Sample records for effective attractive interaction

  1. From the depletion attraction to the bridging attraction: the effect of solvent molecules on the effective colloidal interactions.

    PubMed

    Chen, Jie; Kline, Steven R; Liu, Yun

    2015-02-28

    Depletion attraction induced by non-adsorbing polymers or small particles in colloidal solutions has been widely used as a model colloidal interaction to understand aggregation behavior and phase diagrams, such as glass transitions and gelation. However, much less attention has been paid to study the effective colloidal interaction when small particles/molecules can be reversibly attracted to large colloidal particles. At the strong attraction limit, small particles can introduce bridging attraction as it can simultaneously attach to neighbouring large colloidal particles. We use Baxter's multi-component method for sticky hard sphere systems with the Percus-Yevick approximation to study the bridging attraction and its consequence to phase diagrams, which are controlled by the concentration of small particles and their interaction with large particles. When the concentration of small particles is very low, the bridging attraction strength increases very fast with the increase of small particle concentration. The attraction strength eventually reaches a maximum bridging attraction (MBA). Adding more small particles after the MBA concentration keeps decreasing the attraction strength until reaching a concentration above which the net effect of small particles only introduces an effective repulsion between large colloidal particles. These behaviors are qualitatively different from the concentration dependence of the depletion attraction on small particles and make phase diagrams very rich for bridging attraction systems. We calculate the spinodal and binodal regions, the percolation lines, the MBA lines, and the equivalent hard sphere interaction line for bridging attraction systems and have proposed a simple analytic solution to calculate the effective attraction strength using the concentrations of large and small particles. Our theoretical results are found to be consistent with experimental results reported recently.

  2. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    PubMed

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  3. Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions.

    PubMed

    Chaudhari, Mangesh I; Rempe, Susan B; Asthagiri, D; Tan, L; Pratt, L R

    2016-03-03

    The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. We present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar-Ar rdfs considered pointwise, the numerical results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar-Ar rdfs permit evaluation of osmotic second virial coefficients B2. Those B2's also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B2 can change from positive to negative values with increasing temperatures. This is consistent with the puzzling suggestions of decades ago that B2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B2 becomes more attractive with increasing temperature.

  4. Molecular theory and the effects of solute attractive forces on hydrophobic interactions

    DOE PAGES

    Chaudhari, Mangesh I.; Rempe, Susan B.; Asthagiri, D.; ...

    2015-12-22

    The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. In this paper, we present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar–Ar rdfs considered pointwise, the numericalmore » results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar–Ar rdfs permit evaluation of osmotic second virial coefficients B 2. Those B 2’s also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B 2 can change from positive to negative values with increasing temperatures. Furthermore, this is consistent with the puzzling suggestions of decades ago that B 2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B 2 becomes more attractive with increasing temperature.« less

  5. Physical Attractiveness: Interactive Effects of Counselor and Client on Counseling Processes.

    ERIC Educational Resources Information Center

    Vargas, Alice M.; Borkowski, John G.

    1983-01-01

    Assessed how the physical attractiveness of counselors and clients interacted to build rapport in two experiments involving college students (N=128 and N=64). Results showed the counselor's physical attractiveness had a major impact on her perceived effectiveness and the client's expectation of success irrespective of the client's attractiveness…

  6. The role of atomic level steric effects and attractive forces in protein folding.

    PubMed

    Lammert, Heiko; Wolynes, Peter G; Onuchic, José N

    2012-02-01

    Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.

  7. Repulsive DNA-DNA interactions accelerate viral DNA packaging in phage Phi29.

    PubMed

    Keller, Nicholas; delToro, Damian; Grimes, Shelley; Jardine, Paul J; Smith, Douglas E

    2014-06-20

    We use optical tweezers to study the effect of attractive versus repulsive DNA-DNA interactions on motor-driven viral packaging. Screening of repulsive interactions accelerates packaging, but induction of attractive interactions by spermidine(3+) causes heterogeneous dynamics. Acceleration is observed in a fraction of complexes, but most exhibit slowing and stalling, suggesting that attractive interactions promote nonequilibrium DNA conformations that impede the motor. Thus, repulsive interactions facilitate packaging despite increasing the energy of the theoretical optimum spooled DNA conformation.

  8. Meeting your match: how attractiveness similarity affects approach behavior in mixed-sex dyads.

    PubMed

    van Straaten, Ischa; Engels, Rutger C M E; Finkenauer, Catrin; Holland, Rob W

    2009-06-01

    This experimental study investigated approach behavior toward opposite-sex others of similar versus dissimilar physical attractiveness. Furthermore, it tested the moderating effects of sex. Single participants interacted with confederates of high and low attractiveness. Observers rated their behavior in terms of relational investment (i.e., behavioral efforts related to the improvement of interaction fluency, communication of positive interpersonal affect, and positive self-presentation). As expected, men displayed more relational investment behavior if their own physical attractiveness was similar to that of the confederate. For women, no effects of attractiveness similarity on relational investment behavior were found. Results are discussed in the light of positive assortative mating, preferences for physically attractive mates, and sex differences in attraction-related interpersonal behaviors.

  9. Effect of interactions with the chaperonin cavity on protein folding and misfolding†

    PubMed Central

    Sirur, Anshul; Knott, Michael; Best, Robert B.

    2015-01-01

    Recent experimental and computational results have suggested that attractive interactions between a chaperonin and an enclosed substrate can have an important effect on the protein folding rate: it appears that folding may even be slower inside the cavity than under unconfined conditions, in contrast to what we would expect from excluded volume effects on the unfolded state. Here we examine systematically the dependence of the protein stability and folding rate on the strength of such attractive interactions between the chaperonin and substrate, by using molecular simulations of model protein systems in an idealised attractive cavity. Interestingly, we find a maximum in stability, and a rate which indeed slows down at high attraction strengths. We have developed a simple phenomenological model which can explain the variations in folding rate and stability due to differing effects on the free energies of the unfolded state, folded state, and transition state; changes in the diffusion coefficient along the folding coordinate are relatively small, at least for our simplified model. In order to investigate a possible role for these attractive interactions in folding, we have studied a recently developed model for misfolding in multidomain proteins. We find that, while encapsulation in repulsive cavities greatly increases the fraction of misfolded protein, sufficiently strong attractive protein-cavity interactions can strongly reduce the fraction of proteins reaching misfolded traps. PMID:24077053

  10. The Role of Attractiveness and Aggression in High School Popularity

    ERIC Educational Resources Information Center

    Borch, Casey; Hyde, Allen; Cillessen, Antonius H. N.

    2011-01-01

    This study examines the effects of physical attractiveness and aggression on popularity among high school students. Previous work has found positive relationships between aggression and popularity and physical attractiveness and popularity. The current study goes beyond this work by examining the interactive effects of physical attractiveness and…

  11. Note: Nonpolar solute partial molar volume response to attractive interactions with water.

    PubMed

    Williams, Steven M; Ashbaugh, Henry S

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  12. Note: Nonpolar solute partial molar volume response to attractive interactions with water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Steven M.; Ashbaugh, Henry S., E-mail: hanka@tulane.edu

    2014-01-07

    The impact of attractive interactions on the partial molar volumes of methane-like solutes in water is characterized using molecular simulations. Attractions account for a significant 20% volume drop between a repulsive Weeks-Chandler-Andersen and full Lennard-Jones description of methane interactions. The response of the volume to interaction perturbations is characterized by linear fits to our simulations and a rigorous statistical thermodynamic expression for the derivative of the volume to increasing attractions. While a weak non-linear response is observed, an average effective slope accurately captures the volume decrease. This response, however, is anticipated to become more non-linear with increasing solute size.

  13. What Teachers Perceive--Children Receive?

    ERIC Educational Resources Information Center

    Algozzine, Robert

    1976-01-01

    Reports a study designed to ascertain the relationship between teacher perceived attractiveness and classroom interactions and suggests that "main effects" such as facial attractiveness of youngsters acts to determine individual potential for interactions with others. (MH)

  14. Liquid drops attract or repel by the inverted Cheerios effect.

    PubMed

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  15. Dynamics of Entangled Polymers: Role of Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Koski, Jason

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.

  16. Physical Attractiveness and Counseling Skills.

    ERIC Educational Resources Information Center

    Vargas, Alice M.; Borkowski, John G.

    1982-01-01

    Searched for interaction between quality of counseling skills (presence or absence of empathy, genuineness, and positive regard) and physical attractiveness as determinants of counseling effectiveness. Attractiveness influenced perceived effectiveness of counselor's skill. Analyses of expectancy data revealed that only with good skills did…

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhari, Mangesh I.; Rempe, Susan B.; Asthagiri, D.

    The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. In this paper, we present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar–Ar rdfs considered pointwise, the numericalmore » results for the effects of solute attractive forces on hydrophobic interactions are opposite in sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasichemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar–Ar rdfs permit evaluation of osmotic second virial coefficients B 2. Those B 2’s also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B 2 can change from positive to negative values with increasing temperatures. Furthermore, this is consistent with the puzzling suggestions of decades ago that B 2 ≈ 0 for intermediate cases of temperature or solute size. In all cases here, B 2 becomes more attractive with increasing temperature.« less

  18. Differences in Expressivity Based on Attractiveness: Target or Perceiver Effects?

    PubMed

    Rennels, Jennifer L; Kayl, Andrea J

    2015-09-01

    A significant association exists between adults' expressivity and facial attractiveness, but it is unclear whether the association is linear or significant only at the extremes of attractiveness. It is also unclear whether attractive persons actually display more positive expressivity than unattractive persons (target effects) or whether high and low attractiveness influences expressivity valence judgments (perceiver effects). Experiment 1 demonstrated adult ratings of attractiveness were predictive of expressivity valence only for high and low attractive females and medium attractive males. Experiment 2 showed that low attractive females actually display more negative expressivity than medium and high attractive females, but there were no target effects for males. Also, attractiveness influenced expressivity valence judgments (perceiver effects) for both females and males. Our findings demonstrate that low attractive females are at a particular disadvantage during social interactions due to their low attractiveness, actual displays of negative expressivity, and perceptions of their negative expressivity.

  19. Differences in Expressivity Based on Attractiveness: Target or Perceiver Effects?

    PubMed Central

    Rennels, Jennifer L.; Kayl, Andrea J.

    2015-01-01

    A significant association exists between adults’ expressivity and facial attractiveness, but it is unclear whether the association is linear or significant only at the extremes of attractiveness. It is also unclear whether attractive persons actually display more positive expressivity than unattractive persons (target effects) or whether high and low attractiveness influences expressivity valence judgments (perceiver effects). Experiment 1 demonstrated adult ratings of attractiveness were predictive of expressivity valence only for high and low attractive females and medium attractive males. Experiment 2 showed that low attractive females actually display more negative expressivity than medium and high attractive females, but there were no target effects for males. Also, attractiveness influenced expressivity valence judgments (perceiver effects) for both females and males. Our findings demonstrate that low attractive females are at a particular disadvantage during social interactions due to their low attractiveness, actual displays of negative expressivity, and perceptions of their negative expressivity. PMID:26366010

  20. Impressions of Counselors as a Function of Counselor Physical Attractiveness

    ERIC Educational Resources Information Center

    Carter, Jean A.

    1978-01-01

    Research assessed the effects of counselor physical attractiveness and inter-actions between attractiveness and counselor subject sex. It is suggested that sex of counselor and client may play a more important role independently and in conjunction with attractiveness than does attractiveness alone in influencing impressions and expectations.…

  1. Insights into the role of age and social interactions on the sexual attractiveness of queens in an eusocial bee, Melipona flavolineata (Apidae, Meliponini).

    PubMed

    Veiga, Jamille Costa; Menezes, Cristiano; Contrera, Felipe Andrés León

    2017-04-01

    The attraction of sexual partners is a vital necessity among insects, and it involves conflict of interests and complex communication systems among male and female. In this study, we investigated the developing of sexual attractiveness in virgin queens (i.e., gynes) of Melipona flavolineata, an eusocial stingless bee. We followed the development of sexual attractiveness in 64 gynes, belonging to seven age classes (0, 3, 6, 9, 15, 18 days post-emergence), and we also evaluated the effect of different social interactions (such as competition between queens and interactions with workers) on the development of attractiveness in other 60 gynes. We used the number of males that tried to mate with a focal gyne as a representative variable of its sexual attractiveness. During the essays, each gyne was individually presented to 10 sexually mature males, and during 3 min, we counted the number of males that everted their genitalia in response to the presence of a gyne. Here, we show that M. flavolineata gynes are capable to (i) maintain their sexual attractiveness for long periods through adult life, (ii) they need a minimum social interaction to trigger the development of sexual attractiveness, and (iii) that gynes express this trait only within a social context. We conclude that the effective occurrence of matings is conditional on potential social interactions that gynes experienced before taking the nuptial flight, when they are still in the nest. These findings bring insights into the factors determining reproductive success in social insects.

  2. Insights into the role of age and social interactions on the sexual attractiveness of queens in an eusocial bee, Melipona flavolineata (Apidae, Meliponini)

    NASA Astrophysics Data System (ADS)

    Veiga, Jamille Costa; Menezes, Cristiano; Contrera, Felipe Andrés León

    2017-04-01

    The attraction of sexual partners is a vital necessity among insects, and it involves conflict of interests and complex communication systems among male and female. In this study, we investigated the developing of sexual attractiveness in virgin queens (i.e., gynes) of Melipona flavolineata, an eusocial stingless bee. We followed the development of sexual attractiveness in 64 gynes, belonging to seven age classes (0, 3, 6, 9, 15, 18 days post-emergence), and we also evaluated the effect of different social interactions (such as competition between queens and interactions with workers) on the development of attractiveness in other 60 gynes. We used the number of males that tried to mate with a focal gyne as a representative variable of its sexual attractiveness. During the essays, each gyne was individually presented to 10 sexually mature males, and during 3 min, we counted the number of males that everted their genitalia in response to the presence of a gyne. Here, we show that M. flavolineata gynes are capable to (i) maintain their sexual attractiveness for long periods through adult life, (ii) they need a minimum social interaction to trigger the development of sexual attractiveness, and (iii) that gynes express this trait only within a social context. We conclude that the effective occurrence of matings is conditional on potential social interactions that gynes experienced before taking the nuptial flight, when they are still in the nest. These findings bring insights into the factors determining reproductive success in social insects.

  3. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  4. Structure and effective interactions of comb polymer nanocomposite melts.

    PubMed

    Xu, Qinzhi; Xu, Mengjin; Feng, Yancong; Chen, Lan

    2014-11-28

    In this work, the structure and effective interactions of branched comb polymer nanocomposite (PNC) melts are investigated by using the polymer reference interaction site model (PRISM) integral equation theory. It is observed that the nanoparticle contact (bridging) aggregation is formed when the nanoparticle-monomer attraction strength is relatively weak (large) in comb PNCs. The organization states of aggregation for the moderate nanoparticle-monomer attraction strength can be well suppressed by the comb polymer architecture, while the bridging structure for relatively large attraction is obviously promoted. With the increase of the particle volume fraction, the organization states of bridging-type structure become stronger and tighter; however, this effect is weaker than that of the nanoparticle-monomer attraction strength. When the particle volume fraction and moderate nanoparticle-monomer attraction strength are fixed, the effects of degree of polymerization, side chain number, side chain length, and nanoparticle-monomer size ratio on the organization states of PNC melts are not prominent and the nanoparticles can well disperse in comb polymer. All the observations indicate that the present PRISM theory can give a detailed description of the comb PNC melts and assist in future design control of new nanomaterials.

  5. Effects of interactions on the generalized Hong–Ou–Mandel effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gertjerenken, B.; Kevrekidis, P. G.

    2015-04-11

    We numerically investigate the influence of interactions on the generalized Hong–Ou–Mandel (HOM) effect for bosonic particles in a (quasi-)one-dimensional set-up with weak harmonic confinement and show results for the cases of N = 2, N = 3 and N = 4 bosons interacting with a beam splitter, whose role is played by a δ-barrier. In particular, we focus on the effect of attractive interactions and compare the results with the repulsive case, as well as with the analytically available results for the non-interacting case (that we use as a benchmark). In addition, we observe a fermionization effect both for growingmore » repulsive and attractive interactions, i.e., the dip in the HOM coincidence count is progressively smeared out, for increasing interaction strengths. The role of input asymmetries is also explored.« less

  6. Searching for effective forces in laboratory insect swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Kelley, Douglas H.; Ouellette, Nicholas T.

    2014-04-01

    Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories for all the individuals in the swarm. Acceleration measurements show a clear short-range repulsion, which we confirm by considering the spatial statistics of the midges, but no conclusive long-range interactions. Measurements of the mean free path of the insects also suggest that individuals are on average very weakly coupled, but that they are also tightly bound to the swarm itself. Our results therefore suggest that some attractive interaction maintains cohesion of the swarms, but that this interaction is not as simple as an attraction to nearest neighbours.

  7. Familiarity does indeed promote attraction in live interaction.

    PubMed

    Reis, Harry T; Maniaci, Michael R; Caprariello, Peter A; Eastwick, Paul W; Finkel, Eli J

    2011-09-01

    Does familiarity promote attraction? Prior research has generally suggested that it does, but a recent set of studies by Norton, Frost, and Ariely (2007) challenged that assumption. Instead, they found that more information about another person, when that information was randomly selected from lists of trait adjectives, using a trait evaluation paradigm, promoted perceptions of dissimilarity and, hence, disliking. The present research began with the assumption that natural social interaction involves contexts and processes not present in Norton et al.'s research or in the typical familiarity experiment. We theorized that these processes imply a favorable impact of familiarity on attraction. Two experiments are reported using a live interaction paradigm in which two previously unacquainted same-sex persons interacted with each other for varying amounts of time. Findings strongly supported the "familiarity leads to attraction" hypothesis: The more participants interacted, the more attracted they were to each other. Mediation analyses identified three processes that contribute to this effect: perceived responsiveness, increased comfort and satisfaction during interaction, and perceived knowledge. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  8. Thermodynamic curvature for attractive and repulsive intermolecular forces

    NASA Astrophysics Data System (ADS)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2013-09-01

    The thermodynamic curvature scalar R for the Lennard-Jones system is evaluated in phase space, including vapor, liquid, and solid state. We paid special attention to the investigation of R along vapor-liquid, liquid-solid, and vapor-solid equilibria. Because R is a measure of interaction strength, we traced out the line R=0 dividing the phase space into regions with effectively attractive (R<0) or repulsive (R>0) interactions. Furthermore, we analyzed the dependence of R on the strength of attraction applying a perturbation ansatz proposed by Weeks-Chandler-Anderson. Our results show clearly a transition from R>0 (for poorly repulsive interaction) to R<0 when loading attraction in the intermolecular potential.

  9. Electrical percolation in the presence of attractive interactions: An effective medium lattice approach applied to microemulsion systems

    NASA Astrophysics Data System (ADS)

    Hattori, Y.; Ushiki, H.; Engl, W.; Courbin, L.; Panizza, P.

    2005-08-01

    Within the framework of an effective medium approach and a mean-field approximation, we present a simple lattice model to treat electrical percolation in the presence of attractive interactions. We show that the percolation line depends on the magnitude of interactions. In 2 dimensions, the percolation line meets the binodal line at the critical point. A good qualitative agreement is observed with experimental results on a ternary AOT-based water-in-oil microemulsion system.

  10. Interactions for pollinator visitation and their consequences for reproduction in a plant community

    NASA Astrophysics Data System (ADS)

    Hegland, Stein Joar; Totland, Ørjan

    2012-08-01

    Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.

  11. Protein interactions in concentrated ribonuclease solutions

    NASA Astrophysics Data System (ADS)

    Boyer, Mireille; Roy, Marie-Odile; Jullien, Magali; Bonneté, Françoise; Tardieu, Annette

    1999-01-01

    To investigate the protein interactions involved in the crystallization process of ribonuclease A, dynamic light scattering (DLS) and small angle X-ray scattering experiments (SAXS) were performed on concentrated solutions. Whereas the translational diffusion coefficient obtained from DLS is sensitive to thermodynamic and hydrodynamic interactions and permits to calculate an interaction parameter, the shape of the SAXS curves is related to the type of interaction (attractive or repulsive). We compared the effect of pH on protein interactions in the case of two types of crystallizing agents: a mixture of salts (3 M sodium chloride plus 0.2 M ammonium sulfate) and an organic solvent (ethanol). The results show that in the presence of ethanol, as in low salt, protein interactions become more attractive as the pH increases from 4 to 8 and approaches the isoelectric point. In contrast, a reverse effect is observed in high salt conditions: the strength of attractive interactions decreases as the pH increases. The range of the pH effect can be related to ionization of histidine residues, particularly those located in the active site of the protein. The present observations point out the important role played by localized charges in crystallization conditions, whatever the precipitating agent.

  12. Is Beauty Talent? Sex Interaction in the Attractiveness Halo Effect.

    ERIC Educational Resources Information Center

    Kaplan, Robert M.

    Male and female subjects judged an essay purportedly written by an attractive or an unattractive female author. The attractive author was rated as significantly more talented by male judges. Female judges rated the attractive author less talented although this difference was not statistically significant. A second experiment concerned ratings by…

  13. Effects of Applicant Sex, Physical Attractiveness, and Type of Job on Employment Interviewers' Decisions.

    ERIC Educational Resources Information Center

    Gilmore, David C.; And Others

    Past research on the employment interview has suggested that interviewers are influenced by many variables, including physical attractiveness. To investigate the potential interaction of applicant sex and attractiveness on hiring decisions, the type of job, applicant sex, and applicant physical attractiveness were manipulated to determine the…

  14. Interactions among the effects of head orientation, emotional expression, and physical attractiveness on face preferences.

    PubMed

    Main, Julie C; DeBruine, Lisa M; Little, Anthony C; Jones, Benedict C

    2010-01-01

    Previous studies have shown that preferences for direct versus averted gaze are modulated by emotional expressions and physical attractiveness. For example, preferences for direct gaze are stronger when judging happy or physically attractive faces than when judging disgusted or physically unattractive faces. Here we show that preferences for front versus three-quarter views of faces, in which gaze direction was always congruent with head orientation, are also modulated by emotional expressions and physical attractiveness; participants demonstrated preferences for front views of faces over three-quarter views of faces when judging the attractiveness of happy, physically attractive individuals, but not when judging the attractiveness of relatively unattractive individuals or those with disgusted expressions. Moreover, further analyses indicated that these interactions did not simply reflect differential perceptions of the intensity of the emotional expressions shown in each condition. Collectively, these findings present novel evidence that the effect of the direction of the attention of others on attractiveness judgments is modulated by cues to the physical attractiveness and emotional state of the depicted individual, potentially reflecting psychological adaptations for efficient allocation of social effort. These data also present the first behavioural evidence that the effect of the direction of the attention of others on attractiveness judgments reflects viewer-referenced, rather than face-referenced, coding and/or processing of gaze direction.

  15. Molecular dynamics simulation of solute diffusion in Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    We performed a molecular dynamics (MD) simulation for a system of 5 solute molecules in 495 solvent molecules interacting through the Lennard-Jones (LJ) 12-6 potential, in order to study solvent density effects on the diffusion coefficients in supercritical fluids. The effects of the size of the solute and the strength of the solute-solvent attractive interaction on the diffusion coefficient of the solute were examined. The diffusion coefficients of the solute molecules were calculated at T = 1.5 (in the LJ reduced unit), slightly above the critical temperature, from rho = 0.1 to rho = 0.95, where rho is the number density in the LJ reduced unit. The memory function in the generalized Langevin equation was calculated, in order to know the molecular origin of the friction on a solute. The memory function is separated into fast and slow components. The former arises from the solute-solvent repulsive interaction, and is interpreted as collisional Enskog-like friction. The interaction strength dependence of the collisional friction is larger in the low- and medium-density regions, which is consistent with the 'clustering' picture, i.e., the local density enhancement due to the solute-solvent attractive interaction. However, the slow component of the memory function suppresses the effect of the local density on the diffusion coefficients, and as a result the effect of the attractive interaction is smaller on the diffusion coefficients than on the local density. Nonetheless, the solvent density dependence of the effect of the attraction on the diffusion coefficient varies with the local density, and it is concluded that the local density is the principal factor that determines the interaction strength dependence of the diffusion coefficient in the low- and medium-density regions (p < 0.6).

  16. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  17. Affiliation of Opposite-Sexed Strangers

    ERIC Educational Resources Information Center

    Crouse, Bryant Bernhardt; Mehrabian, Albert

    1977-01-01

    Examines the effects of physical attractiveness on live verbal interactions between males and females. It was assumed that if opposite-sexed individuals primarily base their liking of the other on physical attractiveness, then subjects should be more positive and affiliative with attractive than unattractive others. (Author/RK)

  18. Stacking interactions between nitrogen-containing six-membered heterocyclic aromatic rings and substituted benzene: studies in solution and in the solid state.

    PubMed

    Gung, Benjamin W; Wekesa, Francis; Barnes, Charles L

    2008-03-07

    The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.

  19. Communication: Polymer entanglement dynamics: Role of attractive interactions

    DOE PAGES

    Grest, Gary S.

    2016-10-10

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less

  20. The moderating effect of stimulus attractiveness on the effect of alcohol consumption on attractiveness ratings.

    PubMed

    Chen, Xiong; Wang, Xiaoyu; Yang, Dong; Chen, Youguo

    2014-01-01

    To explore the enhancing effect of alcohol consumption on attractiveness ratings, in that few studies on the Beer Goggles effect control the stimuli attractiveness level and researchers have seldom considered extending the effect to stimuli other than faces. Male and female participants (n = 103) were randomly assigned to alcohol consumption or placebo groups. Both groups were asked to assess the attractiveness of two types of pictures (faces and landscapes) with three levels of attractiveness for each stimulus category (high, moderate and low). We found significant interactions between beverage type and attractiveness level. Attractiveness ratings for moderate- and low-attractiveness faces were significantly higher in the alcohol compared with placebo condition, while there was no significant difference for high-attractiveness stimuli between these two conditions. As for landscapes, only low-attractiveness stimuli were rated significantly higher in the alcohol condition. Whether or not alcohol consumption leads to an increase in attractiveness ratings depends on the initial attractiveness of the stimulus materials. Alcohol consumption tends to affect ratings for stimuli with relatively low attractiveness. Furthermore, this effect is not limited to faces; it extends to other types of stimuli like landscapes. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  1. Statistical properties and condensate fluctuation of attractive Bose gas with finite number of particles

    NASA Astrophysics Data System (ADS)

    Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel

    2017-09-01

    'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction N, root-mean-square fluctuation δn0 and different orders of central moments. We observe the effect of finite size on the calculation of condensate fluctuations and the effect of attractive interaction over the noninteracting limit. We observe the depletion of the condensate with increase in temperature. The calculated moments nicely exhibit the mesoscopic effect. The sharp fall in the root-mean-square fluctuation near the critical point signifies the possibility of phase transition.

  2. Which is the Ideal Breast Size?: Some Social Clues for Plastic Surgeons.

    PubMed

    Raposio, Edoardo; Belgrano, Valerio; Santi, PierLuigi; Chiorri, Carlo

    2016-03-01

    To provide plastic surgeons with more detailed information as to factors affecting the perception of female attractiveness, the present study was aimed to investigate whether the interaction effect of breast and body size on ratings of female attractiveness is moderated by sociodemographic variables and whether ratings of shapeliness diverge from those of attractiveness.A community sample of 958 Italian participants rated the attractiveness and the shapeliness of 15 stimuli (5 breast sizes × 3 body sizes) in which frontal, 3/4, and profile views of the head and torso of a faceless woman were jointly shown.Bigger breast sizes obtained the highest attractiveness ratings, but the breast-by-body size interaction was also significant. Evidence was found of a moderator role of sex, marital status, and age. When the effects of breast and body size and their interaction had been ruled out, sex differences were at best very slight and limited to very specific combinations of breast and body sizes. Ratings of attractiveness and shapeliness were highly correlated and did not significantly differ.Results suggest that to address women's psychological needs, concerns, and expectations about their appearance, plastic surgeons should not simply focus on breast size but should carefully consider the 'big picture': the body in its entirety.

  3. Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, B.; Croxall, A. F.; Waldie, J., E-mail: jw353@cam.ac.uk

    2016-02-08

    We present measurements of Coulomb drag in an ambipolar GaAs/AlGaAs double quantum well structure that can be configured as both an electron-hole bilayer and a hole-hole bilayer, with an insulating barrier of only 10 nm between the two quantum wells. Coulomb drag resistivity is a direct measure of the strength of interlayer particle-particle interactions. We explore the strongly interacting regime of low carrier densities (2D interaction parameter r{sub s} up to 14). Our ambipolar device design allows a comparison between the effects of the attractive electron-hole and repulsive hole-hole interactions and also shows the effects of the different effective masses ofmore » electrons and holes in GaAs.« less

  4. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  5. The effect of side motion in the dynamics of interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Gupta, Arvind Kumar; Kolomeisky, Anatoly B.

    2017-07-01

    To mimic the collective motion of interacting molecular motors, we propose and discuss an open two-lane symmetrically coupled interactive TASEP model that incorporates interaction in the thermodynamically consistent fashion. We study the effect of both repulsive and attractive interaction on the system’s dynamical properties using various cluster mean field analysis and extensive Monte Carlo simulations. The interactions bring correlations into the system, which were found to be reduced due to the side motion of particles. We produce the steady-state phase diagrams for symmetrically split interaction strength. The behavior of the maximal particle current with respect to the interaction energy E is analyzed for different coupling rates and interaction splittings. The results suggest that for strong coupling and large splittings, the maximal flow of the motors occurs at a weak attractive interaction strength which matches with the known experimental results on kinesin motor protein.

  6. Effects of physical attractiveness on political beliefs.

    PubMed

    Peterson, Rolfe Daus; Palmer, Carl L

    2017-01-01

    Physical attractiveness is an important social factor in our daily interactions. Scholars in social psychology provide evidence that attractiveness stereotypes and the "halo effect" are prominent in affecting the traits we attribute to others. However, the interest in attractiveness has not directly filtered down to questions of political behavior beyond candidates and elites. Utilizing measures of attractiveness across multiple surveys, we examine the relationship between attractiveness and political beliefs. Controlling for socioeconomic status, we find that more attractive individuals are more likely to report higher levels of political efficacy, identify as conservative, and identify as Republican. These findings suggest an additional mechanism for political socialization that has further implications for understanding how the body intertwines with the social nature of politics.

  7. The Effects of Relaxation and Cognitive Expectancy on Attraction in a Social Interaction.

    ERIC Educational Resources Information Center

    Wilson, Midge

    One approach to searching for determinants of interpersonal attraction involves the altering and studying of physiological arousal, psychological stress, and moods. On the basis of the reinforcement-affect model of attraction, it was hypothesized that the positive feelings obtained from undergoing relaxation exercises could serve to enhance…

  8. Quantitative study of interactions between oxygen lone pair and aromatic rings: substituent effect and the importance of closeness of contact.

    PubMed

    Gung, Benjamin W; Zou, Yan; Xu, Zhigang; Amicangelo, Jay C; Irwin, Daniel G; Ma, Shengqian; Zhou, Hong-Cai

    2008-01-18

    Current models describe aromatic rings as polar groups based on the fact that benzene and hexafluorobenzene are known to have large and permanent quadrupole moments. This report describes a quantitative study of the interactions between oxygen lone pair and aromatic rings. We found that even electron-rich aromatic rings and oxygen lone pairs exhibit attractive interactions. Free energies of interactions are determined using the triptycene scaffold and the equilibrium constants were determined by low-temperature 1H NMR spectroscopy. An X-ray structure analysis for one of the model compounds confirms the close proximity between the oxygen and the center of the aromatic ring. Theoretical calculations at the MP2/aug-cc-pVTZ level corroborate the experimental results. The origin of attractive interactions was explored by using aromatic rings with a wide range of substituents. The interactions between an oxygen lone pair and an aromatic ring are attractive at van der Waals' distance even with electron-donating substituents. Electron-withdrawing groups increase the strength of the attractive interactions. The results from this study can be only partly rationalized by using the current models of aromatic system. Electrostatic-based models are consistent with the fact that stronger electron-withdrawing groups lead to stronger attractions, but fail to predict or rationalize the fact that weak attractions even exist between electron-rich arenes and oxygen lone pairs. The conclusion from this study is that aromatic rings cannot be treated as a simple quadrupolar functional group at van der Waals' distance. Dispersion forces and local dipole should also be considered.

  9. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  10. Attracting mutualists and antagonists: plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds.

    PubMed

    Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S

    2014-08-01

    • Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.

  11. Polymer translocation under time-dependent driving forces: resonant activation induced by attractive polymer-pore interactions.

    PubMed

    Ikonen, Timo; Shin, Jaeoh; Sung, Wokyung; Ala-Nissila, Tapio

    2012-05-28

    We study the driven translocation of polymers under time-dependent driving forces using N-particle Langevin dynamics simulations. We consider the force to be either sinusoidally oscillating in time or dichotomic noise with exponential correlation time, to mimic both plausible experimental setups and naturally occurring biological conditions. In addition, we consider both the case of purely repulsive polymer-pore interactions and the case with additional attractive polymer-pore interactions, typically occurring inside biological pores. We find that the nature of the interaction fundamentally affects the translocation dynamics. For the non-attractive pore, the translocation time crosses over to a fast translocation regime as the frequency of the driving force decreases. In the attractive pore case, because of a free energy well induced inside the pore, the translocation time can be a minimum at the optimal frequency of the force, the so-called resonant activation. In the latter case, we examine the effect of various physical parameters on the resonant activation, and explain our observations using simple theoretical arguments.

  12. Interactions among Collective Spectators Facilitate Eyeblink Synchronization

    PubMed Central

    Nomura, Ryota; Liang, Yingzong; Okada, Takeshi

    2015-01-01

    Whereas the entrainment of movements and aspirations among audience members has been known as a basis of collective excitement in the theater, the role of the entrainment of cognitive processes among audience members is still unclear. In the current study, temporal patterns of the audience’s attention were observed using eyeblink responses. To determine the effect of interactions among audience members on cognitive entrainment, as well as its direction (attractive or repulsive), the eyeblink synchronization of the following two groups were compared: (1) the experimental condition, where the audience members (seven frequent viewers and seven first-time viewers) viewed live performances in situ, and (2) the control condition, where the audience members (15 frequent viewers and 15 first-time viewers) viewed videotaped performances in individual experimental settings (results reported in previous study.) The results of this study demonstrated that the mean values of a measure of asynchrony (i.e., D interval) were much lower for the experimental condition than for the control condition. Frequent viewers had a moderate attractive effect that increased as the story progressed, while a strong attractive effect was observed throughout the story for first-time viewers. The attractive effect of interactions among a group of spectators was discussed from the viewpoint of cognitive and somatic entrainment in live performances. PMID:26479405

  13. The effects of facial adiposity on attractiveness and perceived leadership ability.

    PubMed

    Re, Daniel E; Perrett, David I

    2014-01-01

    Facial attractiveness has a positive influence on electoral success both in experimental paradigms and in the real world. One parameter that influences facial attractiveness and social judgements is facial adiposity (a facial correlate to body mass index, BMI). Overweight people have high facial adiposity and are perceived to be less attractive and lower in leadership ability. Here, we used an interactive design in order to assess whether the most attractive level of facial adiposity is also perceived as most leader-like. We found that participants reduced facial adiposity more to maximize attractiveness than to maximize perceived leadership ability. These results indicate that facial appearance impacts leadership judgements beyond the effects of attractiveness. We suggest that the disparity between optimal facial adiposity in attractiveness and leadership judgements stems from social trends that have produced thin ideals for attractiveness, while leadership judgements are associated with perception of physical dominance.

  14. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  15. Molecular-scale hydrophobic interactions between hard-sphere reference solutes are attractive and endothermic.

    PubMed

    Chaudhari, Mangesh I; Holleran, Sinead A; Ashbaugh, Henry S; Pratt, Lawrence R

    2013-12-17

    The osmotic second virial coefficients, B2, for atomic-sized hard spheres in water are attractive (B2 < 0) and become more attractive with increasing temperature (ΔB2/ΔT < 0) in the temperature range 300 K ≤ T ≤ 360 K. Thus, these hydrophobic interactions are attractive and endothermic at moderate temperatures. Hydrophobic interactions between atomic-sized hard spheres in water are more attractive than predicted by the available statistical mechanical theory. These results constitute an initial step toward detailed molecular theory of additional intermolecular interaction features, specifically, attractive interactions associated with hydrophobic solutes.

  16. Penis size interacts with body shape and height to influence male attractiveness.

    PubMed

    Mautz, Brian S; Wong, Bob B M; Peters, Richard A; Jennions, Michael D

    2013-04-23

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male's relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits.

  17. Penis size interacts with body shape and height to influence male attractiveness

    PubMed Central

    Mautz, Brian S.; Wong, Bob B. M.; Peters, Richard A.; Jennions, Michael D.

    2013-01-01

    Compelling evidence from many animal taxa indicates that male genitalia are often under postcopulatory sexual selection for characteristics that increase a male’s relative fertilization success. There could, however, also be direct precopulatory female mate choice based on male genital traits. Before clothing, the nonretractable human penis would have been conspicuous to potential mates. This observation has generated suggestions that human penis size partly evolved because of female choice. Here we show, based upon female assessment of digitally projected life-size, computer-generated images, that penis size interacts with body shape and height to determine male sexual attractiveness. Positive linear selection was detected for penis size, but the marginal increase in attractiveness eventually declined with greater penis size (i.e., quadratic selection). Penis size had a stronger effect on attractiveness in taller men than in shorter men. There was a similar increase in the positive effect of penis size on attractiveness with a more masculine body shape (i.e., greater shoulder-to-hip ratio). Surprisingly, larger penis size and greater height had almost equivalent positive effects on male attractiveness. Our results support the hypothesis that female mate choice could have driven the evolution of larger penises in humans. More broadly, our results show that precopulatory sexual selection can play a role in the evolution of genital traits. PMID:23569234

  18. Effect of interactions for one-dimensional asymmetric exclusion processes under periodic and bath-adapted coupling environment

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Kolomeisky, Anatoly B.; Gupta, Arvind Kumar

    2018-04-01

    Stimulated by the effect of the nearest neighbor interactions in vehicular traffic and motor proteins, we study a 1D driven lattice gas model, in which the nearest neighbor particle interactions are taken in accordance with the thermodynamic concepts. The non-equilibrium steady-state properties of the system are analyzed under both open and periodic boundary conditions using a combination of cluster mean-field analysis and Monte Carlo simulations. Interestingly, the fundamental diagram of current versus density shows a complex behavior with a unimodal dependence for attractions and weak repulsions that turns into the bimodal behavior for stronger repulsive interactions. Specific details of system-reservoir coupling for the open system have a strong effect on the stationary phases. We produce the steady-state phase diagrams for the bulk-adapted coupling to the reservoir using the minimum and maximum current principles. The strength and nature of interaction energy has a striking influence on the number of stationary phases. We observe that interactions lead to correlations having a strong impact on the system dynamical properties. The correlation between any two sites decays exponentially as the distance between the sites increases. Moreover, they are found to be short-range for repulsions and long-range for attractions. Our results also suggest that repulsions and attractions asymmetrically modify the dynamics of interacting particles in exclusion processes.

  19. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    PubMed

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  20. Interactive effects of characteristics of defendant and mock juror on U.S. participants' judgment and sentencing recommendations.

    PubMed

    Abwender, D A; Hough, K

    2001-10-01

    The authors examined the effects of interactions (a) between defendant attractiveness and juror gender and (b) between defendant race and juror race on judgment and sentencing among 207 Black, Hispanic, and White participants in the United States. After reading a vehicular-homicide vignette in which the defendant's attractiveness and race varied, the participants rated guilt and recommended sentences. The women treated the unattractive female defendant more harshly than they treated the attractive female defendant; the men showed an opposite tendency. The Black participants showed greater leniency when the defendant was described as Black rather than White. The Hispanic participants showed an opposite trend, and the White participants showed no race-based leniency. The findings on racial effects were consistent (a) with in-group favorability bias among the Black participants and (b) with attribution effects unrelated to race among the White participants.

  1. The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions.

    PubMed

    Alvares, Dayane S; Fanani, Maria Laura; Ruggiero Neto, João; Wilke, Natalia

    2016-02-01

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2), extracted from the Brazilian wasp Polybia paulista, exhibits a broad-spectrum bactericidal activity without being hemolytic and cytotoxic. In the present study, we analyzed the surface properties of the peptide and its interaction with DPPC in Langmuir monolayers. Polybia-MP1 formed stable monolayers, with lateral areas and surface potential values suggesting a mostly α-helical structure oriented near perpendicular to the membrane plane. In DPPC-peptide mixed monolayers, MP1 co-crystallized with the lipid forming branched domains only when the subphase was pure water. On subphases with high salt concentrations or at acidic or basic conditions, the peptide formed less densely packed films and was excluded from the domains, indicating the presence of attractive electrostatic interactions between peptides, which allow them to get closer to each other and to interact with DPPC probably as a consequence of a particular peptide arrangement. The residues responsible of the peptide-peptide attraction are suggested to be the anionic aspartic acids and the cationic lysines, which form a salt bridge, leading to oriented interactions in the crystal and thereby to branched domains. For this peptide, the balance between total attractive and repulsive interactions may be finely tuned by the aqueous ionic strength and pH, and since this effect is related with lysines and aspartic acids, similar effects may also occur in other peptides containing these residues in their sequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Dependence of Interaction Free Energy between Solutes on an External Electrostatic Field

    PubMed Central

    Yang, Pei-Kun

    2013-01-01

    To explore the athermal effect of an external electrostatic field on the stabilities of protein conformations and the binding affinities of protein-protein/ligand interactions, the dependences of the polar and hydrophobic interactions on the external electrostatic field, −Eext, were studied using molecular dynamics (MD) simulations. By decomposing Eext into, along, and perpendicular to the direction formed by the two solutes, the effect of Eext on the interactions between these two solutes can be estimated based on the effects from these two components. Eext was applied along the direction of the electric dipole formed by two solutes with opposite charges. The attractive interaction free energy between these two solutes decreased for solutes treated as point charges. In contrast, the attractive interaction free energy between these two solutes increased, as observed by MD simulations, for Eext = 40 or 60 MV/cm. Eext was applied perpendicular to the direction of the electric dipole formed by these two solutes. The attractive interaction free energy was increased for Eext = 100 MV/cm as a result of dielectric saturation. The force on the solutes along the direction of Eext computed from MD simulations was greater than that estimated from a continuum solvent in which the solutes were treated as point charges. To explore the hydrophobic interactions, Eext was applied to a water cluster containing two neutral solutes. The repulsive force between these solutes was decreased/increased for Eext along/perpendicular to the direction of the electric dipole formed by these two solutes. PMID:23852018

  3. Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity.

    PubMed

    Jones, Alex L; Kramer, Robin S S

    2016-01-01

    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity-more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally-applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness.

  4. Facial Cosmetics and Attractiveness: Comparing the Effect Sizes of Professionally-Applied Cosmetics and Identity

    PubMed Central

    Kramer, Robin S. S.

    2016-01-01

    Forms of body decoration exist in all human cultures. However, in Western societies, women are more likely to engage in appearance modification, especially through the use of facial cosmetics. How effective are cosmetics at altering attractiveness? Previous research has hinted that the effect is not large, especially when compared to the variation in attractiveness observed between individuals due to differences in identity. In order to build a fuller understanding of how cosmetics and identity affect attractiveness, here we examine how professionally-applied cosmetics alter attractiveness and compare this effect with the variation in attractiveness observed between individuals. In Study 1, 33 YouTube models were rated for attractiveness before and after the application of professionally-applied cosmetics. Cosmetics explained a larger proportion of the variation in attractiveness compared with previous studies, but this effect remained smaller than variation caused by differences in attractiveness between individuals. Study 2 replicated the results of the first study with a sample of 45 supermodels, with the aim of examining the effect of cosmetics in a sample of faces with low variation in attractiveness between individuals. While the effect size of cosmetics was generally large, between-person variability due to identity remained larger. Both studies also found interactions between cosmetics and identity–more attractive models received smaller increases when cosmetics were worn. Overall, we show that professionally-applied cosmetics produce a larger effect than self-applied cosmetics, an important theoretical consideration for the field. However, the effect of individual differences in facial appearance is ultimately more important in perceptions of attractiveness. PMID:27727311

  5. Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions.

    PubMed

    Yang, Yingzi; Elgeti, Jens; Gompper, Gerhard

    2008-12-01

    Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multiparticle collision dynamics. We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multisperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies.

  6. Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone.

