Science.gov

Sample records for effective antimicrobial activity

  1. Antimicrobial Activity.

    PubMed

    2016-01-01

    Natural products of higher plants may possess a new source of antimicrobial agents with possibly novel mechanisms of action. They are effective in the treatment of infectious diseases while simultaneously mitigating many of the side effects that are often associated with conventional antimicrobials. A method using scanning electron microscope (SEM) to study the morphology of the bacterial and fungal microbes and thus determining antimicrobial activity is presented in the chapter.

  2. Antimicrobial activity of spices.

    PubMed

    Arora, D S; Kaur, J

    1999-08-01

    Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.

  3. A new effective assay to detect antimicrobial activity of filamentous fungi.

    PubMed

    Pereira, Eric; Santos, Ana; Reis, Francisca; Tavares, Rui M; Baptista, Paula; Lino-Neto, Teresa; Almeida-Aguiar, Cristina

    2013-01-15

    The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time.

  4. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great significance to reduce this problem. The presented work is focused on the study of the effect of encapsulation of selected plant and animal antimicrobial substances (herbs, spices, lysozyme and nisin) on their activity and stability. Antimicrobial components were packaged into liposomes and polysaccharide particles (alginate, chitosan and starch). Antimicrobial activity was tested against two Gram-positive (Bacillus subtilis and Micrococcus luteus) and two Gram-negative (Escherichia coli and Serratia marcescens) bacteria. Encapsulation was successful in all types of polysaccharide particles and liposomes. The prepared particles exhibited very good long-term stability, especially in aqueous conditions. Antimicrobial activity was retained in all types of particles. Liposomes with encapsulated herb and spice extracts exhibited very good inhibitory effect against all tested bacterial strains. Most of herbal extracts had very good antimicrobial effect against the tested Gram-negative bacterial strains, while Gram-positive bacteria were more sensitive to lysozyme particles. Thus, particles with co-encapsulated herbs and lysozyme are more active against different types of bacteria, and more stable and more effective during long-term storage. Particles with encapsulated mixture of selected plant extracts and lysozyme could be used as complex antimicrobial preparation with controlled release in the production of food and food supplements, pharmaceutical and cosmetic industries. PMID:27956862

  5. Effect of Fatty Acid Conjugation on Antimicrobial Peptide Activity

    DTIC Science & Technology

    2004-12-01

    killing mechanism of antimicrobial peptides makes them an interesting alternative to traditional antibiotics, as target bacteria may be less able...C14-AKK and C16-AKK to within a 7% error are 220 and 16mM respectively. Since amphipathicity is requisite for antimicrobial action KAK is not...Schnaare, 2000: Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrobial Agents

  6. Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha.

    PubMed

    Lorenzón, E N; Cespedes, G F; Vicente, E F; Nogueira, L G; Bauab, T M; Castro, M S; Cilli, E M

    2012-06-01

    It is well known that cationic antimicrobial peptides (cAMPs) are potential microbicidal agents for the increasing problem of antimicrobial resistance. However, the physicochemical properties of each peptide need to be optimized for clinical use. To evaluate the effects of dimerization on the structure and biological activity of the antimicrobial peptide Ctx-Ha, we have synthesized the monomeric and three dimeric (Lys-branched) forms of the Ctx-Ha peptide by solid-phase peptide synthesis using a combination of 9-fluorenylmethyloxycarbonyl (Fmoc) and t-butoxycarbonyl (Boc) chemical approaches. The antimicrobial activity assay showed that dimerization decreases the ability of the peptide to inhibit growth of bacteria or fungi; however, the dimeric analogs displayed a higher level of bactericidal activity. In addition, a dramatic increase (50 times) in hemolytic activity was achieved with these analogs. Permeabilization studies showed that the rate of carboxyfluorescein release was higher for the dimeric peptides than for the monomeric peptide, especially in vesicles that contained sphingomyelin. Despite different biological activities, the secondary structure and pore diameter were not significantly altered by dimerization. In contrast to the case for other dimeric cAMPs, we have shown that dimerization selectively decreases the antimicrobial activity of this peptide and increases the hemolytic activity. The results also show that the interaction between dimeric peptides and the cell wall could be responsible for the decrease of the antimicrobial activity of these peptides.

  7. Automation of antimicrobial activity screening.

    PubMed

    Forry, Samuel P; Madonna, Megan C; López-Pérez, Daneli; Lin, Nancy J; Pasco, Madeleine D

    2016-03-01

    Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity.

  8. Screening of antimicrobial activity and cytotoxic effects of two Cladonia species.

    PubMed

    Açikgöz, Birkan; Karalti, Iskender; Ersöz, Melike; Coşkun, Zeynep M; Cobanoğlu, Gülşah; Sesal, Cenk

    2013-01-01

    The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more significant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 microg/ml for the extracts from C. rangiformis and C. convoluta, respectively.

  9. Heat treatment effects on the antimicrobial activity of macrolide and lincosamide antibiotics in milk.

    PubMed

    Zorraquino, M A; Althaus, R L; Roca, M; Molina, M P

    2011-02-01

    Antibiotic residues in milk can cause serious problems for consumers and the dairy industry. Heat treatment of milk may diminish the antimicrobial activity of these antibiotic residues. This study analyzed the effect of milk processing (60 °C for 30 min, 120 °C for 20 min, and 140 °C for 10 s) on the antimicrobial activity of milk samples fortified with three concentrations of three macrolides (erythromycin: 20, 40 and 80 μg/liter; spiramycin: 100, 200, and 400 μg/liter; and tylosin: 500, 1,000, and 2,000 μg/liter) and one lincosamide (lincomycin: 1,000, 2,000, and 4,000 μg/liter). To measure the loss of antimicrobial activity, a bioassay based on the growth inhibition of Micrococcus luteus was done. The data were analyzed using a multiple linear regression model. The results indicate that treatment at 120 °C for 20 min produces inactivation percentages of 93% (erythromycin), 64% (spiramycin), 51% (tylosin), and 5% (lincomycin), while treatment at 140 °C for 10 s results in generally lower percentages (30% erythromycin, 35% spiramycin, 12% tylosin, and 5% lincomycin). The lowest loss or lowest reduction of antimicrobial activity (21% erythromycin and 13% spiramycin) was obtained by treatment at 60 °C for 30 min.

  10. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects

    PubMed Central

    Galvão, Lívia Câmara de Carvalho; Furletti, Vivian Fernandes; Bersan, Salete Meyre Fernandes; da Cunha, Marcos Guilherme; Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Sartoratto, Adilson; Rehder, Vera Lúcia Garcia; Figueira, Glyn Mara; Teixeira Duarte, Marta Cristina; Ikegaki, Masarahu; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2012-01-01

    This study aimed to evaluate the activity of essential oils (EOs) against Streptococcus mutans biofilm by chemically characterizing their fractions responsible for biological and antiproliferative activity. Twenty EO were obtained by hydrodistillation and submitted to the antimicrobial assay (minimum inhibitory (MIC) and bactericidal (MBC) concentrations) against S. mutans UA159. Thin-layer chromatography and gas chromatography/mass spectrometry were used for phytochemical analyses. EOs were selected according to predetermined criteria and fractionated using dry column; the resulting fractions were assessed by MIC and MBC, selected as active fractions, and evaluated against S. mutans biofilm. Biofilms formed were examined using scanning electron microscopy. Selected EOs and their selected active fractions were evaluated for their antiproliferative activity against keratinocytes and seven human tumor cell lines. MIC and MBC values obtained for EO and their active fractions showed strong antimicrobial activity. Chemical analyses mainly showed the presence of terpenes. The selected active fractions inhibited S. mutans biofilm formation (P < 0.05) did not affect glycolytic pH drop and were inactive against keratinocytes, normal cell line. In conclusion, EO showed activity at low concentrations, and their selected active fractions were also effective against biofilm formed by S. mutans and human tumor cell lines. PMID:22685486

  11. [Antimicrobial activity of Calendula L. plants].

    PubMed

    Radioza, S A; Iurchak, L D

    2007-01-01

    The sap of different organs of genus Calendula plant species has been studied for antimicrobial activity. The sap of racemes demonstrated the most expressed antimicrobial effect while that of the roots - the least one. Calendula species inhibited all tested pathogenic microorganisms, especially Pseudomonas syringae, P. fluorescens, Xanthomonas campestris, Agrobacterium tumefaciens. Calendula suffruticosa was the most active to all investigated microorganisms.

  12. Determination of antimicrobial effect, antioxidant activity and phenolic contents of desert truffle in Turkey.

    PubMed

    Doğan, Hasan Hüseyin; Aydın, Sema

    2013-01-01

    Terfezia boudieri Chatin (Scop.) Pers., is a famous macrofungus in the world as well as in Turkey for its pleasant aroma and flavour. People believe that this mushroom has some medicinal properties. Therefore, it is consumed as food and for medicinal purposes. Chloroform, acetone and methanol extracts of T. boudieri were tested to reveal its antimicrobial activity against four Gram-positive and five Gram-negative bacteria, and one yeast using a micro dilution method. In this study, the highest minimum inhibitory concentration (MIC) value was observed with the acetone extract (MIC, 4.8 µg/mL) against Candida albicans. Maximum antimicrobial effect was also determined with the acetone extract (MIC, 39-78 µg/mL). The scavenging effect of T. boudieri on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals was measured as 0.031 mg/mL at 5 mg/mL concentration, and its reducing power was 0.214 mg/mL at 0.4 mg/mL. In addition, the phenolic contents were determined as follows: the catechin was 20 mg/g, the ferulic acid was 15 mg/g, the p-coumaric acid was 10 mg/g, and the cinnamic acid was 6 mg/g. The results showed that T. boudieri has antimicrobial activity on the gram negative and positive bacteria as well as yeast, and it also has a high antioxidant capacity. Therefore, T. boudieri can be recommended as an important natural food source.

  13. Antimicrobial activity of coriander oil and its effectiveness as food preservative.

    PubMed

    Silva, Filomena; Domingues, Fernanda C

    2017-01-02

    ABTRACT Foodborne illness represents a major economic burden worldwide and a serious public health threat, with around 48 million people affected and 3,000 death each year only in the USA. One of the possible strategies to reduce foodborne infections is the development of effective preservation strategies capable of eradicating microbial contamination of foods. Over the last years, new challenges for the food industry have arisen such as the increase of antimicrobial resistance of foodborne pathogens to common preservatives and consumers demand for naturally based products. In order to overcome this, new approaches using natural or bio-based products as food preservatives need to be investigated. Coriander (Coriandrum sativum L.) is a well-known herb widely used as spice, or in folk medicine, and in the pharmacy and food industries. Coriander seed oil is the world's second most relevant essential oil, exhibiting antimicrobial activity against Gram-positive and Gram-negative bacteria, some yeasts, dermatophytes and filamentous fungi. This review highlights coriander oil antimicrobial activity and possible mechanisms of action in microbial cells and discusses the ability of coriander oil usage as a food preservative, pointing out possible paths for the successful evolution for these strategies towards a successful development of a food preservation strategy using coriander oil.

  14. Which Approach Is More Effective in the Selection of Plants with Antimicrobial Activity?

    PubMed Central

    Silva, Ana Carolina Oliveira; Santana, Elidiane Fonseca; Saraiva, Antonio Marcos; Coutinho, Felipe Neves; Castro, Ricardo Henrique Acre; Pisciottano, Maria Nelly Caetano; Amorim, Elba Lúcia Cavalcanti; Albuquerque, Ulysses Paulino

    2013-01-01

    The development of the present study was based on selections using random, direct ethnopharmacological, and indirect ethnopharmacological approaches, aiming to evaluate which method is the best for bioprospecting new antimicrobial plant drugs. A crude extract of 53 species of herbaceous plants collected in the semiarid region of Northeast Brazil was tested against 11 microorganisms. Well-agar diffusion and minimum inhibitory concentration (MIC) techniques were used. Ten extracts from direct, six from random, and three from indirect ethnopharmacological selections exhibited activities that ranged from weak to very active against the organisms tested. The strain most susceptible to the evaluated extracts was Staphylococcus aureus. The MIC analysis revealed the best result for the direct ethnopharmacological approach, considering that some species yielded extracts classified as active or moderately active (MICs between 250 and 1000 µg/mL). Furthermore, one species from this approach inhibited the growth of the three Candida strains. Thus, it was concluded that the direct ethnopharmacological approach is the most effective when selecting species for bioprospecting new plant drugs with antimicrobial activities. PMID:23878595

  15. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    PubMed

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies.

  16. Antimicrobial activity of flavonoids.

    PubMed

    Cushnie, T P Tim; Lamb, Andrew J

    2005-11-01

    Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (-)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2'-trihydroxy-5'-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.

  17. Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers.

    PubMed

    Yoon, Ki Young; Byeon, Jeong Hoon; Park, Chul Woo; Hwang, Jungho

    2008-02-15

    Even though activated carbon fiber (ACF) filters have been widely used in air cleaning for the removal of hazardous gaseous pollutants, because of their extended surface area and high adsorption capacity, bacteria may breed on the ACF filters as a result of their good biocompatibility; ACF filters can themselves become a source of bioaerosols. In this study, silver particles were coated onto an ACF filter, using an electroless deposition method and their efficacy for bioaerosol removal was tested. First, various surface analyses, including scanning electron microscopy, inductively coupled plasma and X-ray diffraction were carried out to characterize the prepared ACF filters. Filtration and antimicrobial tests were then performed on the filters. The results showed that the silver-deposited ACF filters were effective for the removal of bioaerosols by inhibition of the survival of microorganisms, whereas pristine ACF filters were not. Two bacteria, Bacillus subtilis and Escherichia coli, were completely inhibited within 10 and 60 min, respectively. Electroless silver deposition did not influence the physical characteristics of ACF filters such as pressure drop and filtration efficiency. The gas adsorptive ability of the silver-deposited ACF filter, as represented by the micropore specific surface area, decreased by about 20% compared to the pristine filter because of the blockage of the ACF micropores by silver particles. Therefore, the amount of silver particles on the ACF filters needs to be optimized to avoid excessive reduction of their adsorptive characteristics and to show effective antimicrobial activity.

  18. Antimicrobial activity against periodontopathogenic bacteria, antioxidant and cytotoxic effects of various extracts from endemic Thermopsis turcica

    PubMed Central

    Bali, Elif Burcu; Açık, Leyla; Akca, Gülçin; Sarper, Meral; Elçi, Mualla Pınar; Avcu, Ferit; Vural, Mecit

    2014-01-01

    Objective To investigate the in vitro antimicrobial potential of Thermopsis turcica Kit Tan, Vural & Küçüködük against periodontopathogenic bacteria, its antioxidant activity and cytotoxic effect on various cancer cell lines. Methods In vitro antimicrobial activities of ethanol, methanol, ethyl acetate (EtAc), n-hexane and water extracts of Thermopsis turcica herb against periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans ATCC 29523 and Porphyromonas gingivalis ATCC 33277 were tested by agar well diffusion, minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Antioxidant properties of the extracts were evaluated by 1,1-diphenyl-2-picryl-hydrazyl radical scavenging activity and β-carotene bleaching methods. Amounts of phenolic contents of the extracts were also analysed by using the Folin-Ciocalteu reagent. Additionally, cytotoxic activity of the extracts on androgen-insensitive prostate cancer, androgen-sensitive prostate cancer, chronic myelogenous leukemia and acute promyelocytic leukemia human cancer cell lines were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Human gingival fibroblast cells were used as a control. Results Our data showed that EtAc extract had the highest antimicrobial effect on Aggregatibacter actinomycetemcomitans (MIC: 1.562 mg/mL, MBC: 3.124 mg/mL) and Porphyromonas gingivalis (MIC: 0.781 mg/mL, MBC: 1.562 mg/mL). In antioxidant assays, EtAc extract exhibited also the highest radical scavenging activity [IC50=(30.0±0.3) µg/mL] and the highest inhibition [(74.35±0.30)%] against lineloic acide oxidation. The amount of phenolic content of it was also the highest [(162.5±1.2) µg/mg gallic acid]. In cytotoxic assay, only ethanol [IC50=(80.00±1.21) µg/mL] and EtAc extract [IC50=(70.0±0.9) µg/mL] were toxic on acute promyelocytic leukemia cells at 20-100 µg/mL (P<0.05). However, no toxic effect was observed on human gingival fibroblast cells

  19. The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts.

    PubMed

    Obiang-Obounou, Brice Wilfried; Ryu, Gi Hyung

    2013-12-15

    This study focuses on the effect of extrusion processing on tannin reduction, phenolic content, flavonoid content, antioxidant and anitimicrobial activity. Extrusion temperature (120 and 140 °C) and feed moisture (25% and 28%) were used on the tannin content, antioxidant and antimicrobial activities. Extrusion cooking reduced tannin content up to 78%, and improved antioxidant activity from 12.89% to 21.17% in a concentration dependant manner without affecting its antimicrobial activity that varied from 250 to 500 mg. The time-kill assay confirmed the ability of extruded chestnut to reduce Pseudomonas aeruginosa count below detectable limit that reduced the original inoculum by 3log10 CFU/mL. Overall, the results showed that extrusion cooking might serve as a tool for tannin reduction and could improve the antioxidant and antimicrobial properties of chestnut, which might be helpful for chestnut related products in the food industry.

  20. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the

  1. Effect of pH on the formation of lysosome-alginate beads for antimicrobial activity.

    PubMed

    Park, Hyun Jung; Min, Jiho; Ahn, Joo-Myung; Cho, Sung-Jin; Ahn, Ji-Young; Kim, Yang-Hoon

    2015-02-01

    In this study, we developed lysosome-alginate beads for application as an oral drug delivery system (ODDS). The beads harboring lysosomes, which have antimicrobial activity, and various concentrations of alginate were characterized and optimized. For application as an ODDS, pH-dependent lysosome-alginate beads were generated, and the level of lysosome release was investigated by using antimicrobial tests. At low pH, lysosomes were not released from the lysosome-alginate beads; however, at neutral pH, similar to the pH in the intestine, lysosome release was confirmed, as determined by a high antimicrobial activity. This study shows the potential of such an ODDS for the in vivo treatment of infection with pathogens.

  2. Additive antimicrobial [corrected] effects of the active components of the essential oil of Thymus vulgaris--chemotype carvacrol.

    PubMed

    Iten, Felix; Saller, Reinhard; Abel, Gudrun; Reichling, Jürgen

    2009-09-01

    Herbal remedies are multicomponent mixtures by their nature as well as by pharmaceutical definition. Being a multicomponent mixture is not only a crucial property of herbal remedies, it also represents a precondition for interactions such as synergism or antagonism. Until now, only a few phytomedicines are accurately described concerning the interactions of their active components. The aim of this study was to search for interactions within such a naturally given multi-component mixture and to discuss the pharmaceutical and clinical impacts. The thyme oil chosen for the examination belongs to the essential oils with the most pronounced antimicrobial activity. Antibiotic activity of thyme oil and single active components were tested against six different strains of microorganisms. The checkerboard assay was used to search for interactions. The time-kill assay was used to verify the observed effects and to get information about the temporal resolution of the antimicrobial activity. The degree of the detected interactions corresponded with the demarcating FICI measure of 0.5, which separates the additive from the over-additive (synergistic) effects. Therefore, the observed effect was called a "borderline case of synergism" or, respectively, "partial synergism". Partial synergism was observed only in the presence of Klebsiella pneumoniae. Additive antimicrobial activity was observed for the combination of the two monosubstances carvacrol plus linalool and thymol plus linalool as well as with the combination of the two essential oils of the carvacrol and linalool chemotypes. An increase of the carvacrol oil concentration from one to two times the MIC resulted in a considerable acceleration of the kill-rate. Thyme oil is composed of several different components that show antimicrobial activity (at least: carvacrol, thymol and linalool). The antimicrobial activity of thyme oil is partly based on additive effects, which might especially enhance the rapidity of the

  3. Effect of gamma irradiation on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils

    NASA Astrophysics Data System (ADS)

    Zantar, Said; Haouzi, Rachid; Chabbi, Mohamed; Laglaoui, Amin; Mouhib, Mohammed; Mohammed Boujnah; Bakkali, Mohammed; Zerrouk, Mounir Hassani

    2015-10-01

    The effects of gamma irradiation doses (10, 20 and 30 kGy) on chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils (EOs) have been studied. The chromatographic analysis showed that the studied EOs were constituted mainly by carvacrol for T. vulgaris and pulegone for M. pulegium. Gamma irradiation on the studied doses, affects quantitatively and not qualitatively some components of the investigated oils. This effect was dose dependent. While the antioxidant activity remains stable at any dose applied for the plants studied, the antimicrobial activity increased in the irradiated samples for gram negative bacteria and did not change for gram+bacteria. This study supports that gamma irradiation employed at sterilizing doses did not compromise the biological activities of medicinal and aromatic plants.

  4. Antimicrobial activity of Securidaca longipedunculata.

    PubMed

    Ajali, U; Chukwurah, B K C

    2004-11-01

    The folk herbal uses of Securidaca longipedunculata in the treatment of diarrhea, boils, gonorrhea, and cough prompted phytochemical analyses and antimicrobial activity screening of extracts of the root. Some flavonoids isolated showed activity against many micro-organisms. These flavonoids were isolated using chromatographic methods.

  5. Antimicrobial activity of Bryum argenteum.

    PubMed

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  6. Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities.

    PubMed

    Messaoud, Chokri; Laabidi, Abdelmonoem; Boussaid, Mohamed

    2012-09-01

    In traditional medicine, myrtle (Myrtus communis L.) is frequently consumed as an infusion and decoction. In this study, we investigate the phenolic and volatile compositions and antioxidant and antibacterial activities of leaf infusions prepared during 3 different times. The total phenolics contents (146.74 to 179.55 mg GAE/g DM) varied significantly between infusions. Eleven phenolic compounds were identified by reversed-phase high-performance liquid chromatography. Phenolic acids (7.64 to 14.28 μmol/g DM) and flavonol glycosides (7.05 to 12.11 μmol/g DM) were the major phenolic fractions of infusions. Significant quantitative variation in 6 phenolic components was observed between infusions. Sixteen volatile components were identified by gas chromatography (GC) and GC mass spectrometry analyses. The main constituents were 1,8-cineole (42.58% to 51.39%), α-terpineol (9.45% to 9.72%), methyl eugenol (6.69% to 7.11%), and linalool (5.91% to 6.06%). Quantitative variations of the volatile components of the analyzed oils in relation to the infusion time were observed. The antioxidant properties of infusions, assayed through DPPH (2,2- diphenyl-1-picrylhydrazyl) method, β-carotene bleaching test, chelating effect on ferrous ions, and ferric reducing power method, were considerable and varied according to the infusion time. Myrtle infusions exhibited a substantial antimicrobial activity against 6 tested bacteria.

  7. High Antimicrobial Effectiveness with Low Hemolytic and Cytotoxic Activity for PEG/Quaternary Copolyoxetanes

    PubMed Central

    2015-01-01

    The alkyl chain length of quaternary ammonium/PEG copolyoxetanes has been varied to discern effects on solution antimicrobial efficacy, hemolytic activity and cytotoxicity. Monomers 3-((4-bromobutoxy)methyl)-3-methyloxetane (BBOx) and 3-((2-(2-methoxyethoxy)ethoxy)methyl)-3-methyloxetane (ME2Ox) were used to prepare precursor P[(BBOx)(ME2Ox)-50:50–4 kDa] copolyoxetane via cationic ring opening polymerization. The 1:1 copolymer composition and Mn (4 kDa) were confirmed by 1H NMR spectroscopy. After C–Br substitution by a series of tertiary amines, ionic liquid Cx-50 copolyoxetanes were obtained, where 50 is the mole percent of quaternary repeat units and “x” is quaternary alkyl chain length (2, 6, 8, 10, 12, 14, or 16 carbons). Modulated differential scanning calorimetry (MDSC) studies showed Tgs between −40 and −60 °C and melting endotherms for C14–50 and C16–50. Minimum inhibitory concentrations (MIC) were determined for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A systematic dependence of MIC on alkyl chain length was found. The most effective antimicrobials were in the C6–50 to C12–50 range. C8–50 had better overall performance with MICs of 4 μg/mL, E. coli; 2 μg/mL, S. aureus; and 24 μg/mL, P. aeruginosa. At 5 × MIC, C8–50 effected >99% kill in 1 h against S. aureus, E. coli, and P. aeruginosa challenges of 108 cfu/mL; log reductions (1 h) were 7, 3, and 5, respectively. To provide additional insight into polycation interactions with bacterial membranes, a geometric model based on the dimensions of E. coli is described that provides an estimate of the maximum number of polycations that can chemisorb. Chain dimensions were estimated for polycation C8–50 with a molecular weight of 5 kDa. Considering the approximations for polycation chemisorption (PCC), it is surprising that a calculation based on geometric considerations gives a C8–50 concentration within a factor of 2 of the MIC, 4.0 (±1.2) μg/mL for

  8. Antimicrobial Active Clothes Display No Adverse Effects on the Ecological Balance of the Healthy Human Skin Microflora

    PubMed Central

    Hoefer, Dirk; Hammer, Timo R.

    2011-01-01

    The progressive public use of antimicrobial clothes has raised issues concerning skin health. A placebo-controlled side-to-side study was run with antimicrobial clothes versus fabrics of similar structure but minus the antimicrobial activity, to evaluate possible adverse effects on the healthy skin microflora. Sixty volunteers were enrolled. Each participant received a set of form-fitting T-shirts constructed in 2 halves: an antibacterial half, displaying activities of 3–5 log-step reductions due to silver-finishes or silver-loaded fibres and a nonantibacterial control side. The microflora of the scapular skin was analyzed weekly for opportunistic and pathogenic microorganisms over six weeks. The antibacterial halves did not disturb the microflora in number or composition, whereas a silver-containing deodorant displayed a short-term disturbance. Furthermore, parameters of skin morphology and function (TEWL, pH, moisture) did not show any significant shifts. In summary, antimicrobial clothes did not show adverse effects on the ecological balance of the healthy skin microflora. PMID:22363849

  9. The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities.

    PubMed

    Şeker Karatoprak, Gökçe; Aydin, Gamze; Altinsoy, Berrak; Altinkaynak, Cevahir; Koşar, Müberra; Ocsoy, Ismail

    2017-02-01

    Herein, we report the biosynthesis of Ag NPs, for the first time, using identified antimicrobial molecules (gallic acid+apocynin) and (gallic acid+apocynin+quercetin) from the medicinal plant Pelargonium endlicherianum Fenzl. and dramatically enhanced antimicrobial activity. We also investigate the role of each molecule on formation Ag NPs and explain the increase in the antimicrobial activity of identified molecules mediated Ag NPs. The extraction protocols, 11% ethanol and 70% methanol, resulted in identification of different constituents of gallic acid+apocynin (M1) and gallic acid+apocynin+quercetin (M2) with respective concentrations. The M1-Ag and M2-Ag NPs exhibit excellent inhibitory activities towards Gram negative bacteria; Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Gram positive bacteria; Staphylococcus epidermidis ATCC 3699 bacterial using in vitro microdilution method. The minimum inhibitory concentration (MIC) values of M1-Ag and M2-Ag NPs were determined to be 7.81 and 6.25ppm for S. epidermidis, respectively. Surprisingly, MIC value for both Ag NPs was indicated to be identical as 9. 37ppm for P. aeruginosa and E., coli.

  10. Effects of cathode design parameters on in vitro antimicrobial efficacy of electrically-activated silver-based iontophoretic system.

    PubMed

    Tan, Zhuo; Ganapathy, Anirudh; Orndorff, Paul E; Shirwaiker, Rohan A

    2015-01-01

    Post-operative infection is a major risk associated with implantable devices. Prior studies have demonstrated the effectiveness of ionic silver as an alternative to antibiotic-based infection prophylaxis and treatment. The focus of this study is on an electrically activated implant system engineered for active release of antimicrobial silver ions. The objective was to evaluate the effects of the cathode design, especially the cathode material, on the in vitro antimicrobial efficacy of the system. A modified Kirby-Bauer diffusion technique was used for the antimicrobial efficacy evaluations (24 h testing interval). In phase-1 of the study, a three-way ANOVA (n = 6, α = 0.05) was performed to determine the effects of cathode material (silver, titanium, and stainless steel), cathode surface area and electrode separation distance on the efficacy of the system against Staphylococcus aureus. The results show that within the design space tested, none of these parameters had a statistically significant effect on the antimicrobiality of the system (P > 0.15). Subsequently, one-way ANOVA (n = 6, α = 0.05) was conducted in phase-2 to validate the inference regarding the non-significance of the cathode material to the system efficacy using a broader spectrum of pathogens (methicillin-resistant S. aureus, Escherichia coli, Streptococcus agalactiae and Aspergillus flavus) responsible for osteomyelitis. The results confirmed the lack of statistical difference between efficacies of the three cathode material configurations against all pathogens tested (P > 0.58). Overall, the results demonstrate the ability to alter the cathode material and related design parameters in order to minimize the silver usage in the system without adversely affecting its antimicrobial efficacy.

  11. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities.

    PubMed

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Friedman, Mendel

    2009-09-01

    Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.

  12. Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens

    PubMed Central

    Rodríguez, Eva; Landete, José María

    2015-01-01

    The food industry seeks alternatives to satisfy consumer demands of safe foods with a long shelf-life able to maintain the nutritional and organoleptic quality. The application of antimicrobial compounds-producing protective cultures may provide an additional parameter of processing in order to improve the safety and ensure food quality, keeping or enhancing its sensorial characteristics. In addition, strong evidences suggest that certain probiotic strains can confer resistance against infection with enteric pathogens. Several mechanisms have been proposed to support this phenomenon, including antimicrobial compounds secreted by the probiotics, competitive exclusion, or stimulation of the immune system. Recent research has increasingly demonstrated the role of antimicrobial compounds as protective mechanism against intestinal pathogens and therefore certain strains could have an effect on both the food and the gut. In this aspect, the effects of the combination of different strains keep unknown. The development of multistrain probiotic dairy products with good technological properties and with improved characteristics to those shown by the individual strains, able to act not only as protective cultures in foods, but also as probiotics able to exert a protective action against infections, has gained increased interest. PMID:25861634

  13. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    PubMed Central

    2011-01-01

    Background Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Methods Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Results Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. Conclusions In summary

  14. Antimicrobial Activity of Commercial Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gajjar, Priyanka; Pettee, Brian; Britt, David W.; Huang, Wenjie; Johnson, William P.; Anderson, Anne J.

    2009-07-01

    Engineered nanoparticles are finding increased use in applications ranging from biosensors to prophylactic antimicrobials embedded in socks. The release of heavy metal-containing nanoparticles (NP) into the environment may be harmful to the efficacy of beneficial microbes that function in element cycling, pollutant degradation, and plant growth. Antimicrobial activity of commercial NP of Ag, CuO, and ZnO is demonstrated here against the beneficial soil microbe, Pseudomonas putida KT2440, which was modified to serve as a bioluminescent sentinel organism. "As manufactured" preparations of nano- Ag, -CuO, and -ZnO caused rapid, dose dependent loss of light output in the biosensor. Bulk equivalents of these products showed no inhibitory activity, indicating that particle size was determinant in activity.

  15. Characterization of hLF1-11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity.

    PubMed

    Costa, Fabíola; Maia, Sílvia; Gomes, Joana; Gomes, Paula; Martins, M Cristina L

    2014-08-01

    hLF1-11 (GRRRRSVQWCA) is an antimicrobial peptide (AMP) with high activity against methicillin-resistant Staphylococcus aureus (MRSA), the most prevalent species in implant-associated infection. In this work, the effect of the surface immobilization on hLF1-11 antimicrobial activity was studied. Immobilization was performed onto chitosan thin films as a model for an implant coating due to its reported osteogenic and antibacterial properties. Chitosan thin films were produced by spin-coating on gold surfaces. hLF1-11 was immobilized onto these films by its C-terminal cysteine in an orientation that exposes the antimicrobial activity-related arginine-rich portion of the peptide. Two levels of exposure (with and without a polyethylene glycol (PEG) spacer) were analyzed. Covalent immobilization was further compared with the AMP physical adsorption onto chitosan films. Surfaces were characterized using ellipsometry, contact angle measurements, atomic force microscopy, infrared and X-ray photoelectron spectroscopies and using a fluorimetric assay for hLF1-11 quantification. Surface antimicrobial activity was assessed through surface adhesion and viability assays using an MRSA (S. aureus ATCC 33591). The incorporation of hLF1-11 increased significantly bacterial adhesion to chitosan films. However, the presence of hLF1-11, namely when immobilized through a PEG spacer, decreased the viability of adherent bacteria with regard to the control surface. These results demonstrated that hLF1-11 after covalent immobilization by its cysteine can maintain activity, particularly if a spacer is applied. However, further studies, exploring the opposite orientation or the same C-terminal orientation, but non-cysteine related, can help to clarify the potential of the hLF1-11 immobilization strategy.

  16. Antimicrobial Activity of Carbon-Based Nanoparticles

    PubMed Central

    Maleki Dizaj, Solmaz; Mennati, Afsaneh; Jafari, Samira; Khezri, Khadejeh; Adibkia, Khosro

    2015-01-01

    Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs) (especially single-walled carbon nanotubes (SWCNTs)) and graphene oxide (GO) nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery. PMID:25789215

  17. Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes.

    PubMed

    Mothilal, K K; Karunakaran, Chandran; Rajendran, Ayyapan; Murugesan, Ramachandran

    2004-02-01

    An interesting series of metal complexes of thiabendazole (tbz) is synthesized and characterized by elemental analyses and spectroscopic studies. The crystal structure of the hydrogen bonded one dimensional Co(II) complex, namely [Co(tbz)(2)(NO(3))(H(2)O)](NO(3)) is solved by single crystal X-ray diffraction. The complex crystallizes in monoclinic space group P2(1)/a with unit cell parameters, a=14.366(2), b=11.459(4), c=15.942(3) A, beta=113.78(3) degrees and z=4. The unit cell packing reveals an extensive hydrogen bonding involving a water molecule, nitrate ligands and the protonated nitrogen atoms of the tbz ligands, resulting in a one dimensional hydrogen bonding pattern. The antimicrobial activity of the complexes against selected bacteria (Escherichia coli and Bacillus subtilis) and yeast (Aspergillus flavues) is estimated. The relationship between the enzymatic production of ROS and antimicrobial activity of the complexes is examined, and a good correlation between two factors is found. Photodynamic quantum yields of singlet oxygen production (RNO bleaching assay) and rate of superoxide generation (SOD inhibitable ferricytochrome c reduction assay and EPR spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap) by the metal complexes have been studied.

  18. [Antimicrobial activity exerted by sodium dichloroisocyanurate].

    PubMed

    D'Auria, F D; Simonetti, G; Strippoli, V

    1989-01-01

    Sodium dichloroisocyanurate is a chlorinated cleaner. It was used for swimming pool sanitation and for the sterilisation of linen. Not recently ago sodium dichloroisocyanurate has substituted hypochlorite for the sterilisation of infant feeding bottles and teats. Sodium dichloroisocyanurate is soluble in water; this condition causes the hydrolysis of sodium dichloroisocyanurate in hypochlorous acid, that is the active agent, isocyanurate and isocyanurate chlorine. These compounds form a chlorine protein that carry out microbicidal activity. In a toxicology study has been shown that no severe changes in the normal metabolic function occurred, furthermore sodium dichloroisocyanurate has not shown teratogenic effects at the concentration of 200 mg/kg. The antimicrobial activity of sodium dichloroisocyanurate was evaluated against Gram negative bacteria such as E. coli or Salmonella typhimurium and against some fungi. This study illustrates a rapid antimicrobial activity using concentrations. Our study concentrated on the antimicrobial activity of sodium dichloroisocyanurate in some experimental conditions. We tested 66 strains of fungi, 28 Gram positive bacteria and 29 Gram negative bacteria. We also evaluated the antimicrobial activity of sodium dichloroisocyanurate against protozoa such as Trichomonas vaginalis. The antimicrobial activity was evaluated in cultural conditions and non cultural conditions; in these experiments we observed similar action in both the commercial product and pure substance. In cultural conditions sodium dichloroisocyanurate shows a good activity against fungi and bacteria, moreover it can be observed that the serum didn't interfere with its activity. In a non cultural condition the Candida was killed rapidly by the sodium dichloroisocyanurate but this activity is influenced by the growth phase of the yeast. Against mycelial form such as Penicillium and Aspergillus the sodium dichloroisocyanurate needs a longer contact time than yeast form

  19. The antimicrobial efficiency of silver activated sorbents

    NASA Astrophysics Data System (ADS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-12-01

    This study is focused on the surface modifications of the materials that are used for antimicrobial water treatment. Sorbents of different origin were activated by Ag+-ions. The selection of the most appropriate materials and the most effective activation agents was done according to the results of the sorption and desorption kinetic studies. Sorption capacities of selected sorbents: granulated activated carbon (GAC), zeolite (Z), and titanium dioxide (T), activated by Ag+-ions were following: 42.06, 13.51 and 17.53 mg/g, respectively. The antimicrobial activity of Ag/Z, Ag/GAC and Ag/T sorbents were tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. After 15 min of exposure period, the highest cell removal was obtained using Ag/Z against S. aureus and E. coli, 98.8 and 93.5%, respectively. Yeast cell inactivation was unsatisfactory for all three activated sorbents. The antimicrobial pathway of the activated sorbents has been examined by two separate tests - Ag+-ions desorbed from the activated surface to the aqueous phase and microbial cell removal caused by the Ag+-ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  20. In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils.

    PubMed

    Toroglu, Sevil

    2011-01-01

    Spices and herbs have been used for many years by different cultures. The aim of the present study is (1) to investigate in-vitro antimicrobial effects of different spices and herbs (5 species: Rosmarinus officinalis (Rosemary), Coriandrum sativum (coriander), Micromeria fruticosa (L.) Druce subsp. Brachycalyx P.H. Davis (White micromeria), Cumium cyminum (cumin), Mentha piperita (Peppermint) against different bacteria and fungi species, and (2) to discuss the in-vitro possible effects between the plants and antibiotics. The microorganisms used were Micrococcus luteus LA 2971, Bacillus megaterium NRS, Bacillus brevis FMC 3, Enterococcus faecalis ATCC 15753, Pseudomonas pyocyaneus DC 127, Mycobacterium smegmatis CCM 2067, Escherichia coil DM, Aeromonas hydrophila ATCC 7966, Yersinia enterocolitica AU 19, Staphylococcus aureus Cowan 1, Streptococcus faecalis DC 74 bacteria, and Saccharomyces cerevisiae WET 136, Kluvyeromyces fragilis DC 98 fungi in this study. The results indicated that essential oils of Rosmarinus officinalis, Coriandrum sativum L., Micromeria fruticosa (L.) Druce subsp. brachycalyx P.H. Davis, Cumium cyminum L., Mentha piperita L. were shown antimicrobial activity in the range of 7-60 mm 2 microl(-1) inhibition zone to the microorganisms tested, using disc diffusion method. Standard antibiotic such as Gentamicin (10 microg), Cephalothin (30 microg), Ceftriaxone (10 microg), Nystatin (10 U) discs were used for comparison with the antimicrobial activities of essential oils of these plants. In addition, antibacterial activity of essential oils of these plants was researched by effects when it was used together with these standard antibiotics in vitro. However, antibacterial activity changed also by in vitro interactions between these standard antibiotics and essential oils of these plants. Synergic, additive or antagonist effects were observed in antibacterial activity.

  1. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin

    PubMed Central

    Gong, Shi-qiang; Epasinghe, D. Jeevanie; Zhou, Bin; Niu, Li-na; Kimmerling, Kirk A.; Rueggeberg, Frederick A.; Yiu, Cynthia K.Y.; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol–gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly (methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3 month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4 wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  2. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma.

    PubMed

    Zille, Andrea; Fernandes, Margarida M; Francesko, Antonio; Tzanov, Tzanko; Fernandes, Marta; Oliveira, Fernando R; Almeida, Luís; Amorim, Teresa; Carneiro, Noémia; Esteves, Maria F; Souto, António P

    2015-07-01

    This work studies the surface characteristics, antimicrobial activity, and aging effect of plasma-pretreated polyamide 6,6 (PA66) fabrics coated with silver nanoparticles (AgNPs), aiming to identify the optimum size of nanosilver exhibiting antibacterial properties suitable for the manufacture of hospital textiles. The release of bactericidal Ag(+) ions from a 10, 20, 40, 60, and 100 nm AgNPs-coated PA66 surface was a function of the particles' size, number, and aging. Plasma pretreatment promoted both ionic and covalent interactions between AgNPs and the formed oxygen species on the fibers, favoring the deposition of smaller-diameter AgNPs that consequently showed better immediate and durable antimicrobial effects against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. Surprisingly, after 30 days of aging, a comparable bacterial growth inhibition was achieved for all of the fibers treated with AgNPs <100 nm in size. The Ag(+) in the coatings also favored the electrostatic stabilization of the plasma-induced functional groups on the PA66 surface, thereby retarding the aging process. At the same time, the size-related ratio (Ag(+)/Ag(0)) of the AgNPs between 40 and 60 nm allowed for the controlled release of Ag(+) rather than bulk silver. Overall, the results suggest that instead of reducing the size of the AgNPs, which is associated with higher toxicity, similar long-term effects can be achieved with larger NPs (40-60 nm), even in lower concentrations. Because the antimicrobial efficiency of AgNPs larger than 30 nm is mainly ruled by the release of Ag(+) over time and not by the size and number of the AgNPs, this parameter is crucial for the development of efficient antimicrobial coatings on plasma-treated surfaces and contributes to the safety and durability of clothing used in clinical settings.

  3. Magnesium Based Materials and their Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Robinson, Duane Allan

    The overall goals of this body of work were to characterize the antimicrobial properties of magnesium (Mg) metal and nano-magnesium oxide (nMgO) in vitro, to evaluate the in vitro cytotoxicity of Mg metal, and to incorporate MgO nanoparticles into a polymeric implant coating and evaluate its in vitro antimicrobial properties. In the course of this work it was found that Mg metal, Mg-mesh, and nMgO have in vitro antimicrobial properties that are similar to a bactericidal antibiotic. For Mg metal, the mechanism of this activity appears to be related to an increase in pH (i.e. a more alkaline environment) and not an increase in Mg2+. Given that Mg-mesh is a Mg metal powder, the assumption is that it has the same mechanism of activity as Mg metal. The mechanism of activity for nMgO remains to be elucidated and may be related to a combination of interaction of the nanoparticles with the bacteria and the alkaline pH. It was further demonstrated that supernatants from suspensions of Mg-mesh and nMgO had the same antimicrobial effect as was noted when the particles were used. The supernatant from Mg-mesh and nMgO was also noted to prevent biofilm formation for two Staphylococcus strains. Finally, poly-epsilon-caprolactone (PCL) composites of Mg-mesh (PCL+Mg-mesh) and nMgO (PCL+nMgO) were produced. Coatings applied to screws inhibited growth of Escherichia coli and Pseudomonas aeruginosa and in thin disc format inhibited the growth of Staphylococcus aureus in addition to the E. coli and P. aeruginosa. Pure Mg metal was noted to have some cytotoxic effect on murine fibroblast and osteoblast cell lines, although this effect needs to be characterized further. To address the need for an in vivo model for evaluating implant associated infections, a new closed fracture osteomyelitis model in the femur of the rat was developed. Magnesium, a readily available and inexpensive metal was shown to have antimicrobial properties that appear to be related to its corrosion products and

  4. Effects of hydrophobicity on the antifungal activity of α-helical antimicrobial peptides

    PubMed Central

    Jiang, Ziqing; Kullberg, Bart Jan; Lee, Hein van der; Vasil, Adriana I.; Hale, John D.; Mant, Colin T.; Hancock, Robert E. W.; Vasil, Michael L.; Netea, Mihai G.; Hodges, Robert S.

    2009-01-01

    We utilized a series of analogs of D-V13K (a 26-residue amphipathic α-helical antimicrobial peptide, denoted D1) to compare and contrast the role of hydrophobicity on antifungal and antibacterial activity to the results obtained previously with Pseudomonas aeruginosa strains. Antifungal activity for Zygomycota fungi decreased with increasing hydrophobicity (D-V13K/A12L/A20L/A23L, denoted D4, the most hydrophobic analog was 6-fold less active than D1, the least hydrophobic analog). In contrast, antifungal activity for Ascomycota fungi increased with increasing hydrophobicity (D4, the most hydrophobic analog was 5-fold more active than D1). Hemolytic activity is dramatically affected by increasing hydrophobicity with peptide D4 being 286-fold more hemolytic than peptide D1. The therapeutic index for peptide D1 is 1569-fold and 62-fold better for Zygomycota fungi and Ascomycota fungi, respectively, compared to peptide D4. To reduce the hemolytic activity of peptide D4 and improve/maintain the antifungal activity of D4, we substituted another lysine residue in the center of the nonpolar face (V16K) to generate D5 (D-V13K/V16K/A12L/A20L/A23L). This analog D5 decreased hemolytic activity by 13-fold, enhanced antifungal activity to Zygomycota fungi by 16-fold and improved the therapeutic index by 201-fold compared to D4 and represents a unique approach to control specificity while maintaining high hydrophobicity in the two hydrophobic segments on the nonpolar face of D5. PMID:19090916

  5. Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root

    NASA Astrophysics Data System (ADS)

    Fatima Khattak, Khanzadi; James Simpson, Thomas

    2010-04-01

    The efficacy of gamma irradiation as a method of decontamination for food and herbal materials is well established. In the present study, Glycyrrhiza glabra roots were irradiated at doses 5, 10, 15, 20 and 25 kGy in a cobalt-60 irradiator. The irradiated and un-irradiated control samples were evaluated for phenolic contents, antimicrobial activities and DPPH scavenging properties. The result of the present study showed that radiation treatment up to 20 kGy does not affect the antifungal and antibacterial activity of the plant. While sample irradiated at 25 kGy does showed changes in the antibacterial activity against some selected pathogens. No significant differences in the phenolic contents were observed for control and samples irradiated at 5, 10 and 15 kGy radiation doses. However, phenolic contents increased in samples treated with 20 and 25 kGy doses. The DPPH scavenging activity significantly ( p<0.05) increased in all irradiated samples of the plant.

  6. Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells.

    PubMed

    Lorenzón, E N; Sanches, P R S; Nogueira, L G; Bauab, T M; Cilli, E M

    2013-06-01

    Antimicrobial peptides (AMPs) are a promising solution to face the antibiotic-resistant problem because they display little or no resistance effects. Dimeric analogues of select AMPs have shown pharmacotechnical advantages, making these molecules promising candidates for the development of novel antibiotic agents. Here, we evaluate the effects of dimerization on the structure and biological activity of the AMP aurein 1.2 (AU). AU and the C- and N-terminal dimers, (AU)2K and E(AU)2, respectively, were synthesized by solid-phase peptide synthesis. Circular dichroism spectra indicated that E(AU)2 has a "coiled coil" structure in water while (AU)2K has an α-helix structure. In contrast, AU displayed typical spectra for disordered structures. In LPC micelles, all peptides acquired a high amount of α-helix structure. Hemolytic and vesicle permeabilization assays showed that AU has a concentration dependence activity, while this effect was less pronounced for dimeric versions, suggesting that dimerization may change the mechanism of action of AU. Notably, the antimicrobial activity against bacteria and yeast decreased with dimerization. However, dimeric peptides promoted the aggregation of C. albicans. The ability to aggregate yeast cells makes dimeric versions of AU attractive candidates to inhibit the adhesion of C. albicans to biological targets and medical devices, preventing disease caused by this fungus.

  7. Antimicrobial activity of Gymnema sylvestre leaf extract.

    PubMed

    Satdive, R K; Abhilash, P; Fulzele, Devanand P

    2003-12-01

    The ethanolic extract of Gymnema sylvestre leaves demonstrated antimicrobial activity against Bacillus pumilis, B. subtilis, Pseudomonas aeruginosa and Staphylococcus aureus and inactivity against Proteus vulgaris and Escherichia coli.

  8. Antimicrobial preservative effectiveness of natural peptide antibiotics.

    PubMed

    Kamysz, Wojciech; Turecka, Katarzyna

    2005-01-01

    The constantly growing resistance of microbes to drugs and other substances which fight microbial infections leads to search for new antimicrobial substances. Among substances which attract the scientists attention are antimicrobial peptides. Such compounds are quite common in nature and belong to the most important elements of the innate immune system of all living organisms. Numerous antimicrobial peptides have been isolated from insects, amphibians, mammals, plants and bacterial species. In this study we investigated the in vitro activity of two animal peptides, citropin 1.1 and protegrin 1 alone and in combination against microbial strains proposed for the evaluation of preservatives: Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027, Candida albicans ATCC 10231, and Aspergillus niger ATCC 16404. The results of the antimicrobial preservative effectiveness were compared to the values received for benzalkonium chloride, popular preservative of medicines and cosmetics.

  9. Antimicrobial activity of preparation Bioaron C.

    PubMed

    Gawron-Gzella, Anne; Michalak, Anna; Kędzia, Anna

    2014-01-01

    The antimicrobial activity of sirupus Bioaron C, a preparation, whose main ingredient is an extract from the leaves of Aloe arborescens, was tested against different microorganisms isolated from patients with upper respiratory tract infections. The experiments were performed on 40 strains: 20 strains of anaerobic bacteria, 13 strains of aerobic bacteria and 7 strains of yeast-like fungi from the genus Candida and on 18 reference strains (ATCC). The antimicrobial activity of Bioaron C (MBC and MFC) was determined at undiluted concentration. Bioaron C proved to be very effective against the microorganisms causing infections. At the concentration recommended by the producer, the preparation showed biocidal activity (MBC, MFC) against the strains of the pathogenic microorganisms, which cause respiratory infections most frequently, including, among others, Peptostreptococcus anaerobius, Parvimonas micra, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus anginosus, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa and Candida albicans, already after 15 min. The MIC of Bioaron C against most of the tested microorganisms was 5 to 100 times lower than the usually applied concentration. The great antimicrobial activity means that the preparation may be used in the prevention and treatment of infections of the upper respiratory tract. Bioaron C may be an alternative or complement to classical therapy, especially in children.

  10. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens.

    PubMed

    Yi, Shumin; Wang, Wei; Bai, Fengling; Zhu, Junli; Li, Jianrong; Li, Xuepeng; Xu, Yongxia; Sun, Tong; He, Yutang

    2014-02-01

    In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.

  11. Effect of distal sugar and interglycosidic linkage of disaccharides on the activity of proline rich antimicrobial glycopeptides.

    PubMed

    Lele, Deepti S; Dwivedi, Rohini; Kumari, Saroj; Kaur, Kanwal J

    2015-11-01

    The effect of glycosylation on protein structure and function depends on a variety of intrinsic factors including glycan chain length. We have analyzed the effect of distal sugar and interglycosidic linkage of disaccharides on the properties of proline-rich antimicrobial glycopeptides, formaecin I and drosocin. Their glycosylated analogs-bearing lactose, maltose and cellobiose, as a glycan side chain on their conserved threonine residue, were synthesized where these disaccharides possess identical proximal sugar and vary in the nature of distal sugar and/or interglycosidic linkage. The structural and functional properties of these disaccharide-containing formaecin I and drosocin analogs were compared with their corresponding monoglycosylated forms, β-D-glucosyl-formaecin I and β-D-glucosyl-drosocin, respectively. We observed neither major secondary structural alterations studied by circular dichroism nor substantial differences in the toxicity with mammalian cells among all of these analogs. The comparative analyses of antibacterial activities of these analogs of formaecin I and drosocin displayed that β-D-maltosyl-formaecin I and β-D-maltosyl-drosocin were more potent than that of respective β-D-Glc-analog, β-D-cellobiosyl-analog and β-D-lactosyl-analog. Despite the differences in their antibacterial activity, all the analogs exhibited comparable binding affinity to DnaK that has been reported as one of the targets for proline-rich class of antibacterial peptides. The comparative-quantitative internalization studies of differentially active analogs revealed the differences in their uptake into bacterial cells. Our results exhibit that the sugar chain length as well as interglycosidic linkage of disaccharide may influence the antibacterial activity of glycosylated analogs of proline-rich antimicrobial peptides and the magnitude of variation in antibacterial activity depends on the peptide sequence.

  12. Assessing the antimicrobial activities of Ocins

    PubMed Central

    Choyam, Shilja; Lokesh, Dhanashree; Kempaiah, Bettadaiah Bheemakere; Kammara, Rajagopal

    2015-01-01

    The generation of a zone of inhibition on a solid substrate indicates the bioactivity of antimicrobial peptides such as bacteriocin and enterocin. The indicator strain plays a significant role in bacteriocin assays. Other characteristics of bacteriocins, such as their dispersal ability and the different zymogram components, also affect bacteriocin assays. However, universal well diffusion assays for antimicrobials, irrespective of their ability to diffuse (bacteriocin and enterocin), do not exist. The ability of different zymography components to generate non-specific activities have rarely been explored in the literature. The purpose of the present work was to evaluate the impact of major factors (diffusion and rate of diffusion) in a solid substrate bioassay, and to document the adverse effects of sodium dodecyl sulfate in zymograms used to estimate the approximate molecular weight of bacteriocins. PMID:26441952

  13. Cytotoxicity and Antimicrobial Activity of Oral Rinses In Vitro

    PubMed Central

    Müller, Heinz-Dieter; Moritz, Andreas; Lussi, Adrian

    2017-01-01

    While oral rinses used for cosmetic purposes only do not necessarily have to be antiseptic, antimicrobial activity is required for medical indications, including oral and periodontal surgery. So the question arises—is the antimicrobial activity of oral rinses associated with any destructive changes in cell viability in vitro? To answer this question, we examined twelve oral rinses with respect to their antimicrobial and cytotoxic activity. Antimicrobial activity was screened against five bacterial strains using disc diffusion. Cytotoxicity was determined by mitochondrial reductase activity with primary gingival fibroblasts, L929 cells, and HSC-2 epithelial cells. Phase contrast microscopy and trypan blue staining were then performed to reveal cell morphology. Cells remained vital after exposure to oral rinses that were only used for cosmetic purposes. Moderate cytotoxic effects were observed for oral rinses containing 0.05% chlorhexidine, ethanol, or pegylated hydrogenated castor oil and sodium dodecyl sulfate. Other oral rinses containing 0.2% chlorhexidine and cocamidopropyl betaine exhibited strong cytotoxic and antimicrobial activity. Strong cytotoxic but moderate antimicrobial activity was observed in oral rinses containing cetylpyridinium chloride. The in vitro data show that oral rinses are heterogeneous with respect to their cytotoxic and antimicrobial effects. Based on their respective properties, oral rinses can be selected either to reduce the microbial load or for cosmetic purposes.

  14. Kombucha fermentation and its antimicrobial activity.

    PubMed

    Sreeramulu, G; Zhu, Y; Knol, W

    2000-06-01

    Kombucha was prepared in a tea broth (0.5% w/v) supplemented with sucrose (10% w/v) by using a commercially available starter culture. The pH decreased steadily from 5 to 2.5 during the fermentation while the weight of the "tea fungus" and the OD of the tea broth increased through 4 days of the fermentation and remained fairly constant thereafter. The counts of acetic acid-producing bacteria and yeasts in the broth increased up to 4 days of fermentation and decreased afterward. The antimicrobial activity of Kombucha was investigated against a number of pathogenic microorganisms. Staphylococcus aureus, Shigella sonnei, Escherichia coli, Aeromonas hydrophila, Yersinia enterolitica, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermis, Campylobacter jejuni, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Helicobacterpylori, and Listeria monocytogenes were found to be sensitive to Kombucha. According to the literature on Kombucha, acetic acid is considered to be responsible for the inhibitory effect toward a number of microbes tested, and this is also valid in the present study. However, in this study, Kombucha proved to exert antimicrobial activities against E. coli, Sh. sonnei, Sal. typhimurium, Sal. enteritidis, and Cm. jejuni, even at neutral pH and after thermal denaturation. This finding suggests the presence of antimicrobial compounds other than acetic acid and large proteins in Kombucha.

