An ultrasound transient elastography system with coded excitation.
Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang
2017-06-28
Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.
Computational simulation of acoustic fatigue for hot composite structures
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.
1991-01-01
This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.
Computational simulation of acoustic fatigue for hot composite structures
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi
1991-01-01
Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.
The application of coded excitation technology in medical ultrasonic Doppler imaging
NASA Astrophysics Data System (ADS)
Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin
2008-03-01
Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen
2018-04-01
Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.
Shekhar, Himanshu; Doyley, Marvin M.
2013-01-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417
Shekhar, Himanshu; Doyley, Marvin M
2013-05-01
The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.
Coded excitation ultrasonic needle tracking: An in vivo study.
Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E
2016-07-01
Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.
Lasaygues, Philippe; Arciniegas, Andres; Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc
2018-05-26
Ultrasound computed tomography (USCT) using the transmission mode is a way to detect and assess the extent of decay in wood structures. The resolution of the ultrasonic image is closely related to the different anatomical features of wood. The complexity of the wave propagation process generates complex signals consisting of several wave packets with different signatures. Wave paths, depth dependencies, wave velocities or attenuations are often difficult to interpret. For this kind of assessment, the focus is generally on signal pre-processing. Several approaches have been used so far including filtering, spectrum analysis and a method involving deconvolution using a characteristic transfer function of the experimental device. However, all these approaches may be too sophisticated and/or unstable. The alternative methods proposed in this work are based on coded excitation, which makes it possible to process both local and general information available such as frequency and time parameters. Coded excitation is based on the filtering of the transmitted signal using a suitable electric input signal. The aim of the present study was to compare two coded-excitation methods, a chirp- and a wavelet-coded excitation method, to determine the time of flight of the ultrasonic wave, and to investigate the feasibility, the robustness and the precision of the measurement of geometrical and acoustical properties in laboratory conditions. To obtain control experimental data, the two methods were compared with the conventional ultrasonic pulse method. Experiments were conducted on a polyurethane resin sample and two samples of different wood species using two 500 kHz-transducers. The relative errors in the measurement of thickness compared with the results of caliper measurements ranged from 0.13% minimum for the wavelet-coded excitation method to 2.3% maximum for the chirp-coded excitation method. For the relative errors in the measurement of ultrasonic wave velocity, the coded excitation methods showed differences ranging from 0.24% minimum for the wavelet-coded excitation method to 2.62% maximum for the chirp-coded excitation method. Methods based on coded excitation algorithms thus enable accurate measurements of thickness and ultrasonic wave velocity in samples of wood species. Copyright © 2018 Elsevier B.V. All rights reserved.
Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.
Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven
2014-11-01
Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without affecting the axial resolution.
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
NASA Astrophysics Data System (ADS)
Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David
2016-03-01
KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong
2015-01-01
The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Potential of coded excitation in medical ultrasound imaging.
Misaridis, T X; Gammelmark, K; Jørgensen, C H; Lindberg, N; Thomsen, A H; Pedersen, M H; Jensen, J A
2000-03-01
Improvement in signal-to-noise ratio (SNR) and/or penetration depth can be achieved in medical ultrasound by using long coded waveforms, in a similar manner as in radars or sonars. However, the time-bandwidth product (TB) improvement, and thereby SNR improvement is considerably lower in medical ultrasound, due to the lower available bandwidth. There is still space for about 20 dB improvement in the SNR, which will yield a penetration depth up to 20 cm at 5 MHz [M. O'Donnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., 39(3) (1992) 341]. The limited TB additionally yields unacceptably high range sidelobes. However, the frequency weighting from the ultrasonic transducer's bandwidth, although suboptimal, can be beneficial in sidelobe reduction. The purpose of this study is an experimental evaluation of the above considerations in a coded excitation ultrasound system. A coded excitation system based on a modified commercial scanner is presented. A predistorted FM signal is proposed in order to keep the resulting range sidelobes at acceptably low levels. The effect of the transducer is taken into account in the design of the compression filter. Intensity levels have been considered and simulations on the expected improvement in SNR are also presented. Images of a wire phantom and clinical images have been taken with the coded system. The images show a significant improvement in penetration depth and they preserve both axial resolution and contrast.
NASA Astrophysics Data System (ADS)
Aggarwal, Kanti M.; Keenan, Francis P.
2013-04-01
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Park, Jinhyoung; Hu, Changhong; Shung, K Kirk
2011-12-01
A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.
Pulse Vector-Excitation Speech Encoder
NASA Technical Reports Server (NTRS)
Davidson, Grant; Gersho, Allen
1989-01-01
Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.
Speech coding at low to medium bit rates
NASA Astrophysics Data System (ADS)
Leblanc, Wilfred Paul
1992-09-01
Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.
Vector Adaptive/Predictive Encoding Of Speech
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey; Gersho, Allen
1989-01-01
Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.
Development of a new EMP code at LANL
NASA Astrophysics Data System (ADS)
Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.
2006-05-01
A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Doyley, Marvin M.