    PubMed

    Tsuzuki, Seiji; Uchimaru, Tadafumi; Ono, Taizo

    2017-08-30

    The origin of the attraction in charge-transfer complexes (a p-hydroquinone-p-benzoquinone complex and benzene complexes with benzoquinone, tetracyanoethylene and Br 2 ) was analyzed using distributed multipole analysis and symmetry-adapted perturbation theory. Both methods show that the dispersion interactions are the primary source of the attraction in these charge-transfer complexes followed by the electrostatic interactions. The natures of the intermolecular interactions in these complexes are close to the π/π interactions of neutral aromatic molecules. The electrostatic interactions play important roles in determining the magnitude of the attraction. The contribution of charge-transfer interactions to the attraction is not large compared with the dispersion interactions in these complexes.

  7. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces.

    PubMed

    Lee, Dominic J O'

    2015-04-15

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  8. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    PubMed

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  9. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2012-05-01

    We consider a variant of the Kuramoto model of coupled oscillators in which both attractive and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a characteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics governing the system's long-term macroscopic behavior. The resulting analytical predictions agree with simulations of the full system. We explore the effects of changing various parameters, such as the width of the distribution of natural frequencies and the relative strengths and proportions of the positive and negative interactions. For the particular model studied here we find, unexpectedly, that the mixed interactions produce no new effects. The system exhibits conventional mean-field behavior and displays a second-order phase transition like that found in the original Kuramoto model. In contrast to our recent study of a different model with mixed interactions [Phys. Rev. Lett. 106, 054102 (2011)], the π state and traveling-wave state do not appear for the coupling type considered here.

  10. Spinon attraction in spin- 1/2 antiferromagnetic chains.

    PubMed

    Bernevig, B A; Giuliano, D; Laughlin, R B

    2001-04-09

    We derive the representation of the two-spinon wave function for the Haldane-Shastry model in terms of the spinon coordinates. This result allows us to rigorously analyze spinon interaction and its physical effects. We show that spinons attract one another. The attraction gets stronger as the size of the system is increased and, in the thermodynamic limit, determines the power law with which the susceptibility diverges.

  11. Does being attractive always help? Positive and negative effects of attractiveness on social decision making.

    PubMed

    Agthe, Maria; Spörrle, Matthias; Maner, Jon K

    2011-08-01

    Previous studies of organizational decision making demonstrate an abundance of positive biases directed toward highly attractive individuals. The current research, in contrast, suggests that when the person being evaluated is of the same sex as the evaluator, attractiveness hurts, rather than helps. Three experiments assessing evaluations of potential job candidates (Studies 1 and 3) and university applicants (Study 2) demonstrated positive biases toward highly attractive other-sex targets but negative biases toward highly attractive same-sex targets. This pattern was mediated by variability in participants' desire to interact with versus avoid the target individual (Studies 1 and 2) and was moderated by participants' level of self-esteem (Study 3); the derogation of attractive same-sex targets was not observed among people with high self-esteem. Findings demonstrate an important exception to the positive effects of attractiveness in organizational settings and suggest that negative responses to attractive same-sex targets stem from perceptions of self-threat.

  12. Clustering and phase behaviour of attractive active particles with hydrodynamics.

    PubMed

    Navarro, Ricard Matas; Fielding, Suzanne M

    2015-10-14

    We simulate clustering, phase separation and hexatic ordering in a monolayered suspension of active squirming disks subject to an attractive Lennard-Jones-like pairwise interaction potential, taking hydrodynamic interactions between the particles fully into account. By comparing the hydrodynamic case with counterpart simulations for passive and active Brownian particles, we elucidate the relative roles of self-propulsion, interparticle attraction, and hydrodynamic interactions in determining clustering and phase behaviour. Even in the presence of an attractive potential, we find that hydrodynamic interactions strongly suppress the motility induced phase separation that might a priori have been expected in a highly active suspension. Instead, we find only a weak tendency for the particles to form stringlike clusters in this regime. At lower activities we demonstrate phase behaviour that is broadly equivalent to that of the counterpart passive system at low temperatures, characterized by regimes of gas-liquid, gas-solid and liquid-solid phase coexistence. In this way, we suggest that a dimensionless quantity representing the level of activity relative to the strength of attraction plays the role of something like an effective non-equilibrium temperature, counterpart to the (dimensionless) true thermodynamic temperature in the passive system. However there are also some important differences from the equilibrium case, most notably with regards the degree of hexatic ordering, which we discuss carefully.

  13. Fluid Surface Deformation by Objects in the Cheerios Effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Miller, Michael; Mandre, Shreyas; Mandre Lab Team

    2012-11-01

    Small objects floating on a fluid/air interface deform of the surface depending on material surface properties, density, and geometry. These objects attract each other through capillary interactions, a phenomenon dubbed the ``cheerios effect.'' The attractive force and torque exerted on these objects by the interface can be estimated if the meniscus deformation is known. In addition, the floating objects can also rotate due to such an interaction. We present a series of experiments focused on visualizing the the motions of the floating objects and the deformation of the interface. The experiments involve thin laser-cut acrylic pieces attracting each other on water in a large glass petri dish and a camera set-up to capture the process. Furthermore, optical distortion of a grid pattern is used to visualize the water surface deformation near the edge of the objects. This study of the deformation of the water surface around a floating object, of the attractive/repulsive forces, and of post-contact rotational dynamics are potentially instrumental in the study of colloidal self-assembly.

  14. Effect of salt entropy on protein solubility and Hofmeister series

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    We present a theory of salt effects on protein solubility that accounts for salting-in, salting-out, and the Hofmeister series. We represent protein charge by the first order multipole expansion to include attractive and repulsive electrostatic interactions in the model. Our model also includes non-electrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the finite size of the ions has significant effects on the translational entropy of the salt, which accounts for the changes in the protein solubility. At low salt the dominant effect comes from the entropic cost of confining ions within the aggregate. At high concentrations the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals.

  15. The Effects of Physical Appearance and Behavior Upon Ratings of Social Attractiveness.

    ERIC Educational Resources Information Center

    Mahoney, Sandra D.

    A videotaped interaction between a stimulus person (SP) and an interviewer was viewed by 80 male and 80 female college students. The SP's physical appearance and behavior were varied in a 2 X 2 X 2 factorial design with student gender as the third independent variable. The effects of these three variables upon general attractiveness ratings and…

  16. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  17. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids.

    PubMed

    Fuentes-Herrera, M; Moreno-Razo, J A; Guzmán, O; López-Lemus, J; Ibarra-Tandi, B

    2016-06-07

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  18. The Effect of Target Sex, Sexual Dimorphism, and Facial Attractiveness on Perceptions of Target Attractiveness and Trustworthiness

    PubMed Central

    Hu, Yuanyan; Abbasi, Najam ul Hasan; Zhang, Yang; Chen, Hong

    2018-01-01

    Facial sexual dimorphism has widely demonstrated as having an influence on the facial attractiveness and social interactions. However, earlier studies show inconsistent results on the effect of sexual dimorphism on facial attractiveness judgments. Previous studies suggest that the level of attractiveness might work as a moderating variable among the relationship between sexual dimorphism and facial preference and have often focused on the effect of sexual dimorphism on general attractiveness ratings, rather than concentrating on trustworthiness perception. Male and female participants viewed target male and female faces that varied on attractiveness (more attractive or less attractive) and sexual dimorphism (masculine or feminine). Participants rated the attractiveness of the faces and reported how much money they would give to the target person as a measure of trust. For the facial attractiveness ratings, (a) both men and women participants preferred masculine male faces to feminine male ones under the more attractive condition, whereas preferred feminine male faces to masculine male ones under the less attractive condition; (b) all participants preferred feminine female faces to masculine female ones under the less attractive condition, while there were no differences between feminine female faces and masculine female faces under the more attractive condition. For the target trustworthiness perception, (a) participants showed no preference between masculine male faces and feminine male faces, neither under the more attractive condition nor the less attractiveness condition; (b) however, all the participants preferred masculine female faces over feminine female faces under the more attractive condition, exhibiting no preference between feminine female faces and masculine female faces under the less attractive condition. These findings suggest that the attractiveness of facial stimulus may be a reason to interpret the inconsistent results from the previous studies, which focused on the effect of facial sexual dimorphism on the facial attractiveness. Furthermore, implications about the effect of target facial sexual dimorphism on participants’ trustworthiness perception were discussed.

  19. Gay male attraction toward muscular men: does mating context matter?

    PubMed

    Varangis, Eleanna; Lanzieri, Nicholas; Hildebrandt, Tom; Feldman, Matthew

    2012-03-01

    The purpose of this study was to examine gay men's perceived attractiveness of male figures based on short-term and long-term partner contexts. A sample of 190 gay adult men rated the attractiveness of line-drawings depicting male figures varying systematically in muscularity and body fat percentage in both short-term and long-term dating contexts. Mixed effects modeling was used to estimate the effects of figure (muscularity and body fat), dating context (short-term vs. long-term), and individual rater characteristics on attractiveness ratings. Results indicated that figure muscularity and body-fat had significant non-linear (i.e., quadratic) relationships with attractiveness ratings, and short-term dating context was associated with more discriminating ratings of attractiveness. Interactions between individual characteristics and figure characteristics indicated that the more available the individual and lower body fat, the more discriminating they were in ratings of attractiveness. The implications for future investigations considering both object and observer characteristics of attractiveness preferences are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Attractiveness, diagnostic ambiguity, and disability cues impact perceptions of women with pain.

    PubMed

    LaChapelle, Diane L; Lavoie, Susan; Higgins, Nancy C; Hadjistavropoulos, Thomas

    2014-05-01

    This experimental study investigated how physical attractiveness, disability cue, and diagnostic ambiguity stereotypes impact perceptions of a patient's pain/disability and personality. After viewing photographs of women pictured with or without a cane, accompanied by descriptions of the women's diagnosis (fibromyalgia or rheumatoid arthritis), 147 university students rated the women's pain/disability and personality. Analyses revealed that more attractive women received lower ratings on pain/disability and higher ratings (more positive) on personality. Moreover, those pictured with a disability cue got higher ratings on both pain/disability and personality, and those with medical evidence of pathology (less ambiguity) got higher ratings on pain/disability and lower ratings on personality. Examination of the 3 stereotypes in a single study enabled an evaluation of their interactions. An Attractiveness × Disability Cue × Diagnostic Ambiguity interaction for ratings of pain/disability revealed that the presence of both medical evidence and a disability cue were needed to override the strong "beautiful is healthy" stereotype. Significant 2-way interactions for ratings of personality indicated that the impact of the disability stereotype tends to be overshadowed by the attractiveness stereotype. The results indicate that these stereotypes have a large effect on perceptions of women with chronic pain and that attractiveness, a contextual variable unrelated to the pain experience, exerts an even stronger effect when there is less objective information available. This could have clinical ramifications for assessment and treatment of patients with chronic pain, which often occurs in the absence of "objective" medical evidence or any external cues of disability. (c) 2014 APA, all rights reserved.

  1. Attraction between like-charged monovalent ions.

    PubMed

    Zangi, Ronen

    2012-05-14

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  2. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. The effects of women's age and physical appearance on evaluations of attractiveness and social desirability.

    PubMed

    Perlini, A H; Bertolissi, S; Lind, D L

    1999-06-01

    Younger people are perceived as possessing a host of socially desirable attributes, some of which are the same traits attributed to attractive people. In the present study, 160 younger and older White Canadians rated the attractiveness and personality traits of 1 of 4 target women. The results indicated an interaction between the participant's age and gender and the age and attractiveness of the target person. Both younger and older judges showed an attractiveness bias and downrated the social desirability of younger unattractive targets. Younger judges rated younger and older attractive targets as equal in social desirability. Older male judges rated older attractive targets as less socially desirable than younger attractive targets. Results are discussed in terms of cultural expectations of beauty.

  4. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.

  5. Physical attractiveness, issue agreement, and assimilation effects in candidate appraisal.

    PubMed

    Schubert, James N; Curran, Margaret Ann; Strungaru, Carmen

    2011-01-01

    This study examines the cognitive and affective factors of candidate appraisal by manipulating candidate attractiveness and levels of issue agreement with voters. Drawing upon research in evolutionary psychology and cognitive neuroscience, this analysis proposes that automatic processing of physical appearance predisposes affective disposition toward more attractive candidates, thereby influencing cognitive processing of issue information. An experimental design presented attractive and unattractive candidates who were either liberal or conservative in a mock primary election. The data show strong partial effects for appearance on vote intention, an interaction between appearance and issue agreement, and a tendency for voters to assimilate the dissimilar views of attractive candidates. We argue that physical appearance is important in primary elections when the differences in issue positions and ideology between candidates is small.

  6. Combined collapse by bridging and self-adhesion in a prototypical polymer model inspired by the bacterial nucleoid

    NASA Astrophysics Data System (ADS)

    Scolari, Vittore F.; Cosentino Lagomarsino, Marco

    Recent experimental results suggest that the E. coli chromosome feels a self-attracting interaction of osmotic origin, and is condensed in foci by bridging interactions. Motivated by these findings, we explore a generic modeling framework combining solely these two ingredients, in order to characterize their joint effects. Specifically, we study a simple polymer physics computational model with weak ubiquitous short-ranged self attraction and stronger sparse bridging interactions. Combining theoretical arguments and simulations, we study the general phenomenology of polymer collapse induced by these dual contributions, in the case of regularly-spaced bridging. Our results distinguish a regime of classical Flory-like coil-globule collapse dictated by the interplay of excluded volume and attractive energy and a switch-like collapse where bridging interaction compete with entropy loss terms from the looped arms of a star-like rosette. Additionally, we show that bridging can induce stable compartmentalized domains. In these configurations, different "cores" of bridging proteins are kept separated by star-like polymer loops in an entropically favorable multi-domain configuration, with a mechanism that parallels micellar polysoaps. Such compartmentalized domains are stable, and do not need any intra-specific interactions driving their segregation. Domains can be stable also in presence of uniform attraction, as long as the uniform collapse is above its theta point.

  7. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  8. Experiencing the Sights, Smells, Sounds, and Climate of Southern Italy in VR.

    PubMed

    Manghisi, Vito M; Fiorentino, Michele; Gattullo, Michele; Boccaccio, Antonio; Bevilacqua, Vitoantonio; Cascella, Giuseppe L; Dassisti, Michele; Uva, Antonio E

    2017-01-01

    This article explores what it takes to make interactive computer graphics and VR attractive as a promotional vehicle, from the points of view of tourism agencies and the tourists themselves. The authors exploited current VR and human-machine interface (HMI) technologies to develop an interactive, innovative, and attractive user experience called the Multisensory Apulia Touristic Experience (MATE). The MATE system implements a natural gesture-based interface and multisensory stimuli, including visuals, audio, smells, and climate effects.

  9. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin

    2014-09-19

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the structure and charge transfer within molecular layers.« less

  10. Energy component analysis of π interactions.

    PubMed

    Sherrill, C David

    2013-04-16

    Fundamental features of biomolecules, such as their structure, solvation, and crystal packing and even the docking of drugs, rely on noncovalent interactions. Theory can help elucidate the nature of these interactions, and energy component analysis reveals the contributions from the various intermolecular forces: electrostatics, London dispersion terms, induction (polarization), and short-range exchange-repulsion. Symmetry-adapted perturbation theory (SAPT) provides one method for this type of analysis. In this Account, we show several examples of how SAPT provides insight into the nature of noncovalent π-interactions. In cation-π interactions, the cation strongly polarizes electrons in π-orbitals, leading to substantially attractive induction terms. This polarization is so important that a cation and a benzene attract each other when placed in the same plane, even though a consideration of the electrostatic interactions alone would suggest otherwise. SAPT analysis can also support an understanding of substituent effects in π-π interactions. Trends in face-to-face sandwich benzene dimers cannot be understood solely in terms of electrostatic effects, especially for multiply substituted dimers, but SAPT analysis demonstrates the importance of London dispersion forces. Moreover, detailed SAPT studies also reveal the critical importance of charge penetration effects in π-stacking interactions. These effects arise in cases with substantial orbital overlap, such as in π-stacking in DNA or in crystal structures of π-conjugated materials. These charge penetration effects lead to attractive electrostatic terms where a simpler analysis based on atom-centered charges, electrostatic potential plots, or even distributed multipole analysis would incorrectly predict repulsive electrostatics. SAPT analysis of sandwich benzene, benzene-pyridine, and pyridine dimers indicates that dipole/induced-dipole terms present in benzene-pyridine but not in benzene dimer are relatively unimportant. In general, a nitrogen heteroatom contracts the electron density, reducing the magnitude of both the London dispersion and the exchange-repulsion terms, but with an overall net increase in attraction. Finally, using recent advances in SAPT algorithms, researchers can now perform SAPT computations on systems with 200 atoms or more. We discuss a recent study of the intercalation complex of proflavine with a trinucleotide duplex of DNA. Here, London dispersion forces are the strongest contributors to binding, as is typical for π-π interactions. However, the electrostatic terms are larger than usual on a fractional basis, which likely results from the positive charge on the intercalator and its location between two electron-rich base pairs. These cation-π interactions also increase the induction term beyond those of typical noncovalent π-interactions.

  11. Effective interactions in lysozyme aqueous solutions: a small-angle neutron scattering and computer simulation study.

    PubMed

    Abramo, M C; Caccamo, C; Costa, D; Pellicane, G; Ruberto, R; Wanderlingh, U

    2012-01-21

    We report protein-protein structure factors of aqueous lysozyme solutions at different pH and ionic strengths, as determined by small-angle neutron scattering experiments. The observed upturn of the structure factor at small wavevectors, as the pH increases, marks a crossover between two different regimes, one dominated by repulsive forces, and another one where attractive interactions become prominent, with the ensuing development of enhanced density fluctuations. In order to rationalize such experimental outcome from a microscopic viewpoint, we have carried out extensive simulations of different coarse-grained models. We have first studied a model in which macromolecules are described as soft spheres interacting through an attractive r(-6) potential, plus embedded pH-dependent discrete charges; we show that the uprise undergone by the structure factor is qualitatively predicted. We have then studied a Derjaguin-Landau-Verwey-Overbeek (DLVO) model, in which only central interactions are advocated; we demonstrate that this model leads to a protein-rich/protein-poor coexistence curve that agrees quite well with the experimental counterpart; experimental correlations are instead reproduced only at low pH and ionic strengths. We have finally investigated a third, "mixed" model in which the central attractive term of the DLVO potential is imported within the distributed-charge approach; it turns out that the different balance of interactions, with a much shorter-range attractive contribution, leads in this latter case to an improved agreement with the experimental crossover. We discuss the relationship between experimental correlations, phase coexistence, and features of effective interactions, as well as possible paths toward a quantitative prediction of structural properties of real lysozyme solutions. © 2012 American Institute of Physics

  12. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  13. Measured long-range repulsive Casimir-Lifshitz forces.

    PubMed

    Munday, J N; Capasso, Federico; Parsegian, V Adrian

    2009-01-08

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces. However, as recognized in the theories of Casimir, Polder and Lifshitz, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies. Here we show experimentally that, in accord with theoretical prediction, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir-Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction.

  14. Looks and linguistics: Impression formation in online exchange marketplaces.

    PubMed

    Ciuchta, Michael P; O'Toole, Jay

    2016-01-01

    This study advances theories of impression formation by focusing on two factors that generate emotional responses: physical attractiveness and positive word use. Although considerable research on impression formation exists, most studies consider factors in isolation and neglect possible interactions. Our theory introduces competing mechanisms regarding possible interaction effects, and we empirically test them in an online marketplace. Results from the analysis of 729 loan requests from a leading online peer-to-peer lending market suggest that physical attractiveness and positive word use work together to influence the likelihood of acquiring resources and establish an important boundary condition to the general "beauty is good" effect.

  15. Effects of muscle dysmorphia, social comparisons and body schema priming on desire for social interaction: an experimental approach.

    PubMed

    Schneider, Catharina; Agthe, Maria; Yanagida, Takuya; Voracek, Martin; Hennig-Fast, Kristina

    2017-06-15

    Muscle dysmorphia (MD) is a relatively young diagnosis referring to the desire for a high degree in lean muscle mass, while simultaneously believing that one is insufficiently muscular, mostly found in men. It goes along with a risk for social withdrawal to maintain rigid exercise and dietary regimen. The aim of the current study was thus, to explore differences in men with and without a risk for muscle dysmorphia regarding their desire for social interaction. Furthermore, we investigated potential effects of individual social comparison tendencies (the tendency to compare oneself with persons who are perceived to be superior or inferior to oneself on a certain dimension) and of one's own body schema on the desire for social interaction. One hundred physically active, college aged Austrian men were recruited via social media and flyers at fitness centers and the sports department of the University of Vienna. Participants were randomly assigned to a priming condition evoking their own body schema or a control condition and had to state their desire for social interaction with male or female stimulus persons of high or average attractiveness. We conducted a 2 (group of participant; men with vs. without a risk for MD) × 2 (priming condition; priming vs. non-priming) × 2 (attractiveness of stimulus person; highly attractive vs. less attractive) experimental design with different social comparison tendencies as covariates. Men with a risk for muscle dysmorphia showed lesser desire for social interaction than men without this risk, which can be seen as a risk factor for psychopathological outcomes. Generally, men with and without a risk for muscle dysmorphia did not differ with regard to their preferences for attractive stimulus persons as subjects for social interaction. We confirmed the notion that a tendency for downward social comparisons goes along with a diminished desire for social interaction. This study showed that men with a risk for muscle dysmorphia appeared to be at higher risk for social withdrawal and that this is associated with social comparison tendencies. Future investigations on clinical populations are needed, for this population is highly prone to social isolation and negative outcomes related to it.

  16. In the Eye of the Betrothed: Perceptual Downgrading of Attractive Alternative Romantic Partners.

    PubMed

    Cole, Shana; Trope, Yaacov; Balcetis, Emily

    2016-07-01

    People in monogamous relationships can experience a conflict when they interact with an attractive individual. They may have a desire to romantically pursue the new person, while wanting to be faithful to their partner. How do people manage the threat that attractive alternatives present to their relationship goals? We suggest that one way people defend their relationships against attractive individuals is by perceiving the individual as less attractive. In two studies, using a novel visual matching paradigm, we found support for a perceptual downgrading effect. People in relationships perceived threatening attractive individuals as less attractive than did single participants. The effect was exacerbated among participants who were highly satisfied with their current relationships. The studies provide evidence for a perceptual bias that emerges to protect long-term goals. We discuss the findings within the context of a broader theory of motivated perception in the service of self-control. © 2016 by the Society for Personality and Social Psychology, Inc.

  17. Age-Differential Effects of Job Characteristics on Job Attraction: A Policy-Capturing Study

    PubMed Central

    Zacher, Hannes; Dirkers, Bodil T.; Korek, Sabine; Hughes, Brenda

    2017-01-01

    Based on an integration of job design and lifespan developmental theories, Truxillo et al. (2012) proposed that job characteristics interact with employee age in predicting important work outcomes. Using an experimental policy-capturing design, we investigated age-differential effects of four core job characteristics (i.e., job autonomy, task variety, task significance, and feedback from the job) on job attraction (i.e., individuals' rating of job attractiveness). Eighty-two employees between 19 and 65 years (Mage = 41, SD = 14) indicated their job attraction for each of 40 hypothetical job descriptions in which the four job characteristics were systematically manipulated (in total, participants provided 3,280 ratings). Results of multilevel analyses showed that the positive effects of task variety, task significance, and feedback from the job were stronger for younger compared to older employees, whereas we did not find significant age-differential effects of job autonomy on job attraction. These findings are only partially consistent with propositions of Truxillo et al.'s (2012) lifespan perspective on job design. PMID:28713322

  18. Age-Differential Effects of Job Characteristics on Job Attraction: A Policy-Capturing Study.

    PubMed

    Zacher, Hannes; Dirkers, Bodil T; Korek, Sabine; Hughes, Brenda

    2017-01-01

    Based on an integration of job design and lifespan developmental theories, Truxillo et al. (2012) proposed that job characteristics interact with employee age in predicting important work outcomes. Using an experimental policy-capturing design, we investigated age-differential effects of four core job characteristics (i.e., job autonomy, task variety, task significance, and feedback from the job) on job attraction (i.e., individuals' rating of job attractiveness). Eighty-two employees between 19 and 65 years ( M age = 41, SD = 14) indicated their job attraction for each of 40 hypothetical job descriptions in which the four job characteristics were systematically manipulated (in total, participants provided 3,280 ratings). Results of multilevel analyses showed that the positive effects of task variety, task significance, and feedback from the job were stronger for younger compared to older employees, whereas we did not find significant age-differential effects of job autonomy on job attraction. These findings are only partially consistent with propositions of Truxillo et al.'s (2012) lifespan perspective on job design.

  19. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  20. Much more than a ratio: multivariate selection on female bodies.

    PubMed

    Brooks, R; Shelly, J P; Fan, J; Zhai, L; Chau, D K P

    2010-10-01

    Studies of the attractiveness of female bodies have focussed strongly on the waist, hips and bust, but sexual selection operates on whole phenotypes rather than the relative proportions of just two or three body parts. Here, we use body scanners to extract computer-generated images of 96 Chinese women's bodies with all traits unrelated to body shape removed. We first show that Chinese and Australian men and women rate the attractiveness of these bodies the same. We then statistically explore the roles of age, body weight and a range of length and girth measures on ratings of attractiveness. Last, we use nonlinear selection analysis, a statistical approach developed by evolutionary biologists to explore the interacting effects of suites of traits on fitness, to study how body traits interact to determine attractiveness. Established proxies of adiposity and reproductive value, including age, body mass index and waist-to-hip ratio, were all correlated with attractiveness. Nonlinear response surface methods using the original traits consistently outperform all of these indices and ratios, suggesting that indices of youth and abdominal adiposity tell only part of the story of body attractiveness. In particular, our findings draw attention to the importance of integration between abdominal measures, including the bust, and the length and girth of limbs. Our results provide the most comprehensive analysis to date of the effect of body shape and fat deposition on female attractiveness. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  1. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.

    PubMed

    Shin, Homin; Schweizer, Kenneth S

    2013-02-28

    We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens.

  2. Face inversion increases attractiveness.

    PubMed

    Leder, Helmut; Goller, Juergen; Forster, Michael; Schlageter, Lena; Paul, Matthew A

    2017-07-01

    Assessing facial attractiveness is a ubiquitous, inherent, and hard-wired phenomenon in everyday interactions. As such, it has highly adapted to the default way that faces are typically processed: viewing faces in upright orientation. By inverting faces, we can disrupt this default mode, and study how facial attractiveness is assessed. Faces, rotated at 90 (tilting to either side) and 180°, were rated on attractiveness and distinctiveness scales. For both orientations, we found that faces were rated more attractive and less distinctive than upright faces. Importantly, these effects were more pronounced for faces rated low in upright orientation, and smaller for highly attractive faces. In other words, the less attractive a face was, the more it gained in attractiveness by inversion or rotation. Based on these findings, we argue that facial attractiveness assessments might not rely on the presence of attractive facial characteristics, but on the absence of distinctive, unattractive characteristics. These unattractive characteristics are potentially weighed against an individual, attractive prototype in assessing facial attractiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Novelty and Variety Attractions Are Hot--But How Can You Be Sure You're Booking a Quality Attraction?

    ERIC Educational Resources Information Center

    Hawkins, Karen

    1994-01-01

    Considerations in selecting quality novelty/variety entertainers to perform at colleges and universities are outlined. Advantages of this genre include newness, package marketing, affordability, ease of planning, great visual effects, ease of drop-by programming, custom tailoring, mass appeal. Concerns include limited individual interaction in…

  4. CC-LR: Providing Interactive, Challenging and Attractive Collaborative Complex Learning Resources

    ERIC Educational Resources Information Center

    Caballé, S.; Mora, N.; Feidakis, M.; Gañán, D.; Conesa, J.; Daradoumis, T.; Prieto, J.

    2014-01-01

    Many researchers argue that students must be meaningfully engaged in the learning resources for effective learning to occur. However, current online learners still report a problematic lack of attractive and challenging learning resources that engage them in the learning process. This endemic problem is even more evident in online collaborative…

  5. Conformation-dependent DNA attraction

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03235c

  6. How the Website Usability Elements Impact Performance

    NASA Astrophysics Data System (ADS)

    Aljukhadar, Muhammad; Senecal, Sylvain

    This research builds on the results of a large scale study in which participants performed an informational task on one of 59 websites spanning various industries to examine how the website usability elements (graphical attractiveness, information, interactivity, trust, and ease of use) drive users’ attitudes and intentions toward the website and how these effects vary according to site experience and end product tangibility. Results show that while the effects of site interactivity and graphical attractiveness were more influential for services sites, the effects of site information and trust were stronger for tangibles sites. Alternatively, compared to returning site visitors, first-time visitors perceived the website as less easy to use, needed more time to accomplish the online task, and based positive attitudes and intentions more strongly on the site information and interactivity. The results of a second study performed in a proximate culture largely corroborate these findings.

  7. Effects of molecular size and structure on self-diffusion coefficient and viscosity for saturated hydrocarbons having six carbon atoms.

    PubMed

    Iwahashi, Makio; Kasahara, Yasutoshi

    2007-01-01

    Self-diffusion coefficients and viscosities for the saturated hydrocarbons having six carbon atoms such as hexane, 2-methylpentane (2MP), 3-methylpentane (3MP), 2,2-dimethylbutane (22DMB), 2,3-dimethylbutane (23DMB), methylcyclopentane (McP) and cyclohexane (cH) were measured at various constant temperatures; obtained results were discussed in connection with their molar volumes, molecular structures and thermodynamic properties. The values of self-diffusion coefficients as the microscopic property were inversely proportional to those of viscosities as the macroscopic property. The order of their viscosities was almost same to those of their melting temperatures and enthalpies of fusion, which reflect the attractive interactions among their molecules. On the other hand, the order of the self-diffusion coefficients inversely related to the order of the melting temperatures and the enthalpies of the fusion. Namely, the compound having the larger attractive interaction mostly shows the less mobility in its liquid state, e.g., cyclohexane (cH), having the largest attractive interaction and the smallest molar volume exhibits an extremely large viscosity and small self-diffusion coefficient comparing with other hydrocarbons. However, a significant exception was 22DMB, being most close to a sphere: In spite of the smallest attractive interaction and the largest molar volume of 22DMB in the all samples, it has the thirdly larger viscosity and the thirdly smaller self-diffusion coefficient. Consequently, the dynamical properties such as self-diffusion and viscosity for the saturated hydrocarbons are determined not only by their attractive interactions but also by their molecular structures.

  8. Molecular Self-Assembly Driven by London Dispersion Forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung

    2011-01-01

    The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, canmore » the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.« less

  9. Attraction between Opposing Planar Dipolar Polymer Brushes

    DOE PAGES

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    2017-08-01

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  10. The Effects of Interaction Management and Background Similarity on Perceived Communication Competence and Attraction during Initial Interaction.

    ERIC Educational Resources Information Center

    Harris, Linda

    Although most information exchanged in an initial interaction is superficial, relationships often develop or terminate depending on the evaluations made during the first three to four minutes of a conversation. In order to investigate the content and process levels of the information exchanged during the initial interactions, 90 subjects watched…

  11. The masculinity paradox: facial masculinity and beardedness interact to determine women's ratings of men's facial attractiveness.

    PubMed

    Dixson, B J W; Sulikowski, D; Gouda-Vossos, A; Rantala, M J; Brooks, R C

    2016-11-01

    In many species, male secondary sexual traits have evolved via female choice as they confer indirect (i.e. genetic) benefits or direct benefits such as enhanced fertility or survival. In humans, the role of men's characteristically masculine androgen-dependent facial traits in determining men's attractiveness has presented an enduring paradox in studies of human mate preferences. Male-typical facial features such as a pronounced brow ridge and a more robust jawline may signal underlying health, whereas beards may signal men's age and masculine social dominance. However, masculine faces are judged as more attractive for short-term relationships over less masculine faces, whereas beards are judged as more attractive than clean-shaven faces for long-term relationships. Why such divergent effects occur between preferences for two sexually dimorphic traits remains unresolved. In this study, we used computer graphic manipulation to morph male faces varying in facial hair from clean-shaven, light stubble, heavy stubble and full beards to appear more (+25% and +50%) or less (-25% and -50%) masculine. Women (N = 8520) were assigned to treatments wherein they rated these stimuli for physical attractiveness in general, for a short-term liaison or a long-term relationship. Results showed a significant interaction between beardedness and masculinity on attractiveness ratings. Masculinized and, to an even greater extent, feminized faces were less attractive than unmanipulated faces when all were clean-shaven, and stubble and beards dampened the polarizing effects of extreme masculinity and femininity. Relationship context also had effects on ratings, with facial hair enhancing long-term, and not short-term, attractiveness. Effects of facial masculinization appear to have been due to small differences in the relative attractiveness of each masculinity level under the three treatment conditions and not to any change in the order of their attractiveness. Our findings suggest that beardedness may be attractive when judging long-term relationships as a signal of intrasexual formidability and the potential to provide direct benefits to females. More generally, our results hint at a divergence of signalling function, which may result in a subtle trade-off in women's preferences, for two highly sexually dimorphic androgen-dependent facial traits. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  12. Social dynamics in emergency evacuations: Disentangling crowd's attraction and repulsion effects

    NASA Astrophysics Data System (ADS)

    Haghani, Milad; Sarvi, Majid

    2017-06-01

    The social dynamics of crowds in emergency escape scenarios have been conventionally modelled as the net effect of virtual forces exerted by the crowd on each individual (as self-driven particles), with the magnitude of the influence formulated as decreasing functions of inter-individual distances and the direction of effect assumed to be transitioning from repulsion to attraction by distance. Here, we revisit this conventional assumption using laboratory experimental data. We show based on robust econometric hypothesis-testing methods that individuals' perception of other escapees differs based on whether those individuals are jamming around exit destinations or are on the move towards the destinations. Also, for moving crowds, it differs based on whether the escape destination chosen by the moving flow is visible or invisible to the individual. The presence of crowd jams around a destination, also the movement of crowd flows towards visible destinations are both perceived on average as repulsion (or disutility) effects (with the former showing significantly larger magnitude than the latter). The movement of crowd flows towards an invisible destination, however, is on average perceived as attraction (or utility) effect. Yet, further hypothesis testing showed that neither of those effects in isolation determines adequately whether an individual would merge with or diverge from the crowd. Rather, the social interaction factors act (at significant levels) in conjunction with the physical factors of the environments (including spatial distances to exit destinations and destinations' visibility). In brief, our finding disentangles the conditions under which individuals are more likely to show mass behaviour from the situations where they are more likely to break from the herd. It identifies two factors that moderate the perception of social interactions, ;crowds' jam/movement status; and ;environmental setup;. Our results particularly challenge the taxonomy of attraction-repulsion social interaction forces defined purely based on the distance of the individual to the surrounding crowd, by showing that crowds could be in far distance and yet be perceived as repulsion effect, or they could be in close distance and yet act as attraction effect.

  13. Attractiveness as a Function of Skin Tone and Facial Features: Evidence from Categorization Studies.

    PubMed

    Stepanova, Elena V; Strube, Michael J

    2018-01-01

    Participants rated the attractiveness and racial typicality of male faces varying in their facial features from Afrocentric to Eurocentric and in skin tone from dark to light in two experiments. Experiment 1 provided evidence that facial features and skin tone have an interactive effect on perceptions of attractiveness and mixed-race faces are perceived as more attractive than single-race faces. Experiment 2 further confirmed that faces with medium levels of skin tone and facial features are perceived as more attractive than faces with extreme levels of these factors. Black phenotypes (combinations of dark skin tone and Afrocentric facial features) were rated as more attractive than White phenotypes (combinations of light skin tone and Eurocentric facial features); ambiguous faces (combinations of Afrocentric and Eurocentric physiognomy) with medium levels of skin tone were rated as the most attractive in Experiment 2. Perceptions of attractiveness were relatively independent of racial categorization in both experiments.

  14. Are Happy Faces Attractive? The Roles of Early vs. Late Processing

    PubMed Central

    Sun, Delin; Chan, Chetwyn C. H.; Fan, Jintu; Wu, Yi; Lee, Tatia M. C.

    2015-01-01

    Facial attractiveness is closely related to romantic love. To understand if the neural underpinnings of perceived facial attractiveness and facial expression are similar constructs, we recorded neural signals using an event-related potential (ERP) methodology for 20 participants who were viewing faces with varied attractiveness and expressions. We found that attractiveness and expression were reflected by two early components, P2-lateral (P2l) and P2-medial (P2m), respectively; their interaction effect was reflected by LPP, a late component. The findings suggested that facial attractiveness and expression are first processed in parallel for discrimination between stimuli. After the initial processing, more attentional resources are allocated to the faces with the most positive or most negative valence in both the attractiveness and expression dimensions. The findings contribute to the theoretical model of face perception. PMID:26648885

  15. Perceptions of plagiarisers: The influence of target physical attractiveness, transgression severity, and sex on attributions of guilt and punishment.

    PubMed

    Swami, Viren; Arthey, Elizabeth; Furnham, Adrian

    2017-09-01

    The attractiveness-leniency effect (ALE) suggests that physically attractive targets are less likely to be perceived as guilty compared to less attractive targets. Here, we tested the ALE in relation to attributions of students who have committed plagiarism. British adults (N=165) were shown one of eight vignette-photograph pairings varying in target sex (female/male), physical attractiveness (high/low), and transgression severity (serious/minor), and provided attributions of guilt and severity of punishment. Analyses of variance revealed significant interactions between attractiveness and transgression severity for both dependent measures. Attractive targets were perceived as guiltier and deserving of more severe punishments in the serious transgression condition, but there was no significant difference between attractive and less attractive targets in the minor transgression condition. These results are discussed in terms of a reverse attribution bias, in which attractive individuals are judged more negatively when they fail to live up to higher standards of conduct. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Conformation-dependent DNA attraction.

    PubMed

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  17. Older and Younger Adults’ Accuracy in Discerning Health and Competence in Older and Younger Faces

    PubMed Central

    Zebrowitz, Leslie A.; Franklin, Robert G.; Boshyan, Jasmine; Luevano, Victor; Agrigoroaei, Stefan; Milosavljevic, Bosiljka; Lachman, Margie E.

    2015-01-01

    We examined older and younger adults’ accuracy judging the health and competence of faces. Accuracy differed significantly from chance and varied with face age but not rater age. Health ratings were more accurate for older than younger faces, with the reverse for competence ratings. Accuracy was greater for low attractive younger faces, but not for low attractive older faces. Greater accuracy judging older faces’ health was paralleled by greater validity of attractiveness and looking older as predictors of their health. Greater accuracy judging younger faces’ competence was paralleled by greater validity of attractiveness and a positive expression as predictors of their competence. Although the ability to recognize variations in health and cognitive ability is preserved in older adulthood, the effects of face age on accuracy and the different effects of attractiveness across face age may alter social interactions across the life span. PMID:25244467

  18. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlinger, C.; Belloni, L.; Zemb, T.

    1999-03-30

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less

  19. Competing growth processes induced by next-nearest-neighbor interactions: Effects on meandering wavelength and stiffness

    NASA Astrophysics Data System (ADS)

    Blel, Sonia; Hamouda, Ajmi BH.; Mahjoub, B.; Einstein, T. L.

    2017-02-01

    In this paper we explore the meandering instability of vicinal steps with a kinetic Monte Carlo simulations (kMC) model including the attractive next-nearest-neighbor (NNN) interactions. kMC simulations show that increase of the NNN interaction strength leads to considerable reduction of the meandering wavelength and to weaker dependence of the wavelength on the deposition rate F. The dependences of the meandering wavelength on the temperature and the deposition rate obtained with simulations are in good quantitative agreement with the experimental result on the meandering instability of Cu(0 2 24) [T. Maroutian et al., Phys. Rev. B 64, 165401 (2001), 10.1103/PhysRevB.64.165401]. The effective step stiffness is found to depend not only on the strength of NNN interactions and the Ehrlich-Schwoebel barrier, but also on F. We argue that attractive NNN interactions intensify the incorporation of adatoms at step edges and enhance step roughening. Competition between NNN and nearest-neighbor interactions results in an alternative form of meandering instability which we call "roughening-limited" growth, rather than attachment-detachment-limited growth that governs the Bales-Zangwill instability. The computed effective wavelength and the effective stiffness behave as λeff˜F-q and β˜eff˜F-p , respectively, with q ≈p /2 .

  20. Attractive but guilty: deliberation and the physical attractiveness bias.

    PubMed

    Patry, Marc W

    2008-06-01

    The current study examined the effect of jury deliberation on the tendency for mock jurors to find attractive defendants guilty less often. It was expected that there would be an interaction between group deliberation (yes or no) and defendant's appearance (plain-looking or attractive). It was hypothesized that mock jurors who did not deliberate would be more likely to find a plain-looking defendant guilty and that deliberation would mitigate this effect. The study was a 2 x 2 between-subjects factorial design. Participants were assigned randomly to one of four conditions: attractive defendant/deliberation, attractive defendant/no deliberation, plain-looking defendant/deliberation, and plain-looking defendant/no deliberation. A total of 172 undergraduates from a small, rural college in Vermont contributed to this study: mock jurors were 70 men and 52 women, ages ranged from 18 to 52 years (M=20.5, SD=4.9). The hypothesis was supported. Mock jurors who did not deliberate were more likely to find the plain-looking defendant guilty, whereas mock jurors who deliberated were more likely to find the attractive defendant guilty.

  1. Entropy-driven crystal formation on highly strained substrates

    PubMed Central

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613

  2. Hair Color and Skin Color Together Influence Perceptions of Age, Health, and Attractiveness in Lightly-Pigmented, Young Women.

    PubMed

    Fink, Bernhard; Liebner, Katharina; Müller, Ann-Kathrin; Hirn, Thomas; McKelvey, Graham; Lankhof, John

    2018-05-17

    Research documents that even subtle changes in visible skin condition affect perceptions of age, health, and attractiveness. There is evidence that hair quality also affects the assessment of physical appearance, as variations in hair diameter, hair density, and hair style have systematic effects on perception. Here, we consider combined effects of hair color and skin color on the perception of female physical appearance. In two experiments, we digitally manipulated facial skin color of lightly-pigmented, young women, both between-subjects (Experiment 1) and within-subjects (Experiment 2), and investigated possible interactions with hair color in regard to age, health, and attractiveness perception. In both experiments, we detected hair color and skin color interaction effects on men's and women's assessments. For between-subjects comparisons, participants with lighter hair color were judged to be younger than those with darker shades; this effect was more pronounced in women with light skin color. No such effect was observed for within-subjects variation in skin color. Both experiments showed that smaller perceived contrast between hair color and skin color resulted in more positive responses. We conclude that hair color and facial skin color together have an effect on perceptions of female age, health, and attractiveness in young women, and we discuss these findings with reference to the literature on the role of hair and skin in the assessment of female physical appearance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Measured long-range repulsive Casimir–Lifshitz forces

    PubMed Central

    Munday, J. N.; Capasso, Federico; Parsegian, V. Adrian

    2014-01-01

    Quantum fluctuations create intermolecular forces that pervade macroscopic bodies1–3. At molecular separations of a few nanometres or less, these interactions are the familiar van der Waals forces4. However, as recognized in the theories of Casimir, Polder and Lifshitz5–7, at larger distances and between macroscopic condensed media they reveal retardation effects associated with the finite speed of light. Although these long-range forces exist within all matter, only attractive interactions have so far been measured between material bodies8–11. Here we show experimentally that, in accord with theoretical prediction12, the sign of the force can be changed from attractive to repulsive by suitable choice of interacting materials immersed in a fluid. The measured repulsive interaction is found to be weaker than the attractive. However, in both cases the magnitude of the force increases with decreasing surface separation. Repulsive Casimir–Lifshitz forces could allow quantum levitation of objects in a fluid and lead to a new class of switchable nanoscale devices with ultra-low static friction13–15. PMID:19129843

  4. Adaptive Allocation of Attention: Effects of Sex and Sociosexuality on Visual Attention to Attractive Opposite-Sex Faces.

    PubMed

    Duncan, Lesley A; Park, Justin H; Faulkner, Jason; Schaller, Mark; Neuberg, Steven L; Kenrick, Douglas T

    2007-09-01

    We tested the hypothesis that, compared with sociosexually restricted individuals, those with an unrestricted approach to mating would selectively allocate visual attention to attractive opposite-sex others. We also tested for sex differences in this effect. Seventy-four participants completed the Sociosexual Orientation Inventory, and performed a computer-based task that assessed the speed with which they detected changes in attractive and unattractive male and female faces. Differences in reaction times served as indicators of selective attention. Results revealed a Sex X Sociosexuality interaction: Compared with sociosexually restricted men, unrestricted men selectively allocated attention to attractive opposite-sex others; no such effect emerged among women. This finding was specific to opposite-sex targets and did not occur in attention to same-sex others. These results contribute to a growing literature on the adaptive allocation of attention in social environments.

