Sample records for effective charges application

  1. Methods to characterize charging effects

    NASA Astrophysics Data System (ADS)

    Slots, H.

    1984-08-01

    Methods to characterize charging in insulating material under high voltage dc stress, leading to electrical breakdown, are reviewed. The behavior of the charges can be studied by ac loss angle measurements after application or removal of dc bias. Measurements were performed on oil-paper and oil-Mylar systems. The poor reproducibility of the measurements makes it impossible to draw more than qualitative conclusions about the charging effects. With an ultrasound pressure wave the electric field distribution in a material can be determined. An alternative derivation for the transient response of a system which elucidates the influence of several parameters in a simple way is given.

  2. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  3. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  4. Inertial effects in systems with magnetic charge

    NASA Astrophysics Data System (ADS)

    Armitage, N. P.

    2018-05-01

    This short article sets out some of the basic considerations that go into detecting the mass of quasiparticles with effective magnetic charge in solids. Effective magnetic charges may be appear as defects in particular magnetic textures. A magnetic monopole is a defect in this texture and as such these are not monopoles in the actual magnetic field B, but instead in the auxiliary field H. They may have particular properties expected for such quasiparticles such as magnetic charge and mass. This effective mass may-in principle-be detected in the same fashion that the mass is detected of other particles classically e.g. through their inertial response to time-dependent electromagnetic fields. I discuss this physics in the context of the "simple" case of the quantum spin ices, but aspects are broadly applicable. Based on extensions to Ryzkhin's model for classical spin ice, a hydrodynamic formulation can be given that takes into account inertial and entropic forces. Ultimately, a form for the susceptibility is obtained that is equivalent to the Rocard equation, which is a classic form used to account for inertial effects in the context of Debye-like relaxation.

  5. Plasmon-induced charge separation: chemistry and wide applications.

    PubMed

    Tatsuma, Tetsu; Nishi, Hiroyasu; Ishida, Takuya

    2017-05-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the "wet" chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication.

  6. Effect of Charge Patterning on the Phase Behavior of Polymer Coacervates for Charge Driven Self Assembly

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sing, Charles E.

    Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.

  7. Applications of charge-coupled device transversal filters to communication

    NASA Technical Reports Server (NTRS)

    Buss, D. D.; Bailey, W. H.; Brodersen, R. W.; Hewes, C. R.; Tasch, A. F., Jr.

    1975-01-01

    The paper discusses the computational power of state-of-the-art charged-coupled device (CCD) transversal filters in communications applications. Some of the performance limitations of CCD transversal filters are discussed, with attention given to time delay and bandwidth, imperfect charge transfer efficiency, weighting coefficient error, noise, and linearity. The application of CCD transversal filters to matched filtering, spectral filtering, and Fourier analysis is examined. Techniques for making programmable transversal filters are briefly outlined.

  8. Organic n-type materials for charge transport and charge storage applications.

    PubMed

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  9. Plasmon-induced charge separation: chemistry and wide applications

    PubMed Central

    Nishi, Hiroyasu; Ishida, Takuya

    2017-01-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the “wet” chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication. PMID:28507702

  10. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    PubMed Central

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-01-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices. PMID:26670138

  11. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    NASA Astrophysics Data System (ADS)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  12. Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.

    PubMed

    Taheri-Araghi, Sattar; Ha, Bae-Yeun

    2005-08-01

    We reexamine the problem of charge renormalization and inversion of a highly charged surface of a low dielectric constant immersed in ionic solutions. To be specific, we consider an asymmetrically charged lipid bilayer, in which only one layer is negatively charged. In particular, we study how dielectric discontinuities and charge correlations (among lipid charges and condensed counterions) influence the effective charge of the surface. When counterions are monovalent (e.g., Na+), our mean-field approach implies that dielectric discontinuities can enhance counterion condensation. A simple scaling picture shows how the effects of dielectric discontinuities and surface-charge distributions are intertwined: Dielectric discontinuities diminish condensation if the backbone charge is uniformly smeared out while counterions are localized in space; they can, however, enhance condensation when the backbone charge is discrete. In the presence of asymmetric salts such as CaCl2 , we find that the correlation effect, treated at the Gaussian level, is more pronounced when the surface has a lower dielectric constant, inverting the sign of the charge at a smaller value of Ca2+ concentration.

  13. Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation

    NASA Astrophysics Data System (ADS)

    Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.

    2018-02-01

    Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.

  14. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  15. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  16. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    PubMed

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  17. Charge Control Investigation of Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Otzinger, B.; Somoano, R.

    1984-01-01

    An ambient temperature rechargeable Li-TiS2 cell was cycled under conditions which simulate aerospace applications. A novel charge/discharge state-of-charge control scheme was used, together with tapered current charging, to overcome deleterious effects associated with end-of-charge and end-of-discharge voltages. The study indicates that Li-TiS2 cells hold promise for eventual synchronous satellite-type applications. Problem areas associated with performance degradation and reconditioning effects are identified.

  18. Conference on Charge-Coupled Device Technology and Applications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers were presented from the conference on charge coupled device technology and applications. The following topics were investigated: data processing; infrared; devices and testing; electron-in, x-ray, radiation; and applications. The emphasis was on the advances of mutual relevance and potential significance both to industry and NASA's current and future requirements in all fields of imaging, signal processing and memory.

  19. Piezotronic Effect: An Emerging Mechanism for Sensing Applications

    PubMed Central

    Jenkins, Kory; Nguyen, Vu; Zhu, Ren; Yang, Rusen

    2015-01-01

    Strain-induced polarization charges in a piezoelectric semiconductor effectively modulate the band structure near the interface and charge carrier transport. Fundamental investigation of the piezotronic effect has attracted broad interest, and various sensing applications have been demonstrated. This brief review discusses the fundamentals of the piezotronic effect, followed by a review highlighting important applications for strain sensors, pressure sensors, chemical sensors, photodetectors, humidity sensors and temperature sensors. Finally, the review offers some perspectives and outlook for this new field of multi-functional sensing enabled by the piezotronic effect. PMID:26378536

  20. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  1. New battery model considering thermal transport and partial charge stationary effects in photovoltaic off-grid applications

    NASA Astrophysics Data System (ADS)

    Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio

    2018-02-01

    The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.

  2. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  3. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less

  4. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    PubMed

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  5. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our

  6. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less

  7. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    DOE PAGES

    van Veenendaal, Michel

    2016-09-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less

  8. Comparison of converter topologies for charging capacitors used in pulsed load applications

    NASA Technical Reports Server (NTRS)

    Nelms, R. M.; Schatz, J. E.; Pollard, Barry

    1991-01-01

    The authors present a qualitative comparison of different power converter topologies which may be utilized for charging capacitors in pulsed power applications requiring voltages greater than 1 kV. The operation of the converters in capacitor charging applications is described, and relevant advantages are presented. All of the converters except one may be classified in the high-frequency switching category. One of the benefits from high-frequency operation is a reduction in size and weight. The other converter discussed is a member of the command resonant changing category. The authors first describe a boost circuit which functions as a command resonant charging circuit and utilizes a single pulse of current to charge the capacitor. The discussion of high-frequency converters begins with the flyback and Ward converters. Then, the series, parallel, and series/parallel resonant converters are examined.

  9. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John

    2016-06-22

    Zeolitic Imidazolate Frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-visible-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge separated state with ligandto-metal charge transfer character using XTA. The surprisingly long-lived charge separated state, together withmore » its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.« less

  10. Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications

    DTIC Science & Technology

    1991-02-01

    SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing

  11. Charge detection mass spectrometry: Instrumentation & applications to viruses

    NASA Astrophysics Data System (ADS)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis

  12. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  13. Combined effect of moisture and electrostatic charges on powder flow

    NASA Astrophysics Data System (ADS)

    Rescaglio, Antonella; Schockmel, Julien; Vandewalle, Nicolas; Lumay, Geoffroy

    2017-06-01

    It is well known in industrial applications involving powders and granular materials that the relative air humidity and the presence of electrostatic charges influence drastically the material flowing properties. The relative air humidity induces the formation of capillary bridges and modify the grain surface conductivity. The presence of capillary bridges produces cohesive forces. On the other hand, the apparition of electrostatic charges due to the triboelectric effect at the contacts between the grains and at the contacts between the grains and the container produces electrostatic forces. Therefore, in many cases, the powder cohesiveness is the result of the interplay between capillary and electrostatic forces. Unfortunately, the triboelectric effect is still poorly understood, in particular inside a granular material. Moreover, reproducible electrostatic measurements are difficult to perform. We developed an experimental device to measures the ability of a powder to charge electrostatically during a flow in contact with a selected material. Both electrostatic and flow measurements have been performed in different hygrometric conditions. The correlation between the powder electrostatic properties, the hygrometry and the flowing behavior are analyzed.

  14. Charging and breakdown in amorphous dielectrics: Phenomenological modeling approach and applications

    NASA Astrophysics Data System (ADS)

    Palit, Sambit

    Amorphous dielectrics of different thicknesses (nm to mm) are used in various applications. Low temperature processing/deposition of amorphous thin-film dielectrics often result in defect-states or electronic traps. These traps are responsible for increased leakage currents and bulk charge trapping in many associated applications. Additional defects may be generated during regular usage, leading to electrical breakdown. Increased leakage currents, charge trapping and defect generation/breakdown are important and pervasive reliability concerns in amorphous dielectrics. We first explore the issue of charge accumulation and leakage in amorphous dielectrics. Historically, charge transport in amorphous dielectrics has been presumed, depending on the dielectric thickness, to be either bulk dominated (Frenkel-Poole (FP) emission) or contact dominated (Fowler-Nordheim tunneling). We develop a comprehensive dielectric charging modeling framework which solves for the transient and steady state charge accumulation and leakage currents in an amorphous dielectric, and show that for intermediate thickness dielectrics, the conventional assumption of FP dominated current transport is incorrect, and may lead to false extraction of dielectric parameters. We propose an improved dielectric characterization methodology based on an analytical approximation of our model. Coupled with ab-initio computed defect levels, the dielectric charging model explains measured leakage currents more accurately with lesser empiricism. We study RF-MEMS capacitive switches as one of the target applications of intermediate thickness amorphous dielectrics. To achieve faster analysis and design of RF-MEMS switches in particular, and electro-mechanical actuators in general, we propose a set of fundamental scaling relationships which are independent of specific physical dimensions and material properties; the scaling relationships provide an intrinsic classification of all electro-mechanical actuators

  15. Droplet Charging Effects in the Space Environment

    DTIC Science & Technology

    2010-06-16

    in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silcon- oil droplets due to...experiment was conducted to assess the charging of silcon- oil droplets due to photoemission. The photoemission yield in the 120-200nm wavelength range was...For the application of interest in this study, a liquid droplet stream of low- vapor-pressure, silicon-based oil is being proposed as a potential

  16. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  17. 47 CFR 1.1104 - Schedule of charges for applications and other filings for media services.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... filings for media services. 1.1104 Section 1.1104 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Payment § 1.1104 Schedule of charges for applications and other filings for media services. Schedule of charges for applications and other filings for media services. Payment can be made electronically using...

  18. Surface charge effects in protein adsorption on nanodiamonds.

    PubMed

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  19. Surface charge effects in protein adsorption on nanodiamonds

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  20. Solvation effects on like-charge attraction.

    PubMed

    Ghanbarian, Shahzad; Rottler, Jörg

    2013-02-28

    We present results of molecular dynamics simulations of the electrostatic interaction between two parallel charged rods in the presence of divalent counterions. Such polyelectrolytes have been considered as a simple model for understanding electrostatic interactions in highly charged biomolecules such as DNA. Since there are correlations between the free charge carriers, the phenomenon of like charge attraction appears for specific parameters. We explore the role of solvation effects and the resulting deviations from Coulomb's law on the nanoscale on this peculiar phenomenon. The behavior of the force between the charged rods in a simulation with atomistic representation of water molecules is completely different from a model in which water is modeled as a continuum dielectric. By calculating counterion-rodion pair correlation functions, we find that the presence of water molecules changes the structure of the counterion cloud and results in both qualitative and quantitative changes of the force between highly charged polyelectrolytes.

  1. Impact of the titania nanostructure on charge transport and its application in hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Koffman-Frischknecht, Alejandro; Gonzalez, Fernando; Plá, Juan; Violi, Ianina; Soler-Illia, Galo J. A. A.; Perez, M. Dolores

    2018-02-01

    Porous titania films are widely studied in a number of optoelectronic applications due to its favorable optical and electronic characteristics. Mesoporous titania thin films (MTTFs) with tunable pore size, pore order, accessibility and crystallinity are of interest in electronic devices due to the potential for optimization of the desired characteristics for charge separation and carrier transport. In this work, several MTTFs were prepared by sol-gel chemistry with different structural properties tuned by post-synthesis thermal treatment. The effect of the structural properties (pore diameter, order and accessibility) on the electrical properties of the material was studied by films fabrication onto a transparent conducting electrode, ITO, such that it enables optoelectronic applications. The performance as photoanode was explored by the fabrication of hybrid polymer (P3HT): titania solar cells. Not only does structural properties affect polymer impregnation inside the titania pores as expected and hence impacts charge separation at the interface, but also the thermal treatment affects crystallinity and the films electronic properties. A more complete picture about the electronic properties of the different MTTFs prepared in this work was studied by mobility measurement by space charge limited current and impedance spectroscopy.

  2. Fast Demand Forecast of Electric Vehicle Charging Stations for Cell Phone Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majidpour, Mostafa; Qiu, Charlie; Chung, Ching-Yen

    This paper describes the core cellphone application algorithm which has been implemented for the prediction of energy consumption at Electric Vehicle (EV) Charging Stations at UCLA. For this interactive user application, the total time of accessing database, processing the data and making the prediction, needs to be within a few seconds. We analyze four relatively fast Machine Learning based time series prediction algorithms for our prediction engine: Historical Average, kNearest Neighbor, Weighted k-Nearest Neighbor, and Lazy Learning. The Nearest Neighbor algorithm (k Nearest Neighbor with k=1) shows better performance and is selected to be the prediction algorithm implemented for themore » cellphone application. Two applications have been designed on top of the prediction algorithm: one predicts the expected available energy at the station and the other one predicts the expected charging finishing time. The total time, including accessing the database, data processing, and prediction is about one second for both applications.« less

  3. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    PubMed

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  4. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  5. Temperature increase and charging current in polyethylene film during application of high voltage

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Kaneko, Kazue; Mizutani, Teruyoshi

    2001-12-01

    Temperature increase in a low density polyethylene film during the application of high dc voltage was estimated by measuring the sound velocity with a pulsed electroacoustic method. The temperature shows no change under the electric field of 50 MVm-1 at ambient temperature of 30 °C. However, the temperature increases with time, and rises to 63.7 °C in 90 min of the voltage application at ambient temperature of 60 °C. The temperature increase was caused by Joule heating and it resulted in the increase of charging current during the application of high dc voltage. The increase in charging current calculated from the temperature increase agreed well with the experimental one.

  6. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  7. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  8. 47 CFR 1.1102 - Schedule of charges for applications and other filings in the wireless telecommunications services.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Schedule of charges for applications and other filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... § 1.1102 Schedule of charges for applications and other filings in the wireless telecommunications...

  9. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  10. Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, R.H.

    Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecommore » system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.« less

  11. Effect of Charged-Magnetic Grains in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Perry, Jonathan; Matthews, Lorin; Hyde, Truell

    Effects of Charged-Magnetic Grains in Protoplanetary Disks Jonathan, Perry, Lorin Swint Matthews, and Truell W. Hyde Center for Astrophysics, Space Physics, and Engi-neering Research, addressPlaceNamePlaceNameplaceBaylor StreetPlaceTypeUniversity, Stree-taddressOne Bear Place 97316 Waco, TX 76798 USA The interaction and growth of dust grains is an important process in early planetesimal formation. The structure of aggregates formed from dust depend largely on the initial properties within the dust population, whether the grains are charged or uncharged, magnetic or non-magnetic. Theoretical simulations exam-ining pair-wise interactions between aggregates indicate that charged magnetic grains exhibit different growth behavior than populations consisting of exclusively charged or exclusively mag-netic grains. This study extends that work to predict how charged-magnetic grains influence grain growth within a protoplanetary disk. An N-body simulation containing various mixtures of dust materials is used to examine the differences in dust coagulation in the presence of charged magnetic aggregates. The growth of the dust aggregates is analyzed to determine the effects that charged magnetic grains contribute to the evolution of the dust cloud. Comparison of the rate of aggregation as well as the dynamic exponent relating mass of a cluster to the elapsed time will both be discussed.

  12. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  13. Charge multiplication effect in thin diamond films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skukan, N., E-mail: nskukan@irb.hr; Grilj, V.; Sudić, I.

    2016-07-25

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanchemore » multiplication and radiation detectors with extreme radiation hardness.« less

  14. Highly charged ion beams and their applications

    NASA Astrophysics Data System (ADS)

    Marler, Joan

    2018-01-01

    While much previous work with highly charged ions has been performed with the ions in the plasma state in which they were formed, beams of highly charged ions hold promise for exciting new experiments. Specifically low energy beams with a high degree of charge state purity are a prerequisite for momentum resolved cross section measurements and for efficient loading of highly charged ions into UHV traps for spectroscopy. The Clemson University facility is optimized for the delivery of such beams of highly charged ions with low kinetic energies. Near term experiments include energy resolved charge exchange with neutral targets.

  15. Effective dynamics of a classical point charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-polemore » of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.« less

  16. Preliminary test results of electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1982-01-01

    A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.

  17. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  18. Charging and heat collection by a positively charged dust grain in a plasma.

    PubMed

    Delzanno, Gian Luca; Tang, Xian-Zhu

    2014-07-18

    Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.

  19. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  20. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A.; Stevens, N. J.

    1985-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  1. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  2. Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors.

    PubMed

    Un, Hio-Ieng; Cheng, Peng; Lei, Ting; Yang, Chi-Yuan; Wang, Jie-Yu; Pei, Jian

    2018-05-01

    Organic field-effect transistors (OFETs) with impressively high hole mobilities over 10 cm 2 V -1 s -1 and electron mobilities over 1 cm 2 V -1 s -1 have been reported in the past few years. However, significant non-ideal electrical characteristics, e.g., voltage-dependent mobilities, have been widely observed in both small-molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor-unrelated, charge-trapping-induced non-ideality in OFETs is reported, and a revised model for the non-ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping-induced non-ideality exists in OFETs with different types of charge carriers (p-type or n-type), different types of dielectric materials (inorganic and organic) that contain different functional groups (OH, NH 2 , COOH, etc.). As fas as it is known, this is the first report for the non-ideal transport behaviors in OFETs caused by semiconductor-independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non-ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effective charges and virial pressure of concentrated macroion solutions

    DOE PAGES

    Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; ...

    2015-07-13

    The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin-Landau-Verwey-Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arisemore » in concentrated suspensions. In this paper, we show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion-macroion spatial correlation and the virial pressure obtained with the EPC model. Finally, our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements.« less

  4. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam; Panicker, Lata

    2014-12-01

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a `heme' group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV-vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20-30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the `heme' groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  5. Charge Fractionalization in the Two-Channel Kondo Effect

    NASA Astrophysics Data System (ADS)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  6. Investigating the Effect of Charge Hydration Asymmetry and Incorporating it in Continuum Solvation Framework

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Abhishek

    One of the essential requirements of biomolecular modeling is an accurate description of water as a solvent. The challenge is to make this description computationally facile - reasonably fast, simple, robust and easy to incorporate into existing software packages, yet accurate. The most rigorous procedure to model the effect of aqueous solvent is to explicitly model every water molecule in the system. For many practical applications, this approach is computationally too intense, as the number of required water atoms is on an average at least one order of magnitude larger than the number of atoms of the molecule of interest. Implicit solvent models, in which solvent molecules are replaced by a continuous dielectric, have become a popular alternative to explicit solvent methods. However, implicit solvation models often lack various microscopic details which are crucial for accuracy. One such missing effect that is currently missing from popular implicit models is the so called effect of charge hydration asymmetry (CHA). The missing effect of charge hydration asymmetry - the asymmetric response of water upon the sign of solute charge - manifests a characteristic, strong dependence of solvation free energies on the sign of solute charge. Here, we incorporate this missing effect into the continuum solvation framework via the conceptually simplest Born equation and also in the generalized Born model. We identify the key electric multipole moments of model water molecules critical for the various degrees of CHA effect observed in studies based on molecular dynamics simulations using different rigid water models. We then use this gained insight to incorporate this effect first into the Born model and then into the generalized Born model. The proposed framework significantly improves accuracy of the hydration free energy estimates tested on a comprehensive set of varied molecular solutes - monovalent and divalent ions, small drug-like molecules, charged and uncharged amino

  7. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  8. Effect of Stochastic Charge Fluctuations on Dust Dynamics

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Shotorban, Babak; Hyde, Truell

    2017-10-01

    The charging of particles in a plasma environment occurs through the collection of electrons and ions on the particle surface. Depending on the particle size and the plasma density, the standard deviation of the number of collected elementary charges, which fluctuates due to the randomness in times of collisions with electrons or ions, may be a significant fraction of the equilibrium charge. We use a discrete stochastic charging model to simulate the variations in charge across the dust surface as well as in time. The resultant asymmetric particle potentials, even for spherical grains, has a significant impact on the particle coagulation rate as well as the structure of the resulting aggregates. We compare the effects on particle collisions and growth in typical laboratory and astrophysical plasma environments. This work was supported by the National Science Foundation under Grant PHY-1414523.

  9. Charge integration successive approximation analog-to-digital converter for focal plane applications using a single amplifier

    NASA Technical Reports Server (NTRS)

    Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.

  10. Effect of electric charge on the adhesion of human blood platelets.

    PubMed

    Lowkis, B; Szymonowicz, M

    1993-01-01

    The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.

  11. Applicability of micro-channel plate followed by phosphor screen to charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himura, H., E-mail: himura@kit.ac.jp; Nakata, S.; Sanpei, A.

    2016-06-15

    This paper experimentally investigates the applicability of a micro-channel plate (MCP) followed by a phosphor screen to charged particles along with a calibration method for estimating the acceptable limit of input particle flux and appropriate operation parameters of a particular MCP. For the first time, plasmas consisting of only lithium ions are injected into the MCP. Despite large ion numbers (N{sub i}) on the order of ≃10{sup 7}, no deterioration in the effective gain (αG) of the MCP owing to an excess amount of the extracted charge occurs in a certain range of the amplifier voltage (ΔU{sub M}) applied tomore » the MCP. The measured αG nearly agrees with the expected value. However, once ΔU{sub M} exceeds a limit value, αG eventually begins to saturate. This is also verified in experiments using pure electron plasmas. An appropriate range of ΔU{sub M} is presented to avoid saturation and, finally, derive N{sub i} directly from the secondary electron current outputted from the MCP only after the indispensable calibration.« less

  12. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  13. 46 CFR 502.271 - Special docket application for permission to refund or waive freight charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Special docket application for permission to refund or... docket application for permission to refund or waive freight charges. (a)(1) A common carrier or a shipper may file a special docket application seeking permission for a common carrier or conference to...

  14. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.

    PubMed

    Guo, Shanshan; Jańczewski, Dominik; Zhu, Xiaoying; Quintana, Robert; He, Tao; Neoh, Koon Gee

    2015-08-15

    Electrostatic interactions play an important role in adhesion phenomena particularly for biomacromolecules and microorganisms. Zero charge valence of zwitterions has been claimed as the key to their antifouling properties. However, due to the differences in the relative strength of their acid and base components, zwitterionic materials may not be charge neutral in aqueous environments. Thus, their charge on surfaces should be further adjusted for a specific pH environment, e.g. physiological pH typical in biomedical applications. Surface zeta potential for thin polymeric films composed of polysulfobetaine methacrylate (pSBMA) brushes is controlled through copolymerizing zwitterionic SBMA and cationic methacryloyloxyethyltrimethyl ammonium chloride (METAC) via surface-initiated atom transfer polymerization. Surface properties including zeta potential, roughness, free energy and thickness are measured and the antifouling performance of these surfaces is assessed. The zeta potential of pSBMA brushes is -40 mV across a broad pH range. By adding 2% METAC, the zeta potential of pSBMA can be tuned to zero at physiological pH while minimally affecting other physicochemical properties including dry brush thickness, surface free energy and surface roughness. Surfaces with zero and negative zeta potential best resist fouling by bovine serum albumin, Escherichia coli and Staphylococcus aureus. Surfaces with zero zeta potential also reduce fouling by lysozyme more effectively than surfaces with negative and positive zeta potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  16. Event-driven charge-coupled device design and applications therefor

    NASA Technical Reports Server (NTRS)

    Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)

    2005-01-01

    An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.

  17. Field Effect Modulation of Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.

    PubMed

    Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel

    2017-12-13

    The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.

  18. Space charge effect in spectrometers of ion mobility increment with cylindrical drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    We have amplified the model for the drift of ions under a non-uniform high-frequency electric field by taking space charge effect into account. By this means, we have investigated the effect of space charge on the dynamics of a single type of ions in a spectrometer of ion mobility increment with a cylindrical drift chamber. The counteraction of the space charge effect and the focusing effect is investigated. The output ion current saturation caused by the effect of the space charge is observed. The shape of the ion peak taking into consideration the space charge effect has been obtained. We show that the effect of the space charge is sufficient for the relative ion density greater than 10 ppt by order of magnitude (for a cylindrical geometry spectrometer with typical parameters).

  19. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system.