  15. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.

    PubMed

    Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A

    2017-01-10

    Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for L-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. This article is protected by copyright. All rights reserved.

  16. Antimicrobial activity of extracts of Terminalia catappa root.

    PubMed

    Pawar, S P; Pal, S C

    2002-06-01

    The effect against bacteria of petroleum ether (60-80 degrees C), chloroform and methanolic extract of dried root of Terminalia catappa Linn. (combrataceae) was employed by cup plate agar diffusion method. The chloroform extract showed prominent antimicrobial activity against S. aureus and E. coli as compared to other tested microorganisms, while petroleum ether extract was devoid of antimicrobial activity. The methanolic: extract exhibited MIC of 0.065 mg/ml against E. coli. and chloroform extract exhibited MIC of 0.4 mg/ml against S. aureus The chloroform has well as methanolic extracts showed good antimicrobial activity against Gram positive and Gram negative microorganisms.

  17. Antimicrobial Activity against Intraosteoblastic Staphylococcus aureus

    PubMed Central

    Trouillet-Assant, Sophie; Riffard, Natacha; Tasse, Jason; Flammier, Sacha; Rasigade, Jean-Philippe; Chidiac, Christian; Vandenesch, François; Ferry, Tristan; Laurent, Frédéric

    2015-01-01

    Although Staphylococcus aureus persistence in osteoblasts, partly as small-colony variants (SCVs), can contribute to bone and joint infection (BJI) relapses, the intracellular activity of antimicrobials is not currently considered in the choice of treatment strategies for BJI. Here, antistaphylococcal antimicrobials were evaluated for their intraosteoblastic activity and their impact on the intracellular emergence of SCVs in an ex vivo osteoblast infection model. Osteoblastic MG63 cells were infected for 2 h with HG001 S. aureus. After killing the remaining extracellular bacteria with lysostaphin, infected cells were incubated for 24 h with antimicrobials at the intraosseous concentrations reached with standard therapeutic doses. Intracellular bacteria and SCVs were then quantified by plating cell lysates. A bactericidal effect was observed with fosfomycin, linezolid, tigecycline, oxacillin, rifampin, ofloxacin, and clindamycin, with reductions in the intracellular inocula of −2.5, −3.1, −3.9, −4.2, −4.9, −4.9, and −5.2 log10 CFU/100,000 cells, respectively (P < 10−4). Conversely, a bacteriostatic effect was observed with ceftaroline and teicoplanin, whereas vancomycin and daptomycin had no significant impact on intracellular bacterial growth. Ofloxacin, daptomycin, and vancomycin significantly limited intracellular SCV emergence. Overall, ofloxacin was the only molecule to combine an excellent intracellular activity while limiting the emergence of SCVs. These data provide a basis for refining the choice of antibiotics to prioritise in the management of BJI, justifying the combination of a fluoroquinolone for its intracellular activity with an anti-biofilm molecule, such as rifampin. PMID:25605365

  18. Effectiveness of some recent antimicrobial packaging concepts.

    PubMed

    Vermeiren, L; Devlieghere, F; Debevere, J

    2002-01-01

    A new type of active packaging is the combination of food-packaging materials with antimicrobial substances to control microbial surface contamination of foods. For both migrating and non-migrating antimicrobial materials, intensive contact between the food product and packaging material is required and therefore potential food applications include especially vacuum or skin-packaged products, e.g. vacuum-packaged meat, fish, poultry or cheese. Several antimicrobial compounds have been combined with different types of carriers (plastic and rubber articles, paper-based materials, textile fibrils and food-packaging materials). Until now, however, few antimicrobial concepts have found applications as a food-packaging material. Antimicrobial packaging materials cannot legally be used in the EU at the moment. The potential use would require amendments of several different legal texts involving areas such as food additives, food packaging, hygiene, etc. The main objective of this paper is to provide a state of the art about the different types of antimicrobial concepts, their experimental development and commercialization, and to present a case study summarizing the results of investigations on the feasibility of a low-density polyethylene (LDPE)-film containing triclosan to inhibit microbial growth on food surfaces and consequently prolong shelf-life or improve microbial food safety. In contrast with the strong antimicrobial effect in in-vitro simulated vacuum-packaged conditions against the psychrotrophic food pathogen L. monocytogenes, the 1000 mg kg(-1) containing triclosan film did not effectively reduce spoilage bacteria and growth of L. monocytogenes on refrigerated vacuum-packaged chicken breasts stored at 7 degrees C.

  19. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity.

    PubMed

    Maturana, P; Martinez, M; Noguera, M E; Santos, N C; Disalvo, E A; Semorile, L; Maffia, P C; Hollmann, A

    2017-05-01

    Antimicrobial peptides (AMPs) are small cationic molecules that display antimicrobial activity against a wide range of bacteria, fungi and viruses. For an AMP to be considered as a therapeutic option, it must have not only potent antibacterial properties but also low hemolytic and cytotoxic activities [1]. Even though many studies have been conducted in order to correlate the antimicrobial activity with affinity toward model lipid membranes, the use of these membranes to explain cytotoxic effects (especially hemolysis) has been less explored. In this context, we studied lipid selectivity in two related novel AMPs, peptide 6 (P6) and peptide 6.2 (P6.2). Each peptide was designed from a previously reported AMP, and specific amino acid replacements were performed in an attempt to shift their hydrophobic moment or net charge. P6 showed no antimicrobial activity and high hemolytic activity, and P6.2 exhibited good antibacterial and low hemolytic activity. Using both peptides as a model we correlated the affinity toward membranes of different lipid composition and the antimicrobial and hemolytic activities. Our results from surface pressure and zeta potential assays showed that P6.2 exhibited a higher affinity and faster binding kinetic toward PG-containing membranes, while P6 showed this behavior for pure PC membranes. The final position and structure of P6.2 into the membrane showed an alpha-helix conversion, resulting in a parallel alignment with the Trps inserted into the membrane. On the other hand, the inability of P6 to adopt an amphipathic structure, plus its lower affinity toward PG-containing membranes seem to explain its poor antimicrobial activity. Regarding erythrocyte interactions, P6 showed the highest affinity toward erythrocyte membranes, resulting in an increased hemolytic activity. Overall, our data led us to conclude that affinity toward negatively charged lipids instead of zwitterionic ones seems to be a key factor that drives from hemolytic to

  20. The effect of copper(II), iron(II) sulphate, and vitamin C combinations on the weak antimicrobial activity of (+)-catechin against Staphylococcus aureus and other microbes.

    PubMed

    Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F

    2012-12-01

    Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products.

  1. Anion effects on anti-microbial activity of poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)].

    PubMed

    Garg, Godawari; Chauhan, Ghanshyam S; Gupta, Reena; Ahn, J-H

    2010-04-01

    Recent investigations in the anti-microbial properties of the functional polymers are predominantly focused on the structure of the cationic moieties. In the present study, we investigated that the nature of the anion present in polysulfobetaines affects activity against certain microorganisms and their anti-microbial properties have been rationalized in terms of the structure-activity relationship. Vinyl imidazolium-based polysulfobetaines were prepared by the quaternization of poly(N-vinyl imidazole) with sodium salt of 2-bromo ethanesulfonic acid. The bromide counter anion of the resulting polymer was exchanged with different anions to generate a series of polymers. These were characterized by FTIR, DSC, XRD, SEM, elemental analysis (C, H, N and S) and viscosity measurements. The anti-microbial activity studies were carried against three fungi (Aspergillus niger, Byssochlamys fulva and Mucor circenelliods) and two bacteria (Bacillus coagulans BTS-3 and Pseudomonas aeruginosa BTS-2). The nature of the anion affects the structure of polysulfobetaine by realignment of polymer chains. The anion-dependent anti-microbial properties of polysulfobetaines result from the interaction of the microbes at the polymer interface.

  2. Binding effect of proline-rich-proteins (PRPs) on in vitro antimicrobial activity of the flavonoids

    PubMed Central

    Ansari, Jawaad Ahmed; Naz, Shahina; Tarar, Omer Mukhtar; Siddiqi, Rahmanullah; Haider, Muhammad Samee; Jamil, Khalid

    2015-01-01

    The interaction of the cyanidin, pelargonidin, catechin, myrecetin and kaempferol with casein and gelatin, as proline rich proteins (PRPs), was studied. The binding constants calculated for both flavonoid-casein and flavonoid-gelatin were fairly large (10 5 –10 7 M −1 ) indicating strong interaction. Due to higher proline content in gelatin, the binding constants of flavonoid-gelatin (2.5 × 10 5 –6.2 × 10 7 M −1 ) were found to be higher than flavonoid-casein (1.2 × 10 5 –5.0 × 10 7 M −1 ). All the flavonoids showed significant antibacterial activity against the tested strains. Significant loss in activity was observed due to the complexation with PRPs confirming that binding effectively reduced the concentration of the free flavonoids to be available for antibacterial activity. The decline in activity was corresponding to the values of the binding constants. Though the activities of free catechin and myrecetin were higher compared to pelargonidin, cyanidin and kaempferol yet the decline in activity of catechin and myrecetin due to complexation with casein and gelatin was more pronounced. PMID:26221106

  3. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  4. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy.

    PubMed

    Tao, Yifan; Wang, Yun; Huang, Shi; Zhu, Pengfei; Huang, Wei E; Ling, Junqi; Xu, Jian

    2017-04-04

    To combat the spread of antibiotic resistance, methods that quantitatively assess the metabolism-inhibiting effects of drugs in a rapid and culture-independent manner are urgently needed. Here using four oral bacteria as models, we show that heavy water (D2O)-based single-cell Raman microspectroscopy (D2O-Raman) can probe bacterial response to different drugs using the Raman shift at the C-D (carbon-deuterium vibration) band in 2040 to 2300 cm(-1) as a universal biomarker for metabolic activity at single-bacterial-cell resolution. The "minimum inhibitory concentration based on metabolic activity" (MIC-MA), defined as the minimal dose under which the median ΔC-D-ratio at 8 h of drug exposure is ≤0 and the standard deviation (SD) of the ΔC-D ratio among individual cells is ≤0.005, was proposed to evaluate the metabolism-inhibiting efficacy of drugs. In addition, heterogeneity index of MIC-MA (MIC-MA-HI), defined as SD of C-D ratio among individual cells, quantitatively assesses the among-cell heterogeneity of metabolic activity after drug regimens. When exposed to 1× MIC of sodium fluoride (NaF), 1× MIC of chlorhexidine (CHX), or 60× MIC of ampicillin, the cariogenic oral pathogen Streptococcus mutans UA159 ceased propagation yet remained metabolically highly active. This underscores the advantage of MIC-MA over the growth-based MIC in being able to detect the "nongrowing but metabolically active" (NGMA) cells that underlie many latent or recurring infections. Moreover, antibiotic susceptible and resistant S. mutans strains can be readily discriminated at as early as 0.5 h. Thus, D2O-Raman can serve as a universal method for rapid and quantitative assessment of antimicrobial effects based on general metabolic activity at single-cell resolution.

  5. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    PubMed

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  6. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract

    PubMed Central

    Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele

    2015-01-01

    Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens. PMID:26770255

  7. Effects of Slime Produced by Clinical Isolates of Coagulase-Negative Staphylococci on Activities of Various Antimicrobial Agents

    PubMed Central

    Souli, Maria; Giamarellou, Helen

    1998-01-01

    A novel in vitro semiquantitative method was developed to investigate the influence of staphylococcal slime on the activities of 22 antimicrobial agents. Pefloxacin, teicoplanin, and vancomycin demonstrated remarkable decreases in efficacy: 30, 52, and 63%, respectively. The activity of rifampin was not significantly reduced (0.99%), whereas all other agents tested were modestly affected (<15% decrease). These data could be influential in the treatment of implant-associated infections caused by slime-producing staphylococci. PMID:9559814

  8. The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM)

    PubMed Central

    Jonaidi-Jafari, Nematollah; Izadi, Morteza

    2016-01-01

    Background Although, mineral trioxide aggregate (MTA) and new experimental cement (CEM) are good root filling cements, but had no or low antimicrobial activities. The aim of this study was to evaluate the effects of addition of silver nanoparticles (SNP) to these two cements on antimicrobial effects against five most dental infection related microorganisms. Material and Methods Two suspensions of 100 and 200 ppm of SNP were prepared and 180 μl of microbial suspension with 1.5 × 108 CFU/ml of each respected microorganisms were re-suspended in deionized water or each of SNP suspensions. After that, 60 μg of MTA and CEM were added to each tube. In one tube, the mixture of all above mentioned microorganisms were added as a source of microorganism. Colonies were counted after 0, 24, 48, 72 and 96 hours intervals of incubation at 35°C on blood agar for evaluation of antimicrobial efficacy. Results MTA and CEM had antibacterial activities on all microorganisms’ strains except for Enterococcus faecalis and mixture group. MTA had better antibacterial activity than CEM but the difference was not significant (p<0.05). The combination of SNP with two cements resulted in significantly higher antimicrobial activities (p<0.05). Also, there was no statistically significant difference between two SNP concentrations (p>0.05). Conclusions Mixture of MTA and CEM with different concentrations of SNP significantly increased the antibacterial activity. Key words:Mineral trioxide aggregate, calcium-enriched mixture, silver nanoparticle, antimicrobial activity. PMID:26855701

  9. Evaluation of Persistent Antimicrobial Effects of an Antimicrobial Formulation

    PubMed Central

    Ferrara, Michael S.; Courson, Ron; Paulson, Daryl S.

    2011-01-01

    Context: Community-acquired methicillin-resistant Staphylococcus aureus (MRSA) is becoming more prevalent in healthy athletic populations. Various preventive measures have been proposed, but few researchers have evaluated the protective effects of a prophylactic application of a commercially available product. Objective: To compare the persistent antimicrobial properties of a commercially available antimicrobial product containing 4% chlorhexidine gluconate (Hibiclens) with those of a mild, nonmedicated soap (Dr. Bronner's Magic Soap). Design: Cross-sectional study. Setting: Microbiology laboratory, contract research organization. Patients or Other Participants: Twenty healthy human volunteers. Intervention(s): The test and control products were randomly assigned and applied to both forearms of each participant. Each forearm was washed for 2 minutes with the test or control product, rinsed, and dried. At, 1, 2, and 4 hours after application, each forearm was exposed to MRSA for approximately 30 minutes. Main Outcome Measure(s): Differences in numbers of MRSA recovered from each forearm, test and control, at each postapplication time point were compared. Results: Fewer MRSA (P < .0001) were recovered from the forearms treated with the test product (4% chlorhexidine gluconate) than from the forearms treated with the control product (nonmedicated soap). Conclusions: The 4% chlorhexidine gluconate product demonstrated persistent bactericidal activity versus MRSA for up to 4 hours after application. PMID:22488188

  10. Antimicrobial activity of antiseptic-coated orthopaedic devices.

    PubMed

    Darouiche, R O; Green, G; Mansouri, M D

    1998-04-01

    Antimicrobial coating of medical devices, including fracture fixation devices, has evolved as a potentially effective method for preventing device-related infections. We examined the in vitro antimicrobial activity of titanium cylinders coated with the antiseptic combination of chlorhexidine and chloroxylenol. The coated devices provided zones of inhibition against Staphylococcus epidermidis, S. aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, at baseline and up to 8 weeks after incubation of the coated cylinders in human serum at 37 degrees C. This durable antimicrobial activity was attributed to the relatively slow leaching of chlorhexidine and chloroxylenol from the coated cylinders as measured by high-performance liquid chromatography. These results suggest that antiseptic-coated orthopaedic devices may provide broad-spectrum and durable antimicrobial protection against device-related infection.

  11. Effect of Different Obturation Materials on Residual Antimicrobial Activity of 2% Chlorhexidine in Dentin at Different Time Intervals: An Ex Vivo Study

    PubMed Central

    Bolhari, Behnam; Dehghan, Somayyeh; Sharifian, Mohammad Reza; Bahador, Abbas

    2015-01-01

    Objectives: The aim of this study was to evaluate the effect of gutta percha/AH26 and Resilon/RealSeal SE on residual antimicrobial activity of chlorhexidine (CHX) in human root dentin and suggest the best filling material when CHX is used as final irrigant. Materials and Methods: One-hundred and forty-four single-rooted human teeth were selected for this study. Canals were instrumented to the apical size #35. Smear layer was removed using 5.25% NaOCl and 17% EDTA and then 108 teeth were irrigated with 2% CHX and randomly divided into three groups of gutta percha/AH26, Resilon/RealSeal SE and positive controls. Each group was divided into three subgroups for different time intervals (one, three and six weeks). Thirty-six teeth, as negative controls, were irrigated with saline and obturated with gutta percha/AH26 and Resilon/RealSeal SE. Dentin powder was prepared at the afore-mentioned intervals. After exposure to Enterococcus faecalis for 24 hours, colony forming units (CFUs) were counted and residual antimicrobial activity was calculated. The data were analyzed using the Kruskal Wallis test and one-way ANOVA. The significance level was set at P<0.05. Results: The antimicrobial activity of CHX gradually decreased in a time-dependent manner but it maintained over 95% of its antimicrobial activity after six weeks. Moreover, Resilon/RealSeal SE significantly decreased the antimicrobial activity of CHX in comparison with gutta-percha/AH26 (P<0.05). Conclusion: After a final irrigation with CHX, gutta-percha/AH26 is a better choice for root canal obturation. PMID:27252755

  12. Antimicrobial activity of chemically modified dextran derivatives.

    PubMed

    Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C

    2017-04-01

    Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C12H25 or C18H37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups.

  13. The Antimicrobial Activity of Porphyrin Attached Polymers

    NASA Astrophysics Data System (ADS)

    Thompson, Lesley

    2008-03-01

    We are interested in testing the antimicrobial activity of a porphyrin that is attached to a polymer. The porphyrin (5-(4-carboxyphenyl)-10,15,20-tris-(4-pryridyl)) was synthesized from methyl 4-formyl benzoate, 4-pyridinecarboxaldehyde, and pyrrole and attached to a copolymer of polystyrene/poly(vinyl benzyl chloride), which was synthesized by free radical polymerization. The antimicrobial activity of the polymer-attached porphyrin was then determined for gram-negative E. Coli grown to 0.80 OD. In this procedure, glass slides were coated with polymer-attached porphyrin via dip-coating, and the E. Coli bacteria were plated in Luria Broth media. The plates were subsequently exposed to light overnight before they were incubated as porphyrins act as photo-sensitizers when irradiated with light. The polymer-attached porphyrin did exhibit antimicrobial activity and parameters that affect its efficiency will be discussed.

  14. Access to effective antimicrobials: a worldwide challenge.

    PubMed

    Laxminarayan, Ramanan; Matsoso, Precious; Pant, Suraj; Brower, Charles; Røttingen, John-Arne; Klugman, Keith; Davies, Sally

    2016-01-09

    Recent years have seen substantial improvements in life expectancy and access to antimicrobials, especially in low-income and lower-middle-income countries, but increasing pathogen resistance to antimicrobials threatens to roll back this progress. Resistant organisms in health-care and community settings pose a threat to survival rates from serious infections, including neonatal sepsis and health-care-associated infections, and limit the potential health benefits from surgeries, transplants, and cancer treatment. The challenge of simultaneously expanding appropriate access to antimicrobials, while restricting inappropriate access, particularly to expensive, newer generation antimicrobials, is unique in global health and requires new approaches to financing and delivering health care and a one-health perspective on the connections between pathogen transmission in animals and humans. Here, we describe the importance of effective antimicrobials. We assess the disease burden caused by limited access to antimicrobials, attributable to resistance to antimicrobials, and the potential effect of vaccines in restricting the need for antibiotics.

  15. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity.

    PubMed

    Guzman, Juan David

    2014-11-25

    Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC) of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  16. Synergistic antimicrobial activities of natural essential oils with chitosan films.

    PubMed

    Wang, Lina; Liu, Fei; Jiang, Yanfeng; Chai, Zhi; Li, Pinglan; Cheng, Yongqiang; Jing, Hao; Leng, Xiaojing

    2011-12-14

    The synergistic antimicrobial activities of three natural essential oils (i.e., clove bud oil, cinnamon oil, and star anise oil) with chitosan films were investigated. Cinnamon oil had the best antimicrobial activity among three oils against Escherichia coli , Staphylococcus aureus , Aspergillus oryzae , and Penicillium digitatum . The chitosan solution exhibited good inhibitory effects on the above bacteria except the fungi, whereas chitosan film had no remarkable antimicrobial activity. The cinnamon oil-chitosan film exhibited a synergetic effect by enhancing the antimicrobial activities of the oil, which might be related to the constant release of the oil. The cinnamon oil-chitosan film had also better antimicrobial activity than the clove bud oil-chitosan film. The results also showed that the compatibility of cinnamon oil with chitosan in film formation was better than that of the clove bud oil with chitosan. However, the incorporated oils modified the mechanical strengths, water vapor transmission rate, moisture content, and solubility of the chitosan film. Furthermore, chemical reaction took place between cinnamon oil and chitosan, whereas phase separation occurred between clove bud oil and chitosan.

  17. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities.

    PubMed

    Urdaci, Maria C; Bressollier, Philippe; Pinchuk, Irina

    2004-07-01

    The clinical benefits observed with probiotic use are mainly attributed to the antimicrobial substances produced by probiotic strains and to their immunomodulatory effects. Currently, the best-documented probiotic bacteria used in human therapy are lactic acid bacteria. In contrast, studies aiming to characterize the mechanisms responsible for the probiotic beneficial effects of Bacillus are rare. The current work seeks to contribute to such characterization by evaluating the antimicrobial and immunomodulatory activities of probiotic B. clausii strains. B. clausii strains release antimicrobial substances in the medium. Moreover, the release of these antimicrobial substances was observed during stationary growth phase and coincided with sporulation. These substances were active against Gram-positive bacteria, in particular against Staphylococcus aureus, Enterococcus faecium, and Clostridium difficile. The antimicrobial activity was resistant to subtilisin, proteinase K, and chymotrypsin treatment, whereas it was sensitive to pronase treatment. The evaluation of the immunomodulatory properties of probiotic B. clausii strains was performed in vitro on Swiss and C57 Bl/6j murine cells. The authors demonstrate that these strains, in their vegetative forms, are able to induce NOS II synthetase activity, IFN-gamma production, and CD4 T-cell proliferation.

  18. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: in vitro antimicrobial activities and effects on growth performance.

    PubMed

    Mathlouthi, N; Bouzaienne, T; Oueslati, I; Recoquillay, F; Hamdi, M; Urdaci, M; Bergaoui, R

    2012-03-01

    The present study was conducted to characterize the in vitro antimicrobial activities of 3 essential oils [oregano, rosemary, and a commercial blend of essential oils (BEO)] against pathogenic and nonpathogenic bacteria and to evaluate their effects on broiler chicken performances. The chemical composition of the essential oils was determined using the gas chromatography interfaced with a mass spectroscopy. The disc diffusion method, the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC) were applied for the determination of antimicrobial activities of essential oils. In vivo study, a total of seven hundred fifty 1-d-old male broiler chickens were assigned to 6 dietary treatment groups: basal diet (control; CON), CON + 44 mg of avilamycin/kg (A), CON + 100 mg of rosemary essential oil/kg (ROS), CON + 100 mg of oregano essential oil/kg (OR), CON + 50 mg of rosemary and 50 mg of oregano essential oils/kg (RO), and CON + 1,000 mg of BEO/kg (essential oil mixture, EOM). The essential oils isolated from rosemary and oregano were characterized by their greater content of 1,8-cineole (49.99%) and carvacrol (69.55%), respectively. The BEO was mainly represented by the aldehyde (cinnamaldehyde) and the monoterpene (1,8-cineole) chemical groups. The results of the disc diffusion method indicated that the rosemary essential oil had antibacterial activity (P ≤ 0.05) against only 3 pathogenic bacteria, Escherichia coli (8 mm), Salmonella indiana (11 mm), and Listeria innocua (9 mm). The essential oil of oregano had antimicrobial activities (P ≤ 0.05) on the same bacteria as rosemary but also on Staphylococcus aureus (22 mm) and Bacillus subtilis (12 mm). Oregano essential oil had greater (P ≤ 0.05) antimicrobial activities against pathogenic bacteria than rosemary essential oil but they had no synergism between them. The BEO showed an increased antimicrobial activity (P ≤ 0.05) against all studied bacteria (pathogenic and

  19. Synthetic Coprisin analog peptide, D-CopA3 has antimicrobial activity and pro-apoptotic effects in human leukemia cells.

    PubMed

    Kim, Soon-ja; Kim, In-Woo; Kwon, Yong-Nam; Yun, Eun-Young; Hwang, Jae-Sam

    2012-02-01

    Recently, we reported that the synthetic Coprisin analog peptide 9-mer dimer CopA3 (consisted of all-L amino acid sequence) was designed based on a defensin-like peptide, Coprisin isolated from Copris tripartitus. The 9-mer dimer CopA3 (L-CopA3) had antibacterial activity and induced apoptosis in human leukemia cells via a caspase-independent pathway. In this study, all of amino acid sequences of L-CopA3 were modified to all D-form amino acids (D-CopA3) to develop a more effective antimicrobial peptide. We investigated whether D-CopA3 had antimicrobial activities against pathogenic microorganisms and proapoptotic effects in human leukemia cells (U937, Jurkat, and AML-2). The synthetic peptide D-CopA3 had antimicrobial activities against various pathogenic bacteria and yeast fungus with MIC values in the 4~64 microM range. Moreover, D-CopA3 caused cell growth inhibition, and increased the chromosomal DNA fragmentation and the expression of inflammatory cytokines, TNF-alpha and IL1-beta, transcripts in human leukemia cells. The all-D amino acid peptide D-CopA3 proved as effective as the L-CopA3 reported previously. These results provide the basis for developing D-CopA3 as a new antibiotic peptide.

  20. Peptides with Dual Antimicrobial and Anticancer Activities

    PubMed Central

    Felício, Mário R.; Silva, Osmar N.; Gonçalves, Sônia; Santos, Nuno C.; Franco, Octávio L.

    2017-01-01

    In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials. PMID:28271058

  1. Antimicrobial activity of various extracts of Ocimum basilicum L. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy.

    PubMed

    Kaya, Ilhan; Yigit, Nazife; Benli, Mehlika

    2008-06-18

    The antimicrobial activities of chloroform, acetone and two different concentrations of methanol extracts of Ocimum basilicum L. were studied. These extracts were tested in vitro against 10 bacteria and 4 yeasts strains by the disc diffusion method. The results indicated that the methanol extracts of O. basilucum exhibited the antimicrobial activity against tested microorganisms. While the chloroform and acetone extracts had no effect, the methanol extracts showed inhibition zones against strains of Pseudomonas aeruginosa, Shigella sp., Listeria monocytogenes, Staphylococcus aureus and two different strains of Escherichia coli. The cells of microorganisms, which were treated and untreated with plant extracts, were observed by using the scanning electron microscope. It was observed that the treated cells were damaged.

  2. Antimicrobial activity of two essential oils.

    PubMed

    Mickienė, Rūta; Bakutis, Bronius; Baliukonienė, Violeta

    2011-01-01

    The aim of the study was to evaluate the antimicrobial activity of essential oils in vitro for possible application to reduce the content of microorganisms in the air of animal houses. The essential oils of Cymbopogon citrarus L. and Malaleuca alternifolia L. were screened against bacteria Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and yeast Candida albicans. The minimal inhibitory concentration of the active essential oils was tested using broth dilution assay. The essential oils concentrations ranged from 0.1-50.0%. The combined effects of essential oils were tested for Malaleuca alternifolia L. and Cymbopogon citrarus L. concentrations ranged from 0.005-50.0%. The oils showed a wide spectrum of antibacterial activity. Concentrations of 0.1-0.5% of Cymbopogon citrarus L. and Malaleuca alternifolia L. reduced total microorganisms count of Proteus mirabilis and Candida albicans. High antibacterial activity was also revealed for Cymbopogon citrarus L. with bactericidal concentrations of 0.8% for Escherichia coli, 5.0% for Enterococcus faecium, 5.0% for Pseudomonas aeruginosa and 8.0% for Staphylococcus aureus. Bactericidal concentrations of Malaleuca alternifolia L. were 5.0% for Pseudomonas aeruginosa and Enterococcus faecium, and 8.0% for Staphylococcus aureus. The essential oils of Cymbopogon citrarus and Malaleuca alternifolia may be a promising alternative of air disinfection in animal houses.

  3. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: evidence for the effects of organic acids.

    PubMed

    Tejero-Sariñena, Sandra; Barlow, Janine; Costabile, Adele; Gibson, Glenn R; Rowland, Ian

    2012-10-01

    The aim of this study was to investigate the antimicrobial properties of fifteen selected strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera against Gram-positive and Gram-negative pathogenic bacteria. In vitro antibacterial activity was initially investigated by an agar spot method. Results from the agar spot test showed that most of the selected strains were able to produce active compounds on solid media with antagonistic properties against Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Clostridium difficile. These results were also confirmed when cell-free culture supernatants (CFCS) from the putative probiotics were used in an agar well diffusion assay. Neutralization of the culture supernatants with alkali reduced the antagonistic effects. These experiments are able to confirm the capacity of potential probiotics to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the production of organic acids from glucose fermentation and consequent lowering of culture pH. This observation was confirmed when the profile of organic acids was analysed demonstrating that lactic and acetic acid were the principal end products of probiotic metabolism. Furthermore, the assessment of the haemolytic activity and the susceptibility of the strains to the most commonly used antimicrobials, considered as basic safety aspects, were also studied. The observed antimicrobial activity was mainly genus-specific, additionally significant differences could be observed among species.

  4. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria

    PubMed Central

    Ebbensgaard, Anna; Mordhorst, Hanne; Overgaard, Michael Toft; Nielsen, Claus Gyrup; Aarestrup, Frank Møller; Hansen, Egon Bech

    2015-01-01

    Analysis of a Selected Set of Antimicrobial Peptides The rapid emergence of resistance to classical antibiotics has increased the interest in novel antimicrobial compounds. Antimicrobial peptides (AMPs) represent an attractive alternative to classical antibiotics and a number of different studies have reported antimicrobial activity data of various AMPs, but there is only limited comparative data available. The mode of action for many AMPs is largely unknown even though several models have suggested that the lipopolysaccharides (LPS) play a crucial role in the attraction and attachment of the AMP to the bacterial membrane in Gram-negative bacteria. We compared the potency of Cap18, Cap11, Cap11-1-18m2, Cecropin P1, Cecropin B, Bac2A, Bac2A-NH2, Sub5-NH2, Indolicidin, Melittin, Myxinidin, Myxinidin-NH2, Pyrrhocoricin, Apidaecin and Metalnikowin I towards Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Listeria monocytogenes, Campylobacter jejuni, Flavobacterium psychrophilum, Salmonella typhimurium and Yersinia ruckeri by minimal inhibitory concentration (MIC) determinations. Additional characteristics such as cytotoxicity, thermo and protease stability were measured and compared among the different peptides. Further, the antimicrobial activity of a selection of cationic AMPs was investigated in various E. coli LPS mutants. Cap18 Shows a High Broad Spectrum Antimicrobial Activity Of all the tested AMPs, Cap18 showed the most efficient antimicrobial activity, in particular against Gram-negative bacteria. In addition, Cap18 is highly thermostable and showed no cytotoxic effect in a hemolytic assay, measured at the concentration used. However, Cap18 is, as most of the tested AMPs, sensitive to proteolytic digestion in vitro. Thus, Cap18 is an excellent candidate for further development into practical use; however, modifications that should reduce the protease sensitivity would be needed. In addition, our

  5. Antimicrobial activity of Aspilia latissima (Asteraceae).

    PubMed

    Souza, Jeana M E; Chang, Marilene R; Brito, Daniela Z; Farias, Katyuce S; Damasceno-Junior, Geraldo A; Turatti, Izabel C C; Lopes, Norberto P; Santos, Edson A; Carollo, Carlos A

    2015-01-01

    We evaluated the antimicrobial activity of Aspilia latissima - an abundant plant from the Brazilian Pantanal region - against Candida albicans, Candida parapsilosis, Candida krusei, Candida tropicalis, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli and Staphylococcus aureus. The crude extracts and fractions showed activity in all tested microorganisms. The chloroform fraction of the leaves and roots showed the most antimicrobial activity against S. aureus, with an MIC of 500 μg/mL. This fraction was submitted to bioautographic assays to characterize the activity of the compounds. Two bands from the leaves (L-A and L-B) and three bands from the roots (R-C, R-D and R-E) were bioactive. Within the root-derived bands, the terpene derivatives stigmasterol, kaurenoic acid and kaura-9(11), 16-dien-18-oic acid were identified. Antibiotic activity of A. latissima is reported for the first time.

  6. Antimicrobial Activity and Stability of Electron Beam Irradiated Dental Irrigants

    PubMed Central

    Geethashri, A; Palaksha, K.J.; Sridhar, K. R.; Sanjeev, Ganesh

    2014-01-01

    Background: The electron beam (e-beam) radiation is considered as an effective means of sterilization of healthcare products as well as to induce the structural changes in the pharmaceutical agents/drug molecules. In addition to structural changes of pharmaceutical it also induces the formation of low molecular weight compounds with altered microbiological, physicochemical and toxicological properties. Among the several known medicaments, sodium hypochlorite (NaOCl) and chlorhexidine digluconate (CHX) are used as irrigants in dentistry to kill the pathogenic microorganisms like Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans and Candida albicans inhabiting the oral cavity. Objectives: The aim of this study was to evaluate the antimicrobial activity and stability of e-beam irradiated dental irrigants, NaOCl and CHX. Materials and Methods: Two dental irrigants NaOCl (1.25% and 2.5%) and CHX (1% and 2%) were exposed to various doses of e-beam radiation. The antimicrobial activities of e-beam irradiated irrigants were compared with the non-irradiated (control) irrigants against E. faecalis, S. aureus, S. mutans and C. albicans by disc diffusion method. Following the storage, physico-chemical properties of the irrigants were recorded and the cytotoxic effect was evaluated on human gingival fibroblast cells. Result: The irrigants, 1.25% NaOCl and 1% CHX showed significantly increased antimicrobial activity against both E. faecalis, (16+0.0) and S. aureus (25+0.0) after irradiation with 1 kGy e-beam. Whereas, 2.5% NaOCl and 2% CHX showed slightly increased antimicrobial activity only against S. aureus (28+0.0). The significant difference was noticed in the antimicrobial activity and cytotoxicity of irradiated and non-irradiated irrigants following the storage for 180 d at 40C. Conclusion: The e-beam irradiation increased the antimicrobial activity of irrigants without altering the biocompatibility. PMID:25584220

  7. Poisson Parameters of Antimicrobial Activity: A Quantitative Structure-Activity Approach

    PubMed Central

    Sestraş, Radu E.; Jäntschi, Lorentz; Bolboacă, Sorana D.

    2012-01-01

    A contingency of observed antimicrobial activities measured for several compounds vs. a series of bacteria was analyzed. A factor analysis revealed the existence of a certain probability distribution function of the antimicrobial activity. A quantitative structure-activity relationship analysis for the overall antimicrobial ability was conducted using the population statistics associated with identified probability distribution function. The antimicrobial activity proved to follow the Poisson distribution if just one factor varies (such as chemical compound or bacteria). The Poisson parameter estimating antimicrobial effect, giving both mean and variance of the antimicrobial activity, was used to develop structure-activity models describing the effect of compounds on bacteria and fungi species. Two approaches were employed to obtain the models, and for every approach, a model was selected, further investigated and found to be statistically significant. The best predictive model for antimicrobial effect on bacteria and fungi species was identified using graphical representation of observed vs. calculated values as well as several predictive power parameters. PMID:22606039

  8. Synthesis and antimicrobial activity of cysteine-free coprisin nonapeptides.

    PubMed

    Lee, Jaeho; Lee, Daeun; Choi, Hyemin; Kim, Ha Hyung; Kim, Ho; Hwang, Jae Sam; Lee, Dong Gun; Kim, Jae Il

    2014-01-10

    Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. CopA3 (LLCIALRKK-NH₂), a 9-mer peptide containing a single free cysteine residue at position 3 of its sequence, was derived from the α-helical region of coprisin and exhibits potent antibacterial and anti-inflammatory activities. The single cysteine implies a tendency for dimerization; however, it remains unknown whether this cysteine residue is indispensible for CopA3's antimicrobial activity. To address this issue, in the present study we synthesized eight cysteine-substituted monomeric CopA3 analogs and two dimeric analogs, CopA3 (Dimer) and CopIK (Dimer), and evaluated their antimicrobial effects against bacteria and fungi, as well as their hemolytic activity toward human erythrocytes. Under physiological conditions, CopA3 (Mono) exhibits a 6/4 (monomer/dimer) molar ratio in HPLC area percent, indicating that its effects on bacterial strains likely reflect a CopA3 (Mono)/CopA3 (Dimer) mixture. We also report the identification of CopW, a new cysteine-free nonapeptide derived from CopA3 that has potent antimicrobial activity with virtually no hemolytic activity. Apparently, the cysteine residue in CopA3 is not essential for its antimicrobial function. Notably, CopW also exhibited significant synergistic activity with ampicillin and showed more potent antifungal activity than either wild-type coprisin or melittin.

  9. Antimicrobial activity of alcohols from Musca domestica.

    PubMed

    Gołębiowski, Marek; Dawgul, Małgorzata; Kamysz, Wojciech; Boguś, Mieczysława I; Wieloch, Wioletta; Włóka, Emilia; Paszkiewicz, Monika; Przybysz, Elżbieta; Stepnowski, Piotr

    2012-10-01

    Information on the stimulatory and inhibitory effects of cuticular alcohols on growth and virulence of insecticidal fungi is unavailable. Therefore, we set out to describe the content of cuticular and internal alcohols in the body of housefly larvae, pupae, males and females. The total cuticular alcohols in larvae, males and females of Musca domestica were detected in comparable amounts (4.59, 3.95 and 4.03 μg g(-1) insect body, respectively), but occurred in smaller quantities in pupae (2.16 μg g(-1)). The major free alcohol in M. domestica larvae was C(12:0) (70.4%). Internal alcohols of M. domestica larvae were not found. Among cuticular pupae alcohols, C(12:0) (31.0%) was the most abundant. In the internal lipids of pupae, only five alcohols were identified in trace amounts. The most abundant alcohol in males was C(24:0) (57.5%). The percentage content of cuticular C(24:0) in males and females (57.5 and 36.5%, respectively) was significantly higher than that of cuticular lipids in larvae and pupae (0.9 and 5.6%, respectively). Only two alcohols were present in the internal lipids of males in trace amounts (C(18:0) and C(20:0)). The most abundant cuticular alcohols in females were C(24:0) (36.5%) and C(12:0) (26.8%); only two alcohols (C(18:0) and C(20:0)) were detected in comparable amounts in internal lipids (3.61±0.32 and 5.01±0.42 μg g(-1), respectively). For isolated alcohols, antimicrobial activity against 10 reference strains of bacteria and fungi was determined. Individual alcohols showed approximately equal activity against fungal strains. C(14:0) was effective against gram-positive bacteria, whereas gram-negative bacteria were resistant to all tested alcohols. Mixtures of alcohols found in cuticular lipids of larvae, pupae, males and females of M. domestica generally presented higher antimicrobial activity than individual alcohols. In contrast, crude extracts containing both cuticular and internal lipids showed no antifungal activity against the

  10. Protective effect of quercetin in gentamicin-induced oxidative stress in vitro and in vivo in blood cells. Effect on gentamicin antimicrobial activity.

    PubMed

    Bustos, Pamela Soledad; Deza-Ponzio, Romina; Páez, Paulina Laura; Albesa, Ines; Cabrera, José Luis; Virgolini, Miriam Beatriz; Ortega, María Gabriela

    2016-12-01

    We have evaluated the effect of gentamicin and gentamicin plus quercetin on ROS production, endogenous antioxidant defenses (SOD and CAT) and lipid peroxidation in vitro on human leukocytes and in vivo on whole rat blood. Gentamicin generated ROS production in human leukocytes, produced a dual effect on both enzymes dosage-dependent and generated an increase in lipid peroxidation. Quercetin, in leukocytes stimulated by gentamicin, showed more inhibitory capacity in ROS production than the reference inhibitor (vitaminC) in mononuclear cells and a similar protective behavior at this inhibitor in polymorphonuclear cells. Quercetin, in both cellular systems, tend to level SOD and CAT activities, reaching basal values and could prevent lipidic peroxidation induced by gentamicin. The results in Wistar rats confirmed that therapeutic doses of gentamicin can induce oxidative stress in whole blood and that the gentamicin treatment plus quercetin can suppress ROS generation, collaborate with SOD and CAT and diminish lipid peroxidation. Finally, flavonoid and antibiotic association was evaluated on the antimicrobial activity in S. aureus and E. coli, showing that changes were not generated in the antibacterial activity of gentamicin against E. coli strains, while for strains of S. aureus a beneficial effect observes. Therefore, we have demonstrated that gentamicin could induce oxidative stress in human leukocytes and in whole blood of Wistar rats at therapeutic doses and that quercetin may to produce a protective effect on this oxidative stress generated without substantially modifying the antibacterial activity of gentamicin against E. coli strains, and it contributes to this activity against S. aureus strains.

  11. Morphology and oxygen incorporation effect on antimicrobial activity of silver thin films

    NASA Astrophysics Data System (ADS)

    Rebelo, Rita; Manninen, N. K.; Fialho, Luísa; Henriques, Mariana; Carvalho, Sandra

    2016-05-01

    Ag and AgxO thin films were deposited by non-reactive and reactive pulsed DC magnetron sputtering, respectively, with the final propose of functionalizing the SS316L substrate with antibacterial properties. The coatings were characterized chemically, physically and structurally. The coatings nanostructure was assessed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), while the coatings morphology was determined by scanning electron microscopy (SEM). The XRD and XPS analyses suggested that Ag thin film is composed by metallic Ag, which crystallizes in fcc-Ag phase, while the AgxO thin film showed both metallic Ag and Agsbnd O bonds, which crystalize in fcc-Ag and silver oxide phases. The SEM results revealed that Ag thin film formed a continuous layer, while AgxO layer was composed of islands with hundreds of nanometers surrounded by small nanoparticles with tens of nanometers. The surface wettability and surface tension parameters were determined by contact angle measurements, being found that Ag and AgxO surfaces showed very similar behavior, with all the surfaces showing a hydrophobic character. In order to verify the antibacterial behavior of the coatings, halo inhibition zone tests were realized for Staphylococcus epidermidis and Staphylococcus aureus. Ag coatings did not show antibacterial behavior, contrarily to AgxO coating, which presented antibacterial properties against the studied bacteria. The presence of silver oxide phase along with the development of different morphology was pointed as the main factors in the origin of the antibacterial effect found in AgxO thin film. The present study demonstrated that AgxO coating presented antibacterial behavior and its application in cardiovascular stents is promising.

  12. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    PubMed Central

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  13. ANTIMICROBIAL ACTIVITY OF EXTRACTS FROM ECUADORIAN LICHENS.

    PubMed

    Matvieieva, N A; Pasichnyk, L A; Zhytkevych, N V; Jacinto, Pabón Garcés Galo; Pidgorskyi, V S

    2015-01-01

    Antimicrobial activity of the ethanolic, isopropanolic, acetone, DMSO and aqueous extracts of the two lichen species from Ecuadorian highland, Usnea sp. and Stereocaulon sp. were explored in vitro against bacteria Bacillus subtilis, Escherichia coli and Staphylococcus aureus by the disc-diffusion method. Also the minimal inhibitory concentration (MIC) was determined. The strongest antimicrobial activity was found in DMSO extract of Usnea sp. compared to antibacterial activity of ciprfloxacin and cefazolin antibiotics. The inhibition zone was 28 mm, 30 mm, 31mm (DMSO extract, ciprfloxacin and cefazolin respectively) in case of B. subtilis usage as the test bacteria. MIC value for Usnea sp. and Stereocaulon sp. DMSO extracts was 0.4 mg/ml. E. coli was resistant to all kinds of extracts. The S. aureus sensitivity to lichen DMSO extracts was comparable to sensitivity of these microorganisms to tetracycline and vancomycin. Thereby, most kinds of extracts (ethanol, isopropanol, hexane, DMSO and acetone solvents) from Ecuadorian lichens Usnea sp. and Stereocaulon sp. with the exception of aqueous Stereocaulon sp. extracts possessed antibacterial activity against B. subtilis. DMSO lichen extracts had also antimicrobial activity against S. aureus. At the same time the extracts studied didn't demonstrate antibacterial activity against the representatives of the most common and harmful phytopathogenic bacteria tested. Further investigations of Ecuadorian lichens especially study of plants collected from extremal highland biotops can be very important in study of possibility of treatment of numerous diseases caused by pathogenic microorganisms.

  14. In vitro antimicrobial activity of Achyranthes coynei Sant.

    PubMed Central

    Ankad, Gireesh; Upadhya, Vinayak; Pai, Sandeep R.; Hegde, Harsha V.; Roy, Subarna

    2013-01-01

    Objective To validate the traditional use of Achyranthes coynei (A. coynei) Sant. as an antimicrobial in treatment of various infectious diseases. Methods Leaf extracts of A. coynei obtained through successive solvent extraction using petroleum ether, dichrloromethane, chloroform and methanol were used to screen the antimicrobial activity on five Gram positive, five Gram negative bacteria and two fungi. Minimum inhibitory concentration (MIC) was determined by two fold tube-dilution method. Results Methanolic leaf extract was more effective than other three extracts on the tested bacteria. Methanolic extract was efficient on Staphylococcus epidermis, Bacillus subtilis, Staphylococcus aureus and Pseudomonas aeruginosa with MIC values (0.62±0.00) mg/mL. The fungal organisms were less susceptible against extracts tested. Conclusions These results support the traditional use of leaf extracts of A. coynei as they have antimicrobial potential. Further studies are needed for establishing safety, toxicity and pharmacological activity with phytochemical investigation.

  15. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    PubMed

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.

  16. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  17. The antimicrobial activities of the cinnamaldehyde adducts with amino acids.

    PubMed

    Wei, Qing-Yi; Xiong, Jia-Jun; Jiang, Hong; Zhang, Chao; Wen Ye

    2011-11-01

    Cinnamaldehyde is a well-established natural antimicrobial compound. It is probable for cinnamaldehyde to react with amino acid forming Schiff base adduct in real food system. In this paper, 9 such kind of adducts were prepared by the direct reaction of amino acids with cinnamaldehyde at room temperature. Their antimicrobial activities against Bacillus subtilis, Escherichia coli and Saccharomyces cerevisiae were evaluated with benzoic acid as a reference. The adducts showed a dose-dependent activities against the three microbial strains. Both cinnamaldehyde and their adducts were more active against B. subtilis than on E. coli, and their antimicrobial activities were higher at lower pH. Both cinnamaldehyde and its adducts were more active than benzoic acid at the same conditions. The adduct compound A was non-toxic by primary oral acute toxicity study in mice. However, in situ effect of the adduct compound A against E. coli was a little lower than cinnamaldehyde in fish meat. This paper for the first time showed that the cinnamaldehyde adducts with amino acids had similar strong antimicrobial activities as cinnamaldehyde, which may provide alternatives to cinnamaldehyde in food to avoid the strong unacceptable odor of cinnamaldehyde.

  18. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils.

    PubMed

    Sakkas, Hercules; Papadopoulou, Chrissanthy

    2017-03-28

    For centuries, plants have been used for a wide variety of purposes, from treating infectious diseases to food preservation and perfume production. Presently, the increasing resistance of microorganisms to currently used antimicrobials in combination with the appearance of emerging diseases requires the urgent development of new, more effective drugs. Plants, due to the large biological and structural diversity of their components, constitute a unique and renewable source for the discovery of new antibacterial, antifungal, and antiparasitic compounds. In the present paper, the history, composition, and antimicrobial activities of the basil, oregano, and thyme essential oils are reviewed.

  19. Antioxidant, antimicrobial and antiproliferative activities of five lichen species.

    PubMed

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Comić, Ljiljana; Dačić, Dragana; Curčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  20. The Antimicrobial Activity of Liposomal Lauric Acids Against Propionibacterium acnes

    PubMed Central

    Yang, Darren; Pornpattananangkul, Dissaya; Nakatsuji, Teruaki; Chan, Michael; Carson, Dennis; Huang, Chun-Ming; Zhang, Liangfang

    2009-01-01

    This study evaluated the antimicrobial activity of lauric acid (LA) and its liposomal derivatives against Propionibacterium acnes (P. acnes), the bacterium that promotes inflammatory acne. First, the antimicrobial study of three free fatty acids (lauric acid, palmitic acid and oleic acid) demonstrated that LA gives the strongest bactericidal activity against P. acnes. However, a setback of using LA as a potential treatment for inflammatory acne is its poor water solubility. Then the LA was incorporated into a liposome formulation to aid its delivery to P. acnes. It's demonstrated that the antimicrobial activity of LA was not only well maintained in its liposomal derivatives but also enhanced at low LA concentration. In addition, the antimicrobial activity of LA-loaded liposomes (LipoLA) mainly depended on the LA loading concentration per single liposomes. Further study found that the LipoLA could fuse with the membranes of P. acnes and release the carried LA directly into the bacterial membranes, thereby killing the bacteria effectively. Since LA is a natural compound that is the main acid in coconut oil and also resides in human breast milk and liposomes have been successfully and widely applied as a drug delivery vehicle in the clinic, the LipoLA developed in this work holds great potential of becoming an innate, safe and effective therapeutic medication for acne vulgaris and other P. acnes associated diseases. PMID:19665786

  1. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    PubMed Central

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  2. Salvia officinalis L. essential oils: effect of hydrodistillation time on the chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, G; Cruz, C; Faleiro, M L; Simões, M T F; Figueiredo, A C; Barroso, J G; Pedro, L G

    2011-03-01

    Salvia officinalis L. oils were isolated from the plant's commercial dried aerial parts, by hydrodistillation, with different distillation times. The essential oils were analysed by gas chromatography and gas chromatography-mass spectrometry. The antioxidant ability was measured using a free radical scavenging activity assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), a thiobarbituric acid reactive substances (TBARS) assay, a deoxyribose assay for the scavenging of hydroxyl radical, an assay for site-specific actions and a 5-lipoxygenase assay. Antibacterial activity was determined by the agar diffusion method. 1,8-Cineole, α-pinene and camphor were the dominant components of all the essential oils. The different hydrodistillation times did not affect the oil yield nor the relative amount of the oil components. The time of hydrodistillation influenced the antioxidant activity. With the DPPH method, the oils isolated for 2 and 3 h were stronger free radical scavengers, while with the TBARS method, the highest antioxidant values were obtained in the oils isolated for 30 min, 2 and 3 h. Hydroxyl radical scavenging and lipoxygenase activity assays showed the best results with oils isolated for 1 and 3 h. With the deoxyribose method, sage oils at concentrations <1000 mg L(-1) showed better activity than mannitol. The essential oil of S. officinalis showed very weak antimicrobial activity.

  3. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    PubMed

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity.

  4. Antimicrobial silver: An unprecedented anion effect

    NASA Astrophysics Data System (ADS)

    Swathy, J. R.; Sankar, M. Udhaya; Chaudhary, Amrita; Aigal, Sahaja; Anshup; Pradeep, T.

    2014-11-01

    Silver is an indispensable metal but its use has to be minimised for sustainable growth. Much of the silver lost during use is unrecoverable; an example being its use as an antimicrobial agent, a property known since ages. While developing methods to create an affordable drinking water purifier especially for the developing world, we discovered that 50 parts per billion (ppb) of Ag+ released continuously from silver nanoparticles confined in nanoscale cages is enough to cause antimicrobial activity in conditions of normal water. Here we show that the antibacterial and antiviral activities of Ag+ can be enhanced ~1,000 fold, selectively, in presence of carbonate ions whose concentration was maintained below the drinking water norms. The protective layers of the organisms were affected during the carbonate-assisted antimicrobial activity. It is estimated that ~1,300 tons of silver can be saved annually using this new way to enhance its antimicrobial activity.

  5. Antimicrobial silver: An unprecedented anion effect

    PubMed Central

    Swathy, J. R.; Sankar, M. Udhaya; Chaudhary, Amrita; Aigal, Sahaja; Anshup; Pradeep, T.

    2014-01-01

    Silver is an indispensable metal but its use has to be minimised for sustainable growth. Much of the silver lost during use is unrecoverable; an example being its use as an antimicrobial agent, a property known since ages. While developing methods to create an affordable drinking water purifier especially for the developing world, we discovered that 50 parts per billion (ppb) of Ag+ released continuously from silver nanoparticles confined in nanoscale cages is enough to cause antimicrobial activity in conditions of normal water. Here we show that the antibacterial and antiviral activities of Ag+ can be enhanced ~1,000 fold, selectively, in presence of carbonate ions whose concentration was maintained below the drinking water norms. The protective layers of the organisms were affected during the carbonate-assisted antimicrobial activity. It is estimated that ~1,300 tons of silver can be saved annually using this new way to enhance its antimicrobial activity. PMID:25418185

  6. Antimicrobial Activity of Indigofera suffruticosa

    PubMed Central

    Leite, Sônia Pereira; Vieira, Jeymesson Raphael Cardoso; de Medeiros, Paloma Lys; Leite, Roberta Maria Pereira; de Menezes Lima, Vera Lúcia; Xavier, Haroudo Satiro; de Oliveira Lima, Edeltrudes

    2006-01-01

    Various organic and aqueous extracts of leaves of Indigofera suffruticosa Mill (Fabaceae) obtained by infusion and maceration were screened for their antibacterial and antifungal activities. The extracts were tested against 5 different species of human pathogenic bacteria and 17 fungal strains by the agar-solid diffusion method. Most of the extracts were devoid of antifungal and antibacterial activities, except the aqueous extract of leaves of I. suffruticosa obtained by infusion, which showed strong inhibitory activity against the Gram-positive bacteria Staphylococcus aureus with a minimal inhibitory concentration (MIC) of 5000 µg ml−1. The MIC values to dermatophyte strains were 2500 µg ml−1 against Trichophyton rubrum (LM-09, LM-13) and Microsporum canis. This study suggests that aqueous extracts of leaves of I. suffruticosa obtained by infusion can be used in the treatment of skin diseases caused by dermatophytes. PMID:16786057

  7. Antimicrobial activity of antihypertensive food-derived peptides and selected alanine analogues.

    PubMed

    McClean, Stephen; Beggs, Louise B; Welch, Robert W

    2014-03-01

    This study evaluated four food-derived peptides with known antihypertensive activities for antimicrobial activity against pathogenic microorganisms, and assessed structure-function relationships using alanine analogues. The peptides (EVSLNSGYY, barley; PGTAVFK, soybean; TTMPLW, α-casein; VHLPP, α-zein) and the six alanine substitution peptides of PGTAVFK were synthesised, characterised and evaluated for antimicrobial activity using the bacteria, Escherichia coli, Staphylococcus aureus, and Micrococcus luteus and the yeast, Candida albicans. The peptides TTMPLW and PGTAVFK inhibited growth of all four microorganisms tested, with activities of a similar order of magnitude to ampicillin and ethanol controls. EVSLNSGYY inhibited the growth of the bacteria, but VHLPP showed no antimicrobial activity. The alanine analogue, PGAAVFK showed the highest overall antimicrobial activity and PGTAVFA showed no activity; overall, the activities of the analogues were consistent with their structures. Some peptides with antihypertensive activity also show antimicrobial activity, suggesting that food-derived peptides may exert beneficial effects via a number of mechanisms.

  8. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.