  5. The Differential Effect of Skin Color on Attractiveness, Personality Evaluations, and Perceived Life Success of African Americans

    ERIC Educational Resources Information Center

    Wade, T. Joel; Bielitz, Sara

    2005-01-01

    Skin color in relation to perceived attractiveness, personality ratings, and perceived life success of African Americans was investigated in a 2 (sex of participant) 2 (skin color of stimulus person) 2 (sex of stimulus person) design. Based on prior research, Skin Color Sex of Stimulus Person and Sex of Participant Skin Color interactions were…

  6. Fulde-Ferrell-Larkin-Ovchinnikov correlation and free fluids in the one-dimensional attractive Hubbard model

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen

    2018-03-01

    In this Rapid Communication, we show that low-energy macroscopic properties of the one-dimensional (1D) attractive Hubbard model exhibit two fluids of bound pairs and of unpaired fermions. Using the thermodynamic Bethe ansatz equations of the model, we first determine the low-temperature phase diagram and analytically calculate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing correlation function for the partially polarized phase. We then show that for such an FFLO-like state in the low-density regime the effective chemical potentials of bound pairs and unpaired fermions behave like two free fluids. Consequently, the susceptibility, compressibility, and specific heat obey simple additivity rules, indicating the "free" particle nature of interacting fermions on a 1D lattice. In contrast to the continuum Fermi gases, the correlation critical exponents and thermodynamics of the attractive Hubbard model essentially depend on two lattice interacting parameters. Finally, we study scaling functions, the Wilson ratio and susceptibility, which provide universal macroscopic properties and dimensionless constants of interacting fermions at low energy.

  7. Catching the PEG-induced attractive interaction between proteins.

    PubMed

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  8. Viewing time measures of sexual orientation in Samoan cisgender men who engage in sexual interactions with fa'afafine.

    PubMed

    Petterson, Lanna J; Dixson, Barnaby J; Little, Anthony C; Vasey, Paul L

    2015-01-01

    Androphilia refers to attraction to adult males, whereas gynephilia refers to attraction to adult females. The current study employed self-report and viewing time (response time latency) measures of sexual attraction to determine the sexual orientation of Samoan cisgender men (i.e., males whose gender presentation and identity is concordant with their biological sex) who engage in sexual interactions with transgender male androphiles (known locally as fa'afafine) compared to: (1) Samoan cisgender men who only engage in sexual interactions with women, and (2) fa'afafine. As expected, both measures indicated that cisgender men who only engaged in sexual interactions with women exhibited a gynephilic pattern of sexual attraction, whereas fa'afafine exhibited an androphilic one. In contrast, both measures indicated that cisgender men who engaged in sexual interactions with fa'afafine demonstrated a bisexual pattern of sexual attraction. Most of the cisgender men who exhibited bisexual viewing times did not engage in sexual activity with both men and women indicating that the manner in which bisexual patterns of sexual attraction manifest behaviorally vary from one culture to the next.

  9. Ontogeny of collective behavior reveals a simple attraction rule.

    PubMed

    Hinz, Robert C; de Polavieja, Gonzalo G

    2017-02-28

    The striking patterns of collective animal behavior, including ant trails, bird flocks, and fish schools, can result from local interactions among animals without centralized control. Several of these rules of interaction have been proposed, but it has proven difficult to discriminate which ones are implemented in nature. As a method to better discriminate among interaction rules, we propose to follow the slow birth of a rule of interaction during animal development. Specifically, we followed the development of zebrafish, Danio rerio , and found that larvae turn toward each other from 7 days postfertilization and increase the intensity of interactions until 3 weeks. This developmental dataset allows testing the parameter-free predictions of a simple rule in which animals attract each other part of the time, with attraction defined as turning toward another animal chosen at random. This rule makes each individual likely move to a high density of conspecifics, and moving groups naturally emerge. Development of attraction strength corresponds to an increase in the time spent in attraction behavior. Adults were found to follow the same attraction rule, suggesting a potential significance for adults of other species.

  10. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  11. Anomalous matching effect and attractive vortex interaction in 7.5-/μm triangular microhole lattice on Pb film

    NASA Astrophysics Data System (ADS)

    Ishida, Takekazu; Yoshida, Masaaki; Nakata, Shin'ichiro; Koyama, Tomio

    2002-10-01

    It is considerably exciting to explore the novel vortex physics in multiply connected superconductors. We prepare triangular microhole lattice on Pb film (TriMHoLP) by evaporation of a type-I superconductor Pb upon a capillary plate (6-μm hole and 7.5-μm pitch) in vacuum. We measure the magnetization of TriMHoLP in the RSO mode under low fields (| H|⩽4.7 G). The polarity of magnetization peaks is identical against the field reversal. The magnetization curves as a function of temperature taken in a field-cooling mode of RSO are always positive irrelevant to the field polarity. We show that a vortex-vortex interaction is not always repulsive in a low- κ superconductor. We consider that a spontaneous magnetization and an anomalous matching effect near Tc are relevant to the attractive interaction between vortices.

  12. Molecular Theory and Simulation of Water-Oil Contacts

    NASA Astrophysics Data System (ADS)

    Tan, Liang

    The statistical mechanical theory of hydrophobic interactions was initiated decades ago for purely repulsive hydrophobic species, in fact, originally for hard-sphere solutes in liquid water. Systems which treat only repulsive solute-water interactions obviously differ from the real world situation. The issue of the changes to be expected from inclusion of realistic attractive solute-water interactions has been of specific interest also for decades. We consider the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions. The principal result of LMF theory is outlined, then tested by obtaining radial distribution functions (rdfs) for Ar atoms in water, with and without attractive interactions distinguished by the Weeks-Chandler-Andersen (WCA) separation. Change from purely repulsive atomic solute interactions to include realistic attractive interactions substantially diminishes the strength of hydrophobic bonds. Since attractions make a big contribution to hydrophobic interactions, Pratt-Chandler theory, which did not include attractions, should not be naively compared to computer simulation results with general physical interactions, including attractions. Lack of general appreciation of this point has lead to mistaken comparisons throughout the history of this subject. The rdfs permit evaluation of osmotic second virial coefficients B2. Those B 2 are consistent with the conclusion that incorporation of attractive interactions leads to more positive (repulsive) values. In all cases here, B2 becomes more attractive with increasing temperature below T = 360K, the so-call inverse temperature behavior. In 2010, the Gulf of Mexico Macondo well (Deepwater Horizon) oil spill focused the attention of the world on water-oil phase equilibrium. In response to the disaster, chemical dispersants were applied to break oil slicks into droplets and thus to avoid large-scale fouling of beaches and to speed up biodegradation. Eventually the dispersant COREXIT 9500 was used predominantly in responding to this accident. The formulation of COREXIT dispersants is somewhat complicated and the various constituents (and their interactions) deserve exhaustive study. Here we focus on sorbitan monooleate (SPAN80), one important component of COREXIT 9500, and we investigate its behavior in oil-water-surfactant systems. Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with SPAN80, at T = 300K, are analyzed for the surface tension equation of state, desorption free energy profiles as they depend on loading, and to evaluate escape times for absorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple from conditions of low loading (high tension) to high loading (lower tension) studied, and the desorption free energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 head-group ring is well-described by a diffusional model near the minimum of the desorption free energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 0.07 s (into the squalane) and 300 h (into the water). The latter value is consistent with irreversible absorption observed by related experimental work.

  13. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    PubMed

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone < acetophenone < benzophenone. The Mulliken charges of the three solutes and CO2 molecules obtained by using quantum chemistry calculations described the order of the magnitude of the attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of the solute-solvent interactions of the ketones in scCO2.

  14. Microstructure and rheology of particle stabilized emulsions: Effects of particle shape and inter-particle interactions.

    PubMed

    Katepalli, Hari; John, Vijay T; Tripathi, Anubhav; Bose, Arijit

    2017-01-01

    Using fumed and spherical silica particles of similar hydrodynamic size, we investigated the effects of particle shape and inter-particle interactions on the formation, stability and rheology of bromohexadecane-in-water Pickering emulsions. The interparticle interactions were varied from repulsive to attractive by modifying the salt concentration in the aqueous phase. Optical microscope images revealed smaller droplet sizes for the fumed silica stabilized emulsions. All the emulsions remained stable for several weeks. Cryo-SEM images of the emulsion droplets showed a hexagonally packed single layer of particles at oil-water interfaces in emulsions stabilized with silica spheres, irrespective of the nature of the inter-particle interactions. Thus, entropic, excluded volume interactions dominate the fate of spherical particles at oil-water interfaces. On the other hand, closely packed layers of particles were observed at oil-water interfaces for the fumed silica stabilized emulsions for both attractive and repulsive interparticle interactions. At the high salt concentrations, attractive inter-particles interactions led to aggregation of fumed silica particles, and multiple layers of these particles were then observed on the droplet surfaces. A network of fumed silica particles was also observed between the emulsion droplets, suggesting that enthalpic interactions are responsible for the determining particle configurations at oil-water interfaces as well as in the aqueous phase. Steady shear viscosity measurements over a range of shear stresses, as well as oscillatory shear measurements at 1Hz confirm the presence of a network in fumed silica suspensions and emulsions, and the lack of such a network when spherical particles are used. The fractal structure of fumed silica leads to several contact points and particle interlocking in the water as well as on the bromohexadecane-water interfaces, with corresponding effects on the structure and rheology of the emulsions. The attenuation of droplet motion due to the formation of a particle network can be exploited for stabilizing emulsions and for modulating their rheology. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2017-03-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).

  16. Exploiting Repulsive and Attractive Optical Forces in Advanced Nanophotonic Systems

    DTIC Science & Technology

    2015-10-26

    in the same device. Such all-optical interaction is achieved without involving any optoelectronic interaction or nonlinear optical effect and thus...other cavity and tilt the see-saw, causing detuning of both cavities but in opposite directions. Furthermore, the see- saw oscillation can “shuttle

  17. Gender, Ethnicity, Religiosity, and Same-sex Sexual Attraction and the Acceptance of Same-sex Sexuality and Gender Non-conformity

    PubMed Central

    Bos, Henny M. W.; Merry, Michael S.; Sandfort, Theo G. M.

    2012-01-01

    This study explored the role of gender, ethnicity, religiosity, and sexual attraction in adolescents’ acceptance of same-sex sexuality and gender non-conformity. Using an intersectionality perspective, we also tested whether the effects of gender, ethnicity, and religiosity on adolescents’ attitudes would function differently in adolescents with and without same-sex attractions. Data for this study were collected by means of a paper questionnaire completed by 1,518 secondary school students (mean age = 14.56 years, SD = 1.05) in Amsterdam, the Netherlands. The sample was 48.1% female and 51.9% male. Approximately one third of adolescents in the sample were of a non-Western ethnic background (32.3%, n = 491) and 7.5% of the participants (n = 114) reported experiencing same-sex attractions. Results of our analyses showed that adolescents in our sample who were male, of non-Western ethnicity, and who were more religious (as indicated by frequency of religious service attendance), were less accepting of same-sex sexuality and gender non-conformity in comparison to female, Western and less religious peers. We also found a significant interaction effect between religiosity and sexual attractions, but only in relation to evaluation of same-sex attracted, gender nonconforming females. The negative effect of religiosity on acceptance of same-sex attracted, gender non-conforming females was stronger among those adolescents who reported same-sex attractions. PMID:23687403

  18. Gender, Ethnicity, Religiosity, and Same-sex Sexual Attraction and the Acceptance of Same-sex Sexuality and Gender Non-conformity.

    PubMed

    Collier, Kate L; Bos, Henny M W; Merry, Michael S; Sandfort, Theo G M

    2013-06-01

    This study explored the role of gender, ethnicity, religiosity, and sexual attraction in adolescents' acceptance of same-sex sexuality and gender non-conformity. Using an intersectionality perspective, we also tested whether the effects of gender, ethnicity, and religiosity on adolescents' attitudes would function differently in adolescents with and without same-sex attractions. Data for this study were collected by means of a paper questionnaire completed by 1,518 secondary school students (mean age = 14.56 years, SD = 1.05) in Amsterdam, the Netherlands. The sample was 48.1% female and 51.9% male. Approximately one third of adolescents in the sample were of a non-Western ethnic background (32.3%, n = 491) and 7.5% of the participants ( n = 114) reported experiencing same-sex attractions. Results of our analyses showed that adolescents in our sample who were male, of non-Western ethnicity, and who were more religious (as indicated by frequency of religious service attendance), were less accepting of same-sex sexuality and gender non-conformity in comparison to female, Western and less religious peers. We also found a significant interaction effect between religiosity and sexual attractions, but only in relation to evaluation of same-sex attracted, gender nonconforming females. The negative effect of religiosity on acceptance of same-sex attracted, gender non-conforming females was stronger among those adolescents who reported same-sex attractions.

  19. Polymer chain collapse induced by many-body dipole correlations.

    PubMed

    Budkov, Yu A; Kalikin, N N; Kolesnikov, A L

    2017-04-01

    We present a simple analytical theory of a flexible polymer chain dissolved in a good solvent, carrying permanent freely oriented dipoles on the monomers. We take into account the dipole correlations within the random phase approximation (RPA), as well as a dielectric heterogeneity in the internal polymer volume relative to the bulk solution. We demonstrate that the dipole correlations of monomers can be taken into account as pairwise ones only when the polymer chain is in a coil conformation. In this case the dipole correlations manifest themselves through the Keesom interactions of the permanent dipoles. On the other hand, the dielectric heterogeneity effect (dielectric mismatch effect) leads to the effective interaction between the monomers of the polymeric coil. Both of these effects can be taken into account by renormalizing the second virial coefficient of the monomer-monomer volume interactions. We establish that in the case when the solvent dielectric permittivity exceeds the dielectric permittivity of the polymeric material, the dielectric mismatch effect competes with the dipole attractive interactions, leading to polymer coil expansion. In the opposite case, both the dielectric mismatch effect and the dipole attractive interaction lead to the polymer coil collapse. We analyse the coil-globule transition caused by the dipole correlations of monomers within the many-body theory. We demonstrate that accounting for the dipole correlations higher than the pairwise ones smooths this pure electrostatics driven coil-globule transition of the polymer chain.

  20. Quantum droplet of one-dimensional bosons with a three-body attraction

    NASA Astrophysics Data System (ADS)

    Sekino, Yuta; Nishida, Yusuke

    2018-01-01

    Ultracold atoms offer valuable opportunities where interparticle interactions can be controlled at will. In particular, by extinguishing the two-body interaction, one can realize unique systems governed by the three-body interaction, which is otherwise hidden behind the two-body interaction. Here we study one-dimensional bosons with a weak three-body attraction and show that they form few-body bound states as well as a many-body droplet stabilized by the quantum mechanical effect. Their binding energies relative to that of three bosons are all universal and the ground-state energy of the dilute droplet is found to grow exponentially as EN/E3→exp(8 N2/√{3 }π ) with increasing particle number N ≫1 . The realization of our system with coupled two-component bosons in an optical lattice is also discussed.

  1. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics

    PubMed Central

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores. PMID:26218430

  2. Effects of Switching Behavior for the Attraction on Pedestrian Dynamics.

    PubMed

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2015-01-01

    Walking is a fundamental activity of our daily life not only for moving to other places but also for interacting with surrounding environment. While walking on the streets, pedestrians can be aware of attractions like shopping windows. They can be influenced by the attractions and some of them might shift their attention towards the attractions, namely switching behavior. As a first step to incorporate the switching behavior, this study investigates collective effects of switching behavior for an attraction by developing a behavioral model. Numerical simulations exhibit different patterns of pedestrian behavior depending on the strength of the social influence and the average length of stay. When the social influence is strong along with a long length of stay, a saturated phase can be defined at which all the pedestrians have visited the attraction. If the social influence is not strong enough, an unsaturated phase appears where one can observe that some pedestrians head for the attraction while others walk in their desired direction. These collective patterns of pedestrian behavior are summarized in a phase diagram by comparing the number of pedestrians who visited the attraction to the number of passersby near the attraction. Measuring the marginal benefits with respect to the strength of the social influence and the average length of stay enables us to identify under what conditions enhancing these variables would be more effective. The findings from this study can be understood in the context of the pedestrian facility management, for instance, for retail stores.

  3. Identifying hydrodynamic interaction effects in tethered polymers in uniform flow.

    PubMed

    Kienle, Diego; Rzehak, Roland; Zimmermann, Walter

    2011-06-01

    Using Brownian dynamics simulations, we investigate how hydrodynamic interaction (HI) affects the behavior of tethered polymers in uniform flow. While it is expected that the HI within the polymer will lead to a dependency of the polymer's drag coefficient on the flow velocity, the interchain HI causes additional screening effects. For the case of two polymers in uniform flow with their tether points a finite distance apart, it is shown that the interchain HI not only causes a further reduction of the drag per polymer with decreasing distance between the tether points but simultaneously induces a polymer-polymer attraction as well. This attraction exhibits a characteristic maximum at intermediate flow velocities when the drag forces are of the order of the entropic forces. The effects uniquely attributed to the presence of HI can be verified experimentally.

  4. Children and Adults use Attractiveness as a Social Cue in Real People and Avatars

    PubMed Central

    Principe, Connor P.; Langlois, Judith H.

    2012-01-01

    Observing social interactions between children and adults is a major method in the toolkit of psychologists who examine social development and social relationships. Although this method has revealed many interesting phenomena, it cannot determine the effect of behavior independent of other traits. Research on the role of attractiveness in social development provides an example of this conundrum: Are attractive and unattractive children/adults treated differently because of their attractiveness (independent of their behavior), do they behave differently and thus elicit differential treatment, or both? Virtual world and avatar-based technologies allow researchers to control the social behaviors of targets; however, whether children and adults use the facial attractiveness of avatars as a social cue in the same way they do real peers is currently unknown. Using Mii™ avatars from the popular Nintendo® Wii™ video game console, Study 1 found that the facial attractiveness ratings of real people strongly predicted the attractiveness ratings of avatar faces based on the former group. Study 2 revealed that adults (n = 46) and children (n = 42) prefer attractive avatars as social partners. The results of this set of methodological studies may help to clarify future research on the relationship between attractiveness and behavior throughout the lifespan. Furthermore, the use of avatars may allow studies to experimentally examine the effects of attractiveness in situations in which such research is not ethical (e.g., peer victimization). PMID:23399311

  5. Attributions of guilt and punishment as functions of physical attractiveness and smiling.

    PubMed

    Abel, Millicent H; Watters, Heather

    2005-12-01

    The authors found an interaction between sex of participant and sex of defendant in the leniency bias toward a smiling defendant. Differences occurred for male participants when levying punishment for a smiling male defendant vs. a smiling female defendant and for a smiling male defendant vs. a nonsmiling male defendant, whereas differences did not occur for female participants. The authors found moderating effects of physical attractiveness and smiling between guilt and punishment. The only significant positive relationship between guilt and punishment occurred for the defendant whom participants rated low in physical attractiveness and who was not smiling. When guilty, the smiling and unattractive defendant received less punishment than did the smiling and attractive defendant. The authors discussed complex relationships between physical attractiveness, smiling, guilt, and punishment.

  6. Static force field representation of environments based on agents' nonlinear motions

    NASA Astrophysics Data System (ADS)

    Campo, Damian; Betancourt, Alejandro; Marcenaro, Lucio; Regazzoni, Carlo

    2017-12-01

    This paper presents a methodology that aims at the incremental representation of areas inside environments in terms of attractive forces. It is proposed a parametric representation of velocity fields ruling the dynamics of moving agents. It is assumed that attractive spots in the environment are responsible for modifying the motion of agents. A switching model is used to describe near and far velocity fields, which in turn are used to learn attractive characteristics of environments. The effect of such areas is considered radial over all the scene. Based on the estimation of attractive areas, a map that describes their effects in terms of their localizations, ranges of action, and intensities is derived in an online way. Information of static attractive areas is added dynamically into a set of filters that describes possible interactions between moving agents and an environment. The proposed approach is first evaluated on synthetic data; posteriorly, the method is applied on real trajectories coming from moving pedestrians in an indoor environment.

  7. Drought and leaf herbivory influence floral volatiles and pollinator attraction

    Treesearch

    Laura A. Burkle; Justin B. Runyon

    2016-01-01

    The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...

  8. Invasive insect herbivores as disrupters of chemically-mediated tritrophic interactions: effects of herbivore density and parasitoid learning

    USDA-ARS?s Scientific Manuscript database

    Invasive species of insect herbivores have the potential to interfere with native multitrophic interactions when they invade new environments. For instance, exotic herbivores can affect the chemical cues emitted by plants and disrupt attraction of natural enemies mediated by herbivore-induced plant ...

  9. Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal

    2018-04-01

    The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.

  10. The Effect of Attractive Interactions and Macromolecular Crowding on Crystallins Association

    PubMed Central

    Wei, Jiachen; Dobnikar, Jure; Curk, Tine; Song, Fan

    2016-01-01

    In living systems proteins are typically found in crowded environments where their effective interactions strongly depend on the surrounding medium. Yet, their association and dissociation needs to be robustly controlled in order to enable biological function. Uncontrolled protein aggregation often causes disease. For instance, cataract is caused by the clustering of lens proteins, i.e., crystallins, resulting in enhanced light scattering and impaired vision or blindness. To investigate the molecular origins of cataract formation and to design efficient treatments, a better understanding of crystallin association in macromolecular crowded environment is needed. Here we present a theoretical study of simple coarse grained colloidal models to characterize the general features of how the association equilibrium of proteins depends on the magnitude of intermolecular attraction. By comparing the analytic results to the available experimental data on the osmotic pressure in crystallin solutions, we identify the effective parameters regimes applicable to crystallins. Moreover, the combination of two models allows us to predict that the number of binding sites on crystallin is small, i.e. one to three per protein, which is different from previous estimates. We further observe that the crowding factor is sensitive to the size asymmetry between the reactants and crowding agents, the shape of the protein clusters, and to small variations of intermolecular attraction. Our work may provide general guidelines on how to steer the protein interactions in order to control their association. PMID:26954357

  11. Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery.

    PubMed

    Barden, R C; Ford, M E; Wilhelm, W M; Rogers-Salyer, M; Salyer, K E

    1988-09-01

    The present experiment investigated whether observers' emotional and behavioral reactions to facially deformed patients could be substantially improved by surgical procedures conducted by well-trained specialists in an experienced multidisciplinary team. Also investigated was the hypothesis that emotional states mediate the effects of physical attractiveness and facial deformity on social interaction. Twenty patients between the ages of 3 months and 17 years were randomly selected from over 2000 patients' files of Kenneth E. Salyer of Dallas, Texas. Patient diagnoses included facial clefts, hypertelorism, Treacher Collins syndrome, and craniofacial dysostoses (Crouzon's and Apert's syndromes). Rigorously standardized photographs of patients taken before and after surgery were shown to 22 "naive" raters ranging in age from 18 to 54 years. Raters were asked to predict their emotional and behavioral responses to the patients. These ratings indicated that observers' behavioral reactions to facially deformed children and adolescents would be more positive following craniofacial surgery. Similarly, the ratings indicated that observers' emotional reactions to these patients would be more positive following surgery. The results are discussed in terms of current sociopsychologic theoretical models for the effects of attractiveness on social interaction. A new model is presented that implicates induced emotional states as a mediating process in explaining the effects of attractiveness and facial deformity on the quality of social interactions. Limitations of the current investigation and directions for future research are also discussed.

  12. Viewing Time Measures of Sexual Orientation in Samoan Cisgender Men Who Engage in Sexual Interactions with Fa’afafine

    PubMed Central

    Petterson, Lanna J.; Dixson, Barnaby J.; Little, Anthony C.; Vasey, Paul L.

    2015-01-01

    Androphilia refers to attraction to adult males, whereas gynephilia refers to attraction to adult females. The current study employed self-report and viewing time (response time latency) measures of sexual attraction to determine the sexual orientation of Samoan cisgender men (i.e., males whose gender presentation and identity is concordant with their biological sex) who engage in sexual interactions with transgender male androphiles (known locally as fa’afafine) compared to: (1) Samoan cisgender men who only engage in sexual interactions with women, and (2) fa’afafine. As expected, both measures indicated that cisgender men who only engaged in sexual interactions with women exhibited a gynephilic pattern of sexual attraction, whereas fa’afafine exhibited an androphilic one. In contrast, both measures indicated that cisgender men who engaged in sexual interactions with fa’afafine demonstrated a bisexual pattern of sexual attraction. Most of the cisgender men who exhibited bisexual viewing times did not engage in sexual activity with both men and women indicating that the manner in which bisexual patterns of sexual attraction manifest behaviorally vary from one culture to the next. PMID:25679961

  13. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  14. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  15. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.

    PubMed

    Sendoya, Sebastián F; Oliveira, Paulo S

    2015-03-01

    Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering.

    PubMed

    Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael

    2015-04-01

    The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. Modified interactions among globular proteins below isoelectric point in the presence of mono-, di- and tri-valent ions: A small angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Das, Kaushik; Kundu, Sarathi; Mehan, Sumit; Aswal, V. K.

    2016-02-01

    Both short range attraction and long range electrostatic repulsion exist among globular protein Bovine Serum Albumin in solution below its isoelectric point (pI ≈ 4.8). At pD ≈ 4.0, below pI, protein has a net positive surface charge although local charge inhomogeneity presents. Small angle neutron scattering study reveals that in the presence of both mono-(Na+) and di-(Ni2+) valent ions attractive interaction increases and repulsive interaction decreases with the increase of salt concentration. However, for tri-valent (Fe3+) ions, both attractive and repulsive interaction increases with increasing salt concentration but the relative strength of repulsion is more than the attraction.

  19. Electrostatic attraction between neutral microdroplets by ion fluctuations

    NASA Astrophysics Data System (ADS)

    Sheng, Yu-Jane; Tsao, Heng-Kwong

    2004-06-01

    The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P2z >2 r-6 , dipole-quadrupole < P2z > < Q 2zz > r-8 , dipole-octupole < P2z > < O 2zzz > r-10 , and quadrupole-quadrupole interactions < Q 2zz >2 r-10 . The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.

  20. Electrostatic attraction between neutral microdroplets by ion fluctuations.

    PubMed

    Sheng, Yu-Jane; Tsao, Heng-Kwong

    2004-06-01

    The interaction between two aqueous droplets containing ions is investigated. The ion-fluctuation correlation gives rise to attraction between two neutral microdroplets, similar to the van der Waals interaction between neutral atoms. Electrostatic attraction consists of contributions from various induced multipole-multipole interactions, including dipole-dipole < P(2)(z) >(2) r(-6), dipole-quadrupole < P(2)(z) > < Q (2)(zz ) > r(-8), dipole-octupole < P(2)(z) > < O (2)(zzz ) > r(-10), and quadrupole-quadrupole interactions < Q (2)(zz ) >(2) r(-10). The mean-square multipole moments are determined analytically by linear response theory. The fluctuation-driven attraction is so strong at short distance that it may dominate over the Coulomb repulsion between like-charged droplets. These theoretical results are confirmed by Monte Carlo simulations.

  1. Elasto-capillary interactions of drops and particles

    NASA Astrophysics Data System (ADS)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  2. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  3. Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments

    NASA Astrophysics Data System (ADS)

    Midha, Tripti; Gupta, Arvind Kumar

    2017-11-01

    Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.

  4. Nonmonotonic diffusion in crowded environments

    PubMed Central

    Putzel, Gregory Garbès; Tagliazucchi, Mario; Szleifer, Igal

    2015-01-01

    We study the diffusive motion of particles among fixed spherical crowders. The diffusers interact with the crowders through a combination of a hard-core repulsion and a short-range attraction. The long-time effective diffusion coefficient of the diffusers is found to depend non-monotonically on the strength of their attraction to the crowders. That is, for a given concentration of crowders, a weak attraction to the crowders enhances diffusion. We show that this counterintuitive fact can be understood in terms of the mesoscopic excess chemical potential landscape experienced by the diffuser. The roughness of this excess chemical potential landscape quantitatively captures the nonmonotonic dependence of the diffusion rate on the strength of crowder-diffuser attraction; thus it is a purely static predictor of dynamic behavior. The mesoscopic view given here provides a unified explanation for enhanced diffusion effects that have been found in various systems of technological and biological interest. PMID:25302920

  5. Dielectric response of Anderson and pseudogapped insulators

    NASA Astrophysics Data System (ADS)

    Feigel’man, M. V.; Ivanov, D. A.; Cuevas, E.

    2018-05-01

    Using a combination of analytic and numerical methods, we study the polarizability of a (non-interacting) Anderson insulator in one-, two-, and three-dimensions and demonstrate that, in a wide range of parameters, it scales proportionally to the square of the localization length, contrary to earlier claims based on the effective-medium approximation. We further analyze the effect of electron–electron interactions on the dielectric constant in quasi-1D, quasi-2D and 3D materials with large localization length, including both Coulomb repulsion and phonon-mediated attraction. The phonon-mediated attraction (in the pseudogapped state on the insulating side of the superconductor-insulator transition) produces a correction to the dielectric constant, which may be detected from a linear response of a dielectric constant to an external magnetic field.

  6. Female parity, maternal kinship, infant age and sex influence natal attraction and infant handling in a wild colobine (Colobus vellerosus).

    PubMed

    Bădescu, Iulia; Sicotte, Pascale; Ting, Nelson; Wikberg, Eva C

    2015-04-01

    Primate females often inspect, touch and groom others' infants (natal attraction) and they may hold and carry these infants in a manner resembling maternal care (infant handling). While natal attraction and infant handling occur in most wild colobines, little is known about the factors influencing the expression of these behaviors. We examined the effects of female parity, kinship, and dominance rank, as well as infant age and sex in wild Colobus vellerosus at Boabeng-Fiema Monkey Sanctuary, Ghana. We collected data via focal sampling of females in 2008 and 2009 (N = 61) and of infants in 2010 (N = 12). Accounting for the individuals who interacted with our focal subjects, this study includes 74 females and 66 infants in 8 groups. We recorded female agonistic interactions ad libitum to determine dominance ranks. We used partial pedigree information and genotypes at 17 short tandem repeat loci to determine kinship. We knew female parity, infant age and sex from demographic records. Nulliparous females showed more natal attraction and infant handling than parous females, which may suggest that interactions with infants are more adaptive for nulliparous females because they learn mothering skills through these behaviors. Compared to non-kin, maternal kin were more likely to handle infants. Maternal kin may be permitted greater access to infants because mothers are most familiar with them. Handlers may incur inclusive fitness benefits from infant handling. Dominance rank did not affect female interactions with infants. The youngest infants received the most natal attraction and infant handling, and male infants were handled more than female infants. The potential benefits of learning to mother and inclusive fitness, in combination with the relatively low costs of natal attraction and infant handling, may explain the high rates of these behaviors in many colobines. © 2014 Wiley Periodicals, Inc.

  7. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

  8. Wildlife feeding in parks: methods for monitoring the effectiveness of educational interventions and wildlife food attraction behaviors

    USGS Publications Warehouse

    Marion, Jeffrey L.; Dvorak, Robert G.; Manning, Robert E.

    2008-01-01

    Opportunities to view and interact with wildlife are often an important part of high quality recreational experiences. Such interactions frequently include wildlife feeding, resulting in food-conditioned behaviors that may cause harm to both wildlife and visitors. This study developed and applied efficient protocols for simultaneously evaluating wildlife feeding-related behaviors of visitors and related foraging behaviors of chipmunks along a trail in Zion National Park. Unobtrusive observation protocols permitted an evaluation of educational messages delivered, and documentation of wildlife success in obtaining human food and the strength of their food attraction behavior. Significant improvements were documented for some targeted visitor behaviors and human food available to chipmunks, with minor differences between treatments. Replication of these protocols as part of a long-term monitoring program can help protected area managers evaluate and improve the efficacy of their interventions and monitor the strength of food attraction behavior in wildlife.

  9. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  10. Two-dimensional melting of colloids with long-range attractive interactions.

    PubMed

    Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa

    2017-02-22

    The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.

  11. Copper interacts with nonylphenol to cancel the effect of nonylphenol on fish chemosensory behaviour.

    PubMed

    Ward, Ashley J W; Thistle, Maria; Ghandi, Khashayar; Currie, Suzanne

    2013-10-15

    The majority of ecotoxicological studies have been concerned with responses of organisms to a single contaminant. While this approach remains valid, the challenge now is to understand the way in which multiple contaminants and stressors interact to produce effects in study organisms. Here we take an integrated biological and physico-chemical approach to understand the effects of 4-nonylphenol and copper on fish (white perch, Morone americana) chemosensory behaviour. We show that a one hour exposure to 2 μg L(-1) nonylphenol removes chemosensory attraction to conspecific chemical cues, while exposure to 5 μg L(-1) copper for one hour had no significant effect on the fish's attraction to these cues. Further, we show that simultaneous exposure to both contaminants at the stated dosage and for the same duration has no significant effect on the chemosensory attraction of white perch to conspecific chemical cues suggesting that copper mediates the effect of nonylphenol on fish in this respect. Physico-chemical data show that copper ions bind to nonylphenol in water, providing a mechanistic explanation for this change in the effect of nonylphenol. Furthermore, the finding that the copper ions bind to the lone pair of O on the nonylphenol molecule offers the tantalising possibility that it is this region of the nonylphenol molecule that plays the key role in disrupting fish chemical communication. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. [Accuracy of judgment about others' cooperative behavior: effects of attractiveness and facial expressiveness].

    PubMed

    Shinada, Mizuho; Yamagishi, Toshio; Tanida, Shigehito; Takahashi, Chisato; Inukai, Keigo; Koizumi, Michiko; Yokota, Kunihiro; Mifune, Nobuhiro; Takagishi, Haruto; Horita, Yutaka; Hashimoto, Hirofumi

    2010-06-01

    Cooperation in interdependent relationships is based on reciprocity in repeated interactions. However, cooperation in one-shot relationships cannot be explained by reciprocity. Frank, Gilovich, & Regan (1993) argued that cooperative behavior in one-shot interactions can be adaptive if cooperators displayed particular signals and people were able to distinguish cooperators from non-cooperators by decoding these signals. We argue that attractiveness and facial expressiveness are signals of cooperators. We conducted an experiment to examine if these signals influence the detection accuracy of cooperative behavior. Our participants (blind to the target's behavior in a Trust Game) viewed 30-seconds video-clips. Each video-clip was comprised of a cooperator and a non-cooperator in a Trust Game. The participants judged which one of the pair gave more money to the other participant. We found that participants were able to detect cooperators with a higher accuracy than chance. Furthermore, participants rated male non-cooperators as more attractive than male cooperators, and rated cooperators more expressive than non-cooperators. Further analyses showed that attractiveness inhibited detection accuracy while facial expressiveness fostered it.

  13. Interfacial interactions between plastic particles in plastics flotation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    PubMed

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  15. Communication: Free-energy analysis of hydration effect on protein with explicit solvent: Equilibrium fluctuation of cytochrome c

    NASA Astrophysics Data System (ADS)

    Karino, Yasuhito; Matubayasi, Nobuyuki

    2011-01-01

    The relationship between the protein conformation and the hydration effect is investigated for the equilibrium fluctuation of cytochrome c. To elucidate the hydration effect with explicit solvent, the solvation free energy of the protein immersed in water was calculated using the molecular dynamics simulation coupled with the method of energy representation. The variations of the protein intramolecular energy and the solvation free energy are found to compensate each other in the course of equilibrium structural fluctuation. The roles of the attractive and repulsive components in the protein-water interaction are further examined for the solvation free energy. The attractive component represented as the average sum of protein-water interaction energy is dominated by the electrostatic effect and is correlated to the solvation free energy through the linear-response-type relationship. No correlation with the (total) solvation free energy is seen, on the other hand, for the repulsive component expressed as the excluded-volume effect.

  16. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  17. Charged nanoparticle attraction in multivalent salt solution: A classical-fluids density functional theory and molecular dynamics study

    DOE PAGES

    Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.

    2016-04-08

    Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k BT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less

  18. Thermodynamically consistent Langevin dynamics with spatially correlated noise predicting frictionless regime and transient attraction effect

    NASA Astrophysics Data System (ADS)

    Majka, M.; Góra, P. F.

    2016-10-01

    While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.

  19. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.

    PubMed

    Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre

    2007-09-07

    Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.

  20. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants

    PubMed Central

    Berrached, Rachda; Kadik, Leila; Ait Mouheb, Hocine; Prinzing, Andreas

    2017-01-01

    Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little tolerant species. Lack of abiotic tolerance might hence constrain accessible resources and thereby impose a stronger synchronization with biotic partners such as pollinators. PMID:28301580

  1. Attractive Interactions between Heteroallenes and the Cucurbituril Portal.

    PubMed

    Reany, Ofer; Li, Amanda; Yefet, Maayan; Gilson, Michael K; Keinan, Ehud

    2017-06-21

    In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,ω-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the β-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide β-nitrogen, which stabilizes the canonical resonance form with positive charge on the β-nitrogen and negative charge on the γ-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n → π* orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.

  2. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  3. Emergent ultra–long-range interactions between active particles in hybrid active–inactive systems

    PubMed Central

    Steimel, Joshua P.; Aragones, Juan L.; Hu, Helen; Qureshi, Naser; Alexander-Katz, Alfredo

    2016-01-01

    Particle–particle interactions determine the state of a system. Control over the range of such interactions as well as their magnitude has been an active area of research for decades due to the fundamental challenges it poses in science and technology. Very recently, effective interactions between active particles have gathered much attention as they can lead to out-of-equilibrium cooperative states such as flocking. Inspired by nature, where active living cells coexist with lifeless objects and structures, here we study the effective interactions that appear in systems composed of active and passive mixtures of colloids. Our systems are 2D colloidal monolayers composed primarily of passive (inactive) colloids, and a very small fraction of active (spinning) ferromagnetic colloids. We find an emergent ultra–long-range attractive interaction induced by the activity of the spinning particles and mediated by the elasticity of the passive medium. Interestingly, the appearance of such interaction depends on the spinning protocol and has a minimum actuation timescale below which no attraction is observed. Overall, these results clearly show that, in the presence of elastic components, active particles can interact across very long distances without any chemical modification of the environment. Such a mechanism might potentially be important for some biological systems and can be harnessed for newer developments in synthetic active soft materials. PMID:27071096

  4. Malaria-induced changes in host odors enhance mosquito attraction

    PubMed Central

    De Moraes, Consuelo M.; Stanczyk, Nina M.; Betz, Heike S.; Pulido, Hannier; Sim, Derek G.; Read, Andrew F.; Mescher, Mark C.

    2014-01-01

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses—using discriminant analysis of principal components and random forest approaches—revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection. PMID:24982164

  5. Malaria-induced changes in host odors enhance mosquito attraction.

    PubMed

    De Moraes, Consuelo M; Stanczyk, Nina M; Betz, Heike S; Pulido, Hannier; Sim, Derek G; Read, Andrew F; Mescher, Mark C

    2014-07-29

    Vector-borne pathogens may alter traits of their primary hosts in ways that influence the frequency and nature of interactions between hosts and vectors. Previous work has reported enhanced mosquito attraction to host organisms infected with malaria parasites but did not address the mechanisms underlying such effects. Here we document malaria-induced changes in the odor profiles of infected mice (relative to healthy individuals) over the course of infection, as well as effects on the attractiveness of infected hosts to mosquito vectors. We observed enhanced mosquito attraction to infected mice during a key period after the subsidence of acute malaria symptoms, but during which mice remained highly infectious. This attraction corresponded to an overall elevation in the volatile emissions of infected mice observed during this period. Furthermore, data analyses--using discriminant analysis of principal components and random forest approaches--revealed clear differences in the composition of the volatile blends of infected and healthy individuals. Experimental manipulation of individual compounds that exhibited altered emission levels during the period when differential vector attraction was observed also elicited enhanced mosquito attraction, indicating that compounds being influenced by malaria infection status also mediate vector host-seeking behavior. These findings provide important insights into the cues that mediate vector attraction to hosts infected with transmissible stages of malaria parasites, as well as documenting characteristic changes in the odors of infected individuals that may have potential value as diagnostic biomarkers of infection.

  6. The effect of microscopic attractive interactions on piezoelectric coefficients of nanoscale DNA films and its resultant mirocantilever-based biosensor signals

    NASA Astrophysics Data System (ADS)

    Wu, Jun-Zheng; Zhou, Mei-Hong; Zhang, Neng-Hui

    2017-10-01

    The adsorption of charged biomolecules on a substrate will trigger a self-induced electric potential field that could deflect microcantilever biosensors in the nanometer regime. The paper is devoted to a multiscale characterization of the piezoelectric coefficient of double-stranded DNA (dsDNA) films with microscopic attractive interactions in multivalence salt solutions, which has a close relationship with biosensor signals. First, two different analytical models of cantilever deflections based on macroscopic piezoelectric theories or mesoscopic liquid crystal theories were combined in the sense of equivalent deformation in order to bridge the relation between the macroscopic piezoelectric coefficient of an adsorbate film and the sensitivity of its microstructure to surrounding conditions. Second, two interaction potentials of the free energy for repulsion-dominated DNA films in NaCl solution or attraction-repulsion-coexisted DNA films in multivalent salt solutions were used to compare the piezoelectric effect and the resultant cantilever deformation at various packing conditions, such as different packing density, various nucleotide numbers and two packing technologies, i.e. nano-grafting or self-assembling technology. The variational tendency of microcantilever deflections predicted by the present multiscale analytical model agrees well with the related DNA-mirocantilever experiments. Negative piezoelectric coefficient of dsDNA film exists in multivalent salt solutions, and its distinctive size effect with different packing densities and nucleotide numbers provides us with an opportunity to obtain a more sensitive microcantilever sensor by careful control of packing conditions.

  7. Hemiclonal analysis of interacting phenotypes in male and female Drosophila melanogaster

    PubMed Central

    2014-01-01

    Background Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create “hemiclonal” males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes. Using this approach, we were able to quantify the genetic contribution of each mate to the observed phenotypic variation in biologically important traits including mating speed, copulation duration, and subsequent offspring production, as well as measure the magnitude and direction of intersexual genetic correlation between female choosiness and male attractiveness. Results We found significant additive genetic variation contributing to mating speed that can be attributed to male genetic identity, female genetic identity, but not their interaction. Furthermore we found that phenotypic variation in copulation duration had a significant male-associated genetic component. Female genetic identity and the interaction between male and female genetic identity accounted for a substantial amount of the observed phenotypic variation in egg size. Although previous research predicts a trade-off between egg size and fecundity, this was not evident in our results. We found a strong negative genetic correlation between female choosiness and male attractiveness, a result that suggests a potentially important role for sexually antagonistic alleles in sexual selection processes in our population. Conclusion These results further our understanding of sexual selection because they identify that genetic identity plays a significant role in phenotypic variation in female behaviour and fecundity. This variation may be potentially due to ongoing sexual conflict found between the sexes for interacting phenotypes. Our unexpected observation of a negative correlation between female choosiness and male attractiveness highlights the need for more explicit theoretical models of genetic covariance to investigate the coevolution of female choosiness and male attractiveness. PMID:24884361

  8. Novel electrostatic attraction from plasmon fluctuations

    PubMed

    Lau; Levine; Pincus

    2000-05-01

    In this Letter, we show that, at low temperatures, zero-point fluctuations of the plasmon modes of two mutually coupled 2D planar Wigner crystals give rise to a novel long-range attractive force. For the case where the distance d between two planar surfaces is large, this attractive force has an unusual power-law decay, which scales as d(-7/2), unlike other fluctuation-induced forces. Specifically, we note that its range is longer than the "standard" zero-temperature van der Waals interaction. This result may, in principle, be observed in bilayer electronic systems and provides insight into the nature of correlation effects for highly charged surfaces.

  9. Need for Privacy and Its Effect upon Interpersonal Attraction and Interaction.

    ERIC Educational Resources Information Center

    Larson, Jeffry H.; Bell, Nancy J.

    Little is known about the implications of individual differences in privacy preferences. To explore the relationship between privacy preferences and the style and quality of social interaction in a first encounter, 77 of 320 college students completing the Privacy Preference Scale were grouped according to their low (20 male, 20 female) or high…

  10. Design of a Behavior of Robot That Attracts the Interest of the Mildly Demented Elderly.

    PubMed

    Nihei, Misato; Sakuma, Natsuki; Yabe, Hiroyuki; Kamata, Minoru; Inoue, Takenobu

    2017-01-01

    In this study, using the unexpected intervention overturning the interaction amount of the field and the mental model, an interaction of a robot system that enables sustained nonverbal communication with the mildly demented elderly was proposed and its effectiveness was shown in the group home of the mildly demented elderly.