  20. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    PubMed

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe 2 O 3 /APTS (3-aminopropyltrimethoxysilane) NPs and γFe 2 O 3 /DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe 2 O 3 /APTS NPs, but not negative charged γFe 2 O 3 /DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe 2 O 3 /APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe 2 O 3 /DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  1. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    NASA Astrophysics Data System (ADS)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  2. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  3. Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Baek, David J.; Seol, Myeong-Lok; Choi, Sung-Jin; Moon, Dong-Il; Choi, Yang-Kyu

    2012-02-01

    Through the structural modification of a three-dimensional silicon nanowire field-effect transistor, i.e., a double-gate FinFET, a structural platform was developed which allowed for us to utilize graphene oxide (GO) as a charge trapping layer in a nonvolatile memory device. By creating a nanogap between the gate and the channel, GO was embedded after the complete device fabrication. By applying a proper gate voltage, charge trapping, and de-trapping within the GO was enabled and resulted in large threshold voltage shifts. The employment of GO with FinFET in our work suggests that graphitic materials can potentially play a significant role for future nanoelectronic applications.

  4. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  5. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  6. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    PubMed

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  7. Polyelectrolyte assisted charge titration spectrometry: Applications to latex and oxide nanoparticles.

    PubMed

    Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F

    2016-08-01

    The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Study on temperature distribution effect on internal charging by computer simulation

    NASA Astrophysics Data System (ADS)

    Yi, Zhong

    2016-07-01

    Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.

  9. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  10. The effect of charge-introduction mutations on E. coli thioredoxin stability.

    PubMed

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2005-04-01

    Technological applications of proteins are often hampered by their low-stability and, consequently, the development of procedures for protein stabilization is of considerable biotechnological interest. Here, we use simple electrostatics to determine positions in E. coli thioredoxin at which mutations that introduce new charged residues are expected to lead to stability enhancement. We also obtain the corresponding mutants and characterize their stability using differential scanning calorimetry. The results are interpreted in terms of the accessibility in the native structure of the mutated residues and the potential effect of the mutations on the residual structure of the denatured state.

  11. Estimation of the ionic charge of non-metallic species into an electrical discharge through a web application

    NASA Astrophysics Data System (ADS)

    Pérez Gutiérrez, B. R.; Vera-Rivera, F. H.; Niño, E. D. V.

    2016-08-01

    Estimate the ionic charge generated in electrical discharges will allow us to know more accurately the concentration of ions implanted on the surfaces of nonmetallic solids. For this reason, in this research a web application was developed to allow us to calculate the ionic charge generated in an electrical discharge from the experimental parameters established in an ion implantation process performed in the JUPITER (Joint Universal Plasma and Ion Technologies Experimental Reactor) reactor. The estimated value of the ionic charge will be determined from data acquired on an oscilloscope, during startup and shutdown of electrical discharge, which will then be analyzed and processed. The study will provide best developments with regard to the application of ion implantation in various industrial sectors.

  12. Space charge effects on the third order coupled resonance

    NASA Astrophysics Data System (ADS)

    Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond

    2017-08-01

    The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.

  13. 12 CFR 226.5a - Credit and charge card applications and solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... used to compute the finance charge on an outstanding balance for purchases, a cash advance, or a... applicable shall also be disclosed. The annual percentage rate for purchases disclosed pursuant to this... for the use of the card for purchases. (5) Grace period. The date by which or the period within which...

  14. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  15. Diffusive charge transport in graphene

    NASA Astrophysics Data System (ADS)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  16. Heavy ion charge-state distribution effects on energy loss in plasmas.

    PubMed

    Barriga-Carrasco, Manuel D

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its mean charge state [Q]. This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating [Q] inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Q(eff), which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Q(eff) is greater than the mean charge state [Q], which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  17. Numerical Simulations of Spacecraft Charging: Selected Applications

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.; Borovsky, J.; Thomsen, M. F.

    2016-12-01

    The electrical charging of spacecraft due to bombarding charged particles affects their performance and operation. We study this charging using CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. It is interfaced to a mesh generator that creates a computational mesh conforming to complex objects like a spacecraft. Relevant plasma parameters can be imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Selected physics results will be presented, together with an overview of the code. The physics results include spacecraft-charging simulations with geometry representative of the Van Allen Probes spacecraft, focusing on the conditions that can lead to significant spacecraft charging events. Second, results from a recent study that investigates the conditions for which a high-power (>keV) electron beam could be emitted from a magnetospheric spacecraft will be presented. The latter study proposes a spacecraft-charging mitigation strategy based on the plasma contactor technology that might allow beam experiments to operate in the low-density magnetosphere. High-power electron beams could be used for instance to establish magnetic-field-line connectivity between ionosphere and magnetosphere and help solving long-standing questions in ionospheric/magnetospheric physics.

  18. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J

  19. Grain Boundary Effect on Charge Transport in Pentacene Thin Films

    NASA Astrophysics Data System (ADS)

    Weis, Martin; Gmucová, Katarína; Nádaždy, Vojtech; Majková, Eva; Haško, Daniel; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2011-04-01

    We report on charge transport properties of polycrystalline pentacene films with variable average grain size in the range from 0.1 to 0.3 µm controlled by the preparation technology. We illustrate with the organic field-effect transistors decrease of the effective mobility and presence of traps with decrease of the grain size. Analysis of the charge transfer excitons reveals decrease of the mobile charge density and the steady-state voltammetry showed significant increase of oxygen- and hydrogen-related defects. We also briefly discuss accumulation of the defects on the grain boundary and show relation between the defect density and grain boundary length.

  20. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  1. Charged Slurry Droplet Research

    DTIC Science & Technology

    1989-02-20

    IEEE/IAS annual meeting, Denver, CO, Sept. 28 - Oct. 3, 1986, p.1434. Accepted for publication IEEE Transactions on Industry Applications. 6. Lord...34Analysis of the Description of Evaporating Charged Droplets, IEEE Transactions on Industry Applications, IA-19, 771, 1983. 9. H.M.A. Elghazaly, G.S.P. Castle...34Analysis of the Instability of Evaporating Charged Liquid Drops", IEEE Transactions on Industry Applications, IA-22, 892, 1986. 10. H.M.A

  2. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  3. Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen

    NASA Astrophysics Data System (ADS)

    Zhao, Ni; Nie, Yongjie; Li, Shengtao

    2018-04-01

    Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.

  4. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  5. 12 CFR 535.4 - Late charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... delinquency charge on a payment, which payment is otherwise a full payment for the applicable period and is paid on its due date or within an applicable grace period, when the only delinquency is attributable to late fee(s) or delinquency charge(s) assessed on earlier installment(s). (b) For the purposes of this...

  6. Space charge effects in ultrafast electron diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhang, He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-01

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  7. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Mozuelos, P.

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  8. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  9. Positively charged and bipolar layered poly(ether imide) nanofiltration membranes for water softening applications

    NASA Astrophysics Data System (ADS)

    Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.

    2015-07-01

    Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.

  10. Application of Ampere’s law to a non-infinite wire and to a moving charge

    NASA Astrophysics Data System (ADS)

    Aledealat, K.; Duston, C. L.

    2018-07-01

    In this work we demonstrate how to apply Ampere’s law to a non-infinite wire that is a part of a complete circuit with a steady current. We show that this can be done by considering the magnetic field from the whole circuit, without having to directly introduce the displacement current. This example can be used to isolate and clarify students’ confusion about the application of Ampere’s law to a short wire. The second part of this work focuses on the application of Ampere’s law to a non-relativistic moving charge. It exposes the students to the Dirac delta function in a physical example and guides them to finding the magnetic field of a moving charge in a reasonable way.

  11. Dynamics of Bulk vs. Nanoscale WS2: Local Strain and Charging Effects

    NASA Astrophysics Data System (ADS)

    Musfeldt, J. L.; Brown, S.; Luttrell, R. D.; Cao, J.; Rosentsveig, R.; Tenne, R.

    2006-03-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure- property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy-polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  12. The application of charge-coupled device processors in automatic-control systems

    NASA Technical Reports Server (NTRS)

    Mcvey, E. S.; Parrish, E. A., Jr.

    1977-01-01

    The application of charge-coupled device (CCD) processors to automatic-control systems is suggested. CCD processors are a new form of semiconductor component with the unique ability to process sampled signals on an analog basis. Specific implementations of controllers are suggested for linear time-invariant, time-varying, and nonlinear systems. Typical processing time should be only a few microseconds. This form of technology may become competitive with microprocessors and minicomputers in addition to supplementing them.

  13. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOEpatents

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  14. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    PubMed

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. © 2015 Wiley Periodicals, Inc.

  15. Effects of external stress field on the charge stability of nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Yao, Miao-Miao; Zhu, Tian-Yuan; Shu, Da-Jun

    2017-07-01

    The interaction of the atom-like defects in semiconductors with external fields provides an avenue to quantum information processing and nanoscale sensors. Meanwhile, external fields may induce instability of the desired charge state of the defects. It is essential to understand how the charge state of a defect is affected by external fields that introduced in diverse applications. In this letter, we explore the stability of the negatively charged state (NV-) and the neutral state (NV0) of the nitrogen vacancy (NV) center in diamond under stress by first-principles calculations. We find that the relative stability of NV- to NV0 is always reduced by the stress if the NV center is free to relax its orientation. Once the NV center has formed and retains its orientation, however, the relative stability of NV- can be always enhanced by compressive stress along its trigonal symmetry axis. We believe that the results are not only significant for control of the charge stability of NV center but also enlightening for applications based on specific charge states of other kinds of defects in the stress field.

  16. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  17. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  18. Charge fluctuations in nanoscale capacitors.

    PubMed

    Limmer, David T; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A; van Roij, René; Rotenberg, Benjamin

    2013-09-06

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  19. Charge Fluctuations in Nanoscale Capacitors

    NASA Astrophysics Data System (ADS)

    Limmer, David T.; Merlet, Céline; Salanne, Mathieu; Chandler, David; Madden, Paul A.; van Roij, René; Rotenberg, Benjamin

    2013-09-01

    The fluctuations of the charge on an electrode contain information on the microscopic correlations within the adjacent fluid and their effect on the electronic properties of the interface. We investigate these fluctuations using molecular dynamics simulations in a constant-potential ensemble with histogram reweighting techniques. This approach offers, in particular, an efficient, accurate, and physically insightful route to the differential capacitance that is broadly applicable. We demonstrate these methods with three different capacitors: pure water between platinum electrodes and a pure as well as a solvent-based organic electrolyte each between graphite electrodes. The total charge distributions with the pure solvent and solvent-based electrolytes are remarkably Gaussian, while in the pure ionic liquid the total charge distribution displays distinct non-Gaussian features, suggesting significant potential-driven changes in the organization of the interfacial fluid.

  20. Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Sobhanian, S.; Mahmoodi, J.

    2006-09-15

    The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with themore » magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field.« less

  1. 47 CFR 1.1102 - Schedule of charges for applications and other filings in the wireless telecommunications services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... filings in the wireless telecommunications services. 1.1102 Section 1.1102 Telecommunication FEDERAL... § 1.1102 Schedule of charges for applications and other filings in the wireless telecommunications... for these services to the: Federal Communications Commission, Wireless Bureau Applications, P.O. Box...

  2. Experimental Evidence for Space-Charge Effects between Ions of the Same Mass-to-Charge in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Wong, Richard L.; Amster, I. Jonathan

    2009-01-01

    It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ions of different mass-to-charge. The frequency shift between ions of the same m/z value are compared to that induced between ions of different m/z value, and is found to be 7.5 times smaller. Control experiments were performed to ensure that the observed space-charge effects are not artifacts of the measurement or of experimental design. The results can be rationalized by recognizing that the electric forces between ions in a magnetic field conform to the weak form of the Newton's third law, where the action and reaction forces do not cancel exactly. PMID:19562102

  3. Heterogeneous surface charge enhanced micromixing for electrokinetic flows.

    PubMed

    Biddiss, Elaine; Erickson, David; Li, Dongqing

    2004-06-01

    Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.

  4. Space-Charge Waves and Instabilities in Intense Beams

    NASA Astrophysics Data System (ADS)

    Wang, J. G.

    1997-11-01

    Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.

  5. Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Sameer; Schatz, George C.

    For electrochemical device applications metal organic frameworks (MOFs) must exhibit suitable conduction properties. To this end, we have performed computational studies of intermolecular charge transfer in MOFs consisting of hexa-ZrIV nodes and tetratopic carboxylate linkers. This includes an examination of the electronic structure of linkers that are derived from tetraphenyl benzene 1, tetraphenyl pyrene 2, and tetraphenyl porphyrin 3 molecules. These results are used to determine charge transfer propensities in MOFs, within the framework of Marcus theory, including an analysis of the key parameters (charge transfer integral t, reorganization energy λ, and free energy change ΔG0) and evaluation of figuresmore » of merit for charge transfer based on the chemical structures of the linkers. This qualitative analysis indicates that delocalization of the HOMO/LUMO on terminal substituents increases t and decreases λ, while weaker binding to counterions decreases ΔG0, leading to better charge transfer propensity. Subsequently, we study hole transfer in the linker 2 containing MOFs, NU-901 and NU-1000, in detail and describe mechanisms (hopping and superexchange) that may be operative under different electrochemical conditions. Comparisons with experiment are provided where available. On the basis of the redox and catalytic activity of nodes and linkers, we propose three possible schemes for constructing electrochemical devices for catalysis. We believe that the results of this study will lay the foundation for future experimental work on this topic.« less

  6. Surface charge mapping with a nanopipette.

    PubMed

    McKelvey, Kim; Kinnear, Sophie L; Perry, David; Momotenko, Dmitry; Unwin, Patrick R

    2014-10-01

    Nanopipettes are emerging as simple but powerful tools for probing chemistry at the nanoscale. In this contribution the use of nanopipettes for simultaneous surface charge mapping and topographical imaging is demonstrated, using a scanning ion conductance microscopy (SICM) format. When a nanopipette is positioned close to a surface in electrolyte solution, the direct ion current (DC), driven by an applied bias between a quasi-reference counter electrode (QRCE) in the nanopipette and a second QRCE in the bulk solution, is sensitive to surface charge. The charge sensitivity arises because the diffuse double layers at the nanopipette and the surface interact, creating a perm-selective region which becomes increasingly significant at low ionic strengths (10 mM 1:1 aqueous electrolyte herein). This leads to a polarity-dependent ion current and surface-induced rectification as the bias is varied. Using distance-modulated SICM, which induces an alternating ion current component (AC) by periodically modulating the distance between the nanopipette and the surface, the effect of surface charge on the DC and AC is explored and rationalized. The impact of surface charge on the AC phase (with respect to the driving sinusoidal signal) is highlighted in particular; this quantity shows a shift that is highly sensitive to interfacial charge and provides the basis for visualizing charge simultaneously with topography. The studies herein highlight the use of nanopipettes for functional imaging with applications from cell biology to materials characterization where understanding surface charge is of key importance. They also provide a framework for the design of SICM experiments, which may be convoluted by topographical and surface charge effects, especially for small nanopipettes.

  7. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    NASA Technical Reports Server (NTRS)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  8. Counter-ion and dopant effects on charge carriers in intrinsically conductive polymer

    NASA Astrophysics Data System (ADS)

    Ogle, Jonathan; Yehulie, Mandefro; Boehme, Christoph; Whittaker-Brooks, Luisa

    Recently, a significant amount of attention has been devoted to the optimization and applications of organic electronics. In particular, intrinsically conductive polymers have seen a strong continued interest for their use in thermoelectric and photovoltaic devices. With conductivities ranging from 10-8 to 103 S cm-1, the conductive polymer poly(3,4-ethylenedioxythiophene) -PEDOT is one of the most studied solution-processable polymer material due to its unique optical and electronic properties. While charge carriers at lower conductivities have been identified as polarons, an understanding of the electronic structure of PEDOT as its conductivity increases is not well understood. We have investigated the effect that counter-ion exchange and doping has on the polaron concentration of PEDOT via electron paramagnetic resonance, ultraviolet photoelectron spectroscopy, and X-ray absorption fine structure spectroscopy studies. Such studies have allowed us to correlate charge carriers concentrations and the real and virtual electronic states in PEDOT as a function of various dopants. As discussed in our talk, we believe our findings could be extended to the understanding of other polymeric materials.

  9. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  10. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: part 2. effect of increased fiber charge on refining, wet-end application, and hornification

    Treesearch

    Zheng Dang; Thomas Elder; Jeffery S. Hsieh; Arthur J. Ragauskas

    2007-01-01

    The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. Two pulps were investigated: (1) a softwood (SW) kraft pulp (KP) which was bleached elementally chlorine-free (ECF) and sewed as control; and (2) a control pulp treated with alkaline peroxide, which had a higher fiber charge. It was shown that increased fiber...

  11. PRE- AND POST-SYNAPTIC EFFECTS OF MANIPULATING SURFACE CHARGE WITH DIVALENT CATIONS AT THE PHOTORECEPTOR SYNAPSE

    PubMed Central

    CADETTI, L.; THORESON, W. B.; PICCOLINO, M.

    2006-01-01

    Persistence of horizontal cell (HC) light responses in extracellular solutions containing low Ca2+ plus divalent cations to block Ca2+ currents (ICa) has been attributed to Ca2+-independent neurotransmission. Using a retinal slice preparation to record both ICa and light responses, we demonstrate that persistence of HC responses in low [Ca2+]o can instead be explained by a paradoxical increase of Ca2+ influx into photoreceptor terminals arising from surface charge-mediated shifts in ICa activation. Consistent with this explanation, application of Zn2+ or Ni2+ caused a hyperpolarizing block of HC light responses that was relieved by lowering [Ca2+]o. The same concentrations of Zn2+ and Ni2+ reduced the amplitude of ICa at the rod dark potential and this reduction was relieved by a hyperpolarizing shift in voltage dependence induced by lowering [Ca2+]o. Block of ICa by Mg2+, which has weak surface charge effects, was not relieved by low [Ca2+]o. Recovery of HC responses in low [Ca2+]o was assisted by enhancement of rod light responses. To bypass light stimulation, OFF bipolar cells were stimulated by steps to −40 mV applied to presynaptic rods during simultaneous paired recordings. Consistent with surface charge theory, the post-synaptic current was inhibited by Zn2+ and this inhibition was relieved by lowering [Ca2+]o. Nominally divalent-free media produced inversion of HC light responses even though rod light responses remained hyperpolarizing; HC response inversion can be explained by surface charge-mediated shifts in ICa. In summary, HC light responses modifications induced by low divalent cation solutions can be explained by effects on photoreceptor light responses and membrane surface charge without necessitating Ca2+-independent neurotransmission. Furthermore, these results suggest that surface charge effects accompanying physiological changing divalent cation levels in the synaptic cleft may provide a means for modulating synaptic output from photoreceptors

  12. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE PAGES

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    2017-01-01

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  13. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  14. Amplitude-Mode Spectroscopy of Charge Excitations in PTB7 π -Conjugated Donor-Acceptor Copolymer for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Vardeny, Shai R.; Lafalce, Evan; Peygambarian, Nasser; Vardeny, Z. Valy

    2017-06-01

    We measure the spectra of resonant Raman scattering and doping-induced absorption of pristine films of the π -conjugated donor-acceptor (D -A ) copolymer, namely, thieno[3,4 b]thiophene-alt-benzodithiophene (PTB7), as well as photoinduced absorption spectrum in a blend of PTB7 with fullerene phenyl-C61-butyric acid methyl ester molecules used for organic photovoltaic (OPV) applications. We find that the D -A copolymer contains six strongly coupled vibrational modes having relatively strong Raman-scattering intensity, which are renormalized upon adding charge polarons onto the copolymer chains either by doping or photogeneration. Since the lower-energy charge-polaron absorption band overlaps with the renormalized vibrational modes, they appear as antiresonance lines superposed onto the induced polaron absorption band in the photoinduced absorption spectrum but less so in the doping-induced absorption spectrum. We show that the Raman-scattering, doping-, and photoinduced absorption spectra of PTB7 are well explained by the amplitude mode model, where a single vibrational propagator describes the renormalized modes and their related intensities in detail. From the relative strengths of the induced infrared activity of the polaron-related vibrations and electronic transitions, we obtain the polaron effective kinetic mass in PTB7 using the amplitude mode model to be approximately 3.8 m* , where m* is the electron effective mass. The enhanced polaronic mass in PTB7 may limit the charge mobility, which, in turn, reduces the OPV solar-cell efficiency based on the PTB7-fullerene blend.

  15. Dynamics of bulk versus nanoscale W S2 : Local strain and charging effects

    NASA Astrophysics Data System (ADS)

    Luttrell, R. D.; Brown, S.; Cao, J.; Musfeldt, J. L.; Rosentsveig, R.; Tenne, R.

    2006-01-01

    We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure-property relations in these materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy -polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.

  16. Direct observation of single-charge-detection capability of nanowire field-effect transistors.

    PubMed

    Salfi, J; Savelyev, I G; Blumin, M; Nair, S V; Ruda, H E

    2010-10-01

    A single localized charge can quench the luminescence of a semiconductor nanowire, but relatively little is known about the effect of single charges on the conductance of the nanowire. In one-dimensional nanostructures embedded in a material with a low dielectric permittivity, the Coulomb interaction and excitonic binding energy are much larger than the corresponding values when embedded in a material with the same dielectric permittivity. The stronger Coulomb interaction is also predicted to limit the carrier mobility in nanowires. Here, we experimentally isolate and study the effect of individual localized electrons on carrier transport in InAs nanowire field-effect transistors, and extract the equivalent charge sensitivity. In the low carrier density regime, the electrostatic potential produced by one electron can create an insulating weak link in an otherwise conducting nanowire field-effect transistor, modulating its conductance by as much as 4,200% at 31 K. The equivalent charge sensitivity, 4 × 10(-5) e Hz(-1/2) at 25 K and 6 × 10(-5) e Hz(-1/2) at 198 K, is orders of magnitude better than conventional field-effect transistors and nanoelectromechanical systems, and is just a factor of 20-30 away from the record sensitivity for state-of-the-art single-electron transistors operating below 4 K (ref. 8). This work demonstrates the feasibility of nanowire-based single-electron memories and illustrates a physical process of potential relevance for high performance chemical sensors. The charge-state-detection capability we demonstrate also makes the nanowire field-effect transistor a promising host system for impurities (which may be introduced intentionally or unintentionally) with potentially long spin lifetimes, because such transistors offer more sensitive spin-to-charge conversion readout than schemes based on conventional field-effect transistors.

  17. Transport and charging mechanisms in Ta2O5 thin films for capacitive RF MEMS switches application

    NASA Astrophysics Data System (ADS)

    Persano, A.; Quaranta, F.; Martucci, M. C.; Cretı, P.; Siciliano, P.; Cola, A.

    2010-06-01

    The potential of sputtered Ta2O5 thin films to be used as dielectric layers in capacitive radio frequency microelectromechanical system switches is evaluated by investigating two factors of crucial importance for the performance of these devices which are the transport mechanisms and the charging effects in the dielectric layer. We find that Ta2O5 films show good electrical and dielectrical properties for the considered application in terms of a low leakage current density of 4 nA/cm2 for E =1 MV/cm, a high breakdown field of 4 MV/cm and a high dielectric constant of 32. For electric fields lower than 1 MV/cm the conduction mechanism is found to be variable-range hopping in the temperature range 300-400 K, while nearest-neighbor hopping is observed at higher temperatures. For fields in the range 1-4 MV/cm Poole-Frenkel becomes the dominant conduction mechanism. Current and capacitance transients used to investigate the charging effects show a decay which is well described by the stretched-exponential law, thus providing further insights on capture and emission processes.

  18. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    PubMed Central

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592

  19. A coarse-grained model of the effective interaction for charged amino acid residues and its application to formation of GCN4-pLI tetramer

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Nagao, Hidemi

    2018-03-01

    We present a simple coarse-grained model of the effective interaction for charged amino acid residues, such as Glu and Lys, in a water solvent. The free-energy profile as a function of the distance between two charged amino acid side-chain analogues in an explicit water solvent is calculated with all-atom molecular dynamics simulation and thermodynamic integration method. The calculated free-energy profile is applied to the coarse-grained potential of the effective interaction between two amino acid residues. The Langevin dynamics simulations with our coarse-grained potential are performed for association of a small protein complex, GCN4-pLI tetramer. The tetramer conformation reproduced by our coarse-grained model is similar to the X-ray crystallographic structure. We show that the effective interaction between charged amino acid residues stabilises association and orientation of protein complex. We also investigate the association pathways of GCN4-pLI tetramer.

  20. Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges

    NASA Astrophysics Data System (ADS)

    Cerjan, Alexander; Xiao, Meng; Yuan, Luqi; Fan, Shanhui

    2018-02-01

    We provide a systematic study of non-Hermitian topologically charged systems. Starting from a Hermitian Hamiltonian supporting Weyl points with arbitrary topological charge, adding a non-Hermitian perturbation transforms the Weyl points to one-dimensional exceptional contours. We analytically prove that the topological charge is preserved on the exceptional contours. In contrast to Hermitian systems, the addition of gain and loss allows for a new class of topological phase transition: when two oppositely charged exceptional contours touch, the topological charge can dissipate without opening a gap. These effects can be demonstrated in realistic photonics and acoustics systems.

  1. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  2. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples.

  3. Space charge effect in the spiral inflector

    NASA Astrophysics Data System (ADS)

    Toprek, Dragan

    2000-10-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a "straight" cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO.