    PubMed

    Wang, Lan; Liu, Qian; Chen, Jin-Chun; Cui, Yi-Xian; Zhou, Bing; Chen, Yong-Xiang; Zhao, Yu-Fen; Li, Yan-Mei

    2012-07-01

    Human islet amyloid polypeptide (hIAPP) shows an antimicrobial activity towards two types of clinically relevant bacteria. The potency of hIAPP varies with its aggregation states. Circular dichroism was employed to determine the interaction between hIAPP and bacteria lipid membrane mimic. The antimicrobial activity of each aggregate species is associated with their ability to induce membrane disruption. Our findings provide new evidence revealing the antimicrobial activity of amyloid peptide, which suggest a possible connection between amyloid peptides and antimicrobial peptides.

  9. Chemical reactivity and antimicrobial activity of N-substituted maleimides.

    PubMed

    Salewska, Natalia; Boros-Majewska, Joanna; Lącka, Izabela; Chylińska, Katarzyna; Sabisz, Michał; Milewski, Sławomir; Milewska, Maria J

    2012-02-01

    Several N-substituted maleimides containing substituents of varying bulkiness and polarity were synthesised and tested for antimicrobial and cytostatic activity. Neutral maleimides displayed relatively strong antifungal effect minimum inhibitory concentrations (MICs in the 0.5-4 µg ml(-1) range); their antibacterial activity was structure dependent and all were highly cytostatic, with IC(50) values below 0.1 µg ml(-1). Low antimicrobial but high cytostatic activity was noted for basic maleimides containing tertiary aminoalkyl substituents. Chemical reactivity and lipophilicity influenced antibacterial activity of neutral maleimides but had little if any effect on their antifungal and cytostatic action. N-substituted maleimides affected biosynthesis of chitin and β(1,3)glucan, components of the fungal cell wall. The membrane enzyme, β(1,3)glucan synthase has been proposed as a putative primary target of N-ethylmaleimide and some of its analogues in Candida albicans cells.

  10. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat

    PubMed Central

    El Abed, Nariman; Kaabi, Belhassen; Smaali, Mohamed Issam; Chabbouh, Meriem; Habibi, Kamel; Mejri, Mondher; Marzouki, Mohamed Nejib; Ben Hadj Ahmed, Sami

    2014-01-01

    The chemical composition, antioxidant and antimicrobial activities, and the preservative effect of Thymus capitata essential oil against Listeria monocytogenes inoculated in minced beef meat were evaluated. The essential oil extracted was chemically analyzed by gas chromatography-mass spectrometry. Nineteen components were identified, of which carvacrol represented (88.89%) of the oil. The antioxidant activity was assessed in vitro by using both the DPPH and the ABTS assays. The findings showed that the essential oil exhibited high antioxidant activity, which was comparable to the reference standards (BHT and ascorbic acid) with IC50 values of 44.16 and 0.463 μg/mL determined by the free-radical scavenging DPPH and ABTS assays, respectively. Furthermore, the essential oil was evaluated for its antimicrobial activity using disc agar diffusion and microdilution methods. The results demonstrated that the zone of inhibition varied from moderate to strong (15–80 mm) and the minimum inhibition concentration values ranged from 0.32 to 20 mg/mL. In addition, essential oil evaluated in vivo against Listeria monocytogenes showed clear and strong inhibitory effect. The application of 0.25 or 1% (v/w) essential oil of T. capitata to minced beef significantly reduced the L. monocytogenes population when compared to those of control samples (P-value  <0.01). PMID:24719640

  11. Chemical Composition, Antioxidant and Antimicrobial Activities of Thymus capitata Essential Oil with Its Preservative Effect against Listeria monocytogenes Inoculated in Minced Beef Meat.

    PubMed

    El Abed, Nariman; Kaabi, Belhassen; Smaali, Mohamed Issam; Chabbouh, Meriem; Habibi, Kamel; Mejri, Mondher; Marzouki, Mohamed Nejib; Ben Hadj Ahmed, Sami

    2014-01-01

    The chemical composition, antioxidant and antimicrobial activities, and the preservative effect of Thymus capitata essential oil against Listeria monocytogenes inoculated in minced beef meat were evaluated. The essential oil extracted was chemically analyzed by gas chromatography-mass spectrometry. Nineteen components were identified, of which carvacrol represented (88.89%) of the oil. The antioxidant activity was assessed in vitro by using both the DPPH and the ABTS assays. The findings showed that the essential oil exhibited high antioxidant activity, which was comparable to the reference standards (BHT and ascorbic acid) with IC50 values of 44.16 and 0.463 μ g/mL determined by the free-radical scavenging DPPH and ABTS assays, respectively. Furthermore, the essential oil was evaluated for its antimicrobial activity using disc agar diffusion and microdilution methods. The results demonstrated that the zone of inhibition varied from moderate to strong (15-80 mm) and the minimum inhibition concentration values ranged from 0.32 to 20 mg/mL. In addition, essential oil evaluated in vivo against Listeria monocytogenes showed clear and strong inhibitory effect. The application of 0.25 or 1% (v/w) essential oil of T. capitata to minced beef significantly reduced the L. monocytogenes population when compared to those of control samples (P-value  <0.01).

  12. Destabilization of α-Helical Structure in Solution Improves Bactericidal Activity of Antimicrobial Peptides: Opposite Effects on Bacterial and Viral Targets

    PubMed Central

    Morris, Christopher J.; Fox, Marc A.; Gumbleton, Mark; Beck, Konrad

    2016-01-01

    We have previously examined the mechanism of antimicrobial peptides on the outer membrane of vaccinia virus. We show here that the formulation of peptides LL37 and magainin-2B amide in polysorbate 20 (Tween 20) results in greater reductions in virus titer than formulation without detergent, and the effect is replicated by substitution of polysorbate 20 with high-ionic-strength buffer. In contrast, formulation with polysorbate 20 or high-ionic-strength buffer has the opposite effect on bactericidal activity of both peptides, resulting in lesser reductions in titer for both Gram-positive and Gram-negative bacteria. Circular dichroism spectroscopy shows that the differential action of polysorbate 20 and salt on the virucidal and bactericidal activities correlates with the α-helical content of peptide secondary structure in solution, suggesting that the virucidal and bactericidal activities are mediated through distinct mechanisms. The correlation of a defined structural feature with differential activity against a host-derived viral membrane and the membranes of both Gram-positive and Gram-negative bacteria suggests that the overall helical content in solution under physiological conditions is an important feature for consideration in the design and development of candidate peptide-based antimicrobial compounds. PMID:26824944

  13. Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds.

    PubMed

    Kumar, Sanjeev; Sharma, Nidhi; Maurya, Indresh K; Bhasin, Aman K K; Wangoo, Nishima; Brandão, Paula; Félix, Vítor; Bhasin, K K; Sharma, Rohit K

    2016-11-10

    A simple and efficient method has been described to synthesize the hitherto unknown imidazo[1,2-a]pyridine selenides (5a-l) by reaction of 2-chloroimidazo [1,2-a]pyridines with aryl/heteroaryl selenols, generated in situ by reduction of various diselenides with hypophosphorous acid. The crystal structures of 3-nitro-2-(phenylselanyl)-imidazo[1,2-a]pyridine (5a), 2-(mesitylselanyl)-3-nitro-imidazo[1,2-a]pyridine (5d) and 3-nitro-2-(pyridin-2-ylselanyl)-imidazo[1,2-a]pyridine (5e) were confirmed by X-ray crystallography and the DFT calculations were performed to determine various structural parameters which were correlated with the X-ray crystal structures. The synthesized compounds were subjected to antimicrobial evaluation and it was found that compounds 5a and 5j were active against gram negative bacterium Escherichia coli whereas compound 5e was active against different fungal strains. Time kill assay was performed to understand the microbial activity of synthesized organoselenium compounds and the toxicity of these compounds was evaluated against human cell lines. Synergistic effects of active compounds 5a and 5e were tested with existing antibiotic drugs which exhibited that the antibiotic combination with synthesized organoselenium compounds efficiently enhanced the antimicrobial activity.

  14. Antimicrobial activity of Antarctic bryozoans: an ecological perspective with potential for clinical applications.

    PubMed

    Figuerola, Blanca; Sala-Comorera, Laura; Angulo-Preckler, Carlos; Vázquez, Jennifer; Jesús Montes, M; García-Aljaro, Cristina; Mercadé, Elena; Blanch, Anicet R; Avila, Conxita

    2014-10-01

    The antimicrobial activity of Antarctic bryozoans and the ecological functions of the chemical compounds involved remain largely unknown. To determine the significant ecological and applied antimicrobial effects, 16 ether and 16 butanol extracts obtained from 13 different bryozoan species were tested against six Antarctic (including Psychrobacter luti, Shewanella livingstonensis and 4 new isolated strains) and two bacterial strains from culture collections (Escherichia coli and Bacillus cereus). Results from the bioassays reveal that all ether extracts exhibited antimicrobial activity against some bacteria. Only one butanol extract produced inhibition, indicating that antimicrobial compounds are mainly lipophilic. Ether extracts of the genus Camptoplites inhibited the majority of bacterial strains, thus indicating a broad-spectrum of antimicrobial activity. Moreover, most ether extracts presented activities against bacterial strains from culture collections, suggesting the potential use of these extracts as antimicrobial drugs against pathogenic bacteria.

  15. The Effect of Anti-Inflammatory and Antimicrobial Herbal Remedy PADMA 28 on Immunological Angiogenesis and Granulocytes Activity in Mice

    PubMed Central

    Radomska-Leśniewska, Dorota M.; Skopiński, Piotr; Zdanowski, Robert; Lewicki, Sławomir; Kocik, Janusz; Skopińska-Różewska, Ewa; Stankiewicz, Wanda

    2013-01-01

    PADMA 28 is a herbal multicompound remedy that originates from traditional Tibetan medicine and possesses anti-inflammatory, antioxidant, antimicrobial, angioprotecting, and wound healing properties. The aim of the present study was to evaluate the influence of this remedy on immunological angiogenesis and granulocytes metabolic activity in Balb/c mice. Mice were fed daily, for seven days, with 5.8 mg of PADMA (calculated from recommended human daily dose) or 0.085 mg (dose in the range of active doses of other herbal extracts studied by us previously). Results. Highly significant increase of newly formed blood vessels number in ex vivo cutaneous lymphocyte-induced angiogenesis test (LIA) after grafting of Balb/c splenocytes from both dosage groups to F1 hybrids (Balb/c × C3H); increase of blood lymphocytes and granulocytes number only in mice fed with lower dose of remedy; and significant suppression of metabolic activity (chemiluminescence test) of blood granulocytes in mice fed with higher dose of PADMA. Conclusion. PADMA 28 behaves as a good stimulator of physiological angiogenesis, but for this purpose it should be used in substantially lower doses than recommended by producers for avoiding the deterioration of granulocyte function. PMID:23864768

  16. Stimulatory effect on rat thymocytes proliferation and antimicrobial activity of two 6-(propan-2-yl)-4-methyl-morpholine-2,5-diones.

    PubMed

    Pavlovic, Voja; Djordjevic, Aleksandra; Cherneva, Emiliya; Yancheva, Denitsa; Smelcerovic, Andrija

    2012-03-01

    Recently we reported the identification and synthesis of cyclodidepsipeptides, 3,6-di(propan-2-yl)-4-methyl-morpholine-2,5-dione (PPM) and 3-(2-methylpropyl)-6-(propan-2-yl)-4-methyl-morpholine-2,5-dione (BPM), as potential precursors of enniatin B in Fusarium sporotrichioides. No data concerning biological activity of PPM and BPM have hitherto been published. The possible immunomodulatory effect and antimicrobial activity of PPM and BPM were investigated in this study, due to well known biological activities of enniatin B. The cytotoxicity effect of PPM and BPM on rat thymocytes demonstrated that increasing concentrations (0.1, 1, 10 μg/well) of PPM and BPM to cell culture, showed no significant effect on thymocytes toxicity. Simultaneously, incubation with studied cyclodidepsipeptides did not result with decreased mitochondrial membrane potential. Further, thymocytes exposure to increasing concentration of PPM and BPM was not able to induce significant reactive oxygen species (ROS) production in rat thymocytes. PPM and BPM administrations to cell culture in concentrations of 0.1 and 1 μg/well resulted with no significant increase of proliferative activity. However, significantly increased proliferative activity was detected with 10 μg of PPM (p<0.001) and BPM (p<0.05), as compared to their respective controls. The in vitro antimicrobial activity of PPM and BPM was tested against two Gram-positive and three Gram-negative bacteria. The results indicated that MIC values against tested strains ranged between 2.00 and 25.00 mg/ml. PPM showed much better activity against all tested bacteria in comparison with BPM. PPM was equally effective against both Gram-positive and Gram-negative bacteria, at the dose of 2.00 mg/ml.

  17. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications.

  18. Repurposing the Antihistamine Terfenadine for Antimicrobial Activity against Staphylococcus aureus

    PubMed Central

    2015-01-01

    Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure–activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics. PMID:25238555

  19. Repurposing the antihistamine terfenadine for antimicrobial activity against Staphylococcus aureus.

    PubMed

    Perlmutter, Jessamyn I; Forbes, Lauren T; Krysan, Damian J; Ebsworth-Mojica, Katherine; Colquhoun, Jennifer M; Wang, Jenna L; Dunman, Paul M; Flaherty, Daniel P

    2014-10-23

    Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure-activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics.

  20. Antioxidant, antimicrobial, and anticancer activity of 3 Umbilicaria species.

    PubMed

    Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana

    2012-01-01

    The aim of this study is to investigate in vitro antioxidant, antimicrobial, and anticancer activity of the acetone extracts of the lichens Umbilicaria crustulosa, U. cylindrica, and U. polyphylla. Antioxidant activity was evaluated by 5 separate methods: free radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds, and determination of total flavonoid content. Of the lichens tested, U. polyphylla had largest free radical scavenging activity (72.79% inhibition at a concentration of 1 mg/mL), which was similar as standard antioxidants in the same concentration. Moreover, the tested extracts had effective reducing power and superoxide anion radical scavenging. Total content of phenol and flavonoid in extracts was determined as pyrocatechol equivalent, and as rutin equivalent, respectively. The strong relationships between total phenolic and flavonoid contents and the antioxidant effect of tested extracts were observed. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was extract of U. polyphylla with minimum inhibitory concentration values ranging from 1.56 to 12.5 mg/mL. Anticancer activity was tested against FemX (human melanoma) and LS174 (human colon carcinoma) cell lines using MTT method. All extracts were found to be strong anticancer activity toward both cell lines with IC₅₀ values ranging from 28.45 to 97.82 μg/mL. The present study shows that tested lichen extracts demonstrated a strong antioxidant, antimicrobial, and anticancer effects. That suggests that lichens may be used as possible natural antioxidant, antimicrobial, and anticancer agents.

  1. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G(1) LLKR(5) IKT(8) LL-NH2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly(1) , Arg(5) , and Thr(8) and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF(5) IKK(8) LL-NH2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  2. Antimicrobial activity of bone cements embedded with organic nanoparticles.

    PubMed

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin.

  3. Antimicrobial activity of bone cements embedded with organic nanoparticles

    PubMed Central

    Perni, Stefano; Thenault, Victorien; Abdo, Pauline; Margulis, Katrin; Magdassi, Shlomo; Prokopovich, Polina

    2015-01-01

    Infections after orthopedic surgery are a very unwelcome outcome; despite the widespread use of antibiotics, their incidence can be as high as 10%. This risk is likely to increase as antibiotics are gradually losing efficacy as a result of bacterial resistance; therefore, novel antimicrobial approaches are required. Parabens are a class of compounds whose antimicrobial activity is employed in many cosmetic and pharmaceutical products. We developed propylparaben nanoparticles that are hydrophilic, thus expanding the applicability of parabens to aqueous systems. In this paper we assess the possibility of employing paraben nanoparticles as antimicrobial compound in bone cements. The nanoparticles were embedded in various types of bone cement (poly(methyl methacrylate) [PMMA], hydroxyapatite, and brushite) and the antimicrobial activity was determined against common causes of postorthopedic surgery infections such as: Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, and Acinetobacter baumannii. Nanoparticles at concentrations as low as 1% w/w in brushite bone cement were capable of preventing pathogens growth, 5% w/w was needed for hydroxyapatite bone cement, while 7% w/w was required for PMMA bone cement. No detrimental effect was determined by the addition of paraben nanoparticles on bone cement compression strength and cytocompatibility. Our results demonstrate that paraben nanoparticles can be encapsulated in bone cement, providing concentration-dependent antimicrobial activity; furthermore, lower concentrations are needed in calcium phosphate (brushite and hydroxyapatite) than in acrylic (PMMA) bone cements. These nanoparticles are effective against a wide spectrum of bacteria, including those already resistant to the antibiotics routinely employed in orthopedic applications, such as gentamicin. PMID:26487803

  4. Antimicrobial activity of naphthoquinones from fusaria.

    PubMed

    Baker, R A; Tatum, J H; Nemec, S

    1990-07-01

    Twenty-two naphthoquinone compounds isolated or derived synthetically from culture extracts of Fusarium solani and F. oxysporum were examined for antimicrobial activity. Fifteen exhibited antibiotic activity against Staphylococcus aureus, and 12 were active against Streptococcus pyogenes, but none were active at the highest rate of 128 micrograms/ml against Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Serratia marcescens, or Pseudomonas aeruginosa. Of 8 plant pathogenic bacteria tested against 11 naphthoquinones, Corynebacterium poinsettiae was inhibited by 6 compounds, and Pseudomonas viridiflava was weakly inhibited by one. Only one of a group of 6 fluorescent soil pseudomonads was inhibited by one naphthoquinone. Antifungal activity of 10 compounds against 8 fungal plant pathogens was limited to inhibition of Phytophthora parasitica by one naphthopyran.

  5. Antimicrobial activity of Lactobacillus against microbial flora of cervicovaginal infections

    PubMed Central

    Dasari, Subramanyam; Shouri, Raju Naidu Devanaboyaina; Wudayagiri, Rajendra; Valluru, Lokanatha

    2014-01-01

    Objective To assess the probiotic nature of Lactobacillus in preventing cervical pathogens by studying the effectiveness of antimicrobial activity against vaginal pathogens. Methods Lactobacilli were isolated from healthy vaginal swabs on selective media and different pathogenic bacteria were isolated by using different selective media. The Lactobacillus strains were tested for the production of hydrogen peroxide and antimicrobial compounds along with probiotic properties. Results Of the 10 isolated Lactobacillus strains, strain 1, 3 and 6 are high hydrogen peroxide producers and the rest were low producers. Results of pH and amines tests indicated that pH increased with fishy odour in the vaginal fluids of cervicovaginal infection patients when compared with vaginal fluids of healthy persons. The isolates were found to be facultative anaerobic, Gram-positive, non-spore-forming, non-capsule forming and catalase-negative bacilli. The results of antimicrobial activity of compounds indicated that 280 and 140 µg/mL was the minimum concentration to inhibit the growth of both pathogens and test organisms respectively. Conclusions The results demonstrated that Lactobacillus producing antimicrobial compounds inhibits the growth of cervical pathogens, revealing that the hypothesis of preventing vaginal infection by administering probiotic organisms has a great appeal to patients, which colonize the vagina to help, restore and maintain healthy vagina.

  6. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers.

    PubMed

    Takahashi, Haruko; Palermo, Edmund F; Yasuhara, Kazuma; Caputo, Gregory A; Kuroda, Kenichi

    2013-10-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications.

  7. Antimicrobial resistance and the activities of the Codex Alimentarius Commission.

    PubMed

    Bruno, A V; Mackay, Carolissen

    2012-04-01

    The Codex Alimentarius Commission has been working on the subject of antimicrobial resistance, mainly through the activities of the Committee on Residues of Veterinary Drugs in Foods and the ad hoc Intergovernmental Task Force on Antimicrobial Resistance. Principal texts developed by Codex include the 'Code of Practice to Minimize and Contain Antimicrobial Resistance (CAC/RCP 61-2005) and 'Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance' (CAC/GL 77-2011). The successful containment of antimicrobial resistance requires the collaboration of a wide range of stakeholders, working together to protect consumer health by ensuring the safety of food products of animal origin.

  8. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities.

    PubMed

    Khan, Mohammad Naved; Khan, Tabrez Alam; Khan, Zaheer; Al-Thabaiti, Shaeel Ahmed

    2015-12-01

    The present study explores the reducing and capping potentials of aqueous Raphanus sativus root extract for the synthesis of silver nanomaterials for the first time in the absence and presence of two stabilizers, namely, water-soluble starch and cetyltrimethylammonium bromide (CTAB). The surface properties of silver nanoparticles (AgNPs) were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The mean size of AgNPs, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial [extract], [CTAB], [starch], and [Ag(+)] ions. The agglomeration number, average number of silver atoms per nanoparticle, and changes in the fermi potentials were calculated and discussed. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The inhibition action was due to the structural changes in the protein cell wall.

  9. Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity.

    PubMed

    Ju, Xingrong; Chen, Xinquan; Du, Lihui; Wu, Xueyou; Liu, Fang; Yuan, Jian

    2015-07-22

    Durancin GL is a novel class IIa bacteriocin with 43 residues produced by Enterococcus durans 41D. This bacteriocin demonstrates narrow inhibition spectrum and potent antimicrobial activity against several Listeria monocytogenes strains, including nisin-resistant L. monocytogenes NR30. A systematic alanine-scanning mutational analysis with site-directed mutagenesis was performed to analyze durancin GL residues important for antimicrobial activity and specificity. Results showed that three mutations lost their antimicrobial activity, ten mutations demonstrated a decreased effect on the activity, and seven mutations exhibited relatively high activity. With regard to inhibitory spectrum, four mutants demonstrated a narrower antimicrobial spectrum than wild-type durancin GL. Another four mutants displayed a broader target cell spectrum and increased potency relative to wild-type durancin GL. These findings broaden our understanding of durancin GL residues important for its antimicrobial activity and contribute to future rational design of variants with increased potency.

  10. Effects of arginine and leucine substitutions on anti-endotoxic activities and mechanisms of action of cationic and amphipathic antimicrobial octadecapeptide from rice α-amylase.

    PubMed

    Taniguchi, Masayuki; Ochiai, Akihito; Toyoda, Ryu; Sato, Teppei; Saitoh, Eiichi; Kato, Tetsuo; Tanaka, Takaaki

    2017-03-01

    Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI-1-18 from rice α-amylase (AmyI-1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI-1-18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI-1-18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI-1-18. In the present study, anti-inflammatory (anti-endotoxic) activities of five AmyI-1-18 analogs containing arginine or leucine substitutions were investigated. Two single arginine-substituted and two single leucine-substituted AmyI-1-18 analogs inhibited the production of LPS-induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI-1-18. These data indicate that enhanced cationic and hydrophobic properties of AmyI-1-18 are associated with improved anti-endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50 ) of the three AmyI-1-18 analogs (G12R, D15R, and E9L) were 0.11-0.13 μm, indicating higher anti-endotoxic activity than that of AmyI-1-18 (IC50, 0.22 μm), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI-1-18 analogs. In addition, AmyI-1-18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti-inflammatory and LPS-neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine-substituted and leucine-substituted AmyI-1-18 analogs with improved anti-endotoxic and antimicrobial activities have clinical potential as dual-function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  11. Effects of Potassium Sulfate [K2SO4] on The Element Contents, Polyphenol Content, Antioxidant and Antimicrobial Activities of Milk Thistle [Silybum Marianum

    PubMed Central

    Yaldiz, Gulsum

    2017-01-01

    µg mL-1, except the highest potassium application [120 kg ha -1 extract, all extracts showed high and similar DPPH scavenging activity. The highest phenolic compounds were obtained with 30 kg ha -1 of K2SO4, whereas the use of 60 kg ha -1 caused the highest total flavonoid content. This plant is a good source of K+, Ca+2, PO4-3, and Cl-1. Conclusion: In this study, increasing doses of potassium sulfate had significant effect on element, polyphenol content, antioxidant and antimicrobial activities of the milk thistle. SUMMARY All tested extracts were active against all tested microbial species.All extracts have shown high and similar DPPH scavenging activity.There was a gradual increase in the biological properties of the milk thistle seeds with rising levels of potassium sulfate.The milk thistle seeds are rather rich sources of K+, Ca+2, PO4-3 and Cl-1 potentially bioavailable for human consumption. Abbreviations used: AlCl3: aluminum chloride, Ca+2: calcium, Cl-: chloride, Cr: chromium CE: catechol equivalents, DPPH: 2,2-diphenylpicrylhydrazyl, ABTS: 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid, DAP: diamonyum fosfat, F-: fluoride, Fe: iron, K2SO4: potassium sulfate, K+ : potassium, Li+: lithium, Mg+2 : magnesium, NH4+ : amonyum, Na+: sodium, NO2-: nitrite, NO3-: nitrate, Ni: nickel, NaNO2: sodium nitrite, NaOH: sodium hidroksit. ND: Not detectable, PO4-3: phosphorus, Zn: zinc PMID:28216891

  12. Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect.

    PubMed

    Boge, Lukas; Bysell, Helena; Ringstad, Lovisa; Wennman, David; Umerska, Anita; Cassisa, Viviane; Eriksson, Jonny; Joly-Guillou, Marie-Laure; Edwards, Katarina; Andersson, Martin

    2016-05-03

    The number of antibiotic-resistant bacteria is increasing worldwide, and the demand for novel antimicrobials is constantly growing. Antimicrobial peptides (AMPs) could be an important part of future treatment strategies of various bacterial infection diseases. However, AMPs have relatively low stability, because of proteolytic and chemical degradation. As a consequence, carrier systems protecting the AMPs are greatly needed, to achieve efficient treatments. In addition, the carrier system also must administrate the peptide in a controlled manner to match the therapeutic dose window. In this work, lyotropic liquid crystalline (LC) structures consisting of cubic glycerol monooleate/water and hexagonal glycerol monooleate/oleic acid/water have been examined as carriers for AMPs. These LC structures have the capability of solubilizing both hydrophilic and hydrophobic substances, as well as being biocompatible and biodegradable. Both bulk gels and discrete dispersed structures (i.e., cubosomes and hexosomes) have been studied. Three AMPs have been investigated with respect to phase stability of the LC structures and antimicrobial effect: AP114, DPK-060, and LL-37. Characterization of the LC structures was performed using small-angle X-ray scattering (SAXS), dynamic light scattering, ζ-potential, and cryogenic transmission electron microscopy (Cryo-TEM) and peptide loading efficacy by ultra performance liquid chromatography. The antimicrobial effect of the LCNPs was investigated in vitro using minimum inhibitory concentration (MIC) and time-kill assay. The most hydrophobic peptide (AP114) was shown to induce an increase in negative curvature of the cubic LC system. The most polar peptide (DPK-060) induced a decrease in negative curvature while LL-37 did not change the LC phase at all. The hexagonal LC phase was not affected by any of the AMPs. Moreover, cubosomes loaded with peptides AP114 and DPK-060 showed preserved antimicrobial activity, whereas particles loaded

  13. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed

    Gough, M; Hancock, R E; Kelly, N M

    1996-12-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice.

  14. Antiendotoxin activity of cationic peptide antimicrobial agents.

    PubMed Central

    Gough, M; Hancock, R E; Kelly, N M

    1996-01-01

    The endotoxin from gram-negative bacteria consists of a molecule lipopolysaccharide (LPS) which can be shed by bacteria during antimicrobial therapy. A resulting syndrome, endotoxic shock, is a leading cause of death in the developed world. Thus, there is great interest in the development of antimicrobial agents which can reverse rather than promote sepsis, especially given the recent disappointing clinical performance of antiendotoxin therapies. We describe here two small cationic peptides, MBI-27 and MBI-28, which have both antiendotoxic and antibacterial activities in vitro and in vivo in animal models. We had previously demonstrated that these peptides bind to LPS with an affinity equivalent to that of polymyxin B. Consistent with this, the peptides blocked the ability of LPS and intact cells to induce the endotoxic shock mediator, tumor necrosis factor (TNF), upon incubation with the RAW 264.7 murine macrophage cell line. MBI-28 was equivalent to polymyxin B in its ability to block LPS induction of TNF by this cell line, even when added 60 min after the TNF stimulus. Furthermore, MBI-28 offered significant protection in a galactosamine-sensitized mouse model of lethal endotoxic shock. This protection correlated with the ability of MBI-28 to reduce LPS-induced circulating TNF by nearly 90% in this mouse model. Both MBI-27 and MBI-28 demonstrated antibacterial activity against gram-negative bacteria in vitro and in vivo against Pseudomonas aeruginosa infections in neutropenic mice. PMID:8945527

  15. Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection

    PubMed Central

    Melvin, Jeffrey A.; Lashua, Lauren P.; Kiedrowski, Megan R.; Yang, Guanyi; Deslouches, Berthony; Montelaro, Ronald C.

    2016-01-01

    ABSTRACT Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms

  16. Impact of interspecific interactions on antimicrobial activity among soil bacteria.

    PubMed

    Tyc, Olaf; van den Berg, Marlies; Gerards, Saskia; van Veen, Johannes A; Raaijmakers, Jos M; de Boer, Wietse; Garbeva, Paolina

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.

  17. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics

    PubMed Central

    Tan, Honglue; Ma, Rui; Lin, Chucheng; Liu, Ziwei; Tang, Tingting

    2013-01-01

    Chitosan (CS) is a linear polysaccharide with good biodegradability, biocompatibility and antimicrobial activity, which makes it potentially useful for biomedical applications, including an antimicrobial agent either alone or blended with other polymers. However, the poor solubility of CS in most solvents at neutral or high pH substantially limits its use. Quaternary ammonium CS, which was prepared by introducing a quaternary ammonium group on a dissociative hydroxyl group or amino group of the CS, exhibited improved water solubility and stronger antibacterial activity relative to CS over an entire range of pH values; thus, this quaternary modification increases the potential biomedical applications of CS in the field of anti-infection. This review discusses the current findings on the antimicrobial properties of quaternized CS synthesized using different methods and the mechanisms of its antimicrobial actions. The potential antimicrobial applications in the orthopedic field and perspectives regarding future studies in this field are also considered. PMID:23325051

  18. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb

    PubMed Central

    Wang, Liqiang; Yang, Rui; Yuan, Bochuan; Liu, Ying; Liu, Chunsheng

    2015-01-01

    Licorice is a common herb which has been used in traditional Chinese medicine for centuries. More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies have shown that these metabolites possess many pharmacological activities, such as antiviral, antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for these activities are summarized in detail. This review will be helpful for the further studies of licorice for its potential therapeutic effects as an antiviral or an antimicrobial agent. PMID:26579460

  19. Antimicrobial activity of grapefruit seed and pulp ethanolic extract.

    PubMed

    Cvetnić, Zdenka; Vladimir-Knezević, Sanda

    2004-09-01

    Antibacterial and antifungal activity of ethanolic extract of grapefruit (Citrus paradisi Macf., Rutaceae) seed and pulp was examined against 20 bacterial and 10 yeast strains. The level of antimicrobial effects was established using an in vitro agar assay and standard broth dilution susceptibility test. The contents of 3.92% of total polyphenols and 0.11% of flavonoids were determined spectrometrically in crude ethanolic extract. The presence of flavanones naringin and hesperidin in the extract was confirmed by TLC analysis. Ethanolic extract exibited the strongest antimicrobial effect against Salmonella enteritidis (MIC 2.06%, m/V). Other tested bacteria and yeasts were sensitive to extract concentrations ranging from 4.13% to 16.50% (m/V).

  20. Antimicrobial activity of endemic Digitalis lamarckii Ivan from Turkey.

    PubMed

    Benli, Mehlika; Yiğit, Nazife; Geven, Fatmagü; Güney, Kerim; Bingöl, Umit

    2009-03-01

    Antimicrobial activity of the methanolic extracts of leaves and flowers of D. lamarckii Ivan, (Scophulariaceae), an endemic plant species of Turkey, was tested on ten bacterial and four yeast strains. Effective antibacterial activity was observed in four bacterial strains. Minimum inhibitory concentration (MIC) was calculated by use of liquid culture tests and in all the four effective bacterial strains, the MIC was found to be > or = 199.5 mg/ml. The minimum bactericidal concentration (MBC) of B. subtilis, S. aureus, and L. monocytogenes was calculated to be > or = 199.5 mg/ml, and MBC value for Shigella was calculated as > or = 399 mg/ml.

  1. Effects of Allspice, Cinnamon, and Clove Bud Essential Oils in Edible Apple Films on Physical Properties and Antimicrobial Activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The results of the present study show that allspice, cinnamon and clove bud essential oils can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by both direct contact and indirectly by vapors emanating from the films. Application of the a...

  2. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    PubMed Central

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  3. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  4. Antimicrobial activity of toothpastes containing natural extracts, chlorhexidine or triclosan.

    PubMed

    De Rossi, Andiara; Ferreira, Danielly Cunha Araújo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; da Silva, Léa Assed Bezerra; Nelson-Filho, Paulo

    2014-01-01

    The objective of this in vitro study was to evaluate the antimicrobial effect of toothpastes containing natural extracts, chlorhexidine or triclosan. The effectiveness of toothpastes containing natural extracts (Parodontax®), 0.12% chlorhexidine (Cariax®), 0.3% triclosan (Sanogil®) or fluoride (Sorriso®, control) was evaluated against yeasts, Gram-positive and Gram-negative bacteria using the disk diffusion method. Water was used as a control. Disks impregnated with the toothpastes were placed in Petri dishes containing culture media inoculated with 23 indicative microorganisms by the pour plate method. After incubation, the inhibition growth halos were measured and statistical analyses (α=0.05) were performed. The results indicated that all formulations, except for conventional toothpaste (Sorriso®), showed antimicrobial activity against Gram-positive bacteria and yeasts. The toothpaste containing natural extracts (Parodontax®) was the only product able to inhibit the growth of Pseudomonas aeruginosa. The toothpastes containing chlorhexidine, triclosan or natural extracts presented antimicrobial activity against Gram-positive bacteria and yeasts.

  5. Spectroscopic characterization of the effect of gamma radiation on the physical parameters of biosynthesized silver/chitosan nano-particles and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Osman, Mohamed E.; Eid, May M.; Khattab, Om kolthoum H.; El-Hallouty, Salwa M.; El-Marakby, Seham M.; Mahmoud, Doaa A.

    2015-09-01

    Studying the effect of pH on the biosynthesis of silver/chitosan nanoparticles (Ag/CS NPs) using Aspergillus deflectus and Penicillium pinophilum as reducing agents, showed very weak surface plasmon resonance (SPR) of Ag/CS NPs at certain pH. In this paper, the effect of irradiation on the synthesis of Ag/CS at non-optimum pH was evaluated and thereby, the antimicrobial effect of the biosynthesized Ag/CS NPs. The SPR of the AgNPs was analyzed by UV-visible spectroscopy. The active groups responsible for the reduction and capping of the AgNPs were analyzed by Fourier transform infrared (FTIR), and their shape and size were determined via high resolution transmission electron microscopy (HRTEM) and the dynamic light scattering (DLS) technique. UV/Visible spectroscopy confirmed the appearance of AgNPs’ SPR. Additionally, the FTIR spectroscopy confirmed the Ag/CS NP formation. Data also revealed that increasing both the pH and irradiation dose resulted in a decrease of the Ag/CS NPs’ size. DLS and HRTEM results showed that the best pH for biosynthesis of Ag/Cs is 7.5 at 50 kGy considering the particle size and crystallinity. Also, pH 8.5 gave the best antimicrobial activity of the Ag/CS NPs from Penicillium against both S. aureus and E. coli, while 8.5 and 7.5 were the best in the same order, for Ag/CS from Aspergillus.

  6. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  7. [Evaluation of antimicrobial activity of indol alkaloids].

    PubMed

    Rojas Hernández, N M

    1979-01-01

    In pursuing the study of the antimicrobial properties of alkaloids prepared from Cuban plants the activity of 10 indol alkaloids and 4 semisynthetic variables obtained from three plants--Catharanthus roseus G. Don., Vallesia antillana Wood and Ervatamia coronaria Staph, of the family Apocynaceae--growing in Cuba was assessed in vitro. The alkaloids and the variables used were catharantine, vindoline, vindolinine, perivine, reserpine, tabernaemontanine, tetrahydroalstonine, aparicine, vindolinic acid, reserpic acid and vindolininol. These were faced to 40 bacterial strains from the genera Salmonella, Shigella, Proteus, Escherichia, Pseudomonas, Staphylococcus and Corynebacterium as well as to fungi and yeasts from the genera Aspergillus, kCunnighamella, kCandida and Saccharomyces. The method involving cylindric sections in a double agar layer was applied and lectures were obtained at 24-48 hours of incubation at 25 degrees C for fungi and yeasts and 37 degrees C for bacteria. Inhibition zones are reported in millimeters.

  8. Biologically active and antimicrobial peptides from plants.

    PubMed

    Salas, Carlos E; Badillo-Corona, Jesus A; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.

  9. Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation.

    PubMed

    Lee, Ji-Soo; Hong, Da Young; Kim, Eun Suh; Lee, Hyeon Gyu

    2017-03-08

    The aims of this study were to improve the water solubility and antimicrobial activity of milk thistle silymarin by nanoencapsulation and to assess the functions of silymarin nanoparticle-containing film as an antimicrobial food-packaging agent. Silymarin nanoparticles were prepared using water-soluble chitosan (WCS) and poly-γ-glutamic acid (γ-PGA). As the WCS and silymarin concentrations increased, particle size and polydispersity index (PDI) significantly increased. Nanoencapsulation significantly improved the water solubility of silymarin 7.7-fold. Antimicrobial activity of silymarin was effectively improved when silymarin was entrapped within the nanocapsule compared to when it was not entrapped. Films incorporating silymarin nanoparticles had better antimicrobial activity than films incorporating free silymarin. The results suggest that silymarin nanoparticles have applications in antimicrobial food additives and food packing.

  10. Effect of postharvest UV-C treatment on the bacterial diversity of Ataulfo mangoes by PCR-DGGE, survival of E. coli and antimicrobial activity.

    PubMed

    Fernández-Suárez, Rocío; Ramírez-Villatoro, Guadalupe; Díaz-Ruiz, Gloria; Eslava, Carlos; Calderón, Montserrat; Navarro-Ocaña, Arturo; Trejo-Márquez, Andrea; Wacher, Carmen

    2013-01-01

    Since Mexico is the second largest exporter of mangoes, its safety assurance is essential. Research in microbial ecology and knowledge of complex interactions among microbes must be better understood to achieve maximal control of pathogens. Therefore, we investigated the effect of UV-C treatments on bacterial diversity of the Ataulfo mangoes surface using PCR-DGGE analysis of variable region V3 of 16S rRNA genes, and the survival of E. coli, by plate counting. The UV-C irradiation reduced the microbial load on the surface of mangoes immediately after treatment and the structure of bacterial communities was modified during storage. We identified the key members of the bacterial communities on the surface of fruits, predominating Enterobacter genus. Genera as Lactococcus and Pantoea were only detected on the surface of non-treated (control) mangoes. This could indicate that these genera were affected by the UV-C treatment. On the other hand, the treatment did not have a significant effect on survival of E. coli. However, genera that have been recognized as antagonists against foodborne pathogens were identified in the bands patterns. Also, phenolic compounds were determined by HPLC and antimicrobial activity was assayed according to the agar diffusion method. The main phenolic compounds were chlorogenic, gallic, and caffeic acids. Mango peel methanol extracts (UV-C treated and control mangoes) showed antimicrobial activity against strains previously isolated from mango, detecting significant differences (P < 0.05) among treated and control mangoes after 4 and 12 days of storage. Ps. fluorescens and Ps. stutszeri were the most sensitive.

  11. Effect of postharvest UV-C treatment on the bacterial diversity of Ataulfo mangoes by PCR-DGGE, survival of E. coli and antimicrobial activity

    PubMed Central

    Fernández-Suárez, Rocío; Ramírez-Villatoro, Guadalupe; Díaz-Ruiz, Gloria; Eslava, Carlos; Calderón, Montserrat; Navarro-Ocaña, Arturo; Trejo-Márquez, Andrea; Wacher, Carmen

    2013-01-01

    Since Mexico is the second largest exporter of mangoes, its safety assurance is essential. Research in microbial ecology and knowledge of complex interactions among microbes must be better understood to achieve maximal control of pathogens. Therefore, we investigated the effect of UV-C treatments on bacterial diversity of the Ataulfo mangoes surface using PCR-DGGE analysis of variable region V3 of 16S rRNA genes, and the survival of E. coli, by plate counting. The UV-C irradiation reduced the microbial load on the surface of mangoes immediately after treatment and the structure of bacterial communities was modified during storage. We identified the key members of the bacterial communities on the surface of fruits, predominating Enterobacter genus. Genera as Lactococcus and Pantoea were only detected on the surface of non-treated (control) mangoes. This could indicate that these genera were affected by the UV-C treatment. On the other hand, the treatment did not have a significant effect on survival of E. coli. However, genera that have been recognized as antagonists against foodborne pathogens were identified in the bands patterns. Also, phenolic compounds were determined by HPLC and antimicrobial activity was assayed according to the agar diffusion method. The main phenolic compounds were chlorogenic, gallic, and caffeic acids. Mango peel methanol extracts (UV-C treated and control mangoes) showed antimicrobial activity against strains previously isolated from mango, detecting significant differences (P < 0.05) among treated and control mangoes after 4 and 12 days of storage. Ps. fluorescens and Ps. stutszeri were the most sensitive. PMID:23761788

  12. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  13. The Effect of Selective D- or Nα-Methyl Arginine Substitution on the Activity of the Proline-Rich Antimicrobial Peptide, Chex1-Arg20

    PubMed Central

    Li, Wenyi; Sun, Zhe; O'Brien-Simpson, Neil M.; Otvos, Laszlo; Reynolds, Eric C.; Hossain, Mohammed A.; Separovic, Frances; Wade, John D.

    2017-01-01

    In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogs were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone Nα-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogs showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions. PMID:28154813

  14. Cationic Hydrophobic Peptides with Antimicrobial Activity

    PubMed Central

    Stark, Margareta; Liu, Li-Ping; Deber, Charles M.

    2002-01-01

    The MICs of cationic, hydrophobic peptides of the prototypic sequence KKAAAXAAAAAXAAWAAXAAAKKKK-amide (where X is one of the 20 commonly occurring amino acids) are in a low micromolar range for a panel of gram-negative and gram-positive bacteria, with no or low hemolytic activity against human and rabbit erythrocytes. The peptides are active only when the average segmental hydrophobicity of the 19-residue core is above an experimentally determined threshold value (where X is Phe, Trp, Leu, Ile, Met, Val, Cys, or Ala). Antimicrobial activity could be increased by using peptides that were truncated from the prototype length to 11 core residues, with X being Phe and with 6 Lys residues grouped at the N terminus. We propose a mechanism for the interaction between these peptides and bacterial membranes similar to the “carpet model,” wherein the Lys residues interact with the anionic phospholipid head groups in the bacterial membrane surface and the hydrophobic core portion of the peptide is then able to interact with the lipid bilayer, causing disruption of the bacterial membrane. PMID:12384369

  15. The antimicrobial activity, toxicity and antimicrobial mechanism of a new type of tris(alkylphenyl)sulfonium.

    PubMed

    Hirayama, Michiasa

    2012-03-01

    The antimicrobial activity, toxicity and antimicrobial mechanism of a new type of tris(4-alkylphenyl)sulfonium which has sterically bulky alkyl substituents (bTAPS), were estimated and compared with those of other sulfoniums which we reported previously. Concerning tris {4-(iso-propyl)phenyl}sulfonium (bTAPS-iso3) and tris{4-(tert-butyl)phenyl}sulfonium (bTAPS-tert4), the antimicrobial activity of these compounds tended to be lower than both tri(n-alkyl)sulfoniums (TASs) and tris{4-(n-alkylphenyl)}sulfoniums (TAPSs) at similar ClogP values. However, the activities of tris{4-(cyclohexyl)phenyl}sulfonium (bTAPS-cyclo6) were clearly higher than those of TAS and were almost similar to those of TAPS at similar ClogP values. The mutagenicities of tested bTAPSs were judged to be all negative. Both the acute oral toxicity strength and the acute skin irritation/corrosion toxicity strength tended to follow the order of TAPSs > bTAPSs > TASs. However, only the acute skin irritation/corrosion toxicity strength of bTAPS-cyclo6 was almost as low as that of TAS which has a similar ClogP value to bTAPS-cyclo6. Because bTAPS-cyclo6 has both high antimicrobial activity and low toxicity, this compound might become to be an alternative antimicrobial compound to relatively hazardous antimicrobials which have been widely used in many fields.

  16. Design of novel analogues of short antimicrobial peptide anoplin with improved antimicrobial activity.

    PubMed

    Wang, Yang; Chen, Jianbo; Zheng, Xin; Yang, Xiaoli; Ma, Panpan; Cai, Ying; Zhang, Bangzhi; Chen, Yuan

    2014-12-01

    Currently, novel antibiotics are urgently required to combat the emergence of drug-resistant bacteria. Antimicrobial peptides with membrane-lytic mechanism of action have attracted considerable interest. Anoplin, a natural α-helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin-4 composed of D-amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin-4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin-4 treatment relative to anoplin. In conclusion, anoplin-4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection.

  17. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  18. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-09-26

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids.

  19. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    PubMed

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  20. Antimicrobial activity of selected herbal extracts.

    PubMed

    Gowthamarajan, K; Kulkarni, T Giriraj; Mahadevan, N; Santhi, K; Suresh, B

    2002-01-01

    METHANOLIC EXTRACT OF OLEORESINS OF ARAUCARIA BIDWILLI HOOK: and aerial parts of Cytisus scoparius Linn. Were screened for antimicrobial activity against two bacterial strains-Bacillus subtilis (Gram Positive) and Escherichia coli (Gem negative), and two fungal strains - Candida albicans and crytococcus neoformans by two-fold serial dilution technique. The results showed that all the microorganisms used were sensitive to the extracts. The minimum inhibitory concentrations (MIC) for A. bidwilli were found to be 31.25 μg/ml for Bacillus subtilis and 500 μg/ml for all other organisms used in the study. In case of C. Scoparius, the MIC values were 250 μg/ml for B. Subtilis and 500 μg/ml for allthe other strains used. However, in comparison the ampicillin (MIC: 62.5 μg/ml), and Amphotericin-B (MIC: 125 μg/ml ), the activities of both the extracts were less except A. bidwilli against B.Subtilis.

  1. Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europaea leaf extract.

    PubMed

    Lee, Ok-Hwan; Lee, Boo-Yong

    2010-05-01

    Olive leaves, an agricultural waste, have great potential as a natural antioxidant. The current study was made to assess the antioxidant and antimicrobial activities of both the individual and combined phenolics in olive leaf extract. A combined phenolics mixture was prepared by amount ratios of the phenolic compounds in the olive leaf extract. The results showed that both the individual and combined phenolics exhibited good radical scavenging abilities, and also revealed superoxide dismutase (SOD)-like activity. In terms of antimicrobial activity, both oleuropein and caffeic acid showed inhibition effects against microorganisms. Furthermore, the antimicrobial effect of the combined phenolics was significantly higher than those of the individual phenolics. These results show that the combination of olive leaf extract phenolics possessed antioxidant and antimicrobial activities. This study indicates that olive leaf extract might be a valuable bioactive source, and would seem to be applicable in both the health and medical food.

  2. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria.

    PubMed

    Farooqui, Amber; Khan, Adnan; Borghetto, Ilaria; Kazmi, Shahana U; Rubino, Salvatore; Paglietti, Bianca

    2015-01-01

    Synergistic combinations of antimicrobial agents with different mechanisms of action have been introduced as more successful strategies to combat infections involving multidrug resistant (MDR) bacteria. In this study, we investigated synergistic antimicrobial activity of Camellia sinensis and Juglans regia which are commonly used plants with different antimicrobial agents. Antimicrobial susceptibility of 350 Gram-positive and Gram-negative strains belonging to 10 different bacterial species, was tested against Camellia sinensis and Juglans regia extracts. Minimum inhibitory concentrations (MICs) were determined by agar dilution and microbroth dilution assays. Plant extracts were tested for synergistic antimicrobial activity with different antimicrobial agents by checkerboard titration, Etest/agar incorporation assays, and time kill kinetics. Extract treated and untreated bacteria were subjected to transmission electron microscopy to see the effect on bacterial cell morphology. Camellia sinensis extract showed higher antibacterial activity against MDR S. Typhi, alone and in combination with nalidixic acid, than to susceptible isolates." We further explore anti-staphylococcal activity of Juglans regia that lead to the changes in bacterial cell morphology indicating the cell wall of Gram-positive bacteria as possible target of action. The synergistic combination of Juglans regia and oxacillin reverted oxacillin resistance of methicillin resistant Staphylococcus aureus (MRSA) strains in vitro. This study provides novel information about antimicrobial and synergistic activity of Camellia sinensis and Juglans regia against MDR pathogens.

  3. Antimicrobial and cytotoxic effects of Mexican medicinal plants.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Alonso-Castro, Angel Josabad; Salazar-Olivo, Luis A; Carranza-Alvarez, Candy; González-Espíndola, Luis Angel; Domínguez, Fabiola; Maciel-Torres, Sandra Patricia; García-Lujan, Concepción; González-Martínez, Marisela del Rocio; Gómez-Sánchez, Maricela; Estrada-Castillón, Eduardo; Zapata-Bustos, Rocio; Medellin-Milán, Pedro; García-Carrancá, Alejandro

    2011-12-01

    The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50 < or = 30 microg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.

  4. DBAASP: database of antimicrobial activity and structure of peptides.

    PubMed

    Gogoladze, Giorgi; Grigolava, Maia; Vishnepolsky, Boris; Chubinidze, Mindia; Duroux, Patrice; Lefranc, Marie-Paule; Pirtskhalava, Malak

    2014-08-01

    The Database of Antimicrobial Activity and Structure of Peptides (DBAASP) is a manually curated database for those peptides for which antimicrobial activity against particular targets has been evaluated experimentally. The database is a depository of complete information on: the chemical structure of peptides; target species; target object of cell; peptide antimicrobial/haemolytic/cytotoxic activities; and experimental conditions at which activities were estimated. The DBAASP search page allows the user to search peptides according to their structural characteristics, complexity type (monomer, dimer and two-peptide), source, synthesis type (ribosomal, nonribosomal and synthetic) and target species. The database prediction algorithm provides a tool for rational design of new antimicrobial peptides. DBAASP is accessible at http://www.biomedicine.org.ge/dbaasp/.

  5. Silver activation on thin films of Ag-ZrCN coatings for antimicrobial activity.

    PubMed

    Ferreri, I; Calderon V, S; Escobar Galindo, R; Palacio, C; Henriques, M; Piedade, A P; Carvalho, S

    2015-10-01

    Nowadays, with the increase of elderly population and related health problems, knee and hip joint prosthesis are being widely used worldwide. However, failure of these invasive devices occurs in a high percentage thus demanding the revision of the chirurgical procedure. Within the reasons of failure, microbial infections, either hospital or subsequently-acquired, contribute in high number to the statistics. Staphylococcus epidermidis (S. epidermidis) has emerged as one of the major nosocomial pathogens associated with these infections. Silver has a historic performance in medicine due to its potent antimicrobial activity, with a broad-spectrum on the activity of different types of microorganisms. Consequently, the main goal of this work was to produce Ag-ZrCN coatings with antimicrobial activity, for the surface modification of hip prostheses. Thin films of ZrCN with several silver concentrations were deposited onto stainless steel 316 L, by DC reactive magnetron sputtering, using two targets, Zr and Zr with silver pellets (Zr+Ag target), in an atmosphere containing Ar, C2H2 and N2. The antimicrobial activity of the modified surfaces was tested against S. epidermidis and the influence of an activation step of silver was assessed by testing samples after immersion in a 5% (w/v) NaClO solution for 5 min. The activation procedure revealed to be essential for the antimicrobial activity, as observed by the presence of an inhibition halo on the surface with 11 at.% of Ag. The morphology analysis of the surface before and after the activation procedure revealed differences in silver distribution indicating segregation/diffusion of the metallic element to the film's surface. Thus, the results indicate that the silver activation step is responsible for an antimicrobial effect of the coatings, due to silver oxidation and silver ion release.

  6. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-07

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  7. Oxygen limitation favors the production of protein with antimicrobial activity in Pseudoalteromonas sp

    PubMed Central

    López, Ruth; Monteón, Víctor; Chan, Ernesto; Montejo, Rubí; Chan, Manuel

    2012-01-01

    This study examined the effect of dissolved oxygen concentration on the production of biomass and metabolites with antimicrobial activity of Pseudoalteromonas sp cultured at 0, 150, 250, or 450 revolutions per minute (rev. min-1). Dissolved oxygen (D.O) was monitored during the fermentation process, biomass was quantified by dry weight, and antimicrobial activity was assessed using the disk diffusion method. The bacterium Pseudoalteromonas reached similar concentration of biomass under all experimental agitation conditions, whereas antimicrobial activity was detected at 0 and 150 rev. min-1 registering 0% and 12% of D.O respectively corresponding to microaerophilic conditions. Antibiotic activity was severely diminished when D.O was above 20% of saturation; this corresponded to 250 or 450 rev. min-1. SDS-PAGE electrophoresis revealed a protein with a molecular weight of approximately 80 kilodaltons (kDa) with antimicrobial activity. Pseudoalteromonas is capable of growing under oxic and microaerophilic conditions but the metabolites with antimicrobial activity are induced under microaerophilic conditions. The current opinion is that Pseudoalteromonas are aerobic organisms; we provide additional information on the amount of dissolved oxygen during the fermentation process and its effect on antimicrobial activity. PMID:24031945

  8. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  9. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  10. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  11. Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy

    PubMed Central

    2009-01-01

    Background Silver has long been known to have antimicrobial activity. To incorporate this property into multiple applications, a silver-impregnated cellulose (SIC) with low cytotoxicity to human cells was developed. SIC differs from other silver treatment methods in that the leaching of silver particles is non-existent and the release of ionic silver is highly controlled. Results Candida albicans, Micrococcus luteu, Pseudomonas putida, and Escherichia coli were used for antimicrobial testing. No microbial cells were able to grow in the presence of SIC at concentrations above 0.0035 Ag w/v %. Even at a concentration of 0.00035 Ag w/v %, P. putida and M. luteu failed to grow, and C. albicans and E. coli exhibited diminished growth. To determine the cytotoxic effect of silver on human cells, five different concentrations of SIC were tested on human fibroblasts. In SIC concentrations of 0.035 Ag w/v % and below, no cytotoxicity was observed. Conclusion The optimal concentration of SIC for a broad range of anti-microbial activity and low or negligible cytotoxicity was 0.0035 Ag w/v %. Although the highly controlled releasing characteristics of SIC would prove a substantial improvement over current technologies, further investigation for genotoxicity and other biocompatibility test will be required. PMID:19961601

  12. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by l-lysine oxidase activity.

    PubMed

    Chen, Wen Ming; Lin, Chang Yi; Sheu, Shih Yi

    2010-05-05

    A greenish yellow pigmented bacterial strain, designated GR5, was recently isolated from a freshwater culture pond for a soft-shell turtle. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain GR5 belongs to the genus Rheinheimera and its only closest neighbor is the type strain of Rheinheimera texasensis (98.2%). Based on the antibiogram assay, strain GR5 possesses a broad spectrum of antimicrobial activity including Gram-positive and Gram-negative bacteria, yeast, algae, and strain GR5 itself. Strain GR5 can synthesize a macromolecule with antimicrobial activity due to the generation of hydrogen peroxide and this antimicrobial effect can be inhibited by catalase. This antimicrobial activity is active only in complex culture media or chemically defined culture media containing l-lysine. This antimicrobial macromolecule in strain GR5 is shown to be a monomeric protein with a molecular mass of 71kDa and isoelectric point of approximately 3.68. Liquid chromatography-tandem mass spectrometry analyses reveal close similarity of a 19-amino acid fragment derived from this protein to the antibacterial protein, AlpP from the marine bacterium Pseudoalteromonas tunicata D2, and to the antibacterial protein, marinocine, from the marine bacterium Marinomonas mediterranea. This study explores the nature of antimicrobial macromolecule such as l-lysine oxidase. This is the first report on a freshwater bacterium producing antimicrobial activity by generating hydrogen peroxide through its enzymatic activity of l-lysine oxidase.