  11. A pheromone analogue affects the evaporation rate of (+)-disparlure in Lymantria dispar.

    PubMed

    Sollai, Giorgia; Murgia, Sergio; Secci, Francesco; Frongia, Angelo; Cerboneschi, Anna; Masala, Carla; Liscia, Anna; Crnjar, Roberto; Solari, Paolo

    2014-04-01

    The gypsy moth Lymantria dispar L. is a widespread pest that causes economic damage to cork oak forests. Females produce the sex pheromone (+)-(7R,8S)-epoxy-2-methyloctadecane, known as (+)-disparlure [(+)D], for long-distance attraction of conspecific males. A (+)D analogue, 2-decyl-1-oxaspiro[2.2]pentane (OXP-01), neither stimulating nor attractive by itself, causes short-time inhibition of male response in a 1:1 blend with (+)D. The authors investigated whether and how the biological activity of the natural pheromone is affected by OXP-01 on a long-time basis (up to 16 days), also by looking at possible physicochemical reciprocal interactions. Blending of (+)D with OXP-01 decreased, under low evaporation rate, the pheromone effectiveness, as assessed by electroantennogram recordings. In male trappings, within the first 24 h, OXP-01 decreased and later enhanced the blend attractiveness, but only under high evaporation rate. Gas chromatography-mass spectroscopy indicates that quantitative retrieval of (+)D from blend cartridges is higher than for pure pheromone, and nuclear magnetic resonance measurements show that OXP-01 produces, possibly by Van der Waals interactions, a bimolecular entity with pheromone causing retention and lengthening of its attractiveness over time. The biological and physicochemical interactions between (+)D and OXP-01 may provide valuable information for the optimisation of pheromone-based control strategies for gypsy moths. © 2013 Society of Chemical Industry.

  12. Perception and evaluation of women's bodies in adolescents and adults with anorexia nervosa.

    PubMed

    Horndasch, Stefanie; Heinrich, Hartmut; Kratz, Oliver; Mai, Sandra; Graap, Holmer; Moll, Gunther H

    2015-12-01

    Body image disturbance in anorexia nervosa (AN) has been widely studied with regard to the patient's own body, but little is known about perception of or attitude towards other women's bodies in AN. The aim of the present study was to investigate how 20 girls aged 12-18 years and 19 adult women suffering from AN compared to 37 healthy adolescent girls and women estimate weight and attractiveness of women's bodies belonging to different BMI categories (BMI 13.8-61.3 kg/m²). Weight and attractiveness ratings of the participant's own body and information on physical comparisons were obtained, and effects on others' weight and attractiveness ratings investigated. Differential evaluation processes were found: AN patients estimated other women's weight higher than control participants. Patients showed a bias towards assessing extremely underweight women as more attractive and normal weight and overweight women as less attractive than healthy girls and women. These effects were more pronounced in adult than in adolescent AN patients. The tendency to engage in physical comparison with others significantly correlated with weight as well as attractiveness ratings in patients. A logistic regression model encompassing own attractiveness ratings, attractiveness bias towards strongly underweight others' bodies and the interaction of this bias with age as predictors differentiated best between AN patients and controls. Our results indicate that females suffering from AN and healthy girls and women perceive other women's bodies differently. Assessment of others' weight and attractiveness may contribute to the maintenance of dysfunctional physical comparison processes.

  13. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    PubMed Central

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2014-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558

  14. Dynamics of Two Interactive Bubbles in An Acoustic Field - Part II: Experiments

    NASA Astrophysics Data System (ADS)

    Ashgriz, Nasser; Barbat, Tiberiu; Liu, Ching-Shi

    1996-11-01

    The motion of two air bubbles levitated in water, in the presence of a high-frequency acoustic field is experimentally studied. The interaction force between them is named "secondary Bjerknes force" and may be significant in microgravity environments; in our experiments the buoyancy effect is compensated through the action of the "primary Bjerknes forces" - interaction between each bubble oscillation and external sound field. The stationary sound field is produced by a piezoceramic tranducer, in the range of 22-24 kHz. The experiments succesfully demonstrate the existence of three patterns of interaction between bubbles of various sizes: attraction, repulsion and oscillation. Bubbles attraction is quantitatively studied using a high speed video, for "large" bubbles (in the range 0.5-2 mm radius); bubbles repulsion and oscillations are only observed with a regular video, for "small" bubbles (around the resonance size at these frequencies, 0.12 mm). Velocities and accelerations of each bubble are computed from the time history of the motion. The theoretical equations of motion are completed with a drag force formula for single bubbles and solved numerically. Experimental results, for the case of two attracting bubbles, are in good agreement with the numerical model, especially for values of the mutual distance greater than 3 large bubble radii.

  15. Attracted to power: challenge/threat and promotion/prevention focus differentially predict the attractiveness of group power

    PubMed Central

    Scholl, Annika; Sassenrath, Claudia; Sassenberg, Kai

    2015-01-01

    Depending on their motivation, individuals prefer different group contexts for social interactions. The present research sought to provide more insight into this relationship. More specifically, we tested how challenge/threat and a promotion/prevention focus predict attraction to groups with high- or low-power. As such, we examined differential outcomes of threat and prevention focus as well as challenge and promotion focus that have often been regarded as closely related. According to regulatory focus, individuals should prefer groups that they expect to “feel right” for them to join: Low-power groups should be more attractive in a prevention (than a promotion) focus, as these groups suggest security-oriented strategies, which fit a prevention focus. High-power groups should be more attractive in a promotion (rather than a prevention) focus, as these groups are associated with promotion strategies fitting a promotion focus (Sassenberg et al., 2007). In contrast, under threat (vs. challenge), groups that allow individuals to restore their (perceived) lack of control should be preferred: Low-power groups should be less attractive under threat (than challenge) because they provide low resources which threatened individuals already perceive as insufficient and high-power groups might be more attractive under threat (than under challenge), because their high resources allow individuals to restore control. Two experiments (N = 140) supported these predictions. The attractiveness of a group often depends on the motivation to engage in what fits (i.e., prefer a group that feels right in the light of one’s regulatory focus). However, under threat the striving to restore control (i.e., prefer a group allowing them to change the status quo under threat vs. challenge) overrides the fit effect, which may in turn guide individuals’ behavior in social interactions. PMID:25904887

  16. Moving attractive virtual agent improves interpersonal coordination stability.

    PubMed

    Zhao, Zhong; Salesse, Robin N; Gueugnon, Mathieu; Schmidt, Richard C; Marin, Ludovic; Bardy, Benoît G

    2015-06-01

    Interpersonal motor coordination is influenced not only by biomechanical factors such as coordination pattern, oscillating frequency, and individual differences, but also by psychosocial factor such as likability and social competences. Based on the social stereotype of "what is beautiful is good", the present study aimed at investigating whether people coordinate differently with physically attractive people compared to less attractive people. 34 participants were engaged in an interpersonal coordination task with different looking (virtual) agents while performing at the same time a reaction time task. Results showed that participants had more stable motor coordination with the moving attractive than with the less attractive agent, and that the difference in motor coordination could not be interpreted by a specific attention allocation strategy. Our findings provide the evidence that physical attractiveness genuinely affects how people interact with another person, and that the temporal-spatial coordinated movement varies with the partner's psychosocial characteristics. The study broadens the perspective of exploring the effect of additional psychosocial factors on social motor coordination. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cheerios Effect Controlled by Electrowetting.

    PubMed

    Yuan, Junqi; Feng, Jian; Cho, Sung Kwon

    2015-08-04

    The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.

  18. Floral scent contributes to interaction specificity in coevolving plants and their insect pollinators.

    PubMed

    Friberg, Magne; Schwind, Christopher; Roark, Lindsey C; Raguso, Robert A; Thompson, John N

    2014-09-01

    Chemical defenses, repellents, and attractants are important shapers of species interactions. Chemical attractants could contribute to the divergence of coevolving plant-insect interactions, if pollinators are especially responsive to signals from the local plant species. We experimentally investigated patterns of daily floral scent production in three Lithophragma species (Saxifragaceae) that are geographically isolated and tested how scent divergence affects attraction of their major pollinator-the floral parasitic moth Greya politella (Prodoxidae). These moths oviposit through the corolla while simultaneously pollinating the flower with pollen adhering to the abdomen. The complex and species-specific floral scent profiles were emitted in higher amounts during the day, when these day-flying moths are active. There was minimal divergence found in petal color, which is another potential floral attractant. Female moths responded most strongly to scent from their local host species in olfactometer bioassays, and were more likely to oviposit in, and thereby pollinate, their local host species in no-choice trials. The results suggest that floral scent is an important attractant in this interaction. Local specialization in the pollinator response to a highly specific plant chemistry, thus, has the potential to contribute importantly to patterns of interaction specificity among coevolving plants and highly specialized pollinators.

  19. Particle Trapping Mechanisms Are Different in Spatially Ordered and Disordered Interacting Gels.

    PubMed

    Hansing, Johann; Netz, Roland R

    2018-06-05

    Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Coupled electrostatic and material surface stresses yield anomalous particle interactions and deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.

    2016-04-14

    Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.

  1. Object attraction effects during subject-verb agreement in Persian.

    PubMed

    Feiz, Aazam; Cowles, Wind

    2018-04-01

    Subject-verb agreement provides insight into how grammatical and semantic features interact during sentence production, and prior studies have found attraction errors when an intervening local noun is grammatically part of the subject. Two major types of theories have emerged from these studies: control based and competition-based. The current study used an subject-object-verb language with optional subject-verb agreement, Persian, to test the competition-based hypothesis that intervening object nouns may also cause attraction effects, even though objects are not part of the syntactic relationship between the subject and verb. Our results, which did not require speakers to make grammatical errors, show that objects can be attractors for agreement, but this effect appears to be dependent on the type of plural marker on the object. These results support competition-based theories of agreement production, in which agreement may be influenced by attractors that are outside the scope of the subject-verb relationship.

  2. Toward a physiology of dual-process reasoning and judgment: lemonade, willpower, and expensive rule-based analysis.

    PubMed

    Masicampo, E J; Baumeister, Roy F

    2008-03-01

    This experiment used the attraction effect to test the hypothesis that ingestion of sugar can reduce reliance on intuitive, heuristic-based decision making. In the attraction effect, a difficult choice between two options is swayed by the presence of a seemingly irrelevant "decoy" option. We replicated this effect and the finding that the effect increases when people have depleted their mental resources performing a previous self-control task. Our hypothesis was based on the assumption that effortful processes require and consume relatively large amounts of glucose (brain fuel), and that this use of glucose is why people use heuristic strategies after exerting self-control. Before performing any tasks, some participants drank lemonade sweetened with sugar, which restores blood glucose, whereas others drank lemonade containing a sugar substitute. Only lemonade with sugar reduced the attraction effect. These results show one way in which the body (blood glucose) interacts with the mind (self-control and reliance on heuristics).

  3. Universal Features of the Fluid to Solid Transition for Attractive Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Cipelletti, L.; Prasad, V.; Dinsmore, A.; Segre, P. N.; Weitz, D. A.; Trappe, V.

    2002-01-01

    Attractive colloidal particles can exhibit a fluid to solid phase transition if the magnitude of the attractive interaction is sufficiently large, if the volume fraction is sufficiently high, and if the applied stress is sufficiently small. The nature of this fluid to solid transition is similar for many different colloid systems, and for many different forms of interaction. The jamming phase transition captures the common features of these fluid to solid translations, by unifying the behavior as a function of the particle volume fraction, the energy of interparticle attractions, and the applied stress. This paper describes the applicability of the jamming state diagram, and highlights those regions where the fluid to solid transition is still poorly understood. It also presents new data for gelation of colloidal particles with an attractive depletion interaction, providing more insight into the origin of the fluid to solid transition.

  4. Remembering beauty: roles of orbitofrontal and hippocampal regions in successful memory encoding of attractive faces.

    PubMed

    Tsukiura, Takashi; Cabeza, Roberto

    2011-01-01

    Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses

  5. Remembering beauty: Roles of orbitofrontal and hippocampal regions in successful memory encoding of attractive faces

    PubMed Central

    Tsukiura, Takashi; Cabeza, Roberto

    2010-01-01

    Behavioral data have shown that attractive faces are better remembered but the neural mechanisms of this effect are largely unknown. To investigate this issue, female participants were scanned with event-related functional MRI (fMRI) while rating the attractiveness of male faces. Memory for the faces was tested after fMRI scanning and was used to identify successful encoding activity (subsequent memory paradigm). As expected, attractive faces were remembered better than other faces. The study yielded three main fMRI findings. First, activity in the right orbitofrontal cortex increased linearly as a function of attractiveness ratings. Second, activity in the left hippocampus increased as a function of subsequent memory (subsequent misses

  6. Hot particles attract in a cold bath

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidenori; Lee, Alpha A.; Brenner, Michael P.

    2017-04-01

    Controlling interactions out of thermodynamic equilibrium is crucial for designing addressable and functional self-organizing structures. These active interactions also underpin collective behavior in biological systems. Here we study a general setting of active particles in a bath of passive particles and demonstrate a mechanism for long-range attraction between active particles. The mechanism operates when the translational persistence length of the active particle motion is smaller than the particle diameter. In this limit, the system reduces to particles of higher diffusivity ("hot" particles) in a bath of particles with lower diffusivity ("cold" particles). This attractive interaction arises as a hot particle pushes cold particles away to create a large hole around itself, and the holes interact via a depletion-like attraction. Strikingly, the interaction range is more than an order of magnitude larger than the particle radius, well beyond the range of the conventional depletion force. Although the mechanism occurs outside the parameter regime of typical biological swimmers, the mechanism could be realized in the laboratory.

  7. Understanding the anchoring effect of Graphene, BN, C2N and C3N4 monolayers for lithium-polysulfides in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Zheng, Yanping; Li, Huanhuan; Yuan, Haiyan; Fan, Honghong; Li, Wenliang; Zhang, Jingping

    2018-03-01

    Recently, Li-S batteries with a high theoretical specific energy have attracted significant attention. However, their practical application is still seriously hindered by the shuttling effect of lithium polysulfides (LiPSs) in the Li-S batteries system. Introducing anchoring materials into the cathode or separator, which can strongly attract LiPSs because of advisable binding energies, has been demonstrated as an effective strategy to alleviate the shuttling effect for achieving the excellent cycling performance of Li-S batteries. In this work, the complete mechanistic understanding of the interaction between non-metallic monolayer materials (N-MMLMs, including Graphene, BN, C2N and C3N4) and LiPSs is given in detail with the aid of density functional theory. The calculation results show that N-MMLM can combine the chemical interaction and the physical entrapment of sulfur species to suppress the shuttling effect. C3N4 and C2N are predicted to trap LiPSs via stronger interfacial interaction and alleviate the interactions between LiPSs and solvents as well as the consequent dissolution. The strong anchoring effect of C3N4/C2N comes from the bonding of Li-N/C-S and charge transfer. Further charge transfer study reveals that the C3N4/C2N can serve as an electrocatalyst, which effectively accelerates the kinetics of LiPSs redox reactions.

  8. The effects of genotype, age, and social environment on male ornamentation, mating behavior, and attractiveness.

    PubMed

    Miller, Lisa K; Brooks, Robert

    2005-11-01

    The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling.

  9. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts

    PubMed Central

    Knowles, Robert R.; Jacobsen, Eric N.

    2010-01-01

    Catalysis by neutral, organic, small molecules capable of binding and activating substrates solely via noncovalent interactions—particularly H-bonding—has emerged as an important approach in organocatalysis. The mechanisms by which such small molecule catalysts induce high enantioselectivity may be quite different from those used by catalysts that rely on covalent interactions with substrates. Attractive noncovalent interactions are weaker, less distance dependent, less directional, and more affected by entropy than covalent interactions. However, the conformational constraint required for high stereoinduction may be achieved, in principle, if multiple noncovalent attractive interactions are operating in concert. This perspective will outline some recent efforts to elucidate the cooperative mechanisms responsible for stereoinduction in highly enantioselective reactions promoted by noncovalent catalysts. PMID:20956302

  10. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.

    PubMed

    Yadav, Sandeep; Shire, Steven J; Kalonia, Devendra S

    2010-12-01

    The viscosity profiles of four different IgG(1) molecules were studied as a function of concentration at pH 6.0. At high concentrations, MAb-H and -A showed significantly higher viscosities as compared to MAb-G and -E. Zeta Potential (ξ) measurements showed that all the IgG(1) molecules carried a net positive charge at this pH. MAb-G showed the highest positive zeta potential followed by MAb-E, -H, and -A. A consistent interpretation of the impact of net charge on viscosity for these MAbs is not possible, suggesting that electroviscous effects cannot explain the differences in viscosity. Values of k(D) (dynamic light scattering) indicated that the intermolecular interactions were repulsive for MAb-E and -G; and attractive for MAb-H and -A. Solution storage modulus (G') in high concentration solutions was consistent with attractive intermolecular interactions for MAb-H and -A, and repulsive interactions for MAb-G and -E. Effect of salt addition on solution G' and k(D) indicated that the interactions were primarily electrostatic in nature. The concentration dependent viscosity data were analyzed using a modified Ross and Minton equation. The analysis explicitly differentiates between the effect of molecular shape, size, self-crowding, and electrostatic intermolecular interactions in governing high concentration viscosity behavior. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner

    PubMed Central

    Maner, Jon K.

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women’s attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women’s (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection. PMID:26960135

  12. Effects of dilute substitutional solutes on interstitial carbon in α-Fe: Interactions and associated carbon diffusion from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi; Chen, Xing-Qiu

    2014-07-01

    By means of first-principles calculations coupled with the kinetic Monte Carlo simulations, we have systematically investigated the effects of dilute substitutional solutes on the behaviors of carbon in α-Fe. Our results uncover the following. (i) Without the Fe vacancy the interactions between most solutes and carbon are repulsive due to the strain relief, whereas Mn has a weak attractive interaction with its nearest-neighbor carbon due to the local ferromagnetic coupling effect. (ii) The presence of the Fe vacancy results in attractive interactions of all the solutes with carbon. In particular, the Mn-vacancy pair shows an exceptionally large binding energy of -0.81 eV with carbon. (iii) The alloying addition significantly impacts the atomic-scale concentration distributions and chemical potential of carbon in the Fe matrix. Among them, Mn and Cr increase the carbon chemical potential, whereas Al and Si reduce it. (iv) Within the dilute scale of the alloying solution, the solute concentration- and temperature-dependent carbon diffusivities demonstrate that Mn has a little impact on the carbon diffusion, whereas Cr (Al or Si) remarkably retards the carbon diffusion. Our results provide a certain implication for better understanding the experimental observations related with the carbon solubility limit, carbon microsegregation, and carbide precipitations in the ferritic steels.

  13. Behavior of light polarization in photon-scalar interaction

    NASA Astrophysics Data System (ADS)

    Azizi, Azizollah; Nasirimoghadam, Soudabe

    2017-11-01

    Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.

  14. Effect of carbon and alloying solute atoms on helium behaviors in α-Fe

    NASA Astrophysics Data System (ADS)

    Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.

    2017-02-01

    Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.

  15. Association of Rhinoplasty With Perceived Attractiveness, Success, and Overall Health.

    PubMed

    Nellis, Jason C; Ishii, Masaru; Bater, Kristin L; Papel, Ira D; Kontis, Theda C; Byrne, Patrick J; Boahene, Kofi D O; Ishii, Lisa E

    2018-03-01

    To date, the impact of rhinoplasty surgery on social perceptions has not been quantified. To measure the association of rhinoplasty with observer-graded perceived attractiveness, success, and overall health. In a web-based survey, blinded casual observers viewed independent images of 13 unique patient faces before or after rhinoplasty. Delphi method was used to select standardized patient images, confirming appropriate patient candidacy and overall surgical effect. Observers rated the attractiveness, perceived success, and perceived overall health for each patient image. Facial perception questions were answered on a visual analog scale from 0 to 100, where higher scores corresponded to more positive responses. A multivariate mixed-effects regression model was used to determine the effect of rhinoplasty while accounting for observer biases. To further characterize the effect of rhinoplasty, estimated ordinal rank change was calculated for each domain. The primary objective was to measure the effect of rhinoplasty on observer-graded perceived attractiveness, success, and overall health. A total of 473 observers (mean age, 29 years [range, 18-73 years]; 305 [70.8%] were female) successfully completed the survey. On multivariate regression, patients after rhinoplasty were rated as significantly more attractive (rhinoplasty effect, 6.26; 95% CI, 5.10-7.41), more successful (rhinoplasty effect, 3.24; 95% CI, 2.32-4.17), and overall healthier (rhinoplasty effect, 3.78; 95% CI, 2.79-4.81). The ordinal rank change for an average individual's perceived attractiveness, success, and overall health was a positive shift of 14, 9, and 10 out of 100 rank positions, respectively. As perceived by casual observers, rhinoplasty surgery was associatedwith perceptions that in patients appeared significantly more attractive, more successful, and healthier. These results suggest patients undergoing rhinoplasty may derive a multifaceted benefit when partaking in social interactions. Furthermore, these results facilitate improved patient discussions aiming to provide more precise surgical expectations with an understanding that these results represent optimal outcomes. NA.

  16. The effects of particle shape, size, and interaction on colloidal glasses and gels

    NASA Astrophysics Data System (ADS)

    Kramb, Ryan C.

    Using multiple step seeded emulsion polymerization reactions, colloid particles of tunable shape are synthesized from polystyrene. In all, four particle shapes are studied referred to as spheres (S), heteronuclear dicolloids (hDC), symmetric homonuclear dicolloids (sDC), and tricolloids (TC). Two size ranges of particles are studied with approximate diameters in the range of 200-300nm and 1.1-1.3mum. The solvent ionic strength is varied from 10 -3M to 1M resulting in particle interaction potentials that range from repulsive to attractive. The effect of anisotropic shape is found to increase the glass transition volume fraction (φg) in good agreement with activated naive Mode Coupling Theory (nMCT) calculations. Differences in φg and the linear elastic modulus (G0') due to particle shape can be understood in terms of the Random Close Packed volume fraction (φRCP ) for each shape; φRCP- φg is a constant. In addition, a reentrant phase diagram is found for S and sDC particles with a maximum in the fluid state volume fraction found at weakly attractive interaction potential, in agreement well with theoretical calculations. Nonlinear rheology and yielding behavior of repulsive and attractive spheres and anisotropic particles are examined and understood in terms of barriers constraining motion. The barriers are due to interparticle bonds or cages constraining translational or rotational motion. Yield stress has similar volume fraction dependence as G 0' and a similar framework is used to understand differences due to particle shape and interaction. For larger particles, the effects of shape and interaction are studied with respect to dynamic yielding and shear thickening. The dynamic yield stress is found to increase with volume fraction while the stress at thickening is constant. The intersection of these indicates a possible jamming point below φRCP.

  17. Solvation effects on like-charge attraction.

    PubMed

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes.

  18. Interaction of Low Frequency External Electric Fields and Pancreatic β-Cell: A Mathematical Modeling Approach to Identify the Influence of Excitation Parameters.

    PubMed

    Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2018-05-24

    Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.

  19. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where as<0 is the scattering length of the bosons and m is their mass [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. For M >Mmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole, the collapse may be accompanied by a burst or relativistic axions (bosenova) leading to a cycle of collapses and explosions as observed for nongravitational Bose-Einstein condensates with attractive self-interaction.

  20. Attachment, attractiveness, and social interaction: a diary study.

    PubMed

    Tidwell, M C; Reis, H T; Shaver, P R

    1996-10-01

    To what extent are attachment styles manifested in natural social activity? A total of 125 participants categorized as possessing secure, avoidant, or anxious-ambivalent attachment styles kept structured social interaction diaries for 1 week. Several theoretically important findings emerged. First, compared with secure and anxious-ambivalent persons, avoidant persons reported lower levels of intimacy, enjoyment, promotive interaction, and positive emotions, and higher levels of negative emotions, primarily in opposite-sex interactions. Analyses indicated that avoidant persons may structure social activities in ways that minimize closeness. Second, secure people differentiated more clearly than either insecure group between romantic and other opposite-sex partners. Third, the subjective experiences of anxious-ambivalent persons were more variable than those of the other groups. Finally, the authors examined and rejected the possibility that attachment effects might be confounded with physical attractiveness. These findings suggest that feeling and behaviors that arise during spontaneous, everyday social activity may contribute to the maintenance of attachment styles in adulthood.

  1. Exploiting attractiveness in persuasion: senders' implicit theories about receivers' processing motivation.

    PubMed

    Vogel, Tobias; Kutzner, Florian; Fiedler, Klaus; Freytag, Peter

    2010-06-01

    Previous research suggests a positive correlation between physical attractiveness and the expectation of positive outcomes in social interactions, such as successful persuasion. However, prominent persuasion theories do not imply a general advantage of attractive senders. Instead, the persuasion success should vary with the receivers' processing motivation and processing capacity. Focusing on the perspective of the sender, the authors elaborate on lay theories about how attractiveness affects persuasion success. They propose that lay theories (a) match scientific models in that they also comprise the interaction of senders' attractiveness and receivers' processing characteristics, (b) guide laypersons' anticipation of persuasion success, and (c) translate into strategic behavior. They show that anticipated persuasion success depends on the interplay of perceived attractiveness and expectations about receivers' processing motivation (Experiment 1 and 2). Further experiments show that laypersons strategically attempt to exploit attractiveness in that they approach situations (Experiment 3) and persons (Experiment 4) that promise persuasion success.

  2. The Effects of Social Skills Training on Students with Exceptionalities.

    ERIC Educational Resources Information Center

    Ciechalski, Joseph C.; Schmidt, Mary W.

    1995-01-01

    Outlines a year-long study which sought to determine the effectiveness of social skills training on peer acceptance, self-esteem, social attraction, and self-confidence of students with disabilities. Social skills training with these students positively affected their social interactions and involvement with their nondisabled peers. (RJM)

  3. An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility

    NASA Astrophysics Data System (ADS)

    van Westen, Thijs; Oyarzún, Bernardo; Vlugt, Thijs J. H.; Gross, Joachim

    2015-06-01

    We develop an equation of state (EoS) for describing isotropic-nematic (IN) phase equilibria of Lennard-Jones (LJ) chain fluids. The EoS is developed by applying a second order Barker-Henderson perturbation theory to a reference fluid of hard chain molecules. The chain molecules consist of tangentially bonded spherical segments and are allowed to be fully flexible, partially flexible (rod-coil), or rigid linear. The hard-chain reference contribution to the EoS is obtained from a Vega-Lago rescaled Onsager theory. For the description of the (attractive) dispersion interactions between molecules, we adopt a segment-segment approach. We show that the perturbation contribution for describing these interactions can be divided into an "isotropic" part, which depends only implicitly on orientational ordering of molecules (through density), and an "anisotropic" part, for which an explicit dependence on orientational ordering is included (through an expansion in the nematic order parameter). The perturbation theory is used to study the effect of chain length, molecular flexibility, and attractive interactions on IN phase equilibria of pure LJ chain fluids. Theoretical results for the IN phase equilibrium of rigid linear LJ 10-mers are compared to results obtained from Monte Carlo simulations in the isobaric-isothermal (NPT) ensemble, and an expanded formulation of the Gibbs-ensemble. Our results show that the anisotropic contribution to the dispersion attractions is irrelevant for LJ chain fluids. Using the isotropic (density-dependent) contribution only (i.e., using a zeroth order expansion of the attractive Helmholtz energy contribution in the nematic order parameter), excellent agreement between theory and simulations is observed. These results suggest that an EoS contribution for describing the attractive part of the dispersion interactions in real LCs can be obtained from conventional theoretical approaches designed for isotropic fluids, such as a Perturbed-Chain Statistical Associating Fluid Theory approach.

  4. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions

    PubMed Central

    Ton, Jurriaan; Brandenburg, Anna; Karlen, Danielle; Zopfi, Jakob; Turlings, Ted C. J.

    2014-01-01

    Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community. PMID:24127750

  5. Interplay of Coil–Globule Transition and Surface Adsorption of a Lattice HP Protein Model

    PubMed Central

    2015-01-01

    An end-grafted hydrophobic-polar (HP) model protein chain with alternating H and P monomers is studied to examine interactions between the critical adsorption transition due to surface attraction and the collapse transition due to pairwise attractive H–H interactions. We find that the critical adsorption phenomenon can always be observed; however, the critical adsorption temperature TCAP is influenced by the attractive H–H interactions in some cases. When the collapse temperature Tc is lower than TCAP, the critical adsorption of the HP chain is similar to that of a homopolymer without intrachain attractions and TCAP remains unchanged, whereas the collapse transition is suppressed by the adsorption. In contrast, for cases where Tc is close to or higher than TCAP, TCAP of the HP chain is increased, indicating that a collapsed chain is more easily adsorbed on the surface. The strength of the H–H attraction also influences the statistical size and shape of the polymer, with strong H–H attractions resulting in adsorbed and collapsed chains adopting two-dimensional, circular conformations. PMID:25458556

  6. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less

  7. An Adult Developmental Approach to Perceived Facial Attractiveness and Distinctiveness

    PubMed Central

    Ebner, Natalie C.; Luedicke, Joerg; Voelkle, Manuel C.; Riediger, Michaela; Lin, Tian; Lindenberger, Ulman

    2018-01-01

    Attractiveness and distinctiveness constitute facial features with high biological and social relevance. Bringing a developmental perspective to research on social-cognitive face perception, we used a large set of faces taken from the FACES Lifespan Database to examine effects of face and perceiver characteristics on subjective evaluations of attractiveness and distinctiveness in young (20–31 years), middle-aged (44–55 years), and older (70–81 years) men and women. We report novel findings supporting variations by face and perceiver age, in interaction with gender and emotion: although older and middle-aged compared to young perceivers generally rated faces of all ages as more attractive, young perceivers gave relatively higher attractiveness ratings to young compared to middle-aged and older faces. Controlling for variations in attractiveness, older compared to young faces were viewed as more distinctive by young and middle-aged perceivers. Age affected attractiveness more negatively for female than male faces. Furthermore, happy faces were rated as most attractive, while disgusted faces were rated as least attractive, particularly so by middle-aged and older perceivers and for young and female faces. Perceivers largely agreed on distinctiveness ratings for neutral and happy emotions, but older and middle-aged compared to young perceivers rated faces displaying negative emotions as more distinctive. These findings underscore the importance of a lifespan perspective on perception of facial characteristics and suggest possible effects of age on goal-directed perception, social motivation, and in-group bias. This publication makes available picture-specific normative data for experimental stimulus selection. PMID:29867620

  8. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.

    PubMed

    Vucetic, Andja; Dahlin, Iris; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben; Ninkovic, Velemir

    2014-01-01

    Volatile interactions between unattacked plants can lead to changes in their volatile emissions. Exposure of potato plants to onion plant volatiles results in increased emission of 2 terpenoids, (E)-nerolidol and TMTT. We investigated whether this is detectable by the ladybird Coccinella septempunctata. The odor of onion-exposed potato was significantly more attractive to ladybirds than that of unexposed potato. Further, a synthetic blend mimicking the volatile profile of onion-exposed potato was more attractive than a blend mimicking that of unexposed potato. When presented individually, TMTT was attractive to ladybirds whereas (E)-nerolidol was repellent. Volatile exchange between unattacked plants and consequent increased attractiveness for ladybirds may be a mechanism that contributes to the increased abundance of natural enemies in complex plant habitats.

  9. Pilot whales attracted to killer whale sounds: acoustically-mediated interspecific interactions in cetaceans.

    PubMed

    Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H; Miller, Patrick J O

    2012-01-01

    In cetaceans' communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans' behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways.

  10. Pilot Whales Attracted to Killer Whale Sounds: Acoustically-Mediated Interspecific Interactions in Cetaceans

    PubMed Central

    Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H.; Miller, Patrick J. O.

    2012-01-01

    In cetaceans’ communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans’ behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways. PMID:23300613

  11. Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.; Zimmerli, Gregory A.

    2002-01-01

    These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.

  12. Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles.

    PubMed

    Sobhy, Islam S; Erb, Matthias; Turlings, Ted C J

    2015-05-01

    Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores. © 2014 Society of Chemical Industry.

  13. Nontrivial interplay of strong disorder and interactions in quantum spin-Hall insulators doped with dilute magnetic impurities

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Hui; Cazalilla, Miguel A.

    2018-06-01

    We investigate nonperturbatively the effect of a magnetic dopant impurity on the edge transport of a quantum spin Hall (QSH) insulator. We show that for a strongly coupled magnetic dopant located near the edge of a system, a pair of transmission antiresonances appear. When the chemical potential is on resonance, interaction effects broaden the antiresonance width with decreasing temperature, thus suppressing transport for both repulsive and moderately attractive interactions. Consequences for the recently observed QSH insulating phase of the 1 -T' of WTe2 are briefly discussed.

  14. Swarming and pattern formation due to selective attraction and repulsion.

    PubMed

    Romanczuk, Pawel; Schimansky-Geier, Lutz

    2012-12-06

    We discuss the collective dynamics of self-propelled particles with selective attraction and repulsion interactions. Each particle, or individual, may respond differently to its neighbours depending on the sign of their relative velocity. Thus, it is able to distinguish approaching (coming closer) and retreating (moving away) individuals. This differentiation of the social response is motivated by the response to looming visual stimuli and may be seen as a generalization of the previously proposed escape and pursuit interactions motivated by empirical evidence for cannibalism as a driving force of collective migration in locusts and Mormon crickets. The model can account for different types of behaviour such as pure attraction, pure repulsion or escape and pursuit, depending on the values (signs) of the different response strengths. It provides, in the light of recent experimental results, an interesting alternative to previously proposed models of collective motion with an explicit velocity-alignment interaction. We discuss the derivation of a coarse-grained description of the system dynamics, which allows us to derive analytically the necessary condition for emergence of collective motion. Furthermore, we analyse systematically the onset of collective motion and clustering in numerical simulations of the model for varying interaction strengths. We show that collective motion arises only in a subregion of the parameter space, which is consistent with the analytical prediction and corresponds to an effective escape and/or pursuit response.

  15. Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling.

    PubMed

    Pineda, Ana; Soler, Roxina; Weldegergis, Berhane T; Shimwela, Mpoki M; VAN Loon, Joop J A; Dicke, Marcel

    2013-02-01

    Beneficial soil-borne microbes, such as mycorrhizal fungi or rhizobacteria, can affect the interactions of plants with aboveground insects at several trophic levels. While the mechanisms of interactions with herbivorous insects, that is, the second trophic level, are starting to be understood, it remains unknown how plants mediate the interactions between soil microbes and carnivorous insects, that is, the third trophic level. Using Arabidopsis thaliana Col-0 and the aphid Myzus persicae, we evaluate here the underlying mechanisms involved in the plant-mediated interaction between the non-pathogenic rhizobacterium Pseudomonas fluorescens and the parasitoid Diaeretiella rapae, by combining ecological, chemical and molecular approaches. Rhizobacterial colonization modifies the composition of the blend of herbivore-induced plant volatiles. The volatile blend from rhizobacteria-treated aphid-infested plants is less attractive to an aphid parasitoid, in terms of both olfactory preference behaviour and oviposition, than the volatile blend from aphid-infested plants without rhizobacteria. Importantly, the effect of rhizobacteria on both the emission of herbivore-induced volatiles and parasitoid response to aphid-infested plants is lost in an Arabidopsis mutant (aos/dde2-2) that is impaired in jasmonic acid production. By modifying the blend of herbivore-induced plant volatiles that depend on the jasmonic acid-signalling pathway, root-colonizing microbes interfere with the attraction of parasitoids of leaf herbivores. © 2012 Blackwell Publishing Ltd.

  16. Hydrogen adatom interaction on graphene: A first principles study

    DOE PAGES

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing; ...

    2018-05-01

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  17. Hydrogen adatom interaction on graphene: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing

    Interaction between two hydrogen adatoms on graphene was studied by first-principles calculations. We showed that there is an attraction between two H adatoms on graphene. However, the strength of interaction between two hydrogen adatoms and magnetic properties of graphene are strongly dependent on the residence of the two adatoms on the graphene sublattices. Hydrogen adatoms introduce lattice distortion and electron localization in graphene which mediate the attractive interaction between the two H adatoms.

  18. Protection via parasitism: Datura odors attract parasitoid flies, which inhibit Manduca larvae from feeding and growing but may not help plants.

    PubMed

    Wilson, J K; Woods, H A

    2015-12-01

    Insect carnivores frequently use olfactory cues from plants to find prey or hosts. For plants, the benefits of attracting parasitoids have been controversial, partly because parasitoids often do not kill their host insect immediately. Furthermore, most research has focused on the effects of solitary parasitoids on growth and feeding of hosts, even though many parasitoids are gregarious (multiple siblings inhabit the same host). Here, we examine how a gregarious parasitoid, the tachinid fly Drino rhoeo, uses olfactory cues from the host plant Datura wrightii to find the sphingid herbivore Manduca sexta, and how parasitism affects growth and feeding of host larvae. In behavioral trials using a Y-olfactometer, female flies were attracted to olfactory cues emitted by attacked plants and by cues emitted from the frass produced by larval Manduca sexta. M. sexta caterpillars that were parasitized by D. rhoeo grew to lower maximum weights, grew more slowly, and ate less of their host plant. We also present an analytical model to predict how tri-trophic interactions change with varying herbivory levels, parasitization rates and plant sizes. This model predicted that smaller plants gain a relatively greater benefit compared to large plants in attracting D. rhoeo. By assessing the behavior, the effects of host performance, and the variation in ecological parameters of the system, we can better understand the complex interactions between herbivorous insects, the plants they live on and the third trophic level members that attack them.

  19. Molecular Dynamics Characterization of Protein Crystal Contacts in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Pellicane, Giuseppe; Smith, Graham; Sarkisov, Lev

    2008-12-01

    We employ nonequilibrium molecular dynamics simulation to characterize the effective interactions between lysozyme molecules involved in the formation of two hydrophobic crystal contacts. We show that the effective interactions between crystal contacts do not exceed a few kT, the range of the attractive part of the potential is less than 4 Å, and, within this range, there is a significant depletion of water density between two protein contacts. Our findings highlight the different natures of protein crystallization and protein recognition processes.

  20. Pheromone communication in amphibians and reptiles.

    PubMed

    Houck, Lynne D

    2009-01-01

    This selective review considers herpetological papers that feature the use of chemical cues, particularly pheromones involved in reproductive interactions between potential mates. Primary examples include garter snake females that attract males, lacertid lizards and the effects of their femoral gland secretions, aquatic male newts that chemically attract females, and terrestrial salamander males that chemically persuade a female to mate. Each case study spans a number of research approaches (molecular, biochemical, behavioral) and is related to sensory processing and the physiological effects of pheromone delivery. These and related studies show that natural pheromones can be identified, validated with behavioral tests, and incorporated in research on vomeronasal functional response.

  1. Aesthetic properties and message customization: navigating the dark side of web recruitment.

    PubMed

    Dineen, Brian R; Ling, Juan; Ash, Steven R; DelVecchio, Devon

    2007-03-01

    The authors examined recruitment message viewing time, information recall, and attraction in a Web-based context. In particular, they extended theory related to the cognitive processing of recruitment messages and found that the provision of customized information about likely fit related to increased viewing time and recall when good aesthetics were also present. A 3-way interaction among moderate-to low-fitting individuals further indicated that objective fit was most strongly related to attraction when messages included both good aesthetics and customized information. In particular, given this combination, the poorest fitting individuals exhibited lower attraction levels, whereas more moderately fitting individuals exhibited invariant attraction levels across combinations of aesthetics and customized information. The results suggest that, given good aesthetics, customized information exerts effects mostly by causing poorly fitting individuals to be less attracted, which further suggests a means of averting the "dark side" of Web recruitment that occurs when organizations receive too many applications from poorly fitting applicants. (c) 2007 APA, all rights reserved.

  2. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    PubMed

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  3. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE PAGES

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.; ...

    2017-10-24

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  4. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost a decade ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. In this paper, a comprehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson–Crickmore » base-pairing interactions and depletion interactions—and systematically varied the salt concentration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive interactions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. Finally, this model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  5. The Role of Repulsion in Colloidal Crystal Engineering with DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Soyoung E.; Li, Tao; Senesi, Andrew J.

    Hybridization interactions between DNA-functionalized nanoparticles (DNA-NPs) can be used to program the crystallization behavior of superlattices, yielding access to complex three-dimensional structures with more than 30 different lattice symmetries. The first superlattice structures using DNA-NPs as building blocks were identified almost two decades ago, yet the role of repulsive interactions in guiding structure formation is still largely unexplored. Here, a com-prehensive approach is taken to study the role of repulsion in the assembly behavior of DNA-NPs, enabling the calculation of interparticle interaction potentials based on experimental results. In this work, we used two different means to assemble DNA-NPs—Watson-Crick base pairingmore » interactions and depletion interactions—and systematically varied the salt concen-tration to study the effective interactions in DNA-NP superlattices. A comparison between the two systems allows us to decouple the repulsive forces from the attractive hybridization interactions that are sensitive to the ionic environment. We find that the gap distance between adjacent DNA-NPs follows a simple power law dependence on solution ionic strength regardless of the type of attractive forces present. This result suggests that the observed trend is driven by repulsive inter-actions. To better understand such behavior, we propose a mean-field model that provides a mathematical description for the observed trend. This model shows that the trend is due to the variation in the effective cross-sectional diameter of DNA duplex and the thickness of DNA shell.« less

  6. Flocculation of deformable emulsion droplets. 2: Interaction energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, D.N.; Denkov, N.D.; Kralchevsky, P.A.

    1995-12-01

    The effect of different factors (drop radius, interfacial tension, Hamaker constant, electrolyte, micellar concentrations, etc.) on the interaction energy of emulsion droplets is studied theoretically. It is demonstrated that the deformation of the colliding droplets considerably affects the interaction energy. The contributions of the electrostatic, van der Waals, depletion, steric, and oscillatory surface forces, as well as for the surface stretching and bending energies, are estimated and discussed. The calculations show that the droplets interact as nondeformed spheres when the attractive interactions are weak. At stronger attractions an equilibrium plane parallel film is formed between the droplets, corresponding to minimummore » interaction energy of the system. For droplets in concentrated micellar surfactant solutions the oscillatory surface forces become operative and one can observe several minima of the energy surface,each corresponding to a metastable state with a different number of micellar layers inside the film formed between the droplets. The present theoretical analysis can find applications in predicting the behavior and stability of miniemulsions (containing micrometer and submicrometer droplets), as well as in interpretation of data obtained by light scattering, phase behavior, rheological and osmotic pressure measurements, etc.« less

  7. Possibilities and Limitations of Integrating Peer Instruction into Technical Creativity Education

    ERIC Educational Resources Information Center

    Wang, Shijuan; Murota, Masao

    2016-01-01

    The effects of active peer-peer interaction on the generation of new hypotheses or models and the increase of new solutions have attracted widespread attention. Therefore, the peer discussion portion of peer instruction is supposedly effective in developing students' creativity. However, few empirical research involves how to adapt peer…

  8. Crystallization tendencies of modelled Lennard-Jones liquids with different attractions

    NASA Astrophysics Data System (ADS)

    Valdès, L.-C.; Gerges, J.; Mizuguchi, T.; Affouard, F.

    2018-01-01

    Molecular dynamics simulations are performed on simple models composed of monoatomic Lennard-Jones atoms for which the repulsive interaction is the same but the attractive part is tuned. We investigate the precise role of the attractive part of the interaction potential on different structural, dynamical, and thermodynamical properties of these systems in the liquid and crystalline states. It includes crystallization trends for which the main physical ingredients involved have been computed: the diffusion coefficient, the Gibbs energy difference between the liquid and the crystalline state, and the crystal-liquid interfacial free energy. Results are compared with predictions from the classical nucleation theory including transient and steady-state regimes at moderate and deeper undercooling. The question of the energetic and entropic impact of the repulsive and attractive part of the interaction potential towards crystallization is also addressed.

  9. Rheology of attractive emulsions

    NASA Astrophysics Data System (ADS)

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.

  10. Rheology of attractive emulsions.

    PubMed

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  11. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.

    PubMed

    Guo, Zhenjiang; Liu, Yawei; Xiao, Qianxiang; Schönherr, Holger; Zhang, Xianren

    2016-01-26

    Although the morphology of surface nanobubbles has been studied widely with different AFM modes, AFM images may not reflect the real shapes of the nanobubbles due to AFM tip-nanobubble interactions. In addition, the interplay between surface nanobubble deformation and induced capillary force has not been well understood in this context. In our work we used constraint lattice density functional theory to investigate the interaction between AFM tips and pinned surface nanobubbles systematically, especially concentrating on the effects of tip hydrophilicity and shape. For a hydrophilic tip contacting a nanobubble, its hydrophilic nature facilitates its departure from the bubble surface, displaying a weak and intermediate-range attraction. However, when the tip squeezes the nanobubble during the approach process, the nanobubble shows an elastic effect that prevents the tip from penetrating the bubble, leading to a strong nanobubble deformation and repulsive interactions. On the contrary, a hydrophobic tip can easily pierce the vapor-liquid interface of the nanobubble during the approach process, leading to the disappearance of the repulsive force. In the retraction process, however, the adhesion between the tip and the nanobubble leads to a much stronger lengthening effect on nanobubble deformation and a strong long-range attractive force. The trends of force evolution from our simulations agree qualitatively well with recent experimental AFM observations. This favorable agreement demonstrates that our model catches the main intergradient of tip-nanobubble interactions for pinned surface nanobubbles and may therefore provide important insight into how to design minimally invasive AFM experiments.