2013-03-01
Nonlinear (subharmonic/harmonic) imaging with ultrasound contrast agents (UCA) could characterize the vasa vasorum, which could help assess the risk associated with atherosclerosis. However, the sensitivity and specificity of high-frequency nonlinear imaging must be improved to enable its clinical translation. The current excitation scheme employs sine-bursts — a strategy that requires high-peak pressures to produce strong nonlinear response from UCA. In this paper, chirp-coded excitation was evaluated to assess its ability to enhance the subharmonic and harmonic response of UCA. Acoustic measurements were conducted with a pair of single-element transducers at 10-MHz transmit frequencies to evaluate the subharmonic and harmonic response of Targestar-P® (Targeson Inc., San Diego, CA, USA), a commercially available phospholipid-encapsulated contrast agent. The results of this study demonstrated a 2 - 3 fold reduction in the subharmonic threshold, and a 4 - 14 dB increase in nonlinear signal-to-noise ratio, with chirp-coded excitation. Therefore, chirp-coded excitation could be well suited for improving the imaging performance of high-frequency harmonic and subharmonic imaging.
Topological entanglement entropy with a twist.
Brown, Benjamin J; Bartlett, Stephen D; Doherty, Andrew C; Barrett, Sean D
2013-11-27
Defects in topologically ordered models have interesting properties that are reminiscent of the anyonic excitations of the models themselves. For example, dislocations in the toric code model are known as twists and possess properties that are analogous to Ising anyons. We strengthen this analogy by using the topological entanglement entropy as a diagnostic tool to identify properties of both defects and excitations in the toric code. Specifically, we show, through explicit calculation, that the toric code model including twists and dyon excitations has the same quantum dimensions, the same total quantum dimension, and the same fusion rules as an Ising anyon model.
Treatment of isomers in nucleosynthesis codes
NASA Astrophysics Data System (ADS)
Reifarth, René; Fiebiger, Stefan; Göbel, Kathrin; Heftrich, Tanja; Kausch, Tanja; Köppchen, Christoph; Kurtulgil, Deniz; Langer, Christoph; Thomas, Benedikt; Weigand, Mario
2018-03-01
The decay properties of long-lived excited states (isomers) can have a significant impact on the destruction channels of isotopes under stellar conditions. In sufficiently hot environments, the population of isomers can be altered via thermal excitation or de-excitation. If the corresponding lifetimes are of the same order of magnitude as the typical time scales of the environment, the isomers have to be treated explicitly. We present a general approach to the treatment of isomers in stellar nucleosynthesis codes and discuss a few illustrative examples. The corresponding code is available online at http://exp-astro.de/isomers/.
Extreme ultraviolet emission spectra of Gd and Tb ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilbane, D.; O'Sullivan, G.
2010-11-15
Theoretical extreme ultraviolet emission spectra of gadolinium and terbium ions calculated with the Cowan suite of codes and the flexible atomic code (FAC) relativistic code are presented. 4d-4f and 4p-4d transitions give rise to unresolved transition arrays in a range of ions. The effects of configuration interaction are investigated for transitions between singly excited configurations. Optimization of emission at 6.775 nm and 6.515 nm is achieved for Gd and Tb ions, respectively, by consideration of plasma effects. The resulting synthetic spectra are compared with experimental spectra recorded using the laser produced plasma technique.
Theoretical research on color indirect effects
NASA Astrophysics Data System (ADS)
Liu, T. C.; Liao, Changjun; Liu, Songhao
1995-05-01
Color indirect effects (CIE) means the physiological and psychological effects of color resulting from color vision. In this paper, we study CIE from the viewpoints of the integrated western and Chinese traditional medicine and the time quantum theory established by C. Y. Liu et al., respectively, and then put forward the color-automatic-nervous-subsystem model that could color excites parasympathetic subsystem and hot color excites sympathetic subsystem. Our theory is in agreement with modern color vision theory, and moreover, it leads to the resolution of the conflict between the color code theory and the time code theory oncolor vision. For the latitude phenomena on athlete stars number and the average lifespan, we also discuss the possibility of UV vision. The applications of our theory lead to our succeeding in explaining a number of physiological and psychological effects of color, in explaining the effects of age on color vision, and in explaining the Chinese chromophototherapy. We also discuss its application to neuroimmunology. This research provides the foundation of the clinical applications of chromophototherapy.
Shekhar, Himanshu; Doyley, Marvin M.
