owen, Jane C.; McIntyre, Christina Janise
2015-01-01
High schools throughout this country are as heterogeneous as the students they serve in size, location, tax base, student make-up, and teacher quality. However, they must all follow the mandates of NCLB and IDEA. While these policies affect all schools, high schools continue to face many challenges implementing these laws effectively for students…
C.W. Woodall; C.E. Fiedler; R.E. McRoberts
2009-01-01
Forest ecosystems may be actively managed toward heterogeneous stand structures to provide both economic (e.g., wood production and carbon credits) and environmental benefits (e.g., invasive pest resistance). In order to facilitate wider adoption of possibly more sustainable forest stand structures, defining growth expectations among alternative management scenarios is...
Park, Wan-Ju; Park, Shin-Jeong; Hwang, Sung-Dong
2015-04-01
This study was a meta-analysis designed to identify effects of Cognitive Behavioral Therapy (CBT) interventions in alleviating main symptoms of Attention Deficit Hyperactivity Disorder (ADHD) among school-aged children in Korea. Examination of several databases including Research Information Sharing Service, Korean Studies Information Service System, Data Base Periodical Information Academic and hand-searched article references, resulted in identification of 1,298 studies done between 2000 and 2013 of which 21 met the inclusion criteria. Comprehensive Meta-Analysis version 2.0 was used to analyze effect sizes, explore possible causes of heterogeneity, and check publication bias with a funnel plot and its trim-and-fill analysis. Overall effect size of CBT intervention was large (g=1.08) along with each outcome of self-control (g=1.26), lack of attention (g=1.02), social skills (g=0.92), and hyperactivity (g=0.92). For heterogeneity, moderator analysis was performed, but no significant differences were found between the RCT (Randomized Controlled Trials) group and the NRCT (Non RCT) group. Also, meta-regression was performed using sample size, number of sessions, and length of session as predictors, but no statistically significant moderators were found. Finally, a funnel plot along with trim-and-fill analysis was produced to check for publication bias, but no significant bias was detected. Based on these findings, there is clear evidence that CBT intervention has significant positive effects on the main symptoms of school-aged children suffering ADHD. Further research is needed to target diverse age groups with ADHD along with more RCT studies to improve the effectiveness of the CBT intervention.
Jones, Hayley E.; Martin, Richard M.; Lewis, Sarah J.; Higgins, Julian P.T.
2017-01-01
Abstract Meta‐analyses combine the results of multiple studies of a common question. Approaches based on effect size estimates from each study are generally regarded as the most informative. However, these methods can only be used if comparable effect sizes can be computed from each study, and this may not be the case due to variation in how the studies were done or limitations in how their results were reported. Other methods, such as vote counting, are then used to summarize the results of these studies, but most of these methods are limited in that they do not provide any indication of the magnitude of effect. We propose a novel plot, the albatross plot, which requires only a 1‐sided P value and a total sample size from each study (or equivalently a 2‐sided P value, direction of effect and total sample size). The plot allows an approximate examination of underlying effect sizes and the potential to identify sources of heterogeneity across studies. This is achieved by drawing contours showing the range of effect sizes that might lead to each P value for given sample sizes, under simple study designs. We provide examples of albatross plots using data from previous meta‐analyses, allowing for comparison of results, and an example from when a meta‐analysis was not possible. PMID:28453179
Annealing effects in plated-wire memory elements. II - Recrystallization in Permalloy films.
NASA Technical Reports Server (NTRS)
Marquardt, S. J.; Kench, J. R.
1971-01-01
Results of grain-size measurements in Permalloy platings suggest that recrystallization is possible at temperatures as low as 200 C, but that it is an extremely heterogeneous process. No worthwhile correlation was found to exist between observed grain size and magnetic dispersion in samples aged in the temperature range from 180 to 230 C. It is suggested that the magnetic aging which occurs under these conditions may be due to some other diffusion-controlled process than recrystallization; a process such as chemical homogenization is tentatively preferred.
3D modeling of carbonates petro-acoustic heterogeneities
NASA Astrophysics Data System (ADS)
Baden, Dawin; Guglielmi, Yves; Saracco, Ginette; Marié, Lionel; Viseur, Sophie
2015-04-01
Characterizing carbonate reservoirs heterogeneity is a challenging issue for Oil & Gas Industry, CO2 sequestration and all kinds of fluid manipulations in natural reservoirs, due to the significant impact of heterogeneities on fluid flow and storage within the reservoir. Although large scale (> meter) heterogeneities such as layers petrophysical contrasts are well addressed by computing facies-based models, low scale (< meter) heterogeneities are often poorly constrained because of the complexity in predicting their spatial arrangement. In this study, we conducted petro-acoustic measurements on cores of different size and diameter (Ø = 1", 1.5" and 5") in order to evaluate anisotropy or heterogeneity in carbonates at different laboratory scales. Different types of heterogeneities which generally occur in carbonate reservoir units (e.g. petrographic, diagenetic, and tectonic related) were sampled. Dry / wet samples were investigated with different ultrasonic apparatus and using different sensors allowing acoustic characterization through a bandwidth varying from 50 to 500 kHz. Comprehensive measurements realized on each samples allowed statistical analyses of petro-acoustic properties such as attenuation, shear and longitudinal wave velocity. The cores properties (geological and acoustic facies) were modeled in 3D using photogrammetry and GOCAD geo-modeler. This method successfully allowed detecting and imaging in three dimensions differential diagenesis effects characterized by the occurrence of decimeter-scale diagenetic horizons in samples assumed to be homogeneous and/or different diagenetic sequences between shells filling and the packing matrix. We then discuss how small interfaces such as cracks, stylolithes and laminations which are also imaged may have guided these differential effects, considering that understanding the processes may be taken as an analogue to actual fluid drainage complexity in deep carbonate reservoir.
Effect of particle size distribution on the hydrodynamics of dense CFB risers
NASA Astrophysics Data System (ADS)
Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed
2015-11-01
Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.
The relation of moral emotion attributions to prosocial and antisocial behavior: a meta-analysis.
Malti, Tina; Krettenauer, Tobias
2013-01-01
This meta-analytic review of 42 studies covering 8,009 participants (ages 4-20) examines the relation of moral emotion attributions to prosocial and antisocial behavior. A significant association is found between moral emotion attributions and prosocial and antisocial behaviors (d = .26, 95% CI [.15, .38]; d = .39, 95% CI [.29, .49]). Effect sizes differ considerably across studies and this heterogeneity is attributed to moderator variables. Specifically, effect sizes for predicted antisocial behavior are larger for self-attributed moral emotions than for emotions attributed to hypothetical story characters. Effect sizes for prosocial and antisocial behaviors are associated with several other study characteristics. Results are discussed with respect to the potential significance of moral emotion attributions for the social behavior of children and adolescents. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
Logsdon, Michelle M; Aldridge, Bree B
2018-01-01
Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
Micro- and nanorobots swimming in heterogeneous liquids.
Nelson, Bradley J; Peyer, Kathrin E
2014-09-23
Essentially all experimental investigations of swimming micro- and nanorobots have focused on swimming in homogeneous Newtonian liquids. In this issue of ACS Nano, Schamel et al. investigate the actuation of "nanopropellers" in a viscoelastic biological gel that illustrates the importance of the size of the nanostructure relative to the gel mesh size. In this Perspective, we shed further light on the swimming performance of larger microrobots swimming in heterogeneous liquids. One of the interesting results of our work is that earlier findings on the swimming performance of motile bacteria in heterogeneous liquids agree, in principle, with our results. We also discuss future research directions that should be pursued in this fascinating interdisciplinary field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
McCabe, Collin M; Nunn, Charles L
2018-01-01
The transmission of infectious disease through a population is often modeled assuming that interactions occur randomly in groups, with all individuals potentially interacting with all other individuals at an equal rate. However, it is well known that pairs of individuals vary in their degree of contact. Here, we propose a measure to account for such heterogeneity: effective network size (ENS), which refers to the size of a maximally complete network (i.e., unstructured, where all individuals interact with all others equally) that corresponds to the outbreak characteristics of a given heterogeneous, structured network. We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models on maximally complete networks to produce idealized outbreak duration distributions for a disease on a network of a given size. We also simulated the transmission of these same diseases on random structured networks and then used the resulting outbreak duration distributions to predict the ENS for the group or population. We provide the methods to reproduce these analyses in a public R package, "enss." Outbreak durations of simulations on randomly structured networks were more variable than those on complete networks, but tended to have similar mean durations of disease spread. We then applied our novel metric to empirical primate networks taken from the literature and compared the information represented by our ENSs to that by other established social network metrics. In AICc model comparison frameworks, group size and mean distance proved to be the metrics most consistently associated with ENS for SI simulations, while group size, centralization, and modularity were most consistently associated with ENS for SIR simulations. In all cases, ENS was shown to be associated with at least two other independent metrics, supporting its use as a novel metric. Overall, our study provides a proof of concept for simulation-based approaches toward constructing metrics of ENS, while also revealing the conditions under which this approach is most promising.
Roberts, Anna Ilona; Roberts, Sam George Bradley
2017-11-01
A key challenge for primates living in large, stable social groups is managing social relationships. Chimpanzee gestures may act as a time-efficient social bonding mechanism, and the presence (homogeneity) and absence (heterogeneity) of overlap in repertoires in particular may play an important role in social bonding. However, how homogeneity and heterogeneity in the gestural repertoire of primates relate to social interaction is poorly understood. We used social network analysis and generalized linear mixed modelling to examine this question in wild chimpanzees. The repertoire size of both homogeneous and heterogeneous visual, tactile and auditory gestures was associated with the duration of time spent in social bonding behaviour, centrality in the social bonding network and demography. The audience size of partners who displayed similar or different characteristics to the signaller (e.g. same or opposite age or sex category) also influenced the use of homogeneous and heterogeneous gestures. Homogeneous and heterogeneous gestures were differentially associated with the presence of emotional reactions in response to the gesture and the presence of a change in the recipient's behaviour. Homogeneity and heterogeneity of gestural communication play a key role in maintaining a differentiated set of strong and weak social relationships in complex, multilevel societies.
Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers
Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.
2012-01-01
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559
Response variance in functional maps: neural darwinism revisited.
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.
Response Variance in Functional Maps: Neural Darwinism Revisited
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population. PMID:23874733
The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings.
Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; White, Jitrachote; Seghier, Mohamed L; Leff, Alexander P; Green, David W; Crinion, Jenny T; Ludersdorfer, Philipp; Hope, Thomas M H; Bowman, Howard; Price, Cathy J
2018-07-01
This study investigated how sample size affects the reproducibility of findings from univariate voxel-based lesion-deficit analyses (e.g., voxel-based lesion-symptom mapping and voxel-based morphometry). Our effect of interest was the strength of the mapping between brain damage and speech articulation difficulties, as measured in terms of the proportion of variance explained. First, we identified a region of interest by searching on a voxel-by-voxel basis for brain areas where greater lesion load was associated with poorer speech articulation using a large sample of 360 right-handed English-speaking stroke survivors. We then randomly drew thousands of bootstrap samples from this data set that included either 30, 60, 90, 120, 180, or 360 patients. For each resample, we recorded effect size estimates and p values after conducting exactly the same lesion-deficit analysis within the previously identified region of interest and holding all procedures constant. The results show (1) how often small effect sizes in a heterogeneous population fail to be detected; (2) how effect size and its statistical significance varies with sample size; (3) how low-powered studies (due to small sample sizes) can greatly over-estimate as well as under-estimate effect sizes; and (4) how large sample sizes (N ≥ 90) can yield highly significant p values even when effect sizes are so small that they become trivial in practical terms. The implications of these findings for interpreting the results from univariate voxel-based lesion-deficit analyses are discussed. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Effective dynamics of a random walker on a heterogeneous ring: Exact results
NASA Astrophysics Data System (ADS)
Masharian, S. R.
2018-07-01
In this paper, by considering a biased random walker hopping on a one-dimensional lattice with a ring geometry, we investigate the fluctuations of the speed of the random walker. We assume that the lattice is heterogeneous i.e. the hopping rate of the random walker between the first and the last lattice sites is different from the hopping rate of the random walker between the other links of the lattice. Assuming that the average speed of the random walker in the steady-state is v∗, we have been able to find the unconditional effective dynamics of the random walker where the absolute value of the average speed of the random walker is -v∗. Using a perturbative method in the large system-size limit, we have also been able to show that the effective hopping rates of the random walker near the defective link are highly site-dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less
Effect of network topology on the evolutionary ultimatum game based on the net-profit decision
NASA Astrophysics Data System (ADS)
Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang
2016-04-01
The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.
Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; ...
2016-08-01
In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en
In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less
NASA Astrophysics Data System (ADS)
Korhonen, H.; Kulmala, M.; Lauri, A.
Analyses of nucleation events have emphasized the importance of pre-existing par- ticles in new particle formation. When coarse mode aerosol is present, it typically dominates the condensation sink for trace gases and thus inhibits the onset of nucle- ation. A monodisperse aerosol dynamical box model is applied to investigate the effect of soluble coated mineral dust particles on new particle formation. The model in- cludes ternary H2SO4H2ONH3 nucleation, multicomponent condensation, coagu- lation and dry deposition. As the soluble coating can significantly change the ability of dust particles to serve as a condensation sink for condensable vapours, different mech- anisms of coating, including heterogeneous nucleation of sulphuric acid, are consid- ered. Preliminary results show that the presence of micron sized soluble coated dust par- ticles can even at relatively low concentrations prevent homogeneous nucleation or growth of nucleated particles to detectable size of 3 nm. Furthermore, critical conden- sation sinks obtained by model simulations correspond to measured sinks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.
Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less
Sanada, Kenji; Montero-Marin, Jesus; Alda Díez, Marta; Salas-Valero, Montserrat; Pérez-Yus, María C.; Morillo, Héctor; Demarzo, Marcelo M. P.; García-Toro, Mauro; García-Campayo, Javier
2016-01-01
Objective: The aim of the present study was to elucidate the effects of Mindfulness-based interventions (MBIs) on salivary cortisol levels in healthy adult populations. Method: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs), published between January 1980 and June 2015 in PubMed, EMBASE, PsycINFO and the Cochrane library. The PRISMA and Cochrane guidelines were followed. The pooled effect sizes were calculated with the random-effects model, using Hedges' g-values, and heterogeneity was measured using the I2 statistic. The contribution of different characteristics of participants and programmes were assessed by meta-regression models, using beta coefficients. Results: Five RCTs with 190 participants in total were included in this systematic review. The overall effect size (ES) for improving the state of health related to cortisol levels was moderately low (g = 0.41; p = 0.025), although moderate heterogeneity was found (I2 = 55; p = 0.063). There were no significant differences between active (g = 0.33; p = 0.202) and passive (g = 0.48; p = 0.279) controls, but significant differences were found when comparing standard (g = 0.81; p = 0.002) and raw (g = 0.03; p = 0.896) measures. The percentage of women in each study was not related to ES. Nevertheless, age (beta = −0.03; p = 0.039), the number of sessions (beta = 0.33; p = 0.007) and the total hours of the MBI (beta = 0.06; p = 0.005) were significantly related to ES, explaining heterogeneity (R2 = 1.00). Conclusions: Despite the scarce number of studies, our results suggest that MBIs might have some beneficial effect on cortisol secretion in healthy adult subjects. However, there is a need for further RCTs implemented in accordance with standard programmes and measurements of salivary cortisol under rigorous strategies in healthy adult populations. PMID:27807420
Sanada, Kenji; Montero-Marin, Jesus; Alda Díez, Marta; Salas-Valero, Montserrat; Pérez-Yus, María C; Morillo, Héctor; Demarzo, Marcelo M P; García-Toro, Mauro; García-Campayo, Javier
2016-01-01
Objective: The aim of the present study was to elucidate the effects of Mindfulness-based interventions (MBIs) on salivary cortisol levels in healthy adult populations. Method: We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs), published between January 1980 and June 2015 in PubMed, EMBASE, PsycINFO and the Cochrane library. The PRISMA and Cochrane guidelines were followed. The pooled effect sizes were calculated with the random-effects model, using Hedges' g -values, and heterogeneity was measured using the I 2 statistic. The contribution of different characteristics of participants and programmes were assessed by meta-regression models, using beta coefficients. Results: Five RCTs with 190 participants in total were included in this systematic review. The overall effect size (ES) for improving the state of health related to cortisol levels was moderately low ( g = 0.41; p = 0.025), although moderate heterogeneity was found ( I 2 = 55; p = 0.063). There were no significant differences between active ( g = 0.33; p = 0.202) and passive ( g = 0.48; p = 0.279) controls, but significant differences were found when comparing standard ( g = 0.81; p = 0.002) and raw ( g = 0.03; p = 0.896) measures. The percentage of women in each study was not related to ES. Nevertheless, age (beta = -0.03; p = 0.039), the number of sessions (beta = 0.33; p = 0.007) and the total hours of the MBI (beta = 0.06; p = 0.005) were significantly related to ES, explaining heterogeneity ( R 2 = 1.00). Conclusions: Despite the scarce number of studies, our results suggest that MBIs might have some beneficial effect on cortisol secretion in healthy adult subjects. However, there is a need for further RCTs implemented in accordance with standard programmes and measurements of salivary cortisol under rigorous strategies in healthy adult populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Yutaka; Verneris, Michael R.; Dusenbery, Kathryn E.
Purpose: To report potential dose heterogeneity leading to underdosing at different skeletal sites in total marrow irradiation (TMI) with helical tomotherapy due to the thread effect and provide possible solutions to reduce this effect. Methods and Materials: Nine cases were divided into 2 groups based on patient size, defined as maximum left-to-right arm distance (mLRD): small mLRD (≤47 cm) and large mLRD (>47 cm). TMI treatment planning was conducted by varying the pitch and modulation factor while a jaw size (5 cm) was kept fixed. Ripple amplitude, defined as the peak-to-trough dose relative to the average dose due to themore » thread effect, and the dose–volume histogram (DVH) parameters for 9 cases with various mLRD was analyzed in different skeletal regions at off-axis (eg, bones of the arm or femur), at the central axis (eg, vertebrae), and planning target volume (PTV), defined as the entire skeleton plus 1-cm margin. Results: Average ripple amplitude for a pitch of 0.430, known as one of the magic pitches that reduce thread effect, was 9.2% at 20 cm off-axis. No significant differences in DVH parameters of PTV, vertebrae, or femur were observed between small and large mLRD groups for a pitch of ≤0.287. Conversely, in the bones of the arm, average differences in the volume receiving 95% and 107% dose (V95 and V107, respectively) between large and small mLRD groups were 4.2% (P=.016) and 16% (P=.016), respectively. Strong correlations were found between mLRD and ripple amplitude (rs=.965), mLRD and V95 (rs=−.742), and mLRD and V107 (rs=.870) of bones of the arm. Conclusions: Thread effect significantly influences DVH parameters in the bones of the arm for large mLRD patients. By implementing a favorable pitch value and adjusting arm position, peripheral dose heterogeneity could be reduced.« less
Antunes, Danielle M F; Kalmbach, Keri H; Wang, Fang; Dracxler, Roberta C; Seth-Smith, Michelle L; Kramer, Yael; Buldo-Licciardi, Julia; Kohlrausch, Fabiana B; Keefe, David L
2015-11-01
The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men's age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment. To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa. Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology. The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.
Altering Emulsion Stability with Heterogeneous Surface Wettability
NASA Astrophysics Data System (ADS)
Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy
2016-06-01
Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.
Ali, Arshad; Mattsson, Eskil
2017-11-15
The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and hence, support the niche complementarity mechanism via plant-plant interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation
NASA Astrophysics Data System (ADS)
Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin
2018-06-01
Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.
Law of corresponding states for open collaborations
NASA Astrophysics Data System (ADS)
Gherardi, Marco; Bassetti, Federico; Cosentino Lagomarsino, Marco
2016-04-01
We study the relation between number of contributors and product size in Wikipedia and GitHub. In contrast to traditional production, this is strongly probabilistic, but is characterized by two quantitative nonlinear laws: a power-law bound to product size for increasing number of contributors, and the universal collapse of rescaled distributions. A variant of the random-energy model shows that both laws are due to the heterogeneity of contributors, and displays an intriguing finite-size scaling property with no equivalent in standard systems. The analysis uncovers the right intensive densities, enabling the comparison of projects with different numbers of contributors on equal grounds. We use this property to expose the detrimental effects of conflicting interactions in Wikipedia.
Hall, Damien
2010-03-15
Observations of the motion of individual molecules in the membrane of a number of different cell types have led to the suggestion that the outer membrane of many eukaryotic cells may be effectively partitioned into microdomains. A major cause of this suggested partitioning is believed to be due to the direct/indirect association of the cytosolic face of the cell membrane with the cortical cytoskeleton. Such intimate association is thought to introduce effective hydrodynamic barriers into the membrane that are capable of frustrating molecular Brownian motion over distance scales greater than the average size of the compartment. To date, the standard analytical method for deducing compartment characteristics has relied on observing the random walk behavior of a labeled lipid or protein at various temporal frequencies and different total lengths of time. Simple theoretical arguments suggest that the presence of restrictive barriers imparts a characteristic turnover to a plot of mean squared displacement versus sampling period that can be interpreted to yield the average dimensions of the compartment expressed as the respective side lengths of a rectangle. In the following series of articles, we used computer simulation methods to investigate how well the conventional analytical strategy coped with heterogeneity in size, shape, and barrier permeability of the cell membrane compartments. We also explored questions relating to the necessary extent of sampling required (with regard to both the recorded time of a single trajectory and the number of trajectories included in the measurement bin) for faithful representation of the actual distribution of compartment sizes found using the SPT technique. In the current investigation, we turned our attention to the analytical characterization of diffusion through cell membrane compartments having both a uniform size and permeability. For this ideal case, we found that (i) an optimum sampling time interval existed for the analysis and (ii) the total length of time for which a trajectory was recorded was a key factor. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Microsite controls on tree seedling establishment in conifer forest canopy gaps
Andrew N. Gray; Thomas A. Spies
1997-01-01
Tree seedling establishment and growth were studied in experimental canopy gaps to assess the effect of heterogeneity of regeneration microsites within and among gaps in mature conifer forests. Seedlings were studied for two years in closed-canopy areas and in recently created gaps ranging in size from 40 to 2000 m2 in four stands of mature (90-...
Scattering and radiative properties of complex soot and soot-containing particles
NASA Astrophysics Data System (ADS)
Liu, L.; Mishchenko, M. I.; Mackowski, D. W.; Dlugach, J.
2012-12-01
Tropospheric soot and soot containing aerosols often exhibit nonspherical overall shapes and complex morphologies. They can externally, semi-externally, and internally mix with other aerosol species. This poses a tremendous challenge in particle characterization, remote sensing, and global climate modeling studies. To address these challenges, we used the new numerically exact public-domain Fortran-90 code based on the superposition T-matrix method (STMM) and other theoretical models to analyze the potential effects of aggregation and heterogeneity on light scattering and absorption by morphologically complex soot containing particles. The parameters we computed include the whole scattering matrix elements, linear depolarization ratios, optical cross-sections, asymmetry parameters, and single scattering albedos. It is shown that the optical characteristics of soot and soot containing aerosols very much depend on particle sizes, compositions, and aerosol overall shapes. The soot particle configurations and heterogeneities can have a substantial effect that can result in a significant enhancement of extinction and absorption relative to those computed from the Lorenz-Mie theory. Meanwhile the model calculated information combined with in-situ and remote sensed data can be used to constrain soot particle shapes and sizes which are much needed in climate models.
McCaffrey, Keegan; Johnson, Pieter T. J.
2017-01-01
Decades of community ecology research have highlighted the importance of resource availability, habitat heterogeneity, and colonization opportunities in driving biodiversity. Less clear, however, is whether a similar suite of factors explains the diversity of symbionts. Here, we used a hierarchical dataset involving 12,712 freshwater snail hosts representing five species to test the relative importance of potential factors in driving symbiont richness. Specifically, we used model selection to assess the explanatory power of variables related to host species identity, resource availability (average body size, host density), ecological heterogeneity (richness of hosts and other taxa), and colonization opportunities (wetland size and amount of neighboring wetland area) on symbiont richness in 146 snail host populations in California, USA. We encountered a total of 24 taxa of symbionts, including both obligatory parasites such as digenetic trematodes as well as more commensal, mutualistic, or opportunistic groups such as aquatic insect larvae, annelids, and leeches. After validating richness estimates per host population using species accumulative curves, we detected positive effects on symbiont richness from host body size, total richness of the aquatic community, and colonization opportunities. Neither snail density nor the richness of snail species accounted for significant variation in symbiont diversity. Host species identity also affected symbiont richness, with higher gamma and average alpha diversity among more common host species and with higher local abundances. These findings highlight the importance of multiple, concurrent factors in driving symbiont richness that extend beyond epidemiological measures of host abundance or host diversity alone. PMID:28039528
NASA Astrophysics Data System (ADS)
Mosby, Matthew; Matouš, Karel
2015-12-01
Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
Initiation of rotors by fast propagation regions in excitable media: A theoretical study
NASA Astrophysics Data System (ADS)
Gao, Xiang; Krekhov, Alexei; Zykov, Vladimir; Bodenschatz, Eberhard
2018-02-01
We study the effect of geometry of a fast propagation region (FPR) in an excitable medium on the rotor initiation using a generic two-dimensional reaction-diffusion model. We find that, while the flat boundary of a rectangularly shaped FPR may block the propagation of the excitation wave, a large local curvature at the rounded corners of the FPR would prevent the blockage and thus initiate a rotor. Our simulations demonstrate that the prerequisites for the rotor initiation are the degree of the heterogeneity, its shape and size. These results may explain the incidence of arrhythmias by local heterogeneities induced, for example, by a cardiac tissue remodeling.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.
2015-12-01
Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.
Grimm, Annegret; Gruber, Bernd; Henle, Klaus
2014-01-01
Reliable estimates of population size are fundamental in many ecological studies and biodiversity conservation. Selecting appropriate methods to estimate abundance is often very difficult, especially if data are scarce. Most studies concerning the reliability of different estimators used simulation data based on assumptions about capture variability that do not necessarily reflect conditions in natural populations. Here, we used data from an intensively studied closed population of the arboreal gecko Gehyra variegata to construct reference population sizes for assessing twelve different population size estimators in terms of bias, precision, accuracy, and their 95%-confidence intervals. Two of the reference populations reflect natural biological entities, whereas the other reference populations reflect artificial subsets of the population. Since individual heterogeneity was assumed, we tested modifications of the Lincoln-Petersen estimator, a set of models in programs MARK and CARE-2, and a truncated geometric distribution. Ranking of methods was similar across criteria. Models accounting for individual heterogeneity performed best in all assessment criteria. For populations from heterogeneous habitats without obvious covariates explaining individual heterogeneity, we recommend using the moment estimator or the interpolated jackknife estimator (both implemented in CAPTURE/MARK). If data for capture frequencies are substantial, we recommend the sample coverage or the estimating equation (both models implemented in CARE-2). Depending on the distribution of catchabilities, our proposed multiple Lincoln-Petersen and a truncated geometric distribution obtained comparably good results. The former usually resulted in a minimum population size and the latter can be recommended when there is a long tail of low capture probabilities. Models with covariates and mixture models performed poorly. Our approach identified suitable methods and extended options to evaluate the performance of mark-recapture population size estimators under field conditions, which is essential for selecting an appropriate method and obtaining reliable results in ecology and conservation biology, and thus for sound management. PMID:24896260
Brown, R C; Witt, A; Fegert, J M; Keller, F; Rassenhofer, M; Plener, P L
2017-08-01
Children and adolescents are a vulnerable group to develop post-traumatic stress symptoms after natural or man-made disasters. In the light of increasing numbers of refugees under the age of 18 years worldwide, there is a significant need for effective treatments. This meta-analytic review investigates specific psychosocial treatments for children and adolescents after man-made and natural disasters. In a systematic literature search using MEDLINE, EMBASE and PsycINFO, as well as hand-searching existing reviews and contacting professional associations, 36 studies were identified. Random- and mixed-effects models were applied to test for average effect sizes and moderating variables. Overall, treatments showed high effect sizes in pre-post comparisons (Hedges' g = 1.34) and medium effect sizes as compared with control conditions (Hedges' g = 0.43). Treatments investigated by at least two studies were cognitive-behavioural therapy (CBT), eye movement desensitization and reprocessing (EMDR), narrative exposure therapy for children (KIDNET) and classroom-based interventions, which showed similar effect sizes. However, studies were very heterogenic with regard to their outcomes. Effects were moderated by type of profession (higher level of training leading to higher effect sizes). A number of effective psychosocial treatments for child and adolescent survivors of disasters exist. CBT, EMDR, KIDNET and classroom-based interventions can be equally recommended. Although disasters require immediate reactions and improvisation, future studies with larger sample sizes and rigorous methodology are needed.
Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin
2017-01-01
To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.
Upward counterfactual thinking and depression: A meta-analysis.
Broomhall, Anne Gene; Phillips, Wendy J; Hine, Donald W; Loi, Natasha M
2017-07-01
This meta-analysis examined the strength of association between upward counterfactual thinking and depressive symptoms. Forty-two effect sizes from a pooled sample of 13,168 respondents produced a weighted average effect size of r=.26, p<.001. Moderator analyses using an expanded set of 96 effect sizes indicated that upward counterfactuals and regret produced significant positive effects that were similar in strength. Effects also did not vary as a function of the theme of the counterfactual-inducing situation or study design (cross-sectional versus longitudinal). Significant effect size heterogeneity was observed across sample types, methods of assessing upward counterfactual thinking, and types of depression scale. Significant positive effects were found in studies that employed samples of bereaved individuals, older adults, terminally ill patients, or university students, but not adolescent mothers or mixed samples. Both number-based and Likert-based upward counterfactual thinking assessments produced significant positive effects, with the latter generating a larger effect. All depression scales produced significant positive effects, except for the Psychiatric Epidemiology Research Interview. Research and theoretical implications are discussed in relation to cognitive theories of depression and the functional theory of upward counterfactual thinking, and important gaps in the extant research literature are identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yan, Shi; Jin, YinZhe; Oh, YongSeok; Choi, YoungJun
2016-06-01
The aim of this study was to assess the effect of exercise on depression in university students. A systematic literature search was conducted in PubMed, EMBASE and the Cochrane library from their inception through December 10, 2014 to identify relevant articles. The heterogeneity across studies was examined by Cochran's Q statistic and the I2 statistic. Standardized mean difference (SMD) and 95% confidence interval (CI) were pooled to evaluate the effect of exercise on depression. Then, sensitivity and subgroup analyses were performed. In addition, publication bias was assessed by drawing a funnel plot. A total of 352 participants (154 cases and 182 controls) from eight included trials were included. Our pooled result showed a significant alleviative depression after exercise (SMD=-0.50, 95% CI: -0.97 to -0.03, P=0.04) with significant heterogeneity (P=0.003, I2=67%). Sensitivity analyses showed that the pooled result may be unstable. Subgroup analysis indicated that sample size may be a source of heterogeneity. Moreover, no publication bias was observed in this study. Exercise may be an effective therapy for treating depression in university students. However, further clinical studies with strict design and large samples focused on this specific population should be warranted in the future.
Louro, R S; Calasans-Maia, J A; Mattos, C T; Masterson, D; Calasans-Maia, M D; Maia, L C
2018-05-01
The aim of this study was to evaluate the effect of counterclockwise (CCW) rotation and maxillomandibular advancement (MMA) on the upper airway space using three-dimensional images. An electronic search was performed in the PubMed, Cochrane Library, Scopus, Virtual Health Library, Web of Science, and OpenGrey databases (end date July 2016); a hand-search of primary study reference lists was also conducted. The inclusion criteria encompassed computed tomography evaluations of the upper airway spaces of adult patients undergoing orthognathic surgery with CCW rotation and MMA. The articles were evaluated for risk of bias with a tool for before-and-after studies. A meta-analysis was performed with the mean differences using a random-effects model. Heterogeneity was assessed with the Q-test and the I 2 index. The meta-analysis revealed significant (P<0.001) increases in both the total airway volume (effect size of 6832mm 3 and confidence interval of 5554-8109mm 3 ) and the minimum axial area (effect size of 92mm 2 and confidence interval of 70-113mm 2 ). The heterogeneity was low in both comparisons (I 2 =38% and 7%, respectively). The technique of mandibular advancement with CCW rotation produced significant increases in the volumes and areas of the upper airway spaces. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Metaplot: a novel stata graph for assessing heterogeneity at a glance.
Poorolajal, J; Mahmoodi, M; Majdzadeh, R; Fotouhi, A
2010-01-01
Heterogeneity is usually a major concern in meta-analysis. Although there are some statistical approaches for assessing variability across studies, here we present a new approach to heterogeneity using "MetaPlot" that investigate the influence of a single study on the overall heterogeneity. MetaPlot is a two-way (x, y) graph, which can be considered as a complementary graphical approach for testing heterogeneity. This method shows graphically as well as numerically the results of an influence analysis, in which Higgins' I(2) statistic with 95% (Confidence interval) CI are computed omitting one study in each turn and then are plotted against reciprocal of standard error (1/SE) or "precision". In this graph, "1/SE" lies on x axis and "I(2) results" lies on y axe. Having a first glance at MetaPlot, one can predict to what extent omission of a single study may influence the overall heterogeneity. The precision on x-axis enables us to distinguish the size of each trial. The graph describes I(2) statistic with 95% CI graphically as well as numerically in one view for prompt comparison. It is possible to implement MetaPlot for meta-analysis of different types of outcome data and summary measures. This method presents a simple graphical approach to identify an outlier and its effect on overall heterogeneity at a glance. We wish to suggest MetaPlot to Stata experts to prepare its module for the software.
Metaplot: A Novel Stata Graph for Assessing Heterogeneity at a Glance
Poorolajal, J; Mahmoodi, M; Majdzadeh, R; Fotouhi, A
2010-01-01
Background: Heterogeneity is usually a major concern in meta-analysis. Although there are some statistical approaches for assessing variability across studies, here we present a new approach to heterogeneity using “MetaPlot” that investigate the influence of a single study on the overall heterogeneity. Methods: MetaPlot is a two-way (x, y) graph, which can be considered as a complementary graphical approach for testing heterogeneity. This method shows graphically as well as numerically the results of an influence analysis, in which Higgins’ I2 statistic with 95% (Confidence interval) CI are computed omitting one study in each turn and then are plotted against reciprocal of standard error (1/SE) or “precision”. In this graph, “1/SE” lies on x axis and “I2 results” lies on y axe. Results: Having a first glance at MetaPlot, one can predict to what extent omission of a single study may influence the overall heterogeneity. The precision on x-axis enables us to distinguish the size of each trial. The graph describes I2 statistic with 95% CI graphically as well as numerically in one view for prompt comparison. It is possible to implement MetaPlot for meta-analysis of different types of outcome data and summary measures. Conclusion: This method presents a simple graphical approach to identify an outlier and its effect on overall heterogeneity at a glance. We wish to suggest MetaPlot to Stata experts to prepare its module for the software. PMID:23113013
Choi, Ted; Eskin, Eleazar
2013-01-01
Gene expression data, in conjunction with information on genetic variants, have enabled studies to identify expression quantitative trait loci (eQTLs) or polymorphic locations in the genome that are associated with expression levels. Moreover, recent technological developments and cost decreases have further enabled studies to collect expression data in multiple tissues. One advantage of multiple tissue datasets is that studies can combine results from different tissues to identify eQTLs more accurately than examining each tissue separately. The idea of aggregating results of multiple tissues is closely related to the idea of meta-analysis which aggregates results of multiple genome-wide association studies to improve the power to detect associations. In principle, meta-analysis methods can be used to combine results from multiple tissues. However, eQTLs may have effects in only a single tissue, in all tissues, or in a subset of tissues with possibly different effect sizes. This heterogeneity in terms of effects across multiple tissues presents a key challenge to detect eQTLs. In this paper, we develop a framework that leverages two popular meta-analysis methods that address effect size heterogeneity to detect eQTLs across multiple tissues. We show by using simulations and multiple tissue data from mouse that our approach detects many eQTLs undetected by traditional eQTL methods. Additionally, our method provides an interpretation framework that accurately predicts whether an eQTL has an effect in a particular tissue. PMID:23785294
Harrison, Sean; Jones, Hayley E; Martin, Richard M; Lewis, Sarah J; Higgins, Julian P T
2017-09-01
Meta-analyses combine the results of multiple studies of a common question. Approaches based on effect size estimates from each study are generally regarded as the most informative. However, these methods can only be used if comparable effect sizes can be computed from each study, and this may not be the case due to variation in how the studies were done or limitations in how their results were reported. Other methods, such as vote counting, are then used to summarize the results of these studies, but most of these methods are limited in that they do not provide any indication of the magnitude of effect. We propose a novel plot, the albatross plot, which requires only a 1-sided P value and a total sample size from each study (or equivalently a 2-sided P value, direction of effect and total sample size). The plot allows an approximate examination of underlying effect sizes and the potential to identify sources of heterogeneity across studies. This is achieved by drawing contours showing the range of effect sizes that might lead to each P value for given sample sizes, under simple study designs. We provide examples of albatross plots using data from previous meta-analyses, allowing for comparison of results, and an example from when a meta-analysis was not possible. Copyright © 2017 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd.
Nuzzo, Assunta; Piccolo, Alessandro
2013-05-13
The meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of manganese(III) chloride [Mn-(TDCPPS)Cl] biomimetic catalyst immobilized on spacer-functionalized kaolinite clay mineral was employed in the oxidative coupling reaction of a dissolved humic acid (HA) suprastructure with either chemical (H2O2) or UV-light oxidation. The changes in molecular size of humic matter subjected to catalyzed oxidative reaction were followed by high-performance size exclusion chromatography (HPSEC) with UV-vis and refractive index (RI) detectors in series, and by thermogravimetric (TGA) analysis. Both the enhanced molecular size shown by differences between HPSEC chromatograms of humic reaction mixtures at either pH 6 or 3.5 and the increase of thermogravimetric stability suggest that the heterogeneous biomimetic catalysis promoted the stabilization of humic conformations by new intermolecular covalent bonds during oxidative coupling. The similarity between chemical and light-induced oxidation results suggests potential multiple applications of the kaolinite-supported heterogeneous catalyst in controlling the reactivity of natural organic matter within biogeochemical cycles and environmental reactions.
Hesen, Nienke A.; Riksen, Niels P.; Aalders, Bart; Ritskes-Hoitinga, Merel; El Messaoudi, Saloua; Wever, Kimberley E.
2017-01-01
Metformin improves cardiovascular prognosis in patients with diabetes mellitus, compared to alternative glucose-lowering drugs, despite similar glycemic control. Direct cardiovascular protective properties have therefore been proposed, and studied in preclinical models of myocardial infarction. We now aim to critically assess the quality and outcome of these studies. We present a systematic review, quality assessment and meta-analysis of the effect of metformin in animal studies of experimental myocardial infarction. Through a comprehensive search in Pubmed and EMBASE, we identified 27 studies, 11 reporting on ex vivo experiments and 18 reporting on in vivo experiments. The primary endpoint infarct size as percentage of area at risk was significantly reduced by metformin in vivo (MD -18.11[-24.09,-12.14]) and ex vivo (MD -18.70[-25.39, -12.02]). Metformin improved the secondary endpoints left ventricular ejection fraction (LVEF) and left ventricular end systolic diameter. A borderline significant effect on mortality was observed, and there was no overall effect on cardiac hypertrophy. Subgroup analyses could be performed for comorbidity and timing of treatment (infarct size and mortality) and species and duration of ischemia (LVEF), but none of these variables accounted for significant amounts of heterogeneity. Reporting of possible sources of bias was extremely poor, including randomization (reported in 63%), blinding (33%), and sample size calculation (0%). As a result, risk of bias (assessed using SYRCLE’s risk of bias tool) was unclear in the vast majority of studies. We conclude that metformin limits infarct-size and improves cardiac function in animal models of myocardial infarction, but our confidence in the evidence is lowered by the unclear risk of bias and residual unexplained heterogeneity. We recommend an adequately powered, high quality confirmatory animal study to precede a randomized controlled trial of acute administration of metformin in patients undergoing reperfusion for acute myocardial infarction. PMID:28832637
Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar
2017-01-01
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. PMID:28314818
Forcier, Kathleen; Stroud, Laura R; Papandonatos, George D; Hitsman, Brian; Reiches, Meredith; Krishnamoorthy, Jenelle; Niaura, Raymond
2006-11-01
A meta-analysis of published studies with adult human participants was conducted to evaluate whether physical fitness attenuates cardiovascular reactivity and improves recovery from acute psychological stressors. Thirty-three studies met selection criteria; 18 were included in recovery analyses. Effect sizes and moderator influences were calculated by using meta-analysis software. A fixed effects model was fit initially; however, between-studies heterogeneity could not be explained even after inclusion of moderators. Therefore, to account for residual heterogeneity, a random effects model was estimated. Under this model, fit individuals showed significantly attenuated heart rate and systolic blood pressure reactivity and a trend toward attenuated diastolic blood pressure reactivity. Fit individuals also showed faster heart rate recovery, but there were no significant differences in systolic blood pressure or diastolic blood pressure recovery. No significant moderators emerged. Results have important implications for elucidating mechanisms underlying effects of fitness on cardiovascular disease and suggest that fitness may be an important confound in studies of stress reactivity. Copyright 2006 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Zhen; Wang, Jianjun; Zhou, Xin
2017-05-01
Antifreeze proteins (AFPs) are the key biomolecules that protect many species from suffering the extreme conditions. Their unique properties of antifreezing provide the potential of a wide range of applications. Inspired by the present experimental approaches of creating an antifreeze surface by coating AFPs, here we present a two-dimensional random-field lattice Ising model to study the effect of AFPs on heterogeneous ice nucleation. The model shows that both the size and the free-energy effect of individual AFPs and their surface coverage dominate the antifreeze capacity of an AFP-coated surface. The simulation results are consistent with the recent experiments qualitatively, revealing the origin of the surprisingly low antifreeze capacity of an AFP-coated surface when the coverage is not particularly high as shown in experiment. These results will hopefully deepen our understanding of the antifreeze effects and thus be potentially useful for designing novel antifreeze coating materials based on biomolecules.
Booth, Josephine N; Boyle, James M E; Kelly, Steve W
2010-03-01
Research studies have implicated executive functions in reading difficulties (RD). But while some studies have found children with RD to be impaired on tasks of executive function other studies report unimpaired performance. A meta-analysis was carried out to determine whether these discrepant findings can be accounted for by differences in the tasks of executive function that are utilized. A total of 48 studies comparing the performance on tasks of executive function of children with RD with their typically developing peers were included in the meta-analysis, yielding 180 effect sizes. An overall effect size of 0.57 (SE .03) was obtained, indicating that children with RD have impairments on tasks of executive function. However, effect sizes varied considerably suggesting that the impairment is not uniform. Moderator analysis revealed that task modality and IQ-achievement discrepancy definitions of RD influenced the magnitude of effect; however, the age and gender of participants and the nature of the RD did not have an influence. While the children's RD were associated with executive function impairments, variation in effect size is a product of the assessment task employed, underlying task demands, and definitional criteria.
The cognitive profile of myotonic dystrophy type 1: A systematic review and meta-analysis.
Okkersen, Kees; Buskes, Melanie; Groenewoud, Johannes; Kessels, Roy P C; Knoop, Hans; van Engelen, Baziel; Raaphorst, Joost
2017-10-01
To examine the cognitive profile of patients with myotonic dystrophy type 1 (DM1) on the basis of a systematic review and meta-analysis of the literature. Embase, Medline and PsycInfo were searched for studies reporting ≥1 neuropsychological test in both DM1 patients and healthy controls. Search, data extraction and risk of bias analysis were independently performed by two authors to minimize error. Neuropsychological tests were categorized into 12 cognitive domains and effect sizes (Hedges' g) were calculated for each domain and for tests administered in ≥5 studies. DM1 participants demonstrated a significantly worse performance compared to controls in all cognitive domains. Effect sizes ranged from -.33 (small) for verbal memory to -1.01 (large) for visuospatial perception. Except for the domains global cognition, intelligence and social cognition, wide confidence intervals (CIs) were associated with moderate to marked statistical heterogeneity that necessitates careful interpretation of results. Out of the individual tests, the Rey-Osterrieth complex figure-copy (both non-verbal memory and visuoconstruction) showed consistent impairment with acceptable heterogeneity. In DM1 patients, cognitive deficits may include a variable combination of global cognitive impairment with involvement across different domains, including social cognition, memory and visuospatial functioning. Although DM1 is a heterogeneous disorder, our study shows that meta-analysis is feasible, contributes to the understanding of brain involvement and may direct bedside testing. The protocol for this study has been registered in PROSPERO (International prospective register of systematic reviews) under ID: 42016037415. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Kecheng; Zeng, Linghai; He, Qian; Wang, Wei; Lei, Jiao; Zou, Xiulan
2017-06-22
BACKGROUND It has been unclear whether supplemental probiotics therapy improves clinical outcomes in type 2 diabetic patients. This meta-analysis aimed to summarize the effect of probiotics on glucose and lipid metabolism and C-reactive protein (CRP) from 12 randomized controlled trials (RCTs). MATERIAL AND METHODS An up-to-date search was performed for all relevant RCTs up to April 2016 from PubMed, Embase, and Cochrane Library. Standardized mean difference (SMD) and weighted mean difference (WMD) were calculated for a fixed-effect and random-effect meta-analysis to assess the impact of supplemental probiotics on fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), lipid profile, and CRP level. RESULTS A total of 12 studies (684 patients) were entered into the final analysis. The effect of probiotics was significant on reducing HbA1c level (standardized mean difference [SMD], -0.38; confidence interval [CI], -0.62 to -0.14, P=0.002; I²=0%, P=0.72 for heterogeneity), fasting insulin level (SMD, -0.38; CI -0.59 to -0.18, P=0.0003; I²=0%, P=0.81 for heterogeneity), and HOMA-IR (SMD, -0.99; CI -1.52 to -0.47, P=0.0002; I²=86%, P<0.00001 for heterogeneity). Pooled results on effects of probiotics on FPG, CRP, or lipid profile were either non-significant or highly heterogeneous. CONCLUSIONS This meta-analysis demonstrated that probiotics supplementation was associated with significant improvement in HbA1c and fasting insulin in type 2 diabetes patients. More randomized placebo-controlled trials with large sample sizes are warranted to confirm our conclusions.
Yao, Kecheng; Zeng, Linghai; He, Qian; Wang, Wei; Lei, Jiao; Zou, Xiulan
2017-01-01
Background It has been unclear whether supplemental probiotics therapy improves clinical outcomes in type 2 diabetic patients. This meta-analysis aimed to summarize the effect of probiotics on glucose and lipid metabolism and C-reactive protein (CRP) from 12 randomized controlled trials (RCTs). Material/Methods An up-to-date search was performed for all relevant RCTs up to April 2016 from PubMed, Embase, and Cochrane Library. Standardized mean difference (SMD) and weighted mean difference (WMD) were calculated for a fixed-effect and random-effect meta-analysis to assess the impact of supplemental probiotics on fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), lipid profile, and CRP level. Results A total of 12 studies (684 patients) were entered into the final analysis. The effect of probiotics was significant on reducing HbA1c level (standardized mean difference [SMD], −0.38; confidence interval [CI], −0.62 to −0.14, P=0.002; I2=0%, P=0.72 for heterogeneity), fasting insulin level (SMD, −0.38; CI −0.59 to −0.18, P=0.0003; I2=0%, P=0.81 for heterogeneity), and HOMA-IR (SMD, −0.99; CI −1.52 to −0.47, P=0.0002; I2=86%, P<0.00001 for heterogeneity). Pooled results on effects of probiotics on FPG, CRP, or lipid profile were either non-significant or highly heterogeneous. Conclusions This meta-analysis demonstrated that probiotics supplementation was associated with significant improvement in HbA1c and fasting insulin in type 2 diabetes patients. More randomized placebo-controlled trials with large sample sizes are warranted to confirm our conclusions. PMID:28638006
Magill, Molly; Apodaca, Timothy R.; Borsari, Brian; Gaume, Jacques; Hoadley, Ariel; Gordon, Rebecca E.F.; Tonigan, J. Scott; Moyers, Theresa
2018-01-01
Objective In the present meta-analysis, we test the technical and relational hypotheses of Motivational Interviewing (MI) efficacy. We also propose an a priori conditional process model where heterogeneity of technical path effect sizes should be explained by interpersonal/relational (i.e., empathy, MI Spirit) and intrapersonal (i.e., client treatment seeking status) moderators. Method A systematic review identified k = 58 reports, describing 36 primary studies and 40 effect sizes (N = 3025 participants). Statistical methods calculated the inverse variance-weighted pooled correlation coefficient for the therapist to client and the client to outcome paths across multiple target behaviors (i.e., alcohol use, other drug use, other behavior change). Results Therapist MI-consistent skills were correlated with more client change talk (r = .55, p < .001) as well as more sustain talk (r = .40, p < .001). MI-inconsistent skills were correlated with more sustain talk (r = .16, p < .001), but not change talk. When these indicators were combined into proportions, as recommended in the Motivational Interviewing Skill Code, the overall technical hypothesis was supported. Specifically, proportion MI consistency was related to higher proportion change talk (r = .11, p = .004) and higher proportion change talk was related to reductions in risk behavior at follow up (r = −.16, p < .001). When tested as two independent effects, client change talk was not significant, but sustain talk was positively associated with worse outcome (r = .19, p < .001). Finally, the relational hypothesis was not supported, but heterogeneity in technical hypothesis path effect sizes was partially explained by inter- and intra-personal moderators. Conclusions This meta-analysis provides additional support for the technical hypothesis of MI efficacy; future research on the relational hypothesis should occur in the field rather than in the context of clinical trials. PMID:29265832
Magill, Molly; Apodaca, Timothy R; Borsari, Brian; Gaume, Jacques; Hoadley, Ariel; Gordon, Rebecca E F; Tonigan, J Scott; Moyers, Theresa
2018-02-01
In the present meta-analysis, we test the technical and relational hypotheses of Motivational Interviewing (MI) efficacy. We also propose an a priori conditional process model where heterogeneity of technical path effect sizes should be explained by interpersonal/relational (i.e., empathy, MI Spirit) and intrapersonal (i.e., client treatment seeking status) moderators. A systematic review identified k = 58 reports, describing 36 primary studies and 40 effect sizes (N = 3,025 participants). Statistical methods calculated the inverse variance-weighted pooled correlation coefficient for the therapist to client and the client to outcome paths across multiple target behaviors (i.e., alcohol use, other drug use, other behavior change). Therapist MI-consistent skills were correlated with more client change talk (r = .55, p < .001) as well as more sustain talk (r = .40, p < .001). MI-inconsistent skills were correlated with more sustain talk (r = .16, p < .001), but not change talk. When these indicators were combined into proportions, as recommended in the Motivational Interviewing Skill Code, the overall technical hypothesis was supported. Specifically, proportion MI consistency was related to higher proportion change talk (r = .11, p = .004) and higher proportion change talk was related to reductions in risk behavior at follow up (r = -.16, p < .001). When tested as two independent effects, client change talk was not significant, but sustain talk was positively associated with worse outcome (r = .19, p < .001). Finally, the relational hypothesis was not supported, but heterogeneity in technical hypothesis path effect sizes was partially explained by inter- and intrapersonal moderators. This meta-analysis provides additional support for the technical hypothesis of MI efficacy; future research on the relational hypothesis should occur in the field rather than in the context of clinical trials. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn
2014-01-01
Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979
Lu, Weiqun; Huang, Zhiliang; Li, Nan; Liu, Haiying
2018-01-01
The principal goal of this meta-analysis is to test the hypothesis that circulating total adiponectin or certain fractions may represent a promising biological candidate in modulating the risk of colorectal cancer. The processes of paper identification, paper selection and data extraction were accomplished independently by two authors. Effect-size estimates were expressed as weighted mean difference (WMD) and 95% confidence interval (95% CI). A total of 31 papers including 48 qualified studies (7,554 patients with colorectal cancer and 9,798 controls) were meta-analyzed. Pooling all studies found that circulating total adiponectin was significantly lower in patients with colorectal cancer than in controls (WMD: -0.76 µg/mL, 95% CI: -1.20 to -0.32, p =0.001), with significant heterogeneity ( I 2 : 94.2%) and low publication bias (Egger's p =0.336). By adiponectin fractions, the difference in high-molecular weight (HMW) adiponectin was comparable between the two groups (WMD: -0.22 µg/mL, 95% CI: -0.70 to 0.25, p =0.350), while non-HMW adiponectin was significantly lower in patients with colorectal cancer than in controls (WMD: -0.27 µg/mL, 95% CI: -0.35 to -0.19, p <0.001), with marginal heterogeneity ( I 2 : 52.3%). Subgroup analysis revealed that effect-size estimates were heterogeneous when grouping studies by cancer subtype, region, study design, matching status, gender and obesity. Further meta-regression analysis indicated that age and gender were significant potential sources of heterogeneity. The results showed the studied subgroups were not subject to publication bias (Egger's p <0.1). Our data collectively indicate that low circulating total adiponectin, especially its non-HMW fraction, represents a promising risk factor for colorectal cancer. Further studies are needed to explore underlying mechanisms.
Konietschke, Frank; Libiger, Ondrej; Hothorn, Ludwig A
2012-01-01
Statistical association between a single nucleotide polymorphism (SNP) genotype and a quantitative trait in genome-wide association studies is usually assessed using a linear regression model, or, in the case of non-normally distributed trait values, using the Kruskal-Wallis test. While linear regression models assume an additive mode of inheritance via equi-distant genotype scores, Kruskal-Wallis test merely tests global differences in trait values associated with the three genotype groups. Both approaches thus exhibit suboptimal power when the underlying inheritance mode is dominant or recessive. Furthermore, these tests do not perform well in the common situations when only a few trait values are available in a rare genotype category (disbalance), or when the values associated with the three genotype categories exhibit unequal variance (variance heterogeneity). We propose a maximum test based on Marcus-type multiple contrast test for relative effect sizes. This test allows model-specific testing of either dominant, additive or recessive mode of inheritance, and it is robust against variance heterogeneity. We show how to obtain mode-specific simultaneous confidence intervals for the relative effect sizes to aid in interpreting the biological relevance of the results. Further, we discuss the use of a related all-pairwise comparisons contrast test with range preserving confidence intervals as an alternative to Kruskal-Wallis heterogeneity test. We applied the proposed maximum test to the Bogalusa Heart Study dataset, and gained a remarkable increase in the power to detect association, particularly for rare genotypes. Our simulation study also demonstrated that the proposed non-parametric tests control family-wise error rate in the presence of non-normality and variance heterogeneity contrary to the standard parametric approaches. We provide a publicly available R library nparcomp that can be used to estimate simultaneous confidence intervals or compatible multiplicity-adjusted p-values associated with the proposed maximum test.