  12. The origins of the directionality of noncovalent intermolecular interactions.

    PubMed

    Wang, Changwei; Guan, Liangyu; Danovich, David; Shaik, Sason; Mo, Yirong

    2016-01-05

    The recent σ-hole concept emphasizes the contribution of electrostatic attraction to noncovalent bonds, and implies that the electrostatic force has an angular dependency. Here a set of clusters, which includes hydrogen bonding, halogen bonding, chalcogen bonding, and pnicogen bonding systems, is investigated to probe the magnitude of covalency and its contribution to the directionality in noncovalent bonding. The study is based on the block-localized wavefunction (BLW) method that decomposes the binding energy into the steric and the charge transfer (CT) (hyperconjugation) contributions. One unique feature of the BLW method is its capability to derive optimal geometries with only steric effect taken into account, while excluding the CT interaction. The results reveal that the overall steric energy exhibits angular dependency notably in halogen bonding, chalcogen bonding, and pnicogen bonding systems. Turning on the CT interactions further shortens the intermolecular distances. This bond shortening enhances the Pauli repulsion, which in turn offsets the electrostatic attraction, such that in the final sum, the contribution of the steric effect to bonding is diminished, leaving the CT to dominate the binding energy. In several other systems particularly hydrogen bonding systems, the steric effect nevertheless still plays the major role whereas the CT interaction is minor. However, in all cases, the CT exhibits strong directionality, suggesting that the linearity or near linearity of noncovalent bonds is largely governed by the charge-transfer interaction whose magnitude determines the covalency in noncovalent bonds. © 2015 Wiley Periodicals, Inc.

  13. Crystallization and dynamical arrest of attractive hard spheres.

    PubMed

    Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco

    2009-02-14

    Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.

  14. Hemifield memory for attractiveness.

    PubMed

    Deblieck, C; Zaidel, D W

    2003-07-01

    In order to determine whether or not facial attractiveness plays a role in hemispheric facial memory, 35 right-handed participants first assigned attractiveness ratings to faces and then performed a recognition test on those faces in the left visual half-field (LVF) and right visual half-field (RVF). We found significant interactions between the experimental factors and visual half-field. There were significant differences in the extreme ends of the rating scale, that is, the very unattractive versus the very attractive faces: Female participants remembered very attractive faces of both women and men, with memory being superior in the RVF than in the LVF. In contrast, the male participants remembered very unattractive faces of both women and men; RVF memory was better than the LVF for women faces while for men faces memory was superior in the LVF. The interactions with visual half-field suggest that hemispheric biases in remembering faces are influenced by degree of attractiveness.

  15. A meta-analytic investigation of the relation between interpersonal attraction and enacted behavior.

    PubMed

    Montoya, R Matthew; Kershaw, Christine; Prosser, Julie L

    2018-05-07

    We present a meta-analysis that investigated the relation between self-reported interpersonal attraction and enacted behavior. Our synthesis focused on (a) identifying the behaviors related to attraction; (b) evaluating the efficacy of models of the relation between attraction and behavior; (c) testing the impact of several moderators, including evaluative threat salience, cognitive appraisal salience, and the sex composition of the social interaction; and (d) investigating the degree of agreement between the meta-analytic findings and an ethnographic analysis. Using a multilevel modeling approach, an analysis of 309 effect sizes (N = 5,422) revealed a significant association (z = .20) between self-reported attraction and enacted behavior. Key findings include: (a) that the specific behaviors associated with attraction (e.g., eye contact, smiling, laughter, mimicry) are those behaviors research has linked to the development of trust/rapport; (b) direct behaviors (e.g., physical proximity, talking to), compared with indirect behaviors (e.g., eye contact, smiling, mimicry), were more strongly related to self-reported attraction; and (c) evaluative threat salience (e.g., fear of rejection) reduced the magnitude of the relation between direct behavior and affective attraction. Moreover, an ethnographic analysis revealed consistency between the behaviors identified by the meta-analysis and those behaviors identified by ethnographers as predictive of attraction. We discuss the implications of our findings for models of the relation between attraction and behavior, for the behavioral expressions of emotions, and for how attraction is measured and conceptualized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Study of cluster formation in a quasi-square well model of Janus ellipsoids

    NASA Astrophysics Data System (ADS)

    Ruth, Donovan; Rickman, Jeffrey; Gunton, James; Li, Wei

    2014-03-01

    We investigate the effect of geometry and range of attractive interaction on the self-assembly of Janus particles. In particular, we consider Janus spheroids with an aspect ratio of 0.6 and a quasi-square well model with a short range attractive interaction of 0.2 sigma where sigma is the characteristic length of the spheroid. We find that below a certain transition temperature the system forms orientationally ordered micelles and vesicles, with a cluster distribution qualitatively similar to that found in an earlier study of Janus spheres. (Phys. Chem. Chem. Phys. (2010) vol 12, 11869-11877, F. Sciortino, A. Giacometti and G. Pastore) Finally we discuss the implications of our work for encapsulation by self-assembly. Acknowledgement: This work was supported by a grant from the Mathers Foundation.

  17. Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study.

    PubMed

    Pastré, David; Piétrement, Olivier; Fusil, Stéphane; Landousy, Fabrice; Jeusset, Josette; David, Marie-Odile; Hamon, Loïc; Le Cam, Eric; Zozime, Alain

    2003-10-01

    The adsorption of DNA molecules onto a flat mica surface is a necessary step to perform atomic force microscopy studies of DNA conformation and observe DNA-protein interactions in physiological environment. However, the phenomenon that pulls DNA molecules onto the surface is still not understood. This is a crucial issue because the DNA/surface interactions could affect the DNA biological functions. In this paper we develop a model that can explain the mechanism of the DNA adsorption onto mica. This model suggests that DNA attraction is due to the sharing of the DNA and mica counterions. The correlations between divalent counterions on both the negatively charged DNA and the mica surface can generate a net attraction force whereas the correlations between monovalent counterions are ineffective in the DNA attraction. DNA binding is then dependent on the fractional surface densities of the divalent and monovalent cations, which can compete for the mica surface and DNA neutralizations. In addition, the attraction can be enhanced when the mica has been pretreated by transition metal cations (Ni(2+), Zn(2+)). Mica pretreatment simultaneously enhances the DNA attraction and reduces the repulsive contribution due to the electrical double-layer force. We also perform end-to-end distance measurement of DNA chains to study the binding strength. The DNA binding strength appears to be constant for a fixed fractional surface density of the divalent cations at low ionic strength (I < 0.1 M) as predicted by the model. However, at higher ionic strength, the binding is weakened by the screening effect of the ions. Then, some equations were derived to describe the binding of a polyelectrolyte onto a charged surface. The electrostatic attraction due to the sharing of counterions is particularly effective if the polyelectrolyte and the surface have nearly the same surface charge density. This characteristic of the attraction force can explain the success of mica for performing single DNA molecule observation by AFM. In addition, we explain how a reversible binding of the DNA molecules can be obtained with a pretreated mica surface.

  18. Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, Vinod K.; Kohlbrecher, Joachim

    2016-05-01

    The interaction of three different sized (diameter 10, 18, and 28 nm) anionic silica nanoparticles with two model proteins—cationic lysozyme [molecular weight (MW) 14.7 kDa)] and anionic bovine serum albumin (BSA) (MW 66.4 kDa) has been studied by UV-vis spectroscopy, dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The adsorption behavior of proteins on the nanoparticles, measured by UV-vis spectroscopy, is found to be very different for lysozyme and BSA. Lysozyme adsorbs strongly on the nanoparticles and shows exponential behavior as a function of lysozyme concentration irrespective of the nanoparticle size. The total amount of adsorbed lysozyme, as governed by the surface-to-volume ratio, increases on lowering the size of the nanoparticles for a fixed volume fraction of the nanoparticles. On the other hand, BSA does not show any adsorption for all the different sizes of the nanoparticles. Despite having different interactions, both proteins induce similar phase behavior where the nanoparticle-protein system transforms from one phase (clear) to two phase (turbid) as a function of protein concentration. The phase behavior is modified towards the lower concentrations for both proteins with increasing the nanoparticle size. DLS suggests that the phase behavior arises as a result of the nanoparticles' aggregation on the addition of proteins. The size-dependent modifications in the interaction potential, responsible for the phase behavior, have been determined by SANS data as modeled using the two-Yukawa potential accounting for the repulsive and attractive interactions in the systems. The protein-induced interaction between the nanoparticles is found to be short-range attraction for lysozyme and long-range attraction for BSA. The magnitude of attractive interaction irrespective of protein type is enhanced with increase in the size of the nanoparticles. The total (attractive+repulsive) potential leading to two-phase formation is found to be more attractive for larger sized nanoparticles. The nanoparticle aggregates are characterized by mass fractal.

  19. Vibrational relaxation of I2 in complexing solvents: The role of solvent-solute attractive forces

    NASA Astrophysics Data System (ADS)

    Shiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J.

    1998-12-01

    Femtosecond transient absorption studies of I2-arene complexes, with arene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent-solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2-MST complexes in neat mesitylene and I2-MST complexes diluted in carbontetrachloride demonstrate that binary solvent-solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2 relaxation increases with the magnitude of the I2-arene attractive interaction. I2-HMB relaxes much faster than I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation.

  20. An empirical test of sex differences in the emphasis on physical attractiveness in mate selection.

    PubMed

    Colwell, John

    2007-08-01

    Within a context provided by social structural theory, social evolutionary theory, and physical attractiveness stereotyping, the importance of physical attractiveness in heterosexual mate selection was explored by presenting 50 male and 50 female psychology students (M age = 22.5 yr.) during a scheduled class with an opposite sex personals advertisement, wherein the advertiser was described as 'average' or 'good-looking'. Dependent variables consisted of a written paragraph and measures of evaluation (Semantic Differential), attraction, advertisement appeal, and success. An interaction for sex x looks on the qualitative measure showed no effect for men, but the good-looking female advertiser was evaluated more positively. However, for quantitative data, the advertisement was seen as more appealing and likely to be successful when the advertiser was good looking as opposed to average looking, irrespective of sex of advertiser. Findings are discussed in relation to theoretical perspectives.

  1. Developmental changes in perceptions of attractiveness: a role of experience?

    PubMed

    Cooper, Philip A; Geldart, Sybil S; Mondloch, Catherine J; Maurer, Daphne

    2006-09-01

    In three experiments, we traced the development of the adult pattern of judgments of attractiveness for faces that have been altered to have internal features in low, average, or high positions. Twelve-year-olds and adults demonstrated identical patterns of results: they rated faces with features in an average location as significantly more attractive than faces with either low or high features. Although both 4-year-olds and 9-year-olds rated faces with high features as least attractive, unlike adults and 12-year-olds, they rated faces with low and average features as equally attractive. Three-year-olds with high levels of peer interaction, but not those with low levels of peer interaction, chose faces with low features as significantly more attractive than those with high-placed features, possibly as a result of their increased experience with the proportions of the faces of peers. Overall, the pattern of results is consistent with the hypothesis that experience influences perceptions of attractiveness, with the proportions of the faces participants see in their everyday lives influencing their perceptions of attractiveness.

  2. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    PubMed

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  3. Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.

    PubMed

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-06-17

    There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.

  4. Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface

    PubMed Central

    Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar

    2014-01-01

    There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634

  5. Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine.

    PubMed

    Stadmiller, Samantha S; Gorensek-Benitez, Annelise H; Guseman, Alex J; Pielak, Gary J

    2017-04-21

    Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Negative effects of restricted sleep on facial appearance and social appeal

    PubMed Central

    Lekander, Mats; Sorjonen, Kimmo

    2017-01-01

    The importance of assessing evolutionarily relevant social cues suggests that humans should be sensitive to others' sleep history, as this may indicate something about their health as well as their capacity for social interaction. Recent findings show that acute sleep deprivation and looking tired are related to decreased attractiveness and health, as perceived by others. This suggests that one might also avoid contact with sleep-deprived, or sleepy-looking, individuals, as a strategy to reduce health risk and poor interactions. In this study, 25 participants (14 females, age range 18–47 years) were photographed after 2 days of sleep restriction and after normal sleep, in a balanced design. The photographs were rated by 122 raters (65 females, age range 18–65 years) on how much they would like to socialize with the participants. They also rated participants' attractiveness, health, sleepiness and trustworthiness. The results show that raters were less inclined to socialize with individuals who had gotten insufficient sleep. Furthermore, when sleep-restricted, participants were perceived as less attractive, less healthy and more sleepy. There was no difference in perceived trustworthiness. These findings suggest that naturalistic sleep loss can be detected in a face and that people are less inclined to interact with a sleep-deprived individual. PMID:28572989

  7. Liquid Crystal Phase Behaviour of Attractive Disc-Like Particles

    PubMed Central

    Wu, Liang; Jackson, George; Müller, Erich A.

    2013-01-01

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids. PMID:23965962

  8. Liquid crystal phase behaviour of attractive disc-like particles.

    PubMed

    Wu, Liang; Jackson, George; Müller, Erich A

    2013-08-08

    We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.

  9. Effective interactions and dynamics of small passive particles in an active bacterial medium

    NASA Astrophysics Data System (ADS)

    Semeraro, Enrico F.; Devos, Juliette M.; Narayanan, Theyencheri

    2018-05-01

    This article presents an investigation of the interparticle interactions and dynamics of submicron silica colloids suspended in a bath of motile Escherichia coli bacteria. The colloidal microstructure and dynamics were probed by ultra-small-angle x-ray scattering and multi-speckles x-ray photon correlation spectroscopy, respectively. Both static and hydrodynamic interactions were obtained for different colloid volume fractions and bacteria concentrations as well as when the interparticle interaction potential was modified by the motility buffer. Results suggest that motile bacteria reduce the effective attractive interactions between passive colloids and enhance their dynamics at high colloid volume fractions. The enhanced dynamics under different static interparticle interactions can be rationalized in terms of an effective viscosity of the medium and unified by means of an empirical effective temperature of the system. While the influence of swimming bacteria on the colloid dynamics is significantly lower for small particles, the role of motility buffer on the static and dynamic interactions becomes more pronounced.

  10. Is scale-invariance in gauge-Yukawa systems compatible with the graviton?

    NASA Astrophysics Data System (ADS)

    Christiansen, Nicolai; Eichhorn, Astrid; Held, Aaron

    2017-10-01

    We explore whether perturbative interacting fixed points in matter systems can persist under the impact of quantum gravity. We first focus on semisimple gauge theories and show that the leading order gravity contribution evaluated within the functional Renormalization Group framework preserves the perturbative fixed-point structure in these models discovered in [J. K. Esbensen, T. A. Ryttov, and F. Sannino, Phys. Rev. D 93, 045009 (2016)., 10.1103/PhysRevD.93.045009]. We highlight that the quantum-gravity contribution alters the scaling dimension of the gauge coupling, such that the system exhibits an effective dimensional reduction. We secondly explore the effect of metric fluctuations on asymptotically safe gauge-Yukawa systems which feature an asymptotically safe fixed point [D. F. Litim and F. Sannino, J. High Energy Phys. 12 (2014) 178., 10.1007/JHEP12(2014)178]. The same effective dimensional reduction that takes effect in pure gauge theories also impacts gauge-Yukawa systems. There, it appears to lead to a split of the degenerate free fixed point into an interacting infrared attractive fixed point and a partially ultraviolet attractive free fixed point. The quantum-gravity induced infrared fixed point moves towards the asymptotically safe fixed point of the matter system, and annihilates it at a critical value of the gravity coupling. Even after that fixed-point annihilation, graviton effects leave behind new partially interacting fixed points for the matter sector.

  11. Tunable interactions between paramagnetic colloidal particles driven in a modulated ratchet potential.

    PubMed

    Straube, Arthur V; Tierno, Pietro

    2014-06-14

    We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.

  12. Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song

    2018-01-01

    We consider a nonlinear Schrödinger system arising in a two-component Bose-Einstein condensate (BEC) with attractive intraspecies interactions and repulsive interspecies interactions in R2. We get ground states of this system by solving a constrained minimization problem. For some kinds of trapping potentials, we prove that the minimization problem has a minimizer if and only if the attractive interaction strength ai (i = 1 , 2) of each component of the BEC system is strictly less than a threshold a*. Furthermore, as (a1 ,a2) ↗ (a* ,a*), the asymptotical behavior for the minimizers of the minimization problem is discussed. Our results show that each component of the BEC system concentrates at a global minimum of the associated trapping potential.

  13. Effects of Website Interactivity on Online Retail Shopping Behavior

    NASA Astrophysics Data System (ADS)

    Islam, Hafizul

    Motivations to engage in retail online shopping can include both utilitarian and hedonic shopping dimensions. To cater to these consumers, online retailers can create a cognitively and esthetically rich shopping environment, through sophisticated levels of interactive web utilities and features, offering not only utilitarian benefits and attributes but also providing hedonic benefits of enjoyment. Since the effect of interactive websites has proven to stimulate online consumer’s perceptions, this study presumes that websites with multimedia rich interactive utilities and features can influence online consumers’ shopping motivations and entice them to modify or even transform their original shopping predispositions by providing them with attractive and enhanced interactive features and controls, thus generating a positive attitude towards products and services offered by the retailer. This study seeks to explore the effects of Web interactivity on online consumer behavior through an attitudinal model of technology acceptance.

  14. Role of geometrical shape in like-charge attraction of DNA.

    PubMed

    Kuron, Michael; Arnold, Axel

    2015-03-01

    While the phenomenon of like-charge attraction of DNA is clearly observed experimentally and in simulations, mean-field theories fail to predict it. Kornyshev et al. argued that like-charge attraction is due to DNA's helical geometry and hydration forces. Strong-coupling (SC) theory shows that attraction of like-charged rods is possible through ion correlations alone at large coupling parameters, usually by multivalent counterions. However for SC theory to be applicable, counterion-counterion correlations perpendicular to the DNA strands need to be sufficiently small, which is not a priori the case for DNA even with trivalent counterions. We study a system containing infinitely long DNA strands and trivalent counterions by computer simulations employing varying degrees of coarse-graining. Our results show that there is always attraction between the strands, but its magnitude is indeed highly dependent on the specific shape of the strand. While discreteness of the charge distribution has little influence on the attractive forces, the role of the helical charge distribution is considerable: charged rods maintain a finite distance in equilibrium, while helices collapse to close contact with a phase shift of π, in full agreement with SC predictions. The SC limit is applicable because counterions strongly bind to the charged sites of the helices, so that helix-counterion interactions dominate over counterion-counterion interactions. Thus DNA's helical geometry is not crucial for like-charge DNA attraction, but strongly enhances it, and electrostatic interactions in the strong-coupling limit are sufficient to explain this attraction.

  15. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy.

    PubMed

    Pan, Xuecong; Yang, Fangyuan; Chen, Shunli; Zhu, Xuefeng; Wang, Chuanyi

    2018-05-08

    Cooperative effects of a series of equimolar binary zwitterionic-ionic surfactant mixtures on the interfacial water structure at the air-water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC 16 ), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic-anionic surfactant mixtures SNC 16 -SHS, indicating that SNC 16 interacts more strongly with SHS than with CTAB because of the strong headgroup-headgroup electrostatic attraction for SNC 16 -SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC 16 and SHS. The conformational order indicator increased from 0.64 for SNC 16 to 7.17 for SNC 16 -SHS but only 0.94 for SNC 16 -CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain-chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC 16 -SDS was observed. Therefore, both the headgroup-headgroup electrostatic interaction and chain-chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants.

  16. Congested Aggregation via Newtonian Interaction

    NASA Astrophysics Data System (ADS)

    Craig, Katy; Kim, Inwon; Yao, Yao

    2018-01-01

    We consider a congested aggregation model that describes the evolution of a density through the competing effects of nonlocal Newtonian attraction and a hard height constraint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal interaction models, where the repulsive effects instead arise from an interaction kernel or the addition of diffusion. We formulate our model as the Wasserstein gradient flow of an interaction energy, with a penalization to enforce the constraint on the height of the density. From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation with degenerate diffusion. Two key properties distinguish our problem from previous work on height constrained equations: nonconvexity of the interaction kernel (which places the model outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity field on the density (which causes the problem to lack a comparison principle). To overcome these obstacles, we combine recent results on gradient flows of nonconvex energies with viscosity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw type free boundary problem and, using this characterization, show that in two dimensions patch solutions converge to a characteristic function of a disk in the long-time limit, with an explicit rate on the decay of the energy. We believe that a key contribution of the present work is our blended approach, combining energy methods with viscosity solution theory.

  17. The undermining effect of facial attractiveness on brain responses to fairness in the Ultimatum Game: an ERP study

    PubMed Central

    Ma, Qingguo; Hu, Yue; Jiang, Shushu; Meng, Liang

    2015-01-01

    To investigate the time course of the neural processing of facial attractiveness and its influence on fairness consideration during social interactions, event-related potentials (ERP) were recorded from 21 male subjects performing a two-person Ultimatum Game (UG). During this bargaining game, the male subjects played responders who decided whether to accept offers from female proposers, whose facial images (grouped as “attractive” and “unattractive”) were presented prior to the offer presentation. The behavioral data demonstrated that the acceptance ratio increased with the fairness level of the offers and, more importantly, the subjects were more likely to accept unfair offers when presented with the attractive-face condition compared with the unattractive-face condition. The reaction times (RTs) for five offers (1:9, 2:8, 3:7, 4:6, and 5:5) in the unattractive-face condition were not significantly different. In contrast, the subjects reacted slower to the attractive proposers' unfair offers and quicker to fair offers. The ERP analysis of the face presentation demonstrated a decreased early negativity (N2) and enhanced late positive potentials (LPPs) elicited by the attractive faces compared with the unattractive faces. In addition, the feedback-related negativity (FRN) in response to an offer presentation was not significantly different for the unfair (1:9 and 2:8) and fair (4:6 and 5:5) offers in the attractive-face condition. However, the unfair offers generated larger FRNs compared with the fair offers in the unattractive-face condition (consistent with prior studies). A similar effect was identified for P300. The present study demonstrated an undermining effect of proposer facial attractiveness on responder consideration of offer fairness during the UG. PMID:25805967

  18. Review: Nectar biology: From molecules to ecosystems.

    PubMed

    Roy, Rahul; Schmitt, Anthony J; Thomas, Jason B; Carter, Clay J

    2017-09-01

    Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Long-range interaction between heterogeneously charged membranes.

    PubMed

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  20. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-04-01

    Opalescence indicates physical instability of a formulation because of the presence of aggregates or liquid-liquid phase separation in solution and has been reported for monoclonal antibody (mAb) formulations. Increased solution opalescence can be attributed to attractive protein-protein interactions (PPIs). Techniques including light scattering, AUC, or membrane osmometry are routinely employed to measure PPIs in dilute solutions, whereas opalescence is seen at relatively higher concentrations, where both long- and short-range forces contribute to overall PPIs. The mAb molecule studied here shows a unique property of high opalescence because of liquid-liquid phase separation. In this study, opalescence measurements are correlated to PPIs measured in diluted and concentrated solutions using light scattering (kD ) and high-frequency rheology (G'), respectively. Charges on the molecules were calculated using zeta potential measurements. Results indicate that high opalescence and phase separation are a result of the attractive interactions in solution; however, the presence of attractive interactions do not always imply phase separation. Temperature dependence of opalescence suggests that thermodynamic contribution to opalescence is significant and Tcloud can be utilized as a potential tool to assess attractive interactions in solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Attractiveness and Leader Style: Evaluations of Male and Female Leaders by Male and Female Evaluators.

    ERIC Educational Resources Information Center

    Sopasakis, Maria; Snodgrass, Sara E.

    Previous research has suggested that men are stereotypically believed to be better leaders than women; that more physically attractive people are evaluated more positively than less attractive people; and that men and women use different leadership styles. This study examined the interactions of sex, leader style, and physical attractiveness on…

  2. Assessing the attractive/repulsive force balance in axial cyclohexane C-Hax ···Yax contacts: A combined computational analysis in monosubstituted cyclohexanes.

    PubMed

    Silva Lopez, Carlos; Nieto Faza, Olalla; De Proft, Frank; Kolocouris, Antonios

    2016-11-15

    The interactions of axial substituents in monosubstituted cyclohexane rings are studied in this work using an array of different computational techniques. Additionally, the anomalous axial preference for some bulky substituents is related to stabilizing dispersion interactions. We find that the C-H ax ···Y ax contacts for various substituents with distances ranging from 2 to ∼5 Å may include attractive dispersion forces that can affect the conformational equilibrium; these forces co-exist with Pauli repulsive forces effected by Y ax group due to van der Waals sphere penetration. At distances between 2 and 3 Å stabilizing electron transfer interactions were calculated and the combination of natural bond orbital and QTAIM analysis showed that, in certain cases, Y ax  =  t Bu, C ax -O or C ax  = O or S ax  = O or C ax  = S this interaction can be characterized as an improper H-bond. DFT-D3 and non-covalent interactions calculations (NCIs) in cyclohexane derivatives with Y ax  = SiOR 3 including H Yax ···H cy surfaces at distances ranging between 4 and 6 Å suggest that dispersion has a clear effect on the experimentally observed stabilization of the axial conformer. NCIs computed from the reduced density gradient help to visually identify and analyze these interactions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Role of electrostatic interactions in the assembly of empty spherical viral capsids

    NASA Astrophysics Data System (ADS)

    Šiber, Antonio; Podgornik, Rudolf

    2007-12-01

    We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of nonelectrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e., on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in the hepatitis B virus [P. Ceres A. Zlotnick, Biochemistry 41, 11525 (2002)].

  4. Crossing Over from Attractive to Repulsive Interactions in a Tunneling Bosonic Josephson Junction.

    PubMed

    Spagnolli, G; Semeghini, G; Masi, L; Ferioli, G; Trenkwalder, A; Coop, S; Landini, M; Pezzè, L; Modugno, G; Inguscio, M; Smerzi, A; Fattori, M

    2017-06-09

    We explore the interplay between tunneling and interatomic interactions in the dynamics of a bosonic Josephson junction. We tune the scattering length of an atomic ^{39}K Bose-Einstein condensate confined in a double-well trap to investigate regimes inaccessible to other superconducting or superfluid systems. In the limit of small-amplitude oscillations, we study the transition from Rabi to plasma oscillations by crossing over from attractive to repulsive interatomic interactions. We observe a critical slowing down in the oscillation frequency by increasing the strength of an attractive interaction up to the point of a quantum phase transition. With sufficiently large initial oscillation amplitude and repulsive interactions, the system enters the macroscopic quantum self-trapping regime, where we observe coherent undamped oscillations with a self-sustained average imbalance of the relative well population. The exquisite agreement between theory and experiments enables the observation of a broad range of many body coherent dynamical regimes driven by tunable tunneling energy, interactions and external forces, with applications spanning from atomtronics to quantum metrology.

  5. Effects of Cucumber mosaic virus infection on vector and non-vector herbivores of squash.

    PubMed

    Mauck, Kerry E; De Moraes, Consuelo M; Mescher, Mark C

    2010-11-01

    Plant chemicals mediating interactions with insect herbivores seem a likely target for manipulation by insectvectored plant pathogens. Yet, little is currently known about the chemical ecology of insect-vectored diseases or their effects on the ecology of vector and nonvector insects. We recently reported that a widespread plant pathogen, Cucumber mosaic virus (CMV), greatly reduces the quality of host-plants (squash) for aphid vectors, but that aphids are nevertheless attracted to the odors of infected plants-which exhibit elevated emissions of a volatile blend otherwise similar to the odor of healthy plants. This finding suggests that exaggerating existing host-location cues can be a viable vector attraction strategy for pathogens that otherwise reduce host quality for vectors. Here we report additional data regarding the effects of CMV infection on plant interactions with a common nonvector herbivore, the squash bug, Anasa tristis, which is a pest in this system. We found that adult A. tristis females preferred to oviposit on healthy plants in the field, and that healthy plants supported higher populations of nymphs. Collectively, our recent findings suggest that CMV-induced changes in host plant chemistry influence the behavior of both vector and non-vector herbivores, with significant implications both for disease spread and for broader community-level interactions.

  6. Face familiarity promotes stable identity recognition: exploring face perception using serial dependence

    PubMed Central

    Kok, Rebecca; Van der Burg, Erik; Rhodes, Gillian; Alais, David

    2017-01-01

    Studies suggest that familiar faces are processed in a manner distinct from unfamiliar faces and that familiarity with a face confers an advantage in identity recognition. Our visual system seems to capitalize on experience to build stable face representations that are impervious to variation in retinal input that may occur due to changes in lighting, viewpoint, viewing distance, eye movements, etc. Emerging evidence also suggests that our visual system maintains a continuous perception of a face's identity from one moment to the next despite the retinal input variations through serial dependence. This study investigates whether interactions occur between face familiarity and serial dependence. In two experiments, participants used a continuous scale to rate attractiveness of unfamiliar and familiar faces (either experimentally learned or famous) presented in rapid sequences. Both experiments revealed robust inter-trial effects in which attractiveness ratings for a given face depended on the preceding face's attractiveness. This inter-trial attractiveness effect was most pronounced for unfamiliar faces. Indeed, when participants were familiar with a given face, attractiveness ratings showed significantly less serial dependence. These results represent the first evidence that familiar faces can resist the temporal integration seen in sequential dependencies and highlight the importance of familiarity to visual cognition. PMID:28405355

  7. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.

    PubMed

    Yadav, Indresh; Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2017-02-07

    The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of BSA, a decrease in the BSA-BSA repulsion enhances the depletion attraction between the nanoparticles as pH is shifted toward the IEP. The morphology of the nanoparticle aggregates is found to be mass fractal.

  8. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates

    PubMed Central

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.

    2016-01-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  9. Multi-scale dynamics and relaxation of a tethered membrane in a solvent by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Anderson, Kelly; Farmer, Barry

    2006-03-01

    A tethered membrane modeled by a flexible sheet dissipates entropy as it wrinkles and crumples. Nodes of a coarse grained membrane are connected via multiple pathways for dynamical modes to propagate. We consider a sheet with nodes connected by fluctuating bonds on a cubic lattice. The empty lattice sites constitute an effective solvent medium via node-solvent interaction. Each node execute its stochastic motion with the Metropolis algorithm subject to bond fluctuations, excluded volume constraints, and interaction energy. Dynamics and conformation of the sheet are examined at a low and a high temperature with attractive and repulsive node-node interactions for the contrast in an attractive solvent medium. Variations of the mean square displacement of the center node of the sheet and that of its center of mass with the time steps are examined in detail which show different power-law motion from short to long time regimes. Relaxation of the gyration radius and scaling of its asymptotic value with the molecular weight are examined.

  10. Polymer absorption in dense polymer brushes vs. polymer adsorption on the brush-solvent interface

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Binder, Kurt

    2014-06-01

    Molecular-dynamics simulations of a coarse-grained model of a dense brush of flexible polymers (of type A) interacting with a long flexible macromolecule (of type B) are presented, considering the case of an attractive AB interaction, while effective interactions between AA and BB pairs of monomers are repulsive. Varying the strength \\varepsilon_{AB} of the attraction between unlike monomers, an adsorption transition at some critical value \\varepsilon^c_{AB} is found, where the B-chain is bound to the brush-solvent interface, similar to the adsorption on a planar solid substrate. However, when \\varepsilon_{AB} is much higher than \\varepsilon^c_{AB} , the long macromolecule is gradually “sucked in” the brush, developing many pieces that are locally stretched in the z-direction perpendicular to the substrate, in order to fit between the brush chains. The resulting hairpin-like structures of the absorbed chain shows up via oscillatory decay of the bond vector autocorrelation function. Chain relaxation is only possible via reptation.

  11. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    PubMed

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) < Ca(2+) < Na(+) < Sr(2+) < K(+) < Cs(+), follows cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  12. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  13. A model for adatom structures

    NASA Astrophysics Data System (ADS)

    Kappus, W.

    1981-06-01

    A model concerning adatom structures is proposed. Attractive nearest neighbour interactions, which may be of electronic nature lead to 2-dimensional condensation. Every pair bond causes and elastic dipole. The elastic dipoles interact via substrate strains with an anisotropic s -3 power law. Different types of adatoms or sites are permitted and many-body effects result, from the assumptions. Electric dipole interactions of adatoms are included for comparison. The model is applied to the W(110) surface and compared with superstructures experimentally found in the W(110)-0 system. It is found that there is still lack for an additional next-nearest neighbour interaction.

  14. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    PubMed

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  15. Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion

    NASA Astrophysics Data System (ADS)

    Tripathy, Mukta; Schweizer, Kenneth S.

    2011-04-01

    In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.

  16. Transitions induced by speed in self-propelled particles system with attractive interactions

    NASA Astrophysics Data System (ADS)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  17. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    PubMed

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Aggregation in charged nanoparticles solutions induced by different interactions

    NASA Astrophysics Data System (ADS)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  19. Aggregation in charged nanoparticles solutions induced by different interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, S.; Kumar, Sugam; Aswal, V. K., E-mail: vkaswal@barc.gov.in

    2016-05-23

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction betweenmore » nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.« less

  20. Modelling of electron beam induced nanowire attraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitzer, Lucas A.; Benson, Niels, E-mail: niels.benson@uni-due.de; Schmechel, Roland

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical,more » and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.« less

  1. Investigation on the individual contributions of N-H...O=C and C-H...O=C interactions to the binding energies of beta-sheet models.

    PubMed

    Wang, Chang-Sheng; Sun, Chang-Liang

    2010-04-15

    In this article, the binding energies of 16 antiparallel and parallel beta-sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for beta-sheet models. Further comparisons suggest that the binding energy of the beta-sheet models might come mainly from dipole-dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole-dipole attractive and repulsive interactions are further obtained in this article. The total of N-H...H-N and C=O...O=C dipole-dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel beta-sheet models is estimated to be about 6.0 kcal/mol. The individual N-H...O=C dipole-dipole attractive interaction is predicted to be -6.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -5.2 +/- 0.6 kcal/mol in the parallel beta-sheet models. The individual C(alpha)-H...O=C attractive interaction is -1.2 +/- 0.2 kcal/mol in the antiparallel beta-sheet models and -1.5 +/- 0.2 kcal/mol in the parallel beta-sheet models. These values are important in understanding the interactions at protein-protein interfaces and developing a more accurate force field for peptides and proteins. 2009 Wiley Periodicals, Inc.

  2. Expression of Power and Heterosexual Attraction.

    ERIC Educational Resources Information Center

    DeBlasio, Cynthia L.; Ellyson, Steve L.

    Facial attractiveness has been the focus of considerable research in social psychology. Nonverbal behaviors emitted by the face may affect the perceived attractiveness of males and females differently. Visual behavior has particularly important functions in regulating social interaction and in establishing and conveying social power. Power and…

  3. Competition between surface adsorption and folding of fibril-forming polypeptides

    NASA Astrophysics Data System (ADS)

    Ni, Ran; Kleijn, J. Mieke; Abeln, Sanne; Cohen Stuart, Martien A.; Bolhuis, Peter G.

    2015-02-01

    Self-assembly of polypeptides into fibrillar structures can be initiated by planar surfaces that interact favorably with certain residues. Using a coarse-grained model, we systematically studied the folding and adsorption behavior of a β -roll forming polypeptide. We find that there are two different folding pathways depending on the temperature: (i) at low temperature, the polypeptide folds in solution into a β -roll before adsorbing onto the attractive surface; (ii) at higher temperature, the polypeptide first adsorbs in a disordered state and folds while on the surface. The folding temperature increases with increasing attraction as the folded β -roll is stabilized by the surface. Surprisingly, further increasing the attraction lowers the folding temperature again, as strong attraction also stabilizes the adsorbed disordered state, which competes with folding of the polypeptide. Our results suggest that to enhance the folding, one should use a weakly attractive surface. They also explain the recent experimental observation of the nonmonotonic effect of charge on the fibril formation on an oppositely charged surface [C. Charbonneau et al., ACS Nano 8, 2328 (2014), 10.1021/nn405799t].

  4. Cold and warm swelling of hydrophobic polymers

    NASA Astrophysics Data System (ADS)

    de Los Rios, Paolo; Caldarelli, Guido

    2001-03-01

    We introduce a polymer model where the transition from swollen to compact configurations is due to interactions between the monomers and the solvent. These interactions are the origin of the effective attractive interactions between hydrophobic amino acids in proteins. We find that in the low and high temperature phases polymers are swollen, and there is an intermediate phase where the most favorable configurations are compact. We argue that such a model captures in a single framework both the cold and the warm denaturation experimentally detected for thermosensitive polymers and for proteins.

  5. Reparameterization of Solute—Solute Interactions for Amino Acid-Sugar Systems Using Isopiestic Osmotic Pressure Molecular Dynamics Simulations

    PubMed Central

    Lay, Wesley K.; Miller, Mark S.

    2018-01-01

    AMBER/GLYCAM and CHARMM are popular force fields for simulations of amino acids and sugars. Here we report excessively attractive amino acid-sugar interactions in both force fields, and corrections to nonbonded interactions that match experimental osmotic pressures of mixed aqueous solutions of diglycine and sucrose. The modified parameters also improve the ΔGtrans of diglycine from water to aqueous sucrose and, with AMBERff99SB/GLYCAM06, eliminate a caging effect seen in previous simulations of the protein ubiquitin with glucose. PMID:28437100

  6. Effect of ski geometry on aggressive ski behaviour and visual aesthetics: equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing

    PubMed Central

    Kröll, Josef; Spörri, Jörg; Gilgien, Matthias; Schwameder, Hermann; Müller, Erich

    2016-01-01

    Background/Aim Aggressive ski-snow interaction is characterised by direct force transmission and difficulty of getting the ski off its edge once the ski is carving. This behaviour has been suggested to be a main contributor to severe knee injuries in giant slalom (GS). The aim of the current study was to provide a foundation for new equipment specifications in GS by considering two perspectives: Reducing the ski's aggressiveness for injury prevention and maintaining the external attractiveness of a ski racer's technique for spectators. Methods Three GS ski prototypes were defined based on theoretical considerations and were compared to a reference ski (Pref). Compared to Pref, all prototypes were constructed with reduced profile width and increased ski length. The construction radius (sidecut radius) of Pref was ≥27 m and was increased for the prototypes: 30 m (P30), 35 m (P35), and 40 m (P40). Seven World Cup level athletes performed GS runs on each of the three prototypes and Pref. Kinetic variables related to the ski-snow interaction were assessed to quantify the ski's aggressiveness. Additionally, 13 athletes evaluated their subjective perception of aggressiveness. 15 sports students rated several videotaped runs to assess external attractiveness. Results Kinetic variables quantifying the ski's aggressiveness showed decreased values for P35 and P40 compared to Pref and P30. Greater sidecut radius reduced subjectively perceived aggressiveness. External attractiveness was reduced for P40 only. Conclusions This investigation revealed the following evaluation of the prototypes concerning injury prevention and external attractiveness: P30: no preventative gain, no loss in attractiveness; P35: substantial preventative gain, no significant loss in attractiveness; P40: highest preventative gain, significant loss in attractiveness. PMID:26603647

  7. Behaviors of transmutation elements Re and Os and their effects on energetics and clustering of vacancy and self-interstitial atoms in W

    NASA Astrophysics Data System (ADS)

    Li, Yu-Hao; Zhou, Hong-Bo; Jin, Shuo; Zhang, Ying; Deng, Huiqiu; Lu, Guang-Hong

    2017-04-01

    We investigate the behaviors of rhenium (Re) and osmium (Os) and their interactions with point defects in tungsten (W) using a first-principles method. We show that Re atoms are energetically favorable to disperse separately in bulk W due to the Re-Re repulsive interaction. Despite the attractive interaction between Os atoms, there is still a large activation energy barrier of 1.10 eV at the critical number of 10 for the formation of Os clusters in bulk W based on the results of the total nucleation free energy change. Interestingly, the presence of vacancy can significantly reduce the total nucleation free energy change of Re/Os clusters, suggesting that vacancy can facilitate the nucleation of Re/Os in W. Re/Os in turn has an effect on the stability of the vacancy clusters (V n ) in W, especially for small vacancy clusters. A single Re/Os atom can raise the total binding energies of V2 and V3 obviously, thus enhancing their formation. Further, we demonstrate that there is a strong attractive interaction between Re/Os and self-interstitial atoms (SIAs). Re/Os could increase the diffusion barrier of SIAs and decrease their rotation barrier, while the interstitial-mediated path may be the optimal diffusion path of Re/Os in W. Consequently, the synergistic effect between Re/Os and point defects plays a key role in Re/Os precipitation and the evolution of defects in irradiated W.

  8. Let's Play at My House: Effects of the Home Environment on the Social Behavior of Children.

    ERIC Educational Resources Information Center

    Jeffers, Victoria W.; Lore, Richard K.

    1979-01-01

    Results showed that preschool children at home initiated both more positive and aggressive social interactions and were more effective in attracting a visiting child into play than were children away from home. This was the case even when the child at home had been shyer during the first meeting of the children. (JMB)

  9. Insecticide use in hybrid onion seed production affects pre- and postpollination processes.

    PubMed

    Gillespie, Sandra; Long, Rachael; Seitz, Nicola; Williams, Neal

    2014-02-01

    Research on threats to pollination service in agro-ecosystems has focused primarily on the negative impacts of land use change and agricultural practices such as insecticide use on pollinator populations. Insecticide use could also affect the pollination process, through nonlethal impacts on pollinator attraction and postpollination processes such as pollen viability or pollen tube growth. Hybrid onion seed (Allium cepa L., Alliaceae) is an important pollinator-dependent crop that has suffered yield declines in California, concurrent with increased insecticide use. Field studies suggest that insecticide use reduces pollination service in this system. We conducted a field experiment manipulating insecticide use to examine the impacts of insecticides on 1) pollinator attraction, 2) pollen/stigma interactions, and 3) seed set and seed quality. Select insecticides had negative impacts on pollinator attraction and pollen/stigma interactions, with certain products dramatically reducing pollen germination and pollen tube growth. Decreased pollen germination was not associated with reduced seed set; however, reduced pollinator attraction was associated with lower seed set and seed quality, for one of the two female lines examined. Our results highlight the importance of pesticide effects on the pollination process. Overuse may lead to yield reductions through impacts on pollinator behavior and postpollination processes. Overall, in hybrid onion seed production, moderation in insecticide use is advised when controlling onion thrips, Thrips tabaci, on commercial fields.

  10. Cigarette smoking and perception of a movie character in a film trailer.

    PubMed

    Hanewinkel, Reiner

    2009-01-01

    To study the effects of smoking in a film trailer. Experimental study. Ten secondary schools in Northern Germany. A sample of 1051 adolescents with a mean (SD) age of 14.2 (1.8) years. Main Exposures Participants were randomized to view a 42-second film trailer in which the attractive female character either smoked for about 3 seconds or did not smoke. Perception of the character was measured via an 8-item semantic differential scale. Each item consisted of a polar-opposite pair (eg, "sexy/unsexy") divided on a 7-point scale. Responses to individual items were summed and averaged. This scale was named "attractiveness." The Cronbach alpha for the attractiveness rating was 0.85. Multilevel mixed-effects linear regression was used to test the effect of smoking in a film trailer. Smoking in the film trailer did not reach significance in the linear regression model (z = 0.73; P = .47). Smoking status of the recipient (z = 3.81; P < .001) and the interaction between smoking in the film trailer and smoking status of the recipient (z = 2.21; P = .03) both reached statistical significance. Ever smokers and never smokers did not differ in their perception of the female character in the nonsmoking film trailer. In the smoking film trailer, ever smokers judged the character significantly more attractive than never smokers. Even incidental smoking in a very short film trailer might strengthen the attractiveness of smokers in youth who have already tried their first cigarettes.

  11. Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores.

    PubMed

    Poelman, Erik H; Zheng, Si-Jun; Zhang, Zhao; Heemskerk, Nanda M; Cortesero, Anne-Marie; Dicke, Marcel

    2011-12-06

    Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore-plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.

  12. Attraction and Communicator Style: Perceptual Differences between Friends and Enemies as a Function of Sex and Race.

    ERIC Educational Resources Information Center

    Miller, Larry D.