  13. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    PubMed

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans.

  14. Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species.

    PubMed

    Codiţă, Irina; Caplan, Dana Magdalena; Drăgulescu, Elena-Carmina; Lixandru, Brînduşa-Elena; Coldea, Ileana Luminiţa; Dragomirescu, Cristiana Cerasella; Surdu-Bob, Cristina; Bădulescu, Marius

    2010-01-01

    Contaminated surfaces are possible vehicles in infection transmission. It is known that both Copper (Cu) and Silver (Ag) efficiently inactivate microbes by direct contact. Aiming at using these metals for benefitting from their antimicrobial effect, but to avoid subsequent toxic effects, we evaluated the antimicrobial activity of nanometric thin Silver and Copper films covering less expensive materials. Using a modified version of the Japan Industrial Standard JIS Z 2801:2000, we demonstrated the antimicrobial activity of the surfaces covered with metal ions nanofilms on microorganisms possibly involved in nosocomial infections and on Bacillus anthracis, bacteria with possible implication in bioterrorist attacks. Copper covered surfaces proved to have better antimicrobial activity than Silver surfaces. Silver covered surfaces showed better activity on Gram negative bacteria than on Gram positive cocci. Going deeper with studies on antimicrobial effects using new methods with better direct and/or functional discriminatory capacity is needed in order to provide additional information on the mechanisms of Silver and Copper nanofilms antimicrobial activity.

  15. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species

    PubMed Central

    2013-01-01

    Background Extracts from Potentilla species have been applied in traditional medicine and exhibit antioxidant, hypoglycemic, anti-inflammatory, antitumor and anti-ulcerogenic properties, but little has been known about the diversity of phytochemistry and pharmacology on this genus. This study investigated and compared the phytochemical profiles, antioxidant and antimicrobial activities of leaf extracts from three Potentilla species (Potentilla fruticosa, Potentilla glabra and Potentilla parvifolia) in order to discover new resources for lead structures and pharmaceutical products. Methods Chemical composition and content of six phenolic compounds were evaluated and determined by RP-HPLC; Total phenolic and total flavonoid content were determined using Folin-Ciocalteau colourimetric method and sodium borohydride/chloranil-based method (SBC); Antioxidant activities were determined using DPPH, ABTS and FRAP assays; Antimicrobial properties were investigated by agar dilution and mycelial growth rate method. Results The results showed hyperoside was the predominant phenolic compound in three Potentilla species by RP-HPLC assay, with the content of 8.86 (P. fruticosa), 2.56 (P. glabra) and 2.68 mg/g (P. parvifolia), respectively. The highest content of total identified phenolic compounds (hyperoside, (+)-catechin, caffeic acid, ferulic acid, rutin and ellagic acid) was observed in P. parvifolia (14.17 mg/g), follow by P. fruticosa (10.01 mg/g) and P. glabra (7.01 mg/g). P. fruticosa possessed the highest content of total phenolic (84.93 ± 0.50 mmol gallic acid equivalent/100 g) and total flavonoid (84.14 ± 0.03 mmol quercetin equivalent/100 g), which were in good correlation with its significant DPPHIC50 (16.87 μg/mL), ABTS (2763.48 μmol Trolox equivalent/g) and FRAP (1398.70 μmol Trolox equivalent/g) capacities. Furthermore, the effective methodology to distinguish the different species of Potentilla was also established by chromatographic fingerprint analysis for

  16. Visible light enhances the antimicrobial effect of some essential oils.

    PubMed

    Marqués-Calvo, María Soledad; Codony, Francesc; Agustí, Gemma; Lahera, Carlos

    2017-03-01

    The photodisinfection is a topical, broad spectrum antimicrobial technology, targeting bacteria, virus, fungi, and protozoa effective for single cells as for biofilms. Natural molecules have been studied less than synthetic agents in the process but they are currently receiving great interest. Therefore, the aim of this study is to evaluate for the first time if non-coherent blue and red light enhances the antimicrobial activity of some essential oils when standard strains for antibiotic or fungicide tests are enlightened in vitro. Staphylococcus epidermidis, Pseudomonas aeruginosa and Candida albicans collection strains were irradiated with monochromatic visible light from light emitting diodes in the presence of 5% and 0.5% eucalyptus (Eucalyptus globulus), clove (Eugenia caryophyllata), and thyme (Thymus vulgaris) essential oils. Microbial levels were measured by plate count on culture media. In this preliminary report, the results differ according to the kind and concentration of antimicrobial oils, the wavelength of light, and the prokaryotic or eukaryotic microorganism. The results support the idea that mainly blue light enhances the innate antimicrobial activity of the essential oils, especially phenols, and could offer a very efficient and natural way to combat microorganisms in several industries and medical applications (cutaneous and oral infections, medical textiles, foodstuffs and fruit surface, etc.).

  17. Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles

    PubMed Central

    Adams, Clara P.; Walker, Katherine A.; Obare, Sherine O.; Docherty, Kathryn M.

    2014-01-01

    Investigating the interactions between nanoscale materials and microorganisms is crucial to provide a comprehensive, proactive understanding of nanomaterial toxicity and explore the potential for novel applications. It is well known that nanomaterial behavior is governed by the size and composition of the particles, though the effects of small differences in size toward biological cells have not been well investigated. Palladium nanoparticles (Pd NPs) have gained significant interest as catalysts for important carbon-carbon and carbon-heteroatom reactions and are increasingly used in the chemical industry, however, few other applications of Pd NPs have been investigated. In the present study, we examined the antimicrobial capacity of Pd NPs, which provides both an indication of their usefulness as target antimicrobial compounds, as well as their potency as potential environmental pollutants. We synthesized Pd NPs of three different well-constrained sizes, 2.0±0.1 nm, 2.5±0.2 nm and 3.1±0.2 nm. We examined the inhibitory effects of the Pd NPs and Pd2+ ions toward gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) bacterial cultures throughout a 24 hour period. Inhibitory growth effects of six concentrations of Pd NPs and Pd2+ ions (2.5×10−4, 10−5, 10−6, 10−7, 10−8, and 10−9 M) were examined. Our results indicate that Pd NPs are generally much more inhibitory toward S. aureus than toward E. coli, though all sizes are toxic at ≥10−5 M to both organisms. We observed a significant difference in size-dependence of antimicrobial activity, which differed based on the microorganism tested. Our work shows that Pd NPs are highly antimicrobial, and that fine-scale (<1 nm) differences in size can alter antimicrobial activity. PMID:24465824

  18. In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex).

    PubMed

    Aref, Houda Lazreg; Salah, Karima Bel Hadj; Chaumont, Jean Pierre; Fekih, Abdelwaheb; Aouni, Mahjoub; Said, Khaled

    2010-01-01

    Methanolic, hexanoïc, chloroformic and ethyl acetate extracts of Ficus carica latex were investigated for their in vitro antimicrobial proprieties against five bacteria species and seven strains of fungi. The green fruit latex was collected from Chott Mariam Souse, Middle East coast of Tunisia. The antimicrobial activity of the extracts was evaluated and based respectively on the inhibition zone using the disc-diffusion assay, minimal inhibition concentration (MIC) for bacterial testing and the method by calculating inhibition percentage (I%) for fungi-inhibiting activities. The methanolic extract had no effect against bacteria except for Proteus mirabilis while the ethyl acetate extract had inhibition effect on the multiplication of five bacteria species (Enterococcus fecalis, Citobacter freundei, Pseudomonas aeruginosa, Echerchia coli and Proteus mirabilis). For the opportunist pathogenic yeasts, ethyl acetate and chlorophormic fractions showed a very strong inhibition (100%); methanolic fraction had a total inhibition against Candida albicans (100%) at a concentration of 500 microg/ml and a negative effect against Cryptococcus neoformans. Microsporum canis was strongly inhibited with methanolic extract (75%) and totally with ethyl acetate extract at a concentration of 750 microg/ml. Hexanoïc extract showed medium results.

  19. Poly(anhydride-esters) Comprised Exclusively of Naturally Occurring Antimicrobials and EDTA: Antioxidant and Antibacterial Activities

    PubMed Central

    2015-01-01

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  20. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities.

    PubMed

    Carbone-Howell, Ashley L; Stebbins, Nicholas D; Uhrich, Kathryn E

    2014-05-12

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways.

  1. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis

    PubMed Central

    Prado, Dayanna S.; Barcellos, Priscila S.; Gonçalves, Azizedite G.

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity. PMID:27630733

  2. Immunomodulatory and Antimicrobial Activity of Babassu Mesocarp Improves the Survival in Lethal Sepsis.

    PubMed

    Barroqueiro, Elizabeth S B; Prado, Dayanna S; Barcellos, Priscila S; Silva, Tonicley A; Pereira, Wanderson S; Silva, Lucilene A; Maciel, Márcia C G; Barroqueiro, Rodrigo B; Nascimento, Flávia R F; Gonçalves, Azizedite G; Guerra, Rosane N M

    2016-01-01

    Attalea speciosa syn Orbignya phalerata Mart. (babassu) has been used in the treatment of inflammatory and infectious diseases. Aim of the study. To investigate the antimicrobial and immunological activity of babassu mesocarp extract (EE). Material and Methods. The in vitro antimicrobial activity was evaluated by disk diffusion assay and by determination of the minimum inhibitory concentration (MIC) to Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA). The flavonoids and phenolic acids content were determined by chromatography. The in vivo assays were performed in Swiss mice submitted to sepsis by cecal ligation and puncture (CLP). The mice received EE subcutaneously (125 or 250 mg/Kg), 6 hours after the CLP. The number of lymphoid cells was quantified and the cytokines production was determined by ELISA after 12 h. Results. EE was effective as antimicrobial to E. faecalis, S. aureus, and MRSA. EE is rich in phenolic acids, a class of compounds with antimicrobial and immunological activity. An increased survival can be observed in those groups, possibly due to a significant inhibition of TNF-α and IL-6. Conclusions. The EE showed specific antimicrobial activity in vitro and an important antiseptic effect in vivo possibly due to the antimicrobial and immunomodulatory activity.

  3. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  4. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols.

    PubMed

    Bisignano, Carlo; Filocamo, Angela; Faulks, Richard M; Mandalari, Giuseppina

    2013-04-01

    We investigated the antimicrobial properties of polyphenol-rich fractions derived from raw shelled and roasted salted pistachios. American Type Culture Collection (ATCC), food and clinical isolates, of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Pseudomonas mirabilis), Gram-positive bacteria (Listeria monocytogenes, Enterococcus hirae, Enterococcus faecium, Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus), the yeasts Candida albicans and Candida parapsilosis and the fungus Aspergillus niger were used. Pistachio extracts were active against Gram-positive bacteria with a bactericidal effect observed against L. monocytogenes (ATCC strains and food isolates), S. aureus and MRSA clinical isolates. Extracts from raw shelled pistachios were more active than those from roasted salted pistachios. The bactericidal activity of pistachio extracts could be used to help control the growth of some microorganisms in foods to improve safety and may find application as a topical treatment for S. aureus.

  5. Antioedematogenic activity, acetylcholinesterase inhibition and antimicrobial properties of Jacaranda oxyphylla.

    PubMed

    Pereira, V V; Silva, R R; Dos Santos, M H; Dias, D F; Moreira, M E C; Takahashi, J A

    2016-09-01

    Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.

  6. Diverse antimicrobial activity from Enterococcus faecium NRRL B-30746 bacteriocin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotic therapy to resolve bacterial disease has been compromised by the increased prevalence and magnitude of bacterial antibiotic resistance. In our efforts to identify new effective antimicrobials, bacteria isolated from poultry intestinal contents were screened for bacteriocin synthesis again...

  7. Novel imidazolium salt--peptide conjugates and their antimicrobial activity.

    PubMed

    Reinhardt, A; Horn, M; Schmauck, J Pieper Gen; Bröhl, A; Giernoth, R; Oelkrug, C; Schubert, A; Neundorf, I

    2014-12-17

    Our study presents innovative research dealing with the synthesis and biological evaluation of conjugates out of antimicrobial peptides (AMPs) and imidazolium cations that are derived from ionic liquids. AMPs are considered as promising alternatives to common antibiotics due to their different activity mechanisms. Antibacterial effects have also been described for ionic liquids bearing imidazolium cations . Besides single coupling of carboxy-functionalized imidazolium cations to the peptide N-terminal we also developed conjugates bearing multiple copies of imidazolium cations. The combination of both compounds resulted in synergistic effects that were most pronounced when more imidazolium cations were attached to the peptides. In addition, antibacterial activity even in drug-resistant bacterial strains could be observed. Moreover, the novel compounds showed good selectivity only against bacterial cells, an observation that was further proven by lipid interaction studies using giant unilamellar vesicles.

  8. Effectiveness of antimicrobial food packaging materials.

    PubMed

    Cooksey, K

    2005-10-01

    Antimicrobial additives have been used successfully for many years as direct food additives. The literature provides evidence that some of these additives may be effective as indirect food additives incorporated into food packaging materials. Antimicrobial food packaging is directed toward the reduction of surface contamination of processed, prepared foods such as sliced meats and Frankfurter sausages (hot dogs). The use of such packaging materials is not meant to be a substitute for good sanitation practices, but it should enhance the safety of food as an additional hurdle for the growth of pathogenic and/or spoilage microorganisms. Studies have focused on establishing methods for coating low-density polyethylene film or barrier films with methyl cellulose as a carrier for nisin. These films have significantly reduced the presence of Listeria monocytogenes in solutions and in vacuum packaged hot dogs. Other research has focused on the use of chitosan to inhibit L. monocytogenes and chlorine dioxide sachets for the reduction of Salmonella on modified atmosphere-packaged fresh chicken breasts. Overall, antimicrobial packaging shows promise as an effective method for the inhibition of certain bacteria in foods, but barriers to their commercial implementation continue to exist.

  9. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L.

    PubMed

    Aleksic, Verica; Knezevic, Petar

    2014-04-01

    Since synthetic antimicrobial agents and food additives can cause a number of adverse effects, there is a growing interest from consumers in ingredients from natural sources. Medicinal plants, such as Myrtus communis L. are a source of new compounds which can be used in both the food industry and for medical purposes, primarily as antimicrobial agents. In this review, the characteristics of myrtle essential oils and extracts are summarized, with particular attention to their chemical composition, biological activities and potential applications.

  10. Activity of 10 antimicrobial agents against intracellular Rhodococcus equi.

    PubMed

    Giguère, Steeve; Berghaus, Londa J; Lee, Elise A

    2015-08-05

    Studies with facultative intracellular bacterial pathogens have shown that evaluation of the bactericidal activity of antimicrobial agents against intracellular bacteria is more closely associated with in vivo efficacy than traditional in vitro susceptibility testing. The objective of this study was to determine the relative activity of 10 antimicrobial agents against intracellular Rhodococcus equi. Equine monocyte-derived macrophages were infected with virulent R. equi and exposed to erythromycin, clarithromycin, azithromycin, rifampin, ceftiofur, gentamicin, enrofloxacin, vancomycin, imipenem, or doxycycline at concentrations achievable in plasma at clinically recommended dosages in foals. The number of intracellular R. equi was determined 48h after infection by counting colony forming units (CFUs). The number of R. equi CFUs in untreated control wells were significantly higher than those of monolayers treated with antimicrobial agents. Numbers of R. equi were significantly lower in monolayers treated with enrofloxacin followed by those treated with gentamicin, and vancomycin, when compared to monolayers treated with other antimicrobial agents. Numbers of R. equi in monolayers treated with doxycycline were significantly higher than those of monolayers treated with other antimicrobial agents. Differences in R. equi CFUs between monolayers treated with other antimicrobial agents were not statistically significant. Enrofloxacin, gentamicin, and vancomycin are the most active drugs in equine monocyte-derived macrophages infected with R. equi. Additional studies will be needed to determine if these findings correlate with in vivo efficacy.

  11. Mechanical properties that influence antimicrobial peptide activity in lipid membranes.

    PubMed

    Marín-Medina, Nathaly; Ramírez, Diego Alejandro; Trier, Steve; Leidy, Chad

    2016-12-01

    Antimicrobial peptides are small amphiphilic proteins found in animals and plants as essential components of the innate immune system and whose function is to control bacterial infectious activity. In order to accomplish their function, antimicrobial peptides use different mechanisms of action which have been deeply studied in view of their potential exploitation to treat antibiotic-resistant bacterial infections. One of the main mechanisms of action of these peptides is the disruption of the bacterial membrane through pore formation, which, in some cases, takes place via a monomer to oligomer cooperative transition. Previous studies have shown that lipid composition, and the presence of exogenous components, such as cholesterol in model membranes or carotenoids in bacteria, can affect the potency of distinct antimicrobial peptides. At the same time, considering the membrane as a two-dimensional material, it has been shown that membrane composition defines its mechanical properties which might be relevant in many membrane-related processes. Nevertheless, the correlation between the mechanical properties of the membrane and antimicrobial peptide potency has not been considered according to the importance it deserves. The relevance of these mechanical properties in membrane deformation due to peptide insertion is reviewed here for different types of pores in order to elucidate if indeed membrane composition affects antimicrobial peptide activity by modulation of the mechanical properties of the membrane. This would also provide a better understanding of the mechanisms used by bacteria to overcome antimicrobial peptide activity.

  12. Peptide consensus sequence determination for the enhancement of the antimicrobial activity and selectivity of antimicrobial peptides

    PubMed Central

    Almaaytah, Ammar; Ajingi, Ya’u; Abualhaijaa, Ahmad; Tarazi, Shadi; Alshar’i, Nizar; Al-Balas, Qosay

    2017-01-01

    The rise of multidrug-resistant bacteria is causing a serious threat to the world’s human population. Recent reports have identified bacterial strains displaying pan drug resistance against antibiotics and generating fears among medical health specialists that humanity is on the dawn of entering a post-antibiotics era. Global research is currently focused on expanding the lifetime of current antibiotics and the development of new antimicrobial agents to tackle the problem of antimicrobial resistance. In the present study, we designed a novel consensus peptide named “Pepcon” through peptide consensus sequence determination among members of a highly homologous group of scorpion antimicrobial peptides. Members of this group were found to possess moderate antimicrobial activity with significant toxicity against mammalian cells. The aim of our design method was to generate a novel peptide with an enhanced antimicrobial potency and selectivity against microbial rather than mammalian cells. The results of our study revealed that the consensus peptide displayed potent antibacterial activities against a broad range of Gram-positive and Gram-negative bacteria. Our membrane permeation studies displayed that the peptide efficiently induced membrane damage and consequently led to cell death through the process of cell lysis. The microbial DNA binding assay of the peptide was found to be very weak suggesting that the peptide is not targeting the microbial DNA. Pepcon induced minimal cytotoxicity at the antimicrobial concentrations as the hemolytic activity was found to be zero at the minimal inhibitory concentrations (MICs). The results of our study demonstrate that the consensus peptide design strategy is efficient in generating peptides. PMID:28096686

  13. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants.

    PubMed

    Murguía, Marcelo C; Vaillard, Victoria A; Sánchez, Victoria G; Conza, José Di; Grau, Ricardo J

    2008-01-01

    A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.

  14. Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect

    NASA Astrophysics Data System (ADS)

    Martínez Medina, Juan J.; Islas, María S.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2014-01-01

    Calculations based on density functional methods are carried out for two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline (o-phen): [Cu(o-phen)2(cnge)](NO3)2ṡ2H2O (1) and [Cu(o-phen)(cnge)(H2O)(NO3)2] (2). The calculated geometrical parameters are in agreement with the experimental values. The results of Atoms in Molecules (AIM) topological analysis of the electron density indicate that the Cu-N(phen) bonds in complex (1) have lower electron density, suggesting that those bonds are stronger in complex (2). Moreover, the ionic character of the Cu-N bond in the complex (1) is slightly stronger than that in the complex (2) and this situation would explain the fact that only complex (2) was stable in water solution. For this reason, the antimicrobial and enzymatic assays were performed using complex (2). It is well known that the increased use of antibiotics has resulted in the development of resistant bacterial and fungal strains. In this context, the study of novel antimicrobial agents has an enormous importance and metal complexes represent an interesting alternative for the treatment of infectious diseases. The aim of this work is to prove the modification of some biological properties like antimicrobial activity or alkaline phosphatase inhibitory activity upon copper complexation.

  15. Antimicrobial activity of Ulva reticulata and its endophytes

    NASA Astrophysics Data System (ADS)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  16. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    PubMed

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  17. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils

    PubMed Central

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M.

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM. PMID:26457111

  18. Effects of materials containing antimicrobial compounds on food hygiene.

    PubMed

    Møretrø, Trond; Langsrud, Solveig

    2011-07-01

    Surfaces with microorganisms may transfer unwanted microorganisms to food through cross-contamination during processing and preparation. A high hygienic status of surfaces that come in contact with food is important in order to reduce the risk of cross-contamination. During the last decade, products containing antimicrobial compounds, such as cutting boards, knives, countertops, kitchen utensils, refrigerators, and conveyor belts, have been introduced to the market, claiming hygienic effects. Such products are often referred to as "treated articles." Here we review various aspects related to treated articles intended for use during preparation and processing of food. Regulatory issues and methods to assess antibacterial effects are covered. Different concepts for treated articles as well as their antibacterial activity are reviewed. The effects of products with antimicrobials on food hygiene and safety are discussed.

  19. Influence of montmorillonite on antimicrobial activity of tetracycline and ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Lv, Guocheng; Pearce, Cody W.; Gleason, Andrea; Liao, Libing; MacWilliams, Maria P.; Li, Zhaohui

    2013-11-01

    Antibiotics are used not only to fight infections and inhibit bacterial growth, but also as growth promotants in farm livestock. Farm runoff and other farm-linked waste have led to increased antibiotic levels present in the environment, the impact of which is not completely understood. Soil, more specifically clays, that the antibiotic contacts may alter its effectiveness against bacteria. In this study a swelling clay mineral montmorillonite was preloaded with antibiotics tetracycline and ciprofloxacin at varying concentrations and bioassays were conducted to examine whether the antibiotics still inhibited bacterial growth in the presence of montmorillonite. Escherichia coli was incubated with montmorillonite or antibiotic-adsorbed montmorillonite, and then the number of viable bacteria per mL was determined. The antimicrobial activity of tetracycline was affected in the presence of montmorillonite, as the growth of non-resistant bacteria was still found even when extremely high TC doses were used. Conversely, in the presence of montmorillonite, ciprofloxacin did inhibit E. coli bacterial growth at high concentrations. These results suggest that the effectiveness of antimicrobial agents in clayey soils depends on the amount of antibiotic substance present, and on the interactions between the antibiotic and the clays in the soil, as well.

  20. Effects of Annatto (Bixa orellana L.) Seeds Powder on Physicochemical Properties, Antioxidant and Antimicrobial Activities of Pork Patties during Refrigerated Storage.

    PubMed

    Cuong, Tran Van; Chin, Koo Bok

    2016-01-01

    This study investigated the effect of the powder produced by ball-milling the outer layer of annatto (Bixa orellana L.) seeds on the physicochemical properties as well as the antioxidant and antimicrobial activities of pork patties over 14 d of refrigerated storage (4±1℃). Five pork patty treatments were produced containing three different concentrations of annatto seeds, 0.1, 0.25 and 0.5% (ANT0.1, ANT0.25, ANT0.5), 0.1% ascorbic acid (AA0.1), and a control (CTL). Based on the results, annatto seed powder appeared to show antioxidant activity. The Hunter color values of pork patties were affected by the addition of annatto seed powder, which increased the redness and yellowness values, but decreased the lightness of the patties (p<0.05). To evaluate the antioxidative effects of annatto on pork patties, thiobarbituric acid reactive substances (TBARS) and peroxide values (POV) were analyzed over 14 d of refrigerated storage. Treatments containing annatto seed showed lower TBARS and POV than control (CTL) samples (p<0.05). The volatile basic nitrogen (VBN) of the pork patties containing annatto seeds were lower than that of CTL at the end of storage (p<0.05). Although no differences in total bacterial counts were observed between control and treated patties, those containing annatto seeds had lower microbial counts for Enterobacteriacease than CTL or AA 0.1%. Therefore, annatto seed powder might be a good source of natural antioxidants for the production of meat products.

  1. Effects of Annatto (Bixa orellana L.) Seeds Powder on Physicochemical Properties, Antioxidant and Antimicrobial Activities of Pork Patties during Refrigerated Storage

    PubMed Central

    Cuong, Tran Van; Chin, Koo Bok

    2016-01-01

    This study investigated the effect of the powder produced by ball-milling the outer layer of annatto (Bixa orellana L.) seeds on the physicochemical properties as well as the antioxidant and antimicrobial activities of pork patties over 14 d of refrigerated storage (4±1℃). Five pork patty treatments were produced containing three different concentrations of annatto seeds, 0.1, 0.25 and 0.5% (ANT0.1, ANT0.25, ANT0.5), 0.1% ascorbic acid (AA0.1), and a control (CTL). Based on the results, annatto seed powder appeared to show antioxidant activity. The Hunter color values of pork patties were affected by the addition of annatto seed powder, which increased the redness and yellowness values, but decreased the lightness of the patties (p<0.05). To evaluate the antioxidative effects of annatto on pork patties, thiobarbituric acid reactive substances (TBARS) and peroxide values (POV) were analyzed over 14 d of refrigerated storage. Treatments containing annatto seed showed lower TBARS and POV than control (CTL) samples (p<0.05). The volatile basic nitrogen (VBN) of the pork patties containing annatto seeds were lower than that of CTL at the end of storage (p<0.05). Although no differences in total bacterial counts were observed between control and treated patties, those containing annatto seeds had lower microbial counts for Enterobacteriacease than CTL or AA 0.1%. Therefore, annatto seed powder might be a good source of natural antioxidants for the production of meat products. PMID:27621688

  2. Antimicrobial activity in the common seawhip, Leptogorgia virgulata (Cnidaria: Gorgonaceae).

    PubMed

    Shapo, Jacqueline L; Moeller, Peter D; Galloway, Sylvia B

    2007-09-01

    Antimicrobial activity was examined in the gorgonian Leptogorgia virgulata (common seawhip) from South Carolina waters. Extraction and assay protocols were developed to identify antimicrobial activity in crude extracts of L. virgulata. Detection was determined by liquid growth inhibition assays using Escherichia coli BL21, Vibrio harveyii, Micrococcus luteus, and a Bacillus sp. isolate. This represents the first report of antimicrobial activity in L. virgulata, a temperate/sub-tropical coral of the western Atlantic Ocean. Results from growth inhibition assays guided a fractionation scheme to identify active compounds. Reverse-phase HPLC, HPLC-mass spectrometry, and 1H and 13C NMR spectroscopy were used to isolate, purify, and characterize metabolites in antimicrobial fractions of L. virgulata. Corroborative HPLC-MS/NMR evidence validated the presence of homarine and a homarine analog, well-known emetic metabolites previously isolated from L. virgulata, in coral extracts. In subsequent assays, partially-purified L. virgulata fractions collected from HPLC-MS fractionation were shown to contain antimicrobial activity using M. luteus and V. harveyii. This study provides evidence that homarine is an active constituent of the innate immune system in L. virgulata. We speculate it may act synergistically with cofactors and/or congeners in this octocoral to mount a response to microbial invasion and disease.

  3. Fungi Treated with Small Chemicals Exhibit Increased Antimicrobial Activity against Facultative Bacterial and Yeast Pathogens

    PubMed Central

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Wagner, Martin; Strauss, Joseph

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances. PMID:25121102

  4. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    PubMed Central

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  5. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  6. Structure-Activity Relationship of Benzophenanthridine Alkaloids from Zanthoxylum rhoifolium Having Antimicrobial Activity

    PubMed Central

    Tavares, Luciana de C.; Zanon, Graciane; Weber, Andréia D.; Neto, Alexandre T.; Mostardeiro, Clarice P.; Da Cruz, Ivana B. M.; Oliveira, Raul M.; Ilha, Vinicius; Dalcol, Ionara I.; Morel, Ademir F.

    2014-01-01

    Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect

  7. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    PubMed Central

    2012-01-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics. PMID:22625664

  8. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  9. Antimicrobial activity of Ammodaucus leucotrichus fruit oil from Algerian Sahara.

    PubMed

    El-Haci, Imad Abdelhamid; Bekhechi, Chahrazed; Atik-Bekkara, Fewzia; Mazari, Wissame; Gherib, Mohamed; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2014-05-01

    Three fruit oil samples of Ammodaucus leucotrichus Cosson & Durieu from Algerian Sahara were obtained by hydrodistillation and analyzed by GC(RI), GC-MS and 13C NMR spectroscopy. The main compounds were perillaldehyde (87.0-87.9%) and limonene (7.4-8.2%). The antimicrobial effect of the essential oil was evaluated against bacteria, yeasts and filamentous fungi. High antibacterial activity was observed against Escherichia coli, Staphylococcus aureus. Enterobacter cloaceae, Bacillus cereus and Salmonella typhimurium, with MIC values between 0.5-1.0 microL/mL. Fungal strains were also sensitive to the essential oil (MIC values: 0.25-0.75 microL/mL).The most potent activity was observed against the filamentous fungi, Fusarium oxysporum and Aspergillusflavus (0.25-0.50 microL/mL).

  10. Preparation and antimicrobial activity of scleraldehyde from Schizophyllum commune.

    PubMed

    Jayakumar, Gladstone Christopher; Kanth, Swarna V; Chandrasekaran, B; Raghava Rao, J; Nair, B U

    2010-10-13

    The present study investigates the antimicrobial activity of oxidized schizophyllan (scleraldehyde) against Gram-positive and Gram-negative bacteria by diffusion and tube dilution analysis. Schizophyllan is a natural polysaccharide produced by fungi of the genus Schizophyllum. Periodate oxidation specifically cleaves the vicinal glycols in scleraldehyde to form their dialdehyde derivatives. The antibacterial activity exhibited by scleraldehyde was defined using various tests such as the disc diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). MIC and MBC values were found to be in the range of 3.0-8.0 mg/mL. Hence, the present studies establish that the scleraldehyde possesses effective antibacterial properties and can be used as a biopreservative for preservation of raw hides and skins.

  11. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules.

    PubMed

    Nagayoshi, Masato; Kitamura, Chiaki; Fukuizumi, Takaki; Nishihara, Tatsuji; Terashita, Masamichi

    2004-11-01

    Ozone is known to act as a strong antimicrobial agent against bacteria, fungi, and viruses. In the present study, we examined the effect of ozonated water against Enterococcus faecalis and Streptcoccus mutans infections in vitro in bovine dentin. After irrigation with ozonated water, the viability of E. faecalis and S. mutans invading dentinal tubules significantly decreased. Notably, when the specimen was irrigated with sonication, ozonated water had nearly the same antimicrobial activity as 2.5% sodium hypochlorite (NaOCl). We also compared the cytotoxicity against L-929 mouse fibroblasts between ozonated water and NaOCl. The metabolic activity of fibroblasts was high when the cells were treated with ozonated water, whereas that of fibroblasts significantly decreased when the cells were treated with 2.5% NaOCl. These results suggest that ozonated water application may be useful for endodontic therapy.

  12. Selected Antimicrobial Activity of Topical Ophthalmic Anesthetics

    PubMed Central

    Reynolds, Margaret M.; Greenwood-Quaintance, Kerryl E.; Patel, Robin; Pulido, Jose S.

    2016-01-01

    Purpose Endophthalmitis is a rare complication of intravitreal injection (IVI). It is recommended that povidone-iodine be the last agent applied before IVI. Patients have reported povidone-iodine application to be the most bothersome part of IVIs. Topical anesthetics have been demonstrated to have antibacterial effects. This study compared the minimum inhibitory concentration (MIC) of topical anesthetic eye drops (proparacaine 0.5%, tetracaine 0.5%, lidocaine 2.0%) and the antiseptic, 5.0% povidone-iodine, against two organisms causing endophthalmitis after IVI. Methods Minimum inhibitory concentration values of topical anesthetics, povidone-iodine, preservative benzalkonium chloride (0.01%), and saline control were determined using five isolates of each Staphylococcus epidermidis and viridans group Streptococcus species (VGS). A broth microdilution technique was used with serial dilutions. Results Lidocaine (8.53 × 10−5mol/mL) had MICs of 4.27 to 8.53 × 10−5 mol/mL, and tetracaine (1.89 × 10−5 mol/mL) had MICs of 9.45 × 10−6 mol/mL for all isolates. Proparacaine (1.7 × 10−5 mol/mL) had MICs of 1.32 to 5.3 × 10−7 and 4.25 × 10−6 mol/mL for S. epidermidis and VGS, respectively). Benzalkonium chloride (3.52 × 10−7 mol/mL) had MICs of 1.86 × 10−9 to 1.1 × 10−8 and 4.40 × 10−8 mol/mL for S. epidermidis and VGS, respectively. Povidone-iodine (1.37 × 10−4 mol/mL) had MICs of 2.14 to 4.28 × 10−6 and 8.56 × 10−6 mol/mL for S. epidermidis and VGS, respectively. Conclusion Proparacaine was the anesthetic with the lowest MICs, lower than that of povidone-iodine. Benzalkonium chloride had lower MICs than proparacaine. All tested anesthetics and povidone-iodine inhibited growth of S. epidermidis and VGS at commercially available concentrations. Translational Relevance For certain patients, it could be possible to use topical anesthetic after povidone-iodine for comfort without inhibiting and perhaps contributing additional antimicrobial

  13. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms.

    PubMed

    Chávez de Paz, Luis E; Resin, Anton; Howard, Kenneth A; Sutherland, Duncan S; Wejse, Peter L

    2011-06-01

    Nanoparticle complexes were prepared from chitosans of various molecular weights (MW) and degrees of deacetylation (DD). The antimicrobial effect was assessed by the Live/Dead BacLight technique in conjunction with confocal scanning laser microscopy (CSLM) and image analysis. Nanocomplexes prepared from chitosans with high MW showed a low antimicrobial effect (20 to 25% of cells damaged), whereas those prepared from low-MW chitosans showed high antimicrobial effect (>95% of cells damaged).

  14. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  15. Antimicrobial activity of ibuprofen: new perspectives on an "Old" non-antibiotic drug.

    PubMed

    Obad, Jelena; Šušković, Jagoda; Kos, Blaženka

    2015-04-25

    Pharmaceutical industry has been encountering antimicrobial activity of non-antibiotics during suitability tests carried out prior to routine pharmacopoeial microbiological purity analysis of finished dosage forms. These properties are usually ignored or perceived as a nuisance during pharmaceutical analysis. The aim of this study was: (i) to compare the available data to our method suitability test results carried out on products containing ibuprofen, i.e. to demonstrate that method suitability can be a valuable tool in identifying new antimicrobials, (ii) to demonstrate the antimicrobial activity of ibuprofen and ibuprofen lysine. Microbiological purity method suitability testing was carried out according to European Pharmacopoeia (EP), chapters 2.6.12. and 2.6.13. Antimicrobial activity of ibuprofen and ibuprofen lysine was demonstrated by a disk diffusion method, a modification of the European Committee for Antimicrobial Susceptibility Testing method (EUCAST), against test microorganisms recommended in the EP. It was confirmed that ibuprofen may be responsible for the broad spectrum of antimicrobial activity of the tested products, and that method suitability tests according to the EP can indeed be exploited by the scientific community in setting guidelines towards future research of new antimicrobials. In the disk diffusion assay, inhibition zones were obtained with more than 62.5 μg and 250 μg for Staphylococcus aureus, 125 μg and 250 μg for Bacillus subtilis, 31.3 μg and 125 μg for Candidaalbicans, 31.3 μg and 62.5 μg for Aspergillusbrasiliensis, of ibuprofen/disk, and ibuprofen lysine/disk, respectively. For Escherichiacoli, Pseudomonasaeruginosa and Salmonellatyphimurium inhibition zones were not obtained. Antimicrobial activity of ibuprofen is considered merely as a side effect, and it is not mentioned in the patient information leaflets of ibuprofen drugs. As such, for the patient, it could represent an advantage, but, it could also introduce

  16. Antimicrobial activity of human α-defensin 5 and its linear analogs: N-terminal fatty acylation results in enhanced antimicrobial activity of the linear analogs.

    PubMed

    Mathew, Basil; Nagaraj, Ramakrishnan

    2015-09-01

    Human α-defensin 5 (HD5) exhibits broad spectrum antimicrobial activity and plays an important role in mucosal immunity of the small intestine. Although there have been several studies, the structural requirements for activity and mechanism of bacterial killing is yet to be established unequivocally. In this study, we have investigated the antimicrobial activity of HD5 and linear analogs. Cysteine deletions attenuated the antibacterial activity considerably. Candidacidal activity was affected to a lesser extent. Fatty acid conjugated linear analogs showed antimicrobial activity comparable activity to HD5. Effective surface charge neutralization of bacteria was observed for HD5 as compared to the non-fatty acylated linear analogs. Our results show that HD5 and non-fatty acylated linear analogs enter the bacterial cytoplasm without causing damage to the bacterial inner membrane. Although fatty acylated peptides exhibited antimicrobial activity comparable to HD5, their mechanism of action involved permeabilization of the Escherichia coli inner membrane. HD5 and analogs had the ability to bind plasmid DNA. HD5 had greater binding affinity to plasmid DNA as compared to the analogs. The three dimensional structure of HD5 favors greater interaction with the bacterial cell surface and also with DNA. Antibacterial activity of HD5 involves entry into bacterial cytoplasm and binding to DNA which would result in shut down of the bacterial metabolism leading to cell death. We show how a moderately active linear peptide derived from the α-defensin HD5 can be engineered to enhance antimicrobial activity almost comparable to the native peptide.

  17. CasuL: A new lectin isolated from Calliandra surinamensis leaf pinnulae with cytotoxicity to cancer cells, antimicrobial activity and antibiofilm effect.

    PubMed

    Procópio, Thamara Figueiredo; de Siqueira Patriota, Leydianne Leite; de Moura, Maiara Celine; da Silva, Pollyanna Michelle; de Oliveira, Ana Patrícia Silva; do Nascimento Carvalho, Lidiane Vasconcelos; de Albuquerque Lima, Thâmarah; Soares, Tatiana; da Silva, Túlio Diego; Breitenbach Barroso Coelho, Luana Cassandra; da Rocha Pitta, Maira Galdino; de Melo Rêgo, Moacyr Jesus Barreto; Bressan Queiroz de Figueiredo, Regina Celia; Guedes Paiva, Patrícia Maria; Napoleão, Thiago Henrique

    2017-05-01

    This work describes the isolation of a lectin (CasuL) from the leaf pinnulae of Calliandra surinamensis and the evaluation of its cytotoxic, antimicrobial and antibiofilm properties. Proteins from pinnulae extract were precipitated with ammonium sulphate (60% saturation) and submitted to Sephadex G-75 chromatography, which yielded isolated CasuL (purification factor: 113). Native CasuL is an acidic protein (pI 5.82) with a relative molecular mass of 48kDa. This lectin is also an oligomeric protein composed of three subunits and mass spectrometry revealed similarities with a Sorghum bicolor protein. CasuL did not undergo unfolding when heated but changes in conformation and hemagglutinating activity were detected at basic pH. CasuL did not reduce the viability of human peripheral blood mononuclear cells but was toxic to leukemic K562 cells (IC50 67.04±5.78μg/mL) and breast cancer T47D cells (IC50: 58.75±2.5μg/mL). CasuL (6.25-800μg/mL) only showed bacteriostatic effect but was able to reduce biofilm formation by Staphylococcus saprophyticcus and Staphylococcus aureus (non-resistant and oxacillin-resistant isolates). CasuL showed antifungal activity against Candida krusei causing alterations in cell morphology and damage to cell wall. In conclusion, the pinnulae of C. surinamensis leaves contain a thermo-stable lectin with biotechnological potential as cytotoxic, antibiofilm, and antifungal agent.

  18. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins.

    PubMed

    Olli, Sudar; Rangaraj, Nandini; Nagaraj, Ramakrishnan

    2013-01-01

    We have examined the antimicrobial activity of C-terminal analogs of human β-defensins HBD-1 and-3 wherein lysines have been selectively replaced by L- and D-arginines and L-isoleucine substituted with its D-enantiomer. The analogs exhibited antibacterial and antifungal activities. Physiological concentration of NaCl did not attenuate the activity of the peptides against Gram-negative bacteria considerably, while some attenuation of activity was observed against S. aureus. Variable attenuation of activity was observed in the presence of Ca²⁺ and Mg²⁺. Introduction of D-amino acids abrogated the need for a disulfide bridge for exhibiting activity. Confocal images of carboxyfluorescein (CF) labeled peptides indicated initial localization on the membrane and subsequent translocation into the cell. Analogs corresponding to cationic rich segments of human defensins substituted with L- and D-arginine, could be attractive candidates for development as future therapeutic drugs.

  19. Peptides from the scorpion Vaejovis punctatus with broad antimicrobial activity.

    PubMed

    Ramírez-Carreto, Santos; Jiménez-Vargas, Juana María; Rivas-Santiago, Bruno; Corzo, Gerardo; Possani, Lourival D; Becerril, Baltazar; Ortiz, Ernesto

    2015-11-01

    The antimicrobial potential of two new non-disulfide bound peptides, named VpAmp1.0 (LPFFLLSLIPSAISAIKKI, amidated) and VpAmp2.0 (FWGFLGKLAMKAVPSLIGGNKSSSK) is here reported. These are 19- and 25-aminoacid-long peptides with +2 and +4 net charges, respectively. Their sequences correspond to the predicted mature regions from longer precursors, putatively encoded by cDNAs derived from the venom glands of the Mexican scorpion Vaejovis punctatus. Both peptides were chemically synthesized and assayed against a variety of microorganisms, including pathogenic strains from clinical isolates and strains resistant to conventional antibiotics. Two shorter variants, named VpAmp1.1 (FFLLSLIPSAISAIKKI, amidated) and VpAmp2.1 (FWGFLGKLAMKAVPSLIGGNKK), were also synthesized and tested. The antimicrobial assays revealed that the four synthetic peptides effectively inhibit the growth of both Gram-positive (Staphylococcus aureus and Streptococcus agalactiaea) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria, with MICs in the range of 2.5-24.0 μM; yeasts (Candida albicans and Candida glabrata) with MICs of 3.1-50.0 μM; and two clinically isolated strains of Mycobacterium tuberculosis-including a multi-drug resistant one- with MICs in the range of 4.8-30.5 μM. A comparison between the activities of the original peptides and their derivatives gives insight into the structural/functional role of their distinctive residues.

  20. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics

    PubMed Central

    Khan, Mohd Farhan; Ansari, Akhter H.; Hameedullah, M.; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A.; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-01-01

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm−1 to 525 cm−1. The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C–120 °C) and (240 °C–280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic. PMID:27349836

  1. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics.

    PubMed

    Khan, Mohd Farhan; Ansari, Akhter H; Hameedullah, M; Ahmad, Ejaz; Husain, Fohad Mabood; Zia, Qamar; Baig, Umair; Zaheer, Mohd Rehan; Alam, Mohammad Mezbaul; Khan, Abu Mustafa; AlOthman, Zeid A; Ahmad, Iqbal; Ashraf, Ghulam Md; Aliev, Gjumrakch

    2016-06-28

    The effect of mechanical stirring on sol-gel synthesis of thorn-like ZnO nanoparticles (ZnO-NPs) and antimicrobial activities is successfully reported in this study. The in-house synthesized nanoparticles were characterized by XRD, SEM, TEM, FTIR, TGA, DSC and UV-visible spectroscopy. The X-Ray Diffraction analysis revealed the wurtzite crystal lattice for ZnO-NPs with no impurities present. The diametric measurements of the synthesized thorn-like ZnO-NPs (morphology assessed by SEM) were well accounted to be less than 50 nm with the help of TEM. Relative decrease in aspect ratio was observed on increasing the agitation speed. The UV-visible spectroscopy showed the absorption peaks of the ZnO-NPs existed in both UVA and UVB region. A hypsochromic shift in λmax was observed when stirring pace was increased from 500 rpm to 2000 rpm. The FTIR spectroscopy showed the absorption bands of the stretching modes of Zn-O between 500 cm(-1) to 525 cm(-1). The Thermal analysis studies revealed better stability for ZnO-NPs prepared at 2000 rpm (ZnO-2000 rpm). TGA revealed the weight loss between two main temperatures ranges viz. around (90 °C-120 °C) and (240 °C-280 °C). Finally, the effect of ZnO-NPs prepared at different stirring conditions on the growth of Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) bacteria and a fungi (Candida albicans) were examined; which showed good antibacterial as well as antifungal properties. These findings introduce a simple, inexpensive process to synthesize ZnO-NPs using conventional methods without the use of sophisticated equipments and its application as a potent nano-antibiotic.

  2. A screening for antimicrobial activities of Caribbean herbal remedies

    PubMed Central

    2013-01-01

    Background The TRAMIL program aims to understand, validate and expand health practices based on the use of medicinal plants in the Caribbean, which is a “biodiversity hotspot” due to high species endemism, intense development pressure and habitat loss. The antibacterial activity was examined for thirteen plant species from several genera that were identified as a result of TRAMIL ethnopharmacological surveys or were reported in ethnobotanical accounts from Puerto Rico. The aim of this study was to validate the traditional use of these plant species for the treatment of bacterial infections, such as conjunctivitis, fever, otitis media and furuncles. Methods An agar disc diffusion assay was used to examine five bacterial strains that are associated with the reported infections, including Staphylococcus saprophyticus (ATCC 15305), S. aureus (ATCC 6341), Escherichia coli (ATCC 4157), Haemophilus influenzae (ATCC 8142), Pseudomonas aeruginosa (ATCC 7700) and Proteus vulgaris (ATCC 6896), as well as the fungus Candida albicans (ATCC 752). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were determined for each of the extracts that showed inhibitory activity. Results The decoctions of Pityrogramma calomelanos, Tapeinochilus ananassae, and Syzygium jambos, as well as the juice of Gossypium barbadense, showed > 20% growth inhibition against several bacteria relative to the positive control, which was the antibiotic Streptomycin. Extracts with the best antimicrobial activities were S. jambos that showed MIC = 31 μg/mL and MBC = 1.0 mg/mL against P. vulgaris and T. ananassae that showed MIC = 15 μg/mL against S. aureus. Conclusion This report confirms the traditional use of P. calomelanos for the treatment of kidney infections that are associated with stones, as well as the antimicrobial and bactericidal effects of T. ananassae against P. vulgaris and S. saprophyticus and the effects of S. jambos against S

  3. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrader extracts

    PubMed Central

    Luís, Ângelo; Breitenfeld, Luiza; Ferreira, Susana; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Background: Hakea sericea Schrader is an invasive shrub in Portuguese forests. Objective: The goal of this work was to evaluate the antimicrobial activity of H. sericea extracts against several strains of microorganisms, including the ability to inhibit the formation of biofilms. Additionally the cytotoxic properties of these extracts, against human cells, were assessed. Materials and Methods: The antimicrobial activity of the methanolic extracts of H. sericea was assessed by disk diffusion assay and Minimum Inhibitory Concentration (MIC) value determination. The antibiofilm activity was determined by quantification of total biofilm biomass with crystal violet. Cytotoxicity was evaluated by hemolysis assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Results: For Gram-positive bacteria, MIC values of H. sericea methanolic extracts ranged between 0.040 and 0.625 mg/mL, whereas the fruits extract yielded the lowest MIC for several strains of microorganisms, namely, S. aureus, B. cereus, L. monocytogenes and clinical methicillin-resistant S. aureus (MRSA). Stems and fruits extract at 2.5 mg/mL effectively eradicated the biofilm of S. aureus ATCC 25923, SA 01/10 and MRSA 12/10. Regarding leaves extract, hemolysis was not observed, and in the case of stems and fruits, hemolysis was verified only for higher concentrations, suggesting its low toxicity. Fruits extract presented no toxic effect to normal human dermal fibroblasts (NHDF) cells however for concentrations of 0.017 and 0.008 mg/mL this extract was able to decrease human breast adenocarcinoma cells (MCF-7) viability in about 60%, as MTT test results had confirmed. This is a clearly demonstrator of the cytotoxicity of this extract against MCF-7 cells. PMID:24914310

  4. Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities.

    PubMed

    Asraful Islam, Shah Md; Math, Renukaradhya K; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Kim, Eun Jin; Lee, Young Han; Yun, Han Dae

    2010-10-01

    Balloon flower (Platycodon grandiflorum) is widely cultivated vegetable and used as a remedy for asthma in East Asia. Experiments were conducted to isolate endophytic bacteria from 1-, 3-, and 6-year-old balloon flower roots and to analyze the enzymatic, antifungal, and anti-human pathogenic activities of the potential endophytic biocontrol agents obtained. Total 120 bacterial colonies were isolated from the interior of all balloon flower roots samples. Phylogenetic analysis based on 16S rRNA gene sequences showed that the population of 'low G + C gram-positive bacteria' (LGCGPB) gradually increased 60.0-80.0% from 1 to 6 years balloon flower sample. On the other hand, maximum hydrolytic enzyme activity showing endophytic bacteria was under LGCGPB, among the bacterial strains, Bacillus sp. (BF1-1 and BF3-8), Bacillus sp. (BF1-2 and BF3-5), and Bacillus sp. (BF1-3, BF3-6, and BF6-4) showed maximum enzyme activities. Besides, Bacillus licheniformis (BF3-5 and BF6-6) and Bacillus pumilus (BF6-1) showed maximum antifungal activity against Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum. Moreover, Bacillus licheniformis was found in 3 and 6 years balloon flower roots, but Bacillus pumilus was found only in 6 years sample. It is presumed that older balloon flower plants invite more potential antifungal endophytes for there protection from plant diseases. In addition, Bacillus sp. (BF1-2 and BF3-5) showed maximum anti-human pathogenic activity. So, plant age is presumed to influence diversity of balloon flower endophytic bacteria.

  5. Phytochemical screening and antimicrobial activity of Coccinia cordifolia L. plant.

    PubMed

    Khatun, Shahanaz; Pervin, Farzana; Karim, Mohammad Rezaul; Ashraduzzaman, Mohammad; Rosma, Ahmad

    2012-10-01

    The medicinal plant, Coccinia cordifolia L. was analyzed for its chemical composition. The antimicrobial activities of the methanol, water, ethanol and ethyl acetate extracts of Coccinia cordifolia L. plant were evaluated against some Gram positive bacteria (Sarcina lutea, Bacillus subtilis and Staphylococcus aureus), Gram negative bacteria (Salmonella typhi, Shigella dysenteriae and Escherichia coli) and fungi (Candida albicans, Aspergillus niger and Penicillium notatum). Chemical analysis showed that the plant is rich in nutrients, especially antioxidant compounds such as total phenol, vitamin C and β-carotene. Phytochemical screening showed that the methanolic extract contains the bioactive constituents such as tannins, saponins, phenols, flavonoids and terpenoids. In the methanolic extract of the plant, promising antimicrobial potential was observed against the tested microorganism. Methanolic extract showed highest activity against Shigella dysenteriae, Escherichia coli, Staphylococcus aureus, and Candida albicans compared to the other extracts. Water extract showed less antimicrobial activity as compared to other extractants.

  6. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  7. Chemical composition and antimicrobial activity of Polish herbhoneys.

    PubMed

    Isidorov, V A; Bagan, R; Bakier, S; Swiecicka, I

    2015-03-15

    The present study focuses on samples of Polish herbhoneys (HHs), their chemical composition and antimicrobial activity. A gas chromatography-mass spectrometry (GC-MS) method was used to analyse eight samples of herbal honeys and three samples of nectar honeys. Their antimicrobial activities were tested on selected Gram-positive (Bacillus cereus, Staphylococcus aureus, Staphylococcus schleiferi) and Gram-negative (Escherichia coli) bacteria, as well as on pathogenic fungi Candida albicans. Ether extracts of HHs showed significant differences in composition but the principal groups found in the extracts were phenolics and aliphatic hydroxy acids typical of royal jelly and unsaturated dicarboxylic acids. In spite of the differences in chemical composition, antimicrobial activity of the extracts of HHs against all the tested microorganisms except E. coli was observed.

  8. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles.

    PubMed

    Sim, Kyoung Mi; Kim, Kyung Hwan; Hwang, Gi Byoung; Seo, SungChul; Bae, Gwi-Nam; Jung, Jae Hee

    2014-09-15

    Activated carbon fiber (ACF) filters have a wide range of applications, including air purification, dehumidification, and water purification, due to their large specific surface area, high adsorption capacity and rate, and specific surface reactivity. However, when airborne microorganisms such as bacteria and fungi adhere to the carbon substrate, ACF filters can become a source of microbial contamination, and their filter efficacy declines. Antimicrobial treatments are a promising means of preventing ACF bio-contamination. In this study, we demonstrate the use of Sophora flavescens in antimicrobial nanoparticles coated onto ACF filters. The particles were prepared using an aerosol process consisting of nebulization-thermal drying and particle deposition. The extract from S. flavescens is an effective, natural antimicrobial agent that exhibits antibacterial activity against various pathogens. The efficiency of Staphylococcus epidermidis inactivation increased with the concentration of S. flavescens nanoparticles in the ACF filter coating. The gas adsorption efficiency of the coated antimicrobial ACF filters was also evaluated using toluene. The toluene-removal capacity of the ACF filters remained unchanged while the antimicrobial activity was over 90% for some nanoparticle concentrations. Our results provide a scientific basis for controlling both bioaerosol and gaseous pollutants using antimicrobial ACF filters coated with S. flavescens nanoparticles.

  9. Antimicrobial activity of some Clerodendrum species from Egypt.

    PubMed

    Abouzid, Sameh F; Wahba, Haytham M; Elshamy, Ali; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc; Shahat, Abdelaaty A

    2013-01-01

    Chloroformic and methanolic extracts of four Clerodendrum species cultivated in Egypt were screened for antimicrobial activities. Chloroformic extracts of the flowers of Clerodendrum chinense and Clerodendrum splendens were active against Plasmodium falciparum (IC50 < 10 µg mL(-1)). Chloroformic extracts of the stem and flowers of C. chinense were active against Trypanosoma cruzi (IC50 = 1.21 and 1.12 µg mL(-1), respectively) with marginal cytotoxicity. Chloroformic extracts of the leaves of C. chinense and C. splendens showed promising activities against T. cruzi (IC50 = 3.39 and 1.98 µg mL(-1), respectively) without cytotoxic effect on a human cell line. None of the selected plants showed significant activity against Gram-negative or Gram-positive bacteria or Candida albicans. Verbascoside, a phenyl propanoid glycoside isolated from the leaves of C. chinense, showed marginal activity against T. cruzi. Rengyolone, a cyclohexyl ethanoid isolated from the leaves of C. chinense, showed a broad but not specific activity against the tested organisms.