Effective size of two feral domestic cat populations (Felis catus L): effect of the mating system.
Kaeuffer, R; Pontier, D; Devillard, S; Perrin, N
2004-02-01
A variety of behavioural traits have substantial effects on the gene dynamics and genetic structure of local populations. The mating system is a plastic trait that varies with environmental conditions in the domestic cat (Felis catus) allowing an intraspecific comparison of the impact of this feature on genetic characteristics of the population. To assess the potential effect of the heterogenity of males' contribution to the next generation on variance effective size, we applied the ecological approach of Nunney & Elam (1994) based upon a demographic and behavioural study, and the genetic 'temporal methods' of Waples (1989) and Berthier et al. (2002) using microsatellite markers. The two cat populations studied were nearly closed, similar in size and survival parameters, but differed in their mating system. Immigration appeared extremely restricted in both cases due to environmental and social constraints. As expected, the ratio of effective size to census number (Ne/N) was higher in the promiscuous cat population (harmonic mean = 42%) than in the polygynous one (33%), when Ne was calculated from the ecological method. Only the genetic results based on Waples' estimator were consistent with the ecological results, but failed to evidence an effect of the mating system. Results based on the estimation of Berthier et al. (2002) were extremely variable, with Ne sometimes exceeding census size. Such low reliability in the genetic results should retain attention for conservation purposes.
Role of the constant region domain in the structural diversity of human antibody light chains.
Hifumi, Emi; Taguchi, Hiroaki; Kato, Ryuichi; Uda, Taizo
2017-04-01
Issues regarding the structural diversity (heterogeneity) of an antibody molecule have been the subject of discussion along with the development of antibody drugs. Research on heterogeneity has been extensive in recent years, but no clear solution has been reached. Heterogeneity is also observed in catalytic antibody κ light chains (CLs). In this study, we investigated how the constant region domain of CLs concerns structural diversity because it is a simple and good example for elucidating heterogeneity. By means of cation-exchange chromatography, SDS-PAGE, and 2-dimensional electrophoresis for the CL, multimolecular forms consisting of different electrical charges and molecular sizes coexisted in the solution, resulting in the similar heterogeneity of the full length of CLs. The addition of copper ion could cause the multimolecular forms to change to monomolecular forms. Copper ion contributed greatly to the enrichment of the dimer form of CL and the homogenization of the differently charged CLs. Two molecules of the CL protein bound one copper ion. The binding affinity of the ion was 48.0 μM -1 Several divalent metal ions were examined, but only zinc showed a similar effect.-Hifumi, E., Taguchi, H., Kato, R., Uda, T. Role of the constant region domain in the structural diversity of human antibody light chains. © FASEB.
High-resolution charge carrier mobility mapping of heterogeneous organic semiconductors
NASA Astrophysics Data System (ADS)
Button, Steven W.; Mativetsky, Jeffrey M.
2017-08-01
Organic electronic device performance is contingent on charge transport across a heterogeneous landscape of structural features. Methods are therefore needed to unravel the effects of local structure on overall electrical performance. Using conductive atomic force microscopy, we construct high-resolution out-of-plane hole mobility maps from arrays of 5000 to 16 000 current-voltage curves. To demonstrate the efficacy of this non-invasive approach for quantifying and mapping local differences in electrical performance due to structural heterogeneities, we investigate two thin film test systems, one bearing a heterogeneous crystal structure [solvent vapor annealed 5,11-Bis(triethylsilylethynyl)anthradithiophene (TES-ADT)—a small molecule organic semiconductor] and one bearing a heterogeneous chemical composition [p-DTS(FBTTh2)2:PC71BM—a high-performance organic photovoltaic active layer]. TES-ADT shows nearly an order of magnitude difference in hole mobility between semicrystalline and crystalline areas, along with a distinct boundary between the two regions, while p-DTS(FBTTh2)2:PC71BM exhibits subtle local variations in hole mobility and a nanoscale domain structure with features below 10 nm in size. We also demonstrate mapping of the built-in potential, which plays a significant role in organic light emitting diode and organic solar cell operation.
Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.
Kim, Jeongmin; Sung, Bong June
2015-06-17
The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.
Vagne, Quentin; Turner, Matthew S.; Sens, Pierre
2015-01-01
The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912
Temporal variation of floc size and settling velocity in the Dollard estuary
NASA Astrophysics Data System (ADS)
Van der Lee, Willem T. B.
2000-09-01
Temporal changes in floc size and settling velocity were measured in the Dollard estuary with an under water video camera. The results show that the flocs in the Dollard are very heterogeneous and that larger flocs have much lower effective densities than smaller flocs. Due to this density decrease, floc settling velocities show only a minor increase with increasing floc size. Floc sizes and settling velocities correlate with the suspended sediment concentration (SSC) on a tidal time scale, but not on a seasonal time scale. On a seasonal time scale floc sizes depend on the binding properties of the sediment, while floc settling velocities show hardly any variation, as an increase in floc size is mainly counterbalanced by a decrease in floc density. Tidal variations in settling velocity occur but cannot be modeled solely as a function of SSC, as the relation between floc size/settling velocity and SSC constantly changes in time and space. Settling velocity variations throughout the tide can however be expressed as a function of tidal phase.
Features and heterogeneities in growing network models
NASA Astrophysics Data System (ADS)
Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra
2012-06-01
Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.
Analysis of mesoscopic attenuation in gas-hydrate bearing sediments
NASA Astrophysics Data System (ADS)
Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.
2007-05-01
Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
tDCS polarity effects in motor and cognitive domains: a meta-analytical review.
Jacobson, Liron; Koslowsky, Meni; Lavidor, Michal
2012-01-01
In vivo effects of transcranial direct current stimulation (tDCS) have attracted much attention nowadays as this area of research spreads to both the motor and cognitive domains. The common assumption is that the anode electrode causes an enhancement of cortical excitability during stimulation, which then lasts for a few minutes thereafter, while the cathode electrode generates the opposite effect, i.e., anodal-excitation and cathodal-inhibition effects (AeCi). Yet, this dual-polarity effect has not been observed in all tDCS studies. Here, we conducted a meta-analytical review aimed to investigate the homogeneity/heterogeneity of the effect sizes of the AeCi dichotomy in both motor and cognitive functions. The AeCi effect was found to occur quite commonly with motor investigations and rarely in cognitive studies. When the anode electrode is applied over a non-motor area, in most cases, it will cause an excitation as measured by a relevant cognitive or perceptual task; however, the cathode electrode rarely causes an inhibition. We found homogeneity in motor studies and heterogeneity in cognitive studies with the electrode's polarity serving as a moderator that can explain the source of heterogeneity in cognitive studies. The lack of inhibitory cathodal effects might reflect compensation processes as cognitive functions are typically supported by rich brain networks. Further insights as to the polarity and domain interaction are offered, including subdivision to different classes of cognitive functions according to their likelihood of being affected by stimulation.
Removal of Cryptosporidium parvum in bank filtration systems
NASA Astrophysics Data System (ADS)
Harter, T.; Atwill, E. R.; Hou, L. L.
2003-04-01
The protozoan pathogen Cryptosporidium parvum is a leading cause of waterborne disease. Many surface water systems therefore depend on filtration systems, including bank filtration systems, for the removal of the pathogenic oocysts. To better understand the effectiveness, e.g., of bank filtration systems, we have implemented a series of columns studies under various environmental conditions (column length: 10 cm - 60 cm, flow rates: 0.7 m/d - 30 m/d, ionic strength: 0.01 - 100 mM, filter grain size: 0.2 - 2 mm, various solution chemistry). We show that classic colloid filtration theory is a reasonable tool for predicting the initial breakthrough of C. parvum in pulsed injections of the oocyst through sand columns, although the model does not account for the significant tailing that occurs in C. parvum transport. Application of colloid filtration theory to bank filtration system is further limited by the intrinsic heterogeneity of the geologic systems used for bank filtration. We couple filtration theory with a stochastic subsurface transport approach and with percolation theory to account for the effects of intrinsic heterogeneity. We find that a 1-log removal can be achieved even under relatively adverse conditions (low collision efficiency, high velocity) if 85% - 90% of the sedimentary hydrofacies located within the bank filtration system or of the coarsest known hydrofacies connecting the riverbed with the extraction system has a grain-size distribution with a 10% passing diameter equal to 1 mm. One millimeter is a standard sieve size in sediment analysis.
Robinson, E; Nolan, S; Tudur-Smith, C; Boyland, E J; Harrold, J A; Hardman, C A; Halford, J C G
2014-10-01
It has been suggested that providing consumers with smaller dishware may prove an effective way of helping people eat less and preventing weight gain, but experimental evidence supporting this has been mixed. The objective of the present work was to examine the current evidence base for whether experimentally manipulated differences in dishware size influence food consumption. We systematically reviewed studies that experimentally manipulated the dishware size participants served themselves at a meal with and measured subsequent food intake. We used inverse variance meta-analysis, calculating the standardized mean difference (SMD) in food intake between smaller and larger dishware size conditions. Nine experiments from eight publications were eligible for inclusion. The majority of experiments found no significance difference in food intake when participants ate from smaller vs. larger dishware. With all available data included, analysis indicated a marginal effect of dishware size on food intake, with larger dishware size associated with greater intake. However, this effect was small and there was a large amount of heterogeneity across studies (SMD: -0.18, 95% confidence interval: -0.35, 0.00, I(2) = 77%). Evidence to date does not show that dishware size has a consistent effect on food intake, so recommendations surrounding the use of smaller plates/dishware to improve public health may be premature. © 2014 The Authors. obesity reviews © 2014 World Obesity.
Barber, Larry B.; Thurman, E. Michael; Runnells, Donald D.
1992-01-01
The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5–25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.
[Response of fine roots to soil nutrient spatial heterogeneity].
Wang, Qingcheng; Cheng, Yunhuan
2004-06-01
The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics such as fine root diameter, branch angle, length, and spatial architecture of root system. Physiological and mycorrhizal plasticity can add some influence on the morphological plasticity to some extent, but they are less studied. Roots located in different patches can quickly regulate their nutrient uptake kinetics within different nutrient patches, and increase overall nutrient uptake. Physiological response may, to certain extent, reduce morphological response, and is meaningful for plant growth on soils with frequently changing spatial and temporal heterogeneity. Mycorrhizal plasticity has been least studied so far. Some researches revealed that mycorrhiza, rather than fine root, proliferated in enriched patches. But, it is not the case with other studies. The proliferation of mycorrhiza within enriched patches is more profitable in term of carbon invest. The effect of fine root proliferation on nutrient uptake is complex, depending on ion mobility and whether or not neighboring plant exists. The influence of root plasticity on the growth of plants is species specific. Some species (sensitive species) gain growth benefit, while others don't. The ability of an individual plant to response to heterogeneous resources has significant effect on its competitive ability and its fate within the community, and eventually shapes the composition and structure of the community.
Heterogenous photocatalysis with TiO2 has been extensively investigated as a method to oxidize organic pollutants in water and air, including phenols, chlorinated hydrocarbons, and other hydrocarbons. In addition, the use of titanium dioxide as a photocatalyst has also been demon...
Siblings of children with a chronic illness: a meta-analysis.
Sharpe, Donald; Rossiter, Lucille
2002-12-01
To review the literature pertaining to the siblings of children with a chronic illness. Fifty-one published studies and 103 effect sizes were identified and examined through meta-analysis. We found (1) a modest, negative effect size statistic existed for siblings of children with a chronic illness relative to comparison participants or normative data; (2) heterogeneity existed for those effect sizes; (3) parent reports were more negative than child self-reports; (4) psychological functioning (i.e., depression, anxiety), peer activities, and cognitive development scores were lower for siblings of children with a chronic illness compared to controls; and (5) a cluster of chronic illnesses with daily treatment regimes was associated with negative effect statistics compared to chronic illnesses that did not affect daily functioning. More methodologically sound studies investigating the psychological functioning of siblings of children with a chronic illness are needed. Clinicians need to know that siblings of children with a chronic illness are at risk for negative psychological effects. Intervention programs for the siblings and families of children with a chronic illness should be developed.
Early effects of low dose bevacizumab treatment assessed by magnetic resonance imaging.
Gaustad, Jon-Vidar; Simonsen, Trude G; Smistad, Ragnhild; Wegner, Catherine S; Andersen, Lise Mari K; Rofstad, Einar K
2015-11-14
Antiangiogenic treatments have been shown to increase blood perfusion and oxygenation in some experimental tumors, and to reduce blood perfusion and induce hypoxia in others. The purpose of this preclinical study was to investigate the potential of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) and diffusion weighted MRI (DW-MRI) in assessing early effects of low dose bevacizumab treatment, and to investigate intratumor heterogeneity in this effect. A-07 and R-18 human melanoma xenografts, showing high and low expression of VEGF-A, respectively, were used as tumor models. Untreated and bevacizumab-treated tumors were subjected to DCE-MRI and DW-MRI before treatment, and twice during a 7-days treatment period. Tumor images of Ktrans (the volume transfer constant of Gd-DOTA) and ve (the fractional distribution volume of Gd-DOTA) were produced by pharmacokinetic analysis of the DCE-MRI data, and tumor images of ADC (the apparent diffusion coefficient) were produced from DW-MRI data. Untreated A-07 tumors showed higher Ktrans, v e, and ADC values than untreated R-18 tumors. Untreated tumors showed radial heterogeneity in Ktrans, i.e., Ktrans was low in central tumor regions and increased gradually towards the tumor periphery. After the treatment, bevacizumab-treated A-07 tumors showed lower Ktrans values than untreated A-07 tumors. Peripherial tumor regions showed substantial reductions in Ktrans, whereas little or no effect was seen in central regions. Consequently, the treatment altered the radial heterogeneity in Ktrans. In R-18 tumors, significant changes in Ktrans were not observed. Treatment induced changes in tumor size, v e, and ADC were not seen in any of the tumor lines. Early effects of low dose bevacizumab treatment may be highly heterogeneous within tumors and can be detected with DCE-MRI.
Meta-analysis of few small studies in orphan diseases.
Friede, Tim; Röver, Christian; Wandel, Simon; Neuenschwander, Beat
2017-03-01
Meta-analyses in orphan diseases and small populations generally face particular problems, including small numbers of studies, small study sizes and heterogeneity of results. However, the heterogeneity is difficult to estimate if only very few studies are included. Motivated by a systematic review in immunosuppression following liver transplantation in children, we investigate the properties of a range of commonly used frequentist and Bayesian procedures in simulation studies. Furthermore, the consequences for interval estimation of the common treatment effect in random-effects meta-analysis are assessed. The Bayesian credibility intervals using weakly informative priors for the between-trial heterogeneity exhibited coverage probabilities in excess of the nominal level for a range of scenarios considered. However, they tended to be shorter than those obtained by the Knapp-Hartung method, which were also conservative. In contrast, methods based on normal quantiles exhibited coverages well below the nominal levels in many scenarios. With very few studies, the performance of the Bayesian credibility intervals is of course sensitive to the specification of the prior for the between-trial heterogeneity. In conclusion, the use of weakly informative priors as exemplified by half-normal priors (with a scale of 0.5 or 1.0) for log odds ratios is recommended for applications in rare diseases. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock
Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David
2002-01-01
An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.
Campos, Valeria E.; Miguel, Florencia; Cona, Mónica I.
2016-01-01
The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: “seed predators”, “scatter-hoarders”, and “opportunistic frugivores”. Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal. PMID:27655222
Campos, Claudia M; Campos, Valeria E; Miguel, Florencia; Cona, Mónica I
The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: "seed predators", "scatter-hoarders", and "opportunistic frugivores". Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal.
Grillo, Federica; Valle, Luca; Ferone, Diego; Albertelli, Manuela; Brisigotti, Maria Pia; Cittadini, Giuseppe; Vanoli, Alessandro; Fiocca, Roberto; Mastracci, Luca
2017-09-01
Ki-67 heterogeneity can impact on gastroenteropancreatic neuroendocrine tumor grade assignment, especially when tissue is scarce. This work is aimed at devising adequacy criteria for grade assessment in biopsy specimens. To analyze the impact of biopsy size on reliability, 360 virtual biopsies of different thickness and lengths were constructed. Furthermore, to estimate the mean amount of non-neoplastic tissue component present in biopsies, 28 real biopsies were collected, the non-neoplastic components (fibrosis and inflammation) quantified and the effective area of neoplastic tissue calculated for each biopsy. Heterogeneity of Ki-67 distribution, G2 tumors and biopsy size all play an important role in reducing the reliability of biopsy samples in Ki-67-based grade assignment. In particular in G2 cases, 59.9% of virtual biopsies downgraded the tumor and the smaller the biopsy, the more frequent downgrading occurs. In real biopsies the presence of non-neoplastic tissue reduced the available total area by a mean of 20%. By coupling the results from these two different approaches we show that both biopsy size and non-neoplastic component must be taken into account for biopsy adequacy. In particular, we can speculate that if the minimum biopsy area, necessary to confidently (80% concordance) grade gastro-entero-pancreatic neuroendocrine tumors on virtual biopsies ranges between 15 and 30 mm 2 , and if real biopsies are on average composed of only 80% of neoplastic tissue, then biopsies with a surface area not <12 mm 2 should be performed; using 18G needles, this corresponds to a minimum total length of 15 mm.
Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M
2013-06-01
Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that heterogeneity of variances in ADG is prevalent in feedlot performance and indicate potential sources of heteroskedasticity. Further investigation of factors associated with heteroskedasticity in feedlot performance is warranted to increase consistency and uniformity in commercial beef cattle production and subsequent profitability.
Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G
2017-12-05
Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate versions. Substantial improvement in prediction reliability was possible for most of the traits related to milk protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced information to estimate parameters and allowing the segments to have different (co)variances helped disentangle heterogeneous (co)variances across the genome.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
Flow cytometric single cell analysis reveals heterogeneity between adipose depots
Boumelhem, Badwi B.; Assinder, Stephen J.; Bell-Anderson, Kim S.; Fraser, Stuart T.
2017-01-01
ABSTRACT Understanding adipose tissue heterogeneity is hindered by the paucity of methods to analyze mature adipocytes at the single cell level. Here, we report a system for analyzing live adipocytes from different adipose depots in the adult mouse. Single cell suspensions of buoyant adipocytes were separated from the stromal vascular fraction and analyzed by flow cytometry. Compared to other lipophilic dyes, Nile Red uptake effectively distinguished adipocyte populations. Nile Red fluorescence increased with adipocyte size and granularity and could be combined with MitoTracker® Deep Red or fluorescent antibody labeling to further dissect adipose populations. Epicardial adipocytes exhibited the least mitochondrial membrane depolarization and highest fatty-acid translocase CD36 surface expression. In contrast, brown adipocytes showed low surface CD36 expression. Pregnancy resulted in reduced mitochondrial membrane depolarisation and increased CD36 surface expression in brown and epicardial adipocyte populations respectively. Our protocol revealed unreported heterogeneity between adipose depots and highlights the utility of flow cytometry for screening adipocytes at the single cell level. PMID:28453382
Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki
2014-12-01
As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.
Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness
Roach, Jennifer K.; Griffith, Dennis B.
2015-01-01
ContextLake size has declined on breeding grounds for international populations of waterfowl.ObjectivesOur objectives were to (1) model the relationship between waterfowl species richness and lake size; (2) use the model and trends in lake size to project historical, contemporary, and future richness at 2500+ lakes; (3) evaluate mechanisms for the species–area relationship (SAR); and (4) identify species most vulnerable to shrinking lakes.MethodsMonte Carlo simulations of the richness model were used to generate projections. Correlations between richness and both lake size and habitat diversity were compared to identify mechanisms for the SAR. Patterns of nestedness were used to identify vulnerable species.ResultsSpecies richness was greatest at lakes that were larger, closer to rivers, had more wetlands along their perimeters and were within 5 km of a large lake. Average richness per lake was projected to decline by 11 % from 1986 to 2050 but was heterogeneous across sub-regions and lakes. Richness in sub-regions with species-rich lakes was projected to remain stable, while richness in the sub-region with species-poor lakes was projected to decline. Lake size had a greater effect on richness than did habitat diversity, suggesting that large lakes have more species because they provide more habitat but not more habitat types. The vulnerability of species to shrinking lakes was related to species rarity rather than foraging guild.ConclusionsOur maps of projected changes in species richness and rank-ordered list of species most vulnerable to shrinking lakes can be used to identify targets for conservation or monitoring.
Perspective: Size selected clusters for catalysis and electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro
We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less
Perspective: Size selected clusters for catalysis and electrochemistry
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; ...
2018-03-15
We report that size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this Perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition,more » cluster-support interactions and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modelling based on density functional theory sampling of local minima and energy barriers or ab initio Molecular Dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Lastly, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.« less
Perspective: Size selected clusters for catalysis and electrochemistry
NASA Astrophysics Data System (ADS)
Halder, Avik; Curtiss, Larry A.; Fortunelli, Alessandro; Vajda, Stefan
2018-03-01
Size-selected clusters containing a handful of atoms may possess noble catalytic properties different from nano-sized or bulk catalysts. Size- and composition-selected clusters can also serve as models of the catalytic active site, where an addition or removal of a single atom can have a dramatic effect on their activity and selectivity. In this perspective, we provide an overview of studies performed under both ultra-high vacuum and realistic reaction conditions aimed at the interrogation, characterization, and understanding of the performance of supported size-selected clusters in heterogeneous and electrochemical reactions, which address the effects of cluster size, cluster composition, cluster-support interactions, and reaction conditions, the key parameters for the understanding and control of catalyst functionality. Computational modeling based on density functional theory sampling of local minima and energy barriers or ab initio molecular dynamics simulations is an integral part of this research by providing fundamental understanding of the catalytic processes at the atomic level, as well as by predicting new materials compositions which can be validated in experiments. Finally, we discuss approaches which aim at the scale up of the production of well-defined clusters for use in real world applications.
Park size and disturbance: impact on soil heterogeneity - a case study Tel-Aviv- Jaffa.
NASA Astrophysics Data System (ADS)
Zhevelev, Helena; Sarah, Pariente; Oz, Atar
2015-04-01
Parks and gardens are poly-functional elements of great importance in urban areas, and can be used for optimization of physical and social components in these areas. This study aimed to investigate alteration of soil properties with land usages within urban park and with area size of park. Ten parks differed by size (2 - 50 acres) were chosen, in random, in Tel-Aviv- Jaffa city. Soil was sampled in four microenvironments ((lawn, path, picnic and peripheral area (unorganized area) of each the park)), in three points and three depth (0-2, 5-10 and 10-20 cm). Penetration depth was measured in all point of sampling. For each soil sample electrical conductivity and organic matter content were determined. Averages of penetration depth drastically increased from the most disturbed microenvironments (path and picnic) to the less disturbed ones (lawn and peripheral). The maximal heterogeneity (by variances and percentiles) of penetration depth was found in the peripheral area. In this area, penetration depth increased with increasing park size, i.e., from 2.6 cm to 3.7 cm in the small and large parks, respectively. Averages of organic matter content and electrical conductivity decreased with soil depth in all microenvironments and increased with decreasing disturbance of microenvironments. Maximal heterogeneity for both of these properties was found in the picnic area. Increase of park size was accompanied by increasing of organic matter content in the upper depth in the peripheral area, i.e., from 2.4% in the small parks to 4.5% in the large ones. In all microenvironments the increasing of averages of all studied soil properties was accompanied by increasing heterogeneity, i.e., variances and upper percentiles. The increase in the heterogeneity of the studied soil properties is attributed to improved ecological soil status in the peripheral area, on the one hand, and to the high anthropogenic pressure in the picnic area, on the other. This means that the urban park offers "islands" with better ecological conditions which improve the urban system.
Playing the Fertility Game at Work: An Equilibrium Model of Peer Effects.
Ciliberto, Federico; Miller, Amalia R; Nielsen, Helena Skyt; Simonsen, Marianne
2016-08-01
We study workplace peer effects in fertility decisions using a game theory model of strategic interactions among coworkers that allows for multiple equilibria. Using register-based data on fertile-aged women working in medium sized establishments in Denmark, we uncover negative average peer effects. Allowing for heterogeneous effects by worker type, we find that positive effects dominate across worker types defined by age or education. Negative effects dominate within age groups and among low-education types. Policy simulations show that these estimated effects make the distribution of where women work an important consideration, beyond simply if they work, in predicting population fertility.
Playing the Fertility Game at Work: An Equilibrium Model of Peer Effects
Ciliberto, Federico; Miller, Amalia R.; Nielsen, Helena Skyt; Simonsen, Marianne
2016-01-01
We study workplace peer effects in fertility decisions using a game theory model of strategic interactions among coworkers that allows for multiple equilibria. Using register-based data on fertile-aged women working in medium sized establishments in Denmark, we uncover negative average peer effects. Allowing for heterogeneous effects by worker type, we find that positive effects dominate across worker types defined by age or education. Negative effects dominate within age groups and among low-education types. Policy simulations show that these estimated effects make the distribution of where women work an important consideration, beyond simply if they work, in predicting population fertility. PMID:27605729
Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements
NASA Astrophysics Data System (ADS)
Wang, D.; Li, Y.
2017-12-01
Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.
Heterogeneous Nucleation of Colloidal Crystals on a Glass Substrate with Depletion Attraction.
Guo, Suxia; Nozawa, Jun; Hu, Sumeng; Koizumi, Haruhiko; Okada, Junpei; Uda, Satoshi
2017-10-10
The heterogeneous nucleation of colloidal crystals with attractive interactions has been investigated via in situ observations. We have found two types of nucleation processes: a cluster that overcomes the critical size for nucleation with a monolayer, and a method that occurs with two layers. The Gibbs free energy changes (ΔG) for these two types of nucleation processes are evaluated by taking into account the effect of various interfacial energies. In contrast to homogeneous nucleation, the change in interfacial free energy, Δσ, is generated for colloidal nucleation on a foreign substrate such as a cover glass in the present study. The Δσ and step free energy of the first layer, γ 1 , are obtained experimentally based on the equation deduced from classical nucleation theory (CNT). It is concluded that the ΔG of q-2D nuclei is smaller than of monolayer nuclei, provided that the same number of particles are used, which explains the experimental result that the critical size in q-2D nuclei is smaller than that in monolayer nuclei.
Zhang, Jianguo; Müller-Plathe, Florian; Leroy, Frédéric
2015-07-14
The question of the effect of surface heterogeneities on the evaporation of liquid droplets from solid surfaces is addressed through nonequilibrium molecular dynamics simulations. The mechanism behind contact line pinning which is still unclear is discussed in detail on the nanoscale. Model systems with the Lennard-Jones interaction potential were employed to study the evaporation of nanometer-sized cylindrical droplets from a flat surface. The heterogeneity of the surface was modeled through alternating stripes of equal width but two chemical types. The first type leads to a contact angle of 67°, and the other leads to a contact angle of 115°. The stripe width was varied between 2 and 20 liquid-particle diameters. On the surface with the narrowest stripes, evaporation occurred at constant contact angle as if the surface was homogeneous, with a value of the contact angle as predicted by the regular Cassie-Baxter equation. When the width was increased, the contact angle oscillated during evaporation between two boundaries whose values depend on the stripe width. The evaporation behavior was thus found to be a direct signature of the typical size of the surface heterogeneity domains. The contact angle both at equilibrium and during evaporation could be predicted from a local Cassie-Baxter equation in which the surface composition within a distance of seven fluid-particle diameters around the contact line was considered, confirming the local nature of the interactions that drive the wetting behavior of droplets. More importantly, we propose a nanoscale explanation of pinning during evaporation. Pinning should be interpreted as a drastic slowdown of the contact line dynamics rather than a complete immobilization of it during a transition between two contact angle boundaries.