    Research on attraction in an interpersonal context has strongly suggested that the more attracted two people are to one another, the more they tend to communicate. This study explored attraction and social interaction patterns at the perceptual level. Eighty male and female graduate students, 40 black and 40 white, completed a two part measure of…

  13. Body mass index, safety hazards, and neighborhood attractiveness.

    PubMed

    Lovasi, Gina S; Bader, Michael D M; Quinn, James; Neckerman, Kathryn; Weiss, Christopher; Rundle, Andrew

    2012-10-01

    Neighborhood attractiveness and safety may encourage physical activity and help individuals maintain a healthy weight. However, these neighborhood characteristics may not be equally relevant to health across all settings and population subgroups. To evaluate whether potentially attractive neighborhood features are associated with lower BMI, whether safety hazards are associated with higher BMI, and whether environment-environment interactions are present such that associations for a particular characteristic are stronger in an otherwise supportive environment. Survey data and measured height and weight were collected from a convenience sample of 13,102 adult New York City (NYC) residents in 2000-2002; data analyses were completed 2008-2012. Built-environment measures based on municipal GIS data sources were constructed within 1-km network buffers to assess walkable urban form (density, land-use mix, transit access); attractiveness (sidewalk cafés, landmark buildings, street trees, street cleanliness); and safety (homicide rate, pedestrian-auto collision and fatality rate). Generalized linear models with cluster-robust SEs controlled for individual and area-based sociodemographic characteristics. The presence of sidewalk cafés, density of landmark buildings, and density of street trees were associated with lower BMI, whereas the proportion of streets rated as clean was associated with higher BMI. Interactions were observed for sidewalk cafés with neighborhood poverty, for street-tree density with walkability, and for street cleanliness with safety. Safety hazard indicators were not independently associated with BMI. Potentially attractive community and natural features were associated with lower BMI among adults in NYC, and there was some evidence of effect modification. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Niche construction initiates the evolution of mutualistic interactions.

    PubMed

    Buser, Claudia C; Newcomb, Richard D; Gaskett, Anne C; Goddard, Matthew R

    2014-10-01

    Niche construction theory explains how organisms' niche modifications may feed back to affect their evolutionary trajectories. In theory, the evolution of other species accessing the same modified niche may also be affected. We propose that this niche construction may be a general mechanism driving the evolution of mutualisms. Drosophilid flies benefit from accessing yeast-infested fruits, but the consequences of this interaction for yeasts are unknown. We reveal high levels of variation among strains of Saccharomyces cerevisiae in their ability to modify fruits and attract Drosophila simulans. More attractive yeasts are dispersed more frequently, both in the lab and in the field, and flies associated with more attractive yeasts have higher fecundity. Although there may be multiple natural yeast and fly species interactions, our controlled assays in the lab and field provide evidence of a mutualistic interaction, facilitated by the yeast's niche modification. © 2014 John Wiley & Sons Ltd/CNRS.

  15. Effects of Counselor Disability on Counselor Attraction in an Analogue Setting.

    ERIC Educational Resources Information Center

    Risica, Virginia J.; Nevid, Jeffrey S.

    The majority of research examining attitudes toward the disabled has demonstrated stereotypically negative biases among disabled and nondisabled populations. These biases may include avoidance or increased social distance with the disabled as well as feelings of uncomfortableness when interacting with disabled individuals. This study investigated…

  16. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions

    NASA Astrophysics Data System (ADS)

    Gerton, Jordan M.; Strekalov, Dmitry; Prodan, Ionut; Hulet, Randall G.

    2000-12-01

    Quantum theory predicts that Bose-Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form, provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate is therefore punctuated by intermittent collapses that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.

  17. Self-disclosure on SNS: Do disclosure intimacy and narrativity influence interpersonal closeness and social attraction?

    PubMed

    Lin, Ruoyun; Utz, Sonja

    2017-05-01

    On social media, users can easily share their feelings, thoughts, and experiences with the public, including people who they have no previous interaction with. Such information, though often embedded in a stream of others' news, may influence recipients' perception toward the discloser. We used a special design that enables a quasi-experience of SNS browsing, and examined if browsing other's posts in a news stream can create a feeling of familiarity and (even) closeness toward the discloser. In addition, disclosure messages can vary in the degree of intimacy (from superficial to intimate) and narrativity (from a random blather to a story-like narrative). The roles of disclosure intimacy and narrativity on perceived closeness and social attraction were examined by a 2 × 2 experimental design. By conducting one lab study and another online replication, we consistently found that disclosure frequency, when perceived as appropriate, predicted familiarity and closeness. The effects of disclosure intimacy and narrativity were not stable. Further exploratory analyses showed that the roles of disclosure intimacy on closeness and social attraction were constrained by the perceived appropriateness, and the effects of narrativity on closeness and social attraction were mediated by perceived entertainment value.

  18. Ultracold fermions in a one-dimensional bipartite optical lattice: Metal-insulator transitions driven by shaking

    NASA Astrophysics Data System (ADS)

    Di Liberto, M.; Malpetti, D.; Japaridze, G. I.; Morais Smith, C.

    2014-08-01

    We theoretically investigate the behavior of a system of fermionic atoms loaded in a bipartite one-dimensional optical lattice that is under the action of an external time-periodic driving force. By using Floquet theory, an effective model is derived. The bare hopping coefficients are renormalized by zeroth-order Bessel functions of the first kind with different arguments for the nearest-neighbor and next-nearest-neighbor hopping. The insulating behavior characterizing the system at half filling in the absence of driving is dynamically suppressed, and for particular values of the driving parameter the system becomes either a standard metal or an unconventional metal with four Fermi points. The existence of the four-Fermi-point metal relies on the fact that, as a consequence of the shaking procedure, the next-nearest-neighbor hopping coefficients become significant compared to the nearest-neighbor ones. We use the bosonization technique to investigate the effect of on-site Hubbard interactions on the four-Fermi-point metal-insulator phase transition. Attractive interactions are expected to enlarge the regime of parameters where the unconventional metallic phase arises, whereas repulsive interactions reduce it. This metallic phase is known to be a Luther-Emery liquid (spin-gapped metal) for both repulsive and attractive interactions, contrary to the usual Hubbard model, which exhibits a Mott-insulator phase for repulsive interactions. Ultracold fermions in driven one-dimensional bipartite optical lattices provide an interesting platform for the realization of this long-studied four-Fermi-point unconventional metal.

  19. Can nonadditive dispersion forces explain chain formation of nanoparticles?

    NASA Astrophysics Data System (ADS)

    Kwaadgras, Bas W.; Verdult, Maarten W. J.; Dijkstra, Marjolein; van Roij, René

    2013-03-01

    We study to what extent dielectric nanoparticles prefer to self-assemble into linear chains or into more compact structures. To calculate the Van der Waals (VdW) attraction between the clusters we use the Coupled Dipole Method (CDM), which treats each atom in the nanoparticle as an inducible oscillating point dipole. The VdW attraction then results from the full many-body interactions between the dipoles. For non-capped nanoparticles, we calculate in which configuration the VdW attraction is maximal. We find that in virtually all cases we studied, many-body effects only result in local potential minima at the linear configuration, as opposed to global ones, and that these metastable minima are in most cases rather shallow compared to the thermal energy. In this work, we also compare the CDM results with those from Hamaker-de Boer and Axilrod-Teller theory to investigate the influence of the many-body effects and the accuracy of these two approximate methods.

  20. Influence of air-jet vortex generator diameter on separation region

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard

    2013-08-01

    Control of shock wave and boundary layer interaction continues to attract a lot of attention. In recent decades several methods of interaction control have been investigated. The research has mostly concerned solid (vane type) vortex generators and transpiration methods of suction and blowing. This investigation concerns interaction control using air-jets to generate streamwise vortices. The effectiveness of air-jet vortex generators in controlling separation has been proved in a previous research. The present paper focuses on the influence of the vortex generator diameter on the separation region. It presents the results of experimental investigations and provides new guidelines for the design of air-jet vortex generators to obtain more effective separation control.

  1. Are narcissists sexy? Zeroing in on the effect of narcissism on short-term mate appeal.

    PubMed

    Dufner, Michael; Rauthmann, John F; Czarna, Anna Z; Denissen, Jaap J A

    2013-07-01

    This research was aimed to provide a comprehensive test of the classic notion that narcissistic individuals are appealing as short-term romantic or sexual partners. In three studies, we tested the hypotheses that narcissism exerts a positive effect on an individual's mate appeal and that this effect is mediated by high physical attractiveness and high social boldness. We implemented a multimethod approach and used ratings of opposite sex persons (Study 1), ratings of friends (Study 2), and records of courtship outcomes in naturalistic interactions (Study 3) as indicators of mate appeal. In all cases, narcissism had a positive effect on mate appeal, which was mainly due to the agentic self-enhancement aspects of narcissism (rather than narcissists' lacking communion). As predicted, physical attractiveness and social boldness mediated the positive effect of narcissism on mate appeal. Findings further indicated that narcissism was more strongly linked to mate appeal than to friend appeal.

  2. Is there an attractive interaction between two methyl groups?

    NASA Astrophysics Data System (ADS)

    Zhuo, Hong-Ying; Jiang, Li-Xia; Li, Qing-Zhong; Li, Wen-Zuo; Cheng, Jian-Bo

    2014-07-01

    A weak interaction was found between the two methyl groups in the complexes of XCH3-CH3BH2 (X = F, CN, NO2, HCO, and SOCH3), where the former methyl group acts as a Lewis acid and the latter one as a Lewis base. This directional interaction has small interaction energy, accompanied with some small changes in geometry and spectroscopy. Stronger Lewis acids FYH3 (Y = Si, Ge, and Sn) as well as Lewis bases CH3BeH and CH3MgH were compared. Dispersion energy is the major source of attraction and electrostatic contribution grows up to exceed dispersion energy for stronger interactions.

  3. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A. C.; Bachand, M.; Gomez, A.

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  4. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE PAGES

    Greene, A. C.; Bachand, M.; Gomez, A.; ...

    2017-03-31

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  5. Quantum noise in bright soliton matterwave interferometry

    NASA Astrophysics Data System (ADS)

    Haine, Simon A.

    2018-03-01

    There has been considerable recent interest in matterwave interferometry with bright solitons in quantum gases with attractive interactions, for applications such as rotation sensing. We model the quantum dynamics of these systems and find that the attractive interactions required for the presence of bright solitons causes quantum phase-diffusion, which severely impairs the sensitivity. We propose a scheme that partially restores the sensitivity, but find that in the case of rotation sensing, it is still better to work in a regime with minimal interactions if possible.

  6. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling

    NASA Astrophysics Data System (ADS)

    Li, Zhidan; Han, Qiang

    2018-04-01

    The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.

  7. Phase separation of a Lennard-Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes.

    PubMed

    Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo

    2015-08-28

    Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.

  8. How do medical students form impressions of the effectiveness of classroom teachers?

    PubMed

    Rannelli, Luke; Coderre, Sylvain; Paget, Michael; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin

    2014-08-01

    Teaching effectiveness ratings (TERs) are used to provide feedback to teachers on their performance and to guide decisions on academic promotion. However, exactly how raters make decisions on teaching effectiveness is unclear. The objectives of this study were to identify variables that medical students appraise when rating the effectiveness of a classroom teacher, and to explore whether the relationships among these variables and TERs are modified by the physical attractiveness of the teacher. We asked 48 Year 1 medical students to listen to 2-minute audio clips of 10 teachers and to describe their impressions of these teachers and rate their teaching effectiveness. During each clip, we displayed either an attractive or an unattractive photograph of an unrelated third party. We used qualitative analysis followed by factor analysis to identify the principal components of teaching effectiveness, and multiple linear regression to study the associations among these components, type of photograph displayed, and TER. We identified two principal components of teaching effectiveness: charisma and intellect. There was no association between rating of intellect and TER. Rating of charisma and the display of an attractive photograph were both positively associated with TER and a significant interaction between these two variables was apparent (p < 0.001). The regression coefficient for the association between charisma and TER was 0.26 (95% confidence interval [CI] 0.10-0.41) when an attractive picture was displayed and 0.83 (95% CI 0.66-1.00) when an unattractive picture was displayed (p < 0.001). When medical students rate classroom teachers, they consider the degree to which the teacher is charismatic, although the relationship between this attribute and TER appears to be modified by the perceived physical attractiveness of the teacher. Further studies are needed to identify other variables that may influence subjective ratings of teaching effectiveness and to evaluate alternative strategies for rating teaching effectiveness. © 2014 John Wiley & Sons Ltd.

  9. Pair interactions of heavy vortices in quantum fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Ivan A.

    2018-02-01

    The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.

  10. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    NASA Astrophysics Data System (ADS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.

  11. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research opens up a new avenue for stabilization of hydrophobic particles, when surfactant additions alone do not provide sufficient stabilization.

  12. Hydrodynamic interaction of swimming organisms in an inertial regime

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  13. Molecular dynamics simulation of water in and around carbon nanotubes: A coarse-grained description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantawane, Sanwardhini; Choudhury, Niharendu, E-mail: nihcho@barc.gov.in

    2016-05-23

    In the present study, we intend to investigate behaviour of water in and around hydrophobic open ended carbon nanotubes (CNTs) using a coarse-grained, core-softened model potential for water. The model potential considered here for water has recently been shown to successfully reproduce dynamic, thermodynamic and structural anomalies of water. The epitome of the study is to understand the incarceration of this coarse-grained water in a single-file carbon nanotube. In order to examine the effect of fluid-water van der Waals interaction on the structure of fluid in and around the nanotube, we have simulated three different CNT-water systems with varying degreemore » of solute-water dispersion interaction. The analyses of the radial one-particle density profiles reveal varying degree of permeation and wetting of the CNT interior depending on the degree of fluid-solute attractive van der Waals interaction. A peak in the radial density profile slightly off the nanotube axis signifies a zigzag chain of water molecule around the CNT axis. The average numbers of water molecules inside the CNT have been shown to increase with the increase in fluid-water attractive dispersion interaction.« less

  14. Hydrogen bonding and interparticle forces in platelet alpha-Al2O3 dispersions: yield stress and zeta potential.

    PubMed

    Khoo, Kay-Sen; Teh, E-Jen; Leong, Yee-Kwong; Ong, Ban Choon

    2009-04-09

    Adsorbed phosphate on smooth platelet alpha-Al2O3 particles at saturation surface coverage gives rise to strong interparticle attractive forces in dispersion. The maximum yield stress at the point of zero charge was increased by 2-fold. This was attributed to a high density of intermolecular hydrogen bonding between the adsorbed phosphate layers of the interacting particles. Adsorbed citrate at saturation surface coverage, however, reduced the maximum yield stress by 50%. It adsorbed to form a very effective steric barrier as intramolecular hydrogen bonding between -OH and the free terminal carboxylic group prevented strong interactions with other adsorbed citrate molecules residing on the second interacting particle. This steric barrier kept the interacting platelet particles further apart, thereby weakening the van der Waals attraction. The platelet alpha-Al2O3 dispersions were flocculated at all pH level. These dispersions displayed a maximum yield stress at the point of zero zeta potential at the pH approximately 8.0. They also obeyed the yield stress-DLVO force model as characterized by a linear decrease in the yield stress with the square of the zeta potential.

  15. Enhanced quantum spin fluctuations in a binary Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Bisset, R. N.; Kevrekidis, P. G.; Ticknor, C.

    2018-02-01

    For quantum fluids, the role of quantum fluctuations may be significant in several regimes such as when the dimensionality is low, the density is high, the interactions are strong, or for low particle numbers. In this paper, we propose a fundamentally different regime for enhanced quantum fluctuations without being restricted by any of the above conditions. Instead, our scheme relies on the engineering of an effective attractive interaction in a dilute, two-component Bose-Einstein condensate (BEC) consisting of thousands of atoms. In such a regime, the quantum spin fluctuations are significantly enhanced (atom bunching with respect to the noninteracting limit) since they act to reduce the interaction energy, a remarkable property given that spin fluctuations are normally suppressed (antibunching) at zero temperature. In contrast to the case of true attractive interactions, our approach is not vulnerable to BEC collapse. We numerically demonstrate that these quantum fluctuations are experimentally accessible by either spin or single-component Bragg spectroscopy, offering a useful platform on which to test beyond-mean-field theories. We also develop a variational model and use it to analytically predict the shift of the immiscibility critical point, finding good agreement with our numerics.

  16. Electrostatics of colloids in mixtures

    NASA Astrophysics Data System (ADS)

    Samin, Sela; Tsori, Yoav

    2013-03-01

    We examine the force between two charged colloids immersed in salty aqueous mixtures close to the coexistence curve. In an initially water-poor phase, the short-range solvation-related forces promote the condensation of a water-rich phase at a distance in the range 1-100nm. This leads to a strong long-range attraction between the colloids and hence to a deep metastable or globally stable energetic state. Our calculations are in good agreement with recent experiments on the reversible aggregation of colloids in critical mixtures. The specific nature of the solvation energy of ions can lead to some surprising effects, whereby positively charged surfaces attract while negatively charged surfaces repel. For hydrophilic anions and hydrophobic cations, a repulsive interaction is predicted between oppositely charged and hydrophilic colloids even though both the electrostatic and adsorption forces alone are attractive.

  17. Fish-robot interactions in a free-swimming environment: Effects of speed and configuration of robots on live fish

    NASA Astrophysics Data System (ADS)

    Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio

    2014-03-01

    We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.

  18. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules.

    PubMed

    Trovato, Fabio; Tozzini, Valentina

    2014-12-02

    Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1-10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Attractive Flicker--Guiding Attention in Dynamic Narrative Visualizations.

    PubMed

    Waldner, Manuela; Le Muzic, Mathieu; Bernhard, Matthias; Purgathofer, Werner; Viola, Ivan

    2014-12-01

    Focus+context techniques provide visual guidance in visualizations by giving strong visual prominence to elements of interest while the context is suppressed. However, finding a visual feature to enhance for the focus to pop out from its context in a large dynamic scene, while leading to minimal visual deformation and subjective disturbance, is challenging. This paper proposes Attractive Flicker, a novel technique for visual guidance in dynamic narrative visualizations. We first show that flicker is a strong visual attractor in the entire visual field, without distorting, suppressing, or adding any scene elements. The novel aspect of our Attractive Flicker technique is that it consists of two signal stages: The first "orientation stage" is a short but intensive flicker stimulus to attract the attention to elements of interest. Subsequently, the intensive flicker is reduced to a minimally disturbing luminance oscillation ("engagement stage") as visual support to keep track of the focus elements. To find a good trade-off between attraction effectiveness and subjective annoyance caused by flicker, we conducted two perceptual studies to find suitable signal parameters. We showcase Attractive Flicker with the parameters obtained from the perceptual statistics in a study of molecular interactions. With Attractive Flicker, users were able to easily follow the narrative of the visualization on a large display, while the flickering of focus elements was not disturbing when observing the context.

  20. Long-Range Attractive and Repulsive Interactions between Colloidal Particles at the Air/Water Interface

    NASA Astrophysics Data System (ADS)

    Gómez-Guzmán, Oscar; Ruiz-García, Jaime

    2001-03-01

    In the last few years there has been evidence of long-range attractive interactions between colloidal particles trapped between glass plates, where the plates separation is a few particle’s diameter.[1,2,3] In these experiments it is believe that the glass walls play an important role for the observed attractions. Colloidal particles trapped at the air water interface show the formation of different 2-D colloidal patterns such as foams, clusters and chains,[4,5,6,7] whose formation can be taken as an evidence of long range attractive interaction. Here, we present measurements of the pair interaction potential between 0.5 µm colloidal particles at the air/water interface. The potential shows an attractive secondary minimum at about 1.9s, where s is the particle’s diameter, and a secondary repulsive maximum at longer distances. Surprisingly, the position of the secondary well is at a position similar to those found on the colloidal systems trapped between glass plates. It is possible that in our colloidal system the interface plays the role of a glass plate. However, we do not have a clear explanation on the origin of the attractive component of the interaction potential. 1. G. M. Kepler and S. Fraden, Phys. Rev. Lett. 73, 356 (1994) 2. M. D. Carbajal-Tinoco, F. Castro-Roman and J. L. Arauz-Lara, Phys. Rev. E 53, 3745 (1996) 3. J. C. Croker and D. G. Grier, Phys. Rev. Lett. 77, 1897 (1996) 4. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Physica A 236, 97 (1997) 5. J. Ruiz-Garcia, R. Gámez-Corrales and B. I. Ivlev, Phys. Rev. E 58, 660 (1998) 6. J. Ruiz-Garcia and B. I. Ivlev, Molec. Phys. 95, 371 (1998) 7. S. J. Mejia-Rosales, R. Gamez-Corrales, B. I. Ivlev and J. Ruiz-Garcia, Physica A 276, 30 (2000)

  1. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend

    2010-12-01

    Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  3. Halogen bond: a long overlooked interaction.

    PubMed

    Cavallo, Gabriella; Metrangolo, Pierangelo; Pilati, Tullio; Resnati, Giuseppe; Terraneo, Giancarlo

    2015-01-01

    Because of their high electronegativity, halogen atoms are typically considered, in most of their derivatives, as sites of high electron density and it is commonly accepted that they can form attractive interactions by functioning as the electron donor site (nucleophilic site). This is the case when they work as hydrogen bond acceptor sites. However, the electron density in covalently bound halogens is anisotropically distributed. There is a region of higher electron density, accounting for the ability of halogens to function as electron donor sites in attractive interactions, and a region of lower electron density where the electrostatic potential is frequently positive (mainly in the heavier halogens). This latter region is responsible for the ability of halogen atoms to function as the electron-acceptor site (electrophilic site) in attractive interactions formed with a variety of lone pair-possessing atoms, anions, and π-systems. This ability is quite general and is shown by a wide diversity of halogenated compounds (e.g., organohalogen derivatives and dihalogens). According to the definition proposed by the International Union of Pure and Applied Chemistry, any attractive interactions wherein the halogen atom is the electrophile is named halogen bond (XB). In this chapter, it is discussed how the practice and the concept of XB developed and a brief history of the interaction is presented. Papers (either from the primary or secondary literature) which have reported major experimental findings in the field or which have given important theoretical contributions for the development of the concept are recollected in order to trace how a unifying and comprehensive categorization emerged encompassing all interactions wherein halogen atoms function as the electrophilic site.

  4. Rational modification of protein stability by targeting surface sites leads to complicated results

    PubMed Central

    Xiao, Shifeng; Patsalo, Vadim; Shan, Bing; Bi, Yuan; Green, David F.; Raleigh, Daniel P.

    2013-01-01

    The rational modification of protein stability is an important goal of protein design. Protein surface electrostatic interactions are not evolutionarily optimized for stability and are an attractive target for the rational redesign of proteins. We show that surface charge mutants can exert stabilizing effects in distinct and unanticipated ways, including ones that are not predicted by existing methods, even when only solvent-exposed sites are targeted. Individual mutation of three solvent-exposed lysines in the villin headpiece subdomain significantly stabilizes the protein, but the mechanism of stabilization is very different in each case. One mutation destabilizes native-state electrostatic interactions but has a larger destabilizing effect on the denatured state, a second removes the desolvation penalty paid by the charged residue, whereas the third introduces unanticipated native-state interactions but does not alter electrostatics. Our results show that even seemingly intuitive mutations can exert their effects through unforeseen and complex interactions. PMID:23798426

  5. Elastic Cheerios effect: Self-assembly of cylinders on a soft solid

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Aditi; Ryan, Louis; Chaudhury, Manoj K.; Mahadevan, L.

    2015-12-01

    A rigid cylinder placed on a soft gel deforms its surface. When multiple cylinders are placed on the surface, they interact with each other via the topography of the deformed gel which serves as an energy landscape; as they move, the landscape changes which in turn changes their interaction. We use a combination of experiments, simple scaling estimates and numerical simulations to study the self-assembly of cylinders in this elastic analog of the "Cheerios Effect", which describes capillary interactions on a fluid interface. Our results show that the effective two-body interaction can be well described by an exponential attraction potential as a result of which the dynamics also show an exponential behavior with respect to the separation distance. When many cylinders are placed on the gel, the cylinders cluster together if they are not too far apart; otherwise their motion gets elastically arrested.

  6. Schizophrenia, vitamin D, and brain development.

    PubMed

    Mackay-Sim, Alan; Féron, François; Eyles, Darryl; Burne, Thomas; McGrath, John

    2004-01-01

    Schizophrenia research is invigorated at present by the recent discovery of several plausible candidate susceptibility genes identified from genetic linkage and gene expression studies of brains from persons with schizophrenia. It is a current challenge to reconcile this gathering evidence for specific candidate susceptibility genes with the "neurodevelopmental hypothesis," which posits that schizophrenia arises from gene-environment interactions that disrupt brain development. We make the case here that schizophrenia may result not from numerous genes of small effect, but a few genes of transcriptional regulation acting during brain development. In particular we propose that low vitamin D during brain development interacts with susceptibility genes to alter the trajectory of brain development, probably by epigenetic regulation that alters gene expression throughout adult life. Vitamin D is an attractive "environmental" candidate because it appears to explain several key epidemiological features of schizophrenia. Vitamin D is an attractive "genetic" candidate because its nuclear hormone receptor regulates gene expression and nervous system development. The polygenic quality of schizophrenia, with linkage to many genes of small effect, maybe brought together via this "vitamin D hypothesis." We also discuss the possibility of a broader set of environmental and genetic factors interacting via the nuclear hormone receptors to affect the development of the brain leading to schizophrenia.

  7. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2015-09-01

    We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.

  8. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K.; Kohlbrecher, J.

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accountingmore » for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.« less

  9. Promoting Student-Teacher Interactions: Exploring a Peer Coaching Model for Teachers in a Preschool Setting

    ERIC Educational Resources Information Center

    Johnson, Stacy R.; Finlon, Kristy J.; Kobak, Roger; Izard, Carroll E.

    2017-01-01

    Peer coaching provides an attractive alternative to traditional professional development for promoting classroom quality in a sustainable, cost-effective manner by creating a collaborative teaching community. This exploratory study describes the development and evaluation of the Colleague Observation And CoacHing (COACH) program, a peer coaching…

  10. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts orga...

  11. Quantum state atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passian, Ali; Siopsis, George

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

  12. Quantum state atomic force microscopy

    DOE PAGES

    Passian, Ali; Siopsis, George

    2017-04-10

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

  13. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  14. Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions

    NASA Astrophysics Data System (ADS)

    Yunker, Peter J.; Zhang, Zexin; Gratale, Matthew; Chen, Ke; Yodh, A. G.

    2013-03-01

    We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding "shadow" glassy clusters, with the same geometric configuration and interactions as the "source" cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.

  15. Temporal scaling in information propagation.

    PubMed

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-18

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  16. Temporal scaling in information propagation

    NASA Astrophysics Data System (ADS)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  17. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    PubMed

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  18. Factors Influencing Labeling Nonconsensual Sex as Sexual Assault.

    PubMed

    Yndo, Monica C; Zawacki, Tina

    2017-03-01

    The current study examined the effects of physical attractiveness and sexual interest cues on men's sexual perceptions of women and whether increases in sexual perceptions of a woman would lead to decreases in labeling of subsequent nonconsensual sex as sexual assault. Two hundred thirty-three male college students ( M age = 19.17, SD = 1.22) read a vignette describing a hypothetical social interaction between a man and a woman; within the vignette, the female character's physical attractiveness (attractive vs. less attractive) and the degree to which the female character behaved interested in the male character (uninterested vs. ambiguous) were manipulated. The vignette ends with the male character physically forcing sexual intercourse with the female character. After reading the vignette, participants' labeling of the nonconsensual sex as sexual assault was addressed. Participants' perceptions of the female character's sexual interest in the male character prior to the nonconsensual sex was assessed as a dependent variable during stopping points in the vignette, prior to sexual assault. Both physical attractiveness and interest cues had a significant positive influence on men's perception of the female character as sexually interested. In addition, perceptions of sexual interest had a direct negative effect on sexual assault labeling. These results indicate that increases in physical attractiveness and interest cues increase perceptions of sexual interest, in turn decreasing the labeling of nonconsensual sex as sexual assault. This experimental research contributes to the literature on misperception of sexual interest and sexual assault labeling. These findings provide implications for intervention programs and for forensic issues related to sexual assault.

  19. How pediatric surgeons use social media to attract new patients.

    PubMed

    Romano, Ron; Baum, Neil

    2014-08-01

    Social media has changed the landscape of online interaction for all doctors including pediatric surgeons. Of course the public including our patients and potential new patients having immediate access to these sites through mobile devices and iPads has contributed immensely to this phenomenon. Nonetheless, it seems that we are all rushing to get in front of our target audience and to engage in a relationship with them in a cost-effective fashion. This article will discuss the role of the Internet and media and how you can use this technology to attract new pediatric patients to your practice. Georg Thieme Verlag KG Stuttgart · New York.

  20. Mapping repulsive to attractive interaction in driven-dissipative quantum systems

    NASA Astrophysics Data System (ADS)

    Li, Andy C. Y.; Koch, Jens

    2017-11-01

    Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.

  1. Independent and interactive effect of plant- and mammalian- based odors on the response of the malaria vector, Anopheles gambiae.

    PubMed

    Jacob, Juliah W; Tchouassi, David P; Lagat, Zipporah O; Mathenge, Evan M; Mweresa, Collins K; Torto, Baldwyn

    2018-04-27

    Several studies have shown that odors of plant and animal origin can be developed into lures for use in surveillance of mosquito vectors of infectious diseases. However, the effect of combining plant- and mammalian-derived odors into an improved lure for monitoring both nectar- and blood-seeking mosquito populations in traps is yet to be explored. Here we used both laboratory dual choice olfactometer and field assays to investigate responses of the malaria vector, Anopheles gambiae, to plant- and mammalian-derived compounds and a combined blend derived from these two odor sources. Using subtractive bioassays in dual choice olfactometer we show that a 3-component terpenoid plant-derived blend comprising (E)-linalool oxide, β-pinene, β-ocimene was more attractive to females of An. gambiae than (E)-linalool oxide only (previously found attractive in field trials) and addition of limonene to this blend antagonized its attractiveness. Likewise, a mammalian-derived lure comprising the aldehydes heptanal, octanal, nonanal and decanal, was more preferred than (E)-linalool oxide. Surprisingly, combining the plant-derived 3-component blend with the mammalian derived 4-component blend attracted fewer females of An. gambiae than the individual blends in laboratory assays. However, this pattern was not replicated in field trials, where we observed a dose-dependent effect on trap catches while combining both blends with significantly improved trap catches at higher doses. The observed dose-dependent attractiveness for An. gambiae has practical implication in the design of vector control strategies involving kairomones from plant- and mammalian-based sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    PubMed

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  3. The evolution processes of DNA sequences, languages and carols

    NASA Astrophysics Data System (ADS)

    Hauck, Jürgen; Henkel, Dorothea; Mika, Klaus

    2001-04-01

    The sequences of bases A, T, C and G of about 100 enolase, secA and cytochrome DNA were analyzed for attractive or repulsive interactions by the numbers T 1,T 2,T 3; r of nearest, next-nearest and third neighbor bases of the same kind and the concentration r=other bases/analyzed base. The area of possible T1, T2 values is limited by the linear borders T 2=2T 1-2, T 2=0 or T1=0 for clustering, attractive or repulsive interactions and the border T2=-2 T1+2(2- r) for a variation from repulsive to attractive interactions at r⩽2. Clustering is preferred by most bases in sequences of enolases and secA’ s. Major deviations with repulsive interactions of some bases are observed for archaea bacteria in secA and for highly developed animals and the human species in enolase sequences. The borders of the structure map for enthalpy stabilized structures with maximum interactions are approached in few cases. Most letters of the natural languages and some music notes are at the borders of the structure map.

  4. Exponentially decaying interaction potential of cavity solitons

    NASA Astrophysics Data System (ADS)

    Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco

    2018-03-01

    We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.

  5. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae)

    USDA-ARS?s Scientific Manuscript database

    Phenylacetaldehyde is a flower volatile and attractant for many nectar-seeking moths. Acetic acid is a microbial fermentation product that is present in insect sweet baits. It is weakly attractive to some moths and other insects, but can be additive or synergistic with other compounds to make more p...

  6. Physical Attractiveness Research. Toward a Developmental Social Psychology of Beauty

    ERIC Educational Resources Information Center

    Adams, G. R.

    1977-01-01

    This paper reviews research on physical attractiveness from a dialectical-interactional perspective and attempts to examine the relationship between outer appearance and inner psychological characteristics from a developmental perspective. (BD)

  7. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders.

    PubMed

    Yuen, Suet Wai; Bonebrake, Timothy C

    2017-01-01

    Artificial night light has the potential to significantly alter visually-dependent species interactions. However, examples of disruptions of species interactions through changes in light remain rare and how artificial night light may alter predator-prey relationships are particularly understudied. In this study, we examined whether artificial night light could impact prey attraction and interception in Nephila pilipes orb weaver spiders, conspicuous predators who make use of yellow color patterns to mimic floral resources and attract prey to their webs. We measured moth prey attraction and interception responses to treatments where we experimentally manipulated the color/contrast of spider individuals in the field (removed yellow markings) and also set up light manipulations. We found that lit webs had lower rates of moth interception than unlit webs. Spider color, however, had no clear impact on moth interception or attraction rates in lit nor unlit webs. The results show that night light can reduce prey interception for spiders. Additionally, this study highlights how environmental and morphological variation can complicate simple predictions of ecological light pollution's disruption of species interactions.

  8. Enhanced Flexibility of the O2 + N2 Interaction and Its Effect on Collisional Vibrational Energy Exchange.

    PubMed

    Garcia, E; Laganà, A; Pirani, F; Bartolomei, M; Cacciatore, M; Kurnosov, A

    2016-07-14

    Prompted by a comparison of measured and computed rate coefficients of Vibration-to-Vibration and Vibration-to-Translation energy transfer in O2 + N2 non-reactive collisions, extended semiclassical calculations of the related cross sections were performed to rationalize the role played by attractive and repulsive components of the interaction on two different potential energy surfaces. By exploiting the distributed concurrent scheme of the Grid Empowered Molecular Simulator we extended the computational work to quasiclassical techniques, investigated in this way more in detail the underlying microscopic mechanisms, singled out the interaction components facilitating the energy transfer, improved the formulation of the potential, and performed additional calculations that confirmed the effectiveness of the improvement introduced.

  9. Cortisol, hedonics, and maternal responsiveness in human mothers.

    PubMed

    Fleming, A S; Steiner, M; Corter, C

    1997-10-01

    New mothers are more attracted to the body odor of newborn infants than are nonmothers. In this study we investigated the relation of postpartum hormones and of prior experience with infants to this enhanced maternal attraction to infant odors. New mothers were asked to complete a hedonics task, using a pleasantness scale to provide an attraction score to different odorants presented on a cotton substrate in a 1-pt Baskin-Robbins container. Mothers were "blind" to the contents of the container. Participants also completed an extensive set of 100-item likert scales concerning their attitudes toward infants, care taking, own maternal adequacy, and other interpersonal relations. Mothers were videotaped interacting with their infants and provided salivary samples prior to the interaction. Salivary samples were assayed by radioimmunoassay (RIA) for salivary concentrations of cortisol, progesterone, and testosterone. Results show that first-time mothers with higher cortisol concentrations were more attracted to their own infant's body odor. Mothers with higher cortisol levels were also better able to recognize their own infants' odors. While cortisol was not related to attitudinal measures of maternal responsiveness, mothers with more prior experience interacting with infants exhibited both more attraction to infant odors and more positive maternal attitudes. Together, prior maternal experience and postpartum cortisol explain a significant proportion of the variance in mothers' attraction to newborn infant odors. These relations are discussed in terms of the variety of "meanings" cortisol could have during the postpartum period. Copyright 1997 Academic Press.

  10. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  11. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Indresh, E-mail: iykumarindresh288@gmail.com; Aswal, V. K.; Kohlbrecher, J.

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. Themore » magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.« less

  12. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  13. Role of Anisotropic Interactions for Proteins and Patchy Nanoparticles

    PubMed Central

    2015-01-01

    Protein–protein interactions are inherently anisotropic to some degree, with orientation-dependent interactions between repulsive and attractive or complementary regions or “patches” on adjacent proteins. In some cases it has been suggested that such patch–patch interactions dominate the thermodynamics of dilute protein solutions, as captured by the osmotic second virial coefficient (B22), but delineating when this will or will not be the case remains an open question. A series of simplified but exactly solvable models are first used to illustrate that a delicate balance exists between the strength of attractive patch–patch interactions and the patch size, and that repulsive patch–patch interactions contribute significantly to B22 for only those conditions where the repulsions are long-ranged. Finally, B22 is reformulated, without approximations, in terms of the density of states for a given interaction energy and particle–particle distance. Doing so illustrates the inherent balance of entropic and energetic contributions to B22. It highlights that simply having strong patch–patch interactions will only cause anisotropic interactions to dominate B22 solution properties if the unavoidable entropic penalties are overcome, which cannot occur if patches are too small. The results also indicate that the temperature dependence of B22 may be a simple experimental means to assess whether a small number of strongly attractive configurations dominate the dilute solution behavior. PMID:25302767

  14. Free cooling phase-diagram of hard-spheres with short- and long-range interactions

    NASA Astrophysics Data System (ADS)

    Gonzalez, S.; Thornton, A. R.; Luding, S.

    2014-10-01

    We study the stability, the clustering and the phase-diagram of free cooling granular gases. The systems consist of mono-disperse particles with additional non-contact (long-range) interactions, and are simulated here by the event-driven molecular dynamics algorithm with discrete (short-range shoulders or wells) potentials (in both 2D and 3D). Astonishingly good agreement is found with a mean field theory, where only the energy dissipation term is modified to account for both repulsive or attractive non-contact interactions. Attractive potentials enhance cooling and structure formation (clustering), whereas repulsive potentials reduce it, as intuition suggests. The system evolution is controlled by a single parameter: the non-contact potential strength scaled by the fluctuation kinetic energy (granular temperature). When this is small, as expected, the classical homogeneous cooling state is found. However, if the effective dissipation is strong enough, structure formation proceeds, before (in the repulsive case) non-contact forces get strong enough to undo the clustering (due to the ongoing dissipation of granular temperature). For both repulsive and attractive potentials, in the homogeneous regime, the cooling shows a universal behaviour when the (inverse) control parameter is used as evolution variable instead of time. The transition to a non-homogeneous regime, as predicted by stability analysis, is affected by both dissipation and potential strength. This can be cast into a phase diagram where the system changes with time, which leaves open many challenges for future research.

  15. Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water

    PubMed Central

    Athawale, Manoj V.; Goel, Gaurav; Ghosh, Tuhin; Truskett, Thomas M.; Garde, Shekhar

    2007-01-01

    We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer–water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:8324–8327] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer–water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor–liquid interface. PMID:17215352

  16. Fidelity study of superconductivity in extended Hubbard models

    NASA Astrophysics Data System (ADS)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  17. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF effects on growth may overlook changes in plant traits that have the potential to influence interactions, and hence yield, on farms. Given the effects of AMF on plant traits documented here, and the great importance of both herbivores and pollinators to wild and cultivated plants, we advocate for comprehensive assessments of mycorrhizal effects in complex community contexts, with the aim of incorporating multispecies interactions both above and below the soil surface.

  18. Inter-DNA Attraction Mediated by Divalent Counterions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.

    2007-07-20

    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg{sup 2+} ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg{sup 2+}] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin.

  19. Use of the Webinar Tool (Elluminate) to Support Training: The Effects of Webinar-Learning Implementation from Student-Trainers' Perspective

    ERIC Educational Resources Information Center

    Wang, Shiang-Kwei; Hsu, Hui-Yin

    2008-01-01

    Recently, webinar (web seminar) tools (e.g., Elluminate, Adobe Acrobat Connect, Live Meeting) have been attracting more and more attention with the advancement of online learning technologies because webinar tools facilitate real-time communication and enrich the interactivity in an online learning environment. Corporations have long adopted…

  20. Changing the Context of Student Engagement: Using Facebook to Increase Community College Student Persistence and Success

    ERIC Educational Resources Information Center

    Fagioli, Loris; Rios-Aguilar, Cecilia; Deil-Amen, Regina

    2015-01-01

    Background: Community college leaders are now turning to social media/social networking sites for new avenues and opportunities to increase students' interaction, engagement, and collaboration with peers, faculty, and staff. Social media may be a particularly attractive option because it can provide a potentially effective and exciting mechanism…

  1. Learning Anatomy via Mobile Augmented Reality: Effects on Achievement and Cognitive Load

    ERIC Educational Resources Information Center

    Küçük, Sevda; Kapakin, Samet; Göktas, Yüksel

    2016-01-01

    Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the…

  2. Effectiveness of Interactive Satellite-Transmitted Instruction: Experimental Evidence from Ghanaian Primary Schools. CEPA Working Paper No. 17-08

    ERIC Educational Resources Information Center

    Johnston, Jamie; Ksoll, Christopher

    2017-01-01

    In lower- and middle-income countries, including Ghana, students in rural areas dramatically underperform their urban peers. Rural schools struggle to attract and retain professionally trained teachers (GES 2012; World Bank 2012). We explore one potential solution to the problem of teacher recruitment: distance instruction. Through a cluster…

  3. Effects of Inbound Marketing Communications on HEIs' Brand Equity: The Mediating Role of the Student's Decision-Making Process. An Exploratory Research

    ERIC Educational Resources Information Center

    Royo-Vela, Marcelo; Hünermund, Ute

    2016-01-01

    A context of increased competition between higher education institutions (HEIs) for attracting potential national and international students has led universities to implement marketing communication strategies. Those strategies which are used to some extent include, among others, interactive inbound marketing. The purpose of the present…

  4. The Influence of Typeface on Students' Perceptions of Online Instructors

    ERIC Educational Resources Information Center

    Louch, Michelle O'Brien; Stork, Elizabeth

    2014-01-01

    At its base, advertising is the process of using visual images and words to attract and convince consumers that a certain product has certain attributes. The same effect exists in electronic communication, strongly so in online courses where most if not all interaction between instructor and student is in writing. Arguably, if consumers make…

  5. Phase separation of comb polymer nanocomposite melts.

    PubMed

    Xu, Qinzhi; Feng, Yancong; Chen, Lan

    2016-02-07

    In this work, the spinodal phase demixing of branched comb polymer nanocomposite (PNC) melts is systematically investigated using the polymer reference interaction site model (PRISM) theory. To verify the reliability of the present method in characterizing the phase behavior of comb PNCs, the intermolecular correlation functions of the system for nonzero particle volume fractions are compared with our molecular dynamics simulation data. After verifying the model and discussing the structure of the comb PNCs in the dilute nanoparticle limit, the interference among the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions between the comb polymer and nanoparticles in spinodal demixing curves is analyzed and discussed in detail. The results predict two kinds of distinct phase separation behaviors. One is called classic fluid phase boundary, which is mediated by the entropic depletion attraction and contact aggregation of nanoparticles at relatively low nanoparticle-monomer attraction strength. The second demixing transition occurs at relatively high attraction strength and involves the formation of an equilibrium physical network phase with local bridging of nanoparticles. The phase boundaries are found to be sensitive to the side chain number, side chain length, nanoparticle-monomer size ratio and attractive interactions. As the side chain length is fixed, the side chain number has a large effect on the phase behavior of comb PNCs; with increasing side chain number, the miscibility window first widens and then shrinks. When the side chain number is lower than a threshold value, the phase boundaries undergo a process from enlarging the miscibility window to narrowing as side chain length increases. Once the side chain number overtakes this threshold value, the phase boundary shifts towards less miscibility. With increasing nanoparticle-monomer size ratio, a crossover of particle size occurs, above which the phase separation is consistent with that of chain PNCs. The miscibility window for this condition gradually narrows while the other parameters of the PNCs system are held constant. These results indicate that the present PRISM theory can give molecular-level details of the underlying mechanisms of the comb PNCs. It is hoped that the results can be used to provide useful guidance for the future design control of novel, thermodynamically stable comb PNCs.

  6. Subclinical Primary Psychopathy, but Not Physical Formidability or Attractiveness, Predicts Conversational Dominance in a Zero-Acquaintance Situation

    PubMed Central

    Manson, Joseph H.; Gervais, Matthew M.; Fessler, Daniel M. T.; Kline, Michelle A.

    2014-01-01

    The determinants of conversational dominance are not well understood. We used videotaped triadic interactions among unacquainted same-sex American college students to test predictions drawn from the theoretical distinction between dominance and prestige as modes of human status competition. Specifically, we investigated the effects of physical formidability, facial attractiveness, social status, and self-reported subclinical psychopathy on quantitative (proportion of words produced), participatory (interruptions produced and sustained), and sequential (topic control) dominance. No measure of physical formidability or attractiveness was associated with any form of conversational dominance, suggesting that the characteristics of our study population or experimental frame may have moderated their role in dominance dynamics. Primary psychopathy was positively associated with quantitative dominance and (marginally) overall triad talkativeness, and negatively associated (in men) with affect word use, whereas secondary psychopathy was unrelated to conversational dominance. The two psychopathy factors had significant opposing effects on quantitative dominance in a multivariate model. These latter findings suggest that glibness in primary psychopathy may function to elicit exploitable information from others in a relationally mobile society. PMID:25426962

  7. Subclinical primary psychopathy, but not physical formidability or attractiveness, predicts conversational dominance in a zero-acquaintance situation.