  10. Quaternary ammonium poly(diethylaminoethyl methacrylate) possessing antimicrobial activity.

    PubMed

    Farah, Shady; Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Beyth, Nurit; Domb, Abraham J

    2015-04-01

    Quaternary ammonium (QA) methacrylate monomers and polymers were synthesized from a N-alkylation of N,N-diethylaminoethyl methacrylate (DEAEM) monomer. Linear copolymers, and for the first time reported crosslinked nanoparticles (NPs), based QA-PDEAEM were prepared by radical polymerization of the quaternized QA-DEAEM monomers with either methyl methacrylate (MMA) or a divinyl monomer. QA-PDEAEM NPs of 50-70 nm were embedded in polyethylene vinyl acetate coating. QA-polymers with N-C8 and N-C18 alkyl chains and copolymers with methyl methacrylate were prepared at different molar ratios and examined for their antimicrobial effectiveness. These coatings exhibited strong antibacterial activity against four representative Gram-positive and Gram-negative bacteria.

  11. Comparison of antimicrobial activities of naphthoquinones from Impatiens balsamina.

    PubMed

    Sakunphueak, Athip; Panichayupakaranant, Pharkphoom

    2012-01-01

    Lawsone (1), lawsone methyl ether (2), and methylene-3,3'-bilawsone (3) are the main naphthoquinones in the leaf extracts of Impatiens balsamina L. (Balsaminaceae). Antimicrobial activities of these three naphthoquinones against dermatophyte fungi, yeast, aerobic bacteria and facultative anaerobic and anaerobic bacteria were evaluated by determination of minimal inhibitory concentrations (MICs) and minimal bactericidal or fungicidal concentrations (MBCs or MFCs) using a modified agar dilution method. Compound 2 showed the highest antimicrobial activity. It showed antifungal activity against dermatophyte fungi and Candida albicans with the MICs and MFCs in the ranges of 3.9-23.4 and 7.8-23.4 µg mL(-1), respectively, and also had some antibacterial activity against aerobic, facultative anaerobic and anaerobic bacteria with MICs in the range of 23.4-93.8, 31.2-62.5 and 125 µg mL(-1), respectively. Compound 1 showed only moderate antimicrobial activity against dermatophytes (MICs and MFCs in the ranges of 62.5-250 and 125-250 µg mL(-1), respectively), but had low potency against aerobic bacteria, and was not active against C. albicans and facultative anaerobic bacteria. In contrast, 3 showed significant antimicrobial activity only against Staphylococus epidermidis and Bacillus subtilis (MIC and MBC of 46.9 and 93.8 µg mL(-1), respectively).

  12. Synthesis and antimicrobial activity of gold/silver-tellurium nanostructures.

    PubMed

    Chang, Hsiang-Yu; Cang, Jinshun; Roy, Prathik; Chang, Huan-Tsung; Huang, Yi-Cheng; Huang, Chih-Ching

    2014-06-11

    Gold-tellurium nanostructures (Au-Te NSs), silver-tellurium nanostructures (Ag-Te NSs), and gold/silver-tellurium nanostructures (Au/Ag-Te NSs) have been prepared through galvanic reactions of tellurium nanotubes (Te NTs) with Au(3+), Ag(+), and both ions, respectively. Unlike the use of less environmentally friendly hydrazine, fructose as a reducing agent has been used to prepare Te NTs from TeO2 powders under alkaline conditions. The Au/Ag-Te NSs have highly catlaytic activity to convert nonfluorescent Amplex Red to form fluorescent product, revealing their great strength of generating reactive oxygen species (ROS). Au/Ag-Te NSs relative to the other two NSs exhibit greater antimicrobial activity toward the growth of E. coli, S. enteritidis, and S. aureus; the minimal inhibitory concentration (MIC) values of Au/Ag-Te NSs were much lower (>10-fold) than that of Ag-Te NSs and Au-Te NSs. The antibacterial activity of Au/Ag-Te NSs is mainly due to the release of Ag(+) ions and Te-related ions and also may be due to the generated ROS which destroys the bacteria membrane. In vitro cytotoxicity and hemolysis analyses have revealed their low toxicity in selected human cell lines and insignificant hemolysis in red blood cells. In addition, inhibition zone measurements using a Au/Ag-Te NSs-loaded konjac jelly film have suggested that it has great potential in practial application such as wound dressing for reducing bacterial wound infection. Having great antibacterial activitiy and excellent biocompatibility, the low-cost Au/Ag-Te NSs hold great potential as effective antimicrobial drugs.

  13. Study of the Antimicrobial Activity of Tilapia Piscidin 3 (TP3) and TP4 and Their Effects on Immune Functions in Hybrid Tilapia (Oreochromis spp.)

    PubMed Central

    Pan, Chieh-Yu; Tsai, Tsung-Yu; Su, Bor-Chyuan; Hui, Cho-Fat; Chen, Jyh-Yih

    2017-01-01

    To address the growing concern over antibiotic-resistant microbial infections in aquatic animals, we tested several promising alternative agents that have emerged as new drug candidates. Specifically, the tilapia piscidins are a group of peptides that possess antimicrobial, wound-healing, and antitumor functions. In this study, we focused on tilapia piscidin 3 (TP3) and TP4, which are peptides derived from Oreochromis niloticus, and investigated their inhibition of acute bacterial infections by infecting hybrid tilapia (Oreochromis spp.) with Vibrio vulnificus and evaluating the protective effects of pre-treating, co-treating, and post-treating fish with TP3 and TP4. In vivo experiments showed that co-treatment with V. vulnificus and TP3 (20 μg/fish) or TP4 (20 μg/fish) achieved 95.3% and 88.9% survival rates, respectively, after seven days. When we co-injected TP3 or TP4 and V. vulnificus into tilapia and then re-challenged the fish with V. vulnificus after 28 days, the tilapia exhibited survival rates of 35.6% and 42.2%, respectively. Pre-treatment with TP3 (30 μg/fish) or TP4 (20 μg/fish) for 30 minutes prior to V. vulnificus infection resulted in high survival rates of 28.9% and 37.8%, respectively, while post-treatment with TP3 (20 μg/fish or 30 μg/fish) or TP4 (20 μg/fish) 30 minutes after V. vulnificus infection yielded high survival rates of 33.3% and 48.9%. In summary, pre-treating, co-treating, and post-treating fish with TP3 or TP4 all effectively decreased the number of V. vulnificus bacteria and promoted significantly lower mortality rates in tilapia. The minimum inhibitory concentrations (MICs) of TP3 and TP4 that were effective for treating fish infected with V. vulnificus were 7.8 and 62.5 μg/ml, respectively, whereas the MICs of kanamycin and ampicillin were 31.2 and 3.91 μg/ml. The antimicrobial activity of these peptides was confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), both of which showed

  14. The effect of pH and chloride concentration on the stability and antimicrobial activity of chlorine-based sanitizers.

    PubMed

    Waters, Brian W; Hung, Yen-Con

    2014-04-01

    Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy.

  15. Antimicrobial activity of the Anseriform outer eggshell and cuticle.

    PubMed

    Wellman-Labadie, Olivier; Picman, Jaroslav; Hincke, Maxwell T

    2008-04-01

    The avian eggshell is a complex, multifunctional biomineral composed of a calcium carbonate mineral phase and an organic phase of lipids and proteins. The outermost layer of the eggshell, the eggshell cuticle, is an organic layer of variable thickness composed of polysaccharides, hydroxyapatite crystals, lipids and glycoprotein. In addition to regulating gas exchanges, the eggshell cuticle may contain antimicrobial elements. In this study, we investigated the antimicrobial activity of eggshell cuticle and outer eggshell protein extracts from four Anseriform species: wood duck (Aix sponsa), hooded merganser (Lophodytes cucullatus), Canada goose (Branta canadensis) and mute swan (Cygnus olor). Cuticle and outer eggshell protein was extracted by urea or HCl treatment of eggs. C-type lysozyme, ovotransferrin and an ovocalyxin-32-like protein were detected in all extracts. Cuticle and outer eggshell protein extracts inhibited the growth of Staphylococcus aureus, Escherichia coli D31, Pseudomonas aeruginosa and Bacillus subtilis. The presence of active antimicrobial proteins within the avian cuticle and outer eggshell suggests a role in antimicrobial defense. Protein extracts from the cavity nesting hooded merganser were especially potent. The unique environmental pressures exerted on cavity-nesting species may have led to the evolution of potent antimicrobial defenses.

  16. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  17. Screening of antimicrobial activity of Cistus ladanifer and Arbutus unedo extracts.

    PubMed

    Ferreira, S; Santos, J; Duarte, A; Duarte, A P; Queiroz, J A; Domingues, F C

    2012-01-01

    In this work, the in vitro antimicrobial activity of different crude extracts obtained from Cistus ladanifer L. and Arbutus unedo L. was investigated. The ethanol, methanol and acetone/water extracts of Cistus ladanifer and Arbutus unedo were prepared using different extraction methods and their antimicrobial activities against reference strains, including three Gram-positive, five Gram-negative and three yeasts, and against clinical isolates of Helicobacter pylori and methicillin-resistant Staphylococcus aureus, were investigated. All the extracts inhibited more than one microorganism; moreover all of them presented antimicrobial activity against the Gram-positive bacteria, Klebsiella pneumonia, Candida tropicalis and Helicobacter pylori. It is noteworthy that the most considerable in vitro effect was observed against Helicobacter pylori. These inhibitory effects can be considered relevant to the development of new agents for inclusion in the treatment or prevention of infections by the tested strains.

  18. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    PubMed

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  19. Antimicrobial activity of organically modified nano-clays.

    PubMed

    Hong, Seek-In; Rhim, Jong-Whan

    2008-11-01

    Antimicrobial activity of three kinds of commercially available montmorillonite nano-clays including a naturally occurring one (Cloisite Na+) and two organically modified ones (Cloisite 20A and Cloisite 30B) against four representative pathogenic bacteria (two Gram-positive ones such as Staphylococcus aureus and Listeria monocytogenes, and two Gram-negative ones such as Salmonella typhimurium and E. coli O157:H7) was investigated. Antimicrobial activity was found to be dependent on the type of nano-clay and microorganisms tested. Among the nano-clays tested, Cloisite 30B showed the highest antibacterial activity followed by Cloisite 20A, however, the unmodified montmorillonite (Cloisite Na+) did not show any antibacterial activity. Especially, Cloisite 30B inactivated Gram-positive bacteria completely within an hour of incubation and inactivated Gram-negative bacteria by more than 2-3 log cycles after 8 hours incubation. SEM and TEM images of cell structure indicated that the organically modified nano-clay caused rupture of cell membrane and inactivation of the bacteria. This finding of antimicrobial activity of the organo-clay would open a new opportunity to develop polymer nanocomposites with additional functionality, i.e., antimicrobial function.

  20. Inducible ASABF-type antimicrobial peptide from the sponge Suberites domuncula: microbicidal and hemolytic activity in vitro and toxic effect on molluscs in vivo.

    PubMed

    Wiens, Matthias; Schröder, Heinz C; Korzhev, Michael; Wang, Xiao-Hong; Batel, Renato; Müller, Werner E G

    2011-01-01

    Since sponges, as typical filter-feeders, are exposed to a high load of attacking prokaryotic and eukaryotic organisms, they are armed with a wide arsenal of antimicrobial/cytostatic low-molecular-weight, non-proteinaceous bioactive compounds. Here we present the first sponge agent belonging to the group of ASABF-type antimicrobial peptides. The ASABF gene was identified and cloned from the demosponge Suberites domuncula. The mature peptide, with a length of 64 aa residues has a predicted pI of 9.24, and comprises the characteristic CSα β structural motif. Consequently, the S. domuncula ASABF shares high similarity with the nematode ASABFs; it is distantly related to the defensins. The recombinant peptide was found to display besides microbicidal activity, anti-fungal activity. In addition, the peptide lyses human erythrocytes. The expression of ASABF is upregulated after exposure to the apoptosis-inducing agent 2,2'-dipyridyl. During the process of apoptosis of surface tissue of S. domuncula, grazing gastropods (Bittium sp.) are attracted by quinolinic acid which is synthesized through the kynurenine pathway by the enzyme 3-hydroxyanthranilate 3,4-dioxygenase (HAD). Finally, the gastropods are repelled from the sponge tissue by the ASABF. It is shown that the effector peptide ASABF is sequentially expressed after the induction of the HAD gene and a caspase, as a central enzyme executing apoptosis.

  1. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  2. Antimicrobial Activity of Bacteriocins and Their Applications

    NASA Astrophysics Data System (ADS)

    Drosinos, Eleftherios H.; Mataragas, Marios; Paramithiotis, Spiros

    Bacteriocins are peptides or proteins that exert an antimicrobial action against a range of microorganisms. Their production can be related to the antagonism within a certain ecological niche, as the producer strain, being itself immune to its action, generally gains a competitive advantage. Many Gram-positive and Gram-negative microorganisms have been found to produce bacteriocins. The former, and especially the ones produced by lactic acid bacteria, has been the field of intensive research during the last decades mainly due to their properties that account for their suitability in food preservation and the benefits arising from that, and secondarily due to the broader inhibitory spectrum compared to the ones produced by Gramnegative microorganisms.

  3. Structure--Antimicrobial Activity Relationship Comparing a New Class of Antimicrobials, Silanols, to Alcohols and Phenols

    DTIC Science & Technology

    2006-04-01

    Hoekman D, Leo A, Zhang LT, Li P, "The Expanding Role of Quantitative Structure–Activity Relationships ( QSAR ) in Toxicology ." Toxicol Lett 1995; 79: 45...partition coefficients (log P) and H-bond acidities (Continued on p. ii) Antimicrobial, Bacteria, Gram-negative, Gram-positive, QSAR , silanol U U U UU...Med Chem 1968; 11: 430–441. [9] Kubinyi H, QSAR : Hansch Analysis and Related Approaches. New York: VCH Publishers, 1993. [10] Kim Y, Farrah S

  4. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  5. Antimicrobial activity of plant compounds against Salmonella Typhimurium DT104 in ground pork and the influence of heat and storage on the antimicrobial activity.

    PubMed

    Chen, Cynthia H; Ravishankar, Sadhana; Marchello, John; Friedman, Mendel

    2013-07-01

    Salmonella enterica is a predominant foodborne pathogen that causes diarrheal illness worldwide. A potential method of inhibiting pathogenic bacterial growth in meat is through the introduction of plant-derived antimicrobials. The objectives of this study were to investigate the influence of heat (70°C for 5 min) and subsequent cold storage (4°C up to 7 days) on the effectiveness of oregano and cinnamon essential oils and powdered olive and apple extracts against Salmonella enterica serovar Typhimurium DT104 in ground pork and to evaluate the activity of the most effective antimicrobials (cinnamon oil and olive extract) at higher concentrations in heated ground pork. The surviving Salmonella populations in two groups (heated and unheated) of antimicrobial-treated pork were compared. Higher concentrations of the most effective compounds were then tested (cinnamon oil at 0.5 to 1.0% and olive extract at 3, 4, and 5%) against Salmonella Typhimurium in heated ground pork. Samples were stored at 4°C and taken on days 0, 3, 5, and 7 for enumeration of survivors. The heating process did not affect the activity of antimicrobials. Significant 1.3- and 3-log reductions were observed with 1.0% cinnamon oil and 5% olive extract, respectively, on day 7. The minimum concentration required to achieve . 1-log reduction in Salmonella population was 0.8% cinnamon oil or 4% olive extract. The results demonstrate the effectiveness of these antimicrobials against multidrug-resistant Salmonella Typhimurium in ground pork and their stability during heating and cold storage. The most active formulations have the potential to enhance the microbial safety of ground pork.

  6. Radical scavenging, antioxidant and antimicrobial activities of halophytic species.

    PubMed

    Meot-Duros, Laetitia; Le Floch, Gaëtan; Magné, Christian

    2008-03-05

    For the first time, both antioxidant and antimicrobial activities are simultaneously reported in halophytic plants, particularly on polar fractions. Chloroformic and methanolic extracts of the halophytes Eryngium maritimum L., Crithmum maritimum L. and Cakile maritima Scop. were tested for their antimicrobial activities against 12 bacterial and yeast strains. In addition, radical scavenging and antioxidant activities were assessed, as well as total phenol contents. Only one bacterial strain (Listeria monocytogenes) was not inhibited by plants extracts, and apolar (chloroformic) fractions were generally more active than polar (methanolic) ones. Eryngium maritimum presented the weakest radical scavenging activity (ABTS IC(50)=0.28 mg ml(-1)), as well as the lowest total phenol content (16.4 mg GAE g(-1) DW). However, the three halophytic species had relatively strong total antioxidant activities (from 32.7 to 48.6 mg ascorbate equivalents g (-1) DW). Consequences on the potential use of these plants in food or cosmetic industry are discussed.

  7. Motualevic Acids and Analogs: Synthesis and Antimicrobial Structure Activity Relationships

    PubMed Central

    Cheruku, Pradeep; Keffer, Jessica L.; Dogo-Isonagie, Cajetan; Bewley, Carole A.

    2010-01-01

    Synthesis of the marine natural products motualevic acids A, E, and analogs in which modifications have been made to the ω-brominated lipid (E)-14,14-dibromotetra-deca-2,13-dienoic acid or amino acid unit are reported, together with antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Enterococcus faecium, and vancomycin-resistant Enterococcus. PMID:20538459

  8. Thymus vulgaris essential oil: chemical composition and antimicrobial activity.

    PubMed

    Borugă, O; Jianu, C; Mişcă, C; Goleţ, I; Gruia, A T; Horhat, F G

    2014-01-01

    The study was designed to determine the chemical composition and antimicrobial properties of the essential oil of Thymus vulgaris cultivated in Romania. The essential oil was isolated in a yield of 1.25% by steam distillation from the aerial part of the plant and subsequently analyzed by GC-MS. The major components were p-cymene (8.41%), γ-terpinene (30.90%) and thymol (47.59%). Its antimicrobial activity was evaluated on 7 common food-related bacteria and fungus by using the disk diffusion method. The results demonstrate that the Thymus vulgaris essential oil tested possesses strong antimicrobial properties, and may in the future represent a new source of natural antiseptics with applications in the pharmaceutical and food industry.

  9. Immunomodulatory effects of anti-microbial peptides.

    PubMed

    Otvos, Laszlo

    2016-09-01

    Anti-microbial peptides (AMPs) were originally thought to exert protecting actions against bacterial infection by disintegrating bacterial membranes. Upon identification of internal bacterial targets, the view changed and moved toward inhibition of prokaryote-specific biochemical processes. However, the level of none of these activities can explain the robust efficacy of some of these peptides in animal models of systemic and cutaneous infections. A rapidly growing panel of reports suggests that AMPs, now called host-defense peptides (HDPs), act through activating the immune system of the host. This includes recruitment and activation of macrophages and mast cells, inducing chemokine production and altering NF-κB signaling processes. As a result, both pro- and anti-inflammatory responses are elevated together with activation of innate and adaptive immunity mechanisms, wound healing, and apoptosis. HDPs sterilize the systemic circulation and local injury sites significantly more efficiently than pure single-endpoint in vitro microbiological or biochemical data would suggest and actively aid recovering from tissue damage after or even without bacterial infections. However, the multiple and, often opposing, immunomodulatory functions of HDPs require exceptional care in therapeutic considerations.

  10. Phytochemical screening and in vitro antimicrobial activity of Thymus lanceolatus Desf. from Algeria

    PubMed Central

    Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad

    2013-01-01

    Objective To investigate the antimicrobial activity of an endemic Thyme, Thymus lanceolatus (T. lanceolatus), against a large number of pathogens. Methods Four solvent extracts were evaluated for antimicrobial activity using disc diffusion method and MIC determination on twenty-one strains. Results T. lanceolatus extracts showed a broad-spectrum antimicrobial activity, especially ethanol extract with inhibition zone diameters ranging from 14 to 32 mm, and MIC values from 0.052 to 0.500 mg/mL. Chloroform extract was more active against Gram-positive bacteria, since it has an inhibitory potency on Staphylococcus aureus and Enterococcus faecalis at only 31 µg/mL. While, hexane and water extracts were less effective since they were inactive against several strains. Conclusions The findings of this study indicate that T. lanceolatus has a strong antimicrobial potential, which justifies its use in folk medicine for treatment of infectious diseases. Since this species is poorly investigated, further refined studies on it pure secondary metabolites are needed and very important, in the perspective to identify new antimicrobial molecules from this endemic plant.

  11. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity.

    PubMed

    Xu, Shuo; Shang, Ming-Ying; Liu, Guang-Xue; Xu, Feng; Wang, Xuan; Shou, Cheng-Chao; Cai, Shao-Qing

    2013-05-08

    Six new phenolic compounds, named smiglabrone A (1), smiglabrone B (2), smilachromanone (3), smiglastilbene (4), smiglactone (5), smiglabrol (6), together with fifty-seven known ones 7-63 were isolated from the rhizomes of Smilax glabra. Their structures were elucidated on the basis of extensive spectroscopic analyses, as well as by comparison with literature data. Twenty-seven of these compounds were obtained from and identified in the genus Smilax for the first time. The absolute configuration of (2S)-1,2-O-di-trans-p-coumaroylglycerol (43) was determined for the first time using the exciton-coupled circular dichroism (ECCD) method. Thirty isolated compounds were evaluated for their antimicrobial activity against three Gram-negative bacteria, three Gram-positive bacteria and one fungus, and the corresponding structure-activity relationships were also discussed. Eighteen compounds were found to be antimicrobial against the microorganisms tested and the minimum inhibitory concentrations (MIC) were in the range of 0.0794-3.09 mM. Among them, compound 1 showed antimicrobial activity against Canidia albicans with MIC value of 0.146 mM, which was stronger than cinchonain Ia with an MIC of 0.332 mM. Compounds 3 and 4 exhibited inhibitory activity against Staphylococcus aureus with MIC values of 0.303 and 0.205 mM, respectively. The results indicated that these antimicrobial constituents of this crude drug might be responsible for its clinical antimicrobial effect.

  12. In vitro antimicrobial activity of five essential oils on multidrug resistant Gram-negative clinical isolates

    PubMed Central

    Sakkas, Hercules; Gousia, Panagiota; Economou, Vangelis; Sakkas, Vassilios; Petsios, Stefanos; Papadopoulou, Chrissanthy

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneumoniae (n = 7), and Pseudomonas aeruginosa (n = 5) using the broth macrodilution method. Results: The tested essential oils produced variable antibacterial effect, while Chamomile blue oil demonstrated no antibacterial activity. Origanum, Thyme, and Basil oils were ineffective on P. aeruginosa isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values ranged from 0.12% to 1.50% (v/v) for tea tree oil, 0.25-4% (v/v) for origanum and thyme oil, 0.50% to >4% for basil oil and >4% for chamomile blue oil. Compared to literature data on reference strains, the reported MIC values were different by 2SD, denoting less successful antimicrobial activity against multidrug resistant isolates. Conclusions: The antimicrobial activities of the essential oils are influenced by the strain origin (wild, reference, drug sensitive, or resistant) and it should be taken into consideration whenever investigating the plants’ potential for developing new antimicrobials. PMID:27366345

  13. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens.

    PubMed

    Namkung, H; Yu, H; Gong, J; Leeson, S

    2011-10-01

    The antimicrobial activities of n-butyric acid and its derivatives against Salmonella Typhimurium and Clostridium perfringens were studied. n-Butyric acid and its derivatives (monobutyrin and a mixture of mono-, di-, and tri-glycerides of butyric acid) were added at different concentrations (ranging from 250 to 7,000 mg/kg to a media inoculated with either Salmonella Typhimurium or C. perfringens. The antimicrobial activity of butyric acid against C. perfringens was measured at 2 bacterium concentrations and 2 inoculations involving ambient aerobic or anaerobic conditions. The most effective antimicrobial activity for Salmonella Typhimurium was observed with n-butyric acid, with 90% inhibition rate at a concentration of 1,500 mg/kg. Although minimal inhibition for Salmonella Typhimurium was observed with butyric acid glycerides, lipase addition to a mixture of mono-, di-, and triglycerides of butyric acid increased (P < 0.01) antimicrobial activity of these derivatives. Antimicrobial activity of butyric acid and its derivative against C. perfringens was higher when using a moderate initial inoculation concentration (10(5)) compared with a higher initial concentration (10(7)) of this bacterium. At a lower inoculation of C. perfringens (10(5)), >90% inhibition rate by all butyric acid glycerides was observed with prior aerobic inoculation at 2,000 mg/kg, whereas using anaerobic inoculation, only 50% monobutyrin maintained >90% inhibitory effect at 3,000 mg/kg. The antimicrobial effect of monobutyrin against C. perfringens was generally higher (P < 0.01) for 50% monobutyrin than for 100% monobutyrin. Either a mixture of butyric acid derivatives or 50% monobutyrin decreased (P < 0.01) C. perfringens in a media containing intestinal contents whereas only 50% monobutyrin decreased (P < 0.01) Salmonella Typhimurium within a media containing cecal contents from mature Leghorns. These results show that n-butyric acid and 50% monobutyrin could be used to control Salmonella

  14. Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria

    PubMed Central

    Kraszewska, Joanna; Beckett, Michael C.; James, Tharappel C.

    2016-01-01

    ABSTRACT Antimicrobial peptides offer potential as novel therapeutics to combat food spoilage and poisoning caused by pathogenic and nonpathogenic bacteria. Our previous studies identified the peptide human beta-defensin 3 (HBD3) as a potent antimicrobial agent against a wide range of beer-spoiling bacteria. Thus, HBD3 is an excellent candidate for development as an additive to prevent food and beverage spoilage. To expand the repertoire of peptides with antimicrobial activity against bacteria associated with food spoilage and/or food poisoning, we carried out an in silico discovery pipeline to identify peptides with structure and activity similar to those of HBD3, focusing on peptides of plant origin. Using a standardized assay, we compared the antimicrobial activities of nine defensin-like plant peptides to the activity of HBD3. Only two of the peptides, fabatin-2 and Cp-thionin-2, displayed antimicrobial activity; however, the peptides differed from HBD3 in being sensitive to salt and were thermostable. We also compared the activities of several ultrashort peptides to that of HBD3. One of the peptides, the synthetic tetrapeptide O3TR, displayed biphasic antimicrobial activity but had a narrower host range than HBD3. Finally, to determine if the peptides might act in concert to improve antimicrobial activity, we compared the activities of the peptides in pairwise combinations. The plant defensin-like peptides fabatin-2 and Cp-thionin-2 displayed a synergistic effect with HBD3, while O3TR was antagonistic. Thus, some plant defensin-like peptides are effective antimicrobials and may act in concert with HBD3 to control bacteria associated with food spoilage and food poisoning. IMPORTANCE Food spoilage and food poisoning caused by bacteria can have major health and economic implications for human society. With the rise in resistance to conventional antibiotics, there is a need to identify new antimicrobials to combat these outbreaks in our food supply. Here we

  15. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  16. In-silico docking based design and synthesis of [1H,3H] imidazo[4,5-b] pyridines as lumazine synthase inhibitors for their effective antimicrobial activity

    PubMed Central

    Harer, Sunil L.; Bhatia, Manish S.

    2014-01-01

    Purpose: The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Materials and Methods: Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Results and Discussion: Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R’ = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2nd position of imidazole. PMID:25400412

  17. Antimicrobial activity in the cuticle of the American lobster, Homarus americanus.

    PubMed

    Mars Brisbin, Margaret; McElroy, Anne E; Pales Espinosa, Emmanuelle; Allam, Bassem

    2015-06-01

    American lobster, Homarus americanus, continues to be an ecologically and socioeconomically important species despite a severe decline in catches from Southern New England and Long Island Sound (USA) and a high prevalence of epizootic shell disease in these populations. A better understanding of lobster immune defenses remains necessary. Cuticle material collected from Long Island Sound lobsters was found to be active against a broad spectrum of bacteria, including Gram-negative and -positive species. The antimicrobial activity was characterized by boiling, muffling, and size fractioning. Boiling did not significantly reduce activity, while muffling did have a significant effect, suggesting that the active component is organic and heat stable. Size fractioning with 3 and 10 kDa filters did not significantly affect activity. Fast protein liquid chromatography fractions were also tested for antimicrobial activity, and fractions exhibiting protein peaks remained active. MALDI mass spectrometry revealed peptide peaks at 1.6, 2.8, 4.6, and 5.6 kDa. The data presented suggest that one or several antimicrobial peptides contribute to antimicrobial activity present in the American lobster cuticle.

  18. Study of the nanomaterials and their antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Ramadi, Muntaha

    In the last decade, the world faced huge problems associated with the spread of antimicrobial resistant infections that are essentially untreatable such as methicillin resistant Staphylococcus aureus (MRSA) infection. These infections have begun to occur in both hospital and community environments. Developing new antimicrobial surface coatings can hold a great promise to minimize and control various problems that associated with the spreading of infections and biofilms formation, these coatings can be used in medicine where medical devices associated with severe infections, in construction industry and the in food packaging industry. It has been established that single-walled CNTs exhibit a strong antimicrobial activity and can pierce bacterial cell walls. Recently, nanomaterial structures that made from pure carbon such as CNTs have been seen as promising candidates for many potential applications in Biotechnology and bioscience due to the combination of their extraordinary properties that arise from surface area, light weight, strength, flexibility, unique electrical conductivity and many more novel physical and chemical properties at nanoscale level. CNTs have been used widely in biomedical field including drug delivery, gene therapy and creating new biomedical devices with novel properties. Researchers have now made a first step to add carbon nanotubes to antimicrobial agents list. There are two types of CNTs have been used in biomedical research. The first one is a single-walled carbon nanotube (SWNT) and the second is a multi-walled carbon nanotube (MWNT). Recent in vitro studies suggest that carbon nanotubes have antimicrobial activity and coating CNTs with nickel nanoparticle could enhance the antimicrobial activity of cabon nanotubes. In order to test this hypothesis, nickel nanoparticles were deposited on carbon nanotubes (CNTs) by electrochemical deposition. The carbon nanotubes used in this study were XD-CNTs, SWNTs and Ni-coated CNTs. The structure and

  19. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  20. Antimicrobial and antiproliferative activity of Peucedanum nebrodense (Guss.) Strohl.

    PubMed

    Schillaci, D; Venturella, F; Venuti, F; Plescia, F

    2003-07-01

    Acetone extract of Peucedanum nebrodense (Guss.) Strohl., a rare endemic species from the Madonie mountains (Sicily), was tested in vitro for its antimicrobial activity against bacterial reference strains and antiproliferative activity against K562 (human chronic myelogenous leukemia), HL-60 (human leukemia) and L1210 (murine leukemia) cell lines. The acetone extract showed antiproliferative IC50 values in the range of 14-0.27 microg/ml.

  1. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    PubMed Central

    Rodriguez-Garcia, A.; Peixoto, I. T. A.; Verde-Star, M. J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A. L. T. G.

    2015-01-01

    Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention. PMID:26451151

  2. Antioxidant, Antimicrobial Activity and Toxicity Test of Pilea microphylla

    PubMed Central

    Modarresi Chahardehi, Amir; Ibrahim, Darah; Fariza Sulaiman, Shaida

    2010-01-01

    A total of 9 plant extracts were tested, using two different kinds of extracting methods to evaluate the antioxidant and antimicrobial activities from Pilea microphylla (Urticaceae family) and including toxicity test. Antioxidant activity were tested by using DPPH free radical scavenging, also total phenolic contents and total flavonoid contents were determined. Toxicity assay carried out by using brine shrimps. Methanol extract of method I (ME I) showed the highest antioxidant activity at 69.51 ± 1.03. Chloroform extract of method I (CE I) showed the highest total phenolic contents at 72.10 ± 0.71 and chloroform extract of method II (CE II) showed the highest total flavonoid contents at 60.14 ± 0.33. The antimicrobial activity of Pilea microphylla extract was tested in vitro by using disc diffusion method and minimum inhibitory concentration (MIC). The Pilea microphylla extract showed antibacterial activity against some Gram negative and positive bacteria. The extracts did not exhibit antifungal and antiyeast activity. The hexane extract of method I (HE I) was not toxic against brine shrimp (LC50 value was 3880 μg/ml). Therefore, the extracts could be suitable as antimicrobial and antioxidative agents in food industry. PMID:20652052

  3. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  4. Antimicrobial activity of Amazon Astrocaryum aculeatum extracts and its association to oxidative metabolism.

    PubMed

    Jobim, Micheli Lamberti; Santos, Roberto Christ Vianna; dos Santos Alves, Camilla Filippi; Oliveira, Raul Moreira; Mostardeiro, Clarice Pinheiro; Sagrillo, Michele Rorato; de Souza Filho, Olmiro Cezimbra; Garcia, Luiz Filipe Machado; Manica-Cattani, Maria Fernanda; Ribeiro, Euler Esteves; da Cruz, Ivana Beatrice Mânica

    2014-04-01

    Several compounds present in fruits as polyphenols are able to kill or inhibit the growth of microorganisms. These proprieties are relevant mainly in tropical areas, as Amazonian region where infectious are highly prevalent. Therefore, this study investigated the antimicrobial activity of tucumã Amazonian fruit against 37 microorganisms. The potential role of oxidative metabolism imbalance was also studied as causal mechanism of antimicrobial activity. The results showed antibacterial effect of pulp and peel tucumã hydro-alcoholic extracts on three Gram-positive bacteria (Enterococcus faecalis, Bacillus cereus, Listeria monocytogenes) and antifungal effect against Candida albicans. The antimicrobial contribution of main chemical compounds (quercetin, rutin, β-carotene and gallic, caffeic and chlorogenic acids) found in tucumã extracts was also investigated showing an inhibitory effect depending of the organism mainly by quercetin in bacteria and rutin in C. albicans. Analysis of kinetic of DNA releasing in extracellular medium by fluorescence using DNA Pico Green assay(®) and reactive oxygen species production (ROS) showed potential oxidative imbalance contribution on tucumã inhibitory effect. In B. cereus and C. albicans this effect was clear since after 24h the ROS levels were higher when compared to negative control group. In conclusion, tucumã extracts present antimicrobial activity to four microorganisms that have large problems of drug resistance, and the possible mechanism of action of this Amazon fruit is related to REDOX imbalance.

  5. In-vitro Antimicrobial Activities of Some Iranian Conifers

    PubMed Central

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods. PMID:24250573

  6. In-vitro Antimicrobial Activities of Some Iranian Conifers.

    PubMed

    Afsharzadeh, Maryam; Naderinasab, Mahboobe; Tayarani Najaran, Zahra; Barzin, Mohammad; Emami, Seyed Ahmad

    2013-01-01

    Male and female leaves and fruits of eleven different taxons of Iranian conifers (Cupressus sempervirens var. horizontalis, C. sempervirens var. sempervirens, C. sempervirens cv. Cereifeormis, Juniperus communis subsp. hemisphaerica, J. excelsa subsp. excelsa, J. excelsa subsp. polycarpos, J. foetidissima, J. oblonga, J. sabina, Platycladus orientalis and Taxus baccata) were collected from different localities of Iran, dried and extracted with methanol. The extracts were tested for their antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. The extracts were screened qualitatively using four different methods, the disc diffusion, hole plate, cylinder agar diffusion and agar dilution methods, whereas the minimum inhibitory concentrations (MIC) of each extract were determined by the agar dilution method. The best result was obtained by means of hole plate method in qualitative determination of antimicrobial activities of extracts and the greatest activity was found against S. aureus in all tested methods.

  7. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin.

    PubMed

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose-response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity.

  8. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin

    PubMed Central

    Galdiero, Emilia; Siciliano, Antonietta; Maselli, Valeria; Gesuele, Renato; Guida, Marco; Fulgione, Domenico; Galdiero, Stefania; Lombardi, Lucia; Falanga, Annarita

    2016-01-01

    This study attempts to evaluate the antimicrobial activity and the ecotoxicity of quantum dots (QDs) alone and coated with indolicidin. To meet this objective, we tested the level of antimicrobial activity on Gram-positive and Gram-negative bacteria, and we designed an ecotoxicological battery of test systems and indicators able to detect different effects using a variety of end points. The antibacterial activity was analyzed against Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (ATCC 1025), Escherichia coli (ATCC 11229), and Klebsiella pneumoniae (ATCC 10031), and the results showed an improved germicidal action of QDs-Ind. Toxicity studies on Daphnia magna indicated a decrease in toxicity for QDs-Ind compared to QDs alone, lack of bioluminescence inhibition on Vibrio fisheri, and no mutations in Salmonella typhimurium TA 100. The comet assay and oxidative stress experiments performed on D. magna showed a genotoxic and an oxidative damage with a dose–response trend. Indolicidin retained its activity when bound to QDs. We observed an enhanced activity for QDs-Ind. The presence of indolicidin on the surface of QDs was able to decrease its QDs toxicity. PMID:27616887

  9. Constituents of Peucedanum zenkeri seeds and their antimicrobial effects.

    PubMed

    Ngwendson, J Ngunde; Bedir, E; Efange, S M N; Okunji, C O; Iwu, M M; Schuster, B G; Khan, I A

    2003-08-01

    The methanol extract of Peucedanum zenkeri L. seeds showed antimicrobial activity which is concentrated in the n-hexane fraction. Bioactivity-guided chromatographic fractionation of the seeds of P. zenkeri led to the isolation and characterization of five major coumarins, umbelliprenin, imperatorin, bergapten, isopimpinellin and byakangelicin, as well as two minor coumarins, 7-methoxy coumarin and 5-hydroxy-8-methoxy psoralen. Amongst the isolated compounds only imperatorin, bergapten and isopimpinellin were found to possess anti-microbial activity.

  10. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates.

    PubMed

    Dufour, Virginie; Alazzam, Bachar; Ermel, Gwennola; Thepaut, Marion; Rossero, Albert; Tresse, Odile; Baysse, Christine

    2012-01-01

    Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes. We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC), and benzyl isothiocyanate (BITC), against 24 C. jejuni isolates from chicken feces, human infections, and contaminated foods, as well as two reference strains NCTC11168 and 81-176. AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 1.25-5 μg mL(-1)) compared to AITC (MIC of 50-200 μg mL(-1)). Both compounds are bactericidal rather than bacteriostatic. The sensitivity levels of C. jejuni isolates against isothiocyanates were neither correlated with the presence of a GGT (γ-Glutamyl Transpeptidase) encoding gene in the genome, with antibiotic resistance nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to wild-type when exposed to ITC. This work determined the MIC of two ITC against a panel of C. jejuni isolates, showed that both compounds are bactericidal rather than bacteriostatic, and highlighted the role of GGT enzyme in the survival rate of C. jejuni exposed to ITC.

  11. Synthesis and Antimicrobial Activity of 9-O-Substituted Palmatine Derivatives

    PubMed Central

    Li, Z. C.; Kong, X. B.; Mai, W. P.; Sun, G. C.; Zhao, S. Z.

    2015-01-01

    A series of new palmatine derivatives with alkyl or alkyl with N-heterocyclic structures were designed and synthesized at C-9-O according to the principle of association. These compounds were characterised by 1H NMR, 13C NMR, ESI-MS and elemental analysis, and tested for their antimicrobial activity in vitro to evaluate structure-activity relationships. The results indicated that 9-O-substituted palmatine derivatives exhibit varying degrees of antimicrobial activity. Antibacterial activities of compounds (3a-f) against Gram +ve bacteria increased 2- to 64-fold than that of palmatine. The compounds (3a-f) possessed relatively weaker inhibitory effects against Gram −ve bacteria and fungi than that against Gram +ve bacteria. Antimicrobial activities of compounds (5a-e) are lower than that of compounds (3a-f). Compound 3d showed the highest antimicrobial activity of all the compounds. The LD50 values of compounds (3a-f) decreased as the alkyl side chain was elongated. Compound 3f showed least toxicity. PMID:26009653

  12. Antimicrobial activity of essences from labiates.

    PubMed

    Larrondo, J V; Agut, M; Calvo-Torras, M A

    1995-01-01

    Bacteria, filamentous fungi and yeasts were subjected to the action of Lavandula officinalis, Melissa officinalis and Rosmarinus officinalis essences in a steam phase, using a microatmospheric technique. Due to the methodology employed, L. officinalis essence was more active in filamentous fungi than the other essential oils studied. All three essences possessed a similar degree of activity against the micro-organisms tested, though a relatively higher activity was seen in the case of M. officinalis.

  13. Antimicrobial activity of essential oil components against potential food spoilage microorganisms.

    PubMed

    Klein, G; Rüben, C; Upmann, M

    2013-08-01

    The antimicrobial activity of six essential oil components against the potential food spoilage bacteria Aeromonas (A.) hydrophila, Escherichia (E.) coli, Brochothrix (B.) thermosphacta, and Pseudomonas (P.) fragi at single use and in combination with each other was investigated. At single use, the most effective oil components were thymol (bacteriostatic effect starting from 40 ppm, bactericidal effect with 100 ppm) and carvacrol (50 ppm/100 ppm), followed by linalool (180 ppm/720 ppm), α-pinene (400 ppm/no bactericidal effect), 1,8-cineol (1,400 ppm/2,800 ppm), and α-terpineol (600 ppm/no bactericidal effect). Antimicrobial effects occurred only at high, sensorial not acceptable concentrations. The most susceptible bacterium was A. hydrophila, followed by B. thermosphacta and E. coli. Most of the essential oil component combinations tested showed a higher antimicrobial effect than tested at single use. Antagonistic antimicrobial effects were observed particularly against B. thermosphacta, rarely against A. hydrophila. The results show that the concentration of at least one of the components necessary for an antibacterial effect is higher than sensorial acceptable. So the use of herbs with a high content of thymol, carvacrol, linalool, 1,8-cineol, α-pinene or α-terpineol alone or in combination must be weighted against sensorial quality.

  14. [Antimicrobial activity of Actinomycetale isolated from the lagoon in Algeria].

    PubMed

    Alliouch-Kerboua, Chérifa; Gacemi Kirane, Djamila; La Scola, Bernard

    2015-01-01

    In the aim of the study of the taxonomy and the antimicrobial activity, a strain of actinomycete SM2/2GF which was isolated from sediment of the lagoon El-Mellah which is situated in the city of El-Kala in the Northeast of Algeria, was tested against diverse pathogenic microorganisms and against a Gram-negative bacterium Pseudomonas alcaliphila which was isolated from water of the lagoon El-Mellah. The phenotypic and the molecular characteristics show that the isolate SM2/2GF belongs to the kind Streptomyces. This strain showed an antimicrobial activity against a Gram-negative bacterium Pseudomonas alcaliphila and the positive-Gram bacteria as Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus subtilis, Enterococcus faecalis, as well as the yeast Candida albicans. It has no activity against Pseudomonas aeruginosa. The interesting antimicrobial activity of the strain SM2/2GF against the pathogenic microorganisms could encourage further researches on one or several bioactive molecules which it secretes.

  15. Trigona laeviceps propolis from Thailand: antimicrobial, antiproliferative and cytotoxic activities.

    PubMed

    Umthong, Supawadee; Puthong, Songchan; Chanchao, Chanpen

    2009-01-01

    Propolis is one of the natural bee products which has long been used as a crude preventative and prophylactic medicine, and has been reported to possess antibacterial, antiviral, anti-inflammatory, antioxidative and anticancer properties. Propolis of the stingless bee, Trigona laeviceps, was extracted by water or methanol at 35% (w/v) yielding a crude water or a methanolic extract at 60 and 80 mg/ml, respectively, which is 17.1 and 22.9% (w/w) of the total propolis, respectively. The antimicrobial activity of both crude extracts was assayed on four selected pathogenic microbes by using the agar well diffusion method. The results suggested that both water and methanolic crude extracts have some antimicrobial activities, water extract has greater antimicrobial activity than methanolic extract. The relative order of sensitivity of the four microbes were, however, the same between the two extracts from the most to least sensitive, S. aureus > E. coli > C. albicans > A. niger, with indeed no observed growth inhibition of A. niger at all. Antiproliferative and cytotoxic affects were tested on the colon carcinoma cell line, SW620, using the three parameters: (1) MTT assay; (2) cell morphology; and (3) the fragmentation of genomic DNA. The water extract of propolis showed a higher antiproliferative activity than that of methanolic extract to SW620 cells, additionally both appeared to cause cell death by necrosis.

  16. Activities of Antimicrobial Agents against Intracellular Pneumococci

    PubMed Central

    Mandell, Gerald L.; Coleman, Elizabeth J.

    2000-01-01

    Pneumococci can enter and survive inside human lung alveolar carcinoma cells. We examined the activity of azithromycin, gentamicin, levofloxacin, moxifloxacin, penicillin G, rifampin, telithromycin, and trovafloxacin against pneumococci inside and outside cells. We found that moxifloxacin, trovafloxacin, and telithromycin were the most active, but only telithromycin killed all intracellular organisms. PMID:10952618

  17. Antimicrobial Activity of Serbian Propolis Evaluated by Means of MIC, HPTLC, Bioautography and Chemometrics

    PubMed Central

    Trifković, Jelena; Berić, Tanja; Vovk, Irena; Milojković-Opsenica, Dušanka; Stanković, Slaviša

    2016-01-01

    New information has come to light about the biological activity of propolis and the quality of natural products which requires a rapid and reliable assessment method such as High Performance Thin-Layer Chromatography (HPTLC) fingerprinting. This study investigates chromatographic and chemometric approaches for determining the antimicrobial activity of propolis of Serbian origin against various bacterial species. A linear multivariate calibration technique, using Partial Least Squares, was used to extract the relevant information from the chromatographic fingerprints, i.e. to indicate peaks which represent phenolic compounds that are potentially responsible for the antimicrobial capacity of the samples. In addition, direct bioautography was performed to localize the antibacterial activity on chromatograms. The biological activity of the propolis samples against various bacterial species was determined by a minimum inhibitory concentration assay, confirming their affiliation with the European poplar type of propolis and revealing the existence of two types (blue and orange) according to botanical origin. The strongest antibacterial activity was exhibited by sample 26 against Staphylococcus aureus, with a MIC value of 0.5 mg/mL, and Listeria monocytogenes, with a MIC as low as 0.1 mg/mL, which was also the lowest effective concentration observed in our study. Generally, the orange type of propolis shows higher antimicrobial activity compared to the blue type. PLS modelling was performed on the HPTLC data set and the resulting models might qualitatively indicate compounds that play an important role in the activity exhibited by the propolis samples. The most relevant peaks influencing the antimicrobial activity of propolis against all bacterial strains were phenolic compounds at RF values of 0.37, 0.40, 0.45, 0.51, 0.60 and 0.70. The knowledge gained through this study could be important for attributing the antimicrobial activity of propolis to specific chemical

  18. Antimicrobial activity of amine oxides: mode of action and structure-activity correlation.

    PubMed

    Subík, J; Takácsová, G; Psenák, M; Devínsky, F

    1977-08-01

    The effect of N-alkyl derivatives of saturated heterocyclic amine oxides on the growth and metabolism of microorganisms has been studied. 4-Dodecylmorpholine-N-oxide inhibited the differentiation and growth of Bacillus cereus, of different species of filamentous fungi, and of the yeast Saccharomyces cerevisiae. For vegetative cells, the effect of 4-dodecylmorpholine-N-oxide was lethal. Cells of S. cerevisiae, after interaction with 4-dodecylmorpholine-N-oxide, released intracellular K(+) and were unable to oxidize or ferment glucose. The functions of isolated yeast mitochondria were also impaired. 4-Dodecylmorpholine-N-oxide at growth-inhibiting concentrations induced rapid lysis of osmotically stabilized yeast protoplasts, with the rate of lysis a function of temperature and of amine oxide concentration. A study of the relationships between structure, antimicrobial activity, and cytolytic activity was made with a group of structurally different amine oxides involving a series of homologous 4-alkylmorpholine-N-oxides, 1-alkylpiperidine-N-oxides, 1-dodecylpyrrolidine-N-oxide, 1-dodecylperhydroasepine-N-oxide, and N,N-dimethyldodecylamine oxide. Disorganization of the membrane structure after interaction of cells with the tested amine oxides was primarily responsible for the antimicrobial activity of the amine oxides. This activity was found to be dependent on the chain length of the hydrophobic alkyl group and was only moderately influenced by other substituents of the polarized N-oxide group.

  19. Chemical composition, cytotoxicity, antimicrobial and antifungal activity of several essential oils.

    PubMed

    Cannas, Sara; Usai, Donatella; Tardugno, Roberta; Benvenuti, Stefania; Pellati, Federica; Zanetti, Stefania; Molicotti, Paola

    2016-01-01

    Essential oils (EOs) are known and used for their biological, antibacterial, antifungal and antioxidant properties. Numerous studies have shown that EOs exhibit a large spectrum of biological activities in vitro. The incidence of drug-resistant pathogens and the toxicity of antibiotics have drawn attention to the antimicrobial activity of natural products, encouraging the development of alternative treatments. The aim of this study was to analyse the phytochemical and the cytotoxic characteristic of 36 EOs; we then evaluated the antimicrobial activity of the less-toxic EOs on Gram-positive, Gram-negative and fungi strains. The results showed low cytotoxicity in seven EOs and good activity against Gram-negative and Candida spp. strains. Based on our results, EOs could be proposed as a novel group of therapeutic agents. Further experiments are necessary to confirm their pharmacological effectiveness, and to determine potential toxic effects and the mechanism of their activity in in vivo models.

  20. Antimicrobial Activity of Croton macrostachyus Stem Bark Extracts against Several Human Pathogenic Bacteria

    PubMed Central

    Obey, Jackie K.; von Wright, Atte; Orjala, Jimmy; Kauhanen, Jussi; Tikkanen-Kaukanen, Carina

    2016-01-01

    In Kenya, leaves and roots from Croton macrostachyus are used as a traditional medicine for infectious diseases such as typhoid and measles, but reports on possible antimicrobial activity of stem bark do not exist. In this study, the antibacterial and antifungal effects of methanol, ethyl acetate and butanol extracts, and purified lupeol of C. macrostachyus stem bark were determined against important human gram-negative pathogens Escherichia coli, Salmonella typhi, Klebsiella pneumoniae, and Enterobacter aerogenes, gram-positive Listeria monocytogenes, and a fungus Candida albicans. The most promising broad scale antimicrobial activity against all the studied pathogens was shown by the ethyl acetate extract. The ethyl acetate extract induced the zone of inhibition between 10.1 ± 0.6 mm and 16.0 ± 1.2 mm against S. typhi, E. coli, K. pneumoniae, E. aerogenes, and L. monocytogenes with weaker antimicrobial activity against C. albicans (zone of inhibition: 5.6 ± 1.0 mm). The antibiotic controls (amoxicillin, ciprofloxacin, ampicillin, benzylpenicillin, clotrimazole, and cefotaxime) showed antimicrobial activity with zones of inhibition within 13.4 ± 0.7–22.1 ± 0.9 mm. The ethyl acetate extract had MIC in the range of 125–250 mg/mL against all the studied bacteria and against C. albicans MIC was 500 mg/mL. The present results give scientific evidence and support the traditional use of C. macrostachyus stem bark as a source for antimicrobials. We show that C. macrostachyus stem bark lupeol is a promising antimicrobial agent against several important human pathogens. PMID:27293897

  1. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.

    PubMed

    Lohner, Karl

    2017-01-01

    The increase of pathogens being resistant to antibiotics represents a global health problem and therefore it is a pressing need to develop antibiotics with novel mechanisms of action. Host defense peptides, which have direct antimicrobial activity (also termed antimicrobial peptides) or immune modulating activity, are valuable template structures for the development of such compounds. Antimicrobial peptides exhibit remarkably different structures as well as biological activity profiles with multiple targets. A large fraction of these peptides interfere physically with the cell membrane of bacteria (focus of this review), but can also translocate into the cytosol, where they interact with nucleic acids, ribosomes and proteins. Several potential interaction sites have to be considered on the route of the peptides from the environment to the cytoplasmic membrane. Translocation of peptides through the cell wall may not be impaired by the thick but relatively porous peptidoglycan layer. However, interaction with lipopolysaccharides of the outer membrane of Gram-negative bacteria and (lipo)teichoic acids of Gram-positive bacteria may reduce the effective concentration at the cytoplasmic membrane, where supposedly the killing event takes place. On a molecular level several mechanisms are discussed, which are important for the rational design of improved antimicrobial compounds: toroidal pore formation, carpet model (coverage of membrane surface by peptides), interfacial activity, void formation, clustering of lipids and effects of membrane curvature. In summary, many of these models just represent special cases that can be interrelated to each other and depend on both the nature of lipids and peptides.

  2. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds.

    PubMed

    Araújo, Paula A; Lemos, Madalena; Mergulhão, Filipe; Melo, Luís; Simões, Manuel

    2013-01-01

    Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium) were exposed to surfactants (single and combined) in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium) with minimum bactericidal concentrations ranging from 3 to 35 mg·L(-1). The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  3. A demonstration of the antimicrobial effectiveness of various copper surfaces

    PubMed Central

    2013-01-01

    Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176

  4. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria

    PubMed Central

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Aim/Background: Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Methods: Standard, ATCC, strains of four anaerobic bacteria (Clostridium difficile, Clostridium perfringens, Bacteroides fragilis, and Bacteroides thetaiotaomicron), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. Results: TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. Conclusions: TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections. PMID:28163966

  5. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi.

    PubMed

    Li, Wen-Ru; Li, Hai-Ling; Shi, Qing-Shan; Sun, Ting-Li; Xie, Xiao-Bao; Song, Bin; Huang, Xiao-Mo

    2016-10-01

    Tea tree oil (TTO) is a yellow liquid extracted from Melaleuca alternifolia. Although the antimicrobial activity of TTO has been known for a long time, its specific antimicrobial effects and mechanism underlying these remain poorly characterized. The present study investigated the chemical composition of TTO and the dynamics and mechanism of its antimicrobial activities in two bacterial and two fungal strains. Gas chromatography-mass spectrometry analysis identified alkenes and alcohols as the main constituents of TTO. Terpinen-4-ol was the most abundant individual component, accounting for approximately 23 % of the TTO. Poisoned food technique assessment showed that the minimum inhibitory concentrations of TTO for bacterial strains (Escherichia coli and Staphylococcus aureus) and fungal strains (Candida albicans and Aspergillus niger) were 1.08 and 2.17 mg/mL, respectively. Antimicrobial dynamic curves showed that with increasing concentrations of TTO, the rate of cell killing and the duration of growth lag phase increased correspondingly. These data indicated that TTO produced concentration and time-dependent antimicrobial effects. The minimum bactericidal and fungicidal concentrations of TTO were 2.17, 4.34, and 4.34 against E. coli, S. aureus, and C. albicans, respectively. However, A. niger conidia were not completely eradicated, even after 3 days in the presence of 17.34 mg/mL TTO. Transmission electron microscopy images indicated that TTO penetrated the cell wall and cytoplasmic membrane of all the tested bacterial and fungal strains. TTO may also penetrate fungal organelle membrane. These findings indicated that TTO maybe exerts its antimicrobial effects by compromising the cell membrane, resulting in loss of the cytoplasm and organelle damage, which ultimate leads to cell death.

  6. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese.

    PubMed

    Heredia-Castro, Priscilia Y; Méndez-Romero, José I; Hernández-Mendoza, Adrián; Acedo-Félix, Evelia; González-Córdova, Aarón F; Vallejo-Cordoba, Belinda

    2015-12-01

    Lactobacillus spp. from Mexican Cocido cheese were shown to produce bacteriocin-like substances (BLS) active against Staphylococcus aureus,Listeria innocua,Escherichia coli, andSalmonella typhimurium by using the disk diffusion method. Crude extracts of Lactobacillus fermentum showed strong inhibitory activity against Staph. aureus, L. innocua, E. coli, and Salmonella cholerae. Complete inactivation of antimicrobial activity was observed after treatment of crude extracts with proteinase K, pronase, papain, trypsin, and lysozyme, confirming their proteinaceous nature. However, antimicrobial activity was partly lost for some of the crude extracts when treated with α-amylase, indicating that carbohydrate moieties were involved. The antimicrobial activity of the crude extracts was stable at 65°C for 30min over a wide pH range (2-8), and addition of potassium chloride, sodium citrate, ethanol, and butanol did not affect antibacterial activity. However, antimicrobial activity was lost after heating at 121°C for 15min, addition of methanol or Tween 80. Fourteen out of 18 Lactobacillus spp. showed antimicrobial activity against different test microorganisms, and 12 presented bacteriocin-like substances. Generation time and growth rate parameters indicated that the antimicrobial activity of crude extracts from 3 different strains was effective against the 4 indicator microorganisms. One of the crude extracts showed inhibition not only against gram-positive but also against gram-negative bacteria. Bacteriocin-like substances produced by this specific Lactobacillus strain showed potential for application as a food biopreservative.