  4. The electro-mechanical effect from charge dynamics on polymeric insulation lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alghamdi, H., E-mail: haalghamdi@nu.edu.sa; Faculty of Engineering, Najran University, Najran, P.O.Box 1988; Chen, G.

    For polymeric material used as electrical insulation, the presence of space charges could be the consequence of material degradations that are thermally activated but increased by the application of an electric field. The dynamics of space charge, therefore, can be potentially used to characterize the material. In this direction, a new aging model in which parameters have clear physical meanings has been developed and applied to the material to extrapolate the lifetime. The kinetic equation has been established based on charge trapping and detrapping of the injected charge from the electrodes. The local electromechanical energy stored in the region surroundingmore » the trap is able to reduce the trap-depth with a value related to the electric field. At a level where the internal electric field exceeds the detrapping field in the material, an electron can be efficiently detrapped and the released energy from detrapping process can cause a weak bond or chain scission i.e. material degradation. The model has been applied to the electro-thermally aged low density polyethylene film samples, showing well fitted result, as well as interesting relationships between parameter estimates and insulation morphology.« less

  5. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    PubMed

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  6. 47 CFR 1.1104 - Schedule of charges for applications and other filings for media services.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... filings for media services. 1.1104 Section 1.1104 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Payment § 1.1104 Schedule of charges for applications and other filings for media services. Remit manual filings and/or payment for these services to the: Federal Communications Commission, Media Bureau Services...

  7. 47 CFR 1.1104 - Schedule of charges for applications and other filings for media services.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... filings for media services. 1.1104 Section 1.1104 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Payment § 1.1104 Schedule of charges for applications and other filings for media services. Remit manual filings and/or payment for these services to the: Federal Communications Commission, Media Bureau Services...

  8. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGES

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  9. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  10. 42 CFR 447.53 - Applicability; specification; multiple charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... categorically or medically needy individuals for the following: (1) Children. Services furnished to individuals..., such as hypertension, diabetes, urinary tract infection, and services furnished during the postpartum... must specify— (1) The service for which the charge is made; (2) The amount of the charge; (3) The basis...

  11. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  12. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  13. Physical interactions of charged particles for radiotherapy and space applications.

    PubMed

    Zeitlin, Cary

    2012-11-01

    In this paper, the basic physics by which energetic charged particles deposit energy in matter is reviewed. Energetic charged particles are used for radiotherapy and are encountered in spaceflight, where they pose a health risk to astronauts. They interact with matter through nuclear and electromagnetic forces. Deposition of energy occurs mostly along the trajectory of the incoming particle, but depending on the type of incident particle and its energy, there is some nonzero probability for energy deposition relatively far from the nominal trajectory, either due to long-ranged knock-on electrons (sometimes called delta rays) or from the products of nuclear fragmentation, including neutrons. In the therapy setting, dose localization is of paramount importance, and the deposition of energy outside nominal treatment volumes complicates planning and increases the risk of secondary cancers as well as noncancer effects in normal tissue. Statistical effects are also important and will be discussed. In contrast to radiation therapy patients, astronauts in space receive comparatively small whole-body radiation doses from energetic charged particles and associated secondary radiation. A unique aspect of space radiation exposures is the high-energy heavy-ion component of the dose. This is not present in terrestrial exposures except in carbon-ion radiotherapy. Designers of space missions must limit exposures to keep risk within acceptable limits. These limits are, at present, defined for low-Earth orbit, but not for deep-space missions outside the geomagnetosphere. Most of the uncertainty in risk assessment for such missions comes from the lack of understanding of the biological effectiveness of the heavy-ion component, with a smaller component due to uncertainties in transport physics and dosimetry. These same uncertainties are also critical in the therapy setting.

  14. Magnetic field effects on charge structure factors of gapped graphene structure

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Tawoose, Nasrin

    2018-02-01

    We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.

  15. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  16. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  17. Electrostatic field and charge distribution in small charged dielectric droplets

    NASA Astrophysics Data System (ADS)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  18. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    NASA Astrophysics Data System (ADS)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  19. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The

  20. Kerr electro-optic field mapping study of the effect of charge injection on the impulse breakdown strength of transformer oil

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zahn, M.

    2013-10-01

    The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.

  1. Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology.

    PubMed

    Luo, Jianjun; Tang, Wei; Fan, Feng Ru; Liu, Chaofeng; Pang, Yaokun; Cao, Guozhong; Wang, Zhong Lin

    2016-08-23

    Portable and wearable personal electronics and smart security systems are accelerating the development of transparent, flexible, and thin-film electronic devices. Here, we report a transparent and flexible self-charging power film (SCPF) that functions either as a power generator integrated with an energy storage unit or as a self-powered information input matrix. The SCPF possesses the capability of harvesting mechanical energy from finger motions, based on the coupling between the contact electrification and electrostatic induction effects, and meanwhile storing the generated energy. Under the fast finger sliding, the film can be charged from 0 to 2.5 V within 2094 s and discharge at 1 μA for approximately 1630 s. Furthermore, the film is able to identify personal characteristics during a sliding motion by recording the electric signals related to the person's individual bioelectricity, applied pressing force, sliding speed, and so on, which shows its potential applications in security systems in touchpad technology.

  2. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    PubMed

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  3. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  4. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  5. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  6. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  7. Battery charge regulator is coulometer controlled

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Coulometer controlled battery charge regulator controls nickel/cadmium type primary cells used in space applications. The use of the coulometer as an ampere hour measuring device permits all available current to go to the battery until full charge state is reached, at which time the charge rate is automatically reduced.

  8. 47 CFR 1.1108 - Schedule of charges for applications and other filings for the international telecommunication...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Schedule of charges for applications and other filings for the international telecommunication services. 1.1108 Section 1.1108 Telecommunication FEDERAL... international telecommunication services. Payment can be made electronically using the Commission's electronic...

  9. Electrokinetic Response of Charge-Selective Nanostructured Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Li, Diya; Gao, Feng; Phillip, William; Chang, Hsueh-Chia

    2017-11-01

    Nanostructured polymeric membranes, with a tunable pore size and ease of surface molecular functionalization, are a promising material for separations, filtration, and sensing applications. Recently, such membranes have been fabricated wherein the ion selectivity is imparted by self-assembled functional groups through a two-step process. Amine groups are used to provide a positive surface charge and acid groups are used to yield a negative charge. The membranes can be fabricated as either singly-charged or patterned/mosaic membranes, where there are alternating regions of amine- lined or acid-lined pores. We demonstrate that such membranes, in addition to having many features in common with other charge selective membranes (i.e. AMX or Nafion), display a unique single-membrane rectification behavior. This is due to the asymmetric distribution of charged functional groups during the fabrication process. We demonstrate this rectification effect using both dc current-voltage characteristics as well as dc-biased electrical impedance spectroscopy. Furthermore, surface charge changes due to dc concentration polarization and generation of localized pH shifts are monitored using electrical impedance spectroscopy. (formerly at University of Notre Dame).

  10. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  11. Conformational Transitions and Stop-and-Go Nanopore Transport of Single Stranded DNA on Charged Graphene

    PubMed Central

    Shankla, Manish; Aksimentiev, Aleksei

    2014-01-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing. PMID:25296960

  12. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene

    NASA Astrophysics Data System (ADS)

    Shankla, Manish; Aksimentiev, Aleksei

    2014-10-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion, whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing.

  13. Negative space charge effects in photon-enhanced thermionic emission solar converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segev, G.; Weisman, D.; Rosenwaks, Y.

    2015-07-06

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less

  14. Nanotoxicological and teratogenic effects: A linkage between dendrimer surface charge and zebrafish developmental stages.

    PubMed

    Calienni, Maria Natalia; Feas, Daniela Agustina; Igartúa, Daniela Edith; Chiaramoni, Nadia Silvia; Alonso, Silvia Del Valle; Prieto, Maria Jimena

    2017-12-15

    This article reports novel results about nanotoxicological and teratogenic effects of the PAMAM dendrimers DG4 and DG4.5 in zebrafish (Danio rerio). Zebrafish embryos and larvae were used as a rapid, high-throughput, cost-effective whole-animal model. The objective was to provide a more comprehensive and predictive developmental toxicity screening of DG4 and DG4.5 and test the influence of their surface charge. Nanotoxicological and teratogenic effects were assessed at developmental, morphological, cardiac, neurological and hepatic level. The effect of surface charge was determined in both larvae and embryos. DG4 with positive surface charge was more toxic than DG4.5 with negative surface charge. DG4 and DG4.5 induced teratogenic effects in larvae, whereas DG4 also induced lethal effects in both zebrafish embryos and larvae. However, larvae were less sensitive than embryos to the lethal effects of DG4. The platform of assays proposed and data obtained may contribute to the characterization of hazards and differential effects of these nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Charge-pump voltage converter

    DOEpatents

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  16. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium - Ion Battery Failure: Effects of State of Charge and Packing...PAGES 17. LIMITATION OF ABSTRACT Lithium - Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...Steven G. Tuttle (202) 404-3419 Lithium - ion battery safety remains a significant concern, as battery failure leads to ejection of hazardous materials

  17. Effect of electrostatic interactions on the ultrafiltration behavior of charged bacterial capsular polysaccharides.

    PubMed

    Hadidi, Mahsa; Buckley, John J; Zydney, Andrew L

    2016-11-01

    Charged polysaccharides are used in the food industry, as cosmetics, and as vaccines. The viscosity, thermodynamics, and hydrodynamic properties of these charged polysaccharides are known to be strongly dependent on the solution ionic strength because of both inter- and intramolecular electrostatic interactions. The goal of this work was to quantitatively describe the effect of these electrostatic interactions on the ultrafiltration behavior of several charged capsular polysaccharides obtained from Streptococcus pneumoniae and used in the production of Pneumococcus vaccines. Ultrafiltration data were obtained using various Biomax™ polyethersulfone membranes with different nominal molecular weight cutoffs. Polysaccharide transmission decreased with decreasing ionic strength primarily because of the expansion of the charged polysaccharide associated with intramolecular electrostatic repulsion. Data were in good agreement with a simple theoretical model based on solute partitioning in porous membranes, with the effective size of the different polysaccharide serotypes evaluated using size exclusion chromatography at the same ionic conditions. These results provide fundamental insights and practical guidelines for exploiting the effects of electrostatic interactions during the ultrafiltration of charged polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1531-1538, 2016. © 2016 American Institute of Chemical Engineers.

  18. Effect of Layer Charge on CO2 and H2O Intercalations in Swelling Clays.

    PubMed

    Rao, Qi; Leng, Yongsheng

    2016-11-08

    The effect of layer charge on the intercalation of supercritical carbon dioxide (scCO 2 )-H 2 O mixture in Na-montmorillonite clay interlayers under T = 323 K and P = 90 bar geologic sequestration conditions has been further investigated. This effect includes the charge amount and its location (within either octahedral or tetrahedral layers due to isomorphic substitutions). Two clay models with different layer charges are used in this study. Simulation results show that the increase of charge amount shifts the monolayer-to-bilayer (1W-to-2W) hydration transition toward the lower relative humidity (RH), increasing water sorption at the expense of reducing the overall sorption amount of CO 2 in the clay interlayer. However, the combination of the influence of charge amount and charge location leads to insignificant changes in equilibrium basal spacings of the high- and low-charge clays. Molecular dynamics simulations show that the CO 2 dimers, which are frequently seen in low-charge clay interlayers, vanish in high-charge clay interlayers even at low RH of 30%.

  19. A Monte Carlo modeling on charging effect for structures with arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.

    2018-04-01

    Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution

  20. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Yoon, Sangcheol; Park, Byoungchoo; Hwang, Inchan

    2015-11-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole-Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers.

  1. 47 CFR 1.1108 - Schedule of charges for applications and other filings for the international telecommunication...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Schedule of charges for applications and other filings for the international telecommunication services. 1.1108 Section 1.1108 Telecommunication FEDERAL... international telecommunication services. Remit payment (along with a copy of invoice) for these services to the...

  2. 47 CFR 1.1108 - Schedule of charges for applications and other filings for the international telecommunication...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Schedule of charges for applications and other filings for the international telecommunication services. 1.1108 Section 1.1108 Telecommunication FEDERAL... international telecommunication services. Remit payment (along with a copy of invoice) for these services to the...

  3. 47 CFR 1.1108 - Schedule of charges for applications and other filings for the international telecommunication...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Schedule of charges for applications and other filings for the international telecommunication services. 1.1108 Section 1.1108 Telecommunication FEDERAL... telecommunication services. Remit payment (along with a copy of invoice) for these services to the: Federal...

  4. 47 CFR 1.1108 - Schedule of charges for applications and other filings for the international telecommunication...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Schedule of charges for applications and other filings for the international telecommunication services. 1.1108 Section 1.1108 Telecommunication FEDERAL... telecommunication services. Remit payment (along with a copy of invoice) for these services to the: Federal...

  5. The Effect of Variable End of Charge Battery Management on Small-Cell Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Simmons, Nick; Bennetti, Andrea; Pearson, Chris; Reid, Concha

    2007-01-01

    ABSL Space Products is the world leading supplier of Lithium-ion batteries for space applications and has pioneered the use of small capacity COTS cells within large arrays. This small-cell approach has provided many benefits to space application designers through increased flexibility and reliability over more traditional battery designs. The ABSL 18650HC cell has been used in most ABSL space battery applications to date and has a recommended End Of Charge Voltage (EOCV) of 4.2V per cell. For all space applications using the ABSL 18650HC so far, this EOCV has been used at all stages of battery life from ground checkout to in orbit operations. ABSL and NASA have identified that, by using a lower EOCV for the same equivalent Depth Of Discharge (DOD), battery capacity fade could be reduced. The intention of this paper is to compare battery performance for systems with fixed and variable EOCV. In particular, the effect of employing the blanket value of 4.2V per cell versus utilizing a lower EOCV at Beginning Of Life (BOL) before gradually increasing it (as the effects of capacity fade drive the End Of Discharge Voltage closer to the acceptable system level minimum) is analyzed. Data is compared from ABSL in-house and NASA GRC tests that have been run under fixed and variable EOCV conditions. Differences in capacity fade are discussed and projections are made as to potential life extension capability by utilizing a variable EOCV strategy.

  6. Effect of ion compensation of the beam space charge on gyrotron operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokin, A. P.; Glyavin, M. Yu.; Nusinovich, G. S.

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ionmore » compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.« less

  7. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds

    NASA Astrophysics Data System (ADS)

    Neel, Matthew Stephen

    2018-03-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining <10% of lightning strikes is "positive lightning," or the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  8. 47 CFR 3.45 - Amount of charges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Amount of charges. 3.45 Section 3.45... charges. Accounting Authorities may charge any reasonable fee for their settlement services. Settlements... International Telecommunication Regulations (ITR) taking into account the applicable ITU-T Recommendations and...

  9. Clinical application of the cardioprotective effects of volatile anaesthetics: PRO--get an extra benefit from a proven anaesthetic free of charge.

    PubMed

    Bein, Berthold

    2011-09-01

    Volatile anaesthetic agents have been used in millions of patients around the world and have proved to be both well tolerated and efficient. In recent years, cardioprotective properties of these drugs have been demonstrated unequivocally in numerous experimental investigations, but the beneficial effects of volatile anaesthetics in daily clinical practice are still under debate. In order to elucidate their cardioprotective properties in an unbiased way, the STAIR (Stroke Therapy Academic Industry Roundtable Preclinical Recommendation) criteria proposed as a framework for researchers in the field of neuroprotection can be applied to research conducted in the field of cardioprotection by volatile anaesthetics. All STAIR criteria have already been clearly fulfilled when all experimental and clinical studies are considered. Specifically, a dose-response pattern has been found with a minimal alveolar concentration value and a ceiling effect; volatile anaesthetics show two distinct therapeutic windows after application; important outcome measures such as hospital length of stay have been addressed; and multiple species have been studied by different independent groups of researchers who were largely able to reproduce their findings. Given the numerous confounding factors capable of attenuating or even abolishing the cardioprotective properties of volatile anaesthetics in laboratory investigations, the positive effects found in the majority of clinical trials point to the fact that the cardioprotective effects exerted by volatile anaesthetics are robust and triggered by interactions with several distinct cellular and subcellular targets, thereby providing multiplication and reiteration. The available evidence indicates that volatile anaesthetic agents should be used routinely in clinical practice in order to claim an extra benefit for our patients 'free of charge'.

  10. Strain-engineered inverse charge-funnelling in layered semiconductors.

    PubMed

    De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio

    2018-04-25

    The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.

  11. Space charge effects on the dielectric response of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Shen, Zhong-Hui; Wang, Jian-Jun; Zhang, Xin; Lin, Yuanhua; Nan, Ce-Wen; Chen, Long-Qing; Shen, Yang

    2017-08-01

    Adding high-κ ceramic nanoparticles into polymers is a general strategy to improve the performances in energy storage. Classic effective medium theories may fail to predict the effective permittivity in polymer nanocomposites wherein the space charge effects are important. In this work, a computational model is developed to understand the space charge effects on the frequency-dependent dielectric properties including the real permittivity and the loss for polymer nanocomposites with both randomly distributed and aggregated nanoparticle fillers. It is found that the real permittivity of the SrTiO3/polyethylene (12% SrTiO3 in volume fraction) nanocomposite can be increased to as high as 60 when there is nanoparticle aggregation and the ion concentration in the bulk polymer is around 1016 cm-3. This model can be employed to quantitatively predict the frequency-dependent dielectric properties for polymer nanocomposites with arbitrary microstructures.

  12. Charge noise in quantum dot qubits: beyond the Markovian approximation.

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.

    Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.

  13. Mobile charge, soft breakdown, and self-healing in hydrogen silsesquioxane based intermetal dielectric

    NASA Astrophysics Data System (ADS)

    Devine, R. A. B.

    2002-09-01

    The electrical characteristics of hydrogen silsesquioxane based flowable oxide (FOxregistered) films proposed for interconnect isolation applications have been studied. It is demonstrated that negative and positive charges exist in the as-made, cured films with densities of 0.95 x1012 and 1.5 x1012 cm-2, respectively for thicknesses of 114 nm. The negative charges can be removed from the films by application of modest electric fields (positive or negative, approx1.75 MV cm-1). The positive charge can be similarly displaced but not removed from the film; this results in time dependent relaxation and redistribution of the positive charge if the films are left unbiased. Time dependent irreversible evolution of the leakage current under positive and negative bias (approx3 MV cm-1) shows a slow breakdown phenomena. An unusual self-healing effect is evidenced in these films.

  14. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  15. A Cost-Effective Electric Vehicle Charging Method Designed For Residential Homes with Renewable Energy

    NASA Astrophysics Data System (ADS)

    Lie, T. T.; Liang, Xiuli; Haque, M. H.

    2015-03-01

    Most of the electrical infrastructure in use around the world today is decades old, and may be illsuited to widespread proliferation of personal Electric Vehicles (EVs) whose charging requirements will place increasing strain on grid demand. In order to reduce the pressure on the grid and taking benefits of off peak charging, this paper presents a smart and cost effective EV charging methodology for residential homes equipped with renewable energy resources such as Photovoltaic (PV) panels and battery. The proposed method ensures slower battery degradation and prevents overcharging. The performance of the proposed algorithm is verified by conducting simulation studies utilizing running data of Nissan Altra. From the simulation study results, the algorithm is shown to be effective and feasible which minimizes not only the charging cost but also can shift the charging time from peak value to off-peak time.

  16. 16 CFR 444.4 - Late charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... period and is paid on its due date or within an applicable grace period, when the only delinquency is attributable to late fee(s) or delinquency charge(s) assessed on earlier installment(s). (b) For purposes of...

  17. Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.

    2018-02-01

    We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.

  18. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  19. Effects of ionizing radiation on charge-coupled imagers

    NASA Technical Reports Server (NTRS)

    Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.

    1975-01-01

    The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.

  20. IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Caselli, P.; Akimkin, V. V., E-mail: ivlev@mpe.mpg.de

    2016-12-10

    Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance ofmore » the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.« less

  1. Spin and charge thermopower effects in the ferromagnetic graphene junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahedi, Javad, E-mail: javahedi@gmail.com; Center for Theoretical Physics of Complex Systems, Institute for Basic Science; Barimani, Fattaneh

    2016-08-28

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchangemore » filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.« less

  2. Applications and assessment of QM:QM electronic embedding using generalized asymmetric Mulliken atomic charges.

    PubMed

    Parandekar, Priya V; Hratchian, Hrant P; Raghavachari, Krishnan

    2008-10-14

    Hybrid QM:QM (quantum mechanics:quantum mechanics) and QM:MM (quantum mechanics:molecular mechanics) methods are widely used to calculate the electronic structure of large systems where a full quantum mechanical treatment at a desired high level of theory is computationally prohibitive. The ONIOM (our own N-layer integrated molecular orbital molecular mechanics) approximation is one of the more popular hybrid methods, where the total molecular system is divided into multiple layers, each treated at a different level of theory. In a previous publication, we developed a novel QM:QM electronic embedding scheme within the ONIOM framework, where the model system is embedded in the external Mulliken point charges of the surrounding low-level region to account for the polarization of the model system wave function. Therein, we derived and implemented a rigorous expression for the embedding energy as well as analytic gradients that depend on the derivatives of the external Mulliken point charges. In this work, we demonstrate the applicability of our QM:QM method with point charge embedding and assess its accuracy. We study two challenging systems--zinc metalloenzymes and silicon oxide cages--and demonstrate that electronic embedding shows significant improvement over mechanical embedding. We also develop a modified technique for the energy and analytic gradients using a generalized asymmetric Mulliken embedding method involving an unequal splitting of the Mulliken overlap populations to offer improvement in situations where the Mulliken charges may be deficient.

  3. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  4. Nonlinear effects on electrophoresis of a charged dielectric nanoparticle in a charged hydrogel medium

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; De, Simanta

    2016-09-01

    The impact of the solid polarization of a charged dielectric particle in gel electrophoresis is studied without imposing a weak-field or a thin Debye length assumption. The electric polarization of a dielectric particle due to an external electric field creates a non-uniform surface charge density, which in turn creates a non-uniform Debye layer at the solid-gel interface. The solid polarization of the particle, the polarization of the double layer, and the electro-osmosis of mobile ions within the hydrogel medium create a nonlinear effect on the electrophoresis. We have incorporated those nonlinear effects by considering the electrokinetics governed by the Stokes-Brinkman-Nernst-Planck-Poisson equations. We have computed the governing nonlinear coupled set of equations numerically by adopting a finite volume based iterative algorithm. Our numerical method is tested for accuracy by comparing with several existing results on free-solution electrophoresis as well as results based on the Debye-Hückel approximation. Our computed result shows that the electrophoretic velocity decreases with the rise of the particle dielectric permittivity constant and attains a saturation limit at large values of permittivity. A significant impact of the solid polarization is found in gel electrophoresis compared to the free-solution electrophoresis.

  5. Test results of modified electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.; Huang, K. H.

    1983-01-01

    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m.

  6. The effect of charge on the release kinetics from polysaccharide-nanoclay composites

    NASA Astrophysics Data System (ADS)

    Del Buffa, Stefano; Grifoni, Emanuele; Ridi, Francesca; Baglioni, Piero

    2015-03-01

    The objective of this study was to integrate inorganic halloysite nanotubes (HNT) with chitosan and hyaluronic acid to obtain hybrid nanocomposites with opposing charges and to investigate their potential in the controlled release of drug model probes. Two oppositely charged polysaccharides, chitosan and hyaluronic acid, were selected for their biocompatibility and their importance in biomedical applications. The high surface area and the hollow nanometric-sized lumen of HNT allowed for the efficient loading of rhodamine 110 and carboxyfluorescein, used as models for oppositely charged drugs. In the case of chitosan, the preparation of the nanocomposite was carried out exploiting the electrostatic interaction between the polymer and HNT in water, while with hyaluronic acid, a covalent functionalization strategy was employed to couple the polymer with the clay. Nanocomposites were characterized with thermal, microscopic, and spectroscopic techniques, and the release kinetics of the model compounds was assessed by fluorescence measurements. The release curves were fitted with a model able to account for the desorption process from the external and the internal halloysite surfaces. The results show that both polymeric coatings alter the release of the probes, indicating a key role of both charge and coating composition on the initial and final amount of released dye, as well as on the rate of the desorption process.

  7. Space charge effect in spectrometers of ion mobility increment with planar drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.

  8. EFFECT OF LOADING DUST TYPE ON THE FILTRATION EFFICIENCY OF ELECTROSTATICALLY CHARGED FILTERS

    EPA Science Inventory

    The paper gives results of an evaluation of the effect of loading dust type on the filtration efficiency of electrostatically charged filters. Three types of filters were evaluated: a rigid-cell filter charged using an electrodynamic spinning process, a pleated-panel filter cha...

  9. Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers

    NASA Astrophysics Data System (ADS)

    Geng, Rugang; Subedi, Ram C.; Luong, Hoang M.; Pham, Minh T.; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A.; Nguyen, Tho D.