    PubMed

    Manson, Joseph H; Gervais, Matthew M; Fessler, Daniel M T; Kline, Michelle A

    2014-01-01

    The determinants of conversational dominance are not well understood. We used videotaped triadic interactions among unacquainted same-sex American college students to test predictions drawn from the theoretical distinction between dominance and prestige as modes of human status competition. Specifically, we investigated the effects of physical formidability, facial attractiveness, social status, and self-reported subclinical psychopathy on quantitative (proportion of words produced), participatory (interruptions produced and sustained), and sequential (topic control) dominance. No measure of physical formidability or attractiveness was associated with any form of conversational dominance, suggesting that the characteristics of our study population or experimental frame may have moderated their role in dominance dynamics. Primary psychopathy was positively associated with quantitative dominance and (marginally) overall triad talkativeness, and negatively associated (in men) with affect word use, whereas secondary psychopathy was unrelated to conversational dominance. The two psychopathy factors had significant opposing effects on quantitative dominance in a multivariate model. These latter findings suggest that glibness in primary psychopathy may function to elicit exploitable information from others in a relationally mobile society.

  8. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils.

    PubMed

    Kuijk, Anke; Koppert, Remco; Versluis, Peter; van Dalen, Gerard; Remijn, Caroline; Hazekamp, Johan; Nijsse, Jaap; Velikov, Krassimir P

    2013-11-26

    We prepared dispersions from bacterial cellulose microfibrils (CMF) of a commercial Nata de Coco source. We used an ultra-high-energy mechanical deagglomeration process that is able to disperse the CMFs from the pellicle in which they are organized in an irregular network. Because of the strong attractions between the CMFs, the dispersion remained highly heterogeneous, consisting of fiber bundles, flocs, and voids spanning tens to hundreds of micrometers depending on concentration. The size of these flocs increased with CMF concentration, the size of the bundles stayed constant, and the size of the voids decreased. The observed percolation threshold in MFC dispersions is lower than the theoretical prediction, which is accounted for by the attractive interactions in the system. Because bacterial cellulose is chemically very pure, it can be used to study the interaction of attractive and highly shape-anisotropic, semiflexible fiberlike colloidal particles.

  9. Adopting a dyadic perspective to better understand the association between physical attractiveness and dieting motivations and behaviors.

    PubMed

    Reynolds, Tania; Meltzer, Andrea L

    2017-09-01

    The relationship between women's objective physical attractiveness and their dieting motivations and behaviors may depend upon their social environment-specifically, their romantic partners' attractiveness-such that less attractive women with more attractive partners may be particularly motivated to diet. Theoretically, men's dieting motivations should not depend on their partners' attractiveness. We tested this possibility using a sample of 223 U.S. newlywed spouses. After completing measures assessing dieting motivations, each participant was photographed; we used those photographs to code spouses' objective facial and body attractiveness. Results demonstrated that own and partner attractiveness interacted to predict only women's dieting motivations and behaviors. Less attractive wives married to more (versus less) attractive husbands reported more dieting motivations and behaviors. In contrast, men's dieting motivations were not significantly associated with their own and their partners' attractiveness. These findings highlight the value of adopting a dyadic approach to understanding dieting motivations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The interactive optical fiber fabrics for smart interior environment

    NASA Astrophysics Data System (ADS)

    Bai, Z. Q.; Dong, A. H.; Du, Z. Y.; Tan, J.

    2017-10-01

    Comparing to conventional textiles, interactive photonic textiles can emit light, present different colors, change the surface pattern and can interact with users. They are particularly suitable for decorative purpose. Home furniture is one possible application [1]. With attractive illumination and color effect, the photonic textiles can also be used in hotels, exhibition halls, restaurants and many other circumstances to enhance the interior environment. However, the functionality of the interactive photonic textile for interior purpose is still underdeveloped, since there are still sever challenges about how to improve the usability and functionality of the interactive textile. This project aims to study how to improve the interactive function of photonic textiles, which can enhance the well-being of the end-user. In the end, a color-changeable interactive cushion which can detect the main primary particulate matter (PM) 2.5 was developed.

  11. A neural link between affective understanding and interpersonal attraction

    PubMed Central

    Anders, Silke; de Jong, Roos; Beck, Christian; Haynes, John-Dylan; Ethofer, Thomas

    2016-01-01

    Being able to comprehend another person’s intentions and emotions is essential for successful social interaction. However, it is currently unknown whether the human brain possesses a neural mechanism that attracts people to others whose mental states they can easily understand. Here we show that the degree to which a person feels attracted to another person can change while they observe the other’s affective behavior, and that these changes depend on the observer’s confidence in having correctly understood the other’s affective state. At the neural level, changes in interpersonal attraction were predicted by activity in the reward system of the observer’s brain. Importantly, these effects were specific to individual observer–target pairs and could not be explained by a target’s general attractiveness or expressivity. Furthermore, using multivoxel pattern analysis (MVPA), we found that neural activity in the reward system of the observer’s brain varied as a function of how well the target’s affective behavior matched the observer’s neural representation of the underlying affective state: The greater the match, the larger the brain’s intrinsic reward signal. Taken together, these findings provide evidence that reward-related neural activity during social encounters signals how well an individual’s “neural vocabulary” is suited to infer another person’s affective state, and that this intrinsic reward might be a source of changes in interpersonal attraction. PMID:27044071

  12. Microstructure and rheology of thermoreversible nanoparticle gels.

    PubMed

    Ramakrishnan, S; Zukoski, C F

    2006-08-29

    Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.

  13. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  14. Stability of matter-wave solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Golam; Roy, S. K.; Talukdar, B.

    2010-08-01

    We consider localized states of both single- and two-component Bose-Einstein condensates (BECs) confined in a potential resulting from the superposition of linear and nonlinear optical lattices and make use of Vakhitov-Kolokolov criterion to investigate the effect of nonlinear lattice on the stability of the soliton solutions in the linear optical lattice (LOL). For the single-component case we show that a weak nonlinear lattice has very little effect on the stability of such solitons while sufficiently strong nonlinear optical lattice (NOL) squeezes them to produce narrow bound states. For two-component condensates we find that when the strength of the NOL (γ1) is less than that of the LOL (V0) a relatively weak intra-atomic interaction (IAI) has little effect on the stability of the component solitons. This is true for both attractive and repulsive IAI. A strong attractive IAI, however, squeezes the BEC solitons while a similar repulsive IAI makes the component solitons wider. For γ1 > V0, only a strong attractive IAI squeezes the BEC solitons but the squeezing effect is less prominent than that found for γ1 < V0. We make useful checks on the results of our semianalytical stability analysis by solving the appropriate Gross-Pitaevskii equations numerically.

  15. Misattribution of musical arousal increases sexual attraction towards opposite-sex faces in females.

    PubMed

    Marin, Manuela M; Schober, Raphaela; Gingras, Bruno; Leder, Helmut

    2017-01-01

    Several theories about the origins of music have emphasized its biological and social functions, including in courtship. Music may act as a courtship display due to its capacity to vary in complexity and emotional content. Support for music's reproductive function comes from the recent finding that only women in the fertile phase of the reproductive cycle prefer composers of complex melodies to composers of simple ones as short-term sexual partners, which is also in line with the ovulatory shift hypothesis. However, the precise mechanisms by which music may influence sexual attraction are unknown, specifically how music may interact with visual attractiveness cues and affect perception and behaviour in both genders. Using a crossmodal priming paradigm, we examined whether listening to music influences ratings of facial attractiveness and dating desirability of opposite-sex faces. We also tested whether misattribution of arousal or pleasantness underlies these effects, and explored whether sex differences and menstrual cycle phase may be moderators. Our sample comprised 64 women in the fertile or infertile phase (no hormonal contraception use) and 32 men, carefully matched for mood, relationship status, and musical preferences. Musical primes (25 s) varied in arousal and pleasantness, and targets were photos of faces with neutral expressions (2 s). Group-wise analyses indicated that women, but not men, gave significantly higher ratings of facial attractiveness and dating desirability after having listened to music than in the silent control condition. High-arousing, complex music yielded the largest effects, suggesting that music may affect human courtship behaviour through induced arousal, which calls for further studies on the mechanisms by which music affects sexual attraction in real-life social contexts.

  16. Misattribution of musical arousal increases sexual attraction towards opposite-sex faces in females

    PubMed Central

    Schober, Raphaela; Gingras, Bruno; Leder, Helmut

    2017-01-01

    Several theories about the origins of music have emphasized its biological and social functions, including in courtship. Music may act as a courtship display due to its capacity to vary in complexity and emotional content. Support for music’s reproductive function comes from the recent finding that only women in the fertile phase of the reproductive cycle prefer composers of complex melodies to composers of simple ones as short-term sexual partners, which is also in line with the ovulatory shift hypothesis. However, the precise mechanisms by which music may influence sexual attraction are unknown, specifically how music may interact with visual attractiveness cues and affect perception and behaviour in both genders. Using a crossmodal priming paradigm, we examined whether listening to music influences ratings of facial attractiveness and dating desirability of opposite-sex faces. We also tested whether misattribution of arousal or pleasantness underlies these effects, and explored whether sex differences and menstrual cycle phase may be moderators. Our sample comprised 64 women in the fertile or infertile phase (no hormonal contraception use) and 32 men, carefully matched for mood, relationship status, and musical preferences. Musical primes (25 s) varied in arousal and pleasantness, and targets were photos of faces with neutral expressions (2 s). Group-wise analyses indicated that women, but not men, gave significantly higher ratings of facial attractiveness and dating desirability after having listened to music than in the silent control condition. High-arousing, complex music yielded the largest effects, suggesting that music may affect human courtship behaviour through induced arousal, which calls for further studies on the mechanisms by which music affects sexual attraction in real-life social contexts. PMID:28892486

  17. Effective interactions between inclusions in an active bath

    NASA Astrophysics Data System (ADS)

    Zaeifi Yamchi, Mahdi; Naji, Ali

    2017-11-01

    We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or "rings") of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive "shoulders," whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions and partial depletion from relatively thick, circular zones further away from the inclusions. In this case, the effective, predominantly repulsive interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.

  18. Dilatant effect enhancers for silica dispersions in poly(propylene glycols).

    PubMed

    Orawiec, Marcin; Kaczorowski, Marcin; Rokicki, Gabriel

    2018-05-29

    Shear thickening fluids have found many applications in energy damping materials such as sports guards and liquid body armors. Therefore, an additive which could tailor the dilatant properties of such fluids without significantly affecting other properties, especially zero shear viscosity, could significantly increase the versatility of protective materials based on shear thickening fluids. In this paper, poly(propylene glycols) (PPGs) diacetates are investigated as dilatant effect enhancers for nano-silica dispersions in poly(propylene glycols). The influence of the modifiers on rheological properties of the dispersion is studied and discussed. Additionally, FTIR and rheological properties measurements are conducted in order to determine relative interactions strength between hydroxyl groups of PPGs and silica and carbonyl groups of PPG diacetates. Our findings suggest that the relative attractive interaction strength in studied systems can be arranged in the following order: COCO < COOH < OHOH. Therefore, the addition of PPG diacetate hinders the attractive interactions between liquid and solid. We report that the addition of diacetates can lead both to enhancement and deterioration of dilatant effect depending on the concentration of the modifier and its chain length. Based on conducted measurements and literature data, mechanism explaining that phenomenon is suggested. As a result, we propose an easy to make and cheap dilatant effect enhancer for widely used shear thickening fluids which, when used in small amounts (1-2.5%), raises the viscosity jump drastically. Additionally, the presence of the modifier does not significantly affect the zero shear viscosity of the shear thickening fluid. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Fluoropolymer Dynamics: Effects of Perfluoromethyl Branches

    NASA Astrophysics Data System (ADS)

    Eby, R. K.; Holt, D. B.; Farmer, B. L.; Adams, D. D.

    1997-03-01

    Previous simulations of polytetrafluoroethylene (PTFE) in the solid state showed that the interaction and movement of helix reversals plays an important role in the dynamic behavior of this important polymer. Copolymers of TFE and hexafluoropropylene (HFP), which can be viewed as PTFE with perfluoromethyl (PFM) group branch defects, is also widely used. Molecular mechanics and dynamics calculations have been performed with PTFE chain clusters containing PFM branches to investigate the effect of these defects on the local crystalline environment (and vice versa) and on the motions and interactions of helix reversals. Initial results indicate that helix reversals are attracted to sites of PFM branches in a chain. Such an interaction will impede the motions of helix reversals and have an impact on macroscopic mechanical properties such as resistance to plastic deformation under shear.

  20. Molecular dynamics simulation study of the structure of poly(ethylene oxide) brushes on nonpolar surfaces in aqueous solution.

    PubMed

    Bedrov, Dmitry; Smith, Grant D

    2006-07-04

    The structure of poly(ethylene oxide) (PEO, M(w) = 526) brushes of various grafting density (sigma) on nonpolar graphite and hydrophobic (oily) surfaces in aqueous solution has been studied using atomistic molecular dynamics simulations. Additionally, the influence of PEO-surface interactions on the brush structure was investigated by systematically reducing the strength of the (dispersion) attraction between PEO and the surfaces. PEO chains were found to adsorb strongly to the graphite surface due primarily to the relative strength of dispersion interactions between PEO and the atomically dense graphite compared to those between water and graphite. For the oily surface, PEO-surface and water-surface dispersion interactions are much weaker, greatly reducing the energetic driving force for PEO adsorption. This reduction is mediated to some extent by a hydrophobic driving force for PEO adsorption on the oily surface. Reduction in the strength of PEO-surface attraction results in reduced adsorption of PEO for both surfaces, with the effect being much greater for the graphite surface where the strong PEO-surface dispersion interactions dominate. At high grafting density (sigma approximately 1/R(g)(2)), the PEO density profiles exhibited classical brush behavior and were largely independent of the strength of the PEO-surface interaction. With decreasing grafting density (sigma < 1/R(g)(2)), coverage of the surface by PEO requires an increasingly large fraction of PEO segments resulting in a strong dependence of the PEO density profile on the nature of the PEO-surface interaction.

  1. Statistical Analyses of Hydrophobic Interactions: A Mini-Review

    DOE PAGES

    Pratt, Lawrence R.; Chaudhari, Mangesh I.; Rempe, Susan B.

    2016-07-14

    Here this review focuses on the striking recent progress in solving for hydrophobic interactions between small inert molecules. We discuss several new understandings. First, the inverse temperature phenomenology of hydrophobic interactions, i.e., strengthening of hydrophobic bonds with increasing temperature, is decisively exhibited by hydrophobic interactions between atomic-scale hard sphere solutes in water. Second, inclusion of attractive interactions associated with atomic-size hydrophobic reference cases leads to substantial, nontrivial corrections to reference results for purely repulsive solutes. Hydrophobic bonds are weakened by adding solute dispersion forces to treatment of reference cases. The classic statistical mechanical theory for those corrections is not accuratemore » in this application, but molecular quasi-chemical theory shows promise. Lastly, because of the masking roles of excluded volume and attractive interactions, comparisons that do not discriminate the different possibilities face an interpretive danger.« less

  2. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    PubMed Central

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526

  3. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  4. In vivo social comparison to a thin-ideal peer promotes body dissatisfaction: a randomized experiment.

    PubMed

    Krones, Pamela G; Stice, Eric; Batres, Carla; Orjada, Kendra

    2005-09-01

    Although social comparison with media-portrayed thin-ideal images has been found to increase body dissatisfaction and negative affect, research has not yet tested whether social comparison with attractive peers in the real world produces similar effects. We randomly assigned 119 young women to interact either with a confederate who conformed to the thin ideal or one who conformed to the average body dimensions of women, within the context of an ostensive dating study. Exposure to the thin-ideal confederate resulted in an increase in body dissatisfaction but not negative affect or heart rate. Initial thin-ideal internalization, perceived sociocultural pressure, self-esteem, and observer-rated attractiveness did not moderate these effects. Results suggest that social comparative pressure to be thin fosters body dissatisfaction but may not promote negative affect. 2005 by Wiley Periodicals, Inc.

  5. Van der Waals interaction in uniaxial anisotropic media.

    PubMed

    Kornilovitch, Pavel E

    2013-01-23

    Van der Waals interactions between flat surfaces in uniaxial anisotropic media are investigated in the nonretarded limit. The main focus is the effect of nonzero tilt between the optical axis and the surface normal on the strength of the van der Waals attraction. General expressions for the van der Waals free energy are derived using the surface mode method and the transfer-matrix formalism. To facilitate numerical calculations a temperature-dependent three-band parameterization of the dielectric tensor of the liquid crystal 5CB is developed. A solid slab immersed in a liquid crystal experiences a van der Waals torque that aligns the surface normal relative to the optical axis of the medium. The preferred orientation is different for different materials. Two solid slabs in close proximity experience a van der Waals attraction that is strongest for homeotropic alignment of the intervening liquid crystal for all the materials studied. The results have implications for the stability of plate-like colloids in liquid crystal hosts.

  6. Demons and superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ihm, J.; Cohen, M.L.; Tuan, S.F.

    1981-04-01

    Model calculations are used to explore the role of demons (acoustic plasmons involving light and heavy mass carriers) in superconductivity. Heavy d electrons and light s and p electrons in a transition metal are used for discussion, but the calculation presented is more general, and the results can be applied to other systems. The analysis is based on the dielectric-function approach and the Bardeen-Cooper-Schrieffer theory. The dielectric function includes intraband and interband s-d scattering, and a tight-binding model is used to examine the role of s-d hybridization. The demon contribution generally reduces the Coulomb interaction between the electrons. Under suitablemore » conditions, the model calculations indicate that the electron-electron interaction via demons can be attractive, but the results also suggest that this mechanism is probably not dominant in transition metals and transition-metal compounds. An attractive interband contribution is found, and it is proposed that this effect may lead to pairing in suitable systems.« less

  7. Exploring the Effect of Surface Functionality on the Self-Assembly of Polyoxopalladate Macroions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haso, Fadi; Yang, Peng; Gao, Yunyi

    2015-05-12

    The solution behavior of the two polyoxo-13-palladates(II) ([Pd(II) 13 As(V) 8 O34 (OH)6 ](8-) and [Pd(II) 13 (As(V) Ph)8 O32 ](6-) ) was studied in detail. We discovered that the countercation-mediated attraction is the driving force for their self-assembly into larger architectures. However, the presence of phenyl groups in the periphery of [Pd(II) 13 (As(V) Ph)8 O32 ](6-) results in an enhanced attraction among these polyanions through hydrophobic interactions, which leads to completely different trends of assembly size for these two very similar clusters when decreasing solvent polarity. An increase of assembly size with increasing solvent polarity was observed formore » [Pd(II) 13 (As(V) Ph)8 O32 ](6-) , whereas for [Pd(II) 13 As (V) 8 O34 (OH)6 ](8-) it was the opposite, due to the absence of hydrophobic interactions.« less

  8. Facial attractiveness is related to women's cortisol and body fat, but not with immune responsiveness.

    PubMed

    Rantala, Markus J; Coetzee, Vinet; Moore, Fhionna R; Skrinda, Ilona; Kecko, Sanita; Krama, Tatjana; Kivleniece, Inese; Krams, Indrikis

    2013-08-23

    Recent studies suggest that facial attractiveness indicates immune responsiveness in men and that this relationship is moderated by stress hormones which interact with testosterone levels. However, studies testing whether facial attractiveness in women signals their immune responsiveness are lacking. Here, we photographed young Latvian women, vaccinated them against hepatitis B and measured the amount of specific antibodies produced, cortisol levels and percentage body fat. Latvian men rated the attractiveness of the women's faces. Interestingly, in women, immune responsiveness (amount of antibodies produced) did not predict facial attractiveness. Instead, plasma cortisol level was negatively associated with attractiveness, indicating that stressed women look less attractive. Fat percentage was curvilinearly associated with facial attractiveness, indicating that being too thin or too fat reduces attractiveness. Our study suggests that in contrast to men, facial attractiveness in women does not indicate immune responsiveness against hepatitis B, but is associated with two other aspects of long-term health and fertility: circulating levels of the stress hormone cortisol and percentage body fat.

  9. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  10. Membrane interactions of ionic liquids and imidazolium salts.

    PubMed

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  11. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Lawrence R.; Chaudhari, Mangesh I.; Rempe, Susan B.

    Here this review focuses on the striking recent progress in solving for hydrophobic interactions between small inert molecules. We discuss several new understandings. First, the inverse temperature phenomenology of hydrophobic interactions, i.e., strengthening of hydrophobic bonds with increasing temperature, is decisively exhibited by hydrophobic interactions between atomic-scale hard sphere solutes in water. Second, inclusion of attractive interactions associated with atomic-size hydrophobic reference cases leads to substantial, nontrivial corrections to reference results for purely repulsive solutes. Hydrophobic bonds are weakened by adding solute dispersion forces to treatment of reference cases. The classic statistical mechanical theory for those corrections is not accuratemore » in this application, but molecular quasi-chemical theory shows promise. Lastly, because of the masking roles of excluded volume and attractive interactions, comparisons that do not discriminate the different possibilities face an interpretive danger.« less

  13. Symmetry-adapted perturbation theory interaction energy decomposition for some noble gas complexes

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Sadlej, Joanna

    2008-06-01

    This Letter contains a study of the interaction energy in HArF⋯N 2 and HArF⋯P 2 complexes. Symmetry-adapted perturbation theory (SAPT) has been applied to analyze the electrostatic, induction, dispersion and exchange contributions to the total interaction energy. The interaction energy has also been obtained by supermolecular method at the MP2, MP4, CCSD, CCSD(T) levels. The interaction energy for the studied complexes results from a partial cancelation of large attractive electrostatic, induction, dispersion terms by a strong repulsive exchange contribution. The induction and dispersion effects proved to be crucial in establishing the preference for the colinear HArF⋯N 2 and HArF⋯P 2 structures and shift direction of νHAr stretching vibrations.

  14. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: insight from first-principles calculations

    PubMed Central

    Li, Yang; Chen, Yue; Liu, Jian-Rong; Hu, Qing-Miao; Yang, Rui

    2016-01-01

    Creep resistance is one of the key properties of titanium (Ti) alloys for high temperature applications such as in aero engines and gas turbines. It has been widely recognized that moderate addition of Si, especially when added together with some other elements (X), e.g., Mo, significantly improves the creep resistance of Ti alloys. To provide some fundamental understandings on such a cooperative effect, the interactions between Si and X in both hexagonal close-packed α and body-centered cubic β phases are systematically investigated by using a first-principles method. We show that the transition metal (TM) atoms with the number of d electrons (Nd) from 3 to 7 are attractive to Si in α phase whereas those with Nd > 8 and simple metal (SM) alloying atoms are repulsive to Si. All the alloying atoms repel Si in the β phase except for the ones with fewer d electrons than Ti. The electronic structure origin underlying the Si-X interaction is discussed based on the calculated electronic density of states and Bader charge. Our calculations suggest that the beneficial X-Si cooperative effect on the creep resistance is attributable to the strong X-Si attraction. PMID:27466045

  15. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobedo, Fernando A., E-mail: fe13@cornell.edu

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward themore » target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.« less

  16. Lipid membrane-mediated attraction between curvature inducing objects

    NASA Astrophysics Data System (ADS)

    van der Wel, Casper; Vahid, Afshin; Šarić, Anđela; Idema, Timon; Heinrich, Doris; Kraft, Daniela J.

    2016-09-01

    The interplay of membrane proteins is vital for many biological processes, such as cellular transport, cell division, and signal transduction between nerve cells. Theoretical considerations have led to the idea that the membrane itself mediates protein self-organization in these processes through minimization of membrane curvature energy. Here, we present a combined experimental and numerical study in which we quantify these interactions directly for the first time. In our experimental model system we control the deformation of a lipid membrane by adhering colloidal particles. Using confocal microscopy, we establish that these membrane deformations cause an attractive interaction force leading to reversible binding. The attraction extends over 2.5 times the particle diameter and has a strength of three times the thermal energy (-3.3 kBT). Coarse-grained Monte-Carlo simulations of the system are in excellent agreement with the experimental results and prove that the measured interaction is independent of length scale. Our combined experimental and numerical results reveal membrane curvature as a common physical origin for interactions between any membrane-deforming objects, from nanometre-sized proteins to micrometre-sized particles.

  17. Neural correlates for perception of companion animal photographs.

    PubMed

    Hayama, Sara; Chang, Linda; Gumus, Kazim; King, George R; Ernst, Thomas

    2016-05-01

    Anthrozoological neuroscience, which we propose as the use of neuroscience techniques to study human-animal interaction, may help to elucidate mechanisms underlying the associated psychological, physiological, and other purported health effects. This preliminary study investigates the neural response to animal photographs in pet owners and non-pet owners, and both attraction and attachment to companion animals as modulators of human perception of companion animal photographs. Thirty male participants, 15 "Pet Owners" (PO) and 15 "Non-Pet Owners" (NPO), viewed photographs of companion animals during functional MRI (fMRI) scans at 3 T and provided ratings of attraction to the animal species represented in the photographs. Fourteen subjects additionally submitted and viewed personal pet photographs during fMRI scans, and completed the Lexington Attachment to Pets Scale (LAPS). PO exhibited greater activation than NPO during the viewing of animal photographs in areas of the insula, and frontal and occipital cortices. Moreover, ratings of attraction to animals correlated positively with neural activation in the cingulate gyrus, precentral gyrus, inferior parietal lobule, and superior temporal gyrus during the viewing of representative photographs. For subjects with household pets, scores on the LAPS correlated positively with neural activation during the viewing of owned pet photographs in the precuneus, cuneus, and superior parietal lobule. Our preliminary findings suggest that human perception of companion animals involve the visual attention network, which may be modulated at the neural level by subjective experiences of attraction or attachment to animals. Our understanding of human-animal interactions through anthrozoological neuroscience may better direct therapeutic applications, such as animal-assisted therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Physical Appearance Cues and Interpersonal Attraction in Children

    ERIC Educational Resources Information Center

    Kleck, Robert E.; And Others

    1974-01-01

    Two studies are reported which demonstrate a positive relationship between sociometric status (after two weeks of intense social interaction) and social acceptance judged from photographs by an independent group of peers. Acceptance was found to be related to physical attractiveness. (ST)

  19. Attractive faces temporally modulate visual attention

    PubMed Central

    Nakamura, Koyo; Kawabata, Hideaki

    2014-01-01

    Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994

  20. Symmetry-enforced stability of interacting Weyl and Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Carlström, Johan; Bergholtz, Emil J.

    2018-04-01

    The nodal and effectively relativistic dispersion featuring in a range of novel materials including two-dimensional graphene and three-dimensional Dirac and Weyl semimetals has attracted enormous interest during the past decade. Here, by studying the structure and symmetry of the diagrammatic expansion, we show that these nodal touching points are in fact perturbatively stable to all orders with respect to generic two-body interactions. For effective low-energy theories relevant for single and multilayer graphene, type-I and type-II Weyl and Dirac semimetals, as well as Weyl points with higher topological charge, this stability is shown to be a direct consequence of a spatial symmetry that anticommutes with the effective Hamiltonian while leaving the interaction invariant. A more refined argument is applied to the honeycomb lattice model of graphene showing that its Dirac points are also perturbatively stable to all orders. We also give examples of nodal Hamiltonians that acquire a gap from interactions as a consequence of symmetries different from those of Weyl and Dirac materials.

  1. Compressible or incompressible blend of interacting monodisperse linear polymers near a surface.

    PubMed

    Batman, Richard; Gujrati, P D

    2007-08-28

    We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse linear polymers of two species, A and B, with a third monomeric species C, which may be taken to represent free volume. The mixture is confined between two hard, parallel plates of variable separation whose interactions with A and C may be attractive, repulsive, or neutral, and may be different from each other. The interactions with A and C are all that are required to completely specify the effect of each surface on all three components. We numerically study various density profiles as we move away from the surface, by using the recursive method of Gujrati and Chhajer [J. Chem. Phys. 106, 5599 (1997)] that has already been previously applied to study polydisperse solutions and blends next to surfaces. The resulting density profiles show the oscillations that are seen in Monte Carlo simulations and the enrichment of the smaller species at a neutral surface. The method is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when Monte Carlo simulations are not feasible. The calculations of density profiles usually take less than 20 min on a PC.

  2. Potential Protein Toxicity of Synthetic Pigments: Binding of Poncean S to Human Serum Albumin☆

    PubMed Central

    Gao, Hong-Wen; Xu, Qing; Chen, Ling; Wang, Shi-Long; Wang, Yuan; Wu, Ling-Ling; Yuan, Yuan

    2008-01-01

    Using various methods, e.g., spectrophotometry, circular dichroism, and isothermal titration calorimetry, the interaction of poncean S (PS) with human serum albumin (HSA) was characterized at pH 1.81, 3.56, and 7.40 using the spectral correction technique, and Langmuir and Temkin isothermal models. The consistency among results concerning, e.g., binding number, binding energy, and type of binding, showed that ion pair electrostatic attraction fixed the position of PS in HSA and subsequently induced a combination of multiple noncovalent bonds such as H-bonds, hydrophobic interactions, and van der Waals forces. Ion pair attraction and H-bonds produced a stable PS-HSA complex and led to a marked change in the secondary structure of HSA in acidic media. The PS-HSA binding pattern and the process of change in HSA conformation were also investigated. The potentially toxic effect of PS on the transport function of HSA in a normal physiological environment was analyzed. This work provides a useful experimental strategy for studying the interaction of organic substances with biomacromolecules, helping us to understand the activity or mechanism of toxicity of an organic compound. PMID:17905844

  3. Cooperativity of self-organized Brownian motors pulling on soft cargoes.

    PubMed

    Orlandi, Javier G; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  4. Cooperativity of self-organized Brownian motors pulling on soft cargoes

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Blanch-Mercader, Carles; Brugués, Jan; Casademunt, Jaume

    2010-12-01

    We study the cooperative dynamics of Brownian motors moving along a one-dimensional track when an external load is applied to the leading motor, mimicking molecular motors pulling on membrane-bound cargoes in intracellular traffic. Due to the asymmetric loading, self-organized motor clusters form spontaneously. We model the motors with a two-state noise-driven ratchet formulation and study analytically and numerically the collective velocity-force and efficiency-force curves resulting from mutual interactions, mostly hard-core repulsion and weak (nonbinding) attraction. We analyze different parameter regimes including the limits of weak noise, mean-field behavior, rigid coupling, and large numbers of motors, for the different interactions. We present a general framework to classify and quantify cooperativity. We show that asymmetric loading leads generically to enhanced cooperativity beyond the simple superposition of the effects of individual motors. For weakly attracting interactions, the cooperativity is mostly enhanced, including highly coordinated motion of motors and complex nonmonotonic velocity-force curves, leading to self-regulated clusters. The dynamical scenario is enriched by resonances associated to commensurability of different length scales. Large clusters exhibit synchronized dynamics and bidirectional motion. Biological implications are discussed.

  5. Concentrating on beauty: sexual selection and sociospatial memory.

    PubMed

    Becker, D Vaughn; Kenrick, Douglas T; Guerin, Stephen; Maner, Jon K

    2005-12-01

    In three experiments, location memory for faces was examined using a computer version of the matching game Concentration. Findings suggested that physical attractiveness led to more efficient matching for female faces but not for male faces. Study 3 revealed this interaction despite allowing participants to initially see, attend to, and match the attractive male faces in the first few turns. Analysis of matching errors suggested that, compared to other targets, attractive women were less confusable with one another. Results are discussed in terms of the different functions that attractiveness serves for men and women.

  6. Fidelity study of superconductivity in extended Hubbard models

    DOE PAGES

    Plonka, N.; Jia, C. J.; Wang, Y.; ...

    2015-07-08

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. Finally, we find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they aremore » attractive or repulsive, seemingly due to competing charge fluctuations.« less

  7. Electron tomography provides a direct link between the Payne effect and the inter-particle spacing of rubber composites

    PubMed Central

    Staniewicz, Lech; Vaudey, Thomas; Degrandcourt, Christophe; Couty, Marc; Gaboriaud, Fabien; Midgley, Paul

    2014-01-01

    Rubber-filler composites are a key component in the manufacture of tyres. The filler provides mechanical reinforcement and additional wear resistance to the rubber, but it in turn introduces non-linear mechanical behaviour to the material which most likely arises from interactions between the filler particles, mediated by the rubber matrix. While various studies have been made on the bulk mechanical properties and of the filler network structure (both imaging and by simulations), there presently does not exist any work directly linking filler particle spacing and mechanical properties. Here we show that using STEM tomography, aided by a machine learning image analysis procedure, to measure silica particle spacings provides a direct link between the inter-particle spacing and the reduction in shear modulus as a function of strain (the Payne effect), measured using dynamic mechanical analysis. Simulations of filler network formation using attractive, repulsive and non-interacting potentials were processed using the same method and compared with the experimental data, with the net result being that an attractive inter-particle potential is the most accurate way of modelling styrene-butadiene rubber-silica composite formation. PMID:25487130

  8. Teaching Astronomy to K-4 Children via Interactive Play

    NASA Astrophysics Data System (ADS)

    Strelnitski, V.; Trott, M.; Girvin, M.

    1999-12-01

    The goal of this project, which won a NASA/IDEAS grant, was the creation, performance and dissemination of the pilot of an interactive show that informally introduces elementary school children to the basics of the Solar System. A professional astronomer and primary school teachers of science and drama combined their efforts to achieve the maximum of esthetic attractiveness, scientific truth, and educational effectiveness of the show. We created a new design of a model of the Solar System for children. The model proved to be extremely attractive to the children, both during the shows and in regular family visits to the Observatory. The show has been tested on the children of Nantucket Elementary School and several other schools in MA and NJ. We used a variety of methods to objectively evaluate the effectiveness of this project --- all with highly positive results. Besides bringing our show to different schools, we disseminate this initiative via our home page (www.mmo.org) and conferences. The original children's model of the Solar System, a video clip with one of our performances, and other materials will be presented together with our poster at this meeting. This project was supported by the NASA grant ED-90169.01-97A.

  9. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  10. Bond lifetime and diffusion coefficient in colloids with short-range interactions.

    PubMed

    Ndong Mintsa, E; Germain, Ph; Amokrane, S

    2015-03-01

    We use molecular dynamics simulations to study the influence of short-range structures in the interaction potential between hard-sphere-like colloidal particles. Starting from model potentials and effective potentials in binary mixtures computed from the Ornstein-Zernike equations, we investigate the influence of the range and strength of a possible tail beyond the usual core repulsion or the presence of repulsive barriers. The diffusion coefficient and mean "bond" lifetimes are used as indicators of the effect of this structure on the dynamics. The existence of correlations between the variations of these quantities with the physical parameters is discussed to assess the interpretation of dynamics slowing down in terms of long-lived bonds. We also discuss the question of a universal behaviour determined by the second virial coefficient B ((2)) and the interplay of attraction and repulsion. While the diffusion coefficient follows the B ((2)) law for purely attractive tails, this is no longer true in the presence of repulsive barriers. Furthermore, the bond lifetime shows a dependence on the physical parameters that differs from that of the diffusion coefficient. This raises the question of the precise role of bonds on the dynamics slowing down in colloidal gels.

  11. Effect of matrix chemical heterogeneity on effective filler interactions in model polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Hall, Lisa; Schweizer, Kenneth

    2010-03-01

    The microscopic Polymer Reference Interaction Site Model theory has been applied to spherical and rodlike fillers dissolved in three types of chemically heterogeneous polymer melts: alternating AB copolymer, random AB copolymers, and an equimolar blend of two homopolymers. In each case, one monomer species adsorbs more strongly on the filler mimicking a specific attraction, while all inter-monomer potentials are hard core which precludes macrophase or microphase separation. Qualitative differences in the filler potential-of-mean force are predicted relative to the homopolymer case. The adsorbed bound layer for alternating copolymers exhibits a spatial moduluation or layering effect but is otherwise similar to that of the homopolymer system. Random copolymers and the polymer blend mediate a novel strong, long-range bridging interaction between fillers at moderate to high adsorption strengths. The bridging strength is a non-monotonic function of random copolymer composition, reflecting subtle competing enthalpic and entropic considerations.

  12. Effects of van der Waals forces and salt ions on the growth of water films on ice and the detachment of CO2 bubbles

    NASA Astrophysics Data System (ADS)

    Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.

    2016-02-01

    We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.

  13. Extended Glauber Model of Antiproton-Nucleus Annihilation for All Energies and Mass Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2014-01-01

    Previous analytical formulas in the Glauber model for high-energy nucleus-nucleus collisions developed by Wong are utilized and extended to study Antiproton-nucleus annihilations for both high and low energies, after taking into account the effects of Coulomb and nuclear interactions, and the change of the antiproton momentum inside a nucleus. The extended analytical formulas capture the main features of the experimental antiproton-nucleus annihilation cross sections for all energies and mass numbers. At high antiproton energies, they exhibit the granular property for the lightest nuclei and the black-disk limit for the heavy nuclei. At low antiproton energies, they display the effect ofmore » the antiproton momentum increase due to the nuclear interaction for the light nuclei, and the effect of the magnification due to the attractive Coulomb interaction for the heavy nuclei.« less

  14. Jamming transitions induced by an attraction in pedestrian flow.

    PubMed

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  15. Jamming transitions induced by an attraction in pedestrian flow

    NASA Astrophysics Data System (ADS)

    Kwak, Jaeyoung; Jo, Hang-Hyun; Luttinen, Tapio; Kosonen, Iisakki

    2017-08-01

    We numerically study jamming transitions in pedestrian flow interacting with an attraction, mostly based on the social force model for pedestrians who can join the attraction. We formulate the joining probability as a function of social influence from others, reflecting that individual choice behavior is likely influenced by others. By controlling pedestrian influx and the social influence parameter, we identify various pedestrian flow patterns. For the bidirectional flow scenario, we observe a transition from the free flow phase to the freezing phase, in which oppositely walking pedestrians reach a complete stop and block each other. On the other hand, a different transition behavior appears in the unidirectional flow scenario, i.e., from the free flow phase to the localized jam phase and then to the extended jam phase. It is also observed that the extended jam phase can end up in freezing phenomena with a certain probability when pedestrian flux is high with strong social influence. This study highlights that attractive interactions between pedestrians and an attraction can trigger jamming transitions by increasing the number of conflicts among pedestrians near the attraction. In order to avoid excessive pedestrian jams, we suggest suppressing the number of conflicts under a certain level by moderating pedestrian influx especially when the social influence is strong.

  16. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  17. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  18. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition.

    PubMed

    Frydel, Derek; Levin, Yan

    2018-01-14

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  19. Two-component Gaussian core model: Strong-coupling limit, Bjerrum pairs, and gas-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Frydel, Derek; Levin, Yan

    2018-01-01

    In the present work, we investigate a gas-liquid transition in a two-component Gaussian core model, where particles of the same species repel and those of different species attract. Unlike a similar transition in a one-component system with particles having attractive interactions at long separations and repulsive interactions at short separations, a transition in the two-component system is not driven solely by interactions but by a specific feature of the interactions, the correlations. This leads to extremely low critical temperature, as correlations are dominant in the strong-coupling limit. By carrying out various approximations based on standard liquid-state methods, we show that a gas-liquid transition of the two-component system poses a challenging theoretical problem.

  20. Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions.

    PubMed

    Drut, Joaquín E; Porter, William J

    2015-02-06

    The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.

  1. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  2. Vaginal scent marking: effects on ultrasonic calling and attraction of male golden hamsters.

    PubMed

    Johnston, R E; Kwan, M

    1984-11-01

    Male hamsters were tested for their responses to areas that had been scent marked by intact or vaginectomized females to determine the effects of naturally deposited vaginal secretions on male behavior. In the first experiment males produced more ultrasonic courtship calls when investigating areas marked by intact females than areas scented by vaginectomized females, demonstrating that vaginal marks facilitate such calling. In a wind-tunnel preference test situation in which scent-marked alleys and clean alleys served as sources of odor, males approached the scented alley first if it had been freshly marked by intact females but not if it had been scented by vaginectomized females or other males. Thus, the odors of vaginal marks are sufficient to attract males over short distances. After males entered these alleys they showed a preference for odors of both intact and vaginectomized females over no odors, but still spent significantly more time investigating the odors of intact females than those of vaginectomized females. These experiments indicate that vaginal secretions are one of the primary cues that elicit male courtship calling, and the small quantities of vaginal secretions deposited by females in vaginal marks are sufficient to elicit ultrasonic calling and attract males over short distances. Thus it is likely that vaginal scent marking and ultrasonic calling by females interact to facilitate attraction and location of mates during courtship.

  3. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.

    PubMed

    Illuminati, Fabrizio; Albus, Alexander

    2004-08-27

    We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.

  4. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  5. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

    PubMed

    Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A

    2015-09-14

    The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahalik, J. P.; Sumpter, Bobby G.; Kumar, Rajeev

    In this paper, we use a field theory approach to study the effects of permanent dipoles on interpenetration and free energy changes as a function of distance between two identical planar polymer brushes. Melts (i.e., solvent-free) and solvated brushes made up of polymers grafted on nonadsorbing substrates are studied. In particular, the weak coupling limit of the dipolar interactions is considered, which leads to concentration-dependent pairwise interactions, and the effects of orientational order are neglected. It is predicted that a gradual increase in the dipole moment of the polymer segments can lead to attractive interactions between the brushes at intermediatemore » separation distances. Finally, because classical theory of polymer brushes based on the strong stretching limit (SSL) and the standard self-consistent field theory (SCFT) simulations using the Flory’s χ parameter always predicts repulsive interactions at all separations, our work highlights the importance of dipolar interactions in tailoring and accurately predicting forces between polar polymeric interfaces in contact with each other.« less

  7. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  8. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    PubMed

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  9. Equations of state for real gases on the nuclear scale

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr

    2017-07-01

    The formalism to augment the classical models of the equation of state for real gases with quantum statistical effects is presented. It allows an arbitrary excluded volume procedure to model repulsive interactions, and an arbitrary density-dependent mean field to model attractive interactions. Variations on the excluded volume mechanism include van der Waals (VDW) and Carnahan-Starling models, while the mean fields are based on VDW, Redlich-Kwong-Soave, Peng-Robinson, and Clausius equations of state. The VDW parameters of the nucleon-nucleon interaction are fitted in each model to the properties of the ground state of nuclear matter, and the following range of values is obtained: a =330 -430 MeV fm3 and b =2.5 -4.4 fm3 . In the context of the excluded volume approach, the fits to the nuclear ground state disfavor the values of the effective hard-core radius of a nucleon significantly smaller than 0.5 fm , at least for the nuclear matter region of the phase diagram. Modifications to the standard VDW repulsion and attraction terms allow one to improve significantly the value of the nuclear incompressibility factor K0, bringing it closer to empirical estimates. The generalization to include the baryon-baryon interactions into the hadron resonance gas model is performed. The behavior of the baryon-related lattice QCD observables at zero chemical potential is shown to be strongly correlated to the nuclear matter properties: an improved description of the nuclear incompressibility also yields an improved description of the lattice data at μ =0 .

  10. Adhesive interactions of biologically inspired soft condensed matter

    NASA Astrophysics Data System (ADS)

    Anderson, Travers Heath

    Improving our fundamental understanding of the surface interactions between complex materials is needed to improve existing materials and products as well as develop new ones. The object of this research was to apply the measurements of fundamental surface interactions to real world problems facing chemical engineers and materials scientists. I focus on three systems of biologically inspired soft condensed matter, with an emphasis on the adhesive interactions between them. The formation of phospholipid bilayers of the neutral lipid, dimyristoyl-phosphatidylcholine (DMPC) on silica surfaces from vesicles in aqueous solutions was investigated. The process involves five stages: vesicle adhesion to the substrate surfaces, steric interactions with neighboring vesicles, rupture, spreading via hydrophobic fusion of bilayer edges, and ejection of excess lipid, trapped water and ions into the solution. The forces between DMPC bilayers and silica were measured in the Surface Forces Apparatus (SFA) in phosphate buffered saline. The adhesion energy was found to be much stronger than the expected adhesion predicted by van der Waals interactions, likely due to an attractive electrostatic interaction. The effects of non-adsorbing cationic polyelectrolytes on the interactions between supported cationic surfactant bilayers were studied using the SFA. Addition of polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction and screening of the double-layer repulsion. Calculations are made that allow for the conversion of the adhesion energy measured in the SFA to the overall interaction energy between vesicles in solution, which determines the stability behavior of vesicle dispersions. Mussels use a variety of dihydroxyphenyl-alanine (DOPA) rich proteins specifically tailored to adhering to wet surfaces. The SFA was used to study the role of DOPA on the adhesive properties of these proteins to TiO 2 and mica using both real mussel foot proteins (mfp) and a synthetic polypeptide analogue of mfp-3. Adhesion increased with DOPA concentration, although oxidation of DOPA reduces the adhesive capabilities of the proteins. Comparison of the two shows that DOPA is responsible for at least 80% of the adhesion energy of mfp-3 and can be attributed to DOPA groups favorably oriented within or at the interface of these films.