Hanna-Addams, Sarah; Wang, Zhigao
2018-04-26
Amyloid or amyloid-like fibers have been associated with many human diseases, and are now being discovered to be important for many signaling pathways. The ability to readily detect the formation of these fibers under various experimental conditions is essential for understanding their potential function. Many methods have been used to detect the fibers, but not without some drawbacks. For example, electron microscopy (EM), or staining with Congo Red or Thioflavin T often requires purification of the fibers. On the other hand, semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) allows detection of the SDS-resistant amyloid-like fibers in the cell extracts without purification. In addition, it allows the comparison of the size difference of the fibers. More importantly, it can be used to identify specific proteins within the fibers by Western blotting. It is less time consuming and more easily accessible to a wider number of labs. SDD-AGE results often show variable degree of heterogeneity. It raises the question whether part of the heterogeneity results from the dissociation of the protein complex during the electrophoresis in the presence of SDS. For this reason, we have employed a second dimension of SDD-AGE to determine if the size heterogeneity seen in SDD-AGE is truly a result of fiber heterogeneity in vivo and not a result of either degradation or dissociation of some of the proteins during electrophoresis. This method allows fast, qualitative confirmation that the amyloid or amyloid-like fibers are not partially dissociating during the SDD-AGE process.
Daily diaries of respiratory symptoms and air pollution: Methodological issues and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, J.; Wypij, D.; Dockery D.
1991-01-01
Daily diaries of respiratory symptoms are a powerful technique for detecting acute effects of air pollution exposure. While conceptually simple, these diary studies can be difficult to analyze. The daily symptom rates are highly correlated, even after adjustment for covariates, and this lack of independence must be considered in the analysis. Possible approaches include the use of incidence instead of prevalence rates and autoregressive models. Heterogeneity among subjects also induces dependencies in the data. These can be addressed by stratification and by two-stage models such as those developed by Korn and Whittemore. These approaches have been applied to two datamore » sets: a cohort of school children participating in the Harvard Six Cities Study and a cohort of student nurses in Los Angeles. Both data sets provide evidence of autocorrelation and heterogeneity. Controlling for autocorrelation corrects the precision estimates, and because diary data are usually positively autocorrelated, this leads to larger variance estimates. Controlling for heterogeneity among subjects appears to increase the effect sizes for air pollution exposure. Preliminary results indicate associations between sulfur dioxide and cough incidence in children and between nitrogen dioxide and phlegm incidence in student nurses.« less
Inference of R 0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains
Blumberg, Seth; Lloyd-Smith, James O.
2013-01-01
For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer , but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, ) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in is detectable. In addition, by allowing for superspreading events, inference of shifts the threshold above which a transmission chain should be considered anomalously large for a given value of (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results. PMID:23658504
Far from the equilibrium crystallization of oxide quantum dots in dried inorganic gels
NASA Astrophysics Data System (ADS)
Costille, B.; Dumoulin, M.; Ntsame Abagha, A. M.; Thune, E.; Guinebretière, R.
2018-06-01
We synthesized, through the sol-gel process, far from the equilibrium amorphous materials in which heterogeneous crystallization allowed the formation of oxide quantum dots. The isothermal evolutions of the mean size of the nanocrystals and the crystallinity of the materials were determined through x-ray diffraction experiments. The heterogeneous crystallization is characterized by a kinetic behavior that is far from that expected, according to the classical nucleation theory. We demonstrate that the evolution of the crystallinity is characterized by an Avrami exponent largely smaller than 1. Finally, nanocrystals exhibiting a size significantly below their Bohr radius are obtained and the number of these nanocrystals increases during isothermal treatment, whereas their mean size remains quasi-constant.
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
Effect of the heterogeneity of metamaterials on the Casimir-Lifshitz interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azari, Arash; Golestanian, Ramin; Miri, MirFaez
2010-09-15
The Casimir-Lifshitz interaction between metamaterials is studied using a model that takes into account the structural heterogeneity of the dielectric and magnetic properties of the bodies. A recently developed perturbation theory for the Casimir-Lifshitz interaction between arbitrary material bodies is generalized to include nonuniform magnetic permeability profiles and used to study the interaction between the magneto-dielectric heterostructures within the leading order. The metamaterials are modeled as two-dimensional arrays of domains with varying permittivity and permeability. In the case of two semi-infinite bodies with flat boundaries, the patterned structure of the material properties is found to cause the normal Casimir-Lifshitz forcemore » to develop an oscillatory behavior when the distance between the two bodies is comparable to the wavelength of the patterned features in the metamaterials. The nonuniformity also leads to the emergence of lateral Casimir-Lifshitz forces, which tend to strengthen as the gap size becomes smaller. Our results suggest that the recent studies on Casimir-Lifshitz forces between metamaterials, which have been performed with the aim of examining the possibility of observing the repulsive force, should be revisited to include the effect of the patterned structure at the wavelength of several hundred nanometers that coincides with the relevant gap size in the experiments.« less
Hydroxyurea for hemoglobin E/β-thalassemia: a systematic review and meta-analysis.
Algiraigri, Ali H; Kassam, Aliya
2017-12-01
Hemoglobin E-beta thalassemia (Hb E/β-thalassemia) is a distinct, yet common, type of β-thalassemia, in which the patient co-inherits a β-thalassemia allele from one parent, and a structural variant, Hb E, from the other parent. This co-inheritance leads to remarkable clinical heterogeneity, varying degrees of chronic anemia, and a wide spectrum of complications due to ineffective erythropoiesis and iron overload. Hydroxyurea (HU), an oral chemotherapeutic drug, is expected to decrease disease severity. To assess the clinical efficacy and safety of HU in Hb E/β-thalassemia patients. We searched MEDLINE, EMBASE, Cochrane databases, and major preceding conferences for studies that assessed HU in Hb E/β-thalassemias patients. The effect size was estimated as a proportion (responder/sample size). Qualities of eligible studies were assessed using NIH tools. A total of five [one randomized clinical trial (RCT) and four observational] studies involving 106 patients were included. HU was associated with a significant RR of 46% with no statistical heterogeneity. No serious adverse effects were reported. Patients with Hb E/β-thalassemia may benefit from a trial of HU, though large RCTs assessing efficacy should be conducted to confirm the findings of this meta-analysis and to assess long-term toxicity and response sustainability.
Méndez-Rebolledo, Guillermo; Gatica-Rojas, Valeska; Torres-Cueco, Rafael; Albornoz-Verdugo, María; Guzmán-Muñoz, Eduardo
2017-01-01
Graded motor imagery (GMI) and mirror therapy (MT) is thought to improve pain in patients with complex regional pain syndrome (CRPS) types 1 and 2. However, the evidence is limited and analysis are not independent between types of CRPS. The purpose of this review was to analyze the effects of GMI and MT on pain in independent groups of patients with CRPS types 1 and 2. Searches for literature published between 1990 and 2016 were conducted in databases. Randomized controlled trials that compared GMI or MT with other treatments for CRPS types 1 and 2 were included. Six articles met the inclusion criteria and were classified from moderate to high quality. The total sample was composed of 171 participants with CRPS type 1. Three studies presented GMI with 3 components and three studies only used the MT. The studies were heterogeneous in terms of sample size and the disorders that triggered CRPS type 1. There were no trials that included participants with CRPS type 2. GMI and MT can improve pain in patients with CRPS type 1; however, there is not sufficient evidence to recommend these therapies over other treatments given the small size and heterogeneity of the studied population.
NASA Astrophysics Data System (ADS)
Chauhan, Shakti Singh
Metallic interconnects and circuitry has been experiencing excessive deformation beyond their elastic limits in many applications, ranging from micro-electromechanical systems (MEMS) to flexible electronics. These broad applications are creating needs to understand the extent of strength and ductility of freestanding metallic films at scales approaching the micron and sub micron range. This work aims to elucidate the effects of microstructural constraint as well as geometric dimensional constraint on the strength and ductility of freestanding Cu films under uniaxial tension. Two types of films are tested (i) high purity rolled films of 12.5-100microm thickness and average grain sizes of 11-47microm and (ii) electroplated films of 2-50 microm thickness and average grain sizes of 1.8-5microm. Several experimental tools including residual electrical resistivity measurements, surface strain measurements and surface roughness measurements are employed to highlight the underlying deformation mechanisms leading to the observed size effects. With respect to the strength of the specimens, we find that the nature and magnitude of thickness effects is very sensitive to the average grain size. In all cases, coupled thickness and grain size effects were observed. This study shows that this observed coupling, unique to the case of freestanding specimen, arises because the observed size effects are an outcome of the size dependence of two fundamental microstructural parameters i.e. volume fraction of surface grains and grain boundary area per unit specimen volume. For films having thickness and grain sizes greater than 5microm, thickness dependent weakening is observed for a constant grain size. Reducing thickness results in an increase in the volume fraction of grains exposed to the free surface as well as a reduction in the grain boundary area per unit specimen volume. The former effect leads to a reduction in the effective microstructural constraint on the intragranular dislocation activity in individual grains. This free surface related effect is the origin of a weakening contribution to the overall specimen strength with reducing thickness. For specimens with grain sizes ˜ O (10-50microm), this effect was found to be dominating i.e. reducing thickness resulted in reducing strength. A phenomenological model employing the flow strength of surface and bulk grains is proposed to model the observed trends. For films having thickness and grain sizes smaller than 5microm, size dependent strengthening is observed for a constant grain size. At this scale, grain boundary dislocations dominate. As a consequence, thickness effects arise because grain boundary dislocation source density per unit specimen volume reduces with reducing specimen thickness. This statistical reduction in dislocation source density leads to increasing specimen strength via source starvation strengthening. Our results show that such increasing specimen strength with reducing thickness, which has only been observed previously for nanocrystalline thin films, first appears at average grain size of ˜5microm or xx smaller. The measurements showed a characteristic length scale of about 5microm, which defines the size dependent strengthening or weakening of the film. With respect to the thickness effects on ductility, it was found that both thickness and average grain size affect ductility. While prominent thickness effects persist at larger grain sizes, for specimens with grain size approaching 1microm, the loss of strain hardening ability at such fine microstructures dominates and a limiting ductility of ˜2% is seen irrespective of the thickness. The observed thickness effects on ductility were investigated via surface roughness measurements that allow the characterization of initiation and evolution of deformation heterogeneities. It was found that thickness has a strong influence on the characteristic heterogeneity of deformation. At small specimen thicknesses, the deformation was found to be highly localized i.e. widely spaced regions showing substantial thickness reduction, hence increasing the vulnerability to the onset of plastic instabilities. At larger thicknesses, however, the increasing microstructural constraint delocalizes the strain and thereby precludes the early onset of instability, leading to enhanced ductility.
Langwig, Kate E; Wargo, Andrew R; Jones, Darbi R; Viss, Jessie R; Rutan, Barbara J; Egan, Nicholas A; Sá-Guimarães, Pedro; Kim, Min Sun; Kurath, Gael; Gomes, M Gabriela M; Lipsitch, Marc
2017-11-21
Heterogeneity in host susceptibility is a key determinant of infectious disease dynamics but is rarely accounted for in assessment of disease control measures. Understanding how susceptibility is distributed in populations, and how control measures change this distribution, is integral to predicting the course of epidemics with and without interventions. Using multiple experimental and modeling approaches, we show that rainbow trout have relatively homogeneous susceptibility to infection with infectious hematopoietic necrosis virus and that vaccination increases heterogeneity in susceptibility in a nearly all-or-nothing fashion. In a simple transmission model with an R 0 of 2, the highly heterogeneous vaccine protection would cause a 35 percentage-point reduction in outbreak size over an intervention inducing homogenous protection at the same mean level. More broadly, these findings provide validation of methodology that can help to reduce biases in predictions of vaccine impact in natural settings and provide insight into how vaccination shapes population susceptibility. IMPORTANCE Differences among individuals influence transmission and spread of infectious diseases as well as the effectiveness of control measures. Control measures, such as vaccines, may provide leaky protection, protecting all hosts to an identical degree, or all-or-nothing protection, protecting some hosts completely while leaving others completely unprotected. This distinction can have a dramatic influence on disease dynamics, yet this distribution of protection is frequently unaccounted for in epidemiological models and estimates of vaccine efficacy. Here, we apply new methodology to experimentally examine host heterogeneity in susceptibility and mode of vaccine action as distinct components influencing disease outcome. Through multiple experiments and new modeling approaches, we show that the distribution of vaccine effects can be robustly estimated. These results offer new experimental and inferential methodology that can improve predictions of vaccine effectiveness and have broad applicability to human, wildlife, and ecosystem health. Copyright © 2017 Langwig et al.
Factors driving deforestation in common-pool resources in northern Mexico.
Perez-Verdin, Gustavo; Kim, Yeon-Su; Hospodarsky, Denver; Tecle, Aregai
2009-01-01
The theory of collective action has been extensively used to explain the relationship between common-based property regimes and the conservation of natural resources. However, there are two key components of the theory that literature reports as puzzles in which no consensus exists about their effect on the performance of common-pool resources. These are group size and heterogeneity. This study analyzes the effects of these two key components on the effectiveness of community-based forestry, called ejidos, to protect their forest resources in northern Mexico. We used a multinomial logit model to determine the contribution of 16 explanatory variables to the dependent variable, a measure of success of ejidos defined by the presence of deforested, degraded, or forested conditions. The results show that corn yield, marginality, percent of forest area, total population, a forest value index, distance to markets, roads and towns, were all statistically significant in driving deforested conditions. Deforestation becomes more attractive for poor communities and as corn yield and distance to towns, roads, and markets decrease. In general, group size and heterogeneity had no significant effects on the presence of deforested conditions. Deforestation is driven by resource-specific characteristics, such as location and soil productivity, not by ejidos' attributes, such as total area or number of members. We argue that current institutional policies focusing on the structure of property right arrangements should be shifted (1) to provide better technology for land cultivation; (2) to reduce the marginality problem in poor communities; and (3) to strengthen local institutions.
Delayed reward discounting and addictive behavior: a meta-analysis.
MacKillop, James; Amlung, Michael T; Few, Lauren R; Ray, Lara A; Sweet, Lawrence H; Munafò, Marcus R
2011-08-01
Delayed reward discounting (DRD) is a behavioral economic index of impulsivity and numerous studies have examined DRD in relation to addictive behavior. To synthesize the findings across the literature, the current review is a meta-analysis of studies comparing DRD between criterion groups exhibiting addictive behavior and control groups. The meta-analysis sought to characterize the overall patterns of findings, systematic variability by sample and study type, and possible small study (publication) bias. Literature reviews identified 310 candidate articles from which 46 studies reporting 64 comparisons were identified (total N=56,013). From the total comparisons identified, a small magnitude effect was evident (d= .15; p< .00001) with very high heterogeneity of effect size. Based on systematic observed differences, large studies assessing DRD with a small number of self-report items were removed and an analysis of 57 comparisons (n=3,329) using equivalent methods and exhibiting acceptable heterogeneity revealed a medium magnitude effect (d= .58; p< .00001). Further analyses revealed significantly larger effect sizes for studies using clinical samples (d= .61) compared with studies using nonclinical samples (d=.45). Indices of small study bias among the various comparisons suggested varying levels of influence by unpublished findings, ranging from minimal to moderate. These results provide strong evidence of greater DRD in individuals exhibiting addictive behavior in general and particularly in individuals who meet criteria for an addictive disorder. Implications for the assessment of DRD and research priorities are discussed.
Delayed reward discounting and addictive behavior: a meta-analysis
Amlung, Michael T.; Few, Lauren R.; Ray, Lara A.; Sweet, Lawrence H.; Munafò, Marcus R.
2011-01-01
Rationale Delayed reward discounting (DRD) is a behavioral economic index of impulsivity and numerous studies have examined DRD in relation to addictive behavior. To synthesize the findings across the literature, the current review is a meta-analysis of studies comparing DRD between criterion groups exhibiting addictive behavior and control groups. Objectives The meta-analysis sought to characterize the overall patterns of findings, systematic variability by sample and study type, and possible small study (publication) bias. Methods Literature reviews identified 310 candidate articles from which 46 studies reporting 64 comparisons were identified (total N=56,013). Results From the total comparisons identified, a small magnitude effect was evident (d=.15; p<.00001) with very high heterogeneity of effect size. Based on systematic observed differences, large studies assessing DRD with a small number of self-report items were removed and an analysis of 57 comparisons (n=3,329) using equivalent methods and exhibiting acceptable heterogeneity revealed a medium magnitude effect (d=.58; p<.00001). Further analyses revealed significantly larger effect sizes for studies using clinical samples (d=.61) compared with studies using nonclinical samples (d=.45). Indices of small study bias among the various comparisons suggested varying levels of influence by unpublished findings, ranging from minimal to moderate. Conclusions These results provide strong evidence of greater DRD in individuals exhibiting addictive behavior in general and particularly in individuals who meet criteria for an addictive disorder. Implications for the assessment of DRD and research priorities are discussed. PMID:21373791
The correlation of social support with mental health: A meta-analysis.
Harandi, Tayebeh Fasihi; Taghinasab, Maryam Mohammad; Nayeri, Tayebeh Dehghan
2017-09-01
Social support is an important factor that can affect mental health. In recent decades, many studies have been done on the impact of social support on mental health. The purpose of the present study is to investigate the effect size of the relationship between social support and mental health in studies in Iran. This meta-analysis was carried out in studies that were performed from 1996 through 2015. Databases included SID and Magiran, the comprehensive portal of human sciences, Noor specialized magazine databases, IRANDOC, Proquest, PubMed, Scopus, ERIC, Iranmedex and Google Scholar. The keywords used to search these websites included "mental health or general health," and "Iran" and "social support." In total, 64 studies had inclusion criteria meta-analysis. In order to collect data used from a meta-analysis worksheet that was made by the researcher and for data analysis software, CMA-2 was used. The mean of effect size of the 64 studies in the fixed-effect model and random-effect model was obtained respectively as 0.356 and 0.330, which indicated the moderate effect size of social support on mental health. The studies did not have publication bias, and enjoyed a heterogeneous effect size. The target population and social support questionnaire were moderator variables, but sex, sampling method, and mental health questionnaire were not moderator variables. Regarding relatively high effect size of the correlation between social support and mental health, it is necessary to predispose higher social support, especially for women, the elderly, patients, workers, and students.
Development of hierarchical, tunable pore size polymer foams for ICF targets
Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo
2016-08-01
In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less
Degnan, Amy; Berry, Katherine; Sweet, Daryl; Abel, Kathryn; Crossley, Nick; Edge, Dawn
2018-06-27
To conduct a systematic review and meta-analysis to examine the strength of associations between social network size and clinical and functional outcomes in schizophrenia. Studies were identified from a systematic search of electronic databases (EMBASE, Medline, PsycINFO, and Web of Science) from January 1970 to June 2016. Eligible studies included peer-reviewed English language articles that examined associations between a quantitative measure of network size and symptomatic and/or functional outcome in schizophrenia-spectrum diagnoses. Our search yielded 16 studies with 1,929 participants. Meta-analyses using random effects models to calculate pooled effect sizes (Hedge's g) found that smaller social network size was moderately associated with more severe overall psychiatric symptoms (N = 5, n = 467, g = - 0.53, 95% confidence interval (CI) = - 0.875, - 0.184, p = 0.003) and negative symptoms (N = 8, n = 577, g = - 0.75, 95% CI = - 0.997, - 0.512, p = 0.000). Statistical heterogeneity was observed I 2 = 63.04%; I 2 = 35.75%,) which could not be explained by low-quality network measures or sample heterogeneity in sensitivity analyses. There was no effect for positive symptoms (N = 7, n = 405, g = - 0.19, 95% CI = 0.494, 0.110, p = 0.213) or social functioning (N = 3, n = 209, g = 0.36, 95% CI = - 0.078, 0.801, p = 0.107). Narrative synthesis suggested that larger network size was associated with improved global functioning, but findings for affective symptoms and quality of life were mixed. Psychosocial interventions which support individuals to build and maintain social networks may improve outcomes in schizophrenia. The review findings are cross-sectional and thus causal direction cannot be inferred. Further research is required to examine temporal associations between network characteristics and outcomes in schizophrenia and to test theoretical models relating to explanatory or mediating mechanisms.
Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony
2016-08-01
The anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab's high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50-54 y; 95% CI 2.29-2.37) for the worst prognosis (ER-/PR-) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25-29 to 90-94 y (0.44 times for the age group 50-54 y; 95% CI 0.43-0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]-adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER-/PR- subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR- cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine.
Site occupancy models with heterogeneous detection probabilities
Royle, J. Andrew
2006-01-01
Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.
Evaluation of field methods for vertical high resolution aquifer characterization
NASA Astrophysics Data System (ADS)
Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.
2012-12-01
The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et al. 2012). References: Vienken, T., Leven, C., and Dietrich, P. 2012. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization — a field study. Canadian Geotechnical Journal, 49(2): 197-206. Vienken, T., and Dietrich, P. 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400(1-2): 58-71.
Curtis, Brenda L; Lookatch, Samantha J; Ramo, Danielle E; McKay, James R; Feinn, Richard S; Kranzler, Henry R
2018-06-01
Despite the pervasive use of social media by young adults, there is comparatively little known about whether, and how, engagement in social media influences this group's drinking patterns and risk of alcohol-related problems. We examined the relations between young adults' alcohol-related social media engagement (defined as the posting, liking, commenting, and viewing of alcohol-related social media content) and their drinking behavior and problems. We conducted a systematic review and meta-analysis of studies evaluating the association of alcohol consumption and alcohol-related problems with alcohol-related social media engagement. Summary baseline variables regarding the social media platform used (e.g., Facebook and Twitter), social media measures assessed (e.g., number of alcohol photographs posted), alcohol measures (e.g., Alcohol Use Disorders Identification Test and Timeline Follow back Interview), and the number of time points at which data were collected were extracted from each published study. We used the Q statistic to examine heterogeneity in the correlations between alcohol-related social media engagement and both drinking behavior and alcohol-related problems. Because there was significant heterogeneity, we used a random-effects model to evaluate the difference from zero of the weighted aggregate correlations. We used metaregression with study characteristics as moderators to test for moderators of the observed heterogeneity. Following screening, 19 articles met inclusion criteria for the meta-analysis. The primary findings indicated a statistically significant relationship and moderate effect sizes between alcohol-related social media engagement and both alcohol consumption (r = 0.36, 95% CI: 0.29 to 0.44, p < 0.001) and alcohol-related problems (r = 0.37, 95% CI: 0.21 to 0.51, p < 0.001). There was significant heterogeneity among studies. Two significant predictors of heterogeneity were (i) whether there was joint measurement of alcohol-related social media engagement and drinking behavior or these were measured on different occasions and (ii) whether measurements were taken by self-report or observation of social media engagement. We found moderate-sized effects across the 19 studies: Greater alcohol-related social media engagement was correlated with both greater self-reported drinking and alcohol-related problems. Further research to determine the causal direction of these associations could provide opportunities for social media-based interventions with young drinkers aimed at reducing alcohol consumption and alcohol-related adverse consequences. Copyright © 2018 by the Research Society on Alcoholism.
Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index
NASA Astrophysics Data System (ADS)
Chen, Jing M.; Cihlar, Josef
1995-09-01
Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.
Design considerations for genetic linkage and association studies.
Nsengimana, Jérémie; Bishop, D Timothy
2012-01-01
This chapter describes the main issues that genetic epidemiologists usually consider in the design of linkage and association studies. For linkage, we briefly consider the situation of rare, highly penetrant alleles showing a disease pattern consistent with Mendelian inheritance investigated through parametric methods in large pedigrees or with autozygosity mapping in inbred families, and we then turn our focus to the most common design, affected sibling pairs, of more relevance for common, complex diseases. Theoretical and more practical power and sample size calculations are provided as a function of the strength of the genetic effect being investigated. We also discuss the impact of other determinants of statistical power such as disease heterogeneity, pedigree, and genotyping errors, as well as the effect of the type and density of genetic markers. Linkage studies should be as large as possible to have sufficient power in relation to the expected genetic effect size. Segregation analysis, a formal statistical technique to describe the underlying genetic susceptibility, may assist in the estimation of the relevant parameters to apply, for instance. However, segregation analyses estimate the total genetic component rather than a single-locus effect. Locus heterogeneity should be considered when power is estimated and at the analysis stage, i.e. assuming smaller locus effect than the total the genetic component from segregation studies. Disease heterogeneity should be minimised by considering subtypes if they are well defined or by otherwise collecting known sources of heterogeneity and adjusting for them as covariates; the power will depend upon the relationship between the disease subtype and the underlying genotypes. Ultimately, identifying susceptibility alleles of modest effects (e.g. RR≤1.5) requires a number of families that seem unfeasible in a single study. Meta-analysis and data pooling between different research groups can provide a sizeable study, but both approaches require even a higher level of vigilance about locus and disease heterogeneity when data come from different populations. All necessary steps should be taken to minimise pedigree and genotyping errors at the study design stage as they are, for the most part, due to human factors. A two-stage design is more cost-effective than one stage when using short tandem repeats (STRs). However, dense single-nucleotide polymorphism (SNP) arrays offer a more robust alternative, and due to their lower cost per unit, the total cost of studies using SNPs may in the future become comparable to that of studies using STRs in one or two stages. For association studies, we consider the popular case-control design for dichotomous phenotypes, and we provide power and sample size calculations for one-stage and multistage designs. For candidate genes, guidelines are given on the prioritisation of genetic variants, and for genome-wide association studies (GWAS), the issue of choosing an appropriate SNP array is discussed. A warning is issued regarding the danger of designing an underpowered replication study following an initial GWAS. The risk of finding spurious association due to population stratification, cryptic relatedness, and differential bias is underlined. GWAS have a high power to detect common variants of high or moderate effect. For weaker effects (e.g. relative risk<1.2), the power is greatly reduced, particularly for recessive loci. While sample sizes of 10,000 or 20,000 cases are not beyond reach for most common diseases, only meta-analyses and data pooling can allow attaining a study size of this magnitude for many other diseases. It is acknowledged that detecting the effects from rare alleles (i.e. frequency<5%) is not feasible in GWAS, and it is expected that novel methods and technology, such as next-generation resequencing, will fill this gap. At the current stage, the choice of which GWAS SNP array to use does not influence the power in populations of European ancestry. A multistage design reduces the study cost but has less power than the standard one-stage design. If one opts for a multistage design, the power can be improved by jointly analysing the data from different stages for the SNPs they share. The estimates of locus contribution to disease risk from genome-wide scans are often biased, and relying on them might result in an underpowered replication study. Population structure has so far caused less spurious associations than initially feared, thanks to systematic ethnicity matching and application of standard quality control measures. Differential bias could be a more serious threat and must be minimised by strictly controlling all the aspects of DNA acquisition, storage, and processing.
Meta-analysis: aerobic exercise for the treatment of anxiety disorders.