    2018-02-01

    Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1 /N0.5 has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1 /N0.52 in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

  10. Effect of Charge Localization on the Effective Hyperfine Interaction in Organic Semiconducting Polymers.

    PubMed

    Geng, Rugang; Subedi, Ram C; Luong, Hoang M; Pham, Minh T; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A; Nguyen, Tho D

    2018-02-23

    Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

  11. Dot size effects of nanocrystalline germanium on charging dynamics of memory devices

    PubMed Central

    2013-01-01

    The dot size of nanocrystalline germanium (NC Ge) which impacts on the charging dynamics of memory devices has been theoretically investigated. The calculations demonstrate that the charge stored in the NC Ge layer and the charging current at a given oxide voltage depend on the dot size especially on a few nanometers. They have also been found to obey the tendency of initial increase, then saturation, and lastly, decrease with increasing dot size at any given charging time, which is caused by a compromise between the effects of the lowest conduction states and the capacitance of NC Ge layer on the tunneling. The experimental data from literature have also been used to compare and validate the theoretical analysis. PMID:23305228

  12. Charged drop dynamics experiment using an electrostatic-acoustic hybrid system

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Trinh, E. H.; Elleman, D. D.

    1987-01-01

    The design and the performance of an electrostatic-acoustic hybrid system and its application to a charge drop rotation experiment are presented. This system can levitate a charged drop electrostatically and induce drop rotation or oscillation by imposing an acoustic torque or an oscillating acoustic pressure. Using this system, the equilibrium shapes and stability of a rotating charged drop were experimentally investigated. A 3 mm size water drop was rotated as a rigid body and its gyrostatic equilibrium shapes were observed. Families of axisymmetric shapes, two-lobed shapes, and eventual fissioning have been observed. With the assumption of 'effective surface tension' in which the surface charge simply modified the surface tension of neutral liquid, the results agree exceptionally well with the Brown and Scriven's (1980) prediction for uncharged drops.

  13. 78 FR 41184 - Notice of Intent To Rule on Passenger Facility Charge (PFC) Application 11-05-C-00-SFO to Impose...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Facility Charge (PFC) Application 11-05-C-00-SFO to Impose and Use PFC Revenue at San Francisco... the application to impose and use PFC revenue at San Francisco International Airport (SFO), under the... FAA proposes to rule and invites public comment on the application to impose and use PFC revenue at...

  14. Cost-effective electric vehicle charging infrastructure siting for Delhi

    DOE PAGES

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; ...

    2016-06-10

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model - an agent-basedmore » simulation modeling platform - was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ~10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of $4.4 M (or $ 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.« less

  15. Cost-effective electric vehicle charging infrastructure siting for Delhi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model - an agent-basedmore » simulation modeling platform - was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ~10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of $4.4 M (or $ 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.« less

  16. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  17. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  18. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    PubMed

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  19. The effects of motif net charge and amphiphilicity on the self-assembly of functionally designer RADA16-I peptides.

    PubMed

    Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin

    2018-03-16

    RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.

  20. NASA's Technical Handbook for Avoiding On-Orbit ESD Anomalies Due to Internal Charging Effects

    NASA Technical Reports Server (NTRS)

    Whittlesey, Albert; Garrett, Henry B.

    1996-01-01

    This paper describes NASA-HDBK-4002, "Avoiding Problems Caused by Spacecraft On-Orbit Internal Charging Effects". The handbook includes a description of internal charging and why it is of concern to spacecraft designers. It also suggests how to determine when a project needs to consider internal spacecraft charging, it contains an electron penetration depth chart, rationale for a critical electron flux criterion, a worst-case geosynchronous electron plasma spectrum, general design guidelines, quantitative design guidelines, and a typical materials characteristics list. Appendices include a listing of some environment codes, electron transport codes, a discussion of geostationary electron plasma environments, a brief description of electron beam and other materials tests, and transient susceptibility tests. The handbook will be in the web page, hftp://standards.nasa.gov. A prior document, NASA TP2361 "Design Guidelines for Assessing and controlling Spacecraft Charging Effects", 1984, is in use to describe mitigation techniques for the effects of surface charging of satellites in space plasma environments. HDBK-4002 is meant to complement 2361 and together, the pair of documents describe both cause and mitigation designs for problems caused by energetic space plasmas.

  1. MOSFET Electric-Charge Sensor

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  2. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    PubMed

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  3. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less

  4. CHARGE-2 rocket observations of vehicle charging and charge neutralization

    NASA Astrophysics Data System (ADS)

    Banks, P. M.; Gilchrist, B. E.; Neubert, T.; Myers, N.; Raitt, W. J.; Williamson, P. R.; Fraser-Smith, A. C.; Sasaki, S.

    Observations of electrical charging and other phenomena have been made in the ionosphere with the CHARGE-2 tethered rocket system. In this experiment, two electrically connected payloads with a variety of plasma instruments measured effects associated with operation of a 1 keV, 40 mA electron gun and a 450-volt dc power supply. During electron beam operations, it was found that both mother and daughter payloads reached high positive potentials as a consequence of the restricted electron current collecting area of the payloads. During neutral gas thruster firings, the payload potentials were dramatically reduced, indicating that electrical discharges could effectively ground each payload to plasma potential. Other thruster-related effects were also seen, including substantial reductions of return current-associated electrical noise at HF and VLF and large increases in 3914 A light in the plasma sheath.

  5. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  6. Zero-point fluctuations in naphthalene and their effect on charge transport parameters.

    PubMed

    Kwiatkowski, Joe J; Frost, Jarvist M; Kirkpatrick, James; Nelson, Jenny

    2008-09-25

    We calculate the effect of vibronic coupling on the charge transport parameters in crystalline naphthalene, between 0 and 400 K. We find that nuclear fluctuations can cause large changes in both the energy of a charge on a molecule and on the electronic coupling between molecules. As a result, nuclear fluctuations cause wide distributions of both energies and couplings. We show that these distributions have a small temperature dependence and that, even at high temperatures, vibronic coupling is dominated by the effect of zero-point fluctuations. Because of the importance of zero-point fluctuations, we find that the distributions of energies and couplings have substantial width, even at 0 K. Furthermore, vibronic coupling with high energy modes may be significant, even though these modes are never thermally activated. Our results have implications for the temperature dependence of charge mobilities in organic semiconductors.

  7. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    PubMed

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO 2 film.

  8. Study on high breakdown voltage GaN-based vertical field effect transistor with interfacial charge engineering for power applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Liu, Yong; Bai, Zhiyuan; Jiang, Zhiguang; Liu, Yang; Yu, Qi

    2017-11-01

    A high voltage GaN-based vertical field effect transistor with interfacial charge engineering (GaN ICE-VFET) is proposed and its breakdown mechanism is presented. This vertical FET features oxide trenches which show a fixed negative charge at the oxide/GaN interface. In the off-state, firstly, the trench oxide layer acts as a field plate; secondly, the n-GaN buffer layer is inverted along the oxide/GaN interface and thus a vertical hole layer is formed, which acts as a virtual p-pillar and laterally depletes the n-buffer pillar. Both of them modulate electric field distribution in the device and significantly increase the breakdown voltage (BV). Compared with a conventional GaN vertical FET, the BV of GaN ICE-VFET is increased from 1148 V to 4153 V with the same buffer thickness of 20 μm. Furthermore, the proposed device achieves a great improvement in the tradeoff between BV and on-resistance; and its figure of merit even exceeds the GaN one-dimensional limit.

  9. Surface charge sensing by altering the phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y.

    2014-08-01

    Detection of surface charges has various applications in medicine, electronics, biotechnology, etc. The source of surface charge induction may range from simple charge-polarized molecules like water to complicated proteins. It was recently discovered that surface charge accumulation can alter the temperature at which VO2 undergoes a Mott transition. Here, we deposited polar molecules onto the surface of two-terminal thin-film VO2 lateral devices and monitored the joule-heating-driven Mott transition, or conductance switching. We observed that the power required to induce the conductance switching reduced upon treatment with polar molecules and, using in-situ blackbody-emission direct measurement of local temperature, we show that this reduction in power was accompanied by reduction in the Mott transition temperature. Further evidence suggested that this effect has specificity to the nature of the species used to induce surface charges. Using x-ray absorption spectroscopy, we also show that there is no detectable change in oxidation state of vanadium or structural phase in the bulk of the 40 nm VO2 thin-film even as the phase transition temperature is reduced by up to 20 K by the polar molecules. The ability to alter the phase transition parameters by depositing polar molecules suggests a potential application in sensing surface charges of different origins and this set of results also highlights interesting aspects of the phase transition in VO2.

  10. Charging and geometric effects on conduction through Anthracene molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick

    We studied the geometric effects on the charge transfer through the anthracenedithiol (ADT) molecular junction using density functional theory combined with the non-equilibrium Green’s function approach. Two major geometric aspects, bond length and bond angle, were moderated to optimize the electrical conduction. From the results established in this paper, we found that the electrical conduction can be tuned from 0.2 G0 to 0.9 G0 by varying the Au-S bond length, whereas the moderation of bonding angle assayed a minor change from 0.37 G0 to 0.47 G0. We attributed this escalating zero bias conductance to the increasing charge on the terminal sulfur atom of the ADT molecule, which increased the energy of the HOMO orbital towards Fermi level and exhibited a semi-metallic behaviour. Therefore, geometry plays a critical role in deciding the charge transport through the metal/molecule interface.

  11. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  12. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  13. Ferroelectric Diodes with Charge Injection and Trapping

    NASA Astrophysics Data System (ADS)

    Fan, Zhen; Fan, Hua; Lu, Zengxing; Li, Peilian; Huang, Zhifeng; Tian, Guo; Yang, Lin; Yao, Junxiang; Chen, Chao; Chen, Deyang; Yan, Zhibo; Lu, Xubing; Gao, Xingsen; Liu, Jun-Ming

    2017-01-01

    Ferroelectric diodes with polarization-modulated Schottky barriers are promising for applications in resistive switching (RS) memories. However, they have not achieved satisfactory performance reliability as originally hoped. The physical origins underlying this issue have not been well studied, although they deserve much attention. Here, by means of scanning Kelvin probe microscopy we show that the electrical poling of ferroelectric diodes can cause significant charge injection and trapping besides polarization switching. We further show that the reproducibility and stability of switchable diode-type RS behavior are significantly affected by the interfacial traps. A theoretical model is then proposed to quantitatively describe the modifications of Schottky barriers by charge injection and trapping. This model is able to reproduce various types of hysteretic current-voltage characteristics as experimentally observed. It is further revealed that the charge injection and trapping can significantly modify the electroresistance ratio, RS polarity, and high- or low-resistance states initially defined by the polarization direction. Several approaches are suggested to suppress the effect of charge injection and trapping so as to realize high-performance polarization-reversal-induced RS. This study, therefore, reveals the microscopic mechanisms for the RS behavior comodulated by polarization reversal and charge trapping in ferroelectric diodes, and also provides useful suggestions for developing reliable ferroelectric RS memories.

  14. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.

    PubMed

    Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva

    2008-11-01

    Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.

  15. Space-Charge Effect on Residual Energy Under Intense Ultrashort Pulse Laser

    NASA Astrophysics Data System (ADS)

    Chen, Shi-gang; Wang, You-qin; Nie, Xiaebo

    1996-12-01

    Can the space-charge effect reduce the above-threshold-ionization (ATI) energy? This problem is analyzed by using the technique of multiple-time-scale perturbation. As the optical frequency is much larger than the plasma frequency, the space-charge effect is then reduced to the ponderomotive effect. It is found that the ponderomotive effect on residual energy is great as half plasma period is larger than pulse length, however, it cannot reduce the ATI energy over the whole density range. The relevant experiments are analyzed. Their results support our conclusions. Finally, it is pointed out that for a given pulse laser there may be a density range available for optical field ionization x-ray laser over which only the ATI heating plays role. The project supported by the National Natural Science Foundation of China and the Science Foundation of the Chinese Academy of Engineering Physics

  16. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  17. Bactericidal Effects of Charged Silver Nanoparticles in Methicillin-resistant Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Romero-Urbina, Dulce; Velazquez-Salazar, J. Jesus; Lara, Humberto H.; Arellano-Jimenez, Josefina; Larios, Eduardo; Yuan, Tony T.; Hwang, Yoon; Desilva, Mauris N.; Jose-Yacaman, Miguel

    2015-03-01

    The increased number of infections due to antibiotic-resistant bacteria is a major concern to society. The objective of this work is to determine the effect of positively charged AgNPs on methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus(MRSA) cell wall using advanced electron microscopy techniques. Positively charged AgNPs suspensions were synthesized via a microwave heating technique. The suspensions were then characterized by Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) showing AgNPs size range from 5 to 30 nm. MSSA and MRSA were treated with positively charged AgNPs concentrations ranging from 0.06 mM to 31 mM. The MIC50 studies showed that viability of MSSA and MRSA could be reduced by 50% at a positively charged AgNPs concentration of 0.12 mM supported by Scanning-TEM (STEM) images demonstrating bacteria cell wall disruption leading to lysis after treatment with AgNPs. The results provide insights into one mechanism in which positively charged AgNPs are able to reduce the viability of MSSA and MRSA. This research is supported by National Institute on Minority Health and Health Disparities (G12MD007591) from NIH, NSF-PREM Grant No. DMR-0934218, The Welch Foundation and NAMRU-SA work number G1009.

  18. The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.

    PubMed

    Hao, Jane L; Hills, Martin J; Tam, Vivian W Y

    2008-12-01

    The Hong Kong Government introduced the Construction Waste Disposal Charging Scheme in December 2005 to ensure that disposal of construction and demolition (C&D) waste is properly priced to reduce such waste. The charging scheme is not only intended to provide an economic incentive for contractors and developers to reduce waste but also to encourage reuse and recycling of waste material thereby slowing down the depletion of limited landfill and public filling capacities. This paper examines the effectiveness of the charging scheme 1 year after implementation. A survey was conducted at Tseung Kwan O Area 137 and Tuen Mun Area 38, and daily C&D waste records were collected from landfills and public filling facilities between January 2006 and December 2006. The results of the survey show that waste has been reduced by approximately 60% in landfills, by approximately 23% in public fills, and by approximately 65% in total waste between 2005 and 2006. Suggestions for improving the scheme are provided.

  19. Effect of current density on electron beam induced charging in MgO

    NASA Astrophysics Data System (ADS)

    Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy

    2005-11-01

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  20. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    NASA Astrophysics Data System (ADS)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  1. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    Possible proximity effects in gases of cold, multiply charged atoms are discussed. Here we deal with rarefied gases with densities nd of multiply charged (Z ≫ 1) atoms at low temperatures in the well-known Thomas-Fermi (TF) approximation, which can be used to evaluate the statistical properties of single atoms. In order to retain the advantages of the TF formalism, which is successful for symmetric problems, the external boundary conditions accounting for the finiteness of the density of atoms (donors), nd ≠ 0, are also symmetrized (using a spherical Wigner-Seitz cell) and formulated in a standard way that conserves the total charge within the cell. The model shows that at zero temperature in a rarefied gas of multiply charged atoms there is an effective long-range interaction Eproxi(nd), the sign of which depends on the properties of the outer shells of individual atoms. The long-range character of the interaction Eproxi is evaluated by comparing it with the properties of the well-known London dispersive attraction ELond(nd) < 0, which is regarded as a long-range interaction in gases. For the noble gases argon, krypton, and xenon Eproxi>0 and for the alkali and alkaline-earth elements Eproxi < 0. At finite temperatures, TF statistics manifests a new, anomalously large proximity effect, which reflects the tendency of electrons localized at Coulomb centers to escape into the continuum spectrum. The properties of thermal decay are interesting in themselves as they determine the important phenomenon of dissociation of neutral complexes into charged fragments. This phenomenon appears consistently in the TF theory through the temperature dependence of the different versions of Eproxi. The anomaly in the thermal proximity effect shows up in the following way: for T ≠ 0 there is no equilibrium solution of TS statistics for single multiply charged atoms in a vacuum when the effect is present. Instability is suppressed in a Wigner-Seitz model under the assumption that

  2. The Efficiency of Different Salts to Screen Charge Interactions in Proteins: A Hofmeister Effect?

    PubMed Central

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2004-01-01

    Understanding the screening by salts of charge-charge interactions in proteins is important for at least two reasons: a), screening by intracellular salt concentration may modulate the stability and interactions of proteins in vivo; and b), the in vitro experimental estimation of the contributions from charge-charge interactions to molecular processes involving proteins is generally carried out on the basis of the salt effect on process energetics, under the assumption that these interactions are screened out by moderate salt concentrations. Here, we explore experimentally the extent to which the screening efficiency depends on the nature of the salt. To this end, we have carried out an energetic characterization of the effect of NaCl (a nondenaturing salt), guanidinium chloride (a denaturing salt), and guanidinium thiocyanate (a stronger denaturant) on the stability of the wild-type form and a T14K variant of Escherichia coli thioredoxin. Our results suggest that the efficiency of different salts to screen charge-charge interactions correlates with their denaturing strength and with the position of the constituent ions in the Hofmeister rankings. This result appears consistent with the plausible relation of the Hofmeister rankings with the extent of solute accumulation/exclusion from protein surfaces. PMID:15041679

  3. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  4. 46 CFR Exhibit No. 1 to Subpart Q... - Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 9 2012-10-01 2012-10-01 false Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error No. Exhibit No. 1 to Subpart Q [§ 502.271(d)] of Part 502 Shipping... or Waiver of Freight Charges Pt. 502, Subpt. Q, Exh. 1 Exhibit No. 1 to Subpart Q [§ 502.271(d)] of...

  5. 46 CFR Exhibit No. 1 to Subpart Q... - Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 9 2013-10-01 2013-10-01 false Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error No. Exhibit No. 1 to Subpart Q [§ 502.271(d)] of Part 502 Shipping... or Waiver of Freight Charges Pt. 502, Subpt. Q, Exh. 1 Exhibit No. 1 to Subpart Q [§ 502.271(d)] of...

  6. 46 CFR Exhibit No. 1 to Subpart Q... - Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 9 2014-10-01 2014-10-01 false Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error No. Exhibit No. 1 to Subpart Q [§ 502.271(d)] of Part 502 Shipping... or Waiver of Freight Charges Pt. 502, Subpt. Q, Exh. 1 Exhibit No. 1 to Subpart Q [§ 502.271(d)] of...

  7. 46 CFR Exhibit No. 1 to Subpart Q... - Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error No. Exhibit No. 1 to Subpart Q [§ 502.271(d)] of Part 502 Shipping... or Waiver of Freight Charges Pt. 502, Subpt. Q, Exh. 1 Exhibit No. 1 to Subpart Q [§ 502.271(d)] of...

  8. 46 CFR Exhibit No. 1 to Subpart Q... - Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 9 2011-10-01 2011-10-01 false Application for Refund or Waiver of Freight Charges Due to Tariff or Quoting Error No. Exhibit No. 1 to Subpart Q [§ 502.271(d)] of Part 502 Shipping... or Waiver of Freight Charges Pt. 502, Subpt. Q, Exh. 1 Exhibit No. 1 to Subpart Q [§ 502.271(d)] of...

  9. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  10. Effect of pectin charge density on formation of multilayer films with chitosan.

    PubMed

    Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska

    2008-04-01

    The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.

  11. The effect of charge transfer fluctuation on superconductivity in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Yihsuan; Wu, Huan-Kuang; Lee, Ting-Kuo

    H i g h - Tc Cuprates have been studied quite often as an effective one band t - J model that neglects charge fluctuation between oxygen 2p6 band and copper 3d10 band, and Zhang-Rice singlet is just a hole in the model. However, recent Scanning Tunneling Spectra(STS) measurement on underdoped Cuprate shows that charge transfer gap is only of order 12 eV. This small gap necessitates a re-examination of the charge transfer fluctuation. Here we modify the t-J model by including charge transfer fluctuation allowing the formation of doubly occupied sites. For certain parameters it is similar with the t-J-U model. This model is studied via variational Monte Carlo method(VMC). Our result shows that this model can give a unified behavior of superconducting dome with different long rang hopping parameters. The anti-correlation between charge transfer gap and pairing is also confirmed. More interestingly the charge fluctuation is found to affect pairing order parameter in different ways in underdoped and overdoped regions. This work is partially supported by Taiwan Ministry of Science and Technology with Grant. MOST 105-2112-M-001-008 and calculation was supported by a National Center of High Performance Computing in Taiwan.

  12. Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

    PubMed Central

    Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia

    2017-01-01

    Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669

  13. Search for space charge effects in the ICARUS T600 LAr-TPC

    NASA Astrophysics Data System (ADS)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  14. Charge deposition model for investigating SE-microdose effect in trench power MOSFETs

    NASA Astrophysics Data System (ADS)

    Xin, Wan; Weisong, Zhou; Daoguang, Liu; Hanliang, Bo; Jun, Xu

    2015-05-01

    It was demonstrated that heavy ions can induce large current—voltage (I-V) characteristics shift in commercial trench power MOSFETs, named single event microdose effect (SE-microdose effect). A model is presented to describe this effect. This model calculates the charge deposition by a single heavy ion hitting oxide and the subsequent charge transport under an electric field. Holes deposited at the SiO2/Si interface by a Xe ion are calculated by using this model. The calculated results were then used in Sentaurus TCAD software to simulate a trench power MOSFET's I-V curve shift after a Xe ion has hit it. The simulation results are consistent with the related experiment's data. In the end, several factors which affect the SE-microdose effect in trench power MOSFETs are investigated by using this model.

  15. Two-dimensional analytical model of double-gate tunnel FETs with interface trapped charges including effects of channel mobile charge carriers

    NASA Astrophysics Data System (ADS)

    Xu, Huifang; Dai, Yuehua

    2017-02-01

    A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.

  16. Modeling, hybridization, and optimal charging of electrical energy storage systems

    NASA Astrophysics Data System (ADS)

    Parvini, Yasha

    analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.

  17. Charged black rings at large D

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi

    2017-04-01

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  18. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids

    DOE PAGES

    Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...

    2016-11-29

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less

  19. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  20. Charge Transfer and Support Effects in Heterogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hervier, Antoine

    surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO 2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO 2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO 2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO 2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO 2. With non-stoichiometric TiO 2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O 2 alone, and in CO oxidation conditions, the O1s spectrum showed a high binding energy peak that correlated in intensity with the activity of the different films: for

  1. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  2. 43 CFR 3862.4-4 - Charges for publication.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Charges for publication. 3862.4-4 Section... Claim Patent Applications § 3862.4-4 Charges for publication. (a) The charge for the publication of... allowed by the laws of the several States for the publication of legal notices wherein the notice is...

  3. 43 CFR 3862.4-4 - Charges for publication.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Charges for publication. 3862.4-4 Section... Claim Patent Applications § 3862.4-4 Charges for publication. (a) The charge for the publication of... allowed by the laws of the several States for the publication of legal notices wherein the notice is...

  4. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  5. LO-TO splittings, effective charges and interactions in electro-optic meta-nitroaniline crystal as studied by polarized IR reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Szostak, M. M.; Le Calvé, N.; Romain, F.; Pasquier, B.

    1994-10-01

    The polarized IR reflection spectra of the meta-nitroaniline ( m-NA) single crystal along the a, b and c crystallographic axes as well as the b and c polarized transmission spectra have been measured in the 100-400 cm -1 region. The LO-TO splitting values have been calculated from the reflection spectra by fitting them with the four parameter dielectric function. The dipole moment derivatives, relevant to dynamic effective charges, of the vibrations have also been calculated and used to check the applicability of the oriented gas model (OGM) to reflection spectra. The discrepancies from the OGM have been discussed in terms of vibronic couplings, weak hydrogen bondings (HB) and intramolecular charge transfer.

  6. Study of the Effects of the Electric Field on Charging Measurements on Individual Micron-size Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2013-01-01

    The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.

  7. Spacecraft Charging Calculations: NASCAP-2K and SEE Spacecraft Charging Handbook

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Neergaard, L. F.; Mandell, M. J.; Katz, I.; Gardner, B. M.; Hilton, J. M.; Minor, J.

    2002-01-01

    For fifteen years NASA and the Air Force Charging Analyzer Program for Geosynchronous Orbits (NASCAP/GEO) has been the workhorse of spacecraft charging calculations. Two new tools, the Space Environment and Effects (SEE) Spacecraft Charging Handbook (recently released), and Nascap-2K (under development), use improved numeric techniques and modern user interfaces to tackle the same problem. The SEE Spacecraft Charging Handbook provides first-order, lower-resolution solutions while Nascap-2K provides higher resolution results appropriate for detailed analysis. This paper illustrates how the improvements in the numeric techniques affect the results.

  8. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  9. Calibration function for the Orbitrap FTMS accounting for the space charge effect.