2012-01-01
Purpose: Subharmonic intravascular ultrasound imaging (S-IVUS) could visualize the adventitial vasa vasorum, but the high pressure threshold required to incite subharmonic behavior in an ultrasound contrast agent will compromise sensitivity—a trait that has hampered the clinical use of S-IVUS. The purpose of this study was to assess the feasibility of using coded-chirp excitations to improve the sensitivity and axial resolution of S-IVUS. Methods: The subharmonic response of Targestar-pTM, a commercial microbubble ultrasound contrast agent (UCA), to coded-chirp (5%–20% fractional bandwidth) pulses and narrowband sine-burst (4% fractional bandwidth) pulses was assessed, first using computer simulations and then experimentally. Rectangular windowed excitation pulses with pulse durations ranging from 0.25 to 3 μs were used in all studies. All experimental studies were performed with a pair of transducers (20 MHz/10 MHz), both with diameter of 6.35 mm and focal length of 50 mm. The size distribution of the UCA was measured with a CasyTM Cell counter. Results: The simulation predicted a pressure threshold that was an order of magnitude higher than that determined experimentally. However, all other predictions were consistent with the experimental observations. It was predicted that: (1) exciting the agent with chirps would produce stronger subharmonic response relative to those produced by sine-bursts; (2) increasing the fractional bandwidth of coded-chirp excitation would increase the sensitivity of subharmonic imaging; and (3) coded-chirp would increase axial resolution. The experimental results revealed that subharmonic-to-fundamental ratios obtained with chirps were 5.7 dB higher than those produced with sine-bursts of similar duration. The axial resolution achieved with 20% fractional bandwidth chirps was approximately twice that achieved with 4% fractional bandwidth sine-bursts. Conclusions: The coded-chirp method is a suitable excitation strategy for subharmonic IVUS imaging. At the 20 MHz transmission frequency and 20% fractional bandwidth, coded-chirp excitation appears to represent the ideal tradeoff between subharmonic strength and axial resolution. PMID:22482626
Influence of nuclear de-excitation on observables relevant for space exploration
NASA Astrophysics Data System (ADS)
Mancusi, Davide; Boudard, Alain; Cugnon, Joseph; David, Jean-Christophe; Leray, Sylvie
The composition of the space radiation environment inside spacecrafts is modified by the inter-action with shielding material, with equipment and even with the astronauts' bodies. Accurate quantitative estimates of the effects of nuclear reactions are necessary, for example, for dose estimation and prediction of single-event upset rates. To this end, it is necessary to construct predictive models for nuclear reactions, which usually consist of an intranuclear-cascade or quantum-molecular-dynamics stage, followed by a nuclear de-excitation stage. While it is generally acknowledged that it is necessary to accurately simulate the first reaction stage, transport-code users often neglect or underestimate the importance of the choice of the de-excitation code. The purpose of this work is to prove that the de-excitation model is in fact a non-negligible source of uncertainty for the prediction of several observables of crucial importance for space applications. For some particular observables, such as fragmentation cross sections, the systematic uncertainty due to the de-excitation model actually dominates the theoretical error. Our point will be illustrated by making use of calculations performed with several intranuclear-cascade/de-excitation models, such as the Li`ge Intranuclear Cascade model (INCL) and Isabel (for the cascade part) and ABLA, GEMINI++ and SMM (on the de-excitation side). We will also rely on the results of the recent IAEA intercomparison of spallation models, which can be used as informative groundwork for the evaluation of the global uncertainties involved in nucleon-nucleus reactions.
Probabilistic analysis of bladed turbine disks and the effect of mistuning
NASA Technical Reports Server (NTRS)
Shah, A. R.; Nagpal, V. K.; Chamis, Christos C.
1990-01-01
Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping are included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.
Probabilistic analysis of bladed turbine disks and the effect of mistuning
NASA Technical Reports Server (NTRS)
Shah, Ashwin; Nagpal, V. K.; Chamis, C. C.
1990-01-01
Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping have been included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor.
Photoionization and High Density Gas
NASA Technical Reports Server (NTRS)
Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.
Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.
Mulaveesala, Ravibabu; Venkata Ghali, Subbarao
2011-05-01
This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.
ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics
NASA Astrophysics Data System (ADS)
Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.
2012-03-01
ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from the ion source by high voltage applied to the extraction and accelerating grids. The current distribution of a single beamlet emitted from a single pore of IOS depends on the shape of the plasma boundary in the emission region. Total beam extracted by IOS is calculated at every point of 3D mesh as sum of all contributions from each grid pore. The code effectively unifies the ion beam formation, extraction and neutralization processes with neutral beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. Running time: 10 min for a standard run.
Inelastic losses in X-ray absorption theory
NASA Astrophysics Data System (ADS)
Campbell, Luke Whalin
There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a projection operator to calculate deviations from the final state rule and edge singularities.
A Comprehensive C++ Controller for a Magnetically Supported Vertical Rotor. 1.0
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.
2001-01-01
This manual describes the new FATMaCC (Five-Axis, Three-Magnetic-Bearing Control Code). The FATMaCC (pronounced "fat mak") is a versatile control code that possesses many desirable features that were not available in previous in-house controllers. The ultimate goal in designing this code was to achieve full rotor levitation and control at a loop time of 50 microsec. Using a 1-GHz processor, the code will control a five-axis system in either a decentralized or a more elegant centralized (modal control) mode at a loop time of 56 microsec. In addition, it will levitate and control (with only minor modification to the input/output wiring) a two-axis and/or a four-axis system. Stable rotor levitation and control of any of the systems mentioned above are accomplished through appropriate key presses to modify parameters, such as stiffness, damping, and bias. A signal generation block provides 11 excitation signals. An excitation signal is then superimposed on the radial bearing x- and y-control signals, thus producing a resultant force vector. By modulating the signals on the bearing x- and y-axes with a cosine and a sine function, respectively, a radial excitation force vector is made to rotate 360 deg. about the bearing geometric center. The rotation of the force vector is achieved manually by using key press or automatically by engaging the "one-per-revolution" feature. Rotor rigid body modes can be excited by using the excitation module. Depending on the polarities of the excitation signal in each radial bearing, the bounce or tilt mode will be excited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Tretiak, Sergei
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atomsmore » in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.« less
Fast Scattering Code (FSC) User's Manual: Version 2
NASA Technical Reports Server (NTRS)
Tinetti, Ana F.; Dun, M. H.; Pope, D. Stuart
2006-01-01
The Fast Scattering Code (version 2.0) is a computer program for predicting the three-dimensional scattered acoustic field produced by the interaction of known, time-harmonic, incident sound with aerostructures in the presence of potential background flow. The FSC has been developed for use as an aeroacoustic analysis tool for assessing global effects on noise radiation and scattering caused by changes in configuration (geometry, component placement) and operating conditions (background flow, excitation frequency).
Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model
NASA Astrophysics Data System (ADS)
Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu
2018-01-01
We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.