Bartley, Christine A; Hay, Madeleine; Bloch, Michael H
2013-08-01
This meta-analysis investigates the efficacy of exercise as a treatment for DSM-IV diagnosed anxiety disorders. We searched PubMED and PsycINFO for randomized, controlled trials comparing the anxiolytic effects of aerobic exercise to other treatment conditions for DSM-IV defined anxiety disorders. Seven trials were included in the final analysis, totaling 407 subjects. The control conditions included non-aerobic exercise, waitlist/placebo, cognitive-behavioral therapy, psychoeducation and meditation. A fixed-effects model was used to calculate the standardized mean difference of change in anxiety rating scale scores of aerobic exercise compared to control conditions. Subgroup analyses were performed to examine the effects of (1) comparison condition; (2) whether comparison condition controlled for time spent exercising and (3) diagnostic indication. Aerobic exercise demonstrated no significant effect for the treatment of anxiety disorders (SMD=0.02 (95%CI: -0.20-0.24), z = 0.2, p = 0.85). There was significant heterogeneity between trials (χ(2) test for heterogeneity = 22.7, df = 6, p = 0.001). The reported effect size of aerobic exercise was highly influenced by the type of control condition. Trials utilizing waitlist/placebo controls and trials that did not control for exercise time reported large effects of aerobic exercise while other trials report no effect of aerobic exercise. Current evidence does not support the use of aerobic exercise as an effective treatment for anxiety disorders as compared to the control conditions. This remains true when controlling for length of exercise sessions and type of anxiety disorder. Future studies evaluating the efficacy of aerobic exercise should employ larger sample sizes and utilize comparison interventions that control for exercise time. Copyright © 2013. Published by Elsevier Inc.
Use of geological mapping tools to improve the hydraulic performance of SuDS.
Bockhorn, Britta; Klint, Knud Erik Strøyberg; Jensen, Marina Bergen; Møller, Ingelise
2015-01-01
Most cities in Denmark are situated on low permeable clay rich deposits. These sediments are of glacial origin and range among the most heterogeneous, with hydraulic conductivities spanning several orders of magnitude. This heterogeneity has obvious consequences for the sizing of sustainable urban drainage systems (SuDS). We have tested methods to reveal geological heterogeneity at field scale to identify the most suitable sites for the placement of infiltration elements and to minimize their required size. We assessed the geological heterogeneity of a clay till plain in Eastern Jutland, Denmark measuring the shallow subsurface resistivity with a geoelectrical multi-electrode system. To confirm the resistivity data we conducted a spear auger mapping. The exposed sediments ranged from clay tills over sandy clay tills to sandy tills and correspond well to the geoelectrical data. To verify the value of geological information for placement of infiltration elements we carried out a number of infiltration tests on geologically different areas across the field, and we observed infiltration rates two times higher in the sandy till area than in the clay till area, thus demonstrating that the hydraulic performance of SuDS can be increased considerably and oversizing avoided if field geological heterogeneity is revealed before placing SuDS.
GCSS Cirrus Parcel Model Comparison Project
NASA Technical Reports Server (NTRS)
Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth; Einaudi, Franco (Technical Monitor)
2000-01-01
The Cirrus Parcel Model Comparison Project, a project of GCSS Working Group on Cirrus Cloud Systems (WG2), involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. The goal of this project is to document and understand the factors resulting in significant inter-model differences. The intent is to foment research leading to model improvement and validation. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (-40 C) and "cold" (-60 C) cirrus subject to updrafts of 4, 20 and 100 cm/s, respectively. Five models participated. These models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze drops) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation-only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, non-negligible quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation formulation, aerosol size, ice crystal growth rate (particularly the deposition coefficient), and water vapor uptake rate are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory data. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 cm/s) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, which is sensitive to the deposition coefficient when ice particles are small, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the nucleated (heterogeneous) ice crystals limits the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.
Shi, Shenglong; Wang, Yefei; Li, Zhongpeng; Chen, Qingguo; Zhao, Zenghao
Colloidal Gas Aphron as a mobility control in enhanced oil recovery is becoming attractive; it is also designed to block porous media with micro-bubbles. In this paper, the effects of surfactant concentration, polymer concentration, temperature and salinity on the bubble size of the Colloidal Gas Aphron were studied. Effects of injection rates, Colloidal Gas Aphron fluid composition, heterogeneity of reservoir on the resistance to the flow of Colloidal Gas Aphron fluid through porous media were investigated. Effects of Colloidal Gas Aphron fluid composition and temperature on residual oil recovery were also studied. The results showed that bubble growth rate decreased with increasing surfactant concentration, polymer concentration, and decreasing temperature, while it decreased and then increased slightly with increasing salinity. The obvious increase of injection pressure was observed as more Colloidal Gas Aphron fluid was injected, indicating that Colloidal Gas Aphron could block the pore media effectively. The effectiveness of the best blend obtained through homogeneous sandpack flood tests was modestly improved in the heterogeneous sandpack. The tertiary oil recovery increased 26.8 % by Colloidal Gas Aphron fluid as compared to 20.3 % by XG solution when chemical solution of 1 PV was injected into the sandpack. The maximum injected pressure of Colloidal Gas Aphron fluid was about three times that of the XG solution. As the temperature increased, the Colloidal Gas Aphron fluid became less stable; the maximum injection pressure and tertiary oil recovery of Colloidal Gas Aphron fluid decreased.
Mobility of Protozoa through Narrow Channels
Wang, Wei; Shor, Leslie M.; LeBoeuf, Eugene J.; Wikswo, John P.; Kosson, David S.
2005-01-01
Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 μm s−1 (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 μm s−1. Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment. PMID:16085857
Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2017-05-24
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. Copyright © 2017 the authors 0270-6474/17/375222-11$15.00/0.
Vitamin E and the Healing of Bone Fracture: The Current State of Evidence
Borhanuddin, Boekhtiar; Mohd Fozi, Nur Farhana; Naina Mohamed, Isa
2012-01-01
Background. The effect of vitamin E on health-related conditions has been extensively researched, with varied results. However, to date, there was no published review of the effect of vitamin E on bone fracture healing. Purpose. This paper systematically audited past studies of the effect of vitamin E on bone fracture healing. Methods. Related articles were identified from Medline, CINAHL, and Scopus databases. Screenings were performed based on the criteria that the study must be an original study that investigated the independent effect of vitamin E on bone fracture healing. Data were extracted using standardised forms, followed by evaluation of quality of reporting using ARRIVE Guidelines, plus recalculation procedure for the effect size and statistical power of the results. Results. Six animal studies fulfilled the selection criteria. The study methods were heterogeneous with mediocre reporting quality and focused on the antioxidant-related mechanism of vitamin E. The metasynthesis showed α-tocopherol may have a significant effect on bone formation during the normal bone remodeling phase of secondary bone healing. Conclusion. In general, the effect of vitamin E on bone fracture healing remained inconclusive due to the small number of heterogeneous and mediocre studies included in this paper. PMID:23304211
Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E
2018-05-01
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Ren, Cai-Li; Zhang, Guo-Fu; Xia, Nan; Jin, Chun-Hui; Zhang, Xiu-Hua; Hao, Jian-Feng; Guan, Hong-Bo; Tang, Hong; Li, Jian-An; Cai, De-Liang
2014-01-01
Small clinical trials have reported that low-frequency repetitive transcranial magnetic stimulation (rTMS) might improve language recovery in patients with aphasia after stroke. However, no systematic reviews or meta-analyses studies have investigated the effect of rTMS on aphasia. The objective of this study was to perform a meta-analysis of studies that explored the effects of low-frequency rTMS on aphasia in stroke patients. We searched PubMed, CENTRAL, Embase, CINAHL, ScienceDirect, and Journals@Ovid for randomized controlled trials published between January 1965 and October 2013 using the keywords "aphasia OR language disorders OR anomia OR linguistic disorders AND repetitive transcranial magnetic stimulation OR rTMS". We used fixed- and random-effects models to estimate the standardized mean difference (SMD) and a 95% CI for the language outcomes. Seven eligible studies involving 160 stroke patients were identified in this meta-analysis. A significant effect size of 1.26 was found for the language outcome severity of impairment (95% CI = 0.80 to 1.71) without heterogeneity (I2 = 0%, P = 0.44). Further analyses demonstrated prominent effects for the naming subtest (SMD = 0.52, 95% CI = 0.18 to 0.87), repetition (SMD = 0.54, 95% CI = 0.16 to 0.92), writing (SMD = 0.70, 95% CI = 0.19 to 1.22), and comprehension (the Token test: SMD = 0.58, 95% CI = 0.07 to 1.09) without heterogeneity (I2 = 0%). The SMD of AAT and BDAE comprehension subtests was 0.32 (95% CI = -0.08 to 0.72) with moderate heterogeneity (I2 = 32%,P = 0.22). The effect size did not change significantly even when any one trial was eliminated. None of the patients from the 7 included articles reported adverse effects from rTMS. Low-frequency rTMS with a 90% resting motor threshold that targets the triangular part of the right inferior frontal gyrus (IFG) has a positive effect on language recovery in patients with aphasia following stroke. Further well-designed studies with larger populations are required to ascertain the long-term effects of rTMS in aphasia treatment.
Xia, Nan; Jin, Chun-Hui; Zhang, Xiu-Hua; Hao, Jian-Feng; Guan, Hong-Bo; Tang, Hong; Li, Jian-An; Cai, De-Liang
2014-01-01
Background Small clinical trials have reported that low-frequency repetitive transcranial magnetic stimulation (rTMS) might improve language recovery in patients with aphasia after stroke. However, no systematic reviews or meta-analyses studies have investigated the effect of rTMS on aphasia. The objective of this study was to perform a meta-analysis of studies that explored the effects of low-frequency rTMS on aphasia in stroke patients. Methods We searched PubMed, CENTRAL, Embase, CINAHL, ScienceDirect, and Journals@Ovid for randomized controlled trials published between January 1965 and October 2013 using the keywords “aphasia OR language disorders OR anomia OR linguistic disorders AND repetitive transcranial magnetic stimulation OR rTMS”. We used fixed- and random-effects models to estimate the standardized mean difference (SMD) and a 95% CI for the language outcomes. Results Seven eligible studies involving 160 stroke patients were identified in this meta-analysis. A significant effect size of 1.26 was found for the language outcome severity of impairment (95% CI = 0.80 to 1.71) without heterogeneity (I2 = 0%, P = 0.44). Further analyses demonstrated prominent effects for the naming subtest (SMD = 0.52, 95% CI = 0.18 to 0.87), repetition (SMD = 0.54, 95% CI = 0.16 to 0.92), writing (SMD = 0.70, 95% CI = 0.19 to 1.22), and comprehension (the Token test: SMD = 0.58, 95% CI = 0.07 to 1.09) without heterogeneity (I2 = 0%). The SMD of AAT and BDAE comprehension subtests was 0.32 (95% CI = −0.08 to 0.72) with moderate heterogeneity (I2 = 32%,P = 0.22). The effect size did not change significantly even when any one trial was eliminated. None of the patients from the 7 included articles reported adverse effects from rTMS. Conclusions Low-frequency rTMS with a 90% resting motor threshold that targets the triangular part of the right inferior frontal gyrus (IFG) has a positive effect on language recovery in patients with aphasia following stroke. Further well-designed studies with larger populations are required to ascertain the long-term effects of rTMS in aphasia treatment. PMID:25036386
Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor
2010-09-01
The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.
Christel C. Kern; Anthony W. D’Amato; Terry F. Strong
2013-01-01
Managing forests for resilience is crucial in the face of uncertain future environmental conditions. Because harvest gap size alters the species diversity and vertical and horizontal structural heterogeneity, there may be an optimum range of gap sizes for conferring resilience to environmental uncertainty. We examined the impacts of different harvest gap sizes on...
Understanding and exploiting nanoscale surface heterogeneity for particle and cell manipulation
NASA Astrophysics Data System (ADS)
Kalasin, Surachate
This thesis explores the impact of surface heterogeneities on colloidal interactions and translates concepts to biointerfacial systems, for instance, microfluidic and biomedical devices. The thesis advances a model system, originally put forth by Kozlova: Tunable electrostatic surface heterogeneity is produced by adsorbing small amounts of cationic polyelectrolyte on a silica flat. The resulting positive electrostatic patches possess a density that is tuned from a saturated carpet down to average spacings on the order of a few hundred nanometers. At these length-scales, multiple adhesive elements (from tens to thousands) are present in the area of contact between a particle and a surface, a distinguishing feature of the thesis. Much of the literature addressing surface "heterogeneity" engineers surfaces with micron-scale features, almost always larger than the contact area between a particle and a second surface. With a nanoscale heterogeneity model, this thesis reports and quantitatively explains particle interaction behavior not typical of homogeneous interfaces. This includes (1) an adhesion threshold, a minimum average surface density of cationic patches needed for particle capture, (previously observed by Kozlova); (2) a crossover, from salt-destabilized to salt-stabilized interactions between heterogeneous surfaces with net-negative charge; (3) a shift of the adhesion threshold with shear, reducing adhesion; (4) a crossover from shear-enhanced to shear-hindered particle adhesion; (5) a range of surface compositions and processing parameters that sustain particle rolling; and (6) conditions where particles arrest immediately on contact. Through variations in ionic strength and particle size, the particle-surface contact area is systematically varied relative to the heterogeneity lengthscale. This provides a semi-quantitative explanation for the shifting of the adhesion threshold, in terms of the statistical probability of a particle being able to find a surface region sufficiently attractive for capture. Though neglecting hydrodynamics, the resulting (kappa-1a)1/2 power law scaling for the density of patches at the adhesion threshold roughly captures the general shape of the data. The study also reveals that at high ionic strength, particle-surface interactions are most influenced by the patchy surface heterogeneity; however, at low ionic strengths, the system becomes most sensitive to the average system properties. Thus for heterogeneous interfaces, the extent to which heterogeneity is influential depends on other factors (particle size, ionic strength). While this comprises a crossover from heterogeneity-dominated to mean field behavior, it is worth noting that even in the mean field regime, the spacing between patches always exceeds the Debye length, making the regions of different surface charge always distinct. Comparison with the simulations of Duffadar and Davis reveals that the criterion for particle capture is a nearly constant number of cationic patches per unit area of contact between a particle and a heterogeneous collector. The heterogeneous surface model displays a shear crossover seen with bacteria and other complex systems: At low shear, particle capture is enhanced, while at higher shears it is reduced. This behavior, sometimes rationalized in terms of the complex energy landscapes of biological bonds, is clearly explained in the heterogeneity model. For weakly adhesive systems engaging only a few adhesive elements or receptors, shear compromises the ability of a few bonds to capture particles. For more strongly adhesive systems, shear increases particle transport. The convolution of this competition leads to the non-monotonic effect of shear seen in biology. The complex variety of particle behaviors combined with the large number of independently variable parameters, each with different scaling of interfacial forces, necessitates a state-space approach to mapping regimes interactions and motion signatures. Following the approach taken by biophysicists for describing the interactions of leukocytes with the endothelial vasculature near an injury, the state spaces in this thesis map regimes of free particle motion, immediate firm arrest, and persistent rolling against macroscopic average patch density, Debye length, particle size, and shear rate. Surprisingly, the electrostatic heterogeneity state space resembles that for selectin-mediated leukocyte motion, and reasons are put forth. This finding is important because it demonstrates how synthetic nanoscale constructs can be exploited to achieve the selective cell capture mechanism previously attributed only to specialized cell adhesion molecules. This thesis initiates studies that extend these fundamental principles, developed for a tunable and well-characterized synthetic model to biological systems. For instance, it is demonstrated that general behaviors seen with the electrostatic model are observed when fibrinogen proteins are substituted for the electrostatic patches. This shows that the nature of the attractions is immaterial to adhesion, and that the effect of added salt primarily alters the range of the electrostatic repulsion and, correspondingly, the contact area. Also, studies with Staphylococcus aureus run parallel to those employing 1 mum silica spheres, further translating the concepts. Inaugural studies with mammalian cells, in the future work section, indicate that application of the surface heterogeneity approach to cell manipulation holds much future promise.
Factors relating to windblown dust in associations between ...
Introduction: In effect estimates of city-specific PM2.5-mortality associations across United States (US), there exists a substantial amount of spatial heterogeneity. Some of this heterogeneity may be due to mass distribution of PM; areas where PM2.5 is likely to be dominated by large size fractions (above 1 micron; e.g., the contribution of windblown dust), may have a weaker association with mortality. Methods: Log rate ratios (betas) for the PM2.5-mortality association—derived from a model adjusting for time, an interaction with age-group, day of week, and natural splines of current temperature, current dew point, and unconstrained temperature at lags 1, 2, and 3, for 313 core-based statistical areas (CBSA) and their metropolitan divisions (MD) over 1999-2005—were used as the outcome. Using inverse variance weighted linear regression, we examined change in log rate ratios in association with PM10-PM2.5 correlation as a marker of windblown dust/higher PM size fraction; linearity of associations was assessed in models using splines with knots at quintile values. Results: Weighted mean PM2.5 association (0.96 percent increase in total non-accidental mortality for a 10 ug/m3 increment in PM2.5) increased by 0.34 (95% confidence interval: 0.20, 0.48) per interquartile change (0.25) in the PM10-PM2.5 correlation, and explained approximately 8% of the observed heterogeneity; the association was linear based on spline analysis. Conclusions: Preliminary results pro
Christophorou, D; Funakoshi, N; Duny, Y; Valats, J-C; Bismuth, M; Pineton De Chambrun, G; Daures, J-P; Blanc, P
2015-04-01
The benefit of the combination of infliximab (IFX) and immunosuppressant (IS) therapy is debated in ulcerative colitis (UC). To determine whether the combination of IFX and IS therapy is more effective than infliximab alone for active UC regardless of prior IS use. We identified all controlled trials including patients with moderate-to-severe active UC, treated by either IFX or combined IFX-IS therapy. The main outcome was clinical remission at 4-6 months. Two statistical methods were used, Mantel-Haenszel and Der-Simonian and Laird. Inter-trial heterogeneity was taken into account and publication bias was assessed. Four controlled trials were analysed and included in the meta-analysis. These four trials included 765 patients, 389 treated with IFX alone and 376 treated with IFX and IS. At 4-6 months' therapy, the clinical remission rate was significantly lower for the IFX monotherapy group OR 0.50, 95% CI [0.34-0.73], P < 0.01 (P-heterogeneity = 0.49). The Harbord test did not show evidence of publication bias (P = 0.29). Calculation of an adjusted OR using the Duval and Tweedie method did not significantly modify results [OR 0.63, 95% CI (0.47-0.85)]. According to Orwin's formula, four additional medium-sized nonsignificant studies would be necessary to reduce the effect size to a nonsignificant value. At 12 months of therapy, there was no significant difference between the two groups: OR 0.60, 95% CI [0.17-2.06], P = 0.41 (P-heterogeneity = 0.01). Combination therapy with IFX-IS is more effective than IFX alone for achieving and maintaining clinical remission at 4-6 months for patients with moderate-to-severe ulcerative colitis, regardless of prior IS use. © 2015 John Wiley & Sons Ltd.
Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...
2016-01-01
The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO 2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibitmore » highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO 2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO 2 storage and CAES.« less
Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo
2007-09-01
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity.
Quantifying invertebrate resistance to floods: a global-scale meta-analysis.
McMullen, Laura E; Lytle, David A
2012-12-01
Floods are a key component of the ecology and management of riverine ecosystems around the globe, but it is not clear whether floods have predictable effects on organisms that can allow us to generalize across regions and continents. To address this, we conducted a global-scale meta-analysis to investigate effects of natural and managed floods on invertebrate resistance, the ability of invertebrates to survive flood events. We considered 994 studies for inclusion in the analysis, and after evaluation based on a priori criteria, narrowed our analysis to 41 studies spanning six of the seven continents. We used the natural-log-ratio of invertebrate abundance before and within 10 days after flood events because this measure of effect size can be directly converted to estimates of percent survival. We conducted categorical and continuous analyses that examined the contribution of environmental and study design variables to effect size heterogeneity, and examined differences in effect size among taxonomic groups. We found that invertebrate abundance was lowered by at least one-half after flood events. While natural vs. managed floods were similar in their effect, effect size differed among habitat and substrate types, with pools, sand, and boulders experiencing the strongest effect. Although sample sizes were not sufficient to examine all taxonomic groups, floods had a significant, negative effect on densities of Coleoptera, Eumalacostraca, Annelida, Ephemeroptera, Diptera, Plecoptera, and Trichoptera. Results from this study provide guidance for river flow regime prescriptions that will be applicable across continents and climate types, as well as baseline expectations for future empirical studies of freshwater disturbance.
Predictability and strength of a heterogeneous system: The role of system size and disorder
NASA Astrophysics Data System (ADS)
Roy, Subhadeep
2017-10-01
In this paper, I have studied the effect of disorder (δ ) and system size (L ) in a fiber bundle model with a certain range R of stress redistribution. The strength of the bundle as well as the failure abruptness is observed with varying disorder, stress release range, and system sizes. With a local stress concentration, the strength of the bundle is observed to decrease with system size. The behavior of such decrements changes drastically as disorder strength is tuned. At moderate disorder, σc scales with the system size as σc˜1 /logL . In low disorder, where the brittle response is highly expected, the strength decreases in a scale-free manner (σc˜1 /L ). With increasing L and R , the model approaches the thermodynamic limit and the mean-field limit, respectively. A detailed study shows different limits of the model and the corresponding modes of failure on the plane of the above-mentioned parameters (δ ,L , and R ).
Saunders, K; Lucy, A; Stanley, J
1991-01-01
We have analysed DNA from African cassava mosaic virus (ACMV)-infected Nicotiana benthamiana by two-dimensional agarose gel electrophoresis and detected ACMV-specific DNAs by blot-hybridisation. ACMV DNA forms including the previously characterised single-stranded, open-circular, linear and supercoiled DNAs along with five previously uncharacterised heterogeneous DNAs (H1-H5) were resolved. The heterogeneous DNAs were characterised by their chromatographic properties on BND-cellulose and their ability to hybridise to strand-specific and double-stranded probes. The data suggest a rolling circle mechanism of DNA replication, based on the sizes and strand specificity of the heterogeneous single-stranded DNA forms and their electrophoretic properties in relation to genome length single-stranded DNAs. Second-strand synthesis on a single-stranded virus-sense template is evident from the position of heterogeneous subgenomic complementary-sense DNA (H3) associated with genome-length virus-sense template (VT) DNA. The position of heterogeneous virus-sense DNA (H5), ranging in size from one to two genome lengths, is consistent with its association with genome-length complementary-sense template (CT) DNA, reflecting virus-sense strand displacement during replication from a double-stranded intermediate. The absence of subgenomic complementary-sense DNA associated with the displaced virus-sense strand suggests that replication proceeds via an obligate single-stranded intermediate. The other species of heterogeneous DNAs comprised concatemeric single-stranded virus-sense DNA (H4), and double-stranded or partially single-stranded DNA (H1 and H2). Images PMID:2041773
2014-01-01
Background The DerSimonian and Laird approach (DL) is widely used for random effects meta-analysis, but this often results in inappropriate type I error rates. The method described by Hartung, Knapp, Sidik and Jonkman (HKSJ) is known to perform better when trials of similar size are combined. However evidence in realistic situations, where one trial might be much larger than the other trials, is lacking. We aimed to evaluate the relative performance of the DL and HKSJ methods when studies of different sizes are combined and to develop a simple method to convert DL results to HKSJ results. Methods We evaluated the performance of the HKSJ versus DL approach in simulated meta-analyses of 2–20 trials with varying sample sizes and between-study heterogeneity, and allowing trials to have various sizes, e.g. 25% of the trials being 10-times larger than the smaller trials. We also compared the number of “positive” (statistically significant at p < 0.05) findings using empirical data of recent meta-analyses with > = 3 studies of interventions from the Cochrane Database of Systematic Reviews. Results The simulations showed that the HKSJ method consistently resulted in more adequate error rates than the DL method. When the significance level was 5%, the HKSJ error rates at most doubled, whereas for DL they could be over 30%. DL, and, far less so, HKSJ had more inflated error rates when the combined studies had unequal sizes and between-study heterogeneity. The empirical data from 689 meta-analyses showed that 25.1% of the significant findings for the DL method were non-significant with the HKSJ method. DL results can be easily converted into HKSJ results. Conclusions Our simulations showed that the HKSJ method consistently results in more adequate error rates than the DL method, especially when the number of studies is small, and can easily be applied routinely in meta-analyses. Even with the HKSJ method, extra caution is needed when there are = <5 studies of very unequal sizes. PMID:24548571
Examining variations in health within rural Canada.
Lavergne, M Ruth; Kephart, George
2012-01-01
Differences in health between urban and rural areas of Canada are well documented. Canadian rural communities are remarkably heterogeneous in terms of social, economic, and geographic characteristics. There is reason to believe that there is also considerable heterogeneity in health within rural Canada but existing literature has not given this adequate consideration. This article describes heterogeneity in health along the urban-rural continuum, both between and within categories of rural areas. Factors that may explain observed variations are then examined. The study population included all adult (>18 years) respondents on the Canadian Community Health Survey Cycle 1.1, linked to census subdivision-level data from the corresponding Canadian Census. Study areas were classified according to Metropolitan Influenced Zones (MIZ), which group rural areas based on their degree of connectivity with nearby urban areas. Dichotomized Health Utilities Index (HUI) scores were the outcome variable. Random-intercept logistic regression models investigated the associations of HUI with individual and area characteristics. To describe between-area variation in health, the proportion of the total variation accounted for by the area random effect (the intra-class correlation coefficient [ICC]) was estimated. To aid interpretation of the magnitude of the effect of area relative to other variables in the models, the ICC was also expressed as a median odds ratio (MOR), or the median amount by which the probability of disability will change for an individual who moves from one area to another. On a descriptive level, poorer health was observed in more remote rural areas, but the size of estimated effects for categories of rural areas was generally small compared with effects of other individual and area variables, and with the degree of heterogeneity between areas. The composition of rural areas is important in order to understand patterns in health. Individual income, education, and employment, and area characteristics such as Francophone or Aboriginal populations, and migration patterns help explain the gradient in health by MIZ, but considerable heterogeneity in health within categories of MIZ remains. In models stratified by MIZ, significant between-area heterogeneity was observed in all models, with MORs ranging from 1.18 to 1.53. It was observed that heterogeneity in health among rural areas is substantial, and generally larger than the effect of rurality, itself, on health. More attention is needed to understand the characteristics of Canada's heterogeneous rural communities, and the different processes by which disparities in health emerge and persist. The findings suggest that a focus on rurality alone, emphasizing urban versus rural disparities, or even continuum-based approaches like MIZ, may be less informative than finding ways to classify and examine different types of rural areas according to factors relevant to health.
An Investigation of the Raudenbush (1988) Test for Studying Variance Heterogeneity.
ERIC Educational Resources Information Center
Harwell, Michael
1997-01-01
The meta-analytic method proposed by S. W. Raudenbush (1988) for studying variance heterogeneity was studied. Results of a Monte Carlo study indicate that the Type I error rate of the test is sensitive to even modestly platykurtic score distributions and to the ratio of study sample size to the number of studies. (SLD)
Thermal Performance Analysis of a Geologic Borehole Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reagin, Lauren
2016-08-16
The Brazilian Nuclear Research Institute (IPEN) proposed a design for the disposal of Disused Sealed Radioactive Sources (DSRS) based on the IAEA Borehole Disposal of Sealed Radioactive Sources (BOSS) design that would allow the entirety of Brazil’s inventory of DSRS to be disposed in a single borehole. The proposed IPEN design allows for 170 waste packages (WPs) containing DSRS (such as Co-60 and Cs-137) to be stacked on top of each other inside the borehole. The primary objective of this work was to evaluate the thermal performance of a conservative approach to the IPEN proposal with the equivalent of twomore » WPs and two different inside configurations using Co-60 as the radioactive heat source. The current WP configuration (heterogeneous) for the IPEN proposal has 60% of the WP volume being occupied by a nuclear radioactive heat source and the remaining 40% as vacant space. The second configuration (homogeneous) considered for this project was a homogeneous case where 100% of the WP volume was occupied by a nuclear radioactive heat source. The computational models for the thermal analyses of the WP configurations with the Co-60 heat source considered three different cooling mechanisms (conduction, radiation, and convection) and the effect of mesh size on the results from the thermal analysis. The results of the analyses yielded maximum temperatures inside the WPs for both of the WP configurations and various mesh sizes. The heterogeneous WP considered the cooling mechanisms of conduction, convection, and radiation. The temperature results from the heterogeneous WP analysis suggest that the model is cooled predominantly by conduction with effect of radiation and natural convection on cooling being negligible. From the thermal analysis comparing the two WP configurations, the results suggest that either WP configuration could be used for the design. The mesh sensitivity results verify the meshes used, and results obtained from the thermal analyses were close to being independent of mesh size. The results from the computational case and analytically-calculated case for the homogeneous WP in benchmarking were almost identical, which indicates that the computational approach used here was successfully verified by the analytical solution.« less
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar
2017-01-01
FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a〈100〉 dislocation loops, a/2〈111〉 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2〈111〉 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a〈100〉 dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.