    PubMed

    Gorshkov, Mikhail V; Good, David M; Lyutvinskiy, Yaroslav; Yang, Hongqian; Zubarev, Roman A

    2010-11-01

    Ion storage in an electrostatic trap has been implemented with the introduction of the Orbitrap Fourier transform mass spectrometer (FTMS), which demonstrates performance similar to high-field ion cyclotron resonance MS. High mass spectral characteristics resulted in rapid acceptance of the Orbitrap FTMS for Life Sciences applications. The basics of Orbitrap operation are well documented; however, like in any ion trap MS technology, its performance is limited by interactions between the ion clouds. These interactions result in ion cloud couplings, systematic errors in measured masses, interference between ion clouds of different size yet with close m/z ratios, etc. In this work, we have characterized the space-charge effect on the measured frequency for the Orbitrap FTMS, looking for the possibility to achieve sub-ppm levels of mass measurement accuracy (MMA) for peptides in a wide range of total ion population. As a result of this characterization, we proposed an m/z calibration law for the Orbitrap FTMS that accounts for the total ion population present in the trap during a data acquisition event. Using this law, we were able to achieve a zero-space charge MMA limit of 80 ppb for the commercial Orbitrap FTMS system and sub-ppm level of MMA over a wide range of total ion populations with the automatic gain control values varying from 10 to 10(7). Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  10. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    PubMed

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  12. Charge injection and transport in regioregular poly(3-hexylthiophene)-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Singh, Kumar Abhishek

    Organic (semi)conductors are poised as never before to transform the electronics industry towards unprecedented versatility. In this thesis, we have taken an experimental approach to address the effect of nanostructure and the energy-level alignment at the metal/polymer interface on charge injection and transport in regioregular poly(3-hexylthiophene) (rr-P3HT) based field-effect transistors (FETs). We found that the mobility and contact resistance in rr-P3HT based FETs show an inverse relationship, and that both properties were affected by the nanostructure of the polymer proving that that charge injection, in addition to charge transport, is significantly affected by the bulk-transport properties of rr-P3HT. Thereafter we successfully recessed the contacts into the SiO 2 dielectric to minimize the effect of the step between the metal contacts and the dielectric on the polymer nanomorphology. The planarization of the devices resulted in a dramatic improvement of the nanomorphology of rr-P3HT reflected as an improvement in charge injection as evident from the decrease in contact resistance values. Gold contacts were also modified by treating them with self-assembled monolayers (SAMs) of aromatic thiols. Electron-poor (electron-rich) SAMs resulted in an increase (decrease) in the Au work function because of the electron-withdrawing (-donating) tendency of the polar molecules. The change in metal work-function by SAM modification also resulted in a modulation of the contact resistance. While there was a clear effect on charge injection upon modification of the contacts, either by SAMs or planarization, the mobility values improved only in the short-channel devices indicating that at longer channels the OFETs are channel-limited because of grain-boundary limited charge transport. Photoemission spectroscopy was also conducted to investigate the energy level alignment at bottom-contact (polymer-on-metal) and top-contact (metal-on-polymer) geometries for high work

  13. Efficient barrier for charge injection in polyethylene by silver nanoparticles/plasma polymer stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milliere, L.; Makasheva, K., E-mail: kremena.makasheva@laplace.univ-tlse.fr; Laurent, C.

    2014-09-22

    Charge injection from a metal/insulator contact is a process promoting the formation of space charge in polymeric insulation largely used in thick layers in high voltage equipment. The internal charge perturbs the field distribution and can lead to catastrophic failure either through its electrostatic effects or through energetic processes initiated under charge recombination and/or hot electrons effects. Injection is still ill-described in polymeric insulation due to the complexity of the contact between the polymer chains and the electrodes. Barrier heights derived from the metal work function and the polymer electronic affinity do not provide a good description of the measurementsmore » [Taleb et al., IEEE Trans. Dielectr. Electr. Insul. 20, 311–320 (2013)]. Considering the difficulty to describe the contact properties and the need to prevent charge injection in polymers for high voltage applications, we developed an alternative approach by tailoring the interface properties by the silver nanoparticles (AgNPs)/plasma polymer stack, deposited on the polymer film. Due to their small size, the AgNPs, covered by a very thin film of plasma polymer, act as deep traps for the injected charges thereby stabilizing the interface from the point of view of charge injection. After a quick description of the method for elaborating the nanostructured layer near the contact, it is demonstrated how the AgNPs/plasma polymer stack effectively prevents, in a spectacular way, the formation of bulk space charge.« less

  14. Phased charging and discharging in capacitive desalinatio

    DOEpatents

    Stadermann, Michael; Qu, Yatian; Santiago, Juan G.; Hemmatifar, Ali

    2017-09-12

    A system combines complete, ultra-thin cells into a monolithic and robust framework necessary for desalination applications which yields orders of magnitude faster desalination. The electrode pairs are located so that a flow of feed water flows through or around the electrode pairs with the flow perpendicular to sequentially applied electric potentials. The system is controlled to charge the series of electrode pairs sequentially or phased. That means the charging of the second electrode pair is delayed with regard to the charging of the first electrode pair and the charging of a third electrode pair is delayed with respect to the charging of the second electrode pair.

  15. Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio

    2014-03-01

    We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.

  16. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  17. Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp.

    PubMed

    Vidya, Jalaja; Ushasree, Mrudula Vasudevan; Pandey, Ashok

    2014-03-05

    Escherichia coli L-asparaginases have great significance in the treatment of leukemia. Consequently, there is considerable interest in engineering this enzyme for improving its stability. In this work, the effect of surface charge on the stability of the enzyme l-asparaginase II was studied by site-directed mutagenesis of the cloned ansB gene from Escherichia sp. Replacement of two positively charged residues (K139 and K207) on the surface loops with neutral and reverse charges resulted in altered thermo stability in designed variants. Neutral charge substitutions (K139A and K207A) retained greater tolerance and stability followed by negative charge substitutions (K139D and K207D) compared to control mutant K139R and wild enzyme. From the results, it was concluded that the optimization of surface charge contributed much to the thermal properties of proteins without affecting the structure. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  19. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  20. Secondary Electron Emission from Dust and Its Effect on Charging

    NASA Astrophysics Data System (ADS)

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-11-01

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  1. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins.

    PubMed

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-28

    We present an analytical theory to compute conformations of heteropolymers-applicable to describe disordered proteins-as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence-while maintaining the same charge composition-can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at a high

  2. Sequence charge decoration dictates coil-globule transition in intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Firman, Taylor; Ghosh, Kingshuk

    2018-03-01

    We present an analytical theory to compute conformations of heteropolymers—applicable to describe disordered proteins—as a function of temperature and charge sequence. The theory describes coil-globule transition for a given protein sequence when temperature is varied and has been benchmarked against the all-atom Monte Carlo simulation (using CAMPARI) of intrinsically disordered proteins (IDPs). In addition, the model quantitatively shows how subtle alterations of charge placement in the primary sequence—while maintaining the same charge composition—can lead to significant changes in conformation, even as drastic as a coil (swelled above a purely random coil) to globule (collapsed below a random coil) and vice versa. The theory provides insights on how to control (enhance or suppress) these changes by tuning the temperature (or solution condition) and charge decoration. As an application, we predict the distribution of conformations (at room temperature) of all naturally occurring IDPs in the DisProt database and notice significant size variation even among IDPs with a similar composition of positive and negative charges. Based on this, we provide a new diagram-of-states delineating the sequence-conformation relation for proteins in the DisProt database. Next, we study the effect of post-translational modification, e.g., phosphorylation, on IDP conformations. Modifications as little as two-site phosphorylation can significantly alter the size of an IDP with everything else being constant (temperature, salt concentration, etc.). However, not all possible modification sites have the same effect on protein conformations; there are certain "hot spots" that can cause maximal change in conformation. The location of these "hot spots" in the parent sequence can readily be identified by using a sequence charge decoration metric originally introduced by Sawle and Ghosh. The ability of our model to predict conformations (both expanded and collapsed states) of IDPs at

  3. Studies on ocular and parenteral application potentials of azithromycin- loaded anionic, cationic and neutral-charged emulsions.

    PubMed

    Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan

    2013-10-01

    Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.

  4. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage.

    PubMed

    Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie

    2016-12-01

    The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Charge calculation studies done on a single walled carbon nanotube using MOPAC

    NASA Astrophysics Data System (ADS)

    Negi, S.; Bhartiya, Vivek Kumar; Chaturvedi, S.

    2018-04-01

    Dipole symmetry of induced charges on DWNTs are required for their application as a nanomotor. Earlier a molecular dynamics analysis was performed for a double-walled carbon-nanotube based motor driven by an externally applied sinusoidally varying electric field. One of the ways to get such a system is chemical or end functionalization, which promises to accomplish this specific and rare configuration of the induced charges on the surface of the carbon nanotube (CNT). CNTs are also a promising system for attaching biomolecules for bio-related applications. In an earlier work, ab initio calculations were done to study the electronic and structural properties of the groups -COOH, -OH, -NH2 and -CONH2 functionalized to an (8, 0) SWNT. The systems were shown to have a very stable interaction with the CNTs. The exterior surface of the SWNT is found to be reactive to NH2 (amidogen). In this work, charge calculations are done on a CNT using MOPAC, which is a semi empirical quantum chemistry software package. As a first step, we calculate the effect of NH2 functionalization to a (5,0) SWNT of infinite length. The symmetric charge distribution of the bare SWNT is observed to be disturbed on addition of a single NH2 in the close proximity of the SWNT. A net positive and opposite charge is observed to be induced on the opposite sides of the nanotube circumference, which is, in turn, imperative for the nanomotor applications. The minimum and maximum value of the charge on any atom is observed to increase from - 0.3 to 0.6 and from - 0.3 to - 1.8 electronic charge as compared to the bare SWNT. This fluctuation of the surface charge to larger values than bare CNT, can be attributed to the coulomb repulsion between NH2 and the rest of the charge on the surface which results into minimizing the total energy of the system. No such opposite polarity of charges are observed on adding NH2 to each ring of the SWNT implying addition of a single amidogen to be the most appropriate

  6. Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Alberi, Kirstin; Scarpulla, Michael A.

    2018-05-01

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transition level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.

  7. Effects of Excess Carriers on Charged Defect Concentrations in Wide Bandgap Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin M; Scarpulla, Michael A.

    Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transitionmore » level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.« less

  8. 12 CFR 617.7115 - How should a qualified lender disclose loan origination charges?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... BORROWER RIGHTS Disclosure of Effective Interest Rates § 617.7115 How should a qualified lender disclose... for making a loan must be included in the effective interest rate as a loan origination charge. These include, but are not limited to, loan origination fees, application fees, and conversion fees. Loan...

  9. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    PubMed

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  10. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  11. Space charge enhanced plasma gradient effects on satellite electric field measurements

    NASA Technical Reports Server (NTRS)

    Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.

    1991-01-01

    It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.

  12. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    ERIC Educational Resources Information Center

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  13. Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.

    PubMed

    Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge

    2013-09-03

    The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Effect due to charge symmetry violation on the Paschos-Wolfenstein relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Yong; Ma Boqiang; CCAST

    2006-03-01

    The modification of the Paschos-Wolfenstein relation is investigated when the charge symmetry violations of valence and sea quark distributions in the nucleon are taken into account. We also study qualitatively the impact of charge symmetry violation (CSV) effect on the extraction of sin{sup 2}{theta}{sub w} from deep-inelastic neutrino- and antineutrino-nuclei scattering within the light-cone meson-baryon fluctuation model. We find that the effect of CSV is too small to give a sizable contribution to the NuTeV result with various choices of mass difference inputs, which is consistence with the prediction that the strange-antistrange asymmetry can account for largely the NuTeV deviationmore » in this model. It is noticeable that the effect of CSV might contribute to the NuTeV deviation when the larger difference between the internal momentum scales, {alpha}{sub p} of the proton and {alpha}{sub n} of the neutron, is considered.« less

  15. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    PubMed

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  16. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules

    PubMed Central

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin

    2017-01-01

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-Mx (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-Mx complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS. PMID:28767053

  17. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  18. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  19. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    PubMed

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  20. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-02-01

    Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.

  1. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less

  2. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  3. Molecular simulation study of feruloyl esterase adsorption on charged surfaces: effects of surface charge density and ionic strength.

    PubMed

    Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian

    2015-10-06

    The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.

  4. A monitoring system based on electric vehicle three-stage wireless charging

    NASA Astrophysics Data System (ADS)

    Hei, T.; Liu, Z. Z.; Yang, Y.; Hongxing, CHEN; Zhou, B.; Zeng, H.

    2016-08-01

    An monitoring system for three-stage wireless charging was designed. The vehicle terminal contained the core board which was used for battery information collection and charging control and the power measurement and charging control core board was provided at the transmitting terminal which communicated with receiver by Bluetooth. A touch-screen display unit was designed based on MCGS (Monitor and Control Generated System) to simulate charging behavior and to debug the system conveniently. The practical application shown that the system could be stable and reliable, and had a favorable application foreground.

  5. Direct Effects on the Membrane Potential due to "Pumps" that Transfer No Net Charge

    PubMed Central

    Schwartz, Tobias L.

    1971-01-01

    The effects of active ionic transport are included in the derivation of a general expression for the zero current membrane potential. It is demonstrated that an active transport system that transfers no net charge (nonrheogenic) may, nevertheless, directly alter the membrane potential. This effect depends upon the exchange of matter within the membrane between the active and passive diffusion regimes. Furthermore, in the presence of such exchange, the transmembrane active fluxes measured by the usual techniques and the local pumped fluxes are not identical. Several common uses of the term “electrogenic pump” are thus shown to be inconsistent with each other. These inconsistencies persist when the derivation is extended to produce a Goldman equation modified to account for active transport; however, that equation is shown to be limited by less narrow constraints on membrane heterogeneity and internal electric field than those previously required. In particular, it is applicable to idealized mosaic membranes limited by these requirements. PMID:5113004

  6. Field effect sensors for PCR applications

    NASA Astrophysics Data System (ADS)

    Taing, Meng-Houit; Sweatman, Denis R.

    2004-03-01

    The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors

  7. Digital pulse processing for planar TlBr detectors, optimized for ballistic deficit and charge-trapping effect

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Hitomi, K.

    2012-05-01

    The energy resolution of thallium bromide (TlBr) detectors is significantly limited by charge-trapping effect and pulse ballistic deficit, caused by the slow charge collection time. A digital pulse processing algorithm has been developed aiming to compensate for charge-trapping effect, while minimizing pulse ballistic deficit. The algorithm is examined using a 1 mm thick TlBr detector and an excellent energy resolution of 3.37% at 662 keV is achieved at room temperature. The pulse processing algorithms are presented in recursive form, suitable for real-time implementations.

  8. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  9. Thermopower Wave-Driven Hybrid Supercapacitor Charging System.

    PubMed

    Shin, Dongjoon; Hwang, Hayoung; Yeo, Taehan; Seo, Byungseok; Choi, Wonjoon

    2016-11-16

    The development of new energy sources and harvesting methods has increased with the rapid development of multiscale wireless and portable systems. A thermopower wave (TW) is a potential portable energy source that exhibits a high power density. TWs generate electrical energy via the transport of charges inside micro- or nanostructured materials. This transport is induced by self-propagating combustion. Despite the high specific power of TWs, the generation of energy by TWs is transient, making a TW device a one-time use source, which is a critical limitation on the further advancement of this technology. Herein, we first report the development of a hybrid supercapacitor charging system driven by consecutive TWs to accumulate multiple amounts of energy generated by the repetitive combustion of the chemical fuel. In this study, hybrid layers composed of a supercapacitor (poly(vinyl alcohol)/MnO 2 /nickel) and solid fuel layer (nitrocellulose film) were fabricated as one integrated platform. Combustion was initiated by the ignition of the fuel layer, resulting in the production of electrical energy, attributed to the potential difference between two electrodes, and the transport of charges inside one of the electrodes. Electrical energy could simultaneously and directly charge the supercapacitor, and the discharged voltage could be significantly increased in comparison with the voltage level before the application of a TW. Furthermore, the application of multiple TWs in succession in the hybrid supercapacitor charging system successfully allowed for stack voltage amplification, which was synchronized to each TW. The results of this study could be used to understand the underlying phenomena for charging supercapacitors with the variation of thermal energy and to advance the application of TWs as more efficient, practical energy sources.

  10. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  11. Label Free Detection of Biomolecules Using Charge-Plasma-Based Gate Underlap Dielectric Modulated Junctionless TFET

    NASA Astrophysics Data System (ADS)

    Wadhwa, Girish; Raj, Balwinder

    2018-05-01

    Nanoscale devices are emerging as a platform for detecting biomolecules. Various issues were observed during the fabrication process such as random dopant fluctuation and thermal budget. To reduce these issues charge-plasma-based concept is introduced. This paper proposes the implementation of charge-plasma-based gate underlap dielectric modulated junctionless tunnel field effect transistor (DM-JLTFET) for the revelation of biomolecule immobilized in the open cavity gate channel region. In this p+ source and n+ drain regions are introduced by employing different work function over the intrinsic silicon. Also dual material gate architecture is implemented to reduce short channel effect without abandoning any other device characteristic. The sensitivity of biosensor is studied for both the neutral and charge-neutral biomolecules. The effect of device parameters such as channel thickness, cavity length and cavity thickness on drain current have been analyzed through simulations. This paper investigates the performance of charge-plasma-based gate underlap DM-JLTFET for biomolecule sensing applications while varying dielectric constant, charge density at different biasing conditions.

  12. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  13. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  14. Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues.

    PubMed

    Vachova, Lenka; Novakova, Veronika; Kopecky, Kamil; Miletin, Miroslav; Zimcik, Petr

    2012-10-14

    Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.

  15. Effect of drive-through delivery laws on postpartum length of stay and hospital charges.

    PubMed

    Liu, Zhimei; Dow, William H; Norton, Edward C

    2004-01-01

    Postpartum hospital length of stay fell rapidly during the 1980s and 1990s, perhaps due to increased managed care penetration. In response, 32 states enacted early postpartum discharge laws between 1995 and 1997, and a federal law took effect in 1998. We analyze how these laws changed length of stay and hospital charges, using a national discharge database. Difference-in-differences models show that the laws increased both length of stay and hospital charges, but the magnitude of this effect is much smaller than has been estimated in previously reported case studies. Furthermore, we find that effects vary by law details, that ERISA diluted the law effects, and that law effects partially spilled over to unregulated Medicaid births.

  16. Contemporary instrumentation and application of charge exchange neutral particle diagnostics in magnetic fusion energy experiments.

    PubMed

    Medley, S S; Donné, A J H; Kaita, R; Kislyakov, A I; Petrov, M P; Roquemore, A L

    2008-01-01

    An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various geometrical combinations of both electric and magnetic fields to provide both energy and mass resolutions are reviewed. Finally, neutral particle diagnostics based on utilization of time-of-flight techniques are presented.

  17. Charging and Discharging of Amorphous Solid Water Ice: Effects of Porosity

    NASA Astrophysics Data System (ADS)

    Bu, Caixia; Baragiola, Raul A.

    2015-11-01

    Introduction: Amorphous solid water (ASW) is abundant on Saturn’s icy satellites and rings [1,2], where it is subject to bombardment of energetic ions, electrons, and photons; together with secondary electron and ion emission, this may leave the surfaces charged. Surface potential can affect the flux of incoming charged particles, altering surface evolution. We examined the role of porosity [3] on electrostatic charging and discharging of ASW films at 30-140 K.Experiment: Experiments were performed in ultra-high vacuum [4]. ASW films were deposited at 30 K onto a liquid-He-cooled quartz crystal microbalance (QCM). Film porosity was calculated from the areal mass via the QCM and thickness via a UV-visible interferometry. ASW films were charged at 30 K using 500 eV He+. Surface potentials (Vs) of the films were measured with a Kelvin probe, and infrared spectra were collected using a Fourier transform infrared spectrometer.Results: We measured Vs of the ASW film at 30 K as a function of ion fluence (F). The Vs(F) deviates from a straight line at low fluence, attributed to emitted secondary electrons due to the negative polarization voltage [5,6], and increases linearly when the Vs is positive. We also measured Vs as a function of annealing temperature. We prepared ASW films with various porosities by annealing the films to different temperatures (Ta) prior to irradiation or varying the vapor-beam incidence angle (θ). Upon heating, we observed sharp decreases of the Vs at temperatures that strongly depend on Ta and θ. Decreases of the infrared absorbance of the dangling OH bands of the charged film share similar trends as that of the Vs. We propose a model that includes porosity for electrostatic charging/discharging of ASW films at temperatures below 100 K. Results are applicable to the study of plasma-surface interactions of icy satellites and rings.References: [1] Jurac et al., J. Geophys. Res. 100, 14821 (1995); [2] A. L. Graps et al., Space Sci. Rev. 137, 435

  18. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    NASA Astrophysics Data System (ADS)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  19. Effect of hydration on interstitial distribution of charged albumin in rat dermis in vitro

    PubMed Central

    Wiig, Helge; Tenstad, Olav; Bert, Joel L

    2005-01-01

    At physiological pH, negatively charged glycosaminoglycans in the extracellular matrix may influence distribution volume of macromolecular probes, a phenomenon of importance for hydration of the interstitium and therefore for body fluid balance. We hypothesized that such charge effect was dependent on hydration. Human serum albumin (HSA) (the pH value for the isoelectric point (pI) = 4.9) was made neutral by cationization (cHSA) (pI = 7.6). Rat dermis was studied in vitro in a specially designed equilibration cell allowing control of hydration. Using a buffer containing labelled native HSA and cHSA, the distribution volumes were calculated relative to that of 51Cr-EDTA, an extracellular tracer. During changes in hydration (H), defined as (wet weight – dry weight) (dry weight)−1), the slope of the equation describing the relationship between extracellular fluid volume (Vx) (in g H2O (g dry weight)−1) and H (Vx = 0.925 H + 0.105) differed significantly from that for available volumes of cHSA (Va,cHSA = 0.624 H – 0.538) and HSA (Va,HSA = 0.518 H – 0.518). A gradual reduction in H led to a reduction in difference between available volumes for the two albumin species. Screening the fixed charges by 1 m NaCl resulted in similar available and excluded volumes of native HSA and neutral cHSA. We conclude that during gradual dehydration, there is a reduced effect of fixed negative charges on interstitial exclusion of charged macromolecules. This effect may be explained by a reduced hydration domain surrounding tissue and probe macromolecules in conditions of increased electrostatic interactions. Furthermore, screening of negative charges suggested that hyaluronan associated with collagen may influence intrafibrillar volume of collagen and thereby available and excluded volume fraction. PMID:16210353

  20. Nanosecond pulsed electric field induced changes in cell surface charge density.

    PubMed

    Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi

    2017-09-01

    This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Modeling of capacitor charging dynamics in an energy harvesting system considering accurate electromechanical coupling effects

    NASA Astrophysics Data System (ADS)

    Bagheri, Shahriar; Wu, Nan; Filizadeh, Shaahin

    2018-06-01

    This paper presents an iterative numerical method that accurately models an energy harvesting system charging a capacitor with piezoelectric patches. The constitutive relations of piezoelectric materials connected with an external charging circuit with a diode bridge and capacitors lead to the electromechanical coupling effect and the difficulty of deriving accurate transient mechanical response, as well as the charging progress. The proposed model is built upon the Euler-Bernoulli beam theory and takes into account the electromechanical coupling effects as well as the dynamic process of charging an external storage capacitor. The model is validated through experimental tests on a cantilever beam coated with piezoelectric patches. Several parametric studies are performed and the functionality of the model is verified. The efficiency of power harvesting system can be predicted and tuned considering variations in different design parameters. Such a model can be utilized to design robust and optimal energy harvesting system.

  2. Effective ion charge (Zeff) measurements and impurity behavior in KSTAR

    NASA Astrophysics Data System (ADS)

    Sarwar, S.; Na, H. K.; Park, J. M.

    2018-04-01

    A visible bremsstrahlung detector array diagnostic system has been developed on the Korea Superconducting Tokamak Advanced Research (KSTAR) to view the whole minor radius in a narrow region of the continuum free of spectral lines. The interference filters coupled with photomultiplier tubes have been employed to determine the effective charge Zeff by using visible bremsstrahlung data during neutral beam injection in the KSTAR plasma. The Zeff profiles are typically flat for L-mode plasmas and evolve to hollow profiles during the H mode in the KSTAR. A comparison of the visible bremsstrahlung emission based on the calculated Zeff profiles is consistent with measured values of Zeff from a visible spectrometer in the core plasma. The electron temperature is measured by X-ray imaging crystal spectrometry, and electron density needed for the analysis is taken by the assumption of parabolic profiles of these parameters. The line of sight averaged local bremsstrahlung emissivity is determined with low uncertainty, and the radial emissivity is obtained by using the Abel inversion technique. In addition, a dependence of effective charge Zeff on the line-averaged electron density is evaluated, and Zeff is also determined to observe the effect of boronization.

  3. Development of a module for point-of-care charge capture and submission using an anesthesia information management system.

    PubMed

    Reich, David L; Kahn, Ronald A; Wax, David; Palvia, Tanuj; Galati, Maria; Krol, Marina

    2006-07-01

    The use of electronic charge vouchers in anesthesia practice is limited, and the effects on practice management are unreported. The authors hypothesized that the new billing technology would improve the effectiveness of the billing interface and enhance financial practice management measures. A custom application was created to extract billing elements from the anesthesia information management system. The application incorporates business rules to determine whether individual cases have all required elements for a complete and compliant bill. The metrics of charge lag and days in accounts receivable were assessed before and after the implementation of the electronic charge voucher system. The average charge lag decreased by 7.3 days after full implementation. The total days in accounts receivable, controlling for fee schedule changes and credit balances, decreased by 10.1 days after implementation, representing a one-time revenue gain equivalent to 3.0% of total annual receipts. There are additional ongoing cost savings related to reduction of personnel and expenses related to paper charge voucher handling. Anesthesia information management systems yield financial and operational benefits by speeding up the revenue cycle and by reducing direct costs and compliance risks related to the billing and collection processes. The observed reductions in charge lag and days in accounts receivable may be of benefit in calculating the return on investment that is attributable to the adoption of anesthesia information management systems and electronic charge transmission.

  4. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  5. Single-crystal charge transfer interfaces for efficient photonic devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alves, Helena; Pinto, Rui M.; Maçôas, Ermelinda M. S.; Baleizão, Carlos; Santos, Isabel C.