NASA Astrophysics Data System (ADS)
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
NASA Astrophysics Data System (ADS)
Lu, L.; Colas, L.; Jacquot, J.; Després, B.; Heuraux, S.; Faudot, E.; Van Eester, D.; Crombé, K.; Křivská, A.; Noterdaeme, J.-M.; Helou, W.; Hillairet, J.
2018-03-01
In order to model the sheath rectification in a realistic geometry over the size of ion cyclotron resonant heating (ICRH) antennas, the self-consistent sheaths and waves for ICH (SSWICH) code couples self-consistently the RF wave propagation and the DC SOL biasing via nonlinear RF and DC sheath boundary conditions applied at plasma/wall interfaces. A first version of SSWICH had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic field B 0 and only included the evanescent slow wave (SW) excited parasitically by the ICRH antenna. The main wave for plasma heating, the fast wave (FW) plays no role on the sheath excitation in this version. A new version of the code, 2D SSWICH-full wave, was developed based on the COMSOL software, to accommodate full RF field polarization and shaped walls tilted with respect to B 0 . SSWICH-full wave simulations have shown the mode conversion of FW into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced ‘far-field’ sheath oscillations appearing at the shaped walls with a relatively long magnetic connection length to the antenna, that are only accessible to the propagating FW. Joint simulation, conducted by SSWICH-full wave within a multi-2D approach excited using the 3D wave coupling code (RAPLICASOL), has recovered the double-hump poloidal structure measured in the experimental temperature and potential maps when only the SW is modelled. The FW contribution on the potential poloidal structure seems to be affected by the 3D effects, which was ignored in the current stage. Finally, SSWICH-full wave simulation revealed the left-right asymmetry that has been observed extensively in the unbalanced strap feeding experiments, suggesting that the spatial proximity effects in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave launcher under full wave polarizations.
The role of hot electrons in the dynamics of a laser-driven strong converging shock
Llor Aisa, E.; Ribeyre, X.; Duchateau, G.; ...
2017-11-30
Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.
The role of hot electrons in the dynamics of a laser-driven strong converging shock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Duchateau, G.
Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.
Migliore, Michele; Hines, Michael L.; Shepherd, Gordon M.
2014-01-01
The precise mechanism by which synaptic excitation and inhibition interact with each other in odor coding through the unique dendrodendritic synaptic microcircuits present in olfactory bulb is unknown. Here a scaled-up model of the mitral–granule cell network in the rodent olfactory bulb is used to analyze dendrodendritic processing of experimentally determined odor patterns. We found that the interaction between excitation and inhibition is responsible for two fundamental computational mechanisms: (1) a balanced excitation/inhibition in strongly activated mitral cells, leading to a sparse representation of odorant input, and (2) an unbalanced excitation/inhibition (inhibition dominated) in surrounding weakly activated mitral cells, leading to lateral inhibition. These results suggest how both mechanisms can carry information about the input patterns, with optimal level of synaptic excitation and inhibition producing the highest level of sparseness and decorrelation in the network response. The results suggest how the learning process, through the emergent development of these mechanisms, can enhance odor representation of olfactory bulb. PMID:25297097
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
Park, Jinhyoung; Li, Xiang; Zhou, Qifa; Shung, K. Kirk
2013-01-01
The application of chirp coded excitation to pulse inversion tissue harmonic imaging can increase signal to noise ratio. On the other hand, the elevation of range side lobe level, caused by leakages of the fundamental signal, has been problematic in mechanical scanners which are still the most prevalent in high frequency intravascular ultrasound imaging. Fundamental chirp coded excitation imaging can achieve range side lobe levels lower than –60 dB with Hanning window, but it yields higher side lobes level than pulse inversion chirp coded tissue harmonic imaging (PI-CTHI). Therefore, in this paper a combined pulse inversion chirp coded tissue harmonic and fundamental imaging mode (CPI-CTHI) is proposed to retain the advantages of both chirp coded harmonic and fundamental imaging modes by demonstrating 20–60 MHz phantom and ex vivo results. A simulation study shows that the range side lobe level of CPI-CTHI is 16 dB lower than PI-CTHI, assuming that the transducer translates incident positions by 50 μm when two beamlines of pulse inversion pair are acquired. CPI-CTHI is implemented for a proto-typed intravascular ultrasound scanner capable of combined data acquisition in real-time. A wire phantom study shows that CPI-CTHI has a 12 dB lower range side lobe level and a 7 dB higher echo signal to noise ratio than PI-CTHI, while the lateral resolution and side lobe level are 50 μm finer and –3 dB less than fundamental chirp coded excitation imaging respectively. Ex vivo scanning of a rabbit trachea demonstrates that CPI-CTHI is capable of visualizing blood vessels as small as 200 μm in diameter with 6 dB better tissue contrast than either PI-CTHI or fundamental chirp coded excitation imaging. These results clearly indicate that CPI-CTHI may enhance tissue contrast with less range side lobe level than PI-CTHI. PMID:22871273
Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection
Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao
2015-01-01
Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181
Calculation of molecular excitation rates
NASA Technical Reports Server (NTRS)
Flynn, George
1993-01-01
State-to-state collisional excitation rates for interstellar molecules observed by radio astronomers continue to be required to interpret observed line intensities in terms of local temperatures and densities. A problem of particular interest is collisional excitation of water which is important for modeling the observed interstellar masers. In earlier work supported by a different NASA Grant, excitation of water in collisions with He atoms was studied; after many years of successively more refined calculations that problem now seems to be well understood, and discrepancies with earlier experimental data for related (pressure broadening) phenomena are believed to reflect experimental errors. Because of interstellar abundances, excitation by H2, the dominant interstellar species, is much more important than excitation by He, although it has been argued that rates for excitation by these are similar. Under the current grant theoretical study of this problem has begun which is greatly complicated by the additional degrees of freedom which must be included both in determining the interaction potential and also in the molecular scattering calculation. We have now computed the interaction forces for nearly a thousand molecular geometries and are close to having an acceptable global fit to these points which is necessary for the molecular dynamics calculations. Also, extensive modifications have been made to the molecular scattering code, MOLSCAT. These included coding the rotational basis sets and coupling matrix elements required for collisions of an asymmetric top with a linear rotor. A new method for numerical solution of the coupled equations has been incorporated. Because of the long-ranged nature of the water-hydrogen interaction it is necessary to integrate the equations to rather large intermolecular separations, and the integration methods previously available in MOLSCAT are not ideal for such cases. However, the method used by Alexander in his HIBRIDON code is particularly suited for such cases. We have obtained this code and incorporated that part which solves the coupled differential equations as an option in the MOLSCAT program.