CBT for children with depressive symptoms: a meta-analysis.
Arnberg, Alexandra; Ost, Lars-Göran
2014-01-01
Pediatric depression entails a higher risk for psychiatric disorders, somatic complaints, suicide, and functional impairment later in life. Cognitive behavior therapy (CBT) is recommended for the treatment of depression in children, yet research is based primarily on adolescents. The present meta-analysis investigated the efficacy of CBT in children aged 8-12 years with regard to depressive symptoms. We included randomized controlled trials of CBT with participants who had an average age of ≤ 12 years and were diagnosed with either depression or reported elevated depressive symptoms. The search resulted in 10 randomized controlled trials with 267 participants in intervention and 256 in comparison groups. The mean age of participants was 10.5 years. The weighted between-group effect size for CBT was moderate, Cohen's d = 0.66. CBT outperformed both attention placebo and wait-list, although there was a significant heterogeneity among studies with regard to effect sizes. The weighted within-group effect size for CBT was large, d = 1.02. Earlier publication year, older participants, and more treatment sessions were associated with a larger effect size. In conclusion, the efficacy of CBT in the treatment of pediatric depression symptoms was supported. Differences in efficacy, methodological shortcomings, and lack of follow-up data limit the present study and indicate areas in need of improvement.
Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.
2016-01-01
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161
Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J
2016-04-07
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
Cruz, Roberto de la; Guerrero, Pilar; Spill, Fabian; Alarcón, Tomás
2016-10-21
We propose a modelling framework to analyse the stochastic behaviour of heterogeneous, multi-scale cellular populations. We illustrate our methodology with a particular example in which we study a population with an oxygen-regulated proliferation rate. Our formulation is based on an age-dependent stochastic process. Cells within the population are characterised by their age (i.e. time elapsed since they were born). The age-dependent (oxygen-regulated) birth rate is given by a stochastic model of oxygen-dependent cell cycle progression. Once the birth rate is determined, we formulate an age-dependent birth-and-death process, which dictates the time evolution of the cell population. The population is under a feedback loop which controls its steady state size (carrying capacity): cells consume oxygen which in turn fuels cell proliferation. We show that our stochastic model of cell cycle progression allows for heterogeneity within the cell population induced by stochastic effects. Such heterogeneous behaviour is reflected in variations in the proliferation rate. Within this set-up, we have established three main results. First, we have shown that the age to the G1/S transition, which essentially determines the birth rate, exhibits a remarkably simple scaling behaviour. Besides the fact that this simple behaviour emerges from a rather complex model, this allows for a huge simplification of our numerical methodology. A further result is the observation that heterogeneous populations undergo an internal process of quasi-neutral competition. Finally, we investigated the effects of cell-cycle-phase dependent therapies (such as radiation therapy) on heterogeneous populations. In particular, we have studied the case in which the population contains a quiescent sub-population. Our mean-field analysis and numerical simulations confirm that, if the survival fraction of the therapy is too high, rescue of the quiescent population occurs. This gives rise to emergence of resistance to therapy since the rescued population is less sensitive to therapy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors
NASA Astrophysics Data System (ADS)
Ozturk, Deniz; Yonucu, Sirin; Yilmaz, Defne; Burcin Unlu, Mehmet
2015-02-01
Elevated interstitial fluid pressure is one of the barriers of drug delivery in solid tumors. Recent studies have shown that normalization of tumor vasculature by anti-angiogenic factors may improve the delivery of conventional cytotoxic drugs, possibly by increasing blood flow, decreasing interstitial fluid pressure, and enhancing the convective transvascular transport of drug molecules. Delivery of large therapeutic agents such as nanoparticles and liposomes might also benefit from normalization therapy since their transport depends primarily on convection. In this study, a mathematical model is presented to provide supporting evidence that normalization therapy may improve the delivery of 100 nm liposomes into solid tumors, by both increasing the total drug extravasation and providing a more homogeneous drug distribution within the tumor. However these beneficial effects largely depend on tumor size and are stronger for tumors within a certain size range. It is shown that this size effect may persist under different microenvironmental conditions and for tumors with irregular margins or heterogeneous blood supply.
PSYCHOLOGICAL TREATMENT OF DEPRESSION IN COLLEGE STUDENTS: A METAANALYSIS
Cuijpers, Pim; Cristea, Ioana A.; Ebert, David D.; Koot, Hans M.; Auerbach, Randy P.; Bruffaerts, Ronny; Kessler, Ronald C.
2015-01-01
Background Expanded efforts to detect and treat depression among college students, a peak period of onset, have the potential to bear high human capital value from a societal perspective because depression increases college withdrawal rates. However, it is not clear whether evidence-based depression therapies are as effective in college students as in other adult populations. The higher levels of cognitive functioning and IQ and higher proportions of first-onset cases might lead to treatment effects being different among college students relative to the larger adult population. Methods We conducted a metaanalysis of randomized trials comparing psychological treatments of depressed college students relative to control groups and compared effect sizes in these studies to those in trials carried out in unselected populations of depressed adults. Results The 15 trials on college students satisfying study inclusion criteria included 997 participants. The pooled effect size of therapy versus control was g = 0.89 (95% CI: 0.66~1.11; NNT = 2.13) with moderate heterogeneity (I2 = 57; 95% CI: 23~72). None of these trials had low risk of bias. Effect sizes were significantly larger when students were not remunerated (e.g. money, credit), received individual versus group therapy, and were in trials that included a waiting list control group. No significant difference emerged in comparing effect sizes among college students versus adults either in simple mean comparisons or in multivariate metaregression analyses. Conclusions This metaanalysis of trials examining psychological treatments of depression in college students suggests that these therapies are effective and have effect sizes comparable to trials carried out among depressed adults. PMID:26682536
NASA Astrophysics Data System (ADS)
Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.
2017-12-01
Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the contribution of small strain-free recrystallized grains is larger in CTR than in CT samples. Our results suggest that loading conditions substantially affect material heterogeneity-induced localization in its nucleation and transient stages.
Sibly, Richard M; Nabe-Nielsen, Jacob; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J
2009-01-01
Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology. PMID:19549327
The Effectiveness of Blended Learning in Health Professions: Systematic Review and Meta-Analysis.
Liu, Qian; Peng, Weijun; Zhang, Fan; Hu, Rong; Li, Yingxue; Yan, Weirong
2016-01-04
Blended learning, defined as the combination of traditional face-to-face learning and asynchronous or synchronous e-learning, has grown rapidly and is now widely used in education. Concerns about the effectiveness of blended learning have led to an increasing number of studies on this topic. However, there has yet to be a quantitative synthesis evaluating the effectiveness of blended learning on knowledge acquisition in health professions. We aimed to assess the effectiveness of blended learning for health professional learners compared with no intervention and with nonblended learning. We also aimed to explore factors that could explain differences in learning effects across study designs, participants, country socioeconomic status, intervention durations, randomization, and quality score for each of these questions. We conducted a search of citations in Medline, CINAHL, Science Direct, Ovid Embase, Web of Science, CENTRAL, and ERIC through September 2014. Studies in any language that compared blended learning with no intervention or nonblended learning among health professional learners and assessed knowledge acquisition were included. Two reviewers independently evaluated study quality and abstracted information including characteristics of learners and intervention (study design, exercises, interactivity, peer discussion, and outcome assessment). We identified 56 eligible articles. Heterogeneity across studies was large (I(2) ≥93.3) in all analyses. For studies comparing knowledge gained from blended learning versus no intervention, the pooled effect size was 1.40 (95% CI 1.04-1.77; P<.001; n=20 interventions) with no significant publication bias, and exclusion of any single study did not change the overall result. For studies comparing blended learning with nonblended learning (pure e-learning or pure traditional face-to-face learning), the pooled effect size was 0.81 (95% CI 0.57-1.05; P<.001; n=56 interventions), and exclusion of any single study did not change the overall result. Although significant publication bias was found, the trim and fill method showed that the effect size changed to 0.26 (95% CI -0.01 to 0.54) after adjustment. In the subgroup analyses, pre-posttest study design, presence of exercises, and objective outcome assessment yielded larger effect sizes. Blended learning appears to have a consistent positive effect in comparison with no intervention, and to be more effective than or at least as effective as nonblended instruction for knowledge acquisition in health professions. Due to the large heterogeneity, the conclusion should be treated with caution.
The Effectiveness of Blended Learning in Health Professions: Systematic Review and Meta-Analysis
Peng, Weijun; Zhang, Fan; Hu, Rong; Li, Yingxue
2016-01-01
Background Blended learning, defined as the combination of traditional face-to-face learning and asynchronous or synchronous e-learning, has grown rapidly and is now widely used in education. Concerns about the effectiveness of blended learning have led to an increasing number of studies on this topic. However, there has yet to be a quantitative synthesis evaluating the effectiveness of blended learning on knowledge acquisition in health professions. Objective We aimed to assess the effectiveness of blended learning for health professional learners compared with no intervention and with nonblended learning. We also aimed to explore factors that could explain differences in learning effects across study designs, participants, country socioeconomic status, intervention durations, randomization, and quality score for each of these questions. Methods We conducted a search of citations in Medline, CINAHL, Science Direct, Ovid Embase, Web of Science, CENTRAL, and ERIC through September 2014. Studies in any language that compared blended learning with no intervention or nonblended learning among health professional learners and assessed knowledge acquisition were included. Two reviewers independently evaluated study quality and abstracted information including characteristics of learners and intervention (study design, exercises, interactivity, peer discussion, and outcome assessment). Results We identified 56 eligible articles. Heterogeneity across studies was large (I2 ≥93.3) in all analyses. For studies comparing knowledge gained from blended learning versus no intervention, the pooled effect size was 1.40 (95% CI 1.04-1.77; P<.001; n=20 interventions) with no significant publication bias, and exclusion of any single study did not change the overall result. For studies comparing blended learning with nonblended learning (pure e-learning or pure traditional face-to-face learning), the pooled effect size was 0.81 (95% CI 0.57-1.05; P<.001; n=56 interventions), and exclusion of any single study did not change the overall result. Although significant publication bias was found, the trim and fill method showed that the effect size changed to 0.26 (95% CI -0.01 to 0.54) after adjustment. In the subgroup analyses, pre-posttest study design, presence of exercises, and objective outcome assessment yielded larger effect sizes. Conclusions Blended learning appears to have a consistent positive effect in comparison with no intervention, and to be more effective than or at least as effective as nonblended instruction for knowledge acquisition in health professions. Due to the large heterogeneity, the conclusion should be treated with caution. PMID:26729058
A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders.
Cheng, Chia-Hsiung; Chan, Pei-Ying S; Hsieh, Yu-Wei; Chen, Kuan-Fu
2016-01-26
Mismatch negativity (MMN) is an optimal neurophysiological signal to assess the integrity of auditory sensory memory and involuntary attention switch. The generation of MMN is independent of overt behavioral requirements, concentration or motivation, and thus serves as a suitable tool to study the perceptual function in children with attention deficit-hyperactivity disorders (ADHD). It remains unclear whether ADHD children showed altered MMN responses. Therefore we performed a meta-analysis of peer-reviewed MMN studies that had targeted both typically developed and ADHD children to examine the pooled effect size. The published articles between 1990 and 2014 were searched in PubMed, Medline, Cochrane, and CINAHL. The mean effect size and a 95% confidence interval (CI) were estimated. Six studies, consisting of 10 individual investigations, were included in the final analysis. A significant effect size of 0.28 was found (p=0.028, 95% CI at 0.03-0.53). These results were also free from publication bias or heterogeneity. In conclusion, our meta-analysis results suggest ADHD children demonstrated a reduced MMN amplitude compared to healthy controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Andrew M., E-mail: amhern@ucdavis.edu; Seibert, J. Anthony; Boone, John M.
2015-11-15
Purpose: Current dosimetry methods in mammography assume that the breast is comprised of a homogeneous mixture of glandular and adipose tissues. Three-dimensional (3D) dedicated breast CT (bCT) data sets were used previously to assess the complex anatomical structure within the breast, characterizing the statistical distribution of glandular tissue in the breast. The purpose of this work was to investigate the effect of bCT-derived heterogeneous glandular distributions on dosimetry in mammography. Methods: bCT-derived breast diameters, volumes, and 3D fibroglandular distributions were used to design realistic compressed breast models comprised of heterogeneous distributions of glandular tissue. The bCT-derived glandular distributions were fitmore » to biGaussian functions and used as probability density maps to assign the density distributions within compressed breast models. The MCNPX 2.6.0 Monte Carlo code was used to estimate monoenergetic normalized mean glandular dose “DgN(E)” values in mammography geometry. The DgN(E) values were then weighted by typical mammography x-ray spectra to determine polyenergetic DgN (pDgN) coefficients for heterogeneous (pDgN{sub hetero}) and homogeneous (pDgN{sub homo}) cases. The dependence of estimated pDgN values on phantom size, volumetric glandular fraction (VGF), x-ray technique factors, and location of the heterogeneous glandular distributions was investigated. Results: The pDgN{sub hetero} coefficients were on average 35.3% (SD, 4.1) and 24.2% (SD, 3.0) lower than the pDgN{sub homo} coefficients for the Mo–Mo and W–Rh x-ray spectra, respectively, across all phantom sizes and VGFs when the glandular distributions were centered within the breast phantom in the coronal plane. At constant breast size, increasing VGF from 7.3% to 19.1% lead to a reduction in pDgN{sub hetero} relative to pDgN{sub homo} of 23.6%–27.4% for a W–Rh spectrum. Displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width in the superior and inferior directions, resulted in a 37.3% and a −26.6% change in the pDgN{sub hetero} coefficient, respectively, relative to the centered distribution for the Mo–Mo spectrum. Lateral displacement of the glandular distribution, at a distance equal to 10% of the compressed breast width, resulted in a 1.5% change in the pDgN{sub hetero} coefficient relative to the centered distribution for the W–Rh spectrum. Conclusions: Introducing bCT-derived heterogeneous glandular distributions into mammography phantom design resulted in decreased glandular dose relative to the widely used homogeneous assumption. A homogeneous distribution overestimates the amount of glandular tissue near the entrant surface of the breast, where dose deposition is exponentially higher. While these findings are based on clinically measured distributions of glandular tissue using a large cohort of women, future work is required to improve the classification of glandular distributions based on breast size and overall glandular fraction.« less
Kukimoto, Yukiko; Ooe, Noriko; Ideguchi, Norio
2017-12-01
Pain management is critical for patients after surgery, but current pain management methods are not always adequate. Massage therapy may be a therapeutic complementary therapy for pain. Many researchers have investigated the effects of massage therapy on post-operative pain, but there have been no systematic reviews and meta-analysis of its efficacy for post-operative patients. Our objective was to assess the effects of massage therapy on pain management among post-operative patients by conducting a systematic review and meta-analysis. The databases searched included MEDLINE, CINAHL, and the Cochrane Library's CENTRAL. To assess the effects of massage therapy on post-operative pain and anxiety, we performed a meta-analysis and calculated standardized mean difference with 95% CIs (Confidential Intervals) as a summary effect. Ten randomized controlled trials were selected (total sample size = 1,157). Meta-analysis was conducted using subgroup analysis. The effect of single dosage massage therapy on post-operative pain showed significant improvement (-0.49; 95% confidence intervals -0.64, -0.34; p < .00001) and low heterogeneity (p = .39, I 2 = 4%), sternal incisions showed significant improvement in pain (-0.68; -0.91, -0.46; p< .00001) and low heterogeneity (p = .76, I 2 = 0%). The anxiety subgroups showed substantial heterogeneity. The findings of this study revealed that massage therapy may alleviate post-operative pain, although there are limits on generalization of these findings due to low methodological quality in the reviewed studies. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Effect of Desflurane versus Sevoflurane in Pediatric Anesthesia: A Meta-Analysis.
He, Jiaxuan; Zhang, Yong; Xue, Rongliang; Lv, Jianrui; Ding, Xiaoying; Zhang, Zhenni
2015-01-01
To compare the effect of desflurane versus sevoflurane in pediatric anesthesia by conducting meta-analysis. Studies were searched from PubMed, Medline, Springer, Elsevier Science Direct, Cochrane Library and Google Scholar up to July 2014. Weighted mean difference (WMD) or risk ratio (RR) and 95% confidence intervals (CIs) were considered as effect sizes. Heterogeneity across studies was assessed by Cochran Q test and I2 statistic. The random effects model was performed in the meta-analysis when heterogeneity was observed, or the fixed effect model was used. Review Manager 5.1 software was applied for the meta-analysis. A total of 11 studies (13 comparisons) involving 1,273 objects were included in this meta-analysis. No heterogeneity was observed between studies for any comparison but for postoperative extubation time. The results showed significant differences between desflurane and sevoflurane groups for postoperative extubation time (WMD = -3.87, 95%CI = -6.14 to -1.60, P < 0.01), eye opening time (WMD = -1.11, 95%CI = -1.49 to -0.72, P < 0.01), awakening time (WMD = -4.27, 95%CI = -5.28 to -3.26, P < 0.01) and agitation (RR = 1.44, 95%CI = 1.05 to 1.96, P = 0.02). No significant differences (P > 0.05) were detected for discharge from the recovery room, oculocardiac reflex, nausea and vomiting and severe pain. Desflurane may have less adverse effects than sevoflurane when used in pediatric anesthesia with significantly shorter postoperative extubation time, eye opening time and awakening time as well as slighter agitation.
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-01-01
Reflectance spectra measured from epithelial tissue have been used to extract size distribution and refractive index of cell nuclei for noninvasive detection of precancerous changes. Despite many in vitro and in vivo experimental results, the underlying mechanism of sizing nuclei based on modeling nuclei as homogeneous spheres and fitting the measured data with Mie theory has not been fully explored. We describe the implementation of a three-dimensional finite-difference time-domain (FDTD) simulation tool using a Gaussian pulse as the light source to investigate the wavelength-dependent characteristics of backscattered light from a nuclear model consisting of a nucleolus and clumps of chromatin embedded in homogeneous nucleoplasm. The results show that small-sized heterogeneities within the nuclei generate about five times higher backscattering than homogeneous spheres. More interestingly, backscattering spectra from heterogeneous spherical nuclei show periodic oscillations similar to those from homogeneous spheres, leading to high accuracy of estimating the nuclear diameter by comparison with Mie theory. In addition to the application in light scattering spectroscopy, the reported FDTD method could be adapted to study the relations between measured spectral data and nuclear structures in other optical imaging and spectroscopic techniques for in vivo diagnosis.
Mensah, F K; Willett, E V; Simpson, J; Smith, A G; Roman, E
2007-09-15
Substantial heterogeneity has been observed among case-control studies investigating associations between non-Hodgkin's lymphoma and familial characteristics, such as birth order and sibship size. The potential role of selection bias in explaining such heterogeneity is considered within this study. Selection bias according to familial characteristics and socioeconomic status is investigated within a United Kingdom-based case-control study of non-Hodgkin's lymphoma diagnosed during 1998-2001. Reported distributions of birth order and maternal age are each compared with expected reference distributions derived using national birth statistics from the United Kingdom. A method is detailed in which yearly data are used to derive expected distributions, taking account of variability in birth statistics over time. Census data are used to reweight both the case and control study populations such that they are comparable with the general population with regard to socioeconomic status. The authors found little support for an association between non-Hodgkin's lymphoma and birth order or family size and little evidence for an influence of selection bias. However, the findings suggest that between-study heterogeneity could be explained by selection biases that influence the demographic characteristics of participants.
Sandberg, John; Rafail, Patrick
2014-10-01
Measures of children's time use, particularly with parents and siblings, are used to evaluate three hypotheses in relation to the vocabulary and mathematical skills development: (1) the resource dilution hypothesis, which argues that parental and household resources are diluted in larger families; (2) the confluence hypothesis, which suggests that the intellectual milieu of families is lowered with additional children; and (3) the admixture ("no effect") hypothesis, which suggests that the negative relationship between family size and achievement is an artifact of cross-sectional research resulting from unobserved heterogeneity. Each hypothesis is tested using within-child estimates of change in cognitive scores over time with the addition of new children to families.
Marital quality and health: A meta-analytic review
Robles, Theodore F.; Slatcher, Richard B.; Trombello, Joseph M.; McGinn, Meghan M.
2013-01-01
This meta-analysis reviewed 126 published empirical articles over the past 50 years describing associations between marital relationship quality and physical health in over 72,000 individuals. Health outcomes included clinical endpoints (objective assessments of function, disease severity, and mortality; subjective health assessments) and surrogate endpoints (biological markers that substitute for clinical endpoints, such as blood pressure). Biological mediators included cardiovascular reactivity and hypothalamic-pituitary-adrenal axis activity. Greater marital quality was related to better health, with mean effect sizes from r = .07 to .21, including lower risk of mortality, r = .11, and lower cardiovascular reactivity during marital conflict, r = −.13, but not daily cortisol slopes or cortisol reactivity during conflict. The small effect sizes were similar in magnitude to previously found associations between health behaviors (e.g., diet) and health outcomes. Effect sizes for a small subset of clinical outcomes were susceptible to publication bias. In some studies, effect sizes remained significant after accounting for confounds such as age and socioeconomic status. Studies with a higher proportion of women in the sample demonstrated larger effect sizes, but we found little evidence for gender differences in studies that explicitly tested gender moderation, with the exception of surrogate endpoint studies. Our conclusions are limited by small numbers of studies for specific health outcomes, unexplained heterogeneity, and designs that limit causal inferences. These findings highlight the need to explicitly test affective, health behavior, and biological mechanisms in future research, and focus on moderating factors that may alter the relationship between marital quality and health. PMID:23527470
Myung, Woojae; Won, Hong-Hee; Fava, Maurizio; Mischoulon, David; Yeung, Albert; Lee, Dongsoo; Kim, Doh Kwan; Jeon, Hong Jin
2015-04-01
Although evidence suggests that there is an increase in suicide rates in the general population following celebrity suicide, the rates are heterogeneous across celebrities and countries. It is unclear which is the more vulnerable population according to the effect sizes of celebrity suicides to general population. All suicide victims in the general population verified by the Korea National Statistical Office and suicides of celebrity in South Korea were included for 7 years from 2005 to 2011. Effect sizes were estimated by comparing rates of suicide in the population one month before and after each celebrity suicide. The associations between suicide victims and celebrities were examined. Among 94,845 suicide victims, 17,209 completed suicide within one month after 13 celebrity suicides. Multivariate logistic regression analyses revealed that suicide victims who died after celebrity suicide were significantly likely to be of age 20-39, female, and to die by hanging. These qualities were more strongly associated among those who followed celebrity suicide with intermediate and high effect sizes than lower. Younger suicide victims were significantly associated with higher effect size, female gender, white collar employment, unmarried status, higher education, death by hanging, and night-time death. Characteristics of celebrities were significantly associated with those of general population in hanging method and gender. Individuals who commit suicide after a celebrity suicide are likely to be younger, female, and prefer hanging as method of suicide, which are more strongly associated in higher effect sizes of celebrity suicide.
Naslund, John A; Whiteman, Karen L; McHugo, Gregory J; Aschbrenner, Kelly A; Marsch, Lisa A; Bartels, Stephen J
2017-07-01
To conduct a systematic review and meta-analysis to estimate effects of lifestyle intervention participation on weight reduction among overweight and obese adults with serious mental illness. We systematically searched electronic databases for randomized controlled trials comparing lifestyle interventions with other interventions or usual care controls in overweight and obese adults with serious mental illness, including schizophrenia spectrum or mood disorders. Included studies reported change in weight [kg] or body mass index (BMI) [kg/m 2 ] from baseline to follow-up. Standardized mean differences (SMD) were calculated for change in weight from baseline between intervention and control groups. Seventeen studies met inclusion criteria (1968 participants; 50% male; 66% schizophrenia spectrum disorders). Studies were grouped by intervention duration (≤6-months or ≥12-months). Lifestyle interventions of ≤6-months duration showed greater weight reduction compared with controls as indicated by effect size for weight change from baseline (SMD=-0.20; 95% CI=-0.34, -0.05; 10 studies), but high statistical heterogeneity (I 2 =90%). Lifestyle interventions of ≥12-months duration also showed greater weight reduction compared with controls (SMD=-0.24; 95% CI=-0.36, -0.12; 6 studies) with low statistical heterogeneity (I 2 =0%). Lifestyle interventions appear effective for treating overweight and obesity among people with serious mental illness. Interventions of ≥12-months duration compared to ≤6-months duration appear to achieve more consistent outcomes, though effect sizes are similar for both shorter and longer duration interventions. Copyright © 2017. Published by Elsevier Inc.
de Sousa, Evitom Corrêa; Abrahin, Odilon; Ferreira, Ana Lorena Lima; Rodrigues, Rejane Pequeno; Alves, Erik Artur Cortinhas; Vieira, Rodolfo Paula
2017-11-01
The purpose of this study was to evaluate the effects of resistance training alone on the systolic and diastolic blood pressure in prehypertensive and hypertensive individuals. Our meta-analysis, followed the guidelines of PRISMA. The search for articles was realized by November 2016 using the following electronic databases: BIREME, PubMed, Cochrane Library, LILACS and SciELO and a search strategy that included the combination of titles of medical affairs and terms of free text to the key concepts: 'hypertension' 'hypertensive', 'prehypertensive', 'resistance training', 'strength training', and 'weight-lifting'. These terms were combined with a search strategy to identify randomized controlled trials (RCTs) and identified a total of 1608 articles: 644 articles BIREME, 53 SciELO, 722 PubMed, 122 Cochrane Library and 67 LILACS. Of these, five RCTs met the inclusion criteria and provided data on 201 individuals. The results showed significant reductions for systolic blood pressure (-8.2 mm Hg CI -10.9 to -5.5;I 2 : 22.5% P valor for heterogeneity=0.271 and effect size=-0.97) and diastolic blood pressure (-4.1 mm Hg CI -6.3 to -1.9; I 2 : 46.5% P valor for heterogeneity=0.113 and effect size=-0.60) when compared to group control. In conclusion, resistance training alone reduces systolic and diastolic blood pressure in prehypertensive and hypertensive subjects. The RCTs studies that investigated the effects of resistance training alone in prehypertensive and hypertensive patients support the recommendation of resistance training as a tool for management of systemic hypertension.
Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong
2012-01-01
Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066
Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material
Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.
1999-01-01
Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.