  11. Controlling reactivity of nanoporous catalyst materials by tuning reaction product-pore interior interactions: Statistical mechanical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Ackerman, David M.; Lin, Victor S.-Y.

    2013-04-02

    Statistical mechanical modeling is performed of a catalytic conversion reaction within a functionalized nanoporous material to assess the effect of varying the reaction product-pore interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed not just due to the shift in reaction equilibrium towards completion but also due to enhanced transport within the pore resulting from reduced loading. The latter effect is strongest for highly restricted transport (single-file diffusion), and applies even for irreversible reactions. The analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reactionmore » and restricted transport.« less

  12. Entropy driven key-lock assembly.

    PubMed

    Odriozola, G; Jiménez-Angeles, F; Lozada-Cassou, M

    2008-09-21

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assemblydisassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  13. Entropy driven key-lock assembly

    NASA Astrophysics Data System (ADS)

    Odriozola, G.; Jiménez-Ángeles, F.; Lozada-Cassou, M.

    2008-09-01

    The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assembly/disassembly processes, which are important steps of the enzyme catalysis and protein mediated transport.

  14. Experimental detection of long-distance interactions between biomolecules through their diffusion behavior: numerical study.

    PubMed

    Nardecchia, Ilaria; Spinelli, Lionel; Preto, Jordane; Gori, Matteo; Floriani, Elena; Jaeger, Sebastien; Ferrier, Pierre; Pettini, Marco

    2014-08-01

    The dynamical properties and diffusive behavior of a collection of mutually interacting particles are numerically investigated for two types of long-range interparticle interactions: Coulomb-electrostatic and dipole-electrodynamic. It is shown that when the particles are uniformly distributed throughout the accessible space, the self-diffusion coefficient is always lowered by the considered interparticle interactions, irrespective of their attractive or repulsive character. This fact is also confirmed by a simple model to compute the correction to the Brownian diffusion coefficient due to the interactions among the particles. These interactions are also responsible for the onset of dynamical chaos and an associated chaotic diffusion which still follows an Einstein-Fick-like law for the mean-square displacement as a function of time. Transitional phenomena are observed for Coulomb-electrostatic (repulsive) and dipole-electrodynamic (attractive) interactions considered both separately and in competition. The outcomes reported in this paper clearly indicate a feasible experimental method to probe the activation of resonant electrodynamic interactions among biomolecules.

  15. Ab initio calculation of atomic interactions on Al(110): implications for epitaxial growth

    NASA Astrophysics Data System (ADS)

    Fichthorn, Kristen; Tiwary, Yogesh

    2007-03-01

    Using first-principles calculations based on density-functional theory, we resolved atomic interactions between adsorbed Al atoms on Al(110). Relevant pair and trio interactions were quantified. We find that pair interactions extend to the third in-channel and second cross-channel neighbor on the anisotropic (110) surface. Beyond these distances, pair interactions are negligible. The nearest-neighbor interaction in the in-channel direction is attractive, but nearest-neighbor cross-channel interaction is repulsive. While nearest-neighbor, cross-channel repulsion does not support the experimental observation of 3D hut formation in Al/Al(110) homoepitaxial growth [1], we find that trio interactions can be significant and attractive and they support cross-channel bonding. The pair and trio interactions have direct and indirect components. We have quantified the electronic and elastic components of the indirect, substrate-mediated interactions. We also probe the influence of these interactions on the energy barriers for adatom hopping. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003).

  16. Association of Face-lift Surgery With Social Perception, Age, Attractiveness, Health, and Success.

    PubMed

    Nellis, Jason C; Ishii, Masaru; Papel, Ira D; Kontis, Theda C; Byrne, Patrick J; Boahene, Kofi D O; Bater, Kristin L; Ishii, Lisa E

    2017-07-01

    Evidence quantifying the influence of face-lift surgery on societal perceptions is lacking. To measure the association of face-lift surgery with observer-graded perceived age, attractiveness, success, and overall health. In a web-based survey, 526 casual observers naive to the purpose of the study viewed independent images of 13 unique female patient faces before or after face-lift surgery from January 1, 2016, through June 30, 2016. The Delphi method was used to select standardized patient images confirming appropriate patient candidacy and overall surgical effect. Observers estimated age and rated the attractiveness, perceived success, and perceived overall health for each patient image. Facial perception questions were answered on a visual analog scale from 0 to 100, with higher scores corresponding to more positive responses. To evaluate the accuracy of observer age estimation, the patients' preoperative estimated mean age was compared with the patients' actual mean age. A multivariate mixed-effects regression model was used to determine the effect of face-lift surgery. To further characterize the effect of face-lift surgery, estimated ordinal-rank change was calculated for each domain. Blinded casual observer ratings of patients estimated age, attractiveness, perceived success, and perceived overall health. A total of 483 observers (mean [SD] age, 29 [8.6] years; 382 women [79.4%]) successfully completed the survey. Comparing patients' preoperative estimated mean (SD) age (59.6 [9.0] years) and patients' actual mean (SD) age (58.4 [6.9] years) revealed no significant difference (t2662 = -0.47; 95% CI, -6.07 to 3.72; P = .64). On multivariate regression, patients after face-lift surgery were rated as significantly younger (coefficient, -3.69; 95% CI -4.15 to -3.23; P < .001), more attractive (coefficient, 8.21; 95% CI, 7.41-9.02; P < .001), more successful (coefficient, 5.82; 95% CI, 5.05 to 6.59; P < .001), and overall healthier (coefficient, 8.72; 95% CI, 7.88-9.56; P < .001). The ordinal rank changes for an average individual were -21 for perceived age, 21 for attractiveness, 16 for success, and 21 for overall health. In this study, observer perceptions of face-lift surgery were associated with views that patients appeared younger, more attractive, healthier, and more successful. These findings highlight observer perceptions of face-lift surgery that could positively influence social interactions. NA.

  17. Impact of ultralight axion self-interactions on the large scale structure of the Universe

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2018-01-01

    Ultralight axions have sparked attention because their tiny mass m ˜10-22 eV , which leads to a kiloparsec-scale de Broglie wavelength comparable to the size of a dwarf galaxy, could alleviate the so-called small-scale crisis of massive cold dark matter (CDM) candidates. However, recent analyses of the Lyman-α forest power spectrum set a tight lower bound on their mass of m ≳10-21 eV which makes them much less relevant from an astrophysical point of view. An important caveat to these numerical studies is that they do not take into account self-interactions among ultralight axions. Furthermore, for axions which acquired a mass through nonperturbative effects, this self-interaction is attractive and, therefore, could counteract the quantum "pressure" induced by the strong delocalization of the particles. In this work, we show that even a tiny attractive interaction among ultralight axions can have a significant impact on the stability of cosmic structures at low redshift. After a brief review of known results about solitons in the absence of gravity, we discuss the stability of filamentary and pancakelike solutions when quantum pressure, attractive interactions and gravity are present. The analysis based on 1 degree of freedom, namely the breathing mode, reveals that pancakes are stable, while filaments are unstable if the mass per unit length is larger than a critical value. However, we show that pancakes are unstable against transverse perturbations. We expect this to be true for halos and filaments as well. Instabilities driven by the breathing mode will not be seen in the low column density Lyman-α forest unless the axion decay constant is extremely small, f ≲1013 GeV . Notwithstanding, axion solitonic cores could leave a detectable signature in the Lyman-α forest if the normalization of the unknown axion core—filament mass relation is ˜100 larger than it is for spherical halos. We hope our work motivates future numerical studies of the impact of axion self-interactions on cosmic structure formation.

  18. Serious games and blended learning; effects on performance and motivation in medical education.

    PubMed

    Dankbaar, Mary

    2017-02-01

    More efficient, flexible training models are needed in medical education. Information technology offers the tools to design and develop effective and more efficient training. The aims of this thesis were: 1) Compare the effectiveness of blended versus classroom training for the acquisition of knowledge; 2) Investigate the effectiveness and critical design features of serious games for performance improvement and motivation. Five empirical studies were conducted to answer the research questions and a descriptive study on an evaluation framework to assess serious games was performed. The results of the research studies indicated that: 1) For knowledge acquisition, blended learning is equally effective and attractive for learners as classroom learning; 2) A serious game with realistic, interactive cases improved complex cognitive skills for residents, with limited self-study time. Although the same game was motivating for inexperienced medical students and stimulated them to study longer, it did not improve their cognitive skills, compared with what they learned from an instructional e‑module. This indicates an 'expertise reversal effect', where a rich learning environment is effective for experts, but may be contra-productive for novices (interaction of prior knowledge and complexity of format). A blended design is equally effective and attractive as classroom training. Blended learning facilitates adaptation to the learners' knowledge level, flexibility in time and scalability of learning. Games may support skills learning, provided task complexity matches the learner's competency level. More design-based research is needed on the effects of task complexity and other design features on performance improvement, for both novices and experts.

  19. Physical Attractiveness, Somatotype, and the Male Personality: A Dynamic Interactional Perspective.

    ERIC Educational Resources Information Center

    Tucker, Larry A.

    1984-01-01

    Determined whether measures of personality, considered compositely and individually, differ significantly among groups of college males (N=285) differentiated according to subjective-perception of attractiveness. Results indicated that self-perceived mesomorphs manifested psychological qualities that were significantly more favorable than those of…

  20. A molecular dynamics study on the role of attractive and repulsive forces in internal energy, internal pressure and structure of dense fluids

    NASA Astrophysics Data System (ADS)

    Goharshadi, Elaheh K.; Morsali, Ali; Mansoori, G. Ali

    2007-01-01

    Isotherms of experimental data of internal pressure of dense fluids versus molar volume, Vm are shown to have each a maximum point at a Vmax below the critical molar volume. In this study, we investigated the role of attractive and repulsive intermolecular energies on this behavior using a molecular dynamics simulation technique. In the simulation, we choose the Lennard-Jones (LJ) intermolecular potential energy function. The LJ potential is known to be an effective potential representing a statistical average of the true pair and many-body interactions in simple molecular systems. The LJ potential function is divided into attractive and repulsive parts. MD calculations have produced internal energy, potential energy, transitional kinetic energy, and radial distribution function (RDF) for argon at 180 K and 450 K using LJ potential, LJ repulsive, and LJ attractive parts. It is shown that the LJ potential function is well capable of predicting the inflection point in the internal energy-molar volume curve as well as maximum point in the internal pressure-molar volume curve. It is also shown that at molar volumes higher than Vmax, the attractive forces have strong influence on determination of internal energy and internal pressure. At volumes lower than Vmax, neither repulsive nor attractive forces are dominating. Also, the coincidence between RDFs resulting from LJ potential and repulsive parts of LJ potential improves as molar volume approaches Vmax from high molar volumes. The coincidence becomes complete at Vmax ⩾ V.

  1. Attraction, merger, reflection, and annihilation in magnetic droplet soliton scattering

    NASA Astrophysics Data System (ADS)

    Maiden, M. D.; Bookman, L. D.; Hoefer, M. A.

    2014-05-01

    The interaction behaviors of solitons are defining characteristics of these nonlinear, coherent structures. Due to recent experimental observations, thin ferromagnetic films offer a promising medium in which to study the scattering properties of two-dimensional magnetic droplet solitons, particle-like, precessing dipoles. Here, a rich set of two-droplet interaction behaviors are classified through micromagnetic simulations. Repulsive and attractive interaction dynamics are generically determined by the relative phase and speeds of the two droplets and can be classified into four types: (1) merger into a breather bound state, (2) counterpropagation trapped along the axis of symmetry, (3) reflection, and (4) violent droplet annihilation into spin wave radiation and a breather. Utilizing a nonlinear method of images, it is demonstrated that these dynamics describe repulsive/attractive scattering of a single droplet off of a magnetic boundary with pinned/free spin boundary conditions, respectively. These results explain the mechanism by which propagating and stationary droplets can be stabilized in a confined ferromagnet.

  2. Theoretical modeling of the effect of Casimir attraction on the electrostatic instability of nanowire-fabricated actuators

    NASA Astrophysics Data System (ADS)

    Mokhtari, J.; Farrokhabadi, A.; Rach, R.; Abadyan, M.

    2015-04-01

    The presence of the quantum vacuum fluctuations, i.e. the Casimir attraction, can strongly affect the performance of ultra-small actuators. The strength of the Casimir force is significantly influenced by the geometries of interacting bodies. Previous research has exclusively studied the impact of the vacuum fluctuations on the instability of nanoactuators with planar geometries. However, no work has yet considered this phenomenon in actuators fabricated from nanowires/nanotubes with cylindrical geometries. In our present work, the influence of the Casimir attraction on the electrostatic stability of nanoactuators fabricated from cylindrical conductive nanowire/nanotube is investigated. The Dirichlet mode is considered and an asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The size-dependent modified couple stress theory is employed to derive the constitutive equation of the actuator. The governing nonlinear equations are solved by two different approaches, i.e. the finite difference method and modified Adomian-Padé method. Various aspects of the problem, i.e. comparison with the van der Waals force regime, the variation of instability parameters, effect of geometry and coupling between the Casimir force and size dependency are discussed. This work is beneficial to determine the impact of Casimir force on nanowire/nanotube-fabricated actuators.

  3. Small traveling clusters in attractive and repulsive Hamiltonian mean-field models.

    PubMed

    Barré, Julien; Yamaguchi, Yoshiyuki Y

    2009-03-01

    Long-lasting small traveling clusters are studied in the Hamiltonian mean-field model by comparing between attractive and repulsive interactions. Nonlinear Landau damping theory predicts that a Gaussian momentum distribution on a spatially homogeneous background permits the existence of traveling clusters in the repulsive case, as in plasma systems, but not in the attractive case. Nevertheless, extending the analysis to a two-parameter family of momentum distributions of Fermi-Dirac type, we theoretically predict the existence of traveling clusters in the attractive case; these findings are confirmed by direct N -body numerical simulations. The parameter region with the traveling clusters is much reduced in the attractive case with respect to the repulsive case.

  4. Electrostatic and hydrodynamics effects in a sedimented magnetorheological suspension.

    PubMed

    Domínguez-García, P; Pastor, J M; Melle, Sonia; Rubio, Miguel A

    2009-08-01

    We present experimental results on the equilibrium microstructure of a sedimented magnetorheological suspension, namely, an aqueous suspension of micron-sized superparamagnetic particles. We develop a study of the electrical interactions on the suspension by processing video-microscopy images of the sedimented particles. We calculate the pair distribution function, g(r), which yields the electrostatic pair potential u(r), showing an anomalous attractive interaction for distances on the order of twice the particle diameter, with characteristic parameters whose values show a dependence with the two-dimensional concentration of particles. The repulsive body of the potential is adjusted to a DLVO expression in order to calculate the Debye screening length and the effective surface charge density. Influence of confinement and variations on the Boltzmann sedimentation profile because of the electrostatic interactions appear to be essential for the interpretation of experimental results.

  5. When do objects become more attractive? The individual and interactive effects of choice and ownership on object evaluation.

    PubMed

    Huang, Yunhui; Wang, Lei; Shi, Junqi

    2009-06-01

    Four studies used the Implicit Association Test to explore the individual and interactive influence of perceived ownership and perceived choice on object evaluation. In Study 1, participants implicitly preferred their possessions over others' when all chosen by a third party (i.e., the ownership effect). In Study 2, participants implicitly preferred self-chosen objects over other-chosen objects when all given to the third party (i.e., the choice effect). In Study 3, the ownership effect disappeared when participants compared their self-chosen possessions with others' possessions that were chosen by the participants. In Study 4, the choice effect remained even when participants compared their self-chosen possessions with their possessions that were chosen by others. These results suggest that while the ownership effect could be attenuated by perceived choice, the choice effect is stable even under the influence of perceived ownership.

  6. The real you? The role of visual cues and comment congruence in perceptions of social attractiveness from facebook profiles.

    PubMed

    Hong, Seoyeon; Tandoc, Edson; Kim, Eunjin Anna; Kim, Bokyung; Wise, Kevin

    2012-07-01

    The purpose of this study was to examine the effects of social cues in self-presentations and the congruence of other-generated comments with the self-presentation in people's evaluations of a profile owner. A 2 (level of social cues: high vs. low) × 2 (congruent vs. incongruent) × 2 (order) × 2 (multiple messages) mixed-subject experiment was conducted with 104 college students. The results showed that a profile owner was perceived less socially attractive when other-generated comments were incongruent with the profile owner's self-presentation. No matter how people package themselves with extravagant self-presentations, it cannot be very successful without validation from others. Interestingly, an interaction effect between congruence and the level of social cues suggested that perceived popularity was low in the incongruent condition regardless of level of social cue. Theoretical and practical implications were also discussed.

  7. On the Klein–Gordon oscillator subject to a Coulomb-type potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br; Furtado, C., E-mail: furtado@fisica.ufpb.br

    2015-04-15

    By introducing the scalar potential as modification in the mass term of the Klein–Gordon equation, the influence of a Coulomb-type potential on the Klein–Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system is shown. - Highlights: • Interaction between the Klein–Gordon oscillator and a modified mass term. • Relativistic bound states for both attractive and repulsive Coulomb-type potentials. • Dependence of the Klein–Gordon oscillator frequency on themore » quantum numbers. • Relativistic analogue of a position-dependent mass system.« less

  8. Ambulatory responses of Laricobius nigrinus (Coleoptera: Derodontidae), a hemlock woolly adelgid predator, to odors from prey, host foliage, and feeding conspecifics.

    Treesearch

    Arielle Arsenault; Albert (Bud) Mayfield; Kimberly Wallin

    2015-01-01

    Behavioral interactions between insects and their environments are often mediated by volatile cues. Plant-produced chemical cues induced by herbivore activity are often more effective at attracting predators than are cues produced by the herbivore alone (Dicke and van Loon 2000). The presence of herbivore-induced plant volatiles makes foraging by predators more...

  9. Gelation in a model 1-component system with adhesive hard-sphere interactions

    NASA Astrophysics Data System (ADS)

    Kim, Jung Min; Eberle, Aaron; Fang, Jun; Wagner, Norman

    2012-02-01

    Colloidal dispersions can undergo a dynamical arrest of the disperse phase leading to a system with solid-like properties when either the volume fraction or the interparticle potential is varied. Systems that contain low to moderate particulate concentrations form gels whereas higher concentrations lead to glassy states in which caging by nearest neighbors can be a significant contributor to the arrested long-time dynamics. Colloid polymer mixtures have been the prevalent model system for studying the effect of attraction, where attractions are entropically driven by depletion effects, in which gelation has been shown to be a result of phase separation [1]. Using the model 1-component octadecyl coated silica nanoparticle system, Eberle et al. [2] found the gel-line to intersect the spinodal to the left of the critical point, and at higher concentrations extended toward the mode coupling theory attractive driven glass line. . We continue this study by varying the particle diameter and find quantitative differences which we explain by gravity. 1. Lu, P.J., et al., Nature, 2008. 453(7194): p. 499-504.2. Eberle, A.P.R., N.J. Wagner, and R. Castaneda-Priego, Physical Review Letters, 2011. 106(10).

  10. Flow-induced attraction of swimming microorganisms by surfaces

    NASA Astrophysics Data System (ADS)

    Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard

    2008-03-01

    In this talk, we present an experimental and theoretical investigation of the accumulation of swimming cells by nearby surfaces. First, we present results of an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates; the distribution for the bacteria concentration is found to peak near the glass plates. We then present a physical model for the observed attraction, based on the hydrodynamics interactions between the swimming cells and the walls. We show that such interactions result in a reorientation of the cells in the direction parallel to the surfaces, and an attraction of these (parallel) cells by the nearest wall. Our results are exploited to obtain an estimate of the propulsive force of smooth-swimming E. coli.

  11. Elucidating the Origin of the Attractive Force among Hydrophilic Macroions

    PubMed Central

    Liu, Zhuonan; Liu, Tianbo; Tsige, Mesfin

    2016-01-01

    Coarse-grained simulation approach is applied to provide a general understanding of various soluble, hydrophilic macroionic solutions, especially the strong attractions among the like-charged soluble macroions and the consequent spontaneous, reversible formation of blackberry structures with tunable sizes. This model captures essential molecular details of the macroions and their interactions in polar solvents. Results using this model provide consistent conclusions to the experimental observations, from the nature of the attractive force among macroions (counterion-mediated attraction), to the blackberry formation mechanism. The conclusions can be applied to various macroionic solutions from inorganic molecular clusters to dendrimers and biomacromolecules. PMID:27215898

  12. Assessment of Perceived Attractiveness, Usability, and Societal Impact of a Multimodal Robotic Assistant for Aging Patients With Memory Impairments.

    PubMed

    Gerłowska, Justyna; Skrobas, Urszula; Grabowska-Aleksandrowicz, Katarzyna; Korchut, Agnieszka; Szklener, Sebastian; Szczęśniak-Stańczyk, Dorota; Tzovaras, Dimitrios; Rejdak, Konrad

    2018-01-01

    The aim of the present study is to present the results of the assessment of clinical application of the robotic assistant for patients suffering from mild cognitive impairments (MCI) and Alzheimer Disease (AD). The human-robot interaction (HRI) evaluation approach taken within the study is a novelty in the field of social robotics. The proposed assessment of the robotic functionalities are based on end-user perception of attractiveness, usability and potential societal impact of the device. The methods of evaluation applied consist of User Experience Questionnaire (UEQ), AttrakDiff and the societal impact inventory tailored for the project purposes. The prototype version of the Robotic Assistant for MCI patients at Home (RAMCIP) was tested in a semi-controlled environment at the Department of Neurology (Lublin, Poland). Eighteen elderly participants, 10 healthy and 8 MCI, performed everyday tasks and functions facilitated by RAMCIP. The tasks consisted of semi-structuralized scenarios like: medication intake, hazardous events prevention, and social interaction. No differences between the groups of subjects were observed in terms of perceived attractiveness, usability nor-societal impact of the device. The robotic assistant societal impact and attractiveness were highly assessed. The usability of the device was reported as neutral due to the short time of interaction.

  13. Assessment of Perceived Attractiveness, Usability, and Societal Impact of a Multimodal Robotic Assistant for Aging Patients With Memory Impairments

    PubMed Central

    Gerłowska, Justyna; Skrobas, Urszula; Grabowska-Aleksandrowicz, Katarzyna; Korchut, Agnieszka; Szklener, Sebastian; Szczęśniak-Stańczyk, Dorota; Tzovaras, Dimitrios; Rejdak, Konrad

    2018-01-01

    The aim of the present study is to present the results of the assessment of clinical application of the robotic assistant for patients suffering from mild cognitive impairments (MCI) and Alzheimer Disease (AD). The human-robot interaction (HRI) evaluation approach taken within the study is a novelty in the field of social robotics. The proposed assessment of the robotic functionalities are based on end-user perception of attractiveness, usability and potential societal impact of the device. The methods of evaluation applied consist of User Experience Questionnaire (UEQ), AttrakDiff and the societal impact inventory tailored for the project purposes. The prototype version of the Robotic Assistant for MCI patients at Home (RAMCIP) was tested in a semi-controlled environment at the Department of Neurology (Lublin, Poland). Eighteen elderly participants, 10 healthy and 8 MCI, performed everyday tasks and functions facilitated by RAMCIP. The tasks consisted of semi-structuralized scenarios like: medication intake, hazardous events prevention, and social interaction. No differences between the groups of subjects were observed in terms of perceived attractiveness, usability nor-societal impact of the device. The robotic assistant societal impact and attractiveness were highly assessed. The usability of the device was reported as neutral due to the short time of interaction.

  14. Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion

    PubMed Central

    Li, Han; Liu, Yashu; Gong, Pinghua; Zhang, Changshui; Ye, Jieping

    2014-01-01

    Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called stable expectation scores. We have used 293 MCI subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using interaction features. PMID:24416143

  15. Sex as a Moderator of the Beauty-Good Relationship.

    ERIC Educational Resources Information Center

    Schneider, Paul A.; And Others

    The relationship between physical attractiveness and social competence is complex. A study was undertaken to assess the relationship between ratings of physical attractiveness and ratings of conversational skill. Sixty male and 60 female undergraduates viewed tapes depicting 18 heterosocial interactions. Subjects were asked to rate physical…

  16. Van der waals forces on thin liquid films in capillary tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herdt, G.C.; Swanson, L.W.

    1993-10-01

    A theory of the van der Waals attraction between a thin liquid films and a capillary tube is presented assuming the presence of a vapor-liquid interface. The model is based on the surface mode analysis method of van Kampen et al. Values for the van der Waals interaction energy per unit area were calculated for liquid films of pentane on a gold substrate assuming a thin liquid film. Results indicate that the effect of capillary curvature on the van der Waals interaction increases as the ratio of the liquid film thickness to the capillary radius is increased. This trend ismore » consistent with predictions based on the Hamaker theory. Deviations from results based on the Hamaker theory are easily explained in terms of retardation of the van der Waals interaction. Because the effect of capillary curvature increases in the regime where retardation effects become important, curvature effects constitute a small correction to the van der Waals forces in a capillary tube.« less

  17. A Measurement and Modeling Study of Hair Partition of Neutral, Cationic, and Anionic Chemicals.

    PubMed

    Li, Lingyi; Yang, Senpei; Chen, Tao; Han, Lujia; Lian, Guoping

    2018-04-01

    Various neutral, cationic, and anionic chemicals contained in hair care products can be absorbed into hair fiber to modulate physicochemical properties such as color, strength, style, and volume. For environmental safety, there is also an interest in understanding hair absorption to wide chemical pollutants. There have been very limited studies on the absorption properties of chemicals into hair. Here, an experimental and modeling study has been carried out for the hair-water partition of a range of neutral, cationic, and anionic chemicals at different pH. The data showed that hair-water partition not only depends on the hydrophobicity of the chemical but also the pH. The partition of cationic chemicals to hair increased with pH, and this is due to their electrostatic interaction with hair increased from repulsion to attraction. For anionic chemicals, their hair-water partition coefficients decreased with increasing pH due to their electrostatic interaction with hair decreased from attraction to repulsion. Increase in pH did not change the partition of neutral chemicals significantly. Based on the new physicochemical insight of the pH effect on hair-water partition, a new quantitative structure property relationship model has been proposed, taking into account of both the hydrophobic interaction and electrostatic interaction of chemical with hair fiber. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  19. Discover the pythagorean theorem using interactive multimedia learning

    NASA Astrophysics Data System (ADS)

    Adhitama, I.; Sujadi, I.; Pramudya, I.

    2018-04-01

    In learning process students are required to play an active role in learning. They do not just accept the concept directly from teachers, but also build their own knowledge so that the learning process becomes more meaningful. Based on the observation, when learning Pythagorean theorem, students got difficulty on determining hypotenuse. One of the solution to solve this problem is using an interactive multimedia learning. This article aims to discuss the interactive multimedia as learning media for students. This was a Research and Development (R&D) by using ADDIE model of development. The results obtained was multimedia which was developed proper for students as learning media. Besides, on Phytagorian theorem learning activity we also compare Discovery Learning (DL) model with interactive multimedia and DL without interactive multimedia, and obtained that DL with interactive gave positive effect better than DL without interactive multimedia. It was also obtainde that interactive multimedia can attract and increase the interest ot the students on learning math. Therefore, the use of interactive multimedia on DL procees can improve student learning achievement.

  20. Product interactions and feedback in diffusion-controlled reactions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Siegl, Toni; Kim, Won Kyu; Dzubiella, Joachim

    2018-02-01

    Steric or attractive interactions among reactants or between reactants and inert crowders can substantially influence the total rate of a diffusion-influenced reaction in the liquid phase. However, the role of the product species, which has typically different physical properties than the reactant species, has been disregarded so far. Here we study the effects of reactant-product and product-product interactions as well as asymmetric diffusion properties on the rate of diffusion-controlled reactions in the classical Smoluchowski-setup for chemical transformations at a perfect catalytic sphere. For this, we solve the diffusion equation with appropriate boundary conditions coupled by a mean-field approach on the second virial level to account for the particle interactions. We find that all particle spatial distributions and the total rate can change significantly, depending on the diffusion and interaction properties of the accumulated products. Complex competing and self-regulating (homeostatic) or self-amplifying effects are observed for the system, leading to both decrease and increase in the rates, as the presence of interacting products feeds back to the reactant flux and thus the rate with which the products are generated.

  1. The Moderating Role of Physical Self-Perceptions in the Relationship Between Maturity Status and Physical Self-Worth.

    PubMed

    Cox, Anne E; Cole, Amy N; Laurson, Kelly

    2016-06-01

    We tested the moderating role of physical self-perceptions in the relationship between physical maturity and physical self-worth (PSW). Students in Grades 5 through 8 (N = 241; 57% females; Mage = 12.30 years) completed a questionnaire assessing physical self-perceptions (i.e., perceived sport competence, conditioning, strength, and body attractiveness), PSW, and maturity status. Hierarchical multiple regression was used to test interactions between maturity and physical self-perceptions predicting PSW separately for boys and girls. For girls, maturity level and physical self-perceptions explained significant variance, F(5, 131) = 73.44, p < .001, R(2) = .74, with interactions explaining a little extra variance, ΔF = 3.42, p = .01, ΔR(2) = .03. Perceived attractiveness interacted with maturity status to predict PSW (p = .01), indicating that maturity was positively related to PSW only for girls with higher body attractiveness. Maturity status and physical self-perceptions also significantly predicted PSW in boys, F(5, 98) = 46.52, p <  .001, R(2) = .70, with interactions explaining a little extra variance, ΔF = 3.16, p = .02, ΔR(2) = .04. A statistically significant interaction between perceived strength and maturity (p <  .001) indicated that maturity related positively to PSW, but only for boys with higher perceived strength. The maturity-PSW relationship differs by gender and depends partly on physical self-perceptions. This finding reinforces previous findings that illustrate the relative importance of perceived attractiveness and strength for girls and boys, respectively. PSW is an important predictor of physical activity behavior; therefore, it is critical to understand the interplay between these key antecedents.

  2. Thermodynamics of a lattice gas with linear attractive potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirjol, Dan; Schat, Carlos

    We study the equilibrium thermodynamics of a one-dimensional lattice gas with interaction V(|i−j|)=−1/(μn) (ξ−1/n |i−j|) given by the superposition of a universal attractive interaction with strength −1/(μn) ξ<0, and a linear attractive potential 1/(μn{sup 2}) |i−j|. The interaction is rescaled with the lattice size n, such that the thermodynamical limit n → ∞ is well-behaved. The thermodynamical properties of the system can be found exactly, both for a finite size lattice and in the thermodynamical limit n → ∞. The lattice gas can be mapped to a system of non-interacting bosons which are placed on known energy levels. The exactmore » solution shows that the system has a liquid-gas phase transition for ξ > 0. In the large temperature limit T ≫ T{sub 0}(ρ) = ρ{sup 2}/(4μ) with ρ the density, the system becomes spatially homogeneous, and the equation of state is given to a good approximation by a lattice version of the van der Waals equation, with critical temperature T{sub c}{sup (vdW)}=1/(12μ) (3ξ−1)« less

  3. Pascal Liquid Phase in Electronic Waveguides

    NASA Astrophysics Data System (ADS)

    Tomczyk, M.; Briggeman, M.; Tylan-Tyler, A.; Huang, M.; Tian, B.; Pekker, D.; Lee, J.-W.; Lee, H.; Eom, C.-B.; Levy, J.

    Clean one-dimensional electron transport has been observed in very few material systems. The development of exceptionally clean electron waveguides formed at the interface between complex oxides LaAlO3 and SrTiO3 enables low-dimensional transport to be explored with newfound flexibility. This material system not only supports ballistic 1D transport, but possesses a rich phase diagram and strong attractive electron-electron interactions which are not present in other solid-state systems. Here we report an unusual phenomenon in which quantized conductance increases by steps that themselves increase sequentially in multiples of e2 / h . The overall conductance exhibits a Pascal-like sequence: 1, 3, 6, 10... e2 / h , which we ascribe to ballistic transport of 1, 2, 3, 4 ... bunches of electrons. We will discuss how subband degeneracies can occur in non-interacting models that have carefully tuned parameters. Strong attractive interactions are required, however, for these subbands to lock together. This Pascal liquid phase provides a striking example of the consequences of strong attractive interactions in low-dimensional environments. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  4. The Gastropod Menace: Slugs on Brassica Plants Affect Caterpillar Survival through Consumption and Interference with Parasitoid Attraction.

    PubMed

    Desurmont, Gaylord A; Zemanova, Miriam A; Turlings, Ted C J

    2016-03-01

    Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.

  5. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    NASA Astrophysics Data System (ADS)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  6. Periodic synchronization and chimera in conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk

    2014-06-01

    We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.

  7. Behavioral and chemical mechanisms of plant-mediated deterrence and attraction among frugivorous insects

    USDA-ARS?s Scientific Manuscript database

    A number of studies have now reported increased levels of non Bt-targeted secondary pests in Bt crops. Although pesticide reduction plays a role, interactions between the secondary pests and the targeted primary pest may also be important. Feeding preference—attractiveness (selection behavior, acce...

  8. Semiochemical -Based Communication in interspecific interactions between IPS PINI and Pityogenes Knecteli (Swaine) (Coleoptera: Scolytidae) in Lodgepole Pine

    Treesearch

    Therese M. Poland; John H. Borden

    1994-01-01

    The pine engraver, Ips pini Say, and Pityogenes knechteli Swaine often co-exist in lodgepole pine, Pinus contorta var. latifolia Engelmann. We tested the hypotheses that P. knechteli produces an attractive pheromone and that the attraction of P. knechteli...

  9. Heterosexual social competence, anxiety, avoidance and self-judged physical attractiveness.

    PubMed

    Mitchell, K R; Orr, F E

    1976-10-01

    The relationship between self-judged physical attractiveness and opposite-sex behavior was examined as part of a large survey on the interaction patterns of 963 college students. The findings suggest that a self-rated negative physical image is related to significantly high levels of heterosexual difficulties.

  10. Extended law of corresponding states for protein solutions

    NASA Astrophysics Data System (ADS)

    Platten, Florian; Valadez-Pérez, Néstor E.; Castañeda-Priego, Ramón; Egelhaaf, Stefan U.

    2015-05-01

    The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.

  11. Extended law of corresponding states for protein solutions.

    PubMed

    Platten, Florian; Valadez-Pérez, Néstor E; Castañeda-Priego, Ramón; Egelhaaf, Stefan U

    2015-05-07

    The so-called extended law of corresponding states, as proposed by Noro and Frenkel [J. Chem. Phys. 113, 2941 (2000)], involves a mapping of the phase behaviors of systems with short-range attractive interactions. While it has already extensively been applied to various model potentials, here we test its applicability to protein solutions with their complex interactions. We successfully map their experimentally determined metastable gas-liquid binodals, as available in the literature, to the binodals of short-range square-well fluids, as determined by previous as well as new Monte Carlo simulations. This is achieved by representing the binodals as a function of the temperature scaled with the critical temperature (or as a function of the reduced second virial coefficient) and the concentration scaled by the cube of an effective particle diameter, where the scalings take into account the attractive and repulsive contributions to the interaction potential, respectively. The scaled binodals of the protein solutions coincide with simulation data of the adhesive hard-sphere fluid. Furthermore, once the repulsive contributions are taken into account by the effective particle diameter, the temperature dependence of the reduced second virial coefficients follows a master curve that corresponds to a linear temperature dependence of the depth of the square-well potential. We moreover demonstrate that, based on this approach and cloud-point measurements only, second virial coefficients can be estimated, which we show to agree with values determined by light scattering or by Derjaguin-Landau-Verwey-Overbeek (DLVO)-based calculations.

  12. Interdroplet attractive forces in AOT water-in-oil microemulsions formed in subcritical and supercritical solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, J.M.; Fulton, J.L.; Smith, R.D.

    1990-03-08

    The van der Waals attractive interactions between aqueous droplets in water-in-oil type microemulsions have been investigated for a range of continuous-phase solvents including the alkanes from methane to isooctane and the noble gases, krypton and xenon. Hamaker constants for water droplets with surfactant shells of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in subcritical and supercritical solvents were calculated by using Lifshitz theory and the resulting interaction potential calculations qualitatively account for many features of the phase behavior of these systems.

  13. Looking through the mirror: optical microcavity-mirror image photonic interaction.

    PubMed

    Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F

    2012-05-07

    Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.

  14. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-01

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. We report measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation, the attraction is weak and shows no dependence on azimuthal alignment or surface hydration. At separations of approximately one hydration layer, the attraction is strongly dependent on azimuthal alignment and systematically decreases as intervening water density increases. Measured forces closely agree with predictions from Lifshitz theory and show that dispersion forces can generate a torque between particles interacting in solution and between grains in materials.

  15. Spatial patterns of the frog Oophaga pumilio in a plantation system are consistent with conspecific attraction.

    PubMed

    Folt, Brian; Donnelly, Maureen A; Guyer, Craig

    2018-03-01

    The conspecific attraction hypothesis predicts that individuals are attracted to conspecifics because conspecifics may be cues to quality habitat and/or colonists may benefit from living in aggregations. Poison frogs (Dendrobatidae) are aposematic, territorial, and visually oriented-three characteristics which make dendrobatids an appropriate model to test for conspecific attraction. In this study, we tested this hypothesis using an extensive mark-recapture dataset of the strawberry poison frog ( Oophaga pumilio ) from La Selva Biological Station, Costa Rica. Data were collected from replicate populations in a relatively homogenous Theobroma cacao plantation, which provided a unique opportunity to test how conspecifics influence the spatial ecology of migrants in a controlled habitat with homogenous structure. We predicted that (1) individuals entering a population would aggregate with resident adults, (2) migrants would share sites with residents at a greater frequency than expected by chance, and (3) migrant home ranges would have shorter nearest-neighbor distances (NND) to residents than expected by chance. The results were consistent with these three predictions: Relative to random simulations, we observed significant aggregation, home-range overlap, and NND distribution functions in four, five, and six, respectively, of the six migrant-resident groups analyzed. Conspecific attraction may benefit migrant O. pumilio by providing cues to suitable home sites and/or increasing the potential for social interactions with conspecifics; if true, these benefits should outweigh the negative effects of other factors associated with aggregation. The observed aggregation between migrant and resident O. pumilio is consistent with conspecific attraction in dendrobatid frogs, and our study provides rare support from a field setting that conspecific attraction may be a relevant mechanism for models of anuran spatial ecology.

  16. Dissociative adsorption of water on Au/MgO/Ag(001) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Nevalaita, J.; Häkkinen, H.; Honkala, K.

    2015-10-01

    The molecular and dissociative adsorption of water on a Ag-supported 1 ML, 2 ML and 3 ML-a six atomic layer-thick MgO films with a single Au adatom is investigated using density functional theory calculations. The obtained results are compared to a bulk MgO(001) surface with an Au atom. On thin films the negatively charged Au strengthens the binding of the polar water molecule due to the attractive Au-H interaction. The adsorption energy trends of OH and H with respect to the film thickness depend on an adsorption site. In the case OH or H binds atop Au on MgO/Ag(001), the adsorption becomes more exothermic with the increasing film thickness, while the reverse trend is seen when the adsorption takes place on bare MgO/Ag(001). This behavior can be explained by different bonding mechanisms identified with the Bader analysis. Interestingly, we find that the rumpling of the MgO film and the MgO-Ag interface distance correlate with the charge transfer over the thin film and the interface charge, respectively. Moreover, we employ a modified Born-Haber-cycle to analyze the effect of film thickness to the adsorption energy of isolated Au and OH species on MgO/Ag(001). The analysis shows that the attractive Coulomb interaction between the negatively charged adsorbate and the positive MgO-Ag-interface does not completely account for the weaker binding with increasing film thickness. The redox energy associated with the charge transfer from the interface to the adsorbate is more exothermic with the increasing film thickness and partly compensates the decrease in the attractive Coulomb interaction.

  17. Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator.

    PubMed

    Ozawa, Rika; Nishimura, Osamu; Yazawa, Shigenobu; Muroi, Atsushi; Takabayashi, Junji; Arimura, Gen-ichiro

    2012-11-01

    Different organisms compensate for, and adapt to, environmental changes in different ways. In this way, environmental changes affect animal-plant interactions. In this study, we assessed the effect of temperature on a tritrophic system of the lima bean, the herbivorous spider mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In this system, the plant defends itself against T. urticae by emitting volatiles that attract P. persimilis. Over 20-40 °C, the emission of volatiles by infested plants and the subsequent attraction of P. persimilis peaked at 30 °C, but the number of eggs laid by T. urticae adults and the number of eggs consumed by P. persimilis peaked at 35 °C. This indicates that the spider mites and predatory mites performed best at a higher temperature than that at which most volatile attractants were produced. Our data from transcriptome pyrosequencing of the mites found that P. persimilis up-regulated gene families for heat shock proteins (HSPs) and ubiquitin-associated proteins, whereas T. urticae did not. RNA interference-mediated gene suppression in P. persimilis revealed differences in temperature responses. Predation on T. urticae eggs by P. persimilis that had been fed PpHsp70-1 dsRNA was low at 35 °C but not at 25 °C when PpHsp70-1 expression was very high. Overall, our molecular and behavioural approaches revealed that the mode and tolerance of lima bean, T. urticae and P. persimilis are distinctly affected by temperature variability, thereby making their tritrophic interactions temperature dependent. © 2012 Blackwell Publishing Ltd.

  18. Short-time dynamics of lysozyme solutions with competing short-range attraction and long-range repulsion: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Riest, Jonas; Nägele, Gerhard; Liu, Yun; Wagner, Norman J.; Godfrin, P. Douglas

    2018-02-01

    Recently, atypical static features of microstructural ordering in low-salinity lysozyme protein solutions have been extensively explored experimentally and explained theoretically based on a short-range attractive plus long-range repulsive (SALR) interaction potential. However, the protein dynamics and the relationship to the atypical SALR structure remain to be demonstrated. Here, the applicability of semi-analytic theoretical methods predicting diffusion properties and viscosity in isotropic particle suspensions to low-salinity lysozyme protein solutions is tested. Using the interaction potential parameters previously obtained from static structure factor measurements, our results of Monte Carlo simulations representing seven experimental lysoyzme samples indicate that they exist either in dispersed fluid or random percolated states. The self-consistent Zerah-Hansen scheme is used to describe the static structure factor, S(q), which is the input to our calculation schemes for the short-time hydrodynamic function, H(q), and the zero-frequency viscosity η. The schemes account for hydrodynamic interactions included on an approximate level. Theoretical predictions for H(q) as a function of the wavenumber q quantitatively agree with experimental results at small protein concentrations obtained using neutron spin echo measurements. At higher concentrations, qualitative agreement is preserved although the calculated hydrodynamic functions are overestimated. We attribute the differences for higher concentrations and lower temperatures to translational-rotational diffusion coupling induced by the shape and interaction anisotropy of particles and clusters, patchiness of the lysozyme particle surfaces, and the intra-cluster dynamics, features not included in our simple globular particle model. The theoretical results for the solution viscosity, η, are in qualitative agreement with our experimental data even at higher concentrations. We demonstrate that semi-quantitative predictions of diffusion properties and viscosity of solutions of globular proteins are possible given only the equilibrium structure factor of proteins. Furthermore, we explore the effects of changing the attraction strength on H(q) and η.

  19. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    NASA Astrophysics Data System (ADS)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  20. Considering the context: social factors in responses to drugs in humans.

    PubMed

    de Wit, Harriet; Sayette, Michael

    2018-04-01

    Drugs are typically used in social settings. Here, we consider two factors that may contribute to this observation: (i) the presence of other people may enhance the positive mood effects of a drug, and conversely, (ii) drugs may enhance the value of social stimuli. We review evidence from controlled laboratory studies with human volunteers, which investigated either of these interactions between social factors and responses to drugs. We examine the bidirectional effects of social stimuli and single doses of alcohol, stimulants, opioids, and cannabis. All four classes of drugs interact with social contexts, but the nature of these interactions varies across drugs, and depends on whether the context is positive or negative. Alcohol and stimulant drugs enhance the attractiveness of social stimuli and the desire to socialize, and social contexts, in turn, enhance these drugs' effects. In contrast, opioids and cannabis have subtler effects on social interactions and their effects are less influenced by the presence of others. Overall, there is stronger evidence that drugs enhance positive social contexts than that they dampen the negativity of unpleasant social settings. Controlled research is needed to understand the interactions between drugs of abuse and social contexts, to model and understand the determinants of drug use outside the laboratory.

Top