NASA Astrophysics Data System (ADS)
Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo
2017-10-01
We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.
Behar, Vera; Adam, Dan
2005-12-01
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.
4800 B/S speech compression techniques for mobile satellite systems
NASA Technical Reports Server (NTRS)
Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.
1986-01-01
This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.
NASA Astrophysics Data System (ADS)
Riera-Palou, Felip; den Brinker, Albertus C.
2007-12-01
This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).
Wang, Yong-Mei; Tian, Xue-Tao; Zhang, Hui; Yang, Zhong-Rui; Yin, Xue-Bo
2018-06-21
Counterfeiting is a global epidemic that is compelling the development of new anticounterfeiting strategy. Herein, we report a novel multiple anticounterfeiting encoding strategy of invisible fluorescent quick response (QR) codes with emission color as information storage unit. The strategy requires red, green, and blue (RGB) light-emitting materials for different emission colors as encrypting information, single excitation for all of the emission for practicability, and ultraviolet (UV) excitation for invisibility under daylight. Therefore, RGB light-emitting nanoscale metal-organic frameworks (NMOFs) are designed as inks to construct the colorful light-emitting boxes for information encrypting, while three black vertex boxes were used for positioning. Full-color emissions are obtained by mixing the trichromatic NMOFs inks through inkjet printer. The encrypting information capacity is easily adjusted by the number of light-emitting boxes with the infinite emission colors. The information is decoded with specific excitation light at 275 nm, making the QR codes invisible under daylight. The composition of inks, invisibility, inkjet printing, and the abundant encrypting information all contribute to multiple anticounterfeiting. The proposed QR codes pattern holds great potential for advanced anticounterfeiting.
Vector Sum Excited Linear Prediction (VSELP) speech coding at 4.8 kbps
NASA Technical Reports Server (NTRS)
Gerson, Ira A.; Jasiuk, Mark A.
1990-01-01
Code Excited Linear Prediction (CELP) speech coders exhibit good performance at data rates as low as 4800 bps. The major drawback to CELP type coders is their larger computational requirements. The Vector Sum Excited Linear Prediction (VSELP) speech coder utilizes a codebook with a structure which allows for a very efficient search procedure. Other advantages of the VSELP codebook structure is discussed and a detailed description of a 4.8 kbps VSELP coder is given. This coder is an improved version of the VSELP algorithm, which finished first in the NSA's evaluation of the 4.8 kbps speech coders. The coder uses a subsample resolution single tap long term predictor, a single VSELP excitation codebook, a novel gain quantizer which is robust to channel errors, and a new adaptive pre/postfilter arrangement.
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
NASA Technical Reports Server (NTRS)
Bienkowski, G. K.
1983-01-01
A Monte Carlo program was developed for modeling the flow field around the space shuttle in the vicinity of the shuttle upper atmosphere mass spectrometer experiment. The operation of the EXTERNAL code is summarized. Issues associated with geometric modeling of the shuttle nose region and the modeling of intermolecular collisions including rotational energy exchange are discussed as well as a preliminary analysis of vibrational excitation and dissociation effects. The selection of trial runs is described and the parameters used for them is justified. The original version and the modified INTERNAL code for the entrance problem are reviewed. The code listing is included.
Real-time speech encoding based on Code-Excited Linear Prediction (CELP)
NASA Technical Reports Server (NTRS)
Leblanc, Wilfrid P.; Mahmoud, S. A.
1988-01-01
This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented.
Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia
2016-01-01
Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID:27445139
Bellows flow-induced vibrations
NASA Technical Reports Server (NTRS)
Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.
1983-01-01
The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.
Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel
NASA Astrophysics Data System (ADS)
Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.
2011-02-01
Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.
Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening
Kamimura, HAS; Wang, S; Wu, S-Y; Karakatsani, ME; Acosta, C; Carneiro, AAO; Konofagou, EE
2015-01-01
Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n=15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38±5.71 mm3, 8.91±3.91 mm3 and 35.47 ± 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40±28.43 V.s, 63.87±29.97 V.s and 356.52±257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue. PMID:26394091
Wavelet-based audio embedding and audio/video compression
NASA Astrophysics Data System (ADS)
Mendenhall, Michael J.; Claypoole, Roger L., Jr.