Kong, Ling-Na; Qin, Bo; Zhou, Ying-qing; Mou, Shao-yu; Gao, Hui-Ming
2014-03-01
The objective of this systematic review and meta-analysis was to estimate the effectiveness of problem-based learning in developing nursing students' critical thinking. Searches of PubMed, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Proquest, Cochrane Central Register of Controlled Trials (CENTRAL) and China National Knowledge Infrastructure (CNKI) were undertaken to identify randomized controlled trails from 1965 to December 2012, comparing problem-based learning with traditional lectures on the effectiveness of development of nursing students' critical thinking, with no language limitation. The mesh-terms or key words used in the search were problem-based learning, thinking, critical thinking, nursing, nursing education, nurse education, nurse students, nursing students and pupil nurse. Two reviewers independently assessed eligibility and extracted data. Quality assessment was conducted independently by two reviewers using the Cochrane Collaboration's Risk of Bias Tool. We analyzed critical thinking scores (continuous outcomes) using a standardized mean difference (SMD) or weighted mean difference (WMD) with a 95% confidence intervals (CIs). Heterogeneity was assessed using the Cochran's Q statistic and I(2) statistic. Publication bias was assessed by means of funnel plot and Egger's test of asymmetry. Nine articles representing eight randomized controlled trials were included in the meta-analysis. Most studies were of low risk of bias. The pooled effect size showed problem-based learning was able to improve nursing students' critical thinking (overall critical thinking scores SMD=0.33, 95%CI=0.13-0.52, P=0.0009), compared with traditional lectures. There was low heterogeneity (overall critical thinking scores I(2)=45%, P=0.07) in the meta-analysis. No significant publication bias was observed regarding overall critical thinking scores (P=0.536). Sensitivity analysis showed that the result of our meta-analysis was reliable. Most effect sizes for subscales of the California Critical Thinking Dispositions Inventory (CCTDI) and Bloom's Taxonomy favored problem-based learning, while effect sizes for all subscales of the California Critical Thinking Skills Test (CCTST) and most subscales of the Watson-Glaser Critical Thinking Appraisal (WCGTA) were inconclusive. The results of the current meta-analysis indicate that problem-based learning might help nursing students to improve their critical thinking. More research with larger sample size and high quality in different nursing educational contexts are required. Copyright © 2013 Elsevier Ltd. All rights reserved.
2012-05-01
reactive milled (RM) experiments forming nickel aluminides [3,4,6,8–10,12,15,16,18,19], titanium - based alloys [5] and combustion reactions in metal...highly heterogeneous and is refined during processing until reaction occurs. The refinement process consists of the cold welding of powder grains within... welding at the surface of deforming particles, which pro-Table 2 Sample preparation measurements corresponding to the designed exper- iments presented
Nanotechnology Approaches to Studying Epigenetic Changes in Cancer
NASA Astrophysics Data System (ADS)
Riehn, Robert
2011-03-01
Placing polyelectrolytes into confined geometries has a profound effect on their molecular configuration. For instance, placing long DNA molecules into channels with a cross-section of about 100 nm 2 stretches them out to about 70% of their contour length. We are using this effect to map epigenetic changes on single DNA and chromatin strands. This mapping on single molecules becomes central in the study of the heterogeneity of cell population in cancer, since rapid change of epigenetic makeup, propagated through rare cancer stem cells, is a hallmark of its progression. We demonstrate the basic building blocks for the single-molecule epigenetic analysis of genomic sized DNA. In particular, we have achieved the mapping of methylated regions in DNA with heterogeneous 5-methyl cytosine modification using a specific fluorescent marker. We further show that chromatin with an intact histone structure can be stretched similar to DNA, and that the epigenetic state of histone tails can be detected using fluorescent antibodies.
The correlation of social support with mental health: A meta-analysis
Harandi, Tayebeh Fasihi; Taghinasab, Maryam Mohammad; Nayeri, Tayebeh Dehghan
2017-01-01
Background and aim Social support is an important factor that can affect mental health. In recent decades, many studies have been done on the impact of social support on mental health. The purpose of the present study is to investigate the effect size of the relationship between social support and mental health in studies in Iran. Methods This meta-analysis was carried out in studies that were performed from 1996 through 2015. Databases included SID and Magiran, the comprehensive portal of human sciences, Noor specialized magazine databases, IRANDOC, Proquest, PubMed, Scopus, ERIC, Iranmedex and Google Scholar. The keywords used to search these websites included “mental health or general health,” and “Iran” and “social support.” In total, 64 studies had inclusion criteria meta-analysis. In order to collect data used from a meta-analysis worksheet that was made by the researcher and for data analysis software, CMA-2 was used. Results The mean of effect size of the 64 studies in the fixed-effect model and random-effect model was obtained respectively as 0.356 and 0.330, which indicated the moderate effect size of social support on mental health. The studies did not have publication bias, and enjoyed a heterogeneous effect size. The target population and social support questionnaire were moderator variables, but sex, sampling method, and mental health questionnaire were not moderator variables. Conclusion Regarding relatively high effect size of the correlation between social support and mental health, it is necessary to predispose higher social support, especially for women, the elderly, patients, workers, and students. PMID:29038699
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Wang, Qinfen; Li, H
Purpose: The purpose of this research is studying tumor heterogeneity of the primary and lymphoma by using multi-scale texture analysis with PET-CT images, where the tumor heterogeneity is expressed by texture features. Methods: Datasets were collected from 12 lung cancer patients, and both of primary and lymphoma tumors were detected with all these patients. All patients underwent whole-body 18F-FDG PET/CT scan before treatment.The regions of interest (ROI) of primary and lymphoma tumor were contoured by experienced clinical doctors. Then the ROI of primary and lymphoma tumor is extracted automatically by using Matlab software. According to the geometry size of contourmore » structure, the images of tumor are decomposed by multi-scale method.Wavelet transform was performed on ROI structures within images by L layers sampling, and then wavelet sub-bands which have the same size of the original image are obtained. The number of sub-bands is 3L+1.The gray level co-occurrence matrix (GLCM) is calculated within different sub-bands, thenenergy, inertia, correlation and gray in-homogeneity were extracted from GLCM.Finally, heterogeneity statistical analysis was studied for primary and lymphoma tumor using the texture features. Results: Energy, inertia, correlation and gray in-homogeneity are calculated with our experiments for heterogeneity statistical analysis.Energy for primary and lymphomatumor is equal with the same patient, while gray in-homogeneity and inertia of primaryare 2.59595±0.00855, 0.6439±0.0007 respectively. Gray in-homogeneity and inertia of lymphoma are 2.60115±0.00635, 0.64435±0.00055 respectively. The experiments showed that the volume of lymphoma is smaller than primary tumor, but thegray in-homogeneity and inertia were higher than primary tumor with the same patient, and the correlation with lymphoma tumors is zero, while the correlation with primary tumor isslightly strong. Conclusion: This studying showed that there were effective heterogeneity differences between primary and lymphoma tumor by multi-scale image texture analysis. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
Peer pressure and incentive mechanisms in social networks
NASA Astrophysics Data System (ADS)
Deng, Chuang; Ye, Chao; Wang, Lin; Rong, Zhihai; Wang, Xiaofan
2018-01-01
Cooperation can be viewed as a social norm that is expected in our society. In this work, a framework based on spatial public goods game theory is established to study how peer pressure and incentive mechanisms can influence the evolution of cooperation. A unified model with adjustable parameters is developed to represent the effects of pure Personal Mechanism, Personal Mechanism with peer pressure and Social Mechanism, which demonstrates that when the sum of rewards plus the peer pressure felt by defectors is larger than the effective cost of cooperation, cooperation can prevail. As the peer pressure is caused by other cooperators in a game, group size and network structure play an important role. In particular, larger group size and more heterogeneous structured population can make defectors feel more peer pressure, which will promote the evolution and sustainment of cooperation.
NASA Astrophysics Data System (ADS)
Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu
2016-08-01
We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"
Microstructure and Property Modifications of Cold Rolled IF Steel by Local Laser Annealing
NASA Astrophysics Data System (ADS)
Hallberg, Håkan; Adamski, Frédéric; Baïz, Sarah; Castelnau, Olivier
2017-10-01
Laser annealing experiments are performed on cold rolled IF steel whereby highly localized microstructure and property modification are achieved. The microstructure is seen to develop by strongly heterogeneous recrystallization to provide steep gradients, across the submillimeter scale, of grain size and crystallographic texture. Hardness mapping by microindentation is used to reveal the corresponding gradients in macroscopic properties. A 2D level set model of the microstructure development is established as a tool to further optimize the method and to investigate, for example, the development of grain size variations due to the strong and transient thermal gradient. Particular focus is given to the evolution of the beneficial γ-fiber texture during laser annealing. The simulations indicate that the influence of selective growth based on anisotropic grain boundary properties only has a minor effect on texture evolution compared to heterogeneous stored energy, temperature variations, and nucleation conditions. It is also shown that although the α-fiber has an initial frequency advantage, the higher probability of γ-nucleation, in combination with a higher stored energy driving force in this fiber, promotes a stronger presence of the γ-fiber as also observed in experiments.
Li, Yan-yan
2012-01-01
The polymorphism of plasminogen activator inhibitor-1 (PAI-1) 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD) susceptibility, but study results are still debatable. The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR) for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95% confidence interval (CI) was assessed by the random effect model. The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95% CI = 1.18 to 2.44, P = 0.004). The heterogeneity test was also significant (P<0.0001). Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017), study region (P = 0.014), control group sample size (P = 0.011), total sample size (P = 0.011), and ratio of the case to the control group sample size (RR) (P = 0.019). In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02). In the Chinese Han population, PAI-1 4G/5G gene polymorphism was implied to be associated with increased CAD risk. Carriers of the 4G allele of the PAI-1 4G/5G gene might predispose to CAD.
Li, Yan-yan
2012-01-01
Background The polymorphism of plasminogen activator inhibitor-1 (PAI-1) 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD) susceptibility, but study results are still debatable. Objective and Methods The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR) for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95% confidence interval (CI) was assessed by the random effect model. Results The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95% CI = 1.18 to 2.44, P = 0.004). The heterogeneity test was also significant (P<0.0001). Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017), study region (P = 0.014), control group sample size (P = 0.011), total sample size (P = 0.011), and ratio of the case to the control group sample size (RR) (P = 0.019). In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02). Conclusions In the Chinese Han population, PAI-1 4G/5G gene polymorphism was implied to be associated with increased CAD risk. Carriers of the 4G allele of the PAI-1 4G/5G gene might predispose to CAD. PMID:22496752
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cates, J; Drzymala, R
2015-06-15
Purpose: The purpose of this study was to develop and use a novel phantom to evaluate the accuracy and usefulness of the Leskell Gamma Plan convolution-based dose calculation algorithm compared with the current TMR10 algorithm. Methods: A novel phantom was designed to fit the Leskell Gamma Knife G Frame which could accommodate various materials in the form of one inch diameter, cylindrical plugs. The plugs were split axially to allow EBT2 film placement. Film measurements were made during two experiments. The first utilized plans generated on a homogeneous acrylic phantom setup using the TMR10 algorithm, with various materials inserted intomore » the phantom during film irradiation to assess the effect on delivered dose due to unplanned heterogeneities upstream in the beam path. The second experiment utilized plans made on CT scans of different heterogeneous setups, with one plan using the TMR10 dose calculation algorithm and the second using the convolution-based algorithm. Materials used to introduce heterogeneities included air, LDPE, polystyrene, Delrin, Teflon, and aluminum. Results: The data shows that, as would be expected, having heterogeneities in the beam path does induce dose delivery error when using the TMR10 algorithm, with the largest errors being due to the heterogeneities with electron densities most different from that of water, i.e. air, Teflon, and aluminum. Additionally, the Convolution algorithm did account for the heterogeneous material and provided a more accurate predicted dose, in extreme cases up to a 7–12% improvement over the TMR10 algorithm. The convolution algorithm expected dose was accurate to within 3% in all cases. Conclusion: This study proves that the convolution algorithm is an improvement over the TMR10 algorithm when heterogeneities are present. More work is needed to determine what the heterogeneity size/volume limits are where this improvement exists, and in what clinical and/or research cases this would be relevant.« less
Bengwasan, Peejay D
2018-05-24
Child abuse and neglect have been associated with cognitive deficits, among other effects on child development. This study explores the prediction that child abuse and neglect has an impact on Stanford-Binet Intelligence Scales 5th Edition (SB5) IQ scores, in relation to gender, age and type of abuse experienced. 300 children with experiences of abuse and neglect were included in the study, comprising 100 sexually abused, 100 physically abused and 100 neglected children. Overall, all scores on the SB5 were found to be significantly lower than the minimum average scores on the test. Verbal IQ (VIQ) scores were likewise found to be significantly lower than Nonverbal IQ (NVIQ) scores. Full Scale IQ (FSIQ) scores did not reveal heterogeneity when gender was factored in. Age and type of abuse (with a moderate effect size) on the other hand, showed significant differences among groups. Statistical analyses of SB5 Factor Index Scores revealed that abused children, in general, have significantly higher Visual-Spatial Processing (VS) and Quantitative Reasoning (QR) scores and lower scores in Knowledge (KN). There was a large effect size found in such an analysis. Age (with a large effect size), gender and type of abuse (with moderate effect sizes) give significant variations to this obtained profile. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yuan; Bei, Hongbin; Wang, Yanli
Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less
The structure of Turkish trait-descriptive adjectives.
Somer, O; Goldberg, L R
1999-03-01
This description of the Turkish lexical project reports some initial findings on the structure of Turkish personality-related variables. In addition, it provides evidence on the effects of target evaluative homogeneity vs. heterogeneity (e.g., samples of well-liked target individuals vs. samples of both liked and disliked targets) on the resulting factor structures, and thus it provides a first test of the conclusions reached by D. Peabody and L. R. Goldberg (1989) using English trait terms. In 2 separate studies, and in 2 types of data sets, clear versions of the Big Five factor structure were found. And both studies replicated and extended the findings of Peabody and Goldberg; virtually orthogonal factors of relatively equal size were found in the homogeneous samples, and a more highly correlated set of factors with relatively large Agreeableness and Conscientiousness dimensions was found in the heterogeneous samples.
Wu, Yuan; Bei, Hongbin; Wang, Yanli; ...
2015-05-16
Deformation behavior and local strain evolutions upon loading and unloading of a bulk metallic glass (BMG) were systematically investigated by in situ digital image correlation (DIC). Distinct fluctuations and irreversible local strains were observed before the onset of macroscopic yielding. Statistical analysis shows that these fluctuations might be related to intrinsic structural heterogeneities, and that the evolution history and characteristics of local strain fields play an important role in the subsequent initiation of shear bands. Effects of sample size, pre-strain, and loading conditions were systematically analyzed in terms of the probability distributions of the resulting local strain fields. It ismore » found that a higher degree of local shear strain heterogeneity corresponds to a more ductile stressestrain curve. Implications of these findings are discussed for the design of new materials.« less
Effective techniques in healthy eating and physical activity interventions: a meta-regression.
Michie, Susan; Abraham, Charles; Whittington, Craig; McAteer, John; Gupta, Sunjai
2009-11-01
Meta-analyses of behavior change (BC) interventions typically find large heterogeneity in effectiveness and small effects. This study aimed to assess the effectiveness of active BC interventions designed to promote physical activity and healthy eating and investigate whether theoretically specified BC techniques improve outcome. Interventions, evaluated in experimental or quasi-experimental studies, using behavioral and/or cognitive techniques to increase physical activity and healthy eating in adults, were systematically reviewed. Intervention content was reliably classified into 26 BC techniques and the effects of individual techniques, and of a theoretically derived combination of self-regulation techniques, were assessed using meta-regression. Valid outcomes of physical activity and healthy eating. The 122 evaluations (N = 44,747) produced an overall pooled effect size of 0.31 (95% confidence interval = 0.26 to 0.36, I(2) = 69%). The technique, "self-monitoring," explained the greatest amount of among-study heterogeneity (13%). Interventions that combined self-monitoring with at least one other technique derived from control theory were significantly more effective than the other interventions (0.42 vs. 0.26). Classifying interventions according to component techniques and theoretically derived technique combinations and conducting meta-regression enabled identification of effective components of interventions designed to increase physical activity and healthy eating. PsycINFO Database Record (c) 2009 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Buckland, Hannah M.; Eychenne, Julia; Rust, Alison C.; Cashman, Katharine V.
2018-01-01
Interactions between clasts in pyroclastic density currents (PDCs) generate volcanic ash that can be dispersed to the atmosphere in co-PDC plumes, and due to its small size, is far-travelled. We designed a series of experiments to determine the effects of pyroclast vesicularity and crystal content on the efficiency and type of ash generated by abrasion. Two different pyroclastic materials were used: (1) basaltic-andesite pyroclasts from Fuego volcano (Guatemala) with 26-46% vesicularity and high groundmass crystallinity and (2) tephri-phonolite Avellino pumice (Vesuvius, Italy) with 55-75% vesicularity and low groundmass crystallinity. When milled, both clast types produced bimodal grain size distributions with fine ash modes between 4 and 5φ (32-63 μm). Although the vesicular Avellino pumice typically generated more ash than the denser Fuego pyroclasts, the ash-generating potential of a single pyroclast was independent of density, and instead governed by heterogeneous crystal and vesicle textures. One consequence of these heterogeneities was to cause the vesicular Avellino clasts to split in addition to abrading, which further enhanced abrasion efficiency. The matrix characteristics also affected ash shape and componentry, which will influence the elutriation and transport properties of ash in the atmosphere. The experimental abrasion successfully replicated some of the characteristics of natural co-PDC ash samples, as shown by similarities in the Adherence Factor, which measures the proportion of attached matrix on phenocrysts, of both the experimentally generated ash and natural co-PDC ash samples. Our results support previous studies, which have shown that abrasion is an effective mechanism for generating fine ash that is similar in size ( 5φ; 30 μm) to that found in co-PDC deposits. We further show that both the abundance and nature (shape, density, components, size distribution) of those ash particles are strongly controlled by the matrix properties of the abraded pyroclasts.
NASA Astrophysics Data System (ADS)
McGurk, Ross; Seco, Joao; Riboldi, Marco; Wolfgang, John; Segars, Paul; Paganetti, Harald
2010-03-01
The purpose of this work was to create a computational platform for studying motion in intensity modulated radiotherapy (IMRT). Specifically, the non-uniform rational B-spline (NURB) cardiac and torso (NCAT) phantom was modified for use in a four-dimensional Monte Carlo (4D-MC) simulation system to investigate the effect of respiratory-induced intra-fraction organ motion on IMRT dose distributions as a function of diaphragm motion, lesion size and lung density. Treatment plans for four clinical scenarios were designed: diaphragm peak-to-peak amplitude of 1 cm and 3 cm, and two lesion sizes—2 cm and 4 cm diameter placed in the lower lobe of the right lung. Lung density was changed for each phase using a conservation of mass calculation. Further, a new heterogeneous lung model was implemented and tested. Each lesion had an internal target volume (ITV) subsequently expanded by 15 mm isotropically to give the planning target volume (PTV). The PTV was prescribed to receive 72 Gy in 40 fractions. The MLC leaf sequence defined by the planning system for each patient was exported and used as input into the MC system. MC simulations using the dose planning method (DPM) code together with deformable image registration based on the NCAT deformation field were used to find a composite dose distribution for each phantom. These composite distributions were subsequently analyzed using information from the dose volume histograms (DVH). Lesion motion amplitude has the largest effect on the dose distribution. Tumor size was found to have a smaller effect and can be mitigated by ensuring the planning constraints are optimized for the tumor size. The use of a dynamic or heterogeneous lung density model over a respiratory cycle does not appear to be an important factor with a <= 0.6% change in the mean dose received by the ITV, PTV and right lung. The heterogeneous model increases the realism of the NCAT phantom and may provide more accurate simulations in radiation therapy investigations that use the phantom. This work further evaluates the NCAT phantom for use as a tool in radiation therapy research in addition to its extensive use in diagnostic imaging and nuclear medicine research. Our results indicate that the NCAT phantom, combined with 4D-MC simulations, is a useful tool in radiation therapy investigations and may allow the study of relative effects in many clinically relevant situations.
Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony
2016-01-01
Background The anti–human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab’s high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. Methods and Findings A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50–54 y; 95% CI 2.29–2.37) for the worst prognosis (ER−/PR−) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25–29 to 90–94 y (0.44 times for the age group 50–54 y; 95% CI 0.43–0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]–adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER−/PR− subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR− cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. Conclusions This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine. PMID:27504960
Gaythorpe, Katy; Adams, Ben
2016-05-21
Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Climate and topography explain range sizes of terrestrial vertebrates
NASA Astrophysics Data System (ADS)
Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei
2016-05-01
Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.
On the repeated measures designs and sample sizes for randomized controlled trials.
Tango, Toshiro
2016-04-01
For the analysis of longitudinal or repeated measures data, generalized linear mixed-effects models provide a flexible and powerful tool to deal with heterogeneity among subject response profiles. However, the typical statistical design adopted in usual randomized controlled trials is an analysis of covariance type analysis using a pre-defined pair of "pre-post" data, in which pre-(baseline) data are used as a covariate for adjustment together with other covariates. Then, the major design issue is to calculate the sample size or the number of subjects allocated to each treatment group. In this paper, we propose a new repeated measures design and sample size calculations combined with generalized linear mixed-effects models that depend not only on the number of subjects but on the number of repeated measures before and after randomization per subject used for the analysis. The main advantages of the proposed design combined with the generalized linear mixed-effects models are (1) it can easily handle missing data by applying the likelihood-based ignorable analyses under the missing at random assumption and (2) it may lead to a reduction in sample size, compared with the simple pre-post design. The proposed designs and the sample size calculations are illustrated with real data arising from randomized controlled trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Larger core size has superior technical and analytical accuracy in bladder tissue microarray.
Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries
2017-03-01
The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.
NASA Astrophysics Data System (ADS)
Valencia, Eliana; Cortés, Joaquín.; Puschmann, Heinrich
2000-12-01
Using Monte Carlo simulation experiments, a study is made of the effect of the superficial coordination number in a square lattice of sites for the monomer-dimer surface reaction (Ziff, Gulari and Barshad model) in the case of disordered substrates showing geometric heterogeneity of the sites, such as the percolation clusters. An analysis is made of the change in character of the phase transitions and in the size of the reactive window in the phase diagram, and the results were also compared with mean field theoretical calculations for disordered systems.
NASA Astrophysics Data System (ADS)
Gjetvaj, Filip; Russian, Anna; Gouze, Philippe; Dentz, Marco
2015-10-01
Both flow field heterogeneity and mass transfer between mobile and immobile domains have been studied separately for explaining observed anomalous transport. Here we investigate non-Fickian transport using high-resolution 3-D X-ray microtomographic images of Berea sandstone containing microporous cement with pore size below the setup resolution. Transport is computed for a set of representative elementary volumes and results from advection and diffusion in the resolved macroporosity (mobile domain) and diffusion in the microporous phase (immobile domain) where the effective diffusion coefficient is calculated from the measured local porosity using a phenomenological model that includes a porosity threshold (ϕθ) below which diffusion is null and the exponent n that characterizes tortuosity-porosity power-law relationship. We show that both flow field heterogeneity and microporosity trigger anomalous transport. Breakthrough curve (BTC) tailing is positively correlated to microporosity volume and mobile-immobile interface area. The sensitivity analysis showed that the BTC tailing increases with the value of ϕθ, due to the increase of the diffusion path tortuosity until the volume of the microporosity becomes negligible. Furthermore, increasing the value of n leads to an increase in the standard deviation of the distribution of effective diffusion coefficients, which in turn results in an increase of the BTC tailing. Finally, we propose a continuous time random walk upscaled model where the transition time is the sum of independently distributed random variables characterized by specific distributions. It allows modeling a 1-D equivalent macroscopic transport honoring both the control of the flow field heterogeneity and the multirate mass transfer between mobile and immobile domains.
Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution
Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.
1997-01-01
Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.
NASA Astrophysics Data System (ADS)
Gonzales, H. B.; Ravi, S.; Li, J. J.; Sankey, J. B.
2016-12-01
Hydrological and aeolian processes control the redistribution of soil and nutrients in arid and semi arid environments thereby contributing to the formation of heterogeneous patchy landscapes with nutrient-rich resource islands surrounded by nutrient depleted bare soil patches. The differential trapping of soil particles by vegetation canopies may result in textural changes beneath the vegetation, which, in turn, can alter the hydrological processes such as infiltration and runoff. We conducted infiltration experiments and soil grain size analysis of several shrub (Larrea tridentate) and grass (Bouteloua eriopoda) microsites and in a heterogeneous landscape in the Chihuahuan desert (New Mexico, USA). Our results indicate heterogeneity in soil texture and infiltration patterns under grass and shrub microsites. We assessed the trapping effectiveness of vegetation canopies using a novel computational fluid dynamics (CFD) approach. An open-source software (OpenFOAM) was used to validate the data gathered from particle size distribution (PSD) analysis of soil within the shrub and grass microsites and their porosities (91% for shrub and 68% for grass) determined using terrestrial LiDAR surveys. Three-dimensional architectures of the shrub and grass were created using an open-source computer-aided design (CAD) software (Blender). The readily available solvers within the OpenFOAM architecture were modified to test the validity and optimize input parameters in assessing trapping efficiencies of sparse vegetation against aeolian sediment flux. The results from the numerical simulations explained the observed textual changes under grass and shrub canopies and highlighted the role of sediment trapping by canopies in structuring patch-scale hydrological processes.
Tran, Ulrich S.; Hofer, Agnes A.; Voracek, Martin
2014-01-01
Research from various countries consistently reported an advantage of boys over girls in general knowledge and was also suggestive of some overall trends regarding specific domains of general knowledge that were speculated to stem from biologically differentiated interests. However, results were heterogeneous and, as of yet, had not been evaluated meta-analytically. Moreover, previous research drew on overly homogeneous high-school or undergraduate samples whose representativeness appears problematic; mostly, likely moderators, such as school type, student age or parental education, were also not directly investigated or controlled for. We provide a meta-analytical aggregation of available results regarding sex differences in general knowledge and present new data, investigating the psychometric properties of the General Knowledge Test (GKT), on which previous research primarily relied, and explored sex differences in a large and heterogeneous Austrian high-school student sample (N = 1088). The aggregated sex effect in general knowledge was of medium size in previous research, but differences in specific domains were heterogeneous across countries and only modest at best. Large sex differences in our data could be explained to a large part by school-related moderators (school type, school, student age, parental education) and selection processes. Boys had a remaining advantage over girls that was only small in size and that was consistent with the magnitude of sex differences in general intelligence. Analysis of the GKT yielded no evidence of biologically differentiated interests, but of a specific interest in the humanities among girls. In conclusion, previous research likely overestimated sex differences in general knowledge. PMID:25347190
Tran, Ulrich S; Hofer, Agnes A; Voracek, Martin
2014-01-01
Research from various countries consistently reported an advantage of boys over girls in general knowledge and was also suggestive of some overall trends regarding specific domains of general knowledge that were speculated to stem from biologically differentiated interests. However, results were heterogeneous and, as of yet, had not been evaluated meta-analytically. Moreover, previous research drew on overly homogeneous high-school or undergraduate samples whose representativeness appears problematic; mostly, likely moderators, such as school type, student age or parental education, were also not directly investigated or controlled for. We provide a meta-analytical aggregation of available results regarding sex differences in general knowledge and present new data, investigating the psychometric properties of the General Knowledge Test (GKT), on which previous research primarily relied, and explored sex differences in a large and heterogeneous Austrian high-school student sample (N = 1088). The aggregated sex effect in general knowledge was of medium size in previous research, but differences in specific domains were heterogeneous across countries and only modest at best. Large sex differences in our data could be explained to a large part by school-related moderators (school type, school, student age, parental education) and selection processes. Boys had a remaining advantage over girls that was only small in size and that was consistent with the magnitude of sex differences in general intelligence. Analysis of the GKT yielded no evidence of biologically differentiated interests, but of a specific interest in the humanities among girls. In conclusion, previous research likely overestimated sex differences in general knowledge.
Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments
NASA Astrophysics Data System (ADS)
Ghosh, Surya K.; Cherstvy, Andrey G.; Grebenkov, Denis S.; Metzler, Ralf
2016-01-01
A topic of intense current investigation pursues the question of how the highly crowded environment of biological cells affects the dynamic properties of passively diffusing particles. Motivated by recent experiments we report results of extensive simulations of the motion of a finite sized tracer particle in a heterogeneously crowded environment made up of quenched distributions of monodisperse crowders of varying sizes in finite circular two-dimensional domains. For given spatial distributions of monodisperse crowders we demonstrate how anomalous diffusion with strongly non-Gaussian features arises in this model system. We investigate both biologically relevant situations of particles released either at the surface of an inner domain or at the outer boundary, exhibiting distinctly different features of the observed anomalous diffusion for heterogeneous distributions of crowders. Specifically we reveal an asymmetric spreading of tracers even at moderate crowding. In addition to the mean squared displacement (MSD) and local diffusion exponent we investigate the magnitude and the amplitude scatter of the time averaged MSD of individual tracer trajectories, the non-Gaussianity parameter, and the van Hove correlation function. We also quantify how the average tracer diffusivity varies with the position in the domain with a heterogeneous radial distribution of crowders and examine the behaviour of the survival probability and the dynamics of the tracer survival probability. Inter alia, the systems we investigate are related to the passive transport of lipid molecules and proteins in two-dimensional crowded membranes or the motion in colloidal solutions or emulsions in effectively two-dimensional geometries, as well as inside supercrowded, surface adhered cells.
Hanselman, Paul; Rozek, Christopher S.; Grigg, Jeffrey; Borman, Geoffrey D.
2016-01-01
Brief, targeted self-affirmation writing exercises have recently been offered as a way to reduce racial achievement gaps, but evidence about their effects in educational settings is mixed, leaving ambiguity about the likely benefits of these strategies if implemented broadly. A key limitation in interpreting these mixed results is that they come from studies conducted by different research teams with different procedures in different settings; it is therefore impossible to isolate whether different effects are the result of theorized heterogeneity, unidentified moderators, or idiosyncratic features of the different studies. We addressed this limitation by conducting a well-powered replication of self-affirmation in a setting where a previous large-scale field experiment demonstrated significant positive impacts, using the same procedures. We found no evidence of effects in this replication study and estimates were precise enough to reject benefits larger than an effect size of 0.10. These null effects were significantly different from persistent benefits in the prior study in the same setting, and extensive testing revealed that currently theorized moderators of self-affirmation effects could not explain the difference. These results highlight the potential fragility of self-affirmation in educational settings when implemented widely and the need for new theory, measures, and evidence about the necessary conditions for self-affirmation success. PMID:28450753
NASA Astrophysics Data System (ADS)
Chernov, N. N.; Zagray, N. P.; Laguta, M. V.; Varenikova, A. Yu
2018-05-01
The article describes the research of the method of localization and determining the size of heterogeneity in biological tissues. The equation for the acoustic harmonic wave, which propagates in the positive direction, is taken as the main one. A three-dimensional expression that describes the field of secondary sources at the observation point is obtained. The simulation of the change of the amplitude values of the vibrational velocity of the second harmonic of the acoustic wave at different coordinates of the inhomogeneity location in three-dimensional space is carried out. For the convenience of mathematical calculations, the area of heterogeneity is reduced to a point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adnani, N
Purpose: To commission the Monaco Treatment Planning System for the Novalis Tx machine. Methods: The commissioning of Monte-Carlo (MC), Collapsed Cone (CC) and electron Monte-Carlo (eMC) beam models was performed through a series of measurements and calculations in medium and in water. In medium measurements relied Octavius 4D QA system with the 1000 SRS detector array for field sizes less than 4 cm × 4 cm and the 1500 detector array for larger field sizes. Heterogeneity corrections were validated using a custom built phantom. Prior to clinical implementation, an end to end testing of a Prostate and H&N VMAT plansmore » was performed. Results: Using a 0.5% uncertainty and 2 mm grid sizes, Tables I and II summarize the MC validation at 6 MV and 18 MV in both medium and water. Tables III and IV show similar comparisons for CC. Using the custom heterogeneity phantom setup of Figure 1 and IGRT guidance summarized in Figure 2, Table V lists the percent pass rate for a 2%, 2 mm gamma criteria at 6 and 18 MV for both MC and CC. The relationship between MC calculations settings of uncertainty and grid size and the gamma passing rate for a prostate and H&N case is shown in Table VI. Table VII lists the results of the eMC calculations compared to measured data for clinically available applicators and Table VIII for small field cutouts. Conclusion: MU calculations using MC are highly sensitive to uncertainty and grid size settings. The difference can be of the order of several per cents. MC is superior to CC for small fields and when using heterogeneity corrections, regardless of field size, making it more suitable for SRS, SBRT and VMAT deliveries. eMC showed good agreement with measurements down to 2 cm − 2 cm field size.« less
Searles, J A; Carpenter, J F; Randolph, T W
2001-07-01
In a companion paper we show that the freezing of samples in vials by shelf-ramp freezing results in significant primary drying rate heterogeneity because of a dependence of the ice crystal size on the nucleation temperature during freezing.1 The purpose of this study was to test the hypothesis that post-freezing annealing, in which the product is held at a predetermined temperature for a specified duration, can reduce freezing-induced heterogeneity in sublimation rates. In addition, we test the impact of annealing on primary drying rates. Finally, we use the kinetics of relaxations during annealing to provide a simple measurement of T(g)', the glass transition temperature of the maximally freeze-concentrated amorphous phase, under conditions and time scales most appropriate for industrial lyophilization cycles. Aqueous solutions of hydroxyethyl starch (HES), sucrose, and HES:sucrose were either frozen by placement on a shelf while the temperature was reduced ("shelf-ramp frozen") or by immersion into liquid nitrogen. Samples were then annealed for various durations over a range of temperatures and partially lyophilized to determine the primary drying rate. The morphology of fully dried liquid nitrogen-frozen samples was examined using scanning electron microscopy. Annealing reduced primary drying rate heterogeneity for shelf-ramp frozen samples, and resulted in up to 3.5-fold increases in the primary drying rate. These effects were due to increased ice crystal sizes, simplified amorphous structures, and larger and more numerous holes on the cake surface of annealed samples. Annealed HES samples dissolved slightly faster than their unannealed counterparts. Annealing below T(g)' did not result in increased drying rates. We present a simple new annealing-lyophilization method of T(g)' determination that exploits this phenomenon. It can be carried out with a balance and a freeze-dryer, and has the additional advantage that a large number of candidate formulations can be evaluated simultaneously.
Silica-based PLC with heterogeneously-integrated PDs for one-chip DP-QPSK receiver.
Kurata, Yu; Nasu, Yusuke; Tamura, Munehisa; Kasahara, Ryoichi; Aozasa, Shinichi; Mizuno, Takayuki; Yokoyama, Haruki; Tsunashima, Satoshi; Muramoto, Yoshifumi
2012-12-10
To realize a DP-QPSK receiver PLC, we heterogeneously integrated eight high-speed PDs on a silica-based PLC platform with a PBS, 90-degree optical hybrids and a VOA. The use of a 2.5%-Δ waveguide reduced the receiver PLC size to 11 mm x 11 mm. We successfully demonstrated 32 Gbaud DP-QPSK signal demodulation with the receiver PLC.
ERIC Educational Resources Information Center
Shieh, Gwowen; Jan, Show-Li
2015-01-01
The general formulation of a linear combination of population means permits a wide range of research questions to be tested within the context of ANOVA. However, it has been stressed in many research areas that the homogeneous variances assumption is frequently violated. To accommodate the heterogeneity of variance structure, the…
2012-01-01
of exploiting a wide range of habitats, reported population parameters such as density and survival vary widely indicating variation in habitat quality...more strongly influenced by the “riskiness” of the habitat than by resource availability [8]. Swift fox population parameters in different landscapes...we explored the effects of landscape heterogeneity on population parameters likely to reflect habitat quality, such as population density, home range
Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.
Tailoring the Nanoporous Architecture of Hydrogels to Exploit Entropic Trapping
NASA Astrophysics Data System (ADS)
Shi, Nan; Ugaz, Victor M.
2010-09-01
Macromolecules embedded in a nanoporous matrix display anomalous transport behavior in the entropic trapping regime. But these phenomena have not been widely explored in hydrogel matrices because it has not been clear how to link them to the underlying heterogeneous nanopore morphology. Here we introduce a theoretical model that establishes this connection and describe microchip DNA electrophoresis experiments that demonstrate how entropic trapping effects can be exploited to yield a trend of increasing resolving power with DNA size (the opposite of what is conventionally observed).
Streaming Clumps Ejection Model and the Heterogeneous Inner Coma of Comet Wild 2
NASA Technical Reports Server (NTRS)
Clark, B. C.; Economou, T. E.; Green, S. F.; Sandford, S. A.; Zolensky, M. E.
2004-01-01
The conventional concept of cometary comae is that they are dominated by fine particulates released individually by sublimation of surface volatiles and subsequent entrainment in the near-surface gas. It has long been recognized that such particulates could be relatively large, with early estimates that objects perhaps up to one meter in size may be levitated from the surface of the typical cometary nucleus. However, the general uniformity and small average particulate size of observed comae and the relatively smooth, monotonic increases and decreases in particle density during the Giotto flythrough of comet Halley s coma in 1986 reinforced the view that the bulk of the particles are released at the surface, are fine-sized and inert. Jets have been interpreted as geometrically constrained release of these particulates. With major heterogeneities observed during the recent flythrough of the inner coma of comet Wild 2, these views deserve reconsideration.
Fullerton, A.H.; Torgersen, Christian E.; Lawer, J.J.; Steel, E. A.; Ebersole, J.L.; Lee, S.Y.
2018-01-01
Climate-change driven increases in water temperature pose challenges for aquatic organisms. Predictions of impacts typically do not account for fine-grained spatiotemporal thermal patterns in rivers. Patches of cooler water could serve as refuges for anadromous species like salmon that migrate during summer. We used high-resolution remotely sensed water temperature data to characterize summer thermal heterogeneity patterns for 11,308 km of second–seventh-order rivers throughout the Pacific Northwest and northern California (USA). We evaluated (1) water temperature patterns at different spatial resolutions, (2) the frequency, size, and spacing of cool thermal patches suitable for Pacific salmon (i.e., contiguous stretches ≥ 0.25 km, ≤ 15 °C and ≥ 2 °C, aooler than adjacent water), and (3) potential influences of climate change on availability of cool patches. Thermal heterogeneity was nonlinearly related to the spatial resolution of water temperature data, and heterogeneity at fine resolution (< 1 km) would have been difficult to quantify without spatially continuous data. Cool patches were generally > 2.7 and < 13.0 km long, and spacing among patches was generally > 5.7 and < 49.4 km. Thermal heterogeneity varied among rivers, some of which had long uninterrupted stretches of warm water ≥ 20 °C, and others had many smaller cool patches. Our models predicted little change in future thermal heterogeneity among rivers, but within-river patterns sometimes changed markedly compared to contemporary patterns. These results can inform long-term monitoring programs as well as near-term climate-adaptation strategies.
Matrix cracking in composite laminates with resin-rich interlaminar layers
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Dost, Ernest F.; Mccool, J. W.; Grande, D. H.
1991-01-01
Fracture mechanics analysis and test data for a toughened composite material that has a resin-rich interlaminar layer (RIL) were used to investigate in situ strength. Exposure to a range of environmental conditions was considered. A parametric analysis study was performed to judge the effects of laminate and material variables. A finite thickness effect, indicating an interaction between ply group thickness and effective flaw size, was found dominant. The magnitude of the effect was directly related to RIL stiffness. In situ strength was found to decrease with decreasing RIL stiffness. This work indicates the need to use a fracture mechanics model of actual lamina microstructure and heterogeneous properties to predict in situ strength in materials with RIL.
Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.
2007-01-01
Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.
Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation
Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane
2017-06-02
Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less
Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir
2014-09-01
In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.
Uranium distribution and 'excessive' U-He ages in iron meteoritic troilite
NASA Technical Reports Server (NTRS)
Fisher, D. E.
1985-01-01
Fission tracking techniques were used to measure the uranium distribution in meteoritic troilite and graphite. The obtained fission tracking data showed a heterogeneous distribution of tracks with a significant portion of track density present in the form of uranium clusters at least 10 microns in size. The matrix containing the clusters was also heterogeneous in composition with U concentrations of about 0.2-4.7 ppb. U/He ages could not be estimated on the basis of the heterogeneous U distributions, so previously reported estimates of U/He ages in the presolar range are probably invalid.
Dependence of crystal size on the catalytic performance of a porous coordination polymer.
Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu
2015-02-14
Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.
Long-range Ising model for credit portfolios with heterogeneous credit exposures
NASA Astrophysics Data System (ADS)
Kato, Kensuke
2016-11-01
We propose the finite-size long-range Ising model as a model for heterogeneous credit portfolios held by a financial institution in the view of econophysics. The model expresses the heterogeneity of the default probability and the default correlation by dividing a credit portfolio into multiple sectors characterized by credit rating and industry. The model also expresses the heterogeneity of the credit exposure, which is difficult to evaluate analytically, by applying the replica exchange Monte Carlo method to numerically calculate the loss distribution. To analyze the characteristics of the loss distribution for credit portfolios with heterogeneous credit exposures, we apply this model to various credit portfolios and evaluate credit risk. As a result, we show that the tail of the loss distribution calculated by this model has characteristics that are different from the tail of the loss distribution of the standard models used in credit risk modeling. We also show that there is a possibility of different evaluations of credit risk according to the pattern of heterogeneity.
Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan
2014-01-01
Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725
Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César
2017-10-05
The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven
Cabrol, N.A.; Herkenhoff, K. E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B. A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.
2008-01-01
A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wen; Zhou, Zhaofeng, E-mail: zfzhou@xtu.edu.cn; Zhong, Yuan
2015-11-15
Incorporating the bond order-length-strength (BOLS) notion with the Ising premise, we have modeled the size dependence of the Neel transition temperature (T{sub N}) of antiferromagnetic nanomaterials. Reproduction of the size trends reveals that surface atomic undercoordination induces bond contraction, and interfacial hetero-coordination induces bond nature alteration. Both surface and interface of nanomaterials modulate the T{sub N} by adjusting the atomic cohesive energy. The T{sub N} is related to the atomic cohesive/exchange energy that is lowered by the coordination number (CN) imperfection of the undercoordinated atoms near the surface and altered by the changed bond nature of epitaxial interface. A numericalmore » match between predictions and measurements reveals that the T{sub N} of antiferromagnetic nanomaterials declines with reduced size and increases with both the strengthening of heterogeneous bond and the increase of the bond number.« less
A Meta-Analysis on Antecedents and Outcomes of Detachment from Work.
Wendsche, Johannes; Lohmann-Haislah, Andrea
2016-01-01
Detachment from work has been proposed as an important non-work experience helping employees to recover from work demands. This meta-analysis (86 publications, k = 91 independent study samples, N = 38,124 employees) examined core antecedents and outcomes of detachment in employee samples. With regard to outcomes, results indicated average positive correlations between detachment and self-reported mental (i.e., less exhaustion, higher life satisfaction, more well-being, better sleep) and physical (i.e., lower physical discomfort) health, state well-being (i.e., less fatigue, higher positive affect, more intensive state of recovery), and task performance (small to medium sized effects). However, average relationships between detachment and physiological stress indicators and work motivation were not significant while associations with contextual performance and creativity were significant, but negative. Concerning work characteristics, as expected, job demands were negatively related and job resources were positively related to detachment (small sized effects). Further, analyses revealed that person characteristics such as negative affectivity/neuroticism (small sized effect) and heavy work investment (medium sized effect) were negatively related to detachment whereas detachment and demographic variables (i.e., age and gender) were not related. Moreover, we found a medium sized average negative relationship between engagement in work-related activities during non-work time and detachment. For most of the examined relationships heterogeneity of effect sizes was moderate to high. We identified study design, samples' gender distribution, and affective valence of work-related thoughts as moderators for some of these aforementioned relationships. The results of this meta-analysis point to detachment as a non-work (recovery) experience that is influenced by work-related and personal characteristics which in turn is relevant for a range of employee outcomes.
A Meta-Analysis on Antecedents and Outcomes of Detachment from Work
Wendsche, Johannes; Lohmann-Haislah, Andrea
2017-01-01
Detachment from work has been proposed as an important non-work experience helping employees to recover from work demands. This meta-analysis (86 publications, k = 91 independent study samples, N = 38,124 employees) examined core antecedents and outcomes of detachment in employee samples. With regard to outcomes, results indicated average positive correlations between detachment and self-reported mental (i.e., less exhaustion, higher life satisfaction, more well-being, better sleep) and physical (i.e., lower physical discomfort) health, state well-being (i.e., less fatigue, higher positive affect, more intensive state of recovery), and task performance (small to medium sized effects). However, average relationships between detachment and physiological stress indicators and work motivation were not significant while associations with contextual performance and creativity were significant, but negative. Concerning work characteristics, as expected, job demands were negatively related and job resources were positively related to detachment (small sized effects). Further, analyses revealed that person characteristics such as negative affectivity/neuroticism (small sized effect) and heavy work investment (medium sized effect) were negatively related to detachment whereas detachment and demographic variables (i.e., age and gender) were not related. Moreover, we found a medium sized average negative relationship between engagement in work-related activities during non-work time and detachment. For most of the examined relationships heterogeneity of effect sizes was moderate to high. We identified study design, samples' gender distribution, and affective valence of work-related thoughts as moderators for some of these aforementioned relationships. The results of this meta-analysis point to detachment as a non-work (recovery) experience that is influenced by work-related and personal characteristics which in turn is relevant for a range of employee outcomes. PMID:28133454
Maiti, Rituparna; Mishra, Biswa Ranjan; Hota, Debasish
2017-01-01
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive, neuromodulatory tool, has been used to reduce craving in different substance use disorders. There are some studies that have reported conflicting and inconclusive results; therefore, this meta-analysis was conducted to evaluate the effect of high-frequency rTMS on craving in substance use disorder and to investigate the reasons behind the inconsistency across the studies. The authors searched clinical trials from MEDLINE, Cochrane databases, and International Clinical Trials Registry Platform. The PRISMA guidelines, as well as recommended meta-analysis practices, were followed in the selection process, analysis, and reporting of the findings. The effect estimate used was the standardized mean difference (Hedge's g), and heterogeneity across the considered studies was explored using subgroup analyses. The quality assessment was done using the Cochrane risk of bias tool, and sensitivity analysis was performed to check the influences on effect size by statistical models. After screening and assessment of eligibility, finally 10 studies were included for meta-analysis, which includes six studies on alcohol and four studies on nicotine use disorder. The random-model analysis revealed a pooled effect size of 0.75 (95% CI=0.29 to 1.21, p=0.001), whereas the fixed-model analysis showed a large effect size of 0.87 (95% CI=0.63 to 1.12, p<0.00001). Subgroup analysis for alcohol use disorder showed an effect size of -0.06 (95% CI=-0.89 to 0.77, p=0.88). In the case of nicotine use disorder, random-model analysis revealed an effect size of 1.00 (95% CI=0.48 to 1.55, p=0.0001), whereas fixed-model analysis also showed a large effect size of 0.96 (95% CI=0.71 to 1.22). The present meta-analysis identified a beneficial effect of high-frequency rTMS on craving associated with nicotine use disorder but not alcohol use disorder.
NASA Astrophysics Data System (ADS)
Chao, Guo-Shan; Sung, Kung-Bin
2010-02-01
Backscattered light spectra have been used to extract size distribution of cell nuclei in epithelial tissues for noninvasive detection of precancerous lesions. In existing experimental studies, size estimation is achieved by assuming nuclei as homogeneous spheres or spheroids and fitting the measured data with models based on Mie theory. However, the validity of simplifying nuclei as homogeneous spheres has not been thoroughly examined. In this study, we investigate the spectral characteristics of backscattering from models of spheroidal nuclei under plane wave illumination using three-dimensional finite-difference time-domain (FDTD) simulation. A modulated Gaussian pulse is used to obtain wavelength dependent scattering intensity with a single FDTD run. The simulated model of nuclei consists of a nucleolus and randomly distributed chromatin condensation in homogeneous cytoplasm and nucleoplasm. The results show that backscattering spectra from spheroidal nuclei have similar oscillating patterns to those from homogeneous spheres with the diameter equal to the projective length of the spheroidal nucleus along the propagation direction. The strength of backscattering is enhanced in heterogeneous spheroids as compared to homogeneous spheroids. The degree of which backscattering spectra of heterogeneous nuclei deviate from Mie theory is highly dependent on the distribution of chromatin/nucleolus but not sensitive to nucleolar size, refractive index fluctuation or chromatin density.
The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review
Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.
2016-01-01
Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168
New Evidence on the Relationship Between Climate and Conflict
NASA Astrophysics Data System (ADS)
Burke, M.
2015-12-01
We synthesize a large new body of research on the relationship between climate and conflict. We consider many types of human conflict, ranging from interpersonal conflict -- domestic violence, road rage, assault, murder, and rape -- to intergroup conflict -- riots, coups, ethnic violence, land invasions, gang violence, and civil war. After harmonizing statistical specifications and standardizing estimated effect sizes within each conflict category, we implement a meta-analysis that allows us to estimate the mean effect of climate variation on conflict outcomes as well as quantify the degree of variability in this effect size across studies. Looking across more than 50 studies, we find that deviations from moderate temperatures and precipitation patterns systematically increase the risk of conflict, often substantially, with average effects that are highly statistically significant. We find that contemporaneous temperature has the largest average effect by far, with each 1 standard deviation increase toward warmer temperatures increasing the frequency of contemporaneous interpersonal conflict by 2% and of intergroup conflict by more than 10%. We also quantify substantial heterogeneity in these effect estimates across settings.
NASA Astrophysics Data System (ADS)
Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.
1993-05-01
Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.
NASA Technical Reports Server (NTRS)
Lindstrom, Marilyn M.; Shervais, John W.; Vetter, Scott K.
1993-01-01
Most of the recent advances in lunar petrology are the direct result of breccia pull-apart studies, which have identified a wide array of new highland and mare basalt rock types that occur only as clasts within the breccias. These rocks show that the lunar crust is far more complex than suspected previously, and that processes such as magma mixing and wall-rock assimilation were important in its petrogenesis. These studies are based on the implicit assumption that the breccia clasts, which range in size from a few mm to several cm across, are representative of the parent rock from which they were derived. In many cases, the aliquot allocated for analysis may be only a few grain diameters across. While this problem is most acute for coarse-grained highland rocks, it can also cause considerable uncertainty in the analysis of mare basalt clasts. Similar problems arise with small aliquots of individual hand samples. Our study of sample heterogeneity in 9 samples of Apollo 15 olivine normative basalt (ONB) which exhibit a range in average grain size from coarse to fine are reported. Seven of these samples have not been analyzed previously, one has been analyzed by INAA only, and one has been analyzed by XRF+INAA. Our goal is to assess the effects of small aliquot size on the bulk chemistry of large mare basalt samples, and to extend this assessment to analyses of small breccia clasts.
Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium
NASA Astrophysics Data System (ADS)
Peng, G. S.; Wang, Y.; Fan, Z.
2018-04-01
Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.
Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium
NASA Astrophysics Data System (ADS)
Peng, G. S.; Wang, Y.; Fan, Z.
2018-06-01
Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.
Fluctuating Asymmetry and Environmental Stress: Understanding the Role of Trait History
De Coster, Greet; Van Dongen, Stefan; Malaki, Phillista; Muchane, Muchai; Alcántara-Exposito, Angelica; Matheve, Hans; Lens, Luc
2013-01-01
While fluctuating asymmetry (FA; small, random deviations from perfect symmetry in bilaterally symmetrical traits) is widely regarded as a proxy for environmental and genetic stress effects, empirical associations between FA and stress are often weak or heterogeneous among traits. A conceptually important source of heterogeneity in relationships with FA is variation in the selection history of the trait(s) under study, i.e. traits that experienced a (recent) history of directional change are predicted to be developmentally less stable, potentially through the loss of canalizing modifiers. Here we applied X-ray photography on museum specimens and live captures to test to what extent the magnitude of FA and FA-stress relationships covary with directional shifts in traits related to the flight apparatus of four East-African rainforest birds that underwent recent shifts in habitat quality and landscape connectivity. Both the magnitude and direction of phenotypic change varied among species, with some traits increasing in size while others decreased or maintained their original size. In three of the four species, traits that underwent larger directional changes were less strongly buffered against random perturbations during their development, and traits that increased in size over time developed more asymmetrically than those that decreased. As we believe that spurious relationships due to biased comparisons of historic (museum specimens) and current (field captures) samples can be ruled out, these results support the largely untested hypothesis that directional shifts may increase the sensitivity of developing traits to random perturbations of environmental or genetic origin. PMID:23472123
Continuous-feed optical sorting of aerosol particles
Curry, J. J.; Levine, Zachary H.
2016-01-01
We consider the problem of sorting, by size, spherical particles of order 100 nm radius. The scheme we analyze consists of a heterogeneous stream of spherical particles flowing at an oblique angle across an optical Gaussian mode standing wave. Sorting is achieved by the combined spatial and size dependencies of the optical force. Particles of all sizes enter the flow at a point, but exit at different locations depending on size. Exiting particles may be detected optically or separated for further processing. The scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. We performed detailed Monte Carlo simulations of particle trajectories through the optical field under the influence of convective air flow. We also developed a method for deriving effective velocities and diffusion constants from the Fokker-Planck equation that can generate equivalent results much more quickly. With an optical wavelength of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, for which the optical force vanishes, may be sorted with a resolution below 1 nm. PMID:27410570
Shigeta, Masaya; Watanabe, Takayuki
2016-03-07
A computational investigation using a unique model and a solution algorithm was conducted, changing only the saturation pressure of one material artificially during nanopowder formation in thermal plasma fabrication, to highlight the effects of the saturation pressure difference between a metal and silicon. The model can not only express any profile of particle size-composition distribution for a metal-silicide nanopowder even with widely ranging sizes from sub-nanometers to a few hundred nanometers, but it can also simulate the entire growth process involving binary homogeneous nucleation, binary heterogeneous co-condensation, and coagulation among nanoparticles with different compositions. Greater differences in saturation pressures cause a greater time lag for co-condensation of two material vapors during the collective growth of the metal-silicide nanopowder. The greater time lag for co-condensation results in a wider range of composition of the mature nanopowder.
Causes and consequences of collective turnover: a meta-analytic review.
Heavey, Angela L; Holwerda, Jacob A; Hausknecht, John P
2013-05-01
Given growing interest in collective turnover (i.e., employee turnover at unit and organizational levels), the authors propose an organizing framework for its antecedents and consequences and test it using meta-analysis. Based on analysis of 694 effect sizes drawn from 82 studies, results generally support expected relationships across the 6 categories of collective turnover antecedents, with somewhat stronger and more consistent results for 2 categories: human resource management inducements/investments and job embeddedness signals. Turnover was negatively related to numerous performance outcomes, more strongly so for proximal rather than distal outcomes. Several theoretically grounded moderators help to explain average effect-size heterogeneity for both antecedents and consequences of turnover. Relationships generally did not vary according to turnover type (e.g., total or voluntary), although the relative absence of collective-level involuntary turnover studies is noted and remains an important avenue for future research. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.
Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie
2008-12-01
Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.