  7. Synthesis, DNA cleavage and antimicrobial activity of 4-thiazolidinones-benzothiazole conjugates.

    PubMed

    Singh, Meenakshi; Gangwar, Mayank; Nath, Gopal; Singh, Sushil K

    2014-11-01

    Antimicrobial screening of several novel 4-thiazolidinones with benzothiazole moiety has been performed. These compounds were evaluated for antimicrobial activity against a panel of bacterial and fungal strains. The strains were treated with these benzothiazole derivatives at varying concentrations, and MIC's were calculated. Structures of these compounds have been determined by spectroscopic studies viz., FT-IR, 1H NMR, 13C NMR and elemental analysis. Significant antimicrobial activity was observed for some members of the series, and compounds viz. 3-(4-(benzo[d]thiazol-2-yl) phenyl-2-(4-methoxyphenyl)thiazolidin-4-one and 3-(4-(benzo[d]thiazol-2-yl)phenyl)-2-(4-hydroxy phenyl)thiazolidin-4-one were found to be the most active against E.coli and C. albicans with MIC values in the range of 15.6-125 microg/ml. Preliminary study of the structure-activity relationship revealed that electron donating groups associated with thiazolidine bearing benzothiazole rings had a great effect on the antimicrobial activity of these compounds and contributes positively for the action. DNA cleavage experiments gave valuable hints with supporting evidence for describing the mechanism of action and hence showed a good correlation between their calculated MIC's and its lethality.

  8. Isolation and Antimicrobial and Antioxidant Evaluation of Bio-Active Compounds from Eriobotrya Japonica Stems

    PubMed Central

    Rashed, Khaled Nabih; Butnariu, Monica

    2014-01-01

    Purpose: The present study was carried out to evaluate antimicrobial and antioxidant activities from Eriobotrya japonica stems as well investigation of its chemical composition. Methods: Methanol 80% extract of Eriobotrya japonica stems was tested for antimicrobial activity against bacterial and fungal strains and for antioxidant activity using oxygen radical absorbance capacity (ORAC) and the trolox equivalent antioxidant capacity (TEAC) assays and also total content of polyphenols with phytochemical analysis of the extract were determined. Results: The results showed that the extract has a significant antimicrobial activity, it inhibited significantly the growth of Candida albicans suggesting that it can be used in the treatment of fungal infections, and it showed no effect on the other bacterial and fungal strains, the extract has a good antioxidant activity, it has shown high values of oxygen radical absorbance capacity and trolox equivalent antioxidant capacity, while it showed a low value of polyphenol content. Phytochemical analysis of the extract showed the presence of carbohydrates, terpenes, tannins and flavonoids, further phytochemical analysis resulted in the isolation and identification of three triterpenic acids, oleanolic, ursolic and corosolic acids and four flavonoids, naringenin, quercetin, kaempferol 3-O-β-glucoside and quercetin 3-O-α-rhamnoside. Conclusion: These results may help to discover new chemical classes of natural antimicrobial antioxidant substances. PMID:24409413

  9. Impact of pectin esterification on the antimicrobial activity of nisin-loaded pectin particles.

    PubMed

    Krivorotova, Tatjana; Staneviciene, Ramune; Luksa, Juliana; Serviene, Elena; Sereikaite, Jolanta

    2017-01-01

    The relationship between pectin structure and the antimicrobial activity of nisin-loaded pectin particles was examined. The antimicrobial activity of five different nisin-loaded pectin particles, i.e., nisin-loaded high methoxyl pectin, low methoxyl pectin, pectic acid, dodecyl pectin with 5.4 and 25% degree of substitution were tested in the pH range of 4.0-7.0 by agar-diffusion assay and agar plate count methods. It was found that the degree of esterification of carboxyl group of galacturonic acid in pectin molecule is important for the antimicrobial activity of nisin-loaded pectin particles. Nisin-loaded particles prepared using pectic acid or the pectin with low degree of esterification exhibit higher antimicrobial activity than nisin-loaded high methoxyl pectin particles. Pectins with free carboxyl groups or of low degree of esterification are the most suitable for particles preparation. Moreover, nisin-loaded pectin particles were active at close to neutral or neutral pH values. Therefore, they could be effectively applied for food preservation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:245-251, 2017.

  10. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

    PubMed Central

    Dai, Jiali; Zhu, Liang; Yang, Li; Qiu, Jun

    2013-01-01

    The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. PMID:26648809

  11. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to

  12. Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity.

    PubMed

    Peng, Na; Wang, Yanfeng; Ye, Qifa; Liang, Lei; An, Yuxing; Li, Qiwei; Chang, Chunyu

    2016-02-10

    Current superabsorbent hydrogels commercially applied in the disposable diapers have disadvantages such as weak mechanical strength, poor biocompatibility, and lack of antimicrobial activity, which may induce skin allergy of body. To overcome these hassles, we have developed novel cellulose based hydrogels via simple chemical cross-linking of quaternized cellulose (QC) and native cellulose in NaOH/urea aqueous solution. The prepared hydrogel showed superabsorbent property, high mechanical strength, good biocompatibility, and excellent antimicrobial efficacy against Saccharomyces cerevisiae. The presence of QC in the hydrogel networks not only improved their swelling ratio via electrostatic repulsion of quaternary ammonium groups, but also endowed their antimicrobial activity by attraction of sections of anionic microbial membrane into internal pores of poly cationic hydrogel leading to the disruption of microbial membrane. Moreover, the swelling properties, mechanical strength, and antibacterial activity of hydrogels strongly depended on the contents of quaternary ammonium groups in hydrogel networks. The obtained data encouraged the use of these hydrogels for hygienic application such as disposable diapers.

  13. Activity of an antimicrobial hydrocephalus shunt catheter against Propionibacterium acnes.

    PubMed

    Bayston, Roger; Vera, Litza; Ashraf, Waheed

    2010-12-01

    Shunt infection is a major complication affecting approximately 10% of procedures. Propionibacterium acnes, an anaerobic skin bacterium, is increasingly recognized as a shunt pathogen, causing up to 14% of infections. Though susceptible to penicillin and cephalosporins, P. acnes shunt infections are not preventable by means of perioperative prophylaxis, due to poor cerebrospinal fluid penetration. Antimicrobial shunts with activity against staphylococci are available, but their activity against P. acnes is unknown, and the study was designed to determine this. Three methods of evaluation were used in order to determine the emergence of resistance when exposure is to high inocula for long periods, the time taken to kill 100% of the bacteria attached to the shunt, and the duration of activity under constant flow conditions with repeated bacterial challenge. Despite repeated exposure to high bacterial inocula over 70 days, no resistance was seen. The time taken to kill all attached bacteria, 96 h, was twice that taken to kill attached staphylococci. Nevertheless, under constant flow conditions with repeated challenges, the antimicrobial catheters resisted colonization by P. acnes for 56 days. Using tests that were designed to be clinically predictive when done together, the results suggest that the antimicrobial catheters will be able to prevent colonization of hydrocephalus shunts by P. acnes.

  14. Antimicrobial activity of silver/starch/polyacrylamide nanocomposite.

    PubMed

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-07-01

    A novel silver/starch/polyacrylamide nanocomposite hydrogel was prepared by grafting acrylamide onto starch in presence of silver nitrate by use of ammonium persulphate as an initiator and N,N-methylene-bisacrylamide as a crosslinking agent, then reducing the silver ions enclosed in the hydrogel structure to silver nanoparticles by treating the hydrogel with sodium hydroxide solution. All factors which affect the grafting/crosslinking reaction were optimized and the concentration of silver ion was changed from 0ppm to 50ppm. The produced nanocomposite hydrogel was characterized for its nanosilver content and the UV-spectra showed similar absorption spectra at wavelength 405nm for all AgNO3 concentrations but the plasmon showed increase in the intensity of the absorption peak as AgNO3 concentration incorporated to the hydrogel structure increases. The nanocomposite hydrogel was also characterized for its antimicrobial activity toward two types of bacteria and two types of fungi. The results showed that the hydrogel with 0ppm silver content has no antimicrobial activity, and that the antimicrobial activity expressed as inhibition zone increases as the silver content increases from 5ppm to 50ppm.

  15. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity.

    PubMed

    Klüver, Enno; Schulz-Maronde, Sandra; Scheid, Svenja; Meyer, Bernd; Forssmann, Wolf-Georg; Adermann, Knut

    2005-07-19

    Human beta-defensins form a group of cysteine-rich antimicrobial peptides which have been found in epithelial tissue and, more recently, in the male genital tract. They play a role in the defense against microbial pathogens in innate immunity and display additional chemotactic functions in the adaptive immune system. An important characteristic of antimicrobial peptides is that they also exhibit toxic potential on eukaryotic cells. Very little is known about the structure dependence of antimicrobial and cytotoxic effects. We investigated human beta-defensin 3 (hBD-3), a potent broad-spectrum antimicrobial effector peptide, regarding the influence of structural parameters on the antimicrobial and cytotoxic activity. We have established a structure-activity relation of the hBD-3 using synthetic derivatives differing in length, charge, disulfide connectivity, and overall hydrophobicity. The antimicrobial activity of the peptides was compared to the cyctotoxic effects on monocytic THP-1 cells and the hemolytic activity on human erythrocytes. We found that it is not important for antimicrobial and cytotoxic activity whether and how cysteine residues are arranged to form disulfide bonds. Substitution of half-cystinyl residues by tryptophan resulted in increased activities, while other substitutions did not change activity. Correlation of activities with the structural changes demonstrates that the activity on eukaryotic cells appears to depend strongly on the overall hydrophobicity. In contrast, the antimicrobial potency of hBD-3 peptides is determined by the distribution of positively charged amino acid residues and hydrophobic side chains. The results facilitate the understanding of beta-defensin interaction with different cell types and guide the design of antimicrobially active peptides.

  16. Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry.

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Ammann, Sabine; Oksman-Caldentey, Kirsi-Marja; Buchert, Johanna

    2008-02-13

    The effects of nine cell wall-degrading enzymes on the antimicrobial and antioxidant activities of bilberry were studied. Antimicrobial activity was measured using the human pathogens Salmonella enterica sv. Typhimurium and Staphylococcus aureus as test strains. Enzyme treatments liberated phenolics from the cell wall matrix, which clearly increased the antimicrobial activity of berry juices, press cakes, and berry mashes on the basis of plate counts. Antibacterial effects were stronger against Salmonella than against Staphylococcus bacteria. In general, the increase in activity measured as colony-forming units per milliliter was 3-5 logarithmic units against Salmonella and 1-2 units against Staphylococcus bacteria. Increase in antimicrobial activity was observed only in acidic conditions, which is also the natural environment in various berry products, such as juices. The activity profile of the pectinase preparation affected the chemistry of the phenolics due to the presence of deglycosylating activities in some preparations. The difference in phenolic profiles was reflected in the antimicrobial effects. Bilberry mashes treated with Pectinex Ultra SP-L, Pectinex 3 XL, and Pectinex BE XXL were most efficient against Salmonella bacteria, whereas mashes treated with Pectinex Smash, Pectinex BE 3-L, and Biopectinase CCM showed the strongest antimicrobial activity against Staphylococcus bacteria. Due to the liberation of phenolics from the cell wall matrix the antioxidant activity measured as radical scavenging activity was also increased on average about 30% by the enzymatic treatments. The highest increase in phenolic compounds was about 40%. Highest increases in anthocyanins and in antioxidant activity were observed in berry mash treated with Pectinex Smash XXL enzyme, and the lowest increase was observed after treatment with Pectinex BE 3-L. Enzyme-assisted processing is traditionally used to improve berry and fruit juice yields. However, enzymatic treatments also

  17. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  18. Spirostanol glycosides with hemostatic and antimicrobial activities from Trillium kamtschaticum.

    PubMed

    Chen, Yu; Ni, Wei; Yan, Huan; Qin, Xu-Jie; Khan, Afsar; Liu, Hui; Shu, Tong; Jin, Ling-Yu; Liu, Hai-Yang

    2016-11-01

    Ten spirostanol glycosides, trillikamtosides A-J, together with eleven known analogues, were isolated from the hemostatic fraction of the 75% aqueous EtOH extract of the whole herbs of Trillium kamtschaticum. Their structures were established by extensive spectroscopic data analysis and chemical methods. The aglycones of three of these compounds had unique 3β,17α-dihydroxy-spirostanes featuring a double bond between C-4 and C-5, while two others represent a rare class of spirostanol glycosides which possess a 5(6 → 7) abeo-steroidal aglycone. All the compounds were evaluated for their hemostatic and antimicrobial activities. Three of the spirostanol glycosides exhibited induced-platelet aggregation at a concentration of 300 μg/mL with maximal induced-platelet aggregation rates of 72%, 71%, and 62% in rabbits, respectively, and their EC50 values were 492.7, 203.3, and 109.8 μM. Five of the spirostanol glycosides showed an anti-Candida albicans effect with MIC values of 21.1, 10.6, 8.8, 21.6, and 11.0 μM, respectively.

  19. Extracellular Streptomyces lividans vesicles: composition, biogenesis and antimicrobial activity.

    PubMed

    Schrempf, Hildgund; Merling, Philipp

    2015-07-01

    We selected Streptomyces lividans to elucidate firstly the biogenesis and antimicrobial activities of extracellular vesicles that a filamentous and highly differentiated Gram-positive bacterium produces. Vesicle types range in diameter from 110 to 230 nm and 20 to 60 nm, respectively; they assemble to clusters, and contain lipids and phospholipids allowing their in situ imaging by specific fluorescent dyes. The presence of the identified secondary metabolite undecylprodigiosin provokes red fluorescence of a portion of the heterogeneous vesicle populations facilitating in vivo monitoring. Protuberances containing vesicles generate at tips, and alongside of substrate hyphae, and enumerate during late vegetative growth to droplet-like exudates. Owing to in situ imaging in the presence and absence of a green fluorescent vancomycin derivative, we conclude that protuberances comprising vesicles arise at sites with enhanced levels of peptidoglycan subunits [pentapeptide of lipid II (C55)-linked disaccharides], and reduced levels of polymerized and cross-linked peptidoglycan within hyphae. These sites correlate with enhanced levels of anionic phospholipids and lipids. Vesicles provoke pronounced damages of Aspergillus proliferans, Verticillium dahliae and induced clumping and distortion of Escherichia coli. These harmful effects are likely attributable to the action of the identified vesicular compounds including different enzyme types, components of signal transduction cascades and undecylprodigiosin. Based on our pioneering findings, we highlight novel clues with environmental implications and application potential.

  20. Antimicrobial activity of new porphyrins of synthetic and natural origin

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghazaryan, Robert K.; Paronyan, Marina H.; Ulikhanyan, Ghukas I.; Gyulkhandanyan, Aram G.; Sahakyan, Lida A.

    2012-03-01

    Antimicrobial photodynamic inactivation has been successfully used against Gram (+) microorganisms, but most of the photosensitizers (PSs) on Gram (-) bacteria acts weakly. PSs are the natural or synthetic origin dyes, mainly porphyrins. We have synthesized more than 100 new cationic porphyrins and metalloporphyrins with different functional groups (hydroxyethyl, butyl, allyl, methallyl) and metals (cobalt, iron, copper, zinc, silver and other); from the nettle have also been purified pheophytin (a+b) and pheophytin (a) and have synthesized their Ag-and Zn-metalloporphyrins. It was found that in the dark (cytotoxic) mode, the most highly efficiency against microorganisms showed Agmetalloporphyrins of both types of porphyrins (synthetic and natural). Metalloporphyrin of natural origin Ag-pheophytin (a + b) is a strong antibacterial agent and causes 100% death as the Gram (+) microorganisms (St. aureus and MRSA) and the Gram (-) microorganisms (E.coli and Salmonella). It is established that for the destruction of Gram (+) and Gram (-) microorganisms in photodynamic mode cationic water-soluble synthetic metalloporphyrins, especially Zn-TBut4PyP, many times more effective than pheophytins. In vivo conditions on mice established that the best therapeutic activity against various strains of the microorganism St. aureus has the synthetic metalloporphyrin Ag-TBut4PyP. It is significantly more efficient than known drug "Chlorophyllipt" (2.5-3 times) and leads the survival rate of animals up to 50-60%.

  1. Screening for alternative antibiotics: an investigation into the antimicrobial activities of medicinal food plants of Mauritius.

    PubMed

    Mahomoodally, M F; Gurib-Fakim, A; Subratty, A H

    2010-04-01

    The present study was designed to evaluate the antimicrobial activities of 2 endemic medicinal plants; Faujasiopsis flexuosa (Asteraceae) (FF) and Pittosporum senacia (Pittosporaceae) (PS) and 2 exotic medicinal plants, Momordica charantia (Cucurbitaceae) (MC) and Ocimum tenuiflorum (Lamiaceae) (OT) that forms part of local pharmacopoeia of Mauritius and correlate any observed activity with its phytochemical profile. Aqueous and organic fractions of the leaves, fruits, and seeds of these plants were subjected to antimicrobial testing by the disc diffusion method against 8 clinical isolates of bacteria and 2 strains of fungus. It was found that MC, OT, and FF possessed antimicrobial properties against the test organisms. The MIC for MC ranged from 0.5 to 9 mg/mL and that of FF from 2 to 10 mg/mL and the lowest MIC value (0.5 mg/mL) was recorded for the unripe fruits of MC against E. coli. On the other hand, higher concentration of the unripe MC fruit extract of 9 mg/mL was needed to be effective against a resistant strain of Staphylococcus aureus (MRSA). The antimicrobial effect against MRSA was lost upon ripening of the fruits. The methanolic extract of both MC and FF showed highest MIC values compared to the corresponding aqueous extract, which indicates the low efficacy and the need of higher doses of the plant extract. Phytochemical screening of the plants showed the presence of at least tannins, phenols, flavonoids, and alkaloids, which are known antimicrobial phyto-compounds. In conclusion, the observed antimicrobial properties would tend to further validate the medicinal properties of these commonly used endemic medicinal and food plants of Mauritius.

  2. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells.

    PubMed

    Chien, Rao-Chi; Yen, Ming-Tsung; Mau, Jeng-Leun

    2016-03-15

    Chitosan was prepared by alkaline N-deacetylation of chitin obtained from shiitake stipes and crab shells and its antimicrobial and antitumor activities were studied. Chitosan from shiitake stipes and crab shells exhibited excellent antimicrobial activities against eight species of Gram positive and negative pathogenic bacteria with inhibition zones of 11.4-26.8mm at 0.5mg/ml. Among chitosan samples, shiitake chitosan C120 was the most effective with inhibition zones of 16.4-26.8mm at 0.5mg/ml. In addition, shiitake and crab chitosan showed a moderate anti-proliferative effect on IMR 32 and Hep G2 cells. At 5mg/ml, the viability of IMR 32 cells incubated with chitosan was 68.8-85.0% whereas that of Hep G2 cells with chitosan was 60.4-82.9%. Overall, shiitake chitosan showed slightly better antimicrobial and antitumor activities than crab chitosan. Based on the results obtained, shiitake and crab chitosan were strong antimicrobial agents and moderate antitumor agents.

  3. Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food.

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2010-11-01

    Carvacrol and cymene, phenolic compounds naturally present in the essential oil of oregano and thyme, were examined for their antimicrobial activity against Vibrio cholerae (ATCC 14033, VC1, and VC7) inoculated in carrot juice. Carvacrol exhibited a dose dependent inhibitory effect on the bacteria. Although cymene did not have antimicrobial activity against the bacteria, it enhanced the inhibitory ability of carvacrol. At 25 °C, the lowest concentrations of carvacrol and cymene required for zero detectable viable count varied depending on bacterial strains; 5 and 5 ppm, respectively, for VC7; 5 and 7.5 ppm, respectively, for VC1; and 7.5 and 7.5 ppm, respectively, for ATCC 14033. This study also examined several factors influencing the antimicrobial activity of carvacrol and cymene against V. cholerae ATCC 14033, including temperature, bacterial cell number, and food substrate. Carvacrol and cymene inhibited the bacterium in carrot juice at 25 °C more efficiently than at 15 and 4 °C. The doses of both compounds required for zero detectable viable count increased as the number of the bacterial cells in the carrot juice increased. The fat content and the complexity of foods were shown to decrease the antimicrobial activity of the compounds.

  4. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples.

    PubMed

    Uzel, Ataç; Sorkun, Kadriye; Onçağ, Ozant; Cogŭlu, Dilşah; Gençay, Omür; Salih, Bekir

    2005-01-01

    Propolis means a gum that is gathered by bees from various plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The aims of this study were to evaluate the antimicrobial activity of four different Anatolian propolis samples on different groups of microorganisms including some oral pathogens and comparison between their chemical compositions. Ethanol extracts of propolis (EEP) were prepared from four different Anatolian propolis samples and examined whether EEP inhibit the growth of the test microorganisms or not. For the antimicrobial activity assays, minimum inhibitory concentrations (MIC) were determined by using macrodilution method. The MIC values of the most effective propolis (TB) were 2 microg/ml for Streptococcus sobrinus and Enterococcus faecalis, 4 microg/ml for Micrococcus luteus, Candida albicans and C. krusei, 8 microg/ml for Streptococcus mutans, Staphylococcus aureus, Staphylococcus epidermidis and Enterobacter aerogenes, 16 microg/ml for Escherichia coli and C. tropicalis and 32 microg/ml for Salmonella typhimurium and Pseudomonas aeruginosa. The chemical compositions of EEP's were determined by high-temperature high-resolution gas chromatography coupled to mass spectrometry. The main compounds of four Anatolian propolis samples were flavonoids such as pinocembrin, pinostropin, isalpinin, pinobanksin, quercetin, naringenin, galangine and chrysin. Although propolis samples were collected from different regions of Anatolia all showed significant antimicrobial activity against the Gram positive bacteria and yeasts. Propolis can prevent dental caries since it demonstrated significant antimicrobial activity against the microorganisms such as Streptococcus mutans, Streptococcus sobrinus and C. albicans, which involves in oral diseases.

  5. Antimicrobial activity of essential oil and various extracts of fruits of greater cardamom.

    PubMed

    Agnihotri, Supriya; Wakode, S

    2010-09-01

    Greater cardamom (Amomum subulatum Roxb. Zingiberaceae) commonly known as "Bari ilaichi" is a well known plant used in Ayurvedic and Unani medicine. It has been used for the treatment of various diseases and disorders like gastric ulcer. Therefore antimicrobial activity of petroleum ether, methanol and aqueous extracts from leaves and roots, essential oil and isolated vasicine from A. vasica were tested against various microorganisms. Antimicrobial activity was done by disc diffusion method. The zone of inhibition observed was compared with that of standard drugs, ciprofloxacin and fluconazole. Minimum inhibitory concentration was determined against microorganisms used in the study. The results of this study reveal that methanol extract of fruits of A. subulatum shows remarkable antimicrobial activity against Escherichia coli whereas in case of other microorganisms used it was found inferior to the standard drug used. Methanol extract of rind showed good antimicrobial activity against Staphylococcus aureus. It was found that the essential oil isolated was effective against majority of microorganisms used viz. Bacillus pumilus, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Saccharomyces cerevisiae.

  6. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis.

    PubMed

    Schurr, Benjamin C; Hahne, Hannes; Kuster, Bernhard; Behr, Jürgen; Vogel, Rudi F

    2015-04-01

    The main bittering component in beer, hop iso-α-acids, have been characterised as weak acids, which act as ionophores impairing microbial cells' function under acidic conditions as present in beer. Besides medium pH, divalent cations play a central role regarding the efficacy of the antimicrobial effect. The iso-α-acids' non-bitter derivatives humulinic acids can be found in isomerised hop extracts and can be generated during hop storage. Therefore, they have been under investigation concerning their influence on beer sensory properties. This study sketches the molecular mechanism behind iso-α-acids' antimicrobial activity in Lactobacillus (L.) brevis regarding their ionophore activity versus the dependence of the inhibitory potential on manganese binding, and suggests humulinic acids as novel tasteless food preservatives. We designed and synthesised chemically modified iso-α-acids to enhance the basic understanding of the molecular mechanism of antimicrobial iso-α-acids. It could be observed that a manganese-binding dependent transmembrane redox reaction (oxidative stress) plays a crucial role in inhibition. Privation of an acidic hydroxyl group neither erased ionophore activity, nor did it entirely abolish antimicrobial activity. Humulinic acids proved to be highly inhibitory, even outperforming iso-α-acids.

  7. Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam

    PubMed Central

    Pochapski, Márcia Thaís; Fosquiera, Eliana Cristina; Esmerino, Luís Antônio; dos Santos, Elizabete Brasil; Farago, Paulo Vitor; Santos, Fábio André; Groppo, Francisco Carlos

    2011-01-01

    Background: Ipomoea batatas (L.) Lam., popularly known as sweet potato (SP), has played an important role as an energy and a phytochemical source in human nutrition and animal feeding. Ethnopharmacological data show that SP leaves have been effectively used in herbal medicine to treat inflammatory and/or infectious oral diseases in Brazil. The aim of this research was to evaluate the phytochemical, antioxidant, and antimicrobial activities of the crude leaves’ extract of SP leaves. Materials and Methods: The screening was performed for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. The color intensity or the precipitate formation was used as analytical responses to these tests. The total antioxidant capacity was evaluated by the phosphomolybdenum complex method. Antimicrobial activity was made by agar disk and agar well diffusion tests. Results: The phytochemical screening showed positive results for triterpenes/steroids, alkaloids, anthraquinones, coumarins, flavonoids, saponins, tannins, and phenolic acids. Total contents of 345.65, 328.44, and 662.02 mg were respectively obtained for alkaloids, anthraquinones, and phenolic compounds in 100 g of the dry sample. The total antioxidant capacity was 42.94% as compared to ascorbic acid. For antimicrobial studies, no concentration of the SP freeze dried extract was able to inhibit the growth of Streptococcus mutans, S. mitis, Staphylococcus aureus, and Candida albicans in both agar disk and agar well diffusion tests. Conclusions: SP leaves demonstrated the presence of secondary metabolites with potential biological activities. No antimicrobial activity was observed. PMID:21716926

  8. Synthesis and antimicrobial activity of some new diphenylamine derivatives

    PubMed Central

    Kumar, Arvind; Mishra, Arun K.

    2015-01-01

    In search of new leads toward potent antimicrobial agent, an array of novel derivatives of 2-hydrazinyl–N-N, diphenyl acetamide has been synthesized from the chloroacetylation reaction of diphenylamine (DPA). For this, a series of DPA derivatives were prepared by replacing chlorine with hydrazine hydrate in alcoholic medium and 2-hydrazino-N, N-diphenylacetamide was synthesized. The 2-hydrazino-N, N-diphenylacetamide was further subjected to reaction with various aromatic aldehydes in presence of glacial acetic acid in methanol. The synthesized compounds were characterized by their IR, 1HNMR spectral data and elemental analysis. The compounds were screened for antibacterial and antifungal activity by cup plate method. 2-(2-Benzylidenehydrazinyl)-N, N-diphenylacetamide (A1); 2-(2-(3-methylbenzylidene) hydrazinyl)-N, N-diphenyl-acetamide (A5) and 2-(2-(2-nitrobenzylidine) hydrazinyl)-N, N-diphenyl-acetamide compounds (A7) showed significant antimicrobial as well as antifungal activity. Diphenylamine compounds may be explored as potent antimicrobial and antifungal compounds. PMID:25709343

  9. Characterization and antimicrobial activity of a pharmaceutical microemulsion.

    PubMed

    Zhang, Hui; Cui, Yinan; Zhu, Songming; Feng, Fengqin; Zheng, Xiaodong

    2010-08-16

    The characterization of a pharmaceutical microemulsion system with glycerol monolaurate as oil, ethanol as cosurfactant, Tween 40 as surfactant, sodium diacetate and water, and the antimicrobial activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Aspergillus niger and Penicillium expansum have been studied. The influence of ethanol and sodium diacetate on oil solubilization capability was clearly reflected in the phase behavior of these systems. One microemulsion formulation was obtained and remained stable by physical stability studies. The antimicrobial assay using solid medium diffusion method showed that the prepared microemulsion was comparable to the commonly used antimicrobials as positive controls. The kinetics of killing experiments demonstrated that the microemulsion caused a complete loss of viability of bacterial cells (E. coli, S. aureus and B. subtilis) in 1 min, killed over 99% A. niger and P. expansum spores and 99.9% C. albicans cells rapidly within 2 min and resulted in a complete loss of fungal viability in 5 min. The fast killing kinetics of the microemulsion was in good agreement with the transmission electron microscopy observations, indicating the antimembrane activity of the microemulsion on bacterial and fungal cells due to the disruption and dysfunction of biological membranes and cell walls.

  10. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    PubMed

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  11. Bis-chalcones and flavones: synthesis and antimicrobial activity.

    PubMed

    Husain, Asif; Rashid, Mohd; Mishra, Ravinesh; Kumar, Deepak

    2013-01-01

    A series of bis-chalcones (3a-g) and their flavones derivatives (4a-g) were synthesized and evaluated for their antimicrobial activity. Bis-chalcones were prepared by condensing 1,1'-(4,6-dihydroxy-1,3-phenylene)diethanone (2) with appropriate aryl aldehydes following Claisen-Schmidt reaction conditions. Oxidative cyclization of bis-chalcones (3a-g) in DMSO in the presence of iodine furnished flavones (4a-g). The synthesized compounds were evaluated for their antibacterial and antifungal actions against some selected microbes. The results of antimicrobial evaluation showed that some of the synthesized compounds were good in their antibacterial and antifungal actions.

  12. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  13. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe

    PubMed Central

    Bellik, Yuva

    2014-01-01

    Objective To compare in vitro antioxidant and antimicrobial activities of the essential oil and oleoresin of Zingiber officinale Roscoe. Methods The antioxidant activity was evaluated based on the ability of the ginger extracts to scavenge ABTS°+ free radical. The antimicrobial activity was studied by the disc diffusion method and minimal inhibitory concentration was determined by using the agar incorporation method. Results Ginger extracts exerted significant antioxidant activity and dose-depend effect. In general, oleoresin showed higher antioxidant activity [IC50=(1.820±0.034) mg/mL] when compared to the essential oil [IC50=(110.14±8.44) mg/mL]. In terms of antimicrobial activity, ginger compounds were more effective against Escherichia coli, Bacillus subtilis and Staphylococcus aureus, and less effective against Bacillus cereus. Aspergillus niger was least, whereas, Penicillium spp. was higher sensitive to the ginger extracts; minimal inhibitory concentrations of the oleoresin and essential oil were 2 mg/mL and 869.2 mg/mL, respectively. Moreover, the studied extracts showed an important antifungal activity against Candida albicans. Conclusions The study confirms the wide application of ginger oleoresin and essential oil in the treatment of many bacterial and fungal diseases.

  14. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity.

    PubMed

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents' release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food.

  15. Organogel-nanoemulsion containing nisin and D-limonene and its antimicrobial activity

    PubMed Central

    Bei, Weiya; Zhou, Yan; Xing, Xuya; Zahi, Mohamed Reda; Li, Yuan; Yuan, Qipeng; Liang, Hao

    2015-01-01

    The aim of this study was to investigate a novel delivery system containing D-limonene and nisin by food organogel-nanoemulsion and study its effect on the antimicrobial activity. Organogel-nanoemulsion containing with D-limonene and nisin or without nisin was prepared by a homogenization method. Factors that may affect the droplet size and stability of organogel-nanoemulsion such as pressure and surfactant to oil ratio (SOR) were studied. The average droplet size decreased with pressure, and the organogel-nanoemulsion could achieve good stability at low SOR. Positive effects and outstanding antimicrobial activities of organogel-nanoemulsion containing with D-limonene and nisin were confirmed by minimal inhibitory concentrations comparison, growth curves of bacteria, scanning electron microscopy and determination of cell constituents’ release. Furthermore, the organogel-nanoemulsion applied as food preservative in milk also shown excellent antimicrobial performance. Overall, the research described in the current article show that organogel-nanoemulsion containing with D-limonene and nisin may be an effective antimicrobial system for the production and preservation of food. PMID:26441935

  16. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.

    PubMed

    Monteiro, Claudia; Fernandes, Mariana; Pinheiro, Marina; Maia, Sílvia; Seabra, Catarina L; Ferreira-da-Silva, Frederico; Costa, Fabíola; Reis, Salette; Gomes, Paula; Martins, M Cristina L

    2015-05-01

    Antimicrobial peptides (AMPs) are a class of broad-spectrum antibiotics known by their ability to disrupt bacterial membranes and their low tendency to induce bacterial resistance, arising as excellent candidates to fight bacterial infections. In this study we aimed at designing short 12-mer AMPs, derived from a highly effective and broad spectrum synthetic AMP, MSI-78 (22 residues), by truncating this peptide at the N- and/or C-termini while spanning its entire sequence with 1 amino acid (aa) shifts. These designed peptides were evaluated regarding antimicrobial activity against selected gram-positive Staphylococcus strains and the gram-negative Pseudomonas aeruginosa (P. aeruginosa). The short 12-mer peptide CEM1 (GIGKFLKKAKKF) was identified as an excellent candidate to fight P. aeruginosa infections as it displays antimicrobial activity against this strain and selectivity, with negligible toxicity to mammalian cells even at high concentrations. However, in general most of the short 12-mer peptides tested showed a reduction in antimicrobial activity, an effect that was more pronounced for gram-positive Staphylococcus strains. Interestingly, CEM1 and a highly similar peptide differing by only one aa-shift (CEM2: IGKFLKKAKKFG), showed a remarkably contrasting AMP activity. These two peptides were chosen for a more detailed study regarding their mechanism of action, using several biophysical assays and simple membrane models that mimic the mammalian and bacterial lipid composition. We confirmed the correlation between peptide helicity and antimicrobial activity and propose a mechanism of action based on the disruption of the bacterial membrane permeability barrier.

  17. In vitro activities of antimicrobial agents, alone and in combination, against Acinetobacter baumannii isolated from blood.

    PubMed

    Chang, S C; Chen, Y C; Luh, K T; Hsieh, W C

    1995-11-01

    In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.

  18. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters.

    PubMed

    Santoyo, S; Cavero, S; Jaime, L; Ibañez, E; Señoráns, F J; Reglero, G

    2006-02-01

    Oregano leaves were extracted using a pilot-scale supercritical fluid extraction plant under a wide range of extraction conditions, with the goal of determining the extraction and fractionation conditions to obtain extracts with optimal antimicrobial activity. In this investigation, the essential oil-rich fractions were selectively precipitated in the second separator, and their chemical composition and antimicrobial activity were investigated. Gas chromatography-mass spectrometry analysis of the various fractions resulted in the identification of 27 compounds of the essential oil. The main components of these fractions were carvacrol, trans-sabinene hydrate, cis-piperitol, borneol, terpinen-4-ol, and linalool. Antimicrobial activity was investigated by the disk diffusion and broth dilution methods against six different microbial species, including two gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), a yeast (Candida albicans), and a fungus (Aspergillus niger). All of the supercritical fluid extraction fractions obtained showed antimicrobial activity against all of the microorganisms tested, although the most active fraction was the one obtained in experiment 5 (fraction was obtained with 7% ethanol at 150 bar and 40 degrees C). C. albicans was the most sensitive microorganism to the oregano extracts, whereas the least susceptible was A. niger. Carvacrol, sabinene hydrate, borneol, and linalool standards also showed antimicrobial activity against all of the microorganisms tested, with carvacrol being the most effective. Consequently, it was confirmed that essential oil from experiment 5, with the best antimicrobial activity, also presented the highest quantity of carvacrol.

  19. Analysis of the antimicrobial activities of a chemokine-derived peptide (CDAP-4) on Pseudomonas aeruginosa

    SciTech Connect

    Martinez-Becerra, Francisco; Dominguez-Ramirez, Lenin; Mendoza-Hernandez, Guillermo; Lopez-Vidal, Yolanda; Soldevila, Gloria . E-mail: garciaze@servidor.unam.mx

    2007-04-06

    Chemokines are key molecules involved in the control of leukocyte trafficking. Recently, a novel function as antimicrobial proteins has been described. CCL13 is the only member of the MCP chemokine subfamily displaying antimicrobial activity. To determine Key residues involved in its antimicrobial activity, CCL13 derived peptides were synthesized and tested against several bacterial strains, including Pseudomonas aeruginosa. One of these peptides, corresponding to the C-terminal region of CCL13 (CDAP-4) displayed good antimicrobial activity. Electron microscopy studies revealed remarkable morphological changes after CDAP-4 treatment. By computer modeling, CDAP-4 in {alpha} helical configuration generated a positive electrostatic potential that extended beyond the surface of the molecule. This feature is similar to other antimicrobial peptides. Altogether, these findings indicate that the antimicrobial activity was displayed by CCL13 resides to some extent at the C-terminal region. Furthermore, CDAP-4 could be considered a good antimicrobial candidate with a potential use against pathogens including P. aeruginosa.

  20. The Activity of Antimicrobial Surfaces Varies by Testing Protocol Utilized

    PubMed Central

    Campos, Matias D.; Zucchi, Paola C.; Phung, Ann; Leonard, Steven N.; Hirsch, Elizabeth B.

    2016-01-01

    Background Contaminated hospital surfaces are an important source of nosocomial infections. A major obstacle in marketing antimicrobial surfaces is a lack of efficacy data based on standardized testing protocols. Aim We compared the efficacy of multiple testing protocols against several “antimicrobial” film surfaces. Methods Four clinical isolates were used: one Escherichia coli, one Klebsiella pneumoniae, and two Staphylococcus aureus strains. Two industry methods (modified ISO 22196 and ASTM E2149), a “dried droplet”, and a “transfer” method were tested against two commercially available antimicrobial films, one film in development, an untreated control, and a positive (silver) control film. At 2 (only ISO) and 24 hours following inoculation, bacteria were collected from film surfaces and enumerated. Results Compared to untreated films in all protocols, there were no significant differences in recovery on either commercial brand at 2 or 24 hours after inoculation. The silver surface demonstrated significant microbicidal activity (mean loss 4.9 Log10 CFU/ml) in all methods and time points with the exception of 2 hours in the ISO protocol and the transfer method. Using our novel droplet method, no differences between placebo and active surfaces were detected. The surface in development demonstrated variable activity depending on method, organism, and time point. The ISO demonstrated minimal activity at 2 hours but significant activity at 24 hours (mean 4.5 Log10 CFU/ml difference versus placebo). The ASTEM protocol exhibited significant differences in recovery of staphylococci (mean 5 Log10 CFU/ml) but not Gram-negative isolates (10 fold decrease). Minimal activity was observed with this film in the transfer method. Conclusions Varying results between protocols suggested that efficacy of antimicrobial surfaces cannot be easily and reproducibly compared. Clinical use should be considered and further development of representative methods is needed. PMID

  1. In Vitro Antimicrobial Activity of Essential Oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis.

    PubMed

    Mekonnen, Awol; Yitayew, Berhanu; Tesema, Alemnesh; Taddese, Solomon

    2016-01-01

    In this study, the in vitro antimicrobial activities of four plant essential oils (T. schimperi, E. globulus, R. officinalis, and M. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils of T. schimperi, E. globulus, and R. officinalis were active against bacteria and some fungi. The antimicrobial effect of M. chamomilla was found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values of T. schimperi were <15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75-36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil of E. globulus, M. chamomilla, T. Schimperi, and R. officinalis. The results indicated that T. schimperi have shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.

  2. In Vitro Antimicrobial Activity of Essential Oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis

    PubMed Central

    Mekonnen, Awol; Yitayew, Berhanu; Tesema, Alemnesh; Taddese, Solomon

    2016-01-01

    In this study, the in vitro antimicrobial activities of four plant essential oils (T. schimperi, E. globulus, R. officinalis, and M. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils of T. schimperi, E. globulus, and R. officinalis were active against bacteria and some fungi. The antimicrobial effect of M. chamomilla was found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values of T. schimperi were <15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil of E. globulus, M. chamomilla, T. Schimperi, and R. officinalis. The results indicated that T. schimperi have shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation. PMID:26880928

  3. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya.

    PubMed

    Giweli, Abdulhmid; Džamić, Ana M; Soković, Marina; Ristić, Mihailo S; Marin, Petar D

    2012-04-26

    The composition of essential oil isolated from Satureja thymbra, growing wild in Libya, was analyzed by GC and GC-MS. The essential oil was characterized by γ-terpinene (39.23%), thymol (25.16%), p-cymene (7.17%) and carvacrol (4.18%) as the major constituents. Antioxidant activity was analyzed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method. It possessed strong antioxidant activity (IC50 = 0.0967 mg/mL). The essential oil was also screened for its antimicrobial activity against eight bacterial and eight fungal species, showing excellent antimicrobial activity against the microorganisms used, in particular against the fungi. The oil of S. thymbra showed bacteriostatic activity at 0.001-0.1 mg/mL and was bactericidal at 0.002-0.2 mg/mL; fungistatic effects at 0.001-0.025 mg/mL and fungicidal effects at 0.001-0.1 mg/mL. The main constituents thymol, carvacrol and γ-terpinene also showed strong antimicrobial activity. The commercial fungicide bifonazole showed much lower antifungal activity than the tested oil.

  4. Novel Cationic Lipids with Enhanced Gene Delivery and Antimicrobial Activity

    PubMed Central

    Fein, David E.; Bucki, Robert; Byfield, Fitzroy; Leszczynska, Katarzyna; Janmey, Paul A.

    2010-01-01

    Cationic lipids facilitate plasmid delivery, and some cationic sterol-based compounds have antimicrobial activity because of their amphiphilic character. These dual functions are relevant in the context of local ongoing infection during intrapulmonary gene transfer for cystic fibrosis. The transfection activities of two cationic lipids, dexamethasone spermine (DS) and disubstituted spermine (D2S), were tested as individual components and mixtures in bovine aortic endothelial cells and A549 cells. The results showed a 3- to 7-fold improvement in transgene expression for mixtures of DS with 20 to 40 mol% D2S. D2S and coformulations with DS, dioleoyl phosphatidylethanolamine, and DNA exhibited potent bactericidal activity against Escherichia coli MG1655, Bacillus subtilis, and Pseudomonas aeruginosa PAO1, which was maintained in bronchoalveolar lavage fluid. Complete bacterial killing was demonstrated at ∼5 μM, including gene delivery formulations, with 2 orders of magnitude higher tolerance before eukaryotic membrane disruption (erythrocyte hemolysis). D2S also exhibited lipopolysaccharide (LPS) scavenging activity resulting in significant inhibition of LPS-mediated activation of human neutrophils with 85 and 65% lower interleukin-8 released at 12 and 24 h, respectively. Mixtures of DS and D2S can improve transfection activity over common lipofection reagents, and D2S has strong antimicrobial action suited for the suppression of bacterial-mediated inflammation. PMID:20573781

  5. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    PubMed Central

    Martins, Alessandro F.; Facchi, Suelen P.; Follmann, Heveline D. M.; Pereira, Antonio G. B.; Rubira, Adley F.; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan are required to enhance its solubility and broaden the spectrum of its applications, including as biocide. Quaternization on the nitrogen atom of chitosan is the most used route to render water-soluble chitosan-derivatives, especially at physiological pH conditions. Recent reports in the literature demonstrate that such chitosan-derivatives present excellent antimicrobial activity due to permanent positive charge on nitrogen atoms side-bonded to the polymer backbone. This review presents some relevant work regarding the use of quaternized chitosan-derivatives obtained by different synthetic paths in applications as antimicrobial agents. PMID:25402643

  6. Comparative study of volatile oil content and antimicrobial activity of pecan cultivars growing in Egypt.

    PubMed

    El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H

    2013-11-01

    The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.

  7. Antimicrobial Activity of Medicated Soaps Commonly Used By Dar es Salaam Residents in Tanzania.

    PubMed

    Mwambete, K D; Lyombe, F

    2011-01-01

    An in vitro evaluation of the anti-microbial activity of medicated soaps was conducted using ditch-plate and hand washing techniques. Strains of reference microbes namely Candida albicans (ATCC90028), Staphylococcus aureus (ATCC25923), Pseudomonas aureginosa (ATCC27853) and Escherichia coli (ATCC25922) were tested at three different soaps' concentrations (1.0, 4.0 and 8.0 mg/ml). A total of 16 medicated soaps were assayed for their antimicrobial efficacy. Of these, 13 were medicated and 3 non-medicated soaps, which served as control. Ciprofloxacin and ketaconazole were employed as positive controls. Label disclosure for the soaps' ingredients and other relevant information were absorbed. The most common antimicrobial active ingredients were triclosan, trichloroxylenol and trichlorocarbanilide. ANOVA for means of zones of inhibition revealed variability of antimicrobial activity among the medicated soaps. Positive correlation (r=0.318; P<0.01) between zones of inhibition and soaps' concentrations was evidenced. Hand washing frequencies positively correlated with microbial counts. Roberts(®) soap exhibited the largest zone of inhibition (34 mm) on S. aureus. Candida albicans was the least susceptible microbe. Regency(®) and Dalan(®) exhibited the least zone of inhibition on the tested bacteria. Protex(®), Roberts(®), Family(®) and Protector(®) were equally effective (P<0.01) against S. aureus. In conclusion, majority of the assayed medicated soaps have satisfactory antibacterial activity; though lack antifungal effect with exception of Linda(®) liquid soap. The hand washing technique has proved to be inappropriate for evaluation of soaps' antimicrobial efficacy due to presence of the skin microflora.

  8. Antimicrobial Activity of Medicated Soaps Commonly Used By Dar es Salaam Residents in Tanzania

    PubMed Central

    Mwambete, K. D.; Lyombe, F.

    2011-01-01

    An in vitro evaluation of the anti-microbial activity of medicated soaps was conducted using ditch-plate and hand washing techniques. Strains of reference microbes namely Candida albicans (ATCC90028), Staphylococcus aureus (ATCC25923), Pseudomonas aureginosa (ATCC27853) and Escherichia coli (ATCC25922) were tested at three different soaps’ concentrations (1.0, 4.0 and 8.0 mg/ml). A total of 16 medicated soaps were assayed for their antimicrobial efficacy. Of these, 13 were medicated and 3 non-medicated soaps, which served as control. Ciprofloxacin and ketaconazole were employed as positive controls. Label disclosure for the soaps’ ingredients and other relevant information were absorbed. The most common antimicrobial active ingredients were triclosan, trichloroxylenol and trichlorocarbanilide. ANOVA for means of zones of inhibition revealed variability of antimicrobial activity among the medicated soaps. Positive correlation (r=0.318; P<0.01) between zones of inhibition and soaps’ concentrations was evidenced. Hand washing frequencies positively correlated with microbial counts. Roberts® soap exhibited the largest zone of inhibition (34 mm) on S. aureus. Candida albicans was the least susceptible microbe. Regency® and Dalan® exhibited the least zone of inhibition on the tested bacteria. Protex®, Roberts®, Family® and Protector® were equally effective (P<0.01) against S. aureus. In conclusion, majority of the assayed medicated soaps have satisfactory antibacterial activity; though lack antifungal effect with exception of Linda® liquid soap. The hand washing technique has proved to be inappropriate for evaluation of soaps’ antimicrobial efficacy due to presence of the skin microflora. PMID:22131630

  9. Antimicrobial activity of the solvent fractions from Bulbine natalensis Tuber.

    PubMed

    Yakubu, M T; Mostafa, M; Ashafa, A O T; Afolayan, A J

    2012-01-01

    Bulbine natalensis Baker has been acclaimed to be used as an antimicrobial agent in the folklore medicine of South Africa without scientific evidence to substantiate or refute this claim. In view of this, the in vitro antimicrobial activity of solvent fractions (ethanol, ethyl acetate, n-butanol and water) from Bulbine natalensis Tuber against 4 Gram positive and 12 Gram negative bacteria as well as 3 fungal species were investigated using agar dilution. The ethanolic extract, n-butanol and ethyl acetate fractions inhibited 75, 87.5 and 100% respectively of the bacterial species in this study. The ethanolic, n-butanol and ethyl acetate fractions produced growth inhibition at MIC range of 1-10, 3-10 as well as 1 and 5 mg/ml respectively whereas the water fraction did not inhibit the growth of any of the bacterial species. Again, it was only the ethyl acetate fraction that inhibited the growth of Shigelli flexneri, Staphyloccus aureus and Escherichia coli. The ethanolic, ethyl acetate and n-butanolic fractions dose dependently inhibited the growth of Aspergillus niger and A. flavus whereas the water fraction produced 100% growth inhibition of the Aspergillus species at all the doses investigated. In contrast, no growth inhibition was produced on Candida albicans. The growth inhibition produced by the solvent fractions of B. natalensis Tuber in this study thus justifies the acclaimed use of the plant as an antimicrobial agent. The ethyl acetate fraction was the most potent.

  10. Effect of substituting arginine and lysine with alanine on antimicrobial activity and the mechanism of action of a cationic dodecapeptide (CL(14-25)), a partial sequence of cyanate lyase from rice.

    PubMed

    Taniguchi, Masayuki; Takahashi, Nobuteru; Takayanagi, Tomohiro; Ikeda, Atsuo; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2014-01-01

    The antimicrobial activity of analogs obtained by substituting arginine and lysine in CL(14-25), a cationic α-helical dodecapeptide, with alanine against Porphyromonas gingivalis, a periodontal pathogen, varied significantly depending on the number and position of cationic amino acids. The alanine-substituted analogs had no hemolytic activity, even at a concentration of 1 mM. The antimicrobial activities of CL(K20A) and CL(K20A, K25A) were 3.8-fold and 9.1-fold higher, respectively, than that of CL(14-25). The antimicrobial activity of CL(R15A) was slightly lower than that of CL(14-25), suggesting that arginine at position 15 is not essential but is important for the antimicrobial activity. The experiments in which the alanine-substituted analogs bearing the replacement of arginine at position 24 and/or lysine at position 25 were used showed that arginine at position 24 was crucial for the antimicrobial activity whenever lysine at position 25 was substituted with alanine. Helical wheel projections of the alanine-substituted analogs indicate that the hydrophobicity in the vicinity of leucine at position 16 and alanines at positions 18 and/or 21 increased by substituting lysine at positions 20 and 25 with alanine, respectively. The degrees of diSC3 -5 release from P. gingivalis cells and disruption of GUVs induced by the alanine-substituted analogs with different positive charges were not closely related to their antimicrobial activities. The enhanced antimicrobial activities of the alanine-substituted analogs appear to be mainly attributable to the changes in properties such as hydrophobicity and amphipathic propensity due to alanine substitution and not to their extents of positive charge (cationicity).

  11. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects

    PubMed Central

    Forouzanfar, Fatemeh; Bazzaz, Bibi Sedigheh Fazly; Hosseinzadeh, Hossein

    2014-01-01

    Nigella sativa seeds have wide therapeutic effects and have been reported to have significant effects against many ailments such as skin diseases, jaundice, gastrointestinal problems, anorexia, conjunctivitis, dyspepsia, rheumatism, diabetes, hypertension, intrinsic hemorrhage, paralysis, amenorrhea, anorexia, asthma, cough, bronchitis, headache, fever, influenza and eczema. Thymoquinone (TQ) is one of the most active constituent and has different beneficial properties. Focus on antimicrobial effects, different extracts of N. sativa as well as TQ, have a broad antimicrobial spectrum including Gram-negative, Gram-positive bacteria, viruses, parasites, schistosoma and fungi. The effectiveness of N. sativa seeds and TQ is variable and depends on species of target microorganisms. The present review paper tries to describe all antimicrobial activities that have been carried out by various researchers. PMID:25859296

  12. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity

    PubMed Central

    2017-01-01

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity (“flower diagrams”). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students. PMID:28381885

  13. Mucin Binding Reduces Colistin Antimicrobial Activity

    PubMed Central

    Huang, Johnny X.; Blaskovich, Mark A. T.; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G.; Butler, Mark S.

    2015-01-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance. PMID:26169405

  14. Mucin Binding Reduces Colistin Antimicrobial Activity.

    PubMed

    Huang, Johnny X; Blaskovich, Mark A T; Pelingon, Ruby; Ramu, Soumya; Kavanagh, Angela; Elliott, Alysha G; Butler, Mark S; Montgomery, A Bruce; Cooper, Matthew A

    2015-10-01

    Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.

  15. Synthesis, antimicrobial, and antiproliferative activities of substituted phenylfuranylnicotinamidines

    PubMed Central

    Youssef, Magdy M; Arafa, Reem K; Ismail, Mohamed A

    2016-01-01

    This research work deals with the design and synthesis of a series of substituted phenylfuranylnicotinamidines 4a–i. Facile preparation of the target compounds was achieved by Suzuki coupling-based synthesis of the nitrile precursors 3a–i, followed by their conversion to the corresponding nicotinamidines 4a–i utilizing LiN(TMS)2. The antimicrobial activities of the newly synthesized nicotinamidine derivatives were evaluated against the Gram-negative bacterial strains Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterial strains Staphylococcus aureus and Bacillus megaterium. The minimum inhibitory concentration values of nicotinamidines against all tested microorganisms were in the range of 10–20 μM. In specific, compounds 4a and 4b showed excellent minimum inhibitory concentration values of 10 μM against Staphylococcus aureus bacterial strain and were similar to ampicillin as an antibacterial reference. On the other hand, selected nicotinamidine derivatives were biologically screened for their cytotoxic activities against a panel of 60 cell lines representing nine types of human cancer at a single high dose at National Cancer Institute, Bethesda, MD, USA. Nicotinamidines showing promising activities were further assessed in a five-dose screening assay to determine their compound concentration causing 50% growth inhibition of tested cell (GI50), compound concentration causing 100% growth inhibition of tested cell (TGI), and compound concentration causing 50% lethality of tested cell (LC50) values. Structure-activity relationship studies demonstrated that the activity of members of this series can be modulated from cytostatic to cytotoxic based on the substitution pattern/nature on the terminal phenyl ring. The most active compound was found to be 4e displaying a submicromolar GI50 value of 0.83 μM, with TGI and LC50 values of 2.51 and 100 μM, respectively. Finally, the possible underlying mechanism of action of this series of

  16. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection

    PubMed Central

    Kim, Hyun-Shik; Woo Chang, Seok; Baek, Seung-Ho; Han, Seung Hyun; Lee, Yoon; Zhu, Qiang; Kum, Kee-Yeon

    2013-01-01

    A previous study demonstrated that alexidine has greater affinity for the major virulence factors of bacteria than chlorhexidine. The aim of this study was to compare the antimicrobial activity of 1% alexidine with that of 2% chlorhexidine using Enterococcus faecalis-infected dentin blocks. Sixty bovine dentin blocks were prepared and randomly divided into six groups of 10 each. E. faecalis was inoculated on 60 dentin blocks using the Luppens apparatus for 24 h and then the dentin blocks were soaked in 2% chlorhexidine or 1% alexidine solutions for 5 and 10 min, respectively. Sterile saline was used as a control. The antimicrobial efficacy was assessed by counting the number of bacteria adhering to the dentin surface and observing the degradation of bacterial shape or membrane rupture under a scanning electron microscope. Significantly fewer bacteria were observed in the 2% chlorhexidine- or 1% alexidine-soaked groups than in the control group (P<0.05). However, there was no significant difference in the number of bacteria adhering to the dentinal surface between the two experimental groups or between the two soaking time groups (P>0.05). Ruptured or antiseptic-attached bacteria were more frequently observed in the 10-min-soaked chlorhexidine and alexidine groups than in the 5-min-soaked chlorhexidine and alexidine groups. In conclusion, 10-min soaking with 1% alexidine or 2% chlorhexidine can be effective against E. faecalis infection. PMID:23492900

  17. Anti-inflammatory, Antioxidant and Antimicrobial Effects of Artemisinin Extracts from Artemisia annua L.

    PubMed Central

    Kim, Wan-Su; Choi, Woo Jin; Lee, Sunwoo; Kim, Woo Joong; Lee, Dong Chae; Sohn, Uy Dong; Shin, Hyoung-Shik

    2015-01-01

    The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases. PMID:25605993

  18. Antimicrobial activity of Willowherb (Epilobium angustifolium L.) leaves and flowers.

    PubMed

    Kosalec, Ivan; Kopjar, Nevenka; Kremer, Dario

    2013-08-01

    Since the aetiology of benign prostatic hyperplasia (BHP) is still unknown, the use of medicinal herb extracts and products prepared thereof are recommended due to their antimicrobial activity, especially during early stages of BHP. A comparison was performed of the in vitro antimicrobial activity (using broth microdilution assay) of flowers and leaves of willowherb (Epilobium angustifolium L., Onagraceae) from Mt. Velebit (Croatia). The strains (standard ATCC and clinical isolates) of Staphylococcus aureus (including MRSA), Bacillus subtilis, Escherichia coli (including p-fimbriae positive strain), Pseudomonas aeruginosa, Proteus mirabilis, Candida albicans, C. tropicalis, C. dubliniensis and Saccharomyces cerevisiae were susceptible with MIC values between 4.6±0.2 and 18.2±0.8 mg/mL. The results of in vitro studies showed that no differences were found in the antimicrobial activity between the ethanol extracts of leaves and flowers of E. angustifolium. Using the quantitative fluorescent assay with ethidium bromide and acridine orange, the viability of C. albicans ATCC 10231 was assessed after in vitro exposure to E. angustifolium leaf and flower ethanol extracts. Apoptosis of C. albicans blastospores dominated over necrosis in all treated samples after short-term exposure with 6 to 12 mg/mL of extracts. In addition to the valuable biological activity of E. angustifolium extracts, the data obtained from the in vitro diffusion, the dilution assay and antifungal viability fluorescent assay suggest that leaf and flower ethanol extracts of E. angustifolium L. are a promising complementary herbal therapy of conditions such as BHP.