    2016-09-01

    Organic semiconductors have unique optical, mechanical and electronic properties that can be combined with customized chemical functionality. In the crystalline form, determinant features for electronic applications such as molecular purity, the charge mobility or the exciton diffusion length, reveal a superior performance when compared with materials in a more disordered form. Combining crystals of two different conjugated materials as even enable a new 2D electronic system. However, the use of organic single crystals in devices is still limited to a few applications, such as field-effect transistors. In 2013, we presented the first system composed of single-crystal charge transfer interfaces presenting photoconductivity behaviour. The system composed of rubrene and TCNQ has a responsivity reaching 1 A/W, corresponding to an external quantum efficiency of nearly 100%. A similar approach, with a hybrid structure of a PCBM film and rubrene single crystal also presents high responsivity and the possibility to extract excitons generated in acceptor materials. This strategy led to an extended action towards the near IR. By adequate material design and structural organisation of perylediimides, we demonstrate that is possible to improve exciton diffusion efficiency. More recently, we have successfully used the concept of charge transfer interfaces in phototransistors. These results open the possibility of using organic single-crystal interfaces in photonic applications.

  6. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  7. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates.more » In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.« less

  8. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  9. Photoinduced charge-transfer materials for nonlinear optical applications

    DOEpatents

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  10. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  11. Surface charge accumulation of solid insulator under nanosecond pulse in vacuum: 3D distribution features and mechanism

    NASA Astrophysics Data System (ADS)

    Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong

    2017-11-01

    Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.

  12. Analysis and development of fourth order LCLC resonant based capacitor charging power supply for pulse power applications.

    PubMed

    Naresh, P; Hitesh, C; Patel, A; Kolge, T; Sharma, Archana; Mittal, K C

    2013-08-01

    A fourth order (LCLC) resonant converter based capacitor charging power supply (CCPS) is designed and developed for pulse power applications. Resonant converters are preferred t utilize soft switching techniques such as zero current switching (ZCS) and zero voltage switching (ZVS). An attempt has been made to overcome the disadvantages in 2nd and 3rd resonant converter topologies; hence a fourth order resonant topology is used in this paper for CCPS application. In this paper a novel fourth order LCLC based resonant converter has been explored and mathematical analysis carried out to calculate load independent constant current. This topology provides load independent constant current at switching frequency (fs) equal to resonant frequency (fr). By changing switching condition (on time and dead time) this topology has both soft switching techniques such as ZCS and ZVS for better switching action to improve the converter efficiency. This novel technique has special features such as low peak current through switches, DC blocking for transformer, utilizing transformer leakage inductance as resonant component. A prototype has been developed and tested successfully to charge a 100 μF capacitor to 200 V.

  13. Novel silica surface charge density mediated control of the optical properties of embedded optically active materials and its application for fiber optic pH sensing at elevated temperatures.

    PubMed

    Wang, Congjun; Ohodnicki, Paul R; Su, Xin; Keller, Murphy; Brown, Thomas D; Baltrus, John P

    2015-02-14

    Silica and silica incorporated nanocomposite materials have been extensively studied for a wide range of applications. Here we demonstrate an intriguing optical effect of silica that, depending on the solution pH, amplifies or attenuates the optical absorption of a variety of embedded optically active materials with very distinct properties, such as plasmonic Au nanoparticles, non-plasmonic Pt nanoparticles, and the organic dye rhodamine B (not a pH indicator), coated on an optical fiber. Interestingly, the observed optical response to varying pH appears to follow the surface charge density of the silica matrix for all the three different optically active materials. To the best of our knowledge, this optical effect has not been previously reported and it appears universal in that it is likely that any optically active material can be incorporated into the silica matrix to respond to solution pH or surface charge density variations. A direct application of this effect is for optical pH sensing which has very attractive features that can enable minimally invasive, remote, real time and continuous distributed pH monitoring. Particularly, as demonstrated here, using highly stable metal nanoparticles embedded in an inorganic silica matrix can significantly improve the capability of pH sensing in extremely harsh environments which is of increasing importance for applications in unconventional oil and gas resource recovery, carbon sequestration, water quality monitoring, etc. Our approach opens a pathway towards possible future development of robust optical pH sensors for the most demanding environmental conditions. The newly discovered optical effect of silica also offers the potential for control of the optical properties of optically active materials for a range of other potential applications such as electrochromic devices.

  14. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  15. Effect of CdS nanocrystals on charge transport mechanism in poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Khan, Mohd Taukeer; Almohammedi, Abdullah

    2017-08-01

    The present manuscript demonstrates the optical and electrical characteristics of poly(3-hexylthiophene) (P3HT) and cadmium sulphide (CdS) hybrid nanocomposites. Optical results suggest that there is a formation of charge transfer complex (CTC) between host P3HT and guest CdS nanocrystals (NCs). Electrical properties of P3HT and P3HT-CdS thin films have been studied in hole only device configurations at different temperatures (290 K-150 K), and results were analysed by the space charge limited conduction mechanism. Density of traps and characteristic trap energy increase on incorporation of inorganic NCs in the polymer matrix, which might be due to the additional favourable energy states created by CdS NCs in the band gap of P3HT. These additional trap states assist charge carriers to move quicker which results in enhancement of hole mobility from 7 × 10-6 to 5.5 × 10-5 cm2/V s in nanocomposites. These results suggest that the P3HT-CdS hybrid system has desirable optical and electrical properties for its applications to photovoltaics devices.

  16. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  17. Probing new charged scalars with neutrino trident production

    NASA Astrophysics Data System (ADS)

    Magill, Gabriel; Plestid, Ryan

    2018-03-01

    We investigate the possibility of using neutrino trident production to probe leptophilic charged scalars at future high intensity neutrino experiments. We show that under specific assumptions, this production process can provide competitive sensitivity for generic charged scalars as compared to common existing bounds. We also investigate how the recently proposed mixed-flavor production—where the two oppositely charged leptons in the final state need not be muon flavored—can give a 20%-50% increase in sensitivity for certain configurations of new physics couplings as compared to traditional trident modes. We then categorize all renormalizable leptophilic scalar extensions based on their representation under SU (2 )×U (1 ), and discuss the Higgs triplet and Zee-Babu models as explicit UV realizations. We find that the inclusion of additional doubly charged scalars and the need to reproduce neutrino masses make trident production uncompetitive with current bounds for these specific UV completions. Our work represents the first application of neutrino trident production to study charged scalars. Additionally, it is the first application of mixed-flavor trident production to study physics beyond the standard model more generally.

  18. Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications

    NASA Astrophysics Data System (ADS)

    Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P.

    2017-02-01

    Environmental standardization and stabilization of surface charges of silver nanoparticles (AgNPs) is important in biological systems and interest in bio-interfacial interaction. Different synthesized AgNPs in chemical reduced (AgNO3 (0.01, 0.1 and 0.5 M); NaBH4 and Na3C6H5O7) garnered for analysis of physico-chemical charge stabilization by means of different pH (1-13) and ionic interferences (NaCl, Ca(NO3)2, Na2CO3 and NaNO3). The uniform sized (size: ∼22 nm) and highly charged (zeta potential: -37.9 mV) AgNPs with uniform dispersion remains unaltered in high ionic interferences. Highest antifungal activity of AgNPs against Candida albicans and moderate activity against Staphylococcus aureus are correlated.

  19. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe.

    PubMed

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  20. Measuring the lateral charge-carrier mobility in metal-insulator-semiconductor capacitors via Kelvin-probe

    NASA Astrophysics Data System (ADS)

    Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian

    2018-01-01

    We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.

  1. Charge-coupled device image sensor study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design specifications and predicted performance characteristics of a Charge-Coupled Device Area Imager and a Charge-Coupled Device Linear Imager are presented. The Imagers recommended are intended for use in space-borne imaging systems and therefore would meet the requirements for the intended application. A unique overlapping metal electrode structure and a buried channel structure are described. Reasons for the particular imager designs are discussed.

  2. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes.

    PubMed

    Wongpanit, Panya; Rujiravanit, Ratana

    2012-01-01

    The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film.

  3. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  4. Dressed ion theory of size-asymmetric electrolytes: effective ionic charges and the decay length of screened Coulomb potential and pair correlations.

    PubMed

    Forsberg, Björn; Ulander, Johan; Kjellander, Roland

    2005-02-08

    The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.

  5. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  6. Space charge effects for multipactor in coaxial lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr; Sounas, A.; Mattes, M.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  7. Improvement of charge-pumping electrically detected magnetic resonance and its application to silicon metal-oxide-semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Hori, Masahiro; Tsuchiya, Toshiaki; Ono, Yukinori

    2017-01-01

    Charge-pumping electrically detected magnetic resonance (CP EDMR), or EDMR in the CP mode, is improved and applied to a silicon metal-oxide-semiconductor field-effect transistor (MOSFET). Real-time monitoring of the CP process reveals that high-frequency transient currents are an obstacle to signal amplification for EDMR. Therefore, we introduce cutoff circuitry, leading to a detection limit for the number of spins as low as 103 for Si MOS interface defects. With this improved method, we demonstrate that CP EDMR inherits one of the most important features of the CP method: the gate control of the energy window of the detectable interface defects for spectroscopy.

  8. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  9. 9 CFR 355.11 - Charge for survey.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Charge for survey. 355.11 Section 355... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Fees § 355.11 Charge for survey. Applicants for the... diem allowance, and the like, expended incidental to any survey of the premises for which the...

  10. 9 CFR 355.11 - Charge for survey.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Charge for survey. 355.11 Section 355... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Fees § 355.11 Charge for survey. Applicants for the... diem allowance, and the like, expended incidental to any survey of the premises for which the...

  11. 9 CFR 355.11 - Charge for survey.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Charge for survey. 355.11 Section 355... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Fees § 355.11 Charge for survey. Applicants for the... diem allowance, and the like, expended incidental to any survey of the premises for which the...

  12. 9 CFR 355.11 - Charge for survey.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Charge for survey. 355.11 Section 355... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Fees § 355.11 Charge for survey. Applicants for the... diem allowance, and the like, expended incidental to any survey of the premises for which the...

  13. 9 CFR 355.11 - Charge for survey.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Charge for survey. 355.11 Section 355... IDENTIFICATION AS TO CLASS, QUALITY, QUANTITY, AND CONDITION Fees § 355.11 Charge for survey. Applicants for the... diem allowance, and the like, expended incidental to any survey of the premises for which the...

  14. 4 CFR 82.2 - Fees and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Fees and charges. 82.2 Section 82.2 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS FURNISHING RECORDS OF THE GOVERNMENT ACCOUNTABILITY OFFICE IN JUDICIAL PROCEEDINGS § 82.2 Fees and charges. The provisions of § 81.7 of this chapter are applicable to this part; however...

  15. Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive

    PubMed Central

    Luo, Hewei; Yu, Chenmin; Liu, Zitong; Zhang, Guanxin; Geng, Hua; Yi, Yuanping; Broch, Katharina; Hu, Yuanyuan; Sadhanala, Aditya; Jiang, Lang; Qi, Penglin; Cai, Zhengxu; Sirringhaus, Henning; Zhang, Deqing

    2016-01-01

    Organic semiconductors with high charge carrier mobilities are crucial for flexible electronic applications. Apart from designing new conjugated frameworks, different strategies have been explored to increase charge carrier mobilities. We report a new and simple approach to enhancing the charge carrier mobility of DPP-thieno[3,2-b]thiophene–conjugated polymer by incorporating an ionic additive, tetramethylammonium iodide, without extra treatments into the polymer. The resulting thin films exhibit a very high hole mobility, which is higher by a factor of 24 than that of thin films without the ionic additive under the same conditions. On the basis of spectroscopic grazing incidence wide-angle x-ray scattering and atomic force microscopy studies as well as theoretical calculations, the remarkable enhancement of charge mobility upon addition of tetramethylammonium iodide is attributed primarily to an inhibition of the torsion of the alkyl side chains by the presence of the ionic species, facilitating a more ordered lamellar packing of the alkyl side chains and interchain π-π interactions. PMID:27386541

  16. Interaction between electrically charged droplets in microgravity

    NASA Astrophysics Data System (ADS)

    Brandenbourger, Martin; Caps, Herve; Hardouin, Jerome; Vitry, Youen; Boigelot, Bernard; Dorbolo, Stephane; Grasp Team; Beams Collaboration

    2015-11-01

    The past ten years, electrically charged droplets have been studied tremendously for their applications in industry (electrospray, electrowetting,...). However, charged droplets are also present in nature. Indeed, it has been shown that the droplets falling from thunderclouds possess an excess of electric charges. Moreover, some research groups try to use the electrical interaction between drops in order to control the coalescence between cloud droplets and control rain generation. The common way to study this kind of system is to make hypothesis on the interaction between two charged drops. Then, these hypothesis are extended to a system of thousands of charged droplets. Thanks to microgravity conditions, we were able to study the interaction between two electrically charged droplets. In practice, the charged droplets were propelled one in front of the other at low speed (less than 1 m/s). The droplets trajectory is studied for various charges and volumes. The repulsion between two charged drops is correctly fitted by a simple Coulomb repulsion law. In the case of attractive interactions, we discuss the collisions observed as a function of the droplets speed, volume and electric charges. Thanks to FNRS for financial support.

  17. Like-charge attraction in a one-dimensional setting: the importance of being odd

    NASA Astrophysics Data System (ADS)

    Trizac, Emmanuel; Téllez, Gabriel

    2018-03-01

    From cement cohesion to DNA condensation, a proper statistical physics treatment of systems with long-range forces is important for a number of applications in physics, chemistry, and biology. We compute here the effective force between fixed charged macromolecules, screened by oppositely charged mobile ions (counterions). We treat the problem in a one-dimensional configuration that allows for interesting discussion and derivation of exact results, remaining at a level of mathematical difficulty compatible with an undergraduate course. Emphasis is put on the counterintuitive but fundamental phenomenon of like-charge attraction, which our treatment brings for the first time to the level of undergraduate teaching. The parity of the number of counterions is shown to play a prominent role, which sheds light on the binding mechanism at work when like-charge macromolecules do attract.

  18. Spin and charge currents and current rectification in Luttinger liquids

    NASA Astrophysics Data System (ADS)

    Braunecker, B.; Feldman, D. E.; Marston, J. B.

    2006-03-01

    Asymmetries in spin and charge transport properties are of great interest for spintronic and electronic applications. We show that externally-driven spin and charge currents in a Luttinger liquid model of a one-dimensional quantum wire are strongly modified by the presence of a localized magnetic or nonmagnetic scatterer. A diode effect appears at low voltages when this scatterer is spatially asymmetric, and a non-monotonous dependence of the current on the voltage is possible. D.E. Feldman, S. Scheidl, and V. M. Vinokur, Phys. Rev. Lett. 94, 186809 (2005); B. Braunecker, D. E. Feldman, and J. B. Marston, Phys. Rev. B 72, 125311 (2005)

  19. Improved charge trapping properties by embedded graphene oxide quantum-dots for flash memory application

    NASA Astrophysics Data System (ADS)

    Jia, Xinlei; Yan, Xiaobing; Wang, Hong; Yang, Tao; Zhou, Zhenyu; Zhao, Jianhui

    2018-06-01

    In this work, we have investigated two kinds of charge trapping memory devices with Pd/Al2O3/ZnO/SiO2/p-Si and Pd/Al2O3/ZnO/graphene oxide quantum-dots (GOQDs)/ZnO/SiO2/p-Si structure. Compared with the single ZnO sample, the memory window of the ZnO-GOQDs-ZnO sample reaches a larger value (more than doubled) of 2.7 V under the sweeping gate voltage ± 7 V, indicating a better charge storage capability and the significant charge trapping effects by embedding the GOQDs trapping layer. The ZnO-GOQDs-ZnO devices have better date retention properties with the high and low capacitances loss of ˜ 1.1 and ˜ 6.9%, respectively, as well as planar density of the trapped charges of 1.48 × 1012 cm- 2. It is proposed that the GOQDs play an important role in the outstanding memory characteristics due to the deep quantum potential wells and the discrete distribution of the GOQDs. The long date retention time might have resulted from the high potential barrier which suppressed both the back tunneling and the leakage current. Intercalating GOQDs in the memory device is a promising method to realize large memory window, low-power consumption and excellent retention properties.

  20. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonergan, Mark

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been themore » polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.« less

  1. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    NASA Astrophysics Data System (ADS)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage

  2. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  3. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  4. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  5. Universal Disorder in Organic Semiconductors Due to Fluctuations in Space Charge

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Cheng

    This thesis concerns the study of charge transport in organic semiconductors. These materials are widely used as thin-film photoconductors in copiers and laser printers, and for their electroluminescent properties in organic light-emitting diodes. Much contemporary research is directed towards improving the efficiency of organic photovoltaic devices, which is limited to a large extent by the spatial and energetic disorder that hinders the charge mobility. One contribution to energetic disorder arises from the strong Coulomb interactions between injected charges with one another, but to date this has been largely ignored. We present a mean-field model for the effect of mutual interactions between injected charges hopping from site to site in an organic semiconductor. Our starting point is a modified Fröhlich Hamiltonian in which the charge is linearly coupled to the amplitudes of a wide band of dispersionless plasma modes having a Lorentzian distribution of frequencies. We show that in most applications of interest the hopping rates are fast enough while the plasma frequencies are low enough that random thermal fluctuations in the plasma density give rise to an energetically disordered landscape that is effectively stationary for many thousands of hops. Moreover, the distribution of site energies is Gaussian, and the energy-energy correlation function decays inversely with distance; as such, it can be argued that this disorder contributes to the Poole-Frenkel field dependence seen in a wide variety of experiments. Remarkably, the energetic disorder is universal; although it is caused by the fluctuations in the charge density, it is independent of the charge concentration.

  6. A physically-based analytical model to describe effective excess charge for streaming potential generation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Guarracino, L.

    2016-12-01

    The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.

  7. A temperature dependent study on charge dynamics in organic molecular device: Effect of shallow traps on space charge limited behavior

    NASA Astrophysics Data System (ADS)

    Mukherjee, A. K.; Kavala, A. K.

    2014-04-01

    Shallow traps play a significant role in influencing charge dynamics through organic molecular thin films, such as pentacene. Sandwich cells of pentacene capped by gold electrodes are an excellent specimen to study the nature of underlying charge dynamics. In this paper, self-consistent numerical simulation of I-V characteristics is performed at various temperatures. The results have revealed negative value of Poole Frenkel coefficient. The location of trap energy level is found to be located at 0.24 eV above the highest occupied molecular orbit (HOMO) level of pentacene. Other physical parameters related to trap levels, such as density of states due to traps and effective carrier density due to traps, have also been estimated in this study.

  8. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure

  9. Effect of Induced Charge Electroosmosis on the Dielectrophoretic Motion of Particles

    NASA Astrophysics Data System (ADS)

    Swaminathan, T.; Hu, Howard

    2006-11-01

    Most suspensions involve the formation of ionic double layers next to the surface of particles due to the induced-charge on the surface. These double layers affect the motion of the particle even under AC electric fields. They modify the net dipole moment of the particle and at the same time produce slip velocities on the surfaces of these particles. A method to numerically evaluate the effect of the double layer on the dielectrophoretic motion of particles has been previously developed to study these two effects. The technique involves a matched asymptotic expansion of the electric field near the particle surface, where the double layer is formed, and is written as a jump-boundary-condition for the electric potential when the thickness of the double layer is small compared to the size of the particle. The developed jump-boundary-condition is then used to calculate an effective zeta potential on the particle surface. Unlike classical electroosmosis, this zeta potential is no longer constant on every part of the surface and is dependent on the applied electric field. The effect of the induced-charge electroosmotic slip velocity on the dielectrophoretic motion of particles has been observed using this technique.

  10. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  11. Inductive electronegativity scale. Iterative calculation of inductive partial charges.

    PubMed

    Cherkasov, Artem

    2003-01-01

    A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.

  12. Forensic analysis of explosions: Inverse calculation of the charge mass.

    PubMed

    van der Voort, M M; van Wees, R M M; Brouwer, S D; van der Jagt-Deutekom, M J; Verreault, J

    2015-07-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage around an explosion. In this paper, inverse models are presented based on two frequently occurring and reliable sources of information: window breakage and building damage. The models have been verified by applying them to the Enschede firework disaster and the Khobar tower attack. Furthermore, a statistical method has been developed to combine the various types of data, in order to determine an overall charge mass distribution. In relatively open environments, like for the Enschede firework disaster, the models generate realistic charge masses that are consistent with values found in forensic literature. The spread predicted by the IEA tool is however larger than presented in the literature for these specific cases. This is also realistic due to the large inherent uncertainties in a forensic analysis. The IEA-models give a reasonable first order estimate of the charge mass in a densely built urban environment, such as for the Khobar tower attack. Due to blast shielding effects which are not taken into account in the IEA tool, this is usually an under prediction. To obtain more accurate predictions, the application of Computational Fluid Dynamics (CFD) simulations is advised. The TNO IEA tool gives unique possibilities to inversely calculate the TNT equivalent charge mass based on a large variety of explosion effects and observations. The IEA tool enables forensic analysts, also those who are not experts on explosion effects, to perform an analysis with a largely reduced effort. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  14. Microwave synthesis of noncentrosymmetric BaTiO3 truncated nanocubes for charge storage applications.

    PubMed

    Swaminathan, V; Pramana, Stevin S; White, T J; Chen, L; Chukka, Rami; Ramanujan, R V

    2010-11-01

    Truncated nanocubes of barium titanate (BT) were synthesized using a rapid, facile microwave-assisted hydrothermal route. Stoichiometric composition of pellets of nanocube BT powders was prepared by two-stage microwave process. Characterization by powder XRD, Rietveld refinement, SEM, TEM, and dielectric and polarization measurements was performed. X-ray diffraction revealed a polymorphic transformation from cubic Pm3̅m to tetragonal P4mm after 15 min of microwave irradiation, arising from titanium displacement along the c-axis. Secondary electron images were examined for nanocube BT synthesis and annealed at different timings. Transmission electron microscopy showed a narrow particle size distribution with an average size of 70 ± 9 nm. The remanence and saturation polarization were 15.5 ± 1.6 and 19.3 ± 1.2 μC/cm(2), respectively. A charge storage density of 925 ± 47 nF/cm(2) was obtained; Pt/BT/Pt multilayer ceramic capacitor stack had an average leakage current density of 5.78 ± 0.46 × 10(-8) A/cm(2) at ±2 V. The significance of this study shows an inexpensive and facile processing platform for synthesis of high-k dielectric for charge storage applications.

  15. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  16. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  17. Highly tunable charge and spin transport in silicene junctions: phase transitions and half-metallic states.

    PubMed

    Mahdavifar, Maryam; Khoeini, Farhad

    2018-08-10

    We report peculiar charge and spin transport properties in S-shaped silicene junctions with the Kane-Mele tight-binding model. In this work, we investigate the effects of electric and exchange fields on the charge and spin transport properties. Our results show that by applying a perpendicular electric field, metal-semiconductor and also semimetal-semiconductor phase transitions occur in our systems. Furthermore, full spin current can be obtained in the structures, so the half-metallic states are observable. Our results enable us to control charge and spin currents and provide new opportunities and applications in silicene-based electronics, optoelectronics, and spintronics.

  18. Effect of energetic electrons on dust charging in hot cathode filament discharge

    NASA Astrophysics Data System (ADS)

    Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhyay, M.

    2011-03-01

    The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

  19. Charge conservation in electronegativity equalization and its implications for the electrostatic properties of fluctuating-charge models.

    PubMed

    Chen, Jiahao; Martínez, Todd J

    2009-07-28

    An analytical solution of fluctuating-charge models using Gaussian elimination allows us to isolate the contribution of charge conservation effects in determining the charge distribution. We use this analytical solution to calculate dipole moments and polarizabilities and show that charge conservation plays a critical role in maintaining the correct translational invariance of the electrostatic properties predicted by these models.

  20. Electroconvulsive therapy clinical database: Influence of age and gender on the electrical charge.

    PubMed

    Salvador Sánchez, Javier; David, Mónica Delia; Torrent Setó, Aurora; Martínez Alonso, Montserrat; Portella Moll, Maria J; Pifarré Paredero, Josep; Vieta Pascual, Eduard; Mur Laín, María

    The influence of age and gender in the electrical charge delivered in a given population was analysed using an electroconvulsive therapy (ECT) clinical database. An observational, prospective, longitudinal study with descriptive analysis was performed using data from a database that included total bilateral frontotemporal ECT carried out with a Mecta spECTrum 5000Q ® in our hospital over 6 years. From 2006 to 2012, a total of 4,337 ECT were performed on 187 patients. Linear regression using mixed effects analysis was weighted by the inverse of the number of ECT performed on each patient per year of treatment. The results indicate that age is related with changes in the required charge (P=.031), as such that the older the age a higher charge is needed. Gender is also associated with changes in charge (P=.014), with women requiring less charge than men, a mean of 87.3mC less. When the effects of age and gender are included in the same model, both are significant (P=.0080 and P=.0041). Thus, for the same age, women require 99.0mC less charge than men, and in both genders the charge increases by 2.3mC per year. From our study, it is concluded that the effect of age on the dosage of the electrical charge is even more significant when related to gender. It would be of interest to promote the systematic collection of data for a better understanding and application of the technique. Copyright © 2015 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Charge Effects on the Efflorescence in Single Levitated Droplets.

    PubMed

    Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart

    2017-09-14

    The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.

  2. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  3. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE PAGES

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter; ...

    2016-01-27

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  4. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  5. 31 CFR 206.9 - Charges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OF THE CASH MANAGEMENT IMPROVEMENTS FUND § 206.9 Charges. (a) Within 30 days of the effective date of... noncompliance. In the case of cash management collection noncompliance, an agency will absorb the charge from.... Charges collected from an executive agency in the case of cash management collection noncompliance will be...