2001-12-01
Watermarking, traditionally used for copyright protection, is used in a new and exciting way. An efficient wavelet-based watermarking technique embeds audio information into a video signal. Several effective compression techniques are applied to compress the resulting audio/video signal in an embedded fashion. This wavelet-based compression algorithm incorporates bit-plane coding, index coding, and Huffman coding. To demonstrate the potential of this audio embedding and audio/video compression algorithm, we embed an audio signal into a video signal and then compress. Results show that overall compression rates of 15:1 can be achieved. The video signal is reconstructed with a median PSNR of nearly 33 dB. Finally, the audio signal is extracted from the compressed audio/video signal without error.
Hu, J H; Wang, Y; Cahill, P T
1997-01-01
This paper reports a multispectral code excited linear prediction (MCELP) method for the compression of multispectral images. Different linear prediction models and adaptation schemes have been compared. The method that uses a forward adaptive autoregressive (AR) model has been proven to achieve a good compromise between performance, complexity, and robustness. This approach is referred to as the MFCELP method. Given a set of multispectral images, the linear predictive coefficients are updated over nonoverlapping three-dimensional (3-D) macroblocks. Each macroblock is further divided into several 3-D micro-blocks, and the best excitation signal for each microblock is determined through an analysis-by-synthesis procedure. The MFCELP method has been applied to multispectral magnetic resonance (MR) images. To satisfy the high quality requirement for medical images, the error between the original image set and the synthesized one is further specified using a vector quantizer. This method has been applied to images from 26 clinical MR neuro studies (20 slices/study, three spectral bands/slice, 256x256 pixels/band, 12 b/pixel). The MFCELP method provides a significant visual improvement over the discrete cosine transform (DCT) based Joint Photographers Expert Group (JPEG) method, the wavelet transform based embedded zero-tree wavelet (EZW) coding method, and the vector tree (VT) coding method, as well as the multispectral segmented autoregressive moving average (MSARMA) method we developed previously.
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.
Chirp-coded excitation imaging with a high-frequency ultrasound annular array.
Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H
2008-02-01
High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.
Coded excitation with spectrum inversion (CEXSI) for ultrasound array imaging.
Wang, Yao; Metzger, Kurt; Stephens, Douglas N; Williams, Gregory; Brownlie, Scott; O'Donnell, Matthew
2003-07-01
In this paper, a scheme called coded excitation with spectrum inversion (CEXSI) is presented. An established optimal binary code whose spectrum has no nulls and possesses the least variation is encoded as a burst for transmission. Using this optimal code, the decoding filter can be derived directly from its inverse spectrum. Various transmission techniques can be used to improve energy coupling within the system pass-band. We demonstrate its potential to achieve excellent decoding with very low (< 80 dB) side-lobes. For a 2.6 micros code, an array element with a center frequency of 10 MHz and fractional bandwidth of 38%, range side-lobes of about 40 dB have been achieved experimentally with little compromise in range resolution. The signal-to-noise ratio (SNR) improvement also has been characterized at about 14 dB. Along with simulations and experimental data, we present a formulation of the scheme, according to which CEXSI can be extended to improve SNR in sparse array imaging in general.
Error suppression and correction for quantum annealing
NASA Astrophysics Data System (ADS)
Lidar, Daniel
While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.
NASA Technical Reports Server (NTRS)
Warren, Gary
1988-01-01
The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.
Coded excitation speeds up the detection of the fundamental flexural guided wave in coated tubes
NASA Astrophysics Data System (ADS)
Song, Xiaojun; Moilanen, Petro; Zhao, Zuomin; Ta, Dean; Pirhonen, Jalmari; Salmi, Ari; Hæeggström, Edward; Myllylä, Risto; Timonen, Jussi; Wang, Weiqi
2016-09-01
The fundamental flexural guided wave (FFGW) permits ultrasonic assessment of the wall thickness of solid waveguides, such as tubes or, e.g., long cortical bones. Recently, an optical non-contact method was proposed for ultrasound excitation and detection with the aim of facilitating the FFGW reception by suppressing the interfering modes from the soft coating. This technique suffers from low SNR and requires iterative physical scanning across the source-receiver distance for 2D-FFT analysis. This means that SNR improvement achieved by temporal averaging becomes time-consuming (several minutes) which reduces the applicability of the technique, especially in time-critical applications such as clinical quantitative ultrasound. To achieve sufficient SNR faster, an ultrasonic excitation by a base-sequence-modulated Golay code (BSGC, 64-bit code pair) on coated tube samples (1-5 mm wall thickness and 5 mm soft coating layer) was used. This approach improved SNR by 21 dB and speeded up the measurement by a factor of 100 compared to using a classical pulse excitation with temporal averaging. The measurement now took seconds instead of minutes, while the ability to determine the wall thickness of the phantoms was maintained. The technique thus allows rapid noncontacting assessment of the wall thickness in coated solid tubes, such as the human bone.
Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks
NASA Astrophysics Data System (ADS)
Gorecki, J.; Gorecka, J. N.; Adamatzky, Andrew
2014-04-01
Information processing with an excitable chemical medium, like the Belousov-Zhabotinsky (BZ) reaction, is typically based on information coding in the presence or absence of excitation pulses. Here we present a new concept of Boolean coding that can be applied to an oscillatory medium. A medium represents the logical TRUE state if a selected region oscillates with a high frequency. If the frequency fails below a specified value, it represents the logical FALSE state. We consider a medium composed of disks encapsulating an oscillatory mixture of reagents, as related to our recent experiments with lipid-coated BZ droplets. We demonstrate that by using specific geometrical arrangements of disks containing the oscillatory medium one can perform logical operations on variables coded in oscillation frequency. Realizations of a chemical signal diode and of a single-bit memory with oscillatory disks are also discussed.