  19. Antimicrobial and antioxidant activities of alcoholic extracts of Rumex dentatus L.

    PubMed

    Humeera, Nisa; Kamili, Azra N; Bandh, Suhaib A; Amin, Shajr-ul-; Lone, Bashir A; Gousia, Nisa

    2013-04-01

    In-vitro antimicrobial and antioxidant activities of various concentrations ranging from 150 to 500 μg/ml of alcoholic (methanol and ethanol) extracts of Rumex dentatus were analyzed on different clinical bacterial strains (Shigella flexneri, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus) and fungal strains (Aspergillus versicolor, Aspergillus flavus, Acremonium spp., Penicillium dimorphosporum, Candida albicans, Candida kruesie, Candida parapsilosis) using agar disk diffusion method and broth dilution method (MIC and MBC determination) for antimicrobial activity and DPPH (1,1-diphenyl-2-picrylhydrazyl) assay, Riboflavin photo-oxidation assay, deoxyribose assay, lipid peroxidation assay for antioxidant activity. The extracts showed maximum inhibitory effect against K. pneumonia and P. aeruginosa with no activity against S. typhimurium from among the bacterial strains while as in case of the fungal strains the maximum effect was observed against C. albicans by both the extracts. MIC and MBC values determined for active fractions of the extracts against some bacterial strains (S. flexneri, K. pneumonia and E. coli) revealed that the test organisms were inhibited by all the extracts with methanol showing lower values of both MIC and MBC indicating it as a better antimicrobial agent. The antioxidant activity showed that the extracts exhibited scavenging effect in concentration-dependent manner on superoxide anion radicals and hydroxyl radicals leading to the conclusion that the plant has got a broad spectrum antimicrobial and antioxidant activity and could be a potential alternative for treating various diseases.

  20. Antimicrobial activity of phenolics and glucosinolate hydrolysis products and their synergy with streptomycin against pathogenic bacteria.

    PubMed

    Saavedra, Maria J; Borges, Anabela; Dias, Carla; Aires, Alfredo; Bennett, Richard N; Rosa, Eduardo S; Simões, Manuel

    2010-05-01

    The purpose of the present study was to evaluate the in vitro antibacterial effects of different classes of important and common dietary phytochemicals (5 simple phenolics - tyrosol, gallic acid, caffeic acid, ferulic acid, and chlorogenic acid; chalcone - phloridzin; flavan-3-ol - (-) epicatechin; seco-iridoid - oleuropein glucoside; 3 glucosinolate hydrolysis products - allylisothiocyanate, benzylisothiocyanate and 2-phenylethylisothiocyanate) against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus. Another objective of this study was to evaluate the effects of dual combinations of streptomycin with the different phytochemicals on antibacterial activity. A disc diffusion assay was used to evaluate the antibacterial activity of the phytochemicals and 3 standard antibiotics (ciprofloxacin, gentamicin and streptomycin) against the four bacteria. The antimicrobial activity of single compounds and dual combinations (streptomycin-phytochemicals) were quantitatively assessed by measuring the inhibitory halos. The results showed that all of the isothiocyanates had significant antimicrobial activities, while the phenolics were much less efficient. No antimicrobial activity was observed with phloridzin. In general P. aeruginosa was the most sensitive microorganism and L. monocytogenes the most resistant. The application of dual combinations demonstrated synergy between streptomycin and gallic acid, ferulic acid, chlorogenic acid, allylisothiocyanate and 2-phenylethylisothiocyanate against the Gram-negative bacteria. In conclusion, phytochemical products and more specifically the isothiocyanates were effective inhibitors of the in vitro growth of the Gram-negative and Gram-positive pathogenic bacteria. Moreover, they can act synergistically with less efficient antibiotics to control bacterial growth.

  1. Photo-activated DNA binding and antimicrobial activities of furoquinoline and pyranoquinolone alkaloids from rutaceae.

    PubMed

    Hanawa, Fujinori; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros

    2004-06-01

    To find novel photo-active compounds of potential use in photochemotherapy from higher plants, photo-activated antimicrobial and DNA binding activities of the furoquinolines, skimmianine, kokusaginine, and haplopine, and a pyranoquinolone, flindersine, from two species of Rutaceae plants were investigated. TLC overlay assays against a methichillin-resistant strain of Staphylococcus aureus and Candida albicans were employed to test antimicrobial properties. All of the tested compounds showed photo-activated antimicrobial activity against S. aureus in the order of kokusaginine > haplopine, flindersine > skimmianine. Weaker activity was found for C. albicans. Photo-activated DNA binding activity of these compounds was investigated by a method using restriction enzymes and a specially designed 1.5 kb DNA fragment. Kokusaginine showed inhibition against all of the 16 restriction enzymes. Haplopine showed a similar inhibition pattern but the binding activity against Asc I and Sma I with restriction sequences consisting only of G and C was very weak. Skimmianine showed binding activity against Xba I, BciV I, Sal I, Pst I, Sph I and Hind III, but very weak or no activity was found for the other restriction enzymes. A pyranoquinolone, flindersine, showed no activity against any of the restriction enzymes. Photo-activated DNA binding activity of furoquinolines was therefore in the order of kokusaginine > haplopine > skimmianine, which was the same order as their photo-activated antimicrobial activity against S. aureus. Therefore, it was concluded that DNA is one of the cellular targets for the furoquinolines to exert their biological activities, similar to psoralens. However, because flindersine showed photo-activated antimicrobial activity against S. aureus but did not show photo-activated DNA binding activity, it is clear that there are other cellular target components for this compound to exert photo-toxic activity.

  2. Antimicrobial Activity of the Essential Oil from the Leaves and Seeds of Coriandrum sativum toward Food-borne Pathogens.

    PubMed

    Rezaei, M; Karimi, F; Shariatifar, N; Mohammadpourfard, I; Shiri Malekabad, E

    2015-06-03

    The increasing incidence of drug-resistant pathogens and toxicity of existing antibacterial compounds has drawn attention toward the antimicrobial activity of natural products. The purpose of this study is to evaluate the antimicrobial activity of the essential oil of the leaves and seeds of Coriandrum sativum. The five strains of bacteria comprising Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, Salmonella enterica and Vibrio cholerae were used for the antibacterial tests. In this study, antimicrobial effects of the essential oil from the leaves and seeds of Coriandrum sativum are evaluated by determining the minimum inhibitory concentration (MIC), the inhibition zone and minimum bactericidal concentration (MBC). The essential oil from Coriandrum sativum was extracted by steam distillation. The results indicate that the antimicrobial activities against the five pathogens were in the range of 2.5- 320 µg/mL. Increase in essential oil concentration caused significant increase in inhibitory feature. The essential oil of the leaves and seeds of Coriandrum sativum showed antimicrobial activity against the food-borne pathogenic bacteria. Thus, its oil can be used as an alternative to synthetic food preservative without toxic effects. Also, it can be used in biotechnological fields as ingredients in antibiotics and the pharmaceutical industry. These results suggest that the essential oil of C sativum leaves and seeds may have potential use in pharmaceutical and food industries for preservatives or antimicrobial agents.

  3. Evaluation of three medicinal plants for anti-microbial activity.

    PubMed

    Pratap, Gowd M J S; Manoj, Kumar M G; Sai, Shankar A J; Sujatha, B; Sreedevi, E

    2012-07-01

    Herbal remedies have a long history of use for gum and tooth problems such as dental caries. The present microbiological study was carried out to evaluate the antimicrobial efficacy of three medicinal plants (Terminalia chebula Retz., Clitoria ternatea Linn., and Wedelia chinensis (Osbeck.) Merr.) on three pathogenic microorganisms in the oral cavity (Streptococcus mutans, Lactobacillus casei, and Staphylococcus aureus). Aqueous extract concentrations (5%, 10%, 25%, and 50%) were prepared from the fruits of Terminalia chebula, flowers of Clitoria ternatea, and leaves of Wedelia chinensis. The antimicrobial efficacy of the aqueous extract concentrations of each plant was tested using agar well diffusion method and the size of the inhibition zone was measured in millimeters. The results obtained showed that the diameter of zone of inhibition increased with increase in concentration of extract and the antimicrobial efficacy of the aqueous extracts of the three plants was observed in the increasing order - Wedelia chinensis < Clitoria ternatea < Terminalia chebula. It can be concluded that the tested extracts of all the three plants were effective against dental caries causing bacteria.

  4. Antimicrobial activity of tea as affected by the degree of fermentation and manufacturing season.

    PubMed

    Chou, C C; Lin, L L; Chung, K T

    1999-05-01

    Bacillus subtilis, Escherichia coli, Proteus vulgaris, Pseudomonas fluorescens, Salmonella sp. and Staphylococcus aureus were used to test the antimicrobial activity of tea flush extract and extracts of various tea products. Among the six test organisms, P. fluorescens was the most sensitive to the extracts, while B. subtilis was the least sensitive. In general, antimicrobial activity decreased when the extents of tea fermentation increased. The antimicrobial activities of tea flush extract and extracts of tea products with different extents of fermentation varied with test organisms. Tea flush and Green tea, the unfermented tea, exerted the strongest antimicrobial activity followed by the partially fermented tea products such as Longjing, Tieh-Kuan-Ying, Paochung, and Oolong teas. On the other hand, Black tea, the completely fermented tea, showed the least antimicrobial activity. It was also noted that extracts of Oolong tea prepared in summer exhibited the strongest antimicrobial activity, followed by those prepared in spring, winter and fall.

  5. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides.

    PubMed

    Greber, Katarzyna E; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  6. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides

    PubMed Central

    Greber, Katarzyna E.; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  7. Antimicrobial activity of some Salvia species essential oils from Iran.

    PubMed

    Yousefzadi, Morteza; Sonboli, Ali; Karimic, Farah; Ebrahimi, Samad Nejad; Asghari, Behvar; Zeinalia, Amineh

    2007-01-01

    The aerial parts of Salvia multicaulis, S. sclarea and S. verticillata were collected at full flowering stage. The essential oils were isolated by hydrodistillation and analyzed by combination of capillary GC and GC-MS. The in vitro antimicrobial activity of the essential oils were studied against eight Gram-positive and Gram-negative bacteria (Bacillus subtilis, Bacillus pumulis, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae) and three fungi (Candida albicans, Saccharomyces cerevisiae and Aspergillus niger). The results of antibacterial activity tests of the essential oils according to the disc diffusion method and MIC values indicated that all the samples have moderate to high inhibitory activity against the tested bacteria except for P. aeruginosa which was totally resistant. In contrast to antibacterial activity, the oils exhibited no or slight antifungal property, in which only the oil of S. multicaulis showed weak activity against two tested yeasts, C. albicans and S. cerevisiae.

  8. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues.

    PubMed

    Stompor, Monika; Żarowska, Barbara

    2016-05-11

    The objective of this study was to evaluate the antimicrobial activity of structural analogues of xanthohumol 1, a flavonoid compound found in hops (Humulus lupulus). The agar-diffusion method using filter paper disks was applied. Biological tests performed for selected strains of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, fungi (Alternaria sp.), and yeasts (Rhodotorula rubra, Candida albicans) revealed that compounds with at least one hydroxyl group-all of them have it at the C-4 position-demonstrated good activity. Our research showed that the strain S. aureus was more sensitive to chalcones than to the isomers in which the heterocyclic ring C is closed (flavanones). The strain R. rubra was moderately sensitive to only one compound: 4-hydroxy-4'-methoxychalcone 8. Loss of the hydroxyl group in the B-ring of 4'-methoxychalcones or its replacement by a halogen atom (-Cl, -Br), nitro group (-NO₂), ethoxy group (-OCH₂CH₃), or aliphatic substituent (-CH₃, -CH₂CH₃) resulted in the loss of antimicrobial activity towards both R. rubra yeast and S. aureus bacteria. Xanthohumol 1, naringenin 5, and chalconaringenin 7 inhibited growth of S. aureus, whereas 4-hydroxy-4'-methoxychalcone 8 was active towards two strains: S. aureus and R. rubra.

  9. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains

    PubMed Central

    Torres, Ieda Maria Sapateiro; Bento, Etiene Barbosa; Almeida, Larissa da Cunha; de Sá, Luisa Zaiden Carvalho Martins; Lima, Eliana Martins

    2012-01-01

    Pseudomonas aeruginosa is an opportunistic microorganism with the ability to respond to a wide variety of environmental changes, exhibiting a high intrinsic resistance to a number of antimicrobial agents. This low susceptibility to antimicrobial substances is primarily due to the low permeability of its outer membrane, efflux mechanisms and the synthesis of enzymes that promote the degradation of these drugs. Cephalosporins, particularty ceftazidime and cefepime are effective against P. aeruginosa, however, its increasing resistance has limited the usage of these antibiotics. Encapsulating antimicrobial drugs into unilamellar liposomes is an approach that has been investigated in order to overcome microorganism resistance. In this study, antimicrobial activity of liposomal ceftazidime and cefepime against P. aeruginosa ATCC 27853 and P. aeruginosa SPM-1 was compared to that of the free drugs. Liposomal characterization included diameter, encapsulation efficiency and stability. Minimum Inhibitory Concentration (MIC) was determined for free and liposomal forms of both drugs. Minimum Bactericidal Concentration (MBC) was determined at concentrations 1, 2 and 4 times MIC. Average diameter of liposomes was 131.88 nm and encapsulation efficiency for cefepime and ceftazidime were 2.29% end 5.77%, respectively. Improved stability was obtained when liposome formulations were prepared with a 50% molar ratio for cholesterol in relation to the phospholipid. MIC for liposomal antibiotics for both drugs were 50% lower than that of the free drug, demonstrating that liposomal drug delivery systems may contribute to increase the antibacterial activity of these drugs. PMID:24031917

  10. Novel composite plastics containing silver(I) acylpyrazolonato additives display potent antimicrobial activity by contact.

    PubMed

    Marchetti, Fabio; Palmucci, Jessica; Pettinari, Claudio; Pettinari, Riccardo; Condello, Francesca; Ferraro, Stefano; Marangoni, Mirko; Crispini, Alessandra; Scuri, Stefania; Grappasonni, Iolanda; Cocchioni, Mario; Nabissi, Massimo; Chierotti, Michele R; Gobetto, Roberto

    2015-01-07

    New silver(I) acylpyrazolonato derivatives displaying a mononuclear, polynuclear, or ionic nature, as a function of the ancillary azole ligands used in the synthesis, have been fully characterized by thermal analysis, solution NMR spectroscopy, solid-state IR and NMR spectroscopies, and X-ray diffraction techniques. These derivatives have been embedded in polyethylene (PE) matrix, and the antimicrobial activity of the composite materials has been tested against three bacterial strains (E. coli, P. aeruginosa, and S. aureus): Most of the composites show antimicrobial action comparable to PE embedded with AgNO3 . Tests by contact and release tests for specific migration of silver from PE composites clearly indicate that, at least in the case of the PE, for composites containing polynuclear silver(I) additives, the antimicrobial action is exerted by contact, without release of silver ions. Moreover, PE composites can be re-used several times, displaying the same antimicrobial activity. Membrane permeabilization studies and induced reactive oxygen species (ROS) generation tests confirm the disorganization of bacterial cell membranes. The cytotoxic effect, evaluated in CD34(+) cells by MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazoliumbromide) and CFU (colony forming units) assays, indicates that the PE composites do not induce cytotoxicity in human cells. Studies of ecotoxicity, based on the test of Daphnia magna, confirm tolerability of the PE composites by higher organisms and exclude the release of Ag(+) ions in sufficient amounts to affect water environment.

  11. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis

    PubMed Central

    Blower, Ryan J.; Barksdale, Stephanie M.; van Hoek, Monique L.

    2015-01-01

    Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. PMID:26196513

  12. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  13. Antimicrobial Activities of Three Medicinal Plants and Investigation of Flavonoids of Tripleurospermum disciforme

    PubMed Central

    Tofighi, Zahra; Molazem, Maryam; Doostdar, Behnaz; Taban, Parisa; Shahverdi, Ahmad Reza; Samadi, Nasrin; Yassa, Narguess

    2015-01-01

    Rosa damascena, Tripleurospermum disciforme and Securigera securidaca were used as disinfectant agents and for treatment of some disease in folk medicine of Iran. The antimicrobial effects of different fractions of seeds extract of S. securidaca, petals extract of R. damascena and aerial parts extract of T. disciforme were examined against some gram positive, gram negative and fungi by cup plate diffusion method. The petroleum ether and chloroform fractions of S. securidaca showed antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa, while its methanol fraction had no antibacterial effects. R. damascena petals extract demonstrated antibacterial activities against Bacillus cereus, Staphylococcus epidermidis, S. aureus and Pseudomonas aeruginosa. T. disciforme aerial parts extract exhibited antimicrobial effects only against S. aureus and S. epidermidis. None of the fractions had any antifungal activities. Therefore, present study confirmed utility of these plants as disinfectant agents. Six flavonoids were isolated from T. disciforme: Luteolin, Quercetin-7-O-glucoside, Kaempferol, Kaempferol-7-O-glucoside, Apigenin and Apigenin-7-O-glucoside. The flavonoids and the antimicrobial activity of T. disciforme are reported for the first time. PMID:25561928

  14. Antimicrobial activity of chitosan coatings and films against Listeria monocytogenes on black radish.

    PubMed

    Jovanović, Gordana D; Klaus, Anita S; Nikšić, Miomir P

    2016-01-01

    The antibacterial activity of chitosan coatings prepared with acetic or lactic acid, as well as of composite chitosan-gelatin films prepared with essential oils, was evaluated in fresh shredded black radish samples inoculated with Listeria monocytogenes ATCC 19115 and L. monocytogenes ATCC 19112 during seven days of storage at 4°C. The chitosan coating prepared with acetic acid showed the most effective antibacterial activity. All tested formulations of chitosan films exhibited strong antimicrobial activity on the growth of L. monocytogenes on black radish, although a higher inhibition of pathogens was achieved at higher concentrations of chitosan. The antimicrobial effect of chitosan films was even more pronounced with the addition of essential oils. Chitosan-gelatin films with thyme essential oils showed the most effective antimicrobial activity. A reduction of 2.4log10CFU/g for L. monocytogenes ATCC 19115 and 2.1log10CFU/g for L. monocytogenes ATCC 19112 was achieved in the presence of 1% chitosan film containing 0.2% of thyme essential oil after 24h of storage.

  15. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    PubMed

    Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta

    2008-01-01

    The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  16. Synthesis of Cu/CNTs nanocomposites for antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Singhal, Sunil Kumar; Lal, Maneet; Lata; Ranjan Kabi, Soumya; Behari Mathur, Rakesh

    2012-12-01

    We report a facile method for the synthesis of Cu/multi-walled carbon nanotubes (CNTs) composite powder employing a chemical reduction method followed by high-energy ball milling involving the use of sodium borohydride as a reducing agent and copper sulphate as the precursor material. Control of oxidation of Cu nanoparticles (CuNPs) is a key factor in the synthesis of Cu/CNTs nanocomposites via chemical reduction methods and other methods. To overcome this problem we have applied a new facile rapid synthesis method using a combination of molecular-level mixing followed by high-energy ball milling to produce mostly CuNPs. X-ray diffraction results indicated the presence of mostly CuNPs in composite powder. Scanning electron microscopy and high resolution transmission electron microscopy (HRTEM) was used to ascertain the dispersion of CNTs in Cu matrix. Most of the CuNPs synthesized in the present work had a particle size ranging from 20-50 nm as revealed by HRTEM characterization. Moreover, the CNTs were also found to be homogeneously dispersed in Cu matrix. The Cu/CNTs nanocomposite has a wide range of applications from fuel cells to electronic chip components. In the present work we have investigated the antimicrobial activity of Cu powder and varying concentrations of Cu/CNTs nanocomposite against gram negative Providencia sp. bacteria, and gram positive Bacillus sp. bacteria. These findings suggest that Cu/CNTs nanocomposite can be used in antibacterial controlling systems and as an effective growth inhibitor in the case of various microorganisms.

  17. Distinct antimicrobial activities in aphid galls on Pistacia atlantica

    PubMed Central

    Yoram, Gerchman; Inbar, Moseh

    2011-01-01

    Gall-formers are parasitic organisms that manipulate plant traits for their own benefit. Galls have been shown to protect their inhabitants from natural enemies such as predators and parasitoids by various chemical and mechanical means. Much less attention, however, has been given to the possibility of defense against microbial pathogens in the humid and nutrient-rich gall environment. We found that the large, cauliflower-shaped, galls induced by the aphid Slavum wertheimae on buds of Pistacia atlantica trees express antibacterial and antifungal activities distinct from those found in leaves. Antibacterial activity was especially profound against Bacillus spp (a genus of many known insect pathogen) and against Pseudomonas aeruginosa (a known plant pathogen). Antifungal activity was also demonstrated against multiple filamentous fungi. Our results provide evidence for the protective antimicrobial role of galls. This remarkable antibacterial and antifungal activity in the galls of S. wertheimae may be of agricultural and pharmaceutical value. PMID:22105034

  18. Isolation, identification and antimicrobial activity of propolis-associated fungi.

    PubMed

    de Souza, Giovanni Gontijo; Pfenning, Ludwig Heinrich; de Moura, Fabiana; Salgado, Mírian; Takahashi, Jacqueline Aparecida

    2013-01-01

    Propolis is a natural product widely known for its medicinal properties. In this work, fungi present on propolis samples were isolated, identified and tested for the production of antimicrobial metabolites. Twenty-two fungal isolates were obtained, some of which were identified as Alternaria alternata, Aspergillus flavus, Bipolaris hawaiiensis, Fusarium merismoides, Lasiodiplodia theobromae, Penicillium citrinum, Penicillium crustosum, Penicillium janthinellum, Penicillium purpurogenum, Pestalotiopsis palustris, Tetracoccosporium paxianum and Trichoderma koningii. These fungi were grown in liquid media to obtain crude extracts that were evaluated for their antibiotic activity against pathogenic bacteria, yeast and Cladosporium cladosporioides and A. flavus. The most active extract was obtained from L. theobromae (minimum inhibitory concentration = 64 μg/mL against Listeria monocitogenes). Some extracts showed to be more active than the positive control in the inhibition of Staphylococcus aureus and L. monocitogenes. Therefore, propolis is a promising source of fungi, which produces active agents against relevant food poisoning bacteria and crop-associated fungi.

  19. Enhancing antibiofilm efficacy in antimicrobial photodynamic therapy: effect of microbubbles

    NASA Astrophysics Data System (ADS)

    Kishen, Anil; George, Saji

    2013-02-01

    In this study, we tested the hypothesis that a microbubble containing photosensitizer when activated with light would enable comprehensive disinfection of bacterial biofilms in infected root dentin by antimicrobial photodynamic therapy (APDT). Experiments were conducted in two stages. In the stage-1, microbubble containing photosensitizing formulation was tested for its photochemical properties. In the stage-2, the efficacy of microbubble containing photosensitizing formulation was tested on in vitro infected root canal model, developed with monospecies biofilm models of Enterococcus faecalis on root dentin substrate. The findings from this study showed that the microbubble containing photosensitizing formulation was overall the most effective formulation for photooxidation, generation of singlet oxygen, and in disinfecting the biofilm bacteria in the infected root canal model. This modified photosensitizing formulation will have potential advantages in eliminating bacterial biofilms from infected root dentin.

  20. Antimicrobial, antioxidant, and antimutagenic activities of selected marine natural products and tobacco cembranoids.

    PubMed

    Aqil, Farrukh; Zahin, Maryam; El Sayed, Khalid A; Ahmad, Iqbal; Orabi, Khaled Y; Arif, Jamal M

    2011-04-01

    Multidrug resistance (MDR) in microorganisms is a cause of major concern for clinicians and pharmaceutical industries. Continuous development of new antimicrobial drugs with multiple targets and potentials is expected to efficiently combat MDR in these microorganisms. In a continued exploration of new antimicrobial drug leads, 11 marine natural products, semisynthetic, or related synthetic analogs (1-11) and two tobacco cembranoids (12 and 13) were screened for their antimicrobial, antioxidant, and antimutagenic activities. Eight compounds showed varying levels of both antibacterial and antifungal activities. Compounds such as 17-O-methyllatrunculin-A, verongiaquinol, (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol), and manzamine-A showed a broad spectrum of activity, inhibiting six of seven tested bacteria with zone of inhibition diameter from 9 to 30 mm. Four of these active compounds also showed antifungal activity. The findings of the in vitro time-kill assay of the most active compound, verongiaquinol, against Staphylococcus aureus indicated its subinhibitory effect at the level lower than the minimal inhibitory concentration (MIC) values (i.e., 2 and 4 µg/mL). At the MIC (8 µg/mL), bacterial cells were completely killed within 18 hours of incubation. DPPH free radical scavenging activity was demonstrated by five compounds in the range of 89.65-36.19% decolorization. Further, four compounds evaluated for their antimutagenic activity against the directly acting mutagens, methyl methanesulfonate and sodium azide, in Salmonella typhimurium strains, interestingly, showed no sign of mutagenicity. Verongiaquinol and manzamine A, in fact, reduced the mutagenicity by 50-75% at a dose of 5 µg/plate in different test strains. Our study seems to provide some novel antimicrobial leads with strong antioxidant potential and the associated ability of antimutagenicity.

  1. In vitro antimicrobial activity of Persian shallot (Allium hirtifolium).

    PubMed

    Soroush, Setareh; Taherikalani, Morovat; Asadollahi, Parisa; Asadollahi, Khairollah; Taran, Mojtaba; Emaneini, Mohammad; Alizadeh, Sajjad

    2012-01-01

    Allium hirtifolium is a Persian native plant grown in cool mountain slopes of Iran. It has been used as a spice in Iran for many years. According to the literature review, there are no considerable reports on the antimicrobial properties of this plant. In this study, the antimicrobial activity of Persian shallot hydroalcoholic extract and F1 fraction of the plant (containing amino acid derivatives and/or other cationic compounds) was investigated on some Gram positive cocci and bacilli, Gram negative bacilli, two protozoa, a yeast and a fungus. Excellent activity against Candida albicans (MIC = 64 microg/ml, MBC = 128 microg/ml), Leishmania infantum (MIC = 0.2 mg/ml on the first day of study) and Trichomonas vaginalis (MIC = 5 microg/ml in PSDE form) and a moderate activity against Bacillus spp and Pseudomonas aeroginosa (MIC = 128 microg/ml) was observed. The results showed that this plant contains some anti-trichomonas and anti-leishmania components.

  2. Essential oil composition and antimicrobial activity of Diplotaenia damavandica.

    PubMed

    Eftekhar, Fereshteh; Yousefzadi, Morteza; Azizian, Dina; Sonboli, Ali; Salehi, Peyman

    2005-01-01

    Antimicrobial activity of the essential oils obtained from leaves, root and the seeds of Diplotaenia damavandica Mozaffarian, Hedge & Lamond, an endemic plant to Iran, was determined against 10 microorganisms using the disk susceptibility test as well as measuring minimum inhibitory concentrations. The results showed that all three oils had antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. The essential oil from the leaves had the highest antimicrobial activity against all test microorganisms including the fungal strains. The essential oils compositions were analyzed and determined by GC and GC-MS. The oils analyses resulted in the identification of 16, 17 and 20 compounds representing 94.2%, 96.4% and 95.1% of the total oils, respectively. The main components of the leaf essential oils were (Z)-beta-ocimene (21.6%), alpha-phellandrene (21.3%) and terpinolene (20%). Dill apiol (30.1%) and gamma-terpinene (16.2%) were the main components of the root and seed essential oils, respectively.

  3. Mode of Action of Lactoperoxidase as Related to Its Antimicrobial Activity: A Review

    PubMed Central

    Bafort, F.; Parisi, O.; Perraudin, J.-P.; Jijakli, M. H.

    2014-01-01

    Lactoperoxidase is a member of the family of the mammalian heme peroxidases which have a broad spectrum of activity. Their best known effect is their antimicrobial activity that arouses much interest in in vivo and in vitro applications. In this context, the proper use of lactoperoxidase needs a good understanding of its mode of action, of the factors that favor or limit its activity, and of the features and properties of the active molecules. The first part of this review describes briefly the classification of mammalian peroxidases and their role in the human immune system and in host cell damage. The second part summarizes present knowledge on the mode of action of lactoperoxidase, with special focus on the characteristics to be taken into account for in vitro or in vivo antimicrobial use. The last part looks upon the characteristics of the active molecule produced by lactoperoxidase in the presence of thiocyanate and/or iodide with implication(s) on its antimicrobial activity. PMID:25309750

  4. Development of a method to quantify in vitro the synergistic activity of "natural" antimicrobials.

    PubMed

    Dufour, M; Simmonds, R S; Bremer, P J

    2003-08-25

    Despite numerous papers being published on the use of hurdle technology to control food-borne pathogens or spoilage organisms, there is no commonly accepted methodology to quantify the level of synergistic activity. This paper describes a method to quantify in vitro the synergistic activity of antibacterial agents against bacteria. Initially, a microtiter plate growth assay was used to determine the inhibitory concentrations of four "natural" antimicrobials (nisin, lauricidin, totarol, and the lactoperoxidase system (LPS)) against a panel of eight bacteria. Using the same microtiter system, the impact of various combinations of antimicrobials was assessed. The degree of synergy was based on the analysis of three criteria: (1) increase in lag phase, (2) reduction in culture density after 24 h, (3) and residual viability at 24 h. Only the lactoperoxidase system was active against all the Gram-positive and Gram-negative bacteria tested. Nisin, lauricidin, and totarol were only effective against the Gram-positive bacteria. The method successfully identified three combinations (nisin-lauricidin, LPS-nisin, and LPS-lauricidin) previously reported to have synergistic activity and highlighted the synergistic activity of two novel combinations (nisin-totarol and LPS-totarol). The development of a quick and reliable method to identify and quantify synergistic activity is a useful screening tool to establish preservative techniques that could have potential antimicrobial synergy in food-based systems.

  5. Antimicrobial activity of the synthetic peptide Lys-a1 against oral streptococci.

    PubMed

    da Silva, Bruno Rocha; de Freitas, Victor Aragão Abreu; Carneiro, Victor Alves; Arruda, Francisco Vassiliepe Sousa; Lorenzón, Esteban Nicolás; de Aguiar, Andréa Silvia Walter; Cilli, Eduardo Maffud; Cavada, Benildo Sousa; Teixeira, Edson Holanda

    2013-04-01

    The peptide LYS-[TRP(6)]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK-NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37°C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL(-1)). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes.

  6. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin.

    PubMed

    Narayanan, Aarthi; Neera; Mallesha; Ramana, Karna Venkata

    2013-07-01

    Biopolymers and biopreservatives produced by microorganisms play an essential role in food technology. Polyhydroxyalkanoates and bacteriocins produced by bacteria are promising components to safeguard the environment and for food preservation applications. Polyhydroxybutyrate (PHB)-based antimicrobial films were prepared incorporating eugenol, from 10 to 200 μg/g of PHB. The films were evaluated for antimicrobial activity against foodborne pathogens, spoilage bacteria, and fungi such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Bacillus cereus, Aspergillus flavus, Aspergillus niger, Penicillium sp., and Rhizopus sp. The synergistic antimicrobial activity of the films in the presence of crude pediocin was also investigated. The broth system containing pediocin (soluble form) as well as antimicrobial PHB film demonstrated an extended lag phase and a significant growth reduction at the end of 24 h against the bacteria. Crude pediocin alone could not elicit antifungal activity, while inhibition of growth and sporulation were observed in the presence of antimicrobial PHB film containing eugenol (80 μg/g) until 7 days in the case of molds, i.e., A. niger, A. flavus, Penicillium sp., and Rhizopus sp. in potato dextrose broth. In the present study, we identified that use of pediocin containing broth in conjunction with eugenol incorporated PHB film could function in synergized form, providing effective hurdle toward food contaminating microorganisms. Furthermore, tensile strength, percent crystallinity, melting point, percent elongation to break, glass transition temperature, and seal strength of the PHB film with and without eugenol incorporation were investigated. The migration of eugenol on exposure to different liquid food simulants was also analyzed using Fourier transform infrared spectroscopy. The study is expected to provide applications for pediocin in conjunction with eugenol containing PHB film to enhance the shelf life of foods in the

  7. Influence of Surface Morphology on the Antimicrobial Effect of Transition Metal Oxides in Polymer Surface.

    PubMed

    Oh, Yoo Jin; Hubauer-Brenner, Michael; Hinterdorfer, Peter

    2015-10-01

    In this study, the physical properties of transition metal oxide surfaces were examined using scanning probe microscopic (SPM) techniques for elucidating the antimicrobial activity of molybdenum trioxide (MoO3), tungsten trioxide (WO3), and zinc oxide (ZnO) embedded into the polymers thermoplastic polyurethane (TPU) and polypropylene (PP). We utilized atomic force microscopy (AFM) in the contact imaging mode and its derivative single-pass Kelvin probe force microscopy for investigating samples that were presumably identical in their compositions, but showed different antimicrobial activity in bacterial adhesion tests. Our results revealed that surfaces with larger roughness and higher surface potential variation showed stronger antimicrobial activities compared to smoother and homogeneously charge-distributed surfaces. In addition, capacitance gradient (dC/dZ) measurements were performed to elucidate the antimicrobial activity arising from the different dielectric behavior of the transition metal oxides in this heterogeneous polymer surface. We found that the nano-scale exposure of transition metal oxides on polymer surfaces provided strong antimicrobial effects. Applications arising from our studies will be useful for public and healthcare environments.

  8. Determination of antimicrobial activity and resistance to oxidation of moringa peregrina seed oil.

    PubMed

    Lalas, Stavros; Gortzi, Olga; Athanasiadis, Vasilios; Tsaknis, John; Chinou, Ioanna

    2012-02-24

    The antimicrobial activity of the oil extracted with n-hexane from the seeds of Moringa peregrina was tested against Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Candida albicans, C. tropicalis and C. glabrata. The oil proved effective against all of the tested microorganisms. Standard antibiotics (netilmycin, 5-flucytocine, intraconazole and 7-amino-4-methylcoumarin-3-acetic acid) were used for comparison. The resistance to oxidation of the extracted seed oil was also determined.

  9. In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles.

    PubMed

    Fernandes, João C; Tavaria, Freni K; Fonseca, Susana C; Ramos, Oscar S; Pintado, Manuela E; Malcata, F Xavier

    2010-02-01

    Antimicrobial finishing of textiles has been found to be an economical way to prevent (or treat) skin disorders. Hence, this research effort was aimed at elucidating the relationship between molecular weight (MW) of chitosan and its antimicrobial activity upon six dermal reference microorganisms, as well as the influence of the interactions with cotton fabrics on said activity. Using 3 chitosans with different MW, as well as two chitooligosaccharide (COS) mixtures, a relevant antimicrobial effect was observed by 24 h for the six microorganisms tested; it was apparent that the antimicrobial effect is strongly dependent on the type of target microorganism and on the MW of chitosan being higher for lower MW in the case of E. coli, K. pneumoniae and P. aeruginosa, and the reverse in the case of both Gram-positive bacteria. Furthermore, a strong anti-fungal effect was detectable upon C. albicans, resembling the action over Gram-positive bacteria. Interactions with cotton fabric resulted in a loss of COS activity when compared with cultured media, relative to the effect over Gram-negative bacteria. However, no significant differences for the efficacy of all the 5 compounds were observed by 4 h. The three chitosans possessed a higher antimicrobial activity when impregnated onto the fabric, and presented a similar effect on both Gram-positive bacteria and yeast, in either matrix. Pseudomonas aeruginosa showed to be the most resistant microorganism to all five compounds.

  10. Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms

    PubMed Central

    Basson, Nicolaas J; Grobler, Sias R

    2008-01-01

    Background Honey has been shown to have wound healing properties which can be ascribed to its antimicrobial activity. The antimicrobial activity can be effective against a broad spectrum of bacterial species especially those of medical importance. It has also been shown that there is considerable variation in the antimicrobial potency of different types of honey, which is impossible to predict. With this in mind we tested the antimicrobial activity of honeys produced from plants grown in South Africa for their antibacterial properties on selected standard strains of oral micro-organisms. Methods The honeys used were produced from the blossoms of Eucalyptus cladocalyx (Bluegum) trees, an indigenous South African plant Leucospermum cordifolium (Pincushion), a mixture of wild heather shrubs, mainly Erica species (Fynbos) and a Leptospermum scoparium (Manuka) honey. Only pure honey which had not been heated was used. The honeys were tested for their antimicrobial properties with a broth dilution method. Results Although the honeys produced some inhibitory effect on the growth of the micro-organisms, no exceptionally high activity occurred in the South African honeys. The carbohydrate concentration plays a key role in the antimicrobial activity of the honeys above 25%. However, these honeys do contain other antimicrobial properties that are effective against certain bacterial species at concentrations well below the hypertonic sugar concentration. The yeast C. albicans was more resistant to the honeys than the bacteria. The species S. anginosus and S. oralis were more sensitive to the honeys than the other test bacteria. Conclusion The honeys produced from indigenous wild flowers from South Africa had no exceptionally high activity that could afford medical grade status. PMID:18627601

  11. Synthesis and Antimicrobial Activity of 1,2-Benzothiazine Derivatives.

    PubMed

    Patel, Chandani; Bassin, Jatinder P; Scott, Mark; Flye, Jenna; Hunter, Ann P; Martin, Lee; Goyal, Madhu

    2016-06-30

    A number of 1,2-benzothiazines have been synthesized in a three-step process. Nine chalcones 1-9 bearing methyl, fluoro, chloro and bromo substituents were chlorosulfonated with chlorosulfonic acid to generate the chalcone sulfonyl chlorides 10-18. These were converted to the dibromo compounds 19-27 through reaction with bromine in glacial acetic acid. Compounds 19-27 were reacted with ammonia, methylamine, ethylamine, aniline and benzylamine to generate a library of 45 1,2-benzothiazines 28-72. Compounds 28-72 were evaluated for their antimicrobial activity using broth microdilution techniques against two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative bacteria (Proteus vulgaris and Salmonella typhimurium). The results demonstrated that none of the compounds showed any activity against Gram-negative bacteria P. vulgaris and S. typhimurium; however, compounds 31, 33, 38, 43, 45, 50, 53, 55, 58, 60, 63 and 68 showed activity against Gram-positive bacteria Bacillus subtilis and Staphylococcous aureus. The range of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was 25-600 µg/mL, though some of the MIC and MBC concentrations were high, indicating weak activity. Structure activity relationship studies revealed that the compounds with a hydrogen atom or an ethyl group on the nitrogen of the thiazine ring exerted antibacterial activity against Gram-positive bacteria. The results also showed that the compounds where the benzene ring of the benzoyl moiety contained a methyl group or a chlorine or bromine atom in the para position showed higher antimicrobial activity. Similar influences were identified where either a bromine or chlorine atom was in the meta position.

  12. Antimicrobial activity of essential oils from Mediterranean aromatic plants against several foodborne and spoilage bacteria.

    PubMed

    Silva, Nuno; Alves, Sofia; Gonçalves, Alexandre; Amaral, Joana S; Poeta, Patrícia

    2013-12-01

    The antimicrobial activity of essential oils extracted from a variety of aromatic plants, often used in the Portuguese gastronomy was studied in vitro by the agar diffusion method. The essential oils of thyme, oregano, rosemary, verbena, basil, peppermint, pennyroyal and mint were tested against Gram-positive (Listeria monocytogenes, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Enterococcus faecium, Enterococcus faecalis, and Staphylococcus epidermidis) and Gram-negative strains (Salmonella enterica, Escherichia coli, and Pseudomonas aeruginosa). For most essential oils examined, S. aureus, was the most susceptible bacteria, while P. aeruginosa showed, in general, least susceptibility. Among the eight essential oils evaluated, thyme, oregano and pennyroyal oils showed the greatest antimicrobial activity, followed by rosemary, peppermint and verbena, while basil and mint showed the weakest antimicrobial activity. Most of the essential oils considered in this study exhibited a significant inhibitory effect. Thyme oil showed a promising inhibitory activity even at low concentration, thus revealing its potential as a natural preservative in food products against several causal agents of foodborne diseases and food spoilage. In general, the results demonstrate that, besides flavoring the food, the use of aromatic herbs in gastronomy can also contribute to a bacteriostatic effect against pathogens.

  13. In vitro antimicrobial activity of an experimental dentifrice based on Ricinus communis.

    PubMed

    Leite, Vanessa Maria Fagundes; Pinheiro, Juliana Barchelli; Pisani, Marina Xavier; Watanabe, Evandro; de Souza, Raphael Freitas; Paranhos, Helena de Freitas Oliveira; Lovato-Silva, Cláudia Helena

    2014-01-01

    This study evaluated the antimicrobial activity of a Ricinus communis-based experimental dentifrice for denture hygiene against the following standard strains: Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Enterococcus faecalis, Candida albicans and Candida glabrata. The minimum inhibitory concentration (MIC) assay was performed with R. communis in pure oil at 2.5%. Only E. coli was not inhibited by R. communis, but the MIC (0.0781%) was effective against the other microorganisms. From these results it was determined the R. communis concentrations for experimental dentifrices, 1, 2, 5 and 10%, which were evaluated by the test-well diffusion in agar. The commercial dentifrices Colgate, Trihydral and Corega Brite were tested for comparative purposes. The diameter of the zones of bacterial growth inhibition produced around the wells was measured (in mm) with a rule under reflected light. Data were analyzed statistically by analysis of variance and Tukey's post-hoc test (α=0.05). Neither the commercial nor the experimental dentifrices were effective against E. coli. The experimental dentifrices containing R. communis at 2, 5 and 10% presented action against S. mutans, S. aureaus and E. faecallis. The experimental dentifrices showed no antimicrobial activity against Candida spp. and E. coli in any of the tested concentrations. Trihydral was the most effective. Comparing the experimental dentifrices, the product with 10% R. communis produced the largest zones of bacterial growth inhibition and had similar antimicrobial activity to the commercial dentifrices, except against S. aureus.

  14. Neomycin Sulfate Improves the Antimicrobial Activity of Mupirocin-Based Antibacterial Ointments

    PubMed Central

    Blanchard, Catlyn; Brooks, Lauren; Beckley, Andrew; Colquhoun, Jennifer; Dewhurst, Stephen

    2015-01-01

    In the midst of the current antimicrobial pipeline void, alternative approaches are needed to reduce the incidence of infection and decrease reliance on last-resort antibiotics for the therapeutic intervention of bacterial pathogens. In that regard, mupirocin ointment-based decolonization and wound maintenance practices have proven effective in reducing Staphylococcus aureus transmission and mitigating invasive disease. However, the emergence of mupirocin-resistant strains has compromised the agent's efficacy, necessitating new strategies for the prevention of staphylococcal infections. Herein, we set out to improve the performance of mupirocin-based ointments. A screen of a Food and Drug Administration (FDA)-approved drug library revealed that the antibiotic neomycin sulfate potentiates the antimicrobial activity of mupirocin, whereas other library antibiotics did not. Preliminary mechanism of action studies indicate that neomycin's potentiating activity may be mediated by inhibition of the organism's RNase P function, an enzyme that is believed to participate in the tRNA processing pathway immediately upstream of the primary target of mupirocin. The improved antimicrobial activity of neomycin and mupirocin was maintained in ointment formulations and reduced S. aureus bacterial burden in murine models of nasal colonization and wound site infections. Combination therapy improved upon the effects of either agent alone and was effective in the treatment of contemporary methicillin-susceptible, methicillin-resistant, and high-level mupirocin-resistant S. aureus strains. From these perspectives, combination mupirocin-and-neomycin ointments appear to be superior to that of mupirocin alone and warrant further development. PMID:26596945

  15. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  16. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-05

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  17. LL-37 complexation with glycosaminoglycans in cystic fibrosis lungs inhibits antimicrobial activity, which can be restored by hypertonic saline.

    PubMed

    Bergsson, Gudmundur; Reeves, Emer P; McNally, Paul; Chotirmall, Sanjay H; Greene, Catherine M; Greally, Peter; Murphy, Philip; O'Neill, Shane J; McElvaney, Noel G

    2009-07-01

    There is an abundance of antimicrobial peptides in cystic fibrosis (CF) lungs. Despite this, individuals with CF are susceptible to microbial colonization and infection. In this study, we investigated the antimicrobial response within the CF lung, focusing on the human cathelicidin LL-37. We demonstrate the presence of the LL-37 precursor, human cathelicidin precursor protein designated 18-kDa cationic antimicrobial protein, in the CF lung along with evidence that it is processed to active LL-37 by proteinase-3. We demonstrate that despite supranormal levels of LL-37, the lung fluid from CF patients exhibits no demonstrable antimicrobial activity. Furthermore Pseudomonas killing by physiological concentrations of exogenous LL-37 is inhibited by CF bronchoalveolar lavage (BAL) fluid due to proteolytic degradation of LL-37 by neutrophil elastase and cathepsin D. The endogenous LL-37 in CF BAL fluid is protected from this proteolysis by interactions with glycosaminoglycans, but while this protects LL-37 from proteolysis it results in inactivation of LL-37 antimicrobial activity. By digesting glycosaminoglycans in CF BAL fluid, endogenous LL-37 is liberated and the antimicrobial properties of CF BAL fluid restored. High sodium concentrations also liberate LL-37 in CF BAL fluid in vitro. This is also seen in vivo in CF sputum where LL-37 is complexed to glycosaminoglycans but is liberated following nebulized hypertonic saline resulting in increased antimicrobial effect. These data suggest glycosaminoglycan-LL-37 complexes to be potential therapeutic targets. Factors that disrupt glycosaminoglycan-LL-37 aggregates promote the antimicrobial effects of LL-37 with the caveat that concomitant administration of antiproteases may be needed to protect the now liberated LL-37 from proteolytic cleavage.

  18. An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities

    PubMed Central

    Silva, O. N.; de la Fuente-Núñez, C.; Haney, E. F.; Fensterseifer, I. C. M.; Ribeiro, S. M.; Porto, W. F.; Brown, P.; Faria-Junior, C.; Rezende, T. M. B.; Moreno, S. E.; Lu, T. K.; Hancock, R. E. W.; Franco, O. L.

    2016-01-01

    Antibiotic-resistant infections are predicted to kill 10 million people per year by 2050, costing the global economy $100 trillion. Therefore, there is an urgent need to develop alternative technologies. We have engineered a synthetic peptide called clavanin-MO, derived from a marine tunicate antimicrobial peptide, which exhibits potent antimicrobial and immunomodulatory properties both in vitro and in vivo. The peptide effectively killed a panel of representative bacterial strains, including multidrug-resistant hospital isolates. Antimicrobial activity of the peptide was demonstrated in animal models, reducing bacterial counts by six orders of magnitude, and contributing to infection clearance. In addition, clavanin-MO was capable of modulating innate immunity by stimulating leukocyte recruitment to the site of infection, and production of immune mediators GM-CSF, IFN-γ and MCP-1, while suppressing an excessive and potentially harmful inflammatory response by increasing synthesis of anti-inflammatory cytokines such as IL-10 and repressing the levels of pro-inflammatory cytokines IL-12 and TNF-α. Finally, treatment with the peptide protected mice against otherwise lethal infections caused by both Gram-negative and -positive drug-resistant strains. The peptide presented here directly kills bacteria and further helps resolve infections through its immune modulatory properties. Peptide anti-infective therapeutics with combined antimicrobial and immunomodulatory properties represent a new approach to treat antibiotic-resistant infections. PMID:27804992

  19. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics.

    PubMed

    Dubourg, Grégory; Elsawi, Ziena; Raoult, Didier

    2015-11-01

    The bacteriocin-mediated antimicrobial properties of Lactobacillus spp. have been widely studied, leading to the use of these micro-organisms in the food industry as preservative agents against foodborne pathogens. In an era in which antibiotic resistance is becoming a public health issue, the antimicrobial activity of Lactobacillus spp. could be used for the discovery of new potential antibiotics. Thus, it is essential to have an accurate method of screening the production of antimicrobial agents by prokaryotes. Many in vitro assays have been published to date, largely concerning but not limited to Lactobacillus spp. However, these methods mainly use the spot-on-the-lawn method, which is prone to contamination during the overlay stage, with protocols using methanol vapours or the reverse side agar technique being applied to avoid such contamination. In this study, a method combining the spot-on-the-lawn and well diffusion methods was tested, permitting clear identification of inhibition zones from eight Lactobacillus spp. towards clinical isolates of 12 species (11 bacteria and 1 yeast) commonly found in human pathology. Lactobacillus plantarum CIP 106786 and Lactobacillus rhamnosus CSUR P567 exhibited the widest antimicrobial activity, whereas Lactobacillus acidophilus strain DSM 20079 was relatively inactive. In addition, the putative MIC(50) of L. rhamnosus against Proteus mirabilis was estimated at 1.1×10(9)CFU/mL using culture broth dilution. In conclusion, considering the increasing cultivable bacterial human repertoire, these findings open the way of an effective method to screen in vitro for the production of potential antimicrobial compounds.

  20. Comparative antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solutions evaluated using a novel standardized assay.

    PubMed

    Thorn, R M S; Robinson, G M; Reynolds, D M

    2013-05-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces.

  1. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    PubMed Central

    Thorn, R. M. S.; Robinson, G. M.

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard microbiological challenges were developed by surface-associating typed Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis spores, or a clinical methicillin-resistant S. aureus (MRSA) strain on stainless steel, polypropylene, or fabric. All test coupons were subjected to 20-min biocidal aerosols of chlorine-matched (100 ppm) sodium hypochlorite, chlorine dioxide, or ECAS within a standard aerosolization chamber using a commercial humidifier under defined conditions. Biocidal treatment type and material surface had a significant effect on the number of microorganisms recovered from various material surfaces following treatment exposure. Under the conditions of the assay, the order of antimicrobial efficacy of biocidal aerosol treatment was as follows: ECAS > chlorine dioxide > sodium hypochlorite. For all biocides, greater antimicrobial reductions were seen when treating stainless steel and fabric than when treating plastic-associated microorganisms. The experimental fogging system and assay protocol designed within this study were shown capable of differentiating the comparative efficacies of multiple chlorine-matched biocidal aerosols against a spectrum of target organisms on a range of test surface materials and would be appropriate for testing other biocidal aerosol treatments or material surfaces. PMID:23459480

  2. Turning hydrophilic bacteria into biorenewable hydrophobic material with potential antimicrobial activity via interaction with chitosan.

    PubMed

    Hanpanich, Orakan; Wongkongkatep, Pravit; Pongtharangkul, Thunyarat; Wongkongkatep, Jirarut

    2017-04-01

    Alteration of a bacteriocin-producing hydrophilic bacterium, Lactococcus lactis IO-1, into a hydrophobic material with potential antimicrobial activity using chitosan was investigated and compared with five other bacterial species with industrial importance. The negatively charged bacterial cells were neutralized by positively charged chitosan, resulting in a significant increase in the hydrophobicity of the bacterial cell surface. The largest Gram-positive B. megaterium ATCC 14581 showed a moderate response to chitosan while the smaller E. coli DH5α, L. lactis IO-1 and P. putida F1 exhibited a significant response to an increase in chitosan concentration. Because L. lactis IO-1 is a good source for natural peptide lantibiotic that is highly effective against several strains of food spoilage organisms and pathogens, hydrophobic material derived from L. lactis IO-1 and chitosan is a promising novel material with antimicrobial activity for the food and pharmaceutical industries.

  3. Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains.

    PubMed

    Likotrafiti, E; Tuohy, K M; Gibson, G R; Rastall, R A

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited.

  4. Non-anti-infective effects of antimicrobials and their clinical applications: a review.

    PubMed

    Sadarangani, Sapna P; Estes, Lynn L; Steckelberg, James M

    2015-01-01

    Antimicrobial agents are undoubtedly one of the key advances in the history of modern medicine and infectious diseases, improving the clinical outcomes of infection owing to their inhibitory effects on microbial growth. However, many antimicrobial agents also have biological activities stemming from their interactions with host receptors and effects on host inflammatory responses and other human or bacterial cellular biological pathways. These result in clinical uses of antimicrobial drugs that are distinct from their direct bacteriostatic or bactericidal properties. We reviewed the published literature regarding non-anti-infective therapeutic properties and proposed clinical applications of selected antimicrobials, specifically, macrolides, tetracyclines, sulfonamides, and ketoconazole. The clinical applications reviewed were varied, and we focused on uses that were clinically relevant (in terms of importance and burden of disease) and where published evidence exists. Such uses include chronic inflammatory pulmonary and skin disorders, chronic periodontitis, gastrointestinal dysmotility, rheumatoid arthritis, and cancer. Most of these potential therapeutic uses are not Food and Drug Administration approved. Clinicians need to weigh the use of antimicrobial agents for their non-anti-infective benefits, considering potential adverse effects and long-term effect on microbial resistance.