  6. Charge-dependent azimuthal correlations in pPb collisions with CMS experiment

    NASA Astrophysics Data System (ADS)

    Tu, Zhoudunming; CMS Collaboration

    2017-11-01

    Charge-dependent azimuthal correlations relative to the event plane in AA collisions have been suggested as providing evidence for the chiral magnetic effect (CME) caused by local strong parity violation. However, the observation of the CME remains inconclusive because of several possible sources of background correlations that may account for part or all of the observed signals. This talk will present the first application of three-particle, charge-dependent azimuthal correlation analysis in proton-nucleus collisions, using pPb data collected with the CMS experiment at the LHC at √{sNN} = 5.02 TeV. The differences found in comparing same and opposite sign correlations are studied as a function of event multiplicity and the pseudorapidity gap between two of the particles detected in the CMS tracker detector. After selecting events with comparable charge-particle multiplicities, the results for pPb collisions are found to be similar to those for PbPb collisions collected at the same collision energy. With a reduced magnetic field strength and a random field orientation in high multiplicity pPb events, the CME contribution to any charge separation signal is expected to be much smaller than found in peripheral PbPb events. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

  7. Charge imbalance and Josephson effects in superconductor-normal metal mesoscopic structures

    NASA Astrophysics Data System (ADS)

    Volkov, A. F.

    2007-11-01

    We consider a SBS Josephson junction the superconducting electrodes S of which are in contact with normal metal reservoirs ( B means a barrier). For temperatures near Tc we calculate an effective critical current Ic* and the resistance of the system at the currents Icharge imbalance, which arises due to injection of quasiparticles from the N reservoirs into the S wire, affects essentially the characteristics of the structure. The effective critical current Ic* is always larger than the critical current Ic in the absence of the normal reservoirs and increases with decreasing the ratio of the length of the S wire 2L to the charge imbalance relaxation length lQ . It is shown that a series of peaks arises on the I-V characteristics due to excitation of the Carlson-Goldman collective modes. We find the position of Shapiro steps which deviates from that given by the Josephson relation.

  8. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    PubMed

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-01-01

    calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250

  10. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    PubMed

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  11. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    NASA Astrophysics Data System (ADS)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  12. Charge Management in LISA Pathfinder: The Continuous Discharging Experiment

    NASA Astrophysics Data System (ADS)

    Ewing, Becca Elizabeth

    2018-01-01

    Test mass charging is a significant source of excess force and force noise in LISA Pathfinder (LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a continuous discharge by UV light illumination. We report on analysis of a charge management experiment on-board LPF conducted during December 2016. We discuss the measurement of test mass charging noise with and without continuous UV illumination, in addition to the dynamic response in the continuous discharge scheme. Results of the continuous discharge system will be discussed for their application to operating LISA with lower test mass charge.

  13. The effect of porosity and gamma-gamma' eutectic content on the low cycle fatigue behavior of hydrogen-charged PWA-1480

    NASA Technical Reports Server (NTRS)

    Gayda, John; Dreshfield, Robert L.; Gabb, Timothy P.

    1991-01-01

    Single crystal superalloys such as PWA 1480 are considered for turbopump blades in the main engines of the space shuttle. As fatigue resistance in a hydrogen environment is a key issue in this application, a study of the effect of porosity and gamma-gamma' eutectic content on the fatigue life of a hydrogen-charged PWA 1480 was performed. Porosity and eutectic were linked to fatigue initiation, and therefore reduction of either of both may be one means to improve fatigue life of PWA 1480 when hydrogen is present.

  14. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  15. 12 CFR 7.4001 - Charging interest at rates permitted competing institutions; charging interest to corporate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... bank may lawfully charge the highest rate permitted to be charged by a state-licensed small loan... small loan companies. (c) Effect on state definitions of interest. The Federal definition of the term... the law of that state. If state law permits different interest charges on specified classes of loans...

  16. 12 CFR 7.4001 - Charging interest at rates permitted competing institutions; charging interest to corporate...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... bank may lawfully charge the highest rate permitted to be charged by a state-licensed small loan... small loan companies. (c) Effect on state definitions of interest. The Federal definition of the term... the law of that state. If state law permits different interest charges on specified classes of loans...

  17. 12 CFR 7.4001 - Charging interest at rates permitted competing institutions; charging interest to corporate...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... bank may lawfully charge the highest rate permitted to be charged by a state-licensed small loan... small loan companies. (c) Effect on state definitions of interest. The Federal definition of the term... the law of that state. If state law permits different interest charges on specified classes of loans...

  18. 12 CFR 7.4001 - Charging interest at rates permitted competing institutions; charging interest to corporate...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... bank may lawfully charge the highest rate permitted to be charged by a state-licensed small loan... small loan companies. (c) Effect on state definitions of interest. The Federal definition of the term... the law of that state. If state law permits different interest charges on specified classes of loans...

  19. System and method for charging a plug-in electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less

  20. Electrospray Charging of Minerals: Surface Chemistry and Applications to High-Velocity Microparticle Impacts

    NASA Astrophysics Data System (ADS)

    Daly, T.; Call, S.; Austin, D. E.

    2010-12-01

    Electrospray is a soft ionization technique commonly used to charge large biomolecules; it has, however, also been applied to inorganic compounds. We are extending this technique to mineral microparticles. Electrospray-charged mineral microparticles are interesting in the context of surface science because surface chemistry dictates where and how charge carriers can bond to mineral surfaces. In addition, using electrospray to charge mineral particles allows these particles to be electrostatically accelerated as projectiles in high- and hyper-velocity impacts. Since current techniques for producing high- and hyper-velocity microparticle impacts are largely limited to metal or metal-coated projectiles, using minerals as projectiles is a significant innovation. Electrospray involves three steps: creation of charged droplets containing solute/particles, evaporation and bifurcation of droplets, and desolvation of the solute/particles. An acidified solution is slowly pumped through a needle in a strong DC field, which causes the solution to break into tiny, charged droplets laden with protons. Solvent evaporates from the electrosprayed droplets as they move through the electric field toward a grounded plate, causing the charge on the droplet to increase relative to its mass. When the electrosprayed droplet’s charge becomes such that the droplet is no longer stable, it bifurcates, and each of the resulting droplets carries some of the original droplet’s charge. Evaporation and bifurcation continues until the solute particle is completely desolvated. The result is a protonated solute molecule or particle. We built an instrument that electrosprays particles into vacuum and measures them using an image charge detector. Mineral microparticles were prepared by grinding natural mineral samples to ~2 µm diameter. These microparticles are then added to a 4:1 methanol:water solution to create a 0.005% w/v suspension. The suspension is electrosprayed into vacuum, where the

  1. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-01

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  2. Optoelectronic properties and depth profile of charge transport in nanocrystal films

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.

    2017-07-01

    We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.

  3. Charges in gravitational fields: From Fermi, via Hanni-Ruffini-Wheeler, to the 'electric Meissner effect'

    NASA Astrophysics Data System (ADS)

    Ruffini, R.

    2004-07-01

    Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.

  4. Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Ravinder; Malik, Hitendra K.; Singh, Khushvant

    2012-01-15

    Main concerns of the present article are to investigate the effects of dust charging and trapped electrons on the solitary structures evolved in an inhomogeneous magnetized plasma. Such a plasma is found to support two types of waves, namely, fast wave and slow wave. Slow wave propagates in the plasma only when the wave propagation angle {theta} satisfies the condition {theta}{>=}tan{sup -1}{l_brace}({radical}((1+2{sigma})-[(n{sub dlh}({gamma}{sub 1}-1))/(1+n{sub dlh}{gamma}{sub 1})])-v{sub 0}/u{sub 0}){r_brace}, where v{sub 0}(u{sub 0}) is the z- (x-) component of ion drift velocity, {sigma} = T{sub i}/T{sub eff}, n{sub dlh} = n{sub d0}/(n{sub el0} + n{sub eh0}), and {gamma}{sub 1}=-(1/{Phi}{sub i0})[(1-{Phi}{sub i0}/1+{sigma}(1-{Phi}{submore » i0}))] together with T{sub i} as ion temperature, n{sub el0}(n{sub eh0}) as the density of trapped (isothermal) electrons, {Phi}{sub i0} as the dust grain (density n{sub d0}) surface potential relative to zero plasma potential, and T{sub eff}=(n{sub elo}+n{sub eho})T{sub el}T{sub eh}/(n{sub elo}T{sub eh}+n{sub eho}T{sub el}), where T{sub el}(T{sub eh}) is the temperature of trapped (isothermal) electrons. Both the waves evolve in the form of density hill type structures in the plasma, confirming that these solitary structures are compressive in nature. These structures are found to attain higher amplitude when the charge on the dust grains is fluctuated (in comparison with the case of fixed charge) and also when the dust grains and trapped electrons are more in number; the same is the case with higher temperature of ions and electrons. Slow solitary structures show weak dependence on the dust concentration. Both types of structures are found to become narrower under the application of stronger magnetic field. With regard to the charging of dust grains, it is observed that the charge gets reduced for the higher trapped electron density and temperature of ions and electrons, and dust charging shows weak dependence on the

  5. Nanopipette delivery: influence of surface charge.

    PubMed

    Shi, Wenqing; Sa, Niya; Thakar, Rahul; Baker, Lane A

    2015-07-21

    In this report, transport through a nanopipette is studied and the interplay between current rectification and ion delivery for small pipettes is examined. First, surface charge dependence of concentration polarization effects in a quartz nanopipette was investigated. Electrical characterization was performed through current-potential (I-V) measurements. In addition, fluorescein (an anionic fluorescent probe) was utilized to optically map ion enrichment and ion depletion in the nanopipette tip. Bare nanopipettes and polyethylenimine (PEI)-modified nanopipettes were examined. Results confirm that concentration polarization is a surface charge dependent phenomenon and delivery can be controlled through modification of surface charge. The relationship between concentration polarization effects and voltage-driven delivery of charged electroactive species was investigated with a carbon ring/nanopore electrode fabricated from pyrolyzed parylene C (PPC). Factors such as surface charge polarity of the nanopipette, electrolyte pH, and electrolyte concentration were investigated. Results indicate that with modification of surface charge, additional control over delivery of charged species can be achieved.

  6. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  7. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  8. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    PubMed

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  9. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  10. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  11. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  12. Application of adenylate energy charge to problems of environmental impact assessment in aquatic organisms

    NASA Astrophysics Data System (ADS)

    Ivanovici, A. M.

    1980-03-01

    Various physiological and biochemical methods have been proposed for assessing the effects of environmental perturbation on aquatic organisms. The success of these methods as diagnostic tools has, however, been limited. This paper proposes that adenylate energy charge overcomes some of these limitations. The adenylate energy charge (AEC) is calculated from concentrations of adenine nucleotides ([ATP+½ADP]/[ATP+ADP+AMP]), and is a reflection of metabolic potential available to an organism. Several features of this method are: correlation of specific values with physiological condition or growth state, a defined range of values, fast response times and high precision. Several examples from laboratory and field experiments are given to demonstrate these features. The test organisms used (mollusc species) were exposed to a variety of environmental perturbations, including salinity reduction, hydrocarbons and low doses of heavy metal. The studies performed indicate that the energy charge may be a useful measure in the assessment of environmental impact. Its use is restricted, however, as several limitations exist which need to be fully evaluated. Further work relating values to population characteristics of multicellular organisms needs to be completed before the method can become a predictive tool for management.

  13. Effect of Low Temperature on Charge Transport in Operational Planar and Mesoporous Perovskite Solar Cells.

    PubMed

    Petrović, Miloš; Ye, Tao; Chellappan, Vijila; Ramakrishna, Seeram

    2017-12-13

    Low-temperature optoelectrical studies of perovskite solar cells using MAPbI 3 and mixed-perovskite absorbers implemented into planar and mesoporous architectures reveal fundamental charge transporting properties in fully assembled devices operating under light bias. Both types of devices exhibit inverse correlation of charge carrier lifetime as a function of temperature, extending carrier lifetimes upon temperature reduction, especially after exposure to high optical biases. Contribution of bimolecular channels to the overall recombination process should not be overlooked because the density of generated charge surpasses trap-filling concentration requirements. Bimolecular charge recombination coefficient in both device types is smaller than Langevin theory prediction, and its mean value is independent of the applied illumination intensity. In planar devices, charge extraction declines upon MAPbI 3 transition from a tetragonal to an orthorhombic phase, indicating a connection between the trapping/detrapping mechanism and temperature. Studies on charge extraction by linearly increasing voltage further support this assertion, as charge carrier mobility dependence on temperature follows multiple-trapping predictions for both device structures. The monotonously increasing trend following the rise in temperature opposes the behavior observed in neat perovskite films and indicates the importance of transporting layers and the effect they have on charge transport in fully assembled solar cells. Low-temperature phase transition shows no pattern of influence on thermally activated electron/hole transport.

  14. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  15. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  16. Luminescent tunable polydots: Charge effects in confined geometry

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2017-06-28

    Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

  17. The Role of Partial Surface Charge Compensation in the Properties of Ferroelectric and Antiferroelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Swedberg, Elena

    Ferroelectric and antiferroelectric ultrathin films have attracted a lot of attention recently due to their remarkable properties and their potential to allow for device miniaturization in numerous applications. However, when the ferroelectric films are scaled down, it brings about an unavoidable depolarizing field. A partial surface charge compensation allows to control the residual depolarizing field and manipulate the properties of ultrathin ferroelectric films. In this dissertation we take advantage of atomistic first-principles-based simulations to expand our understanding of the role of the partial surface charge compensation in the properties of ferroelectric and antiferroelectric ultrathin films. The application of our computational methodology to study the effect of the partial surface charge compensation in ferroelectric ultrathin films led to the prediction that, depending on the quality of the surface charge compensation, ferroelectric thin films respond to an electric field in a qualitatively different manner. They can be tuned to behave like a linear dielectric, a ferroelectric or even an antiferroelectric. This effect was shown to exist in films with different mechanical boundary conditions and different crystal symmetries. There are a number of potential applications where such properties of ferroelectric thin films can be used. One of these potential applications is energy storage. We will show that, in the antiferroelectric regime, ferroelectric thin films exhibit drastic enhancement of energy storage density which is a desirable property. One of the most promising applications of ferroelectric ultrathin films that emerged only recently is the harvesting of the giant electrocaloric effect. Interestingly, despite numerous studies of the electrocaloric effect in ferroelectric thin films, it is presently unknown how a residual depolarizing field affects the electrocaloric properties of such films. Application of state-of-the-art computational methods

  18. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  19. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozza, R.; Vanossi, A.; CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste

    2015-10-14

    Recent measurements suggest the possibility to exploit ionic liquids (ILs) as smart lubricants for nano-contacts, tuning their tribological and rheological properties by charging the sliding interfaces. Following our earlier theoretical study of charging effects on nanoscale confinement and squeezout of a model IL, we present here molecular dynamics simulations of the frictional and lubrication properties of that model under charging conditions. First, we describe the case when two equally charged plates slide while being held together to a confinement distance of a few molecular layers. The shear sliding stress is found to rise strongly and discontinuously as the number ofmore » IL layers decreases stepwise. However, the shear stress shows, within each given number of layers, only a weak dependence upon the precise value of the normal load, a result in agreement with data extracted from recent experiments. We subsequently describe the case of opposite charging of the sliding plates and follow the shear stress when the charging is slowly and adiabatically reversed in the course of time, under fixed load. Despite the fixed load, the number and structure of the confined IL layers change with changing charge, and that in turn drives strong friction variations. The latter involves first of all charging-induced freezing of the IL film, followed by a discharging-induced melting, both made possible by the nanoscale confinement. Another mechanism for charging-induced frictional changes is a shift of the plane of maximum shear from mid-film to the plate-film interface, and vice versa. While these occurrences and results invariably depend upon the parameters of the model IL and upon its specific interaction with the plates, the present study helps identifying a variety of possible behavior, obtained under very simple assumptions, while connecting it to an underlying equilibrium thermodynamics picture.« less

  20. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.

    PubMed

    Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan

    2018-05-07

    Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.

  1. Reducing charging effects in scanning electron microscope images by Rayleigh contrast stretching method (RCS).

    PubMed

    Wan Ismail, W Z; Sim, K S; Tso, C P; Ting, H Y

    2011-01-01

    To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts. Copyright © 2011 Wiley Periodicals, Inc.

  2. The effect of surface charge, negative and bipolar ionization on the deposition of airborne bacteria.

    PubMed

    Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A

    2009-04-01

    A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.

  3. The Hydric Effect in Inorganic Nanomaterials for Nanoelectronics and Energy Applications.

    PubMed

    Sun, Xu; Guo, Yuqiao; Wu, Changzheng; Xie, Yi

    2015-07-08

    Protons, as one of the world's smallest ions, are able to trigger the charge effect without obvious lattice expansion inside inorganic materials, offering a unique and important test-bed for controlling their diverse functionalities. Arising from the high chemical reactivity of hydrogen (easily losing an electron) with various main group anions (easily accepting a proton), the hydric effect provides a convenient and environmentally benign route to bring about fascinating new physicochemical properties, as well as to create new inorganic structures based on the "old lattice" without dramatically destroying the pristine structure, covering most inorganic materials. Moreover, hydrogen atoms tend to bond with anions or to produce intrinsic defects, both of which are expected to inject extra electrons into lattice framework, promising advances in control of bandgap, spin behavior, and carrier concentration, which determine functionality for wide applications. In this review article, recently developed effective hydric strategies are highlighted, which include the conventional hydric reaction under high temperature or room temperature, proton irradiation or hydrogen plasma treatment, and gate-electrolyte-driven adsorption or doping. The diverse physicochemical properties brought by the hydric effect via modulation of the intrinsic electronic structure are also summarized, finding wide applications in nanoelectronics, energy applications, and catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  5. Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes.

    PubMed

    Yigit, Cemil; Kanduč, Matej; Ballauff, Matthias; Dzubiella, Joachim

    2017-01-10

    We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, k B T, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.

  6. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    NASA Astrophysics Data System (ADS)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  7. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhi -Yong; Wu, Jianzhong

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less

  8. Like-charged protein-polyelectrolyte complexation driven by charge patches

    NASA Astrophysics Data System (ADS)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim

    2015-08-01

    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  9. Infrared charge-injection-device array performance at low background

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1981-01-01

    Low-background tests of a 1 x 32 Si:Bi charge-injection-device (CID) IR detector are carried out to evaluate its feasibility for space-based astronomical observations. Optimum performance is obtained at a temperature of 11 K. The sensitivity is found to compare well with that of discrete extrinsic silicon photoconductors. The measured sensitivity and the apparent absence of anomalous effects make extrinsic silicon CID arrays very promising for astronomical applications.

  10. Design considerations for imaging charge-coupled device

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.

  11. Pressure Dependence of Insulator-Insulator Contact Charging

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.

    2005-01-01

    The mechanism of insulator-insulator triboelectric (contact) charging is being studied by the Electrostatics and Surface Physics Laboratory at KSC. The hypothesis that surface ion exchange is the primary mechanism is being tested experimentally. A two-phase model based on a small partial pressure of singly charged ions in an ambient ideal gas in equilibrium with a submonolayer adsorbed film will provide predictions about charging as a function Of ion mass, pressure, temperature, and surface adsorption energy. Interactions between ions will be considered in terms of coulombic and screened potential energies. This work is yielding better understanding of the triboelectrification of insulators, which is an important problem in. space exploration technology. The work is also relevant to important industrial processes such as xerography and the application of paints and coatings. Determining a better understanding of the fundamental mechanism of insulator-insulator triboelectrification will hopefully lead to better means of eliminating or at least mitigating its hazards and enhancing its useful applications.

  12. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  13. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  14. Wireless power transmission for battery charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mi, Chris; Li, Siqi; Nguyen, Trong-Duy

    A wireless power transmission system is provided for high power applications. The power transmission system is comprised generally of a charging unit configured to generate an alternating electromagnetic field and a receive unit configured to receive the alternating electromagnetic field from the charging unit. The charging unit includes a power source; an input rectifier; an inverter; and a transmit coil. The transmit coil has a spirangle arrangement segmented into n coil segments with capacitors interconnecting adjacent coil segments. The receive unit includes a receive coil and an output rectifier. The receive coil also has a spirangle arrangement segmented into mmore » coil segments with capacitors interconnecting adjacent coil segments.« less

  15. Generalized Breit-Wigner treatment of molecular transport: Charging effects in a single decanedithiol molecule

    NASA Astrophysics Data System (ADS)

    Cabrera-Tinoco, Hugo Andres; Moreira, Augusto C. L.; de Melo, Celso P.

    2018-05-01

    We examine the relative contribution of ballistic and elastic cotunneling mechanisms to the charge transport through a single decanedithiol molecule linked to two terminal clusters of gold atoms. For this, we first introduced a conceptual model that permits a generalization of the Breit-Wigner scattering formalism where the cation, anion, and neutral forms of the molecule can participate with different probabilities of the charge transfer process, but in a simultaneous manner. We used a density functional theory treatment and considered the fixed geometry of each charge state to calculate the corresponding eigenvalues and eigenvectors of the extended system for different values of the external electric field. We have found that for the ballistic transport the HOMO and LUMO of the neutral species play a key role, while the charged states give a negligible contribution. On the other hand, an elastic cotunneling charge transfer can occur whenever a molecular orbital (MO) of the cation or anion species, even if localized in just one side of the molecule-gold clusters complex, has energy close to that of a delocalized MO of the neutral species. Under these conditions, a conduction channel is formed throughout the entire system, in a process that is controlled by the degree of resonance between the MOs involved. Our results indicate that while different charge transfer mechanisms contribute to the overall charge transport, quantum effects such as avoided-crossing situations between relevant frontier MOs can be of special importance. In these specific situations, the interchange of spatial localization of two MOs involved in the crossing can open a new channel of charge transfer that otherwise would not be available.

  16. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  17. Electronic ferroelectricity induced by charge and orbital orderings.

    PubMed

    Yamauchi, Kunihiko; Barone, Paolo

    2014-03-12

    After the revival of the magnetoelectric effect which took place in the early 2000s, the interest in multiferroic materials displaying simultaneous presence of spontaneous long-range magnetic and dipolar order has motivated an exponential growth of research activity, from both the experimental and theoretical perspectives. Within this context, and relying also on the rigorous formulation of macroscopic polarization as provided by the Berry-phase approach, it has been possible to identify new microscopic mechanisms responsible for the appearance of ferroelectricity. In particular, it has been realized that electronic spin, charge and orbital degrees of freedom may be responsible for the breaking of the space-inversion symmetry, a necessary condition for the appearance of electric polarization, even in centrosymmetric crystal structures. In view of its immediate potential application in magnetoelectric-based devices, many efforts have been made to understand how magnetic orderings may lead to ferroelectric polarization, and to identify candidate materials. On the other hand, the role of charge and orbital degrees of freedom, which have received much less attention, has been predicted to be non-negligible in several cases. Here, we review recent theoretical advances in the field of so-called electronic ferroelectricity, focusing on the possible mechanisms by which charge- and/or orbital-ordering effects may cause the appearance of macroscopic polarization. Generally, a naive distinction can be drawn between materials displaying almost localized electrons and those characterized by a strong covalent character and delocalized electrons. As for the latter, an intuitive understanding of basic mechanisms is provided in the framework of tight-binding model Hamiltonians, which are used to shed light on unusual charge/orbital effects in half-doped manganites, whereas the case of magnetite will be thoroughly discussed in light of recent progress pointing to an electronic

  18. Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices

    PubMed Central

    Chao, Jerry; Ward, E. Sally; Ober, Raimund J.

    2012-01-01

    The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD. PMID:23049166

  19. Manipulating charge density waves in 1 T -TaS2 by charge-carrier doping: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.

    2016-09-01

    The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.

  20. Charge effects on the hindered transport of macromolecules across the endothelial surface glycocalyx layer.

    PubMed

    Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki

    2012-01-01

    A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.

  1. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb 3Rh 7O 15

    DOE PAGES

    Li, Yan; Sun, Zhao; Cai, Jia -Wei; ...

    2017-07-01

    Here, the mixed-valent Pbmore » $${}_{3}$$Rh $${}_{7}$$O$${}_{15}$$ undergoes a Verwey-type transition at $${T}_{{\\rm{v}}}\\approx 180$$ K, below which the development of Rh$${}^{3+}$$ /Rh$${}^{4+}$$ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below ~70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at P > 7 GPa, which indicates that the charge carriers in Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ and compared to that of Fe$${}_{3}$$O$${}_{4}$$, showing an archetype Verwey transition.« less

  2. Application of p-i-n photodiodes to charged particle fluence measurements beyond 1015 1-MeV-neutron-equivalent/cm2

    NASA Astrophysics Data System (ADS)

    Hoeferkamp, M. R.; Grummer, A.; Rajen, I.; Seidel, S.

    2018-05-01

    Methods are developed for the application of forward biased p-i-n photodiodes to measurements of charged particle fluence beyond 1015 1-MeV-neutron-equivalent/cm2. An order of magnitude extension of the regime where forward voltage can be used to infer fluence is achieved for OSRAM BPW34F devices.

  3. Charge Transport Properties in Disordered Organic Semiconductor as a Function of Charge Density: Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Shukri, Seyfan Kelil

    2017-01-01

    We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.

  4. Effective charges of ionic liquid determined self-consistently through combination of molecular dynamics simulation and density-functional theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2017-11-15

    A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?

    PubMed

    Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu

    2013-01-17

    Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.