Motion Detection in Ultrasound Image-Sequences Using Tensor Voting
NASA Astrophysics Data System (ADS)
Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka
2008-05-01
Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.
Transient extracellular application of gold nanostars increases hippocampal neuronal activity.
Salinas, Kirstie; Kereselidze, Zurab; DeLuna, Frank; Peralta, Xomalin G; Santamaria, Fidel
2014-08-20
With the increased use of nanoparticles in biomedical applications there is a growing need to understand the effects that nanoparticles may have on cell function. Identifying these effects and understanding the mechanism through which nanoparticles interfere with the normal functioning of a cell is necessary for any therapeutic or diagnostic application. The aim of this study is to evaluate if gold nanoparticles can affect the normal function of neurons, namely their activity and coding properties. We synthesized star shaped gold nanoparticles of 180 nm average size. We applied the nanoparticles to acute mouse hippocampal slices while recording the action potentials from single neurons in the CA3 region. Our results show that CA3 hippocampal neurons increase their firing rate by 17% after the application of gold nanostars. The increase in excitability lasted for as much as 50 minutes after a transient 5 min application of the nanoparticles. Further analyses of the action potential shape and computational modeling suggest that nanoparticles block potassium channels responsible for the repolarization of the action potentials, thus allowing the cell to increase its firing rate. Our results show that gold nanoparticles can affect the coding properties of neurons by modifying their excitability.
Numerical simulations of internal wave generation by convection in water.
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton J; Vasil, Geoffrey M; Brown, Benjamin P; Quataert, Eliot; Oishi, Jeffrey S
2015-06-01
Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.
NASA Technical Reports Server (NTRS)
Beiersdorfer, P.; Brown, G. V.; Gu, M.-F.; Harris, C. L.; Kahn, S. M.; Kim, S.-H.; Neill, P. A.; Savin, D. W.; Smith, A. J.; Utter, S. B.
2000-01-01
Using the EBIT facility in Livermore we produce definitive atomic data for input into spectral synthesis codes. Recent measurements of line excitation and dielectronic recombination of highly charged K-shell and L-shell ions are presented to illustrate this point.
Quantum nonlinear optics without photons
NASA Astrophysics Data System (ADS)
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong
2008-12-01
In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10 to 200 Hz. The excitation voltage is the more dominant factor that affects the flow rate of the micropump as compared with the excitation frequency. However, at extremely high excitation frequencies beyond 8,000 Hz, the flow rate drops as the membrane exhibits multiple bending peaks which is not desirable for fluid flow. Following the extensive numerical analysis, actual fabrication and performance characterization of the micropump is presented. The performance of the micropump is characterized in terms of piezoelectric actuator deflection and micropump flow rate at different operational parameters. The set of multifield simulations and experimental measurement of deflection and flow rate at varying voltage and excitation frequency is a significant advance in the study of the electric-solid-fluid coupled field effects as it allows transient, three dimensional piezoelectric and fluid analysis of the micropump thereby facilitating a more realistic multifield analysis. The results of the present study will also help to conduct relevant strength duration tests of integrated drug delivery device with micropump and microneedle array in future.
NASA Astrophysics Data System (ADS)
Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.
2000-02-01
The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.
Cine: Line excitation by infrared fluorescence in cometary atmospheres
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.
2017-03-01
CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.
Topological quantum error correction in the Kitaev honeycomb model
NASA Astrophysics Data System (ADS)
Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.
2017-08-01
The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.
Excitation rates for transitions in Kr XXXII
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2009-04-01
In this paper we report our results for collision strengths and effective collision strengths for transitions among the lowest 125 levels of the 2s22p, 2s2p2, 2p3, 2s23ell, 2s2p3ell, and 2p23ell configurations of Kr XXXII. For our calculations both the FAC and DARC codes have been employed.
Dual neutral particle induced transmutation in CINDER2008
NASA Astrophysics Data System (ADS)
Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.
2014-12-01
Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.
Feasibility of coded vibration in a vibro-ultrasound system for tissue elasticity measurement.
Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Li, Tianjie; Zheng, Yong-Ping
2016-07-01
The ability of various methods for elasticity measurement and imaging is hampered by the vibration amplitude on biological tissues. Based on the inference that coded excitation will improve the performance of the cross-correlation function of the tissue displacement waves, the idea of exerting encoded external vibration on tested samples for measuring its elasticity is proposed. It was implemented by integrating a programmable vibration generation function into a customized vibro-ultrasound system to generate Barker coded vibration for elasticity measurement. Experiments were conducted on silicone phantoms and porcine muscles. The results showed that coded excitation of the vibration enhanced the accuracy and robustness of the elasticity measurement especially in low signal-to-noise ratio scenarios. In the phantom study, the measured shear modulus values with coded vibration had an R(2 )= 0.993 linear correlation to that of referenced indentation, while for single-cycle pulse the R(2) decreased to 0.987. In porcine muscle study, the coded vibration also obtained a shear modulus value which is more accurate than the single-cycle pulse by 0.16 kPa and 0.33 kPa at two different depths. These results demonstrated the feasibility and potentiality of the coded vibration for enhancing the quality of elasticity measurement and imaging.
Simple anisotropic three-dimensional quantum spin liquid with fractonlike topological order
NASA Astrophysics Data System (ADS)
Petrova, O.; Regnault, N.
2017-12-01
We present a three-dimensional cubic lattice spin model, anisotropic in the z ̂ direction, that exhibits fractonlike order. This order can be thought of as the result of interplay between two-dimensional Z2 topological order and spontaneous symmetry breaking along the z ̂ direction. Fracton order is a novel type of topological order characterized by the presence of immobile pointlike excitations, named fractons, residing at the corners of an operator with two-dimensional support. As other recent fracton models, ours exhibits a subextensive ground-state degeneracy: On an Lx×Ly×Lz three-torus, it has a 22 Lz topological degeneracy and an additional symmetry-breaking nontopological degeneracy equal to 2LxLy-2. The fractons can be combined into composite excitations that move either in a straight line along the z ̂ direction or freely in the x y plane at a given height z . While our model draws inspiration from the toric code, we demonstrate that it cannot be adiabatically connected to a layered toric code construction. Additionally, we investigate the effects of imposing open boundary conditions on our system. We find zero energy modes on the surfaces perpendicular to either the x ̂ or y ̂ directions and their absence on the surfaces normal to z ̂. This result can be explained using the properties of the two kinds of composite two-fracton mobile excitations.
Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations
NASA Astrophysics Data System (ADS)
Fischer, T.; Langanke, K.; Martínez-Pinedo, G.
2013-12-01
We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.
Staggering of angular momentum distribution in fission
NASA Astrophysics Data System (ADS)
Tamagno, Pierre; Litaize, Olivier
2018-03-01
We review here the role of angular momentum distributions in the fission process. To do so the algorithm implemented in the FIFRELIN code [?] is detailed with special emphasis on the place of fission fragment angular momenta. The usual Rayleigh distribution used for angular momentum distribution is presented and the related model derivation is recalled. Arguments are given to justify why this distribution should not hold for low excitation energy of the fission fragments. An alternative ad hoc expression taking into account low-lying collectiveness is presented as has been implemented in the FIFRELIN code. Yet on observables currently provided by the code, no dramatic impact has been found. To quantify the magnitude of the impact of the low-lying staggering in the angular momentum distribution, a textbook case is considered for the decay of the 144Ba nucleus with low excitation energy.
Superconducting Cavity Development for Free Electron Lasers.
1986-06-30
effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2016-10-01
There have been discussions in the recent literature regarding the accuracy of the available electron impact excitation rates (equivalently effective collision strengths Υ) for transitions in Be-like ions. In the present paper we demonstrate, once again, that earlier results for Υ are indeed overestimated (by up to four orders of magnitude), for over 40 per cent of transitions and over a wide range of temperatures. To do this we have performed two sets of calculations for N IV, with two different model sizes consisting of 166 and 238 fine-structure energy levels. As in our previous work, for the determination of atomic structure the GRASP (General-purpose Relativistic Atomic Structure Package) is adopted and for the scattering calculations (the standard and parallelised versions of) the Dirac Atomic R-matrix Code (DARC) are employed. Calculations for collision strengths and effective collision strengths have been performed over a wide range of energy (up to 45 Ryd) and temperature (up to 2.0 × 106 K), useful for applications in a variety of plasmas. Corresponding results for energy levels, lifetimes and A-values for all E1, E2, M1 and M2 transitions among 238 levels of N IV are also reported.
NASA Astrophysics Data System (ADS)
Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.; Zhivun, V. M.; Chauzova, M. V.; Balyuk, S. A.; Bebenin, P. V.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; David, J. C.; Mancusi, D.; Cugnon, J.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Stankovskiy, A. Yu.
2016-06-01
The paper presents the measured cumulative yields of 44Ti for natCr, 56Fe, natNi and 93Nb samples irradiated by protons at the energy range 0.04-2.6 GeV. The obtained excitation functions are compared with calculations of the well-known codes: ISABEL, Bertini, INCL4.2+ABLA, INCL4.5+ABLA07, PHITS, CASCADE07 and CEM03.02. The predictive power of these codes regarding the studied nuclides is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Masashi
1997-07-01
This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.
KIC 3240411 - the hottest known SPB star with the asymptotic g-mode period spacing
NASA Astrophysics Data System (ADS)
Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga
2018-05-01
We report the discovery of the hottest hybrid B-type pulsator, KIC 3240411, that exhibits the period spacing in the low-frequency range. This pattern is associated with asymptotic properties of high-order gravity (g-) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC 3240411.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hua.
1989-01-01
One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics formore » the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior.« less
Entanglement negativity and sudden death in the toric code at finite temperature
NASA Astrophysics Data System (ADS)
Hart, O.; Castelnovo, C.
2018-04-01
We study the fate of quantum correlations at finite temperature in the two-dimensional toric code using the logarithmic entanglement negativity. We are able to obtain exact results that give us insight into how thermal excitations affect quantum entanglement. The toric code has two types of elementary excitations (defects) costing different energies. We show that an O (1 ) density of the lower energy defect is required to degrade the zero-temperature entanglement between two subsystems in contact with one another. However, one type of excitation alone is not sufficient to kill all quantum correlations, and an O (1 ) density of the higher energy defect is required to cause the so-called sudden death of the negativity. Interestingly, if the energy cost of one of the excitations is taken to infinity, quantum correlations survive up to arbitrarily high temperatures, a feature that is likely shared with other quantum spin liquids and frustrated systems in general, when projected down to their low-energy states. We demonstrate