  5. Bioprotective properties of Dragon's blood resin: In vitro evaluation of antioxidant activity and antimicrobial activity

    PubMed Central

    2011-01-01

    Background Food preservation is basically done to preserve the natural characteristics and appearance of the food and to increase the shelf life of food. Food preservatives in use are natural, chemical and artificial. Keeping in mind the adverse effects of synthetic food preservatives, there is a need to identify natural food preservatives. The aims of this study were to evaluate in vitro antioxidant and antimicrobial activities of Dragon's blood resin obtained from Dracaena cinnabari Balf f., with a view to develop safer food preservatives. Methods In this study, three solvents of varying polarity were used to extract and separate the medium and high polarity compounds from the non-polar compounds of the Dragon's blood resin. The extracts were evaluated for their antimicrobial activity against the food borne pathogens. The antioxidant activities of the extracts were assessed using DPPH and ABTS radical scavenging, FRAP, metal chelating and reducing power assays. Total phenolics, flavonoids and flavonols of extracts were also estimated using the standard methods. Results Phytochemical analysis of extracts revealed high phenolic content in CH2Cl2 extract of resin. Free radical scavenging of CH2Cl2 extract was found to be highest which is in good correlation with its total phenolic content. All test microorganisms were also inhibited by CH2Cl2 extract. Conclusions Our result provide evidence that CH2Cl2 extract is a potential source of natural antioxidant compounds and exhibited good inhibitory activity against various food borne pathogens. Thus, CH2Cl2 extract of Dragon's blood resin could be considered as possible source of food preservative. PMID:21329518

  6. Antimicrobial and antifungal effects of tissue conditioners containing a photocatalyst.

    PubMed

    Uchimaru, Masayuki; Sakai, Takako; Moroi, Ryoji; Shiota, Susumu; Shibata, Yukie; Deguchi, Mikito; Sakai, Hidetaka; Yamashita, Yoshihisa; Terada, Yoshihiro

    2011-01-01

    This study examined the antimicrobial/antifungal ability of a tissue conditioner containing a photocatalyst for Escherichia coli, Streptococcus mutans, Staphylococcus aureus and Candida albicans. The photocatalyst was mixed with tissue conditioners powders at concentrations of 0, 10, 15, and 20 wt%. Tissue conditioners powders containing a photocatalyst were mixed with liquid to make test specimens. Test specimens inoculated by each microorganism were irradiated by ultraviolet light for 0-, 2- and 4 hours. The antimicrobial/antifungal effects were evaluated by the CFU technique. The CFU values of each microorganism for tissue conditioners containing a photocatalyst showed significant decrease following UV-irradiation. The improvement in antimicrobial/antifungal effects was concomitant with the increase of the mixing ratio and the irradiation time. Therefore, the results indicated that tissue conditioners containing a photocatalyst might have photocatalytic ability.

  7. Antimicrobial activity of the essential oil and extracts of Cordia curassavica (Boraginaceae).

    PubMed

    Hernandez, Tzasna; Canales, Margarita; Teran, Barbara; Avila, Olivia; Duran, Angel; Garcia, Ana Maria; Hernandez, Hector; Angeles-Lopez, Omar; Fernandez-Araiza, Mario; Avila, Guillermo

    2007-04-20

    In traditional Mexican medicine Cordia curassavica (Jacq) Roemer & Schultes is used to treat gastrointestinal, respiratory and dermatological disorders in Zapotitlán de las Salinas, Puebla (México). The aim of this work was to investigate antimicrobial activity of the essential oil, obtained by using Clevenger distillation apparatus, and hexane, chloroform and methanol extracts from aerial parts of Cordia curassavica. Antimicrobial activity was evaluated against 13 bacteria and five fungal strains. The oil and extracts exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and five fungal strains. Sarcina lutea and Vibrio cholerae were the strains more sensitive to the essential oil effect (MIC=62 microg/mL) and Vibrio cholerae for the hexane extract (MIC=125 microg/mL). Rhyzoctonia solani was the strain more sensitive to the essential oil effect (IC(50)=180 microg/mL) and Trichophyton mentagrophytes for the hexane extract (IC(50)=230 microg/mL). The essential oil was examined by GC and GC-MS. A total 11 constituents representing 96.28% of the essential oil were identified: 4-methyl,4-ethenyl-3-(1-methyl ethenyl)-1-(1-methyl methanol)cyclohexane (37.34%), beta-eudesmol (19.21%), spathulenol (11.25%) and cadina 4(5), 10(14) diene (7.93%) were found to be the major components. The present study tends to confirm the use in the folk medicine of Cordia curassavica in gastrointestinal, respiratory and dermatological diseases.

  8. Antimicrobial activity of different filling pastes for deciduous tooth treatment.

    PubMed

    Antoniazzi, Bruna Feltrin; Pires, Carine Weber; Bresolin, Carmela Rampazzo; Weiss, Rita Niederauer; Praetzel, Juliana Rodrigues

    2015-01-01

    Guedes-Pinto paste is the filling material most employed in Brazil for endodontic treatment of deciduous teeth; however, the Rifocort® ointment has been removed. Thus, the aim of this study was to investigate the antimicrobial potential of filling pastes, by proposing three new pharmacological associations to replace Rifocort® ointment with drugs of already established antimicrobial power: Nebacetin® ointment, 2% Chlorhexidine Gluconate gel, and Maxitrol® ointment. A paste composed of Iodoform, Rifocort® ointment and Camphorated Paramonochlorophenol (CPC) was employed as the gold standard (G1). The other associations were: Iodoform, Nebacetin® ointment and CPC (G2); Iodoform, 2% Chlorhexidine Digluconate gel and CPC (G3); Iodoform, Maxitrol® ointment and CPC (G4). The associations were tested for Staphylococcus aureus (S. aureus), Streptococcus mutans (S. mutans), Streptococcus oralis (S. oralis), Enterococcus faecalis (E. faecalis), Escherichia coli (E. coli), and Bacillus subtilis (B. subtilis), using the methods of dilution on solid medium - orifice agar - and broth dilution. The results were tested using statistical analysis ANOVA and Kruskal-Wallis. They showed that all the pastes had a bacteriostatic effect on all the microorganisms, without any statistically significant difference, compared with G1. S. aureus was statistically significant (multiple comparison test of Tukey), insofar as G2 and G3 presented the worst and the best performance, respectively. All associations were bactericidal for E. coli, S. aureus, S. mutans and S. oralis. Only G3 and G4 were bactericidal for E. faecalis, whereas no product was bactericidal for B. subtilis. Thus, the tested pastes have antimicrobial potential and have proved acceptable for endodontic treatment of primary teeth.

  9. Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture.

    PubMed

    Swain, P; Nayak, S K; Sasmal, A; Behera, T; Barik, S K; Swain, S K; Mishra, S S; Sen, A K; Das, J K; Jayasankar, P

    2014-09-01

    The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag-TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.

  10. In vivo antimicrobial activity of marbofloxacin against Pasteurella multocida in a tissue cage model in calves

    PubMed Central

    Cao, Changfu; Qu, Ying; Sun, Meizhen; Qiu, Zhenzhen; Huang, Xianhui; Huai, Binbin; Lu, Yan; Zeng, Zhenling

    2015-01-01

    Marbofloxacin is a fluoroquinolone specially developed for use in veterinary medicine with broad-spectrum antibacterial activity. The objective of our study was to re-evaluate in vivo antimicrobial activity of marbofloxacin against Pasteurella multocida using subcutaneously implanted tissue cages in calves. Calves were infected by direct injection into tissue cages with P. multocida(type B, serotype 2), then intramuscularly received a range of marbofloxacin doses 24 h after inoculation. The ratio of 24 h area under the concentration-time curve divided by the minimum inhibitory concentration or the mutant prevention concentration (AUC24 h/MIC or AUC24 h/MPC) was the pharmacokinetic-pharmacodynamic (PK/PD) index that best described the effectiveness of marbofloxacin against P. multocida (R2 = 0.8514) by non-linear regression analysis. Marbofloxacin exhibited a good antimicrobial activity in vivo. The levels of AUC24 h/MIC and AUC24 h/MPC that produced 50% (1.5log10 CFU/mL reduction) and 90% (3log10 CFU/mL reduction) of maximum response were 18.60 and 50.65 h, 4.67 and 12.89 h by using sigmoid Emax model WINNONLIN software, respectively. The in vivo PK/PD integrated methods by tissue cage model display the advantage of the evaluation of antimicrobial activity and the optimization of the dosage regimen for antibiotics in the presence of the host defenses, especially in target animal of veterinary interest. PMID:26257726

  11. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities.

    PubMed

    Zhu, Xianfeng; Zhang, Hongxun; Lo, Raymond

    2004-12-01

    A preliminary antimicrobial disk assay of chloroform, ethyl acetate, and n-butanol extracts of artichoke (Cynara scolymus L.) leaf extracts showed that the n-butanol fraction exhibited the most significant antimicrobial activities against seven bacteria species, four yeasts, and four molds. Eight phenolic compounds were isolated from the n-butanol soluble fraction of artichoke leaf extracts. On the basis of high-performance liquid chromatography/electrospray ionization mass spectrometry, tandem mass spectrometry, and nuclear magnetic resonance techniques, the structures of the isolated compounds were determined as the four caffeoylquinic acid derivatives, chlorogenic acid (1), cynarin (2), 3,5-di-O-caffeoylquinic acid (3), and 4,5-di-O-caffeoylquinic acid (4), and the four flavonoids, luteolin-7-rutinoside (5), cynaroside (6), apigenin-7-rutinoside (7), and apigenin-7-O-beta-D-glucopyranoside (8), respectively. The isolated compounds were examined for their antimicrobial activities on the above microorganisms, indicating that all eight phenolic compounds showed activity against most of the tested organisms. Among them, chlorogenic acid, cynarin, luteolin-7-rutinoside, and cynaroside exhibited a relatively higher activity than other compounds; in addition, they were more effective against fungi than bacteria. The minimum inhibitory concentrations of these compounds were between 50 and 200 microg/mL.

  12. Essential oils and isolated compounds from Lippia alba leaves and flowers: antimicrobial activity and osteoclast apoptosis.

    PubMed

    Juiz, Paulo José Lima; Lucchese, Angelica Maria; Gambari, Roberto; Piva, Roberta; Penolazzi, Letizia; Di Ciano, Martina; Uetanabaro, Ana Paula Trovatti; Silva, Franceli; Avila-Campos, Mario Julio

    2015-01-01

    In the present study, essential oils extracted from the leaves and flowers of Lippia alba (Mill.) N.E.Br. (L. alba) were analyzed for their antimicrobial activity and their effects on osteoclasts. The periodontal pathogens, Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans; ATCC 43717), Fusobacterium nucleatum (F. nucleatum; ATCC 25586) and Porphyromonas gingivalis (P. gingivalis); ATCC 33277) were used in antimicrobial activity assays for determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), whereas Bacteroides fragilis (B. fragilis; ATCC 25285) was used as the control microorganism. Osteoclast (OC) apoptosis was assessed by TUNEL assay and Fas receptor expression was detected by immunocytochemistry. The analysis of antimicrobial activity revealed that P. gingivalis had the lowest MIC values, whereas A. actinomycetemcomitans had the highest. L. alba essential oils were found to be toxic to human cells, although the compounds, carvone, limonene and citral, were non-toxic and induced apoptosis in the OCs. This study demonstrates that L. alba has potential biotechnological application in dentistry. In fact periodontal disease has a multifactorial etiology, and the immune response to microbial challenge leads to osteoclast activation and the resorption of the alveolar bone, resulting in tooth loss.

  13. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids.

    PubMed

    Oliveira, Daniela A; Salvador, Ana Augusta; Smânia, Artur; Smânia, Elza F A; Maraschin, Marcelo; Ferreira, Sandra R S

    2013-04-10

    The possibility of increasing the aggregated value of the huge amount of residues generated by wineries around the world foment studies using the grape pomace - the residue from the wine production, composed by seed, skin and stems - to obtain functional ingredients. Nowadays, consumers in general prefer natural and safe products mainly for food and cosmetic fields, where the supercritical fluid extraction is of great importance due to the purity of the extracts provided. Therefore, the objective of this work is to evaluate the global extraction yield, the antimicrobial activity and the composition profile of Merlot and Syrah grape pomace extracts obtained by supercritical CO2 (SC-CO2) and CO2 added with co-solvent at pressures up to 300 bar and temperatures of 50 and 60 °C. The results were compared with the ones obtained by Soxhlet and by ultrasound-assisted leaching extraction methods. The main components from the extracts, identified by HPLC, were gallic acid, p-OH-benzoic acid, vanillic acid and epicatechin. The antibacterial and antifungal activities of the extracts were evaluated using four strains of bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa) and three fungi strains (Candida albicans, Candida parapsilosis, Candida krusei). Despite lower extraction yield results, the supercritical fluid extracts presented the highest antimicrobial effectiveness compared to the other grape pomace extracts due to the presence of antimicrobial active compounds. Syrah extracts were less efficient against the microorganisms tested and Merlot extracts were more active against Gram-positive bacteria.

  14. Antimicrobial activity of extracts from Tamarindus indica L. leaves

    PubMed Central

    Escalona-Arranz, Julio César; Péres-Roses, Renato; Urdaneta-Laffita, Imilci; Camacho-Pozo, Miladis Isabel; Rodríguez-Amado, Jesús; Licea-Jiménez, Irina

    2010-01-01

    Tamarindus indica L. leaves are reported worldwide as antibacterial and antifungal agents; however, this observation is not completely accurate in the case of Cuba. In this article, decoctions from fresh and sun dried leaves, as well as fluid extracts prepared with 30 and 70% ethanol-water and the pure essential oil from tamarind leaves were microbiologically tested against Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Pseudomona aeruginosa and Candida albicans. Aqueous and fluid extracts were previously characterized by spectrophotometric determination of their total phenols and flavonoids, while the essential oil was chemically evaluated by gas chromatography/mass spectroscopy (GC/MS). Experimental data suggest phenols as active compounds against B. subtilis cultures, but not against other microorganisms. On the other hand, the essential oil exhibited a good antimicrobial spectrum when pure, but its relative low concentrations in common folk preparations do not allow for any good activity in these extracts. PMID:20931087

  15. In vitro antimicrobial activity of peroxide-based bleaching agents.

    PubMed

    Napimoga, Marcelo Henrique; de Oliveira, Rogério; Reis, André Figueiredo; Gonçalves, Reginaldo Bruno; Giannini, Marcelo

    2007-06-01

    Antibacterial activity of 4 commercial bleaching agents (Day White, Colgate Platinum, Whiteness 10% and 16%) on 6 oral pathogens (Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, Candida albicans, Lactobacillus casei, and Lactobacillus acidophilus) and Staphylococcus aureus were evaluated. A chlorhexidine solution was used as a positive control, while distilled water was the negative control. Bleaching agents and control materials were inserted in sterilized stainless-steel cylinders that were positioned under inoculated agar plate (n = 4). After incubation according to the appropriate period of time for each microorganism, the inhibition zones were measured. Data were analyzed by 2-way analysis of variance and Tukey test (a = 0.05). All bleaching agents and the chlorhexidine solution produced antibacterial inhibition zones. Antimicrobial activity was dependent on peroxide-based bleaching agents. For most microorganisms evaluated, bleaching agents produced inhibition zones similar to or larger than that observed for chlorhexidine. C albicans, L casei, and L acidophilus were the most resistant microorganisms.

  16. Green Synthesis and Characterization of Silver Nanoparticles for Antimicrobial Activity Against Burn Wounds Contaminating Bacteria

    NASA Astrophysics Data System (ADS)

    Rout, Anandini; Jena, Padan K.; Sahoo, Debasish; Parida, Umesh K.; Bindhani, Birendra K.

    2014-04-01

    Silver nanoparticles (AgNPs) were prepared from the plant extract of N. arbor-tristis under atmospheric conditions through green synthesis and characterized by various physicochemical techniques like UV-Visible spectroscopy, IR Spectra, energy dispersive X-ray spectrometry (EDS), X-ray diffraction and transmission electron microscopy (TEM) and the results confirmed the synthesis of homogeneous and stable AgNPs by the plant extracts. The antimicrobial activity of AgNPs was investigated against most common bacteria found in burn wound Staphylococcus epidermidis and Pseudomonas aeruginosa. In these tests, Mueller Hinton agar plates were used with AgNPs of various concentrations, supplemented in liquid systems. P. aeruginosa was inhibited at the low concentration of AgNPs, whereas the growth-inhibitory effect on S. epidermidis was mild. These results suggest that AgNPs can be used as effective growth inhibitors of various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.

  17. Alternative hand contamination technique to compare the activities of antimicrobial and nonantimicrobial soaps under different test conditions.

    PubMed

    Fuls, Janice L; Rodgers, Nancy D; Fischler, George E; Howard, Jeanne M; Patel, Monica; Weidner, Patrick L; Duran, Melani H

    2008-06-01

    Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log(10) counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log(10) counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (approximately 3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log(10) counts, compared to the 3.83-log(10) reduction caused by the antimicrobial soap (P < 0.001). The transfer of Escherichia coli to plastic balls following a 15-second hand wash with antimicrobial soap resulted in a bacterial recovery of 2.49 log(10) counts, compared to the 4.22-log(10) (P < 0.001) bacterial recovery on balls handled by hands washed with nonantimicrobial soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap.

  18. Antimicrobial Activity of Terminalia catappa, Manilkara zapota and Piper betel Leaf Extract.

    PubMed

    Nair, R; Chanda, Sumitra

    2008-01-01

    Aqueous and methanol extract of the leaves of Terminalia catappa L., Manilkara zapota L. and Piper betel L. were evaluated for antibacterial activity against 10 Gram positive, 12 Gram negative bacteria and one fungal strain, Candida tropicalis. Piperacillin and gentamicin were used as standards for antibacterial assay, while fluconazole was used as standard for antifungal assay. The three plants showed different degree of activity against the microorganisms investigated. The methanolic extract was considerably more effective than aqueous extract in inhibiting the investigated microbial strains. The most active antimicrobial plant was Piper betel.

  19. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  20. Contribution of Amphipathicity and Hydrophobicity to the Antimicrobial Activity and Cytotoxicity of β-Hairpin Peptides

    PubMed Central

    2016-01-01

    Bacteria have acquired extensive resistance mechanisms to protect themselves against antibiotic action. Today the bacterial membrane has become one of the “final frontiers” in the search for new compounds acting on novel targets to address the threat of multi-drug resistant (MDR) and XDR bacterial pathogens. β-Hairpin antimicrobial peptides are amphipathic, membrane-binding antibiotics that exhibit a broad range of activities against Gram-positive, Gram-negative, and fungal pathogens. However, most members of the class also possess adverse cytotoxicity and hemolytic activity that preclude their development as candidate antimicrobials. We examined peptide hydrophobicity, amphipathicity, and structure to better dissect and understand the correlation between antimicrobial activity and toxicity, membrane binding, and membrane permeability. The hydrophobicity, pI, net charge at physiological pH, and amphipathic moment for the β-hairpin antimicrobial peptides tachyplesin-1, polyphemusin-1, protegrin-1, gomesin, arenicin-3, and thanatin were determined and correlated with key antimicrobial activity and toxicity data. These included antimicrobial activity against five key bacterial pathogens and two fungi, cytotoxicity against human cell lines, and hemolytic activity in human erythrocytes. Observed antimicrobial activity trends correlated with compound amphipathicity and, to a lesser extent, with overall hydrophobicity. Antimicrobial activity increased with amphipathicity, but unfortunately so did toxicity. Of note, tachyplesin-1 was found to be 8-fold more amphipathic than gomesin. These analyses identify tachyplesin-1 as a promising scaffold for rational design and synthetic optimization toward an antibiotic candidate. PMID:27331141

  1. Antimicrobial effect of medical adhesive composed of aldehyded dextran and ε-Poly(L-Lysine).

    PubMed

    Lee, Jeong-Hyun; Kim, Hye-Lee; Lee, Mi Hee; Taguchi, Hideaki; Hyon, Suong-Hyu; Park, Jong-Chul

    2011-11-01

    Infection of surgical wounds is a severe problem. Conventional tissue reattachment methods have limits of incomplete sealing and high susceptibility to infection. Medical adhesives have several advantages over traditional tissue reattachment techniques, but still have drawbacks, such as the probability of infection, low adhesive strength, and high cytotoxicity. Recently, a new medical adhesive (new-adhesive) with high adhesive strength and low cytotoxicity, composed of aldehyded dextran and ε-poly(L-lysine), was developed. The antimicrobial activity of the new-adhesive was assayed using agar media and porcine skin. In the agar diffusion method, inoculated microorganisms that contacted the new-adhesive were inactivated, but this was not dependent on the amount of new-adhesive. Similar to the agar media results, the topical antimicrobial effect of new-adhesive was confirmed using a porcine skin antimicrobial assay, and the effect was not due to physical blocking based on comparison with the group whose wounds were wrapped.

  2. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates

    NASA Astrophysics Data System (ADS)

    Park, Soonhyang; Chibli, Hicham; Wong, Jody; Nadeau, Jay L.

    2011-05-01

    We investigate the antimicrobial activity and cytotoxicity to mammalian cells of conjugates of the peptide antibiotic polymyxin B (PMB) to Au nanoparticles and CdTe quantum dots. Au nanoparticles fully covered with PMB are identical in antimicrobial activity to the free drug alone, whereas partially-conjugated Au particles show decreased effectiveness in proportion to the concentration of Au. CdTe-PMB conjugates are more toxic to Escherichia coli than PMB alone, resulting in a flattening of the steep PMB dose-response curve. The effect is most pronounced at low concentrations of PMB, with a greater effect on the concentration required to reduce growth by half (IC50) than on the concentration needed to inhibit all growth (minimum inhibitory concentration, MIC). The Gram positive organism Staphylococcus aureus is resistant to both PMB and CdTe, showing minimal increased sensitivity when the two are conjugated. Measurement of reactive oxygen species (ROS) generation shows a significant reduction in photo-generated hydroxyl and superoxide radicals with CdTe-PMB as compared with bare CdTe. There is a corresponding reduction in toxicity of QD-PMB versus bare CdTe to mammalian cells, with nearly 100% survival in fibroblasts exposed to bactericidal concentrations of QD-PMB. The situation in bacteria is more complex: photoexcitation of the CdTe particles plays a small role in IC50 but has a significant effect on the MIC, suggesting that at least two different mechanisms are responsible for the antimicrobial action seen. These results show that it is possible to create antimicrobial agents using concentrations of CdTe quantum dots that do not harm mammalian cells.

  3. Isolation and Identification of Phyllospheric Bacteria Possessing Antimicrobial Activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa

    PubMed Central

    Mazinani, Zohreh; Zamani, Marzieh

    2017-01-01

    Background: The widespread utilization of antimicrobial compounds has caused emergence of resistant microorganisms in the world. Hence, the research to probe the products with antimicrobial features has led to finding natural habitats and discovering new pharmaceutical products. Methods: In this study, an attempt was made to explore the niche of novel habitat to isolate pyllospheric bacteria from the above ground parts (stems and leaves) of Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium, and Hippocrepis unisiliqousa to evaluate their antimicrobial features. The inhibitory effects of these strains on the growth of two fungi (Aspergillus niger, Aspergillus fumigatus), two yeasts (Saccharomyces cerevisiae, Candida albicans) and six bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Salmonella typhi, Streptococcus pyogenes) were tested. Results: In total, 113 bacterial strains were isolated. Twenty five bacterial strains (B-1 to B-25) indicated promising antimicrobial (antibacterial and antifungal) activities against aforementioned pathogens. The identification of the bacterial strains was ascertained by morphological, physiological, biochemical tests and two strains with the strongest antimicrobial activities were further characterized based on 16s rRNA sequencing. These two strains were identified as Bacillus amyloliquefaciens. Conclusion: Our results provide evidence that phyllospheric microorganisms are capable of producing some compounds with antimicrobial properties. PMID:28090278

  4. Antimicrobial and antioxidant activities of Cortex Magnoliae Officinalis and some other medicinal plants commonly used in South-East Asia

    PubMed Central

    Chan, Lai Wah; Cheah, Emily LC; Saw, Constance LL; Weng, Wanyu; Heng, Paul WS

    2008-01-01

    Background Eight medicinal plants were tested for their antimicrobial and antioxidant activities. Different extraction methods were also tested for their effects on the bioactivities of the medicinal plants. Methods Eight plants, namely Herba Polygonis Hydropiperis (Laliaocao), Folium Murraya Koenigii (Jialiye), Rhizoma Arachis Hypogea (Huashenggen), Herba Houttuyniae (Yuxingcao), Epipremnum pinnatum (Pashulong), Rhizoma Typhonium Flagelliforme (Laoshuyu), Cortex Magnoliae Officinalis (Houpo) and Rhizoma Imperatae (Baimaogen) were investigated for their potential antimicrobial and antioxidant properties. Results Extracts of Cortex Magnoliae Officinalis had the strongest activities against M. Smegmatis, C. albicans, B. subtilis and S. aureus. Boiled extracts of Cortex Magnoliae Officinalis, Folium Murraya Koenigii, Herba Polygonis Hydropiperis and Herba Houttuyniae demonstrated greater antioxidant activities than other tested medicinal plants. Conclusion Among the eight tested medicinal plants, Cortex Magnoliae Officinalis showed the highest antimicrobial and antioxidant activities. Different methods of extraction yield different spectra of bioactivities. PMID:19038060

  5. Antimicrobial activity of ProRoot MTA in contact with blood

    PubMed Central

    Farrugia, C.; Baca, P.; Camilleri, J.; Arias Moliz, M. T.

    2017-01-01

    Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations. PMID:28128328

  6. Antimicrobial activity of ProRoot MTA in contact with blood.

    PubMed

    Farrugia, C; Baca, P; Camilleri, J; Arias Moliz, M T

    2017-01-27

    Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations.

  7. Antimicrobial activities of natural antimicrobial compounds against susceptible and antibiotic-resistant pathogens in the absence and presence of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...

  8. Broad Spectrum Antimicrobial Activity of Forest-Derived Soil Actinomycete, Nocardia sp. PB-52

    PubMed Central

    Sharma, Priyanka; Kalita, Mohan C.; Thakur, Debajit

    2016-01-01

    A mesophilic actinomycete strain designated as PB-52 was isolated from soil samples of Pobitora Wildlife Sanctuary of Assam, India. Based on phenotypic and molecular characteristics, the strain was identified as Nocardia sp. which shares 99.7% sequence similarity with Nocardia niigatensis IFM 0330 (NR_112195). The strain is a Gram-positive filamentous bacterium with rugose spore surface which exhibited a wide range of antimicrobial activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacteria, and yeasts. Optimization for the growth and antimicrobial activity of the strain PB-52 was carried out in batch culture under shaking condition. The optimum growth and antimicrobial potential of the strain were recorded in GLM medium at 28°C, initial pH 7.4 of the medium and incubation period of 8 days. Based on polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) gene-targeted PCR amplification, the occurrence of both of these biosynthetic pathways was detected which might be involved in the production of antimicrobial compounds in PB-52. Extract of the fermented broth culture of PB-52 was prepared with organic solvent extraction method using ethyl acetate. The ethyl acetate extract of PB-52 (EA-PB-52) showed lowest minimum inhibitory concentration (MIC) against S. aureus MTCC 96 (0.975 μg/mL) whereas highest was recorded against Klebsiella pneumoniae ATCC 13883 (62.5 μg/mL). Scanning electron microscopy (SEM) revealed that treatment of the test microorganisms with EA-PB-52 destroyed the targeted cells with prominent loss of cell shape and integrity. In order to determine the constituents responsible for its antimicrobial activity, EA-PB-52 was subjected to chemical analysis using gas chromatography-mass spectrometry (GC-MS). GC-MS analysis showed the presence of twelve different chemical constituents in the extract, some of which are reported to possess diverse biological activity. These

  9. Evaluation of the Antimicrobial Effect of Chitosan/Polyvinyl Alcohol Electrospun Nanofibers Containing Mafenide Acetate

    PubMed Central

    Abbaspour, Mohammadreza; Sharif Makhmalzadeh, Behzad; Rezaee, Behjat; Shoja, Saeed; Ahangari, Zohreh

    2015-01-01

    Background: Chitosan, an important biodegradable and biocompatible polymer, has demonstrated wound-healing and antimicrobial properties. Objectives: This study aimed to evaluate the antimicrobial properties of mafenide acetate-loaded nanofibrous films, prepared by the electrospinning technique, using chitosan and polyvinyl alcohol (PVA). Materials and Methods: A 32 full factorial design was used for formulating electrospinning solutions. The chitosan percentage in chitosan/PVA solutions (0%, 10%, and 30%) and the drug content (0%, 20%, and 40%) were chosen as independent variables. The release rate of mafenide acetate from nanofibrous films and their microbial penetration were evaluated. The antimicrobial activity of different nanofibrous film formulations against Staphylococcus aureus and Pseudomonas aeruginosa was studied. Results: The results indicated that all nanofibrous films, with and without drug, can prevent bacterial penetration. Incorporation of mafenide acetate into chitosan/PVA nanofibers enhanced their antimicrobial activity against P. aeruginosa and S. aureus. Conclusions: Overall, the results showed that chitosan/polyvinyl alcohol (PVA) nanofibrous films are applicable for use as a wound dressing with protective, healing, and antimicrobial effects. PMID:26587214

  10. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk.

    PubMed

    Cava, R; Nowak, E; Taboada, A; Marin-Iniesta, F

    2007-12-01

    The antimicrobial activity of essential oils (EOs) of cinnamon bark, cinnamon leaf, and clove against Listeria monocytogenes Scott A were studied in semiskimmed milk incubated at 7 degrees C for 14 days and at 35 degrees C for 24 h. The MIC was 500 ppm for cinnamon bark EO and 3,000 ppm for the cinnamon leaf and clove EOs. These effective concentrations increased to 1,000 ppm for cinnamon bark EO, 3,500 ppm for clove EO, and 4,000 ppm for cinnamon leaf EO when the semiskimmed milk was incubated at 35 degrees C for 24 h. Partial inhibitory concentrations and partial bactericidal concentrations were obtained for all the assayed EOs. The MBC was 3,000 ppm for the cinnamon bark EO, 10,500 ppm for clove EO, and 11,000 ppm for cinnamon leaf EO. The incubation temperature did not affect the MBC of the EOs but slightly increased the MIC at 35 degrees C. The increased activity at the lower temperature could be attributed to the increased membrane fluidity and to the membrane-perturbing action of EOs. The influence of the fat content of milk on the antimicrobial activity of EOs was tested in whole and skimmed milk. In milk samples with higher fat content, the antimicrobial activity of the EOs was reduced. These results indicate the possibility of using these three EOs in milk beverages as natural antimicrobials, especially because milk beverages flavored with cinnamon and clove are consumed worldwide and have been increasing in popularity in recent years.

  11. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    PubMed

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  12. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae).

    PubMed

    Unlu, Mehmet; Ergene, Emel; Unlu, Gulhan Vardar; Zeytinoglu, Hulya Sivas; Vural, Nilufer

    2010-11-01

    The essential oil from the bark of Cinnamomum zeylanicum Blume was analyzed by GC-MS and bioassays were carried out. Nine constituents representing 99.24% of the oil were identified by GC-MS. The major compounds in the oil were (E)-cinnamaldehyde (68.95%), benzaldehyde (9.94%) and (E)-cinnamyl acetate (7.44%). The antimicrobial activity of the oil was investigated in order to evaluate its efficacy against 21 bacteria and 4 Candida species, using disc diffusion and minimum inhibitory concentration methods. The essential oil showed strong antimicrobial activity against all microorganisms tested. The cytotoxic and apoptotic effects of the essential oil on ras active (5RP7) and normal (F2408) fibroblasts were examined by MTT assay and acridine orange/ethidium bromide staining, respectively. The cytotoxicity of the oil was quite strong with IC(50) values less than 20 μg/mL for both cell lines. 5RP7 cells were affected stronger than normal cells. Morphological observation of apoptotic cells indicated the induction of apoptosis at the high level of the oil, especially in 5RP7 cells. The present study showed the potential antimicrobial and anticarcinogenic properties of the essential oil of cinnamon bark, indicating the possibilities of its potential use in the formula of natural remedies for the topical treatment of infections and neoplasms.

  13. Morphology-dependent antimicrobial activity of Cu/CuxO nanoparticles.

    PubMed

    Xiong, Lu; Tong, Zhong-Hua; Chen, Jie-Jie; Li, Ling-Li; Yu, Han-Qing

    2015-12-01

    Cu/CuxO nanoparticles (NPs) with different morphologies have been synthesized with glucose as a reducing agent. The X-ray diffraction and Scanning electron microscopy imaging show that the Cu/CuxO NPs have fine crystalline peaks with homogeneous polyhedral, flower-like, and thumbtack-like morphologies. Their antimicrobial activities were evaluated on inactivation of Escherichia coli using a fluorescence-based live/dead staining method. Dissolution of copper ions from these NPs was determined. Results demonstrated a significant growth inhibition for these NPs with different morphologies, and the flower-like Cu/CuxO NPs were the most effective form, where more copper ions were dissolved into the culture media. Surface free energy calculations based on first-principle density functional theory show that different crystal facets of the copper NPs have diverse surface energy, indicating the highest reactivity of the flower-like NPs, which is consistent with the results from the dissolution study and antimicrobial activity test. Together, these results suggest that the difference between the surface free energy may be a cause for their morphology-dependent antimicrobial activity.

  14. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars.

    PubMed

    Oliveira, Ivo; Sousa, Anabela; Morais, Jorge Sá; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia; Pereira, José Alberto

    2008-05-01

    Hazelnut (Corylus avellana L.) is a very popular dry fruit in the world being consumed in different form and presentations. In the present work, three hazelnut cultivars (cv. Daviana, Fertille de Coutard and M. Bollwiller) produced in Portugal, were characterized in respect to their chemical composition, antioxidant potential and antimicrobial activity. The samples were analysed for proximate constituents (moisture, fat, crude protein, ash), nutritional value and fatty acids profile by GC/FID. Antioxidant potential was accessed by the reducing power assay, the scavenging effect on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. Their antimicrobial capacity was also checked against Gram positive (Bacillus cereus, B. subtilis, Staphylococcus aureus) and Gram negative bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae) and fungi (Candida albicans, Cryptococcus neoformans). Results showed that the main constituent of fruits was fat ranging from 56% to 61%, being the nutritional value around 650 kcal per 100 g of fruits. Oleic was the major fatty acid varying between 80.67% in cv. F. Coutard and 82.63% in cv. Daviana, followed by linoleic, palmitic, and stearic acids. Aqueous hazelnut extract presented antioxidant activity in a concentration-dependent way, in general with similar behaviour for all cultivars. Hazelnut extracts revealed a high antimicrobial activity against Gram positive bacteria (MIC 0.1 mg/mL) showing a good bioactivity of these fruits.

  15. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    PubMed Central

    Leouifoudi, Inass; Harnafi, Hicham; Zyad, Abdelmajid

    2015-01-01

    Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE) and the olive cake extracts (OCE). Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90 ± 0.728 g/L versus 0.95 ± 0.017 mg/g). The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS). With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH) and emulsion (BCBT) systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50 = 12.1 ± 5.6 μg/mL; EC50 = 157.7 ± 34.9 μg/mL, resp.). However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis. PMID:26693221

  16. Effect of dietary antimicrobials on immune status in broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present experiment was conducted to evaluate the effect of dietary antimicrobials (anticoccidials plus antibiotic growth promoters) on the development of post-hatch immune systems in commercial broiler chickens. One hundred and five day-old broiler chicks were raised on the used litter and provi...

  17. The antimicrobial effects of cranberry against Staphylococcus aureus.

    PubMed

    Lian, Poh Yng; Maseko, T; Rhee, M; Ng, K

    2012-04-01

    The antimicrobial effects of the American cranberry (Vaccinium macrocarpon) on a major food-borne pathogen, Staphylococcus aureus, were investigated using commercially obtained Lakewood® organic cranberry juice and Ocean Spray® cranberry juice cocktail and four other berry fruit extracts (acai berry, strawberry, raspberry, and blueberry). The results showed that cranberry is a potent antimicrobial against S. aureus and the most potent among the berries studied. The order of percentage inhibition of bacterial growth at the same concentration of phenolic materials as gallic acid equivalents was Lakewood cranberry juice > Ocean Spray cranberry juice ≫ blueberry > acai berry ≫ raspberry ≫ strawberry. The antimicrobial effect was not due to the acidity of the berries as NaOH-neutralized samples were almost as effective in terms of percentage inhibition of viable cell growth. Solid-phase extraction of cranberry juice using C18 solid phase showed that the antimicrobial effects reside exclusively with the C18-bound materials.

  18. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides.

    PubMed

    Casero, Carina; Machín, Félix; Méndez-Álvarez, Sebastián; Demo, Mirta; Ravelo, Ángel G; Pérez-Hernández, Nury; Joseph-Nathan, Pedro; Estévez-Braun, Ana

    2015-01-23

    The new prenylated phloroglucinol α-pyrones 1-3 and the new dibenzofuran 4, together with the known 23-methyl-6-O-demethylauricepyrone (5), achyrofuran (6), and 5,7-dihydroxy-3,8-dimethoxyflavone (gnaphaliin A), were isolated from the aerial parts of Achyrocline satureioides. Their structures were determined by 1D and 2D NMR spectroscopic studies, while the absolute configuration of the sole stereogenic center of 1 was established by vibrational circular dichroism measurements in comparison to density functional theory calculated data. The same (S) absolute configuration of the α-methylbutyryl chain attached to the phloroglucinol nucleus was assumed for compounds 2-6 based on biogenetic considerations. Derivatives 7-16 were prepared from 1 and 5, and the antimicrobial activities of the isolated metabolites and some of the semisynthetic derivatives against a selected panel of Gram-positive and Gram-negative bacteria, as well as a set of yeast molds, were determined.

  19. In vitro study of the post-antibiotic effect and the bactericidal activity of Cefditoren and ten other oral antimicrobial agents against upper and lower respiratory tract pathogens.

    PubMed

    Dubois, J; St-Pierre, C

    2000-07-01

    The in vitro post-antibiotic effect (PAE) and batericidal activity of cefditoren was compared to that of cefixime, cefuroxime, loracarbef, cefaclor, amoxicillin, amoxicillin/clavulanate, clarithromycin, azithromycin, erythromycin, and ciprofloxacin against ATCC culture strains and clinical respiratory isolates. A PAE > 1 h was observed for cefditoren and generally for the macrolides against Streptococcus pneumoniae, beta-lactamase-negative Moraxella catarrhalis, and Streptococcus pyogenes, whereas the other beta-lactams showed mixed results. Cefditoren was the only beta-lactam showing significant bactericidal activity (>3 log reduction of viable cells) within 4 h against penicillin-resistant S. pneumoniae. Only cefditoren and ciprofloxacin showed significant bactericidal activity against beta-lactamase-negative (after 24 h) and beta-lactamase-positive strains of H. influenzae (after 12 h). Against beta-lactamase-positive strains of M. catarrhalis, cefditoren was the only agent to show significant bactericidal activity at 6 h (versus cefuroxime and ciprofloxacin at 12 h).

  20. Effect of tea tree (Melaleuca alternifolia) oil as a natural antimicrobial agent in lipophilic formulations.

    PubMed

    Mantil, Elisabeth; Daly, Grace; Avis, Tyler J

    2015-01-01

    There has been increased interest surrounding the use of tea tree oil (TTO) as a natural antimicrobial. In this study, the antimicrobial activity of TTO and its components were investigated in vitro and in a predominantly lipid-based personal care formulation. In vitro, TTO showed minimal inhibitory concentrations of 0.2% (for Saccharomyces cerevisiae and Pythium sulcatum), 0.4% (for Escherichia coli, Bacillus subtilis, and Rhizopus stolonifer), and 0.8% (for Botrytis cinerea). TTO at 0.08%-0.8% was often as efficient as parabens. Comparison of the antimicrobial activities of TTO components showed that terpinen-4-ol and γ-terpinene were generally most effective in inhibiting microbial growth. TTO activity in a personal care product was evaluated through air and water exposure, artificial inoculation, and shelf life studies. While TTO did not increase shelf life of unopened products, it decreased microbial load in products exposed to water and air. Results from this study support that antimicrobial activity of TTO can be attributed to varying levels of its components and that low levels of TTO were effective in reducing microbial growth during the use of the product. This study showed that TTO can act as a suitable preservative system within an oil-based formulation.

  1. Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria

    PubMed Central

    Ming, Liu; Zhang, Qian; Yang, Le; Huang, Jian-An

    2015-01-01

    New strategies for the prevention or treatment of infections are required. The purpose of this study is to evaluate the effects of antimicrobial peptides and bacteriocins isolated from Lactobacillus plantarum on growth and biofilm formation of three common pathogenic microbes. The antibacterial properties of the antimicrobial peptide Tet213 and bacteriocins were tested by the disc diffusion method. Tet213 and bacteriocins showed inhibitory effects on biofilm formation for the three organisms, as observed by fluorescence microscopy. Furthermore, Tet213 and the bacteriocins all showed antimicrobial activity against the three bacterial species, with Tet213 having a greater inhibitory effect on S. aureus than the bacteriocins (P < 0.05), while the bacteriocins showed stronger antimicrobial activity against S. sanguis (P < 0.05). PMID:26131169

  2. Antimicrobial activity of extractable conifer heartwood compounds toward Phytophthora ramorum.

    PubMed

    Manter, Daniel K; Kelsey, Rick G; Karchesy, Joseph J

    2007-11-01

    Ethyl acetate extracts from heartwood of seven western conifer trees and individual volatile compounds in the extracts were tested for antimicrobial activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity, followed by yellow-cedar, western juniper, and Port-Orford-cedar with moderate activity, and no activity for Douglas-fir and redwood extracts. Chemical composition of the extracts varied both qualitatively and quantitatively among the species with a total of 37 compounds identified by mass spectrometry. Of the 13 individual heartwood compounds bioassayed, three showed strong activity with a Log(10) EC(50) less than or equal to 1.0 ppm (hinokitiol, thymoquinone, and nootkatin), three expressed moderate activity ranging from 1.0-2.0 ppm (nootkatol, carvacrol, and valencene-11,12-diol), four compounds had weak activity at 2.0-3.0 ppm [alpha-terpineol, valencene-13-ol, (+)-beta-cedrene, (-)-thujopsene], and three had no activity [(+)-cedrol, delta-cadinene, and methyl carvacrol]. All of the most active compounds contained a free hydroxyl group, except thymoquinone. The importance of a free hydroxyl was demonstrated by the tremendous difference in activity between carvacrol (Log(10) EC(50) 1.81 +/- 0.08 ppm) and methyl carvacrol (Log(10) EC(50) >3.0 ppm). A field trial in California, showed that heartwood chips from redcedar placed on the forest floor for 4 months under Umbellularia californica (California bay laurel) with symptoms of P. ramorum leaf blight significantly limited the accumulation of P. ramorum DNA in the litter layer, compared with heartwood chips from redwood.

  3. Antimicrobial Organometallic Dendrimers with Tunable Activity against Multidrug-Resistant Bacteria.

    PubMed

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola; Overy, David P; Lanteigne, Martin; McQuillan, Katherine; Kerr, Russell G

    2015-11-09

    Multidrug-resistant pathogens are an increasing threat to public health. In an effort to curb the virulence of these pathogens, new antimicrobial agents are sought. Here we report a new class of antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant Gram-positive bacteria that included methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Mechanistically, these redox-active, cationic organometallic dendrimers induced oxidative stress on bacteria and also disrupted the microbial cell membrane. The minimum inhibitory concentrations, which provide a quantitative measure of the antimicrobial activity of these dendrimers, were in the low micromolar range. AlamarBlue cell viability assay also confirms the antimicrobial activity of these dendrimers. Interestingly, these dendrimers were noncytotoxic to epidermal cell lines and to mammalian red blood cells, making them potential antimicrobial platforms for topical applications.

  4. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus *

    PubMed Central

    Zhang, Hui; Zhang, Lu; Peng, Li-juan; Dong, Xiao-wu; Wu, Di; Wu, Vivian Chi-Hua; Feng, Feng-qin

    2012-01-01

    Fatty acids and derivatives (FADs) are resources for natural antimicrobials. In order to screen for additional potent antimicrobial agents, the antimicrobial activities of FADs against Staphylococcus aureus were examined using a microplate assay. Monoglycerides of fatty acids were the most potent class of fatty acids, among which monotridecanoin possessed the most potent antimicrobial activity. The conventional quantitative structure-activity relationship (QSAR) and comparative molecular field analysis (CoMFA) were performed to establish two statistically reliable models (conventional QSAR: R 2=0.942, Q 2 LOO=0.910; CoMFA: R 2=0.979, Q 2=0.588, respectively). Improved forecasting can be achieved by the combination of these two models that provide a good insight into the structure-activity relationships of the FADs and that may be useful to design new FADs as antimicrobial agents. PMID:22302421

  5. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties

    PubMed Central

    2011-01-01

    Background Pollen is a bee-product known for its medical properties from ancient times. In our days is increasingly used as health food supplement and especially as a tonic primarily with appeal to the elderly to ameliorate the effects of ageing. In order to evaluate the chemical composition and the biological activity of Greek pollen which has never been studied before, one sample with identified botanical origin from sixteen different common plant taxa of Greece has been evaluated. Results Three different extracts of the studied sample of Greek pollen, have been tested, in whether could induce proteasome activities in human fibroblasts. The water extract was found to induce a highly proteasome activity, showing interesting antioxidant properties. Due to this activity the aqueous extract was further subjected to chemical analysis and seven flavonoids have been isolated and identified by modern spectral means. From the methanolic extract, sugars, lipid acids, phenolic acids and their esters have been also identified, which mainly participate to the biosynthetic pathway of pollen phenolics. The total phenolics were estimated with the Folin-Ciocalteau reagent and the total antioxidant activity was determined by the DPPH method while the extracts and the isolated compounds were also tested for their antimicrobial activity by the dilution technique. Conclusions The Greek pollen is rich in flavonoids and phenolic acids which indicate the observed free radical scavenging activity, the effects of pollen on human fibroblasts and the interesting antimicrobial profile. PMID:21699688

  6. Antimicrobial activity of thin solid films of silver doped hydroxyapatite prepared by sol-gel method.

    PubMed

    Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela

    2014-01-01

    In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.

  7. General principles of antimicrobial therapy.

    PubMed

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  8. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens.

    PubMed

    Badawy, Mohamed E I; Rabea, Entsar I; Taktak, Nehad E M

    2014-10-13

    Chemical modification of a biopolymer chitosan by introducing quaternary ammonium moieties into the polymer backbone enhances its antimicrobial activity. In the present study, a series of quaternary N-(benzyl) chitosan derivatives were synthesized and characterized by (1)H-NMR, FT-IR and UV spectroscopic techniques. The antimicrobial activity against crop-threatening bacteria Agrobacterium tumefaciens and Erwinia carotovora and fungi Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum and Phytophthora infestans were evaluated. The results proved that the grafting of benzyl moiety or quaternization of the derivatives onto chitosan molecule was successful in inhibiting the microbial growth. Moreover, increase water-solubility of the compounds by quaternization significantly increased the activity against bacteria and fungi. Exocellular enzymes including polygalacturonase (PGase), pectin-lyase (PLase), polyphenol oxidase (PPOase) and cellulase were also affected at 1000 mg/L. These compounds especially quaternary-based chitosan derivatives that have good inhibitory effect should be potentially used as antimicrobial agents in crop protection.

  9. Antimicrobial activity of de novo designed cationic peptides against multi-resistant clinical isolates.

    PubMed

    Faccone, Diego; Veliz, Omar; Corso, Alejandra; Noguera, Martin; Martínez, Melina; Payes, Cristian; Semorile, Liliana; Maffía, Paulo Cesar

    2014-01-01

    Antibiotic resistance is one of the main problems concerning public health or clinical practice. Antimicrobial peptides appear as good candidates for the development of new therapeutic drugs. In this study we de novo designed a group of cationic antimicrobial peptides, analyzed its physicochemical properties, including its structure by circular dichroism and studied its antimicrobial properties against a panel of clinical isolates expressing different mechanisms of resistance. Three cationic alpha helical peptides exhibited antimicrobial activity comparable to, or even better than the comparator omiganan (MBI-226).

  10. Antimicrobial activity of Nerolidol and its derivatives against airborne microbes and further biological activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-alpha-bisabolol, trans,trans-farnesol and its main natural source Cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pat...

  11. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil.

    PubMed

    Cicerale, S; Lucas, L J; Keast, R S J

    2012-04-01

    The Mediterranean diet is associated with a lower incidence of chronic degenerative diseases and higher life expectancy. These health benefits have been partially attributed to the dietary consumption of extra virgin olive oil (EVOO) by Mediterranean populations, and more specifically the phenolic compounds naturally present in EVOO. Studies involving humans and animals (in vivo and in vitro) have demonstrated that olive oil phenolic compounds have potentially beneficial biological effects resulting from their antimicrobial, antioxidant and anti-inflammatory activities. This paper summarizes current knowledge on the biological activities of specific olive oil phenolic compounds together with information on their concentration in EVOO, bioavailability and stability over time.

  12. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.

    PubMed

    Malanovic, Nermina; Lohner, Karl

    2016-05-01

    A number of cationic antimicrobial peptides, effectors of innate immunity, are supposed to act at the cytoplasmic membrane leading to permeabilization and eventually membrane disruption. Thereby, interaction of antimicrobial peptides with anionic membrane phospholipids is considered to be a key factor in killing of bacteria. Recently, evidence was provided that killing takes place only when bacterial cell membranes are completely saturated with peptides. This adds to an ongoing debate, which role cell wall components such as peptidoglycan, lipoteichoic acid and lipopolysaccharide may play in the killing event, i.e. if they rather entrap or facilitate antimicrobial peptides access to the cytoplasmic membrane. Therefore, in this review we focused on the impact of Gram-positive cell wall components for the mode of action and activity of antimicrobial peptides as well as in innate immunity. This led us to conclude that interaction of antimicrobial peptides with peptidoglycan may not contribute to a reduction of their antimicrobial activity, whereas interaction with anionic lipoteichoic acids may reduce the local concentration of antimicrobial peptides on the cytoplasmic membrane necessary for sufficient destabilization of the membranes and bacterial killing. Further affinity studies of antimicrobial peptides toward the different cell wall as well as membrane components will be needed to address this problem on a quantitative level. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.

  13. An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity.

    PubMed

    Mohan, Raja; Shanmugharaj, A M; Sung Hun, Ryu

    2011-01-01

    Transition metal nanoparticles (NPs) such as silver (Ag) and copper (Cu) have been grafted onto carbon nanotube surface through wet chemical approach leading to the development of densely packed NP decorated carbon nanotubes. Chemically active surface and high-temperature stability are the basic attributes to use carbon nanotubes as the template for the growth of NPs. Ag NP-grafted carbon nanotubes (Ag-MWCNT) are prepared by complexing Ag ion with acid functionalized carbon nanotubes followed by the reduction method. Alternatively, Cu-grafted carbon nanotubes (Cu-MWCNT) are prepared by simple chemical reduction method. X-ray diffraction results reveal that the Ag or Cu NPs formed on the surface of carbon nanotubes are determined to be face centered cubic crystals. The morphology and chemical structure of NP-grafted carbon nanotubes are investigated using transmission electron spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The antimicrobial properties of acid-treated MWCNT (MWCNT-COOH), Ag-MWCNT, and Cu-MWCNT are investigated against gram negative Escherichia coli bacteria. Ag-MWCNT and Cu-MWCNT (97% kill vs. 75% kill), whereas MWCNT-COOH only killed 20% of this bacteria. Possible mechanisms are proposed to explain the higher antimicrobial activity by NP-coated MWCNT. These findings suggest that Ag-MWCNT and Cu-MWCNT may be used as effective antimicrobial materials that find applications in biomedical devices and antibacterial controlling system.

  14. Antimicrobial Activity of Artemisinin and Precursor Derived from In Vitro Plantlets of Artemisia annua L.

    PubMed Central

    Appalasamy, Suganthi; Lo, Kiah Yann; Ch'ng, Song Jin; Nornadia, Ku; Othman, Ahmad Sofiman; Chan, Lai-Keng

    2014-01-01

    Artemisia annua L., a medicinal herb, produces secondary metabolites with antimicrobial property. In Malaysia due to the tropical hot climate, A. annua could not be planted for production of artemisinin, the main bioactive compound. In this study, the leaves of three in vitro A. annua L. clones were, extracted and two bioactive compounds, artemisinin and a precursor, were isolated by thin layer chromatography. These compounds were found to be effective in inhibiting the growth of Gram-positive and Gram-negative bacteria but not Candida albicans. Their antimicrobial activity was similar to that of antibactericidal antibiotic streptomycin. They were found to inhibit the growth of the tested microbes at the minimum inhibition concentration of 0.09 mg/mL, and toxicity test using brine shrimp showed that even the low concentration of 0.09 mg/mL was very lethal towards the brine shrimps with 100% mortality rate. This study hence indicated that in vitro cultured plantlets of A. annua can be used as the alternative method for production of artemisinin and its precursor with antimicrobial activities. PMID:24575401

  15. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    SciTech Connect

    Wada, Akihiro; Wong, Pooi-Fong; Hojo, Hironobu; Hasegawa, Makoto; Ichinose, Akitoyo; Llanes, Rafael; Kubo, Yoshinao; Senba, Masachika; Ichinose, Yoshio

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  16. Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin.

    PubMed

    Branen, Jill K; Davidson, P Michael

    2004-01-01

    A microtiter plate assay was employed to systematically assess the interaction between ethylenediaminetetraacetic acid (EDTA) or lactoferrin and nisin, lysozyme, or monolaurin against strains of Listeria monocytogenes, Escherichia coli, Salmonella enteritidis, and Pseudomonas fluorescens. Low levels of EDTA acted synergistically with nisin and lysozyme against L. monocytogenes but EDTA and monolaurin interacted additively against this microorganism. EDTA synergistically enhanced the activity of nisin, monolaurin, and lysozyme in tryptic soy broth (TSB) against two enterohemorrhagic E. coli strains. In addition, various combinations of nisin, lysozyme, and monolaurin with EDTA were bactericidal to some gram-negative bacteria whereas none of the antimicrobials alone were bactericidal. Lactoferrin alone (2000 microg ml(-1)) did not inhibit any of the bacterial strains, but did enhance nisin activity against both L. monocytogenes strains. Lactoferrin in combination with monolaurin inhibited growth of E. coli O157:H7 but not E. coli O104:H21. While lactoferrin combined with nisin or monolaurin did not completely inhibit growth of the gram-negative bacteria, there was some growth inhibition. All combinations of EDTA or lactoferrin with antimicrobials were less effective in 2% fat UHT milk than in TSB. S. enteritidis and P. fluorescens strains were consistently more resistant to antimicrobial combinations. Resistance may be due to differences in the outer membrane and/or LPS structure.

  17. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks.

    PubMed

    Oliveira, Ivo; Sousa, Anabela; Ferreira, Isabel C F R; Bento, Albino; Estevinho, Letícia; Pereira, José Alberto

    2008-07-01

    The total phenols content and antioxidant and antimicrobial activities were studied in walnut (Juglans regia L.) green husks aqueous extracts of five different cultivars (Franquette, Mayette, Marbot, Mellanaise and Parisienne). Total phenols content was determined by colorimetric assay and their amount ranged from 32.61 mg/g of GAE (cv. Mellanaise) to 74.08 mg/g of GAE t (cv. Franquette). The antioxidant capacity of aqueous extracts was assessed through reducing power assay, scavenging effects on DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and beta-carotene linoleate model system. A concentration-dependent antioxidative capacity was verified in reducing power and DPPH assays, with EC50 values lower than 1 mg/mL for all the tested extracts. The antimicrobial capacity was screened against Gram positive and Gram negative bacteria, and fungi. All the extracts inhibited the growth of Gram positive bacteria, being Staphylococcus aureus the most susceptible one with MIC of 0.1 mg/mL for all the extracts. The results obtained indicate that walnut green husks may become important in the obtainment of a noticeable source of compounds with health protective potential and antimicrobial activity.

  18. [Bactericidal activity of sitafloxacin and other new quinolones against antimicrobial resistant Streptococcus pneumoniae].

    PubMed

    Kobayashi, Intetsu; Kanayama, Akiko; Hasegawa, Miyuki; Kaneko, Akihiro

    2013-02-01