  6. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    PubMed

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  7. Counterintuitive cooperative endocytosis of like-charged nanoparticles in cellular internalization: computer simulation and experiment

    NASA Astrophysics Data System (ADS)

    Li, Ye; Yuan, Bing; Yang, Kai; Zhang, Xianren; Yan, Bing; Cao, Dapeng

    2017-02-01

    The nanoparticles (NPs) functionalized with charged ligands are of particular significance due to their potential drug/gene delivery and biomedical applications. However, the molecular mechanism of endocytosis of the charged NPs by cells, especially the effect of the NP-NP and NP-biomembrane interactions on the internalization pathways is still poorly understood. In this work, we systematically investigate the internalization behaviors of the positively charged NPs by combining experiment technology and dissipative particle dynamics (DPD) simulation. We experimentally find an interesting but highly counterintuitive phenomenon, i.e. the multiple positively charged NPs prefer to enter cells cooperatively although the like-charged NPs have obvious electrostatic repulsion. Furthermore, we adopt the DPD simulation to confirm the experimental findings, and reveal that the mechanism of the cooperative endocytosis between like-charged NPs is definitely caused by the interplay of particle size, the charged ligand density on particle surface and local concentration of NPs. Importantly, we not only observe the normal cooperative endocytosis of like-charged NPs in cell biomembrane like neutral NP case, but also predict the ‘bud’ cooperative endocytosis of like-charged NPs which is absence in the neutral NP case. The results indicate that electrostatic repulsion between the positively charged nanoparticles plays an important role in the ‘bud’ cooperative endocytosis of like-charged NPs.

  8. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  9. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

    PubMed Central

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning

    2017-01-01

    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  10. Effect of hyaluronic acid in bone formation and its applications in dentistry.

    PubMed

    Zhao, Ningbo; Wang, Xin; Qin, Lei; Zhai, Min; Yuan, Jing; Chen, Ji; Li, Dehua

    2016-06-01

    Hyaluronic acid (HA), the simplest glycosaminoglycan, participates in several important biological procedures, including mediation of cellular signaling, regulation of cell adhesion and proliferation, and manipulation of cell differentiation. The effect of HA on cell proliferation and differentiation depends on its molecular weight (MW) and concentration. Moreover, the properties of high viscosity, elasticity, highly negative charge, biocompatibility, biodegradability, and nonimmunogenicity make HA attractive in tissue engineering and disease treatment. This review comprises an overview of the effect of HA on cell proliferation and differentiation in vitro, the role of HA in bone regeneration in vivo, and the clinical applications of HA in dentistry, focusing on the mechanism underlining the effect of MW and concentration of HA on cell proliferation and osteogenic differentiation. It is expected that practical progress of HA both in laboratory-based experiments and clinical applications will be achieved in the next few years. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1560-1569, 2016. © 2016 Wiley Periodicals, Inc.

  11. A Spacecraft Charging Capability for SXTF.

    DTIC Science & Technology

    1979-01-17

    surfaces can charge up. ’Iiiis differential charging of satellite surfaces can cause vacutum sparks , and dielectric breakdowns, and wi 11 effect the S...times required to reach steady charge state in the spacecraft internal dielectrics upon electron irradiation. In space , typical times (order of magni...WORDS (Continue on reverse side it necessary end Identify by block nunmber) Spacecraft charging Dielectric breakdown SGEMP Electron accelerators

  12. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    NASA Astrophysics Data System (ADS)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  13. Expected charge states of energetic ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1979-01-01

    Major developments in magnetospheric heavy ion physics during the period 1974-1977 are reviewed with emphasis on charge state aspects. Particular attention is given to the high energy component at energies above tens of keV per ion. Also considered are charge exchange processes with application to the inner magnetosphere, a comparison between theory and measurements, and a survey of heavy ion and charge state observations in the outer magnetosphere, magnetosheath and the surrounding space.

  14. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  15. Two particle model for studying the effects of space-charge force on strong head-tail instabilities

    DOE PAGES

    Chin, Yong Ho; Chao, Alexander Wu; Blaskiewicz, Michael M.

    2016-01-19

    In this paper, we present a new two particle model for studying the strong head-tail instabilities in the presence of the space-charge force. It is a simple expansion of the well-known two particle model for strong head-tail instability and is still analytically solvable. No chromaticity effect is included. It leads to a formula for the growth rate as a function of the two dimensionless parameters: the space-charge tune shift parameter (normalized by the synchrotron tune) and the wakefield strength, Upsilon. The three-dimensional contour plot of the growth rate as a function of those two dimensionless parameters reveals stopband structures. Manymore » simulation results generally indicate that a strong head-tail instability can be damped by a weak space-charge force, but the beam becomes unstable again when the space-charge force is further increased. The new two particle model indicates a similar behavior. In weak space-charge regions, additional tune shifts by the space-charge force dissolve the mode coupling. As the space-charge force is increased, they conversely restore the mode coupling, but then a further increase of the space-charge force decouples the modes again. Lastly, this mode coupling/decoupling behavior creates the stopband structures.« less

  16. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  17. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  18. "Inverted" Solvent Effect on Charge Transfer in the Excited State.

    PubMed

    Nau; Pischel

    1999-10-04

    Faster in cyclohexane than in acetonitrile is the fluorescence quenching of the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by amines and sulfides. Although this photoreaction is induced by charge transfer (CT; see picture) and exciplexes are formed, the increase in the dipole moment of the exciplex is not large enough to offset the solvent stabilization of the excited reactants, and an "inverted" solvent effect results.

  19. Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging

    NASA Astrophysics Data System (ADS)

    Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud

    2015-04-01

    Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.

  20. Atomic charges of individual reactive chemicals in binary mixtures determine their joint effects: an example of cyanogenic toxicants and aldehydes.

    PubMed

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang; Zhang, Yalei; Kong, Deyang

    2012-02-01

    Environmental contaminants are usually encountered as mixtures, and many of these mixtures yield synergistic or antagonistic effects attributable to an intracellular chemical reaction that pose a potential threat on ecological systems. However, how atomic charges of individual chemicals determine their intracellular chemical reactions, and then determine the joint effects for mixtures containing reactive toxicants, is not well understood. To address this issue, the joint effects between cyanogenic toxicants and aldehydes on Photobacterium phosphoreum were observed in the present study. Their toxicological joint effects differed from one another. This difference is inherently related to the two atomic charges of the individual chemicals: the oxygen charge of -CHO (O(aldehyde toxicant)) in aldehyde toxicants and the carbon-atom charge of a carbon chain in the cyanogenic toxicant (C(cyanogenic toxicant)). Based on these two atomic charges, the following QSAR (quantitative structure-activity relationship) model was proposed: When (O(aldehyde toxicant) -C(cyanogenic toxicant) )> -0.125, the joint effect of equitoxic binary mixtures at median inhibition (TU, the sum of toxic units) can be calculated as TU = 1.00 ± 0.20; when (O(aldehyde toxicant) -C(cyanogenic toxicant) ) ≤ -0.125, the joint effect can be calculated using TU = - 27.6 x O (aldehyde toxicant) - 5.22 x C (cyanogenic toxicant) - 6.97 (n = 40, r = 0.887, SE = 0.195, F = 140, p < 0.001, q(2) (Loo) = 0.748; SE is the standard error of the regression, F is the F test statistic). The result provides insight into the relationship between the atomic charges and the joint effects for mixtures containing cyanogenic toxicants and aldehydes. This demonstrates that the essence of the joint effects resulting from intracellular chemical reactions depends on the atomic charges of individual chemicals. The present study provides a possible approach for the development of a QSAR model for mixtures containing reactive

  1. Charges drive selection of specific antibodies by phage display.

    PubMed

    Persson, Helena; Persson, Jonas; Danielsson, Lena; Ohlin, Mats

    2010-02-28

    Phage display technology has emerged as a leading approach to select proteins with improved properties for many different types of applications. The selection typically selects not only for improved binding properties but also for other factors such as efficiency of protein production and folding in Escherichia coli, the host in which the proteins and the phage are produced. Furthermore, the selection methodology is likely to influence the character of retrieved variants. We have now defined the extent whereby the charge of the displayed proteins influence the selection process, resulting in an increased average positive charge among selected proteins in comparison to the proteins that are harbored in the library before selection. Implications of and possible routes to minimize this effect are discussed. 2009 Elsevier B.V. All rights reserved.

  2. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force inmore » the beam combined with elegant [4] and explore the limitation of the 1D model often used« less

  3. A study of a direct-injection stratified-charge rotary engine for motor vehicle application

    NASA Astrophysics Data System (ADS)

    Kagawa, Ryoji; Okazaki, Syunki; Somyo, Nobuhiro; Akagi, Yuji

    1993-03-01

    A study of a direct-injection stratified-charge system (DISC), as applied to a rotary engine (RE) for motor vehicle usage, was undertaken. The goals of this study were improved fuel consumption and reduced exhaust emissions. These goals were thought feasible due to the high thermal efficiency associated with the DISC-RE. This was the first application of this technology to a motor vehicle engine. Stable ignition and ideal stratification systems were developed by means of numerical calculations, air-fuel mixture measurements, and actual engine tests. The use of DISC resulted in significantly improved fuel consumption and reduced exhaust emissions. The use of an exhaust gas recirculating system was studied and found to be beneficial in NOx reduction.

  4. Effects of emotionally charged auditory stimulation on gait performance in the elderly: a preliminary study.

    PubMed

    Rizzo, John-Ross; Raghavan, Preeti; McCrery, J R; Oh-Park, Mooyeon; Verghese, Joe

    2015-04-01

    To evaluate the effect of a novel divided attention task-walking under auditory constraints-on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Validation cohort. General community. Ambulatory older adults without dementia (N=104). Not applicable. In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; P<.001) as compared with trials without auditory stimulation. In contrast, older adults with minimal cognitive impairment (Blessed test score, 5-10; n=8) showed an average reduction of 5.45cm/s in gait velocity (F1.87,190.83=5.62; P=.005) and an average reduction of 3.88 steps/min in cadence (F1.79,183.10=8.21; P=.001) under both auditory stimulation conditions. Neither baseline fall history nor performance of activities of daily living accounted for these differences. Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait performance in older individuals with minimal cognitive impairment compared with those without minimal

  5. Recent applications of THERMUS

    NASA Astrophysics Data System (ADS)

    Wheaton, S.; Hauer, M.

    2011-12-01

    Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.

  6. Quantum effects in energy and charge transfer in an artificial photosynthetic complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco

    2011-06-28

    We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled tomore » the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of {approx}100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.« less

  7. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.

    PubMed

    Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Muller, Marc; Huang, Jessica; Kostecki, Robert

    2013-01-01

    We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.

  8. 29 CFR 2520.104b-30 - Charges for documents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF...) Application. The plan administrator of an employee benefit plan may impose a reasonable charge to cover the... event may such charge exceed 25 cents per page. For example, if a plan printed a large number of...

  9. 46 CFR 5.11 - Officer in Charge, Marine Inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Officer in Charge, Marine Inspection. 5.11 Section 5.11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE INVESTIGATION REGULATIONS-PERSONNEL ACTION Definitions § 5.11 Officer in Charge, Marine Inspection. Officer in...

  10. 46 CFR 5.11 - Officer in Charge, Marine Inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Officer in Charge, Marine Inspection. 5.11 Section 5.11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE INVESTIGATION REGULATIONS-PERSONNEL ACTION Definitions § 5.11 Officer in Charge, Marine Inspection. Officer in...

  11. 46 CFR 5.11 - Officer in Charge, Marine Inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Officer in Charge, Marine Inspection. 5.11 Section 5.11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE INVESTIGATION REGULATIONS-PERSONNEL ACTION Definitions § 5.11 Officer in Charge, Marine Inspection. Officer in...

  12. 46 CFR 5.11 - Officer in Charge, Marine Inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Officer in Charge, Marine Inspection. 5.11 Section 5.11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE INVESTIGATION REGULATIONS-PERSONNEL ACTION Definitions § 5.11 Officer in Charge, Marine Inspection. Officer in...

  13. 46 CFR 5.11 - Officer in Charge, Marine Inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Officer in Charge, Marine Inspection. 5.11 Section 5.11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC MARINE INVESTIGATION REGULATIONS-PERSONNEL ACTION Definitions § 5.11 Officer in Charge, Marine Inspection. Officer in...

  14. Mode locking of electron spin coherences in singly charged quantum dots.

    PubMed

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  15. A SONOS device with a separated charge trapping layer for improvement of charge injection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu

    2017-03-01

    A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.

  16. Charged and uncharged vortices in quasiclassical theory

    NASA Astrophysics Data System (ADS)

    Masaki, Yusuke; Kato, Yusuke

    2018-03-01

    The charging effect of a superconducting vortex core is very important for transport properties of superconducting vortices. The chiral p-wave superconductor, known as a topological superconductor (SC), has a Majorana fermion in a vortex core and the charging effect has been studied using microscopic Bogoliubov{de Gennes (BdG) theory. According to calculations based on the BdG theory, one type of the vortex is charged as well as the vortex of the s-wave SC, while the other is uncharged. We reproduce this interesting charging effect using an augmented quasiclassical theory in chiral p-wave SCs, by which we can deal with particle-hole asymmetry in the quasiclassical approximation.

  17. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  18. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  19. Application of Gauss's law space-charge limited emission model in iterative particle tracking method

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.; Ponomarev, V. A.

    2016-11-01

    The particle tracking method with a so-called gun iteration for modeling the space charge is discussed in the following paper. We suggest to apply the emission model based on the Gauss's law for the calculation of the space charge limited current density distribution using considered method. Based on the presented emission model we have developed a numerical algorithm for this calculations. This approach allows us to perform accurate and low time consumpting numerical simulations for different vacuum sources with the curved emitting surfaces and also in the presence of additional physical effects such as bipolar flows and backscattered electrons. The results of the simulations of the cylindrical diode and diode with elliptical emitter with the use of axysimmetric coordinates are presented. The high efficiency and accuracy of the suggested approach are confirmed by the obtained results and comparisons with the analytical solutions.

  20. Kinetic and fluid descriptions of charged particle swarms in gases and nonpolar fluids: Theory and applications

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa

    2016-09-01

    In this work we review the progress achieved over the last few decades in the fundamental kinetic theory of charged particle swarms with the focus on numerical techniques for the solution of Boltzmann's equation for electrons, as well as on the development of fluid models. We present a time-dependent multi term solution of Boltzmann's equation valid for electrons and positrons in varying configurations of electric and magnetic fields. The capacity of a theory and associated computer code will be illustrated by considering the heating mechanisms for electrons in radio-frequency electric and magnetic fields in a collision-dominated regime under conditions when electron transport is greatly affected by non-conservative collisions. The kinetic theory for solving the Boltzmann equation will be followed by a fluid equation description of charged particle swarms in both the hydrodynamic and non-hydrodynamic regimes, highlighting (i) the utility of momentum transfer theory for evaluating collisional terms in the balance equations and (ii) closure assumptions and approximations. The applications of this theory are split into three sections. First, we will present our 1.5D model of Resistive Plate Chambers (RPCs) which are used for timing and triggering purposes in many high energy physics experiments. The model is employed to study the avalanche to streamer transition in RPCs under the influence of space charge effects and photoionization. Second, we will discuss our high-order fluid model for streamer discharges. Particular emphases will be placed on the correct implementation of transport data in streamer models as well as on the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the last segment of this work, we will present our model to study the avalanche to streamer transition in non-polar fluids. Using a Monte Carlo simulation technique we have calculated transport coefficients for electrons in

  1. Insulator edge voltage gradient effects in spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Purvis, C. K.; Staskus, J. V.

    1978-01-01

    Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.

  2. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PVmore » market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.« less

  3. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    PubMed

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  4. Novel Polymyxin Derivatives Carrying Only Three Positive Charges Are Effective Antibacterial Agents ▿

    PubMed Central

    Vaara, Martti; Fox, John; Loidl, Günther; Siikanen, Osmo; Apajalahti, Juha; Hansen, Frank; Frimodt-Møller, Niels; Nagai, Junya; Takano, Mikihisa; Vaara, Timo

    2008-01-01

    The lack of novel antibiotics against gram-negative bacteria has reinstated polymyxins as the drugs of last resort to treat serious infections caused by extremely multiresistant gram-negative organisms. However, polymyxins are nephrotoxic, and this feature may complicate therapy or even require its discontinuation. Like that of aminoglycosides, the nephrotoxicity of polymyxins might be related to the highly cationic nature of the molecule. Colistin and polymyxin B carry five positive charges. Here we show that novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. NAB739 has a cyclic peptide portion identical to that of polymyxin B, but in the linear portion of the peptide, it carries the threonyl-d-serinyl residue (no cationic charges) instead of the diaminobutyryl-threonyl-diaminobutyryl residue (two cationic charges). The MICs of NAB739 for 17 strains of Escherichia coli were identical, or very close, to those of polymyxin B. Furthermore, NAB739 was effective against other polymyxin-susceptible strains of Enterobacteriaceae and against Acinetobacter baumannii. At subinhibitory concentrations, it dramatically sensitized A. baumannii to low concentrations of antibiotics such as rifampin, clarithromycin, vancomycin, fusidic acid, and meropenem. NAB739 methanesulfonate was a prodrug analogous to colistin methanesulfonate. NAB740 was the most active derivative against Pseudomonas aeruginosa. NAB7061 (linear portion of the peptide, threonyl-aminobutyryl) lacked direct antibacterial activity but sensitized the targets to hydrophobic antibiotics by factors up to 2,000. The affinities of the NAB compounds for isolated rat kidney brush border membrane were significantly lower than that of polymyxin B. PMID:18591267

  5. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Axisymmetric charge-conservative electromagnetic particle simulation algorithm on unstructured grids: Application to microwave vacuum electronic devices

    NASA Astrophysics Data System (ADS)

    Na, Dong-Yeop; Omelchenko, Yuri A.; Moon, Haksu; Borges, Ben-Hur V.; Teixeira, Fernando L.

    2017-10-01

    We present a charge-conservative electromagnetic particle-in-cell (EM-PIC) algorithm optimized for the analysis of vacuum electronic devices (VEDs) with cylindrical symmetry (axisymmetry). We exploit the axisymmetry present in the device geometry, fields, and sources to reduce the dimensionality of the problem from 3D to 2D. Further, we employ 'transformation optics' principles to map the original problem in polar coordinates with metric tensor diag (1 ,ρ2 , 1) to an equivalent problem on a Cartesian metric tensor diag (1 , 1 , 1) with an effective (artificial) inhomogeneous medium introduced. The resulting problem in the meridian (ρz) plane is discretized using an unstructured 2D mesh considering TEϕ-polarized fields. Electromagnetic field and source (node-based charges and edge-based currents) variables are expressed as differential forms of various degrees, and discretized using Whitney forms. Using leapfrog time integration, we obtain a mixed E - B finite-element time-domain scheme for the full-discrete Maxwell's equations. We achieve a local and explicit time update for the field equations by employing the sparse approximate inverse (SPAI) algorithm. Interpolating field values to particles' positions for solving Newton-Lorentz equations of motion is also done via Whitney forms. Particles are advanced using the Boris algorithm with relativistic correction. A recently introduced charge-conserving scatter scheme tailored for 2D unstructured grids is used in the scatter step. The algorithm is validated considering cylindrical cavity and space-charge-limited cylindrical diode problems. We use the algorithm to investigate the physical performance of VEDs designed to harness particle bunching effects arising from the coherent (resonance) Cerenkov electron beam interactions within micro-machined slow wave structures.

  7. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  8. Effect of extreme temperatures on battery charging and performance of electric vehicles

    NASA Astrophysics Data System (ADS)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a ;base; load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  9. 42 CFR 405.506 - Charges higher than customary or prevailing charges or lowest charge levels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Charges higher than customary or prevailing charges... prevailing charges or lowest charge levels. A charge which exceeds the customary charge of the physician or other person who rendered the medical or other health service, or the prevailing charge in the locality...

  10. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Zhenyi; Wu, X.; Ward, D. R.

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  11. Effects of charge noise on a pulse-gated singlet-triplet S - T_ qubit

    DOE PAGES

    Qi, Zhenyi; Wu, X.; Ward, D. R.; ...

    2017-09-11

    Here, we study the dynamics of a pulse-gated semiconductor double-quantum-dot qubit. In our experiments, the qubit coherence times are relatively long, but the visibility of the quantum oscillations is low. We also show that these observations are consistent with a theory that incorporates decoherence arising from charge noise that gives rise to detuning fluctuations of the double dot. Because effects from charge noise are largest near the singlet-triplet avoided level crossing, the visibility of the oscillations is low when the singlet-triplet avoided level crossing occurs in the vicinity of the charge degeneracy point crossed during the manipulation, but there ismore » only modest dephasing at the large detuning value at which the quantum phase accumulates. This theory also agrees with experimental data and predicts that the visibility can be increased greatly by appropriate tuning of the interdot tunneling rate.« less

  12. Evidences for vertical charge dipole formation in charge-trapping memories and its impact on reliability

    NASA Astrophysics Data System (ADS)

    Padovani, Andrea; Arreghini, Antonio; Vandelli, Luca; Larcher, Luca; bosch, Geert Van den; Houdt, Jan Van

    2012-07-01

    We demonstrate the formation of a vertical charge dipole in the nitride layer of TaN/Al2O3/Si3N4/SiO2/Si memories and use dedicated experiments and device simulations to investigate its dependence on program and erase conditions. We show that the polarity of the dipole depends on the program/erase operation sequence and demonstrate that it is at the origin of the charge losses observed during retention. This dipole severely affects the retention of mildly programmed and erased states, representing a serious reliability concern especially for multi-level applications.

  13. Manipulating colloids with charges and electric fields

    NASA Astrophysics Data System (ADS)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  14. Gate bias stress in pentacene field-effect-transistors: Charge trapping in the dielectric or semiconductor

    NASA Astrophysics Data System (ADS)

    Häusermann, R.; Batlogg, B.

    2011-08-01

    Gate bias stress instability in organic field-effect transistors (OFETs) is a major conceptual and device issue. This effect manifests itself by an undesirable shift of the transfer characteristics and is associated with long term charge trapping. We study the role of the dielectric and the semiconductor separately by producing OFETs with the same semiconductor (pentacene) combined with different dielectrics (SiO2 and Cytop). We show that it is possible to fabricate devices which are immune to gate bias stress. For other material combinations, charge trapping occurs in the semiconductor alone or in the dielectric.

  15. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    NASA Astrophysics Data System (ADS)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was

  16. Effective holographic theory of charge density waves

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    We use gauge/gravity duality to write down an effective low energy holographic theory of charge density waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents. We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation invariant states and to stable phases breaking translations spontaneously. We compute analytically the real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating quantum critical ground states breaking translations spontaneously. At these critical points, the real part of the dc conductivity can be metallic or insulating.

  17. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  18. R.E.DD.B.: A database for RESP and ESP atomic charges, and force field libraries

    PubMed Central

    Dupradeau, François-Yves; Cézard, Christine; Lelong, Rodolphe; Stanislawiak, Élodie; Pêcher, Julien; Delepine, Jean Charles; Cieplak, Piotr

    2008-01-01

    The web-based RESP ESP charge DataBase (R.E.DD.B., http://q4md-forcefieldtools.org/REDDB) is a free and new source of RESP and ESP atomic charge values and force field libraries for model systems and/or small molecules. R.E.DD.B. stores highly effective and reproducible charge values and molecular structures in the Tripos mol2 file format, information about the charge derivation procedure, scripts to integrate the charges and molecular topology in the most common molecular dynamics packages. Moreover, R.E.DD.B. allows users to freely store and distribute RESP or ESP charges and force field libraries to the scientific community, via a web interface. The first version of R.E.DD.B., released in January 2006, contains force field libraries for molecules as well as molecular fragments for standard residues and their analogs (amino acids, monosaccharides, nucleotides and ligands), hence covering a vast area of relevant biological applications. PMID:17962302

  19. Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin

    2018-05-01

    Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.

  20. Explicit continuous charge-based compact model for long channel heavily doped surrounding-gate MOSFETs incorporating interface traps and quantum effects

    NASA Astrophysics Data System (ADS)

    Hamzah, Afiq; Hamid, Fatimah A.; Ismail, Razali

    2016-12-01

    An explicit solution for long-channel surrounding-gate (SRG) MOSFETs is presented from intrinsic to heavily doped body including the effects of interface traps and fixed oxide charges. The solution is based on the core SRGMOSFETs model of the Unified Charge Control Model (UCCM) for heavily doped conditions. The UCCM model of highly doped SRGMOSFETs is derived to obtain the exact equivalent expression as in the undoped case. Taking advantage of the undoped explicit charge-based expression, the asymptotic limits for below threshold and above threshold have been redefined to include the effect of trap states for heavily doped cases. After solving the asymptotic limits, an explicit mobile charge expression is obtained which includes the trap state effects. The explicit mobile charge model shows very good agreement with respect to numerical simulation over practical terminal voltages, doping concentration, geometry effects, and trap state effects due to the fixed oxide charges and interface traps. Then, the drain current is obtained using the Pao-Sah's dual integral, which is expressed as a function of inversion charge densities at the source/drain ends. The drain current agreed well with the implicit solution and numerical simulation for all regions of operation without employing any empirical parameters. A comparison with previous explicit models has been conducted to verify the competency of the proposed model with the doping concentration of 1× {10}19 {{cm}}-3, as the proposed model has better advantages in terms of its simplicity and accuracy at a higher doping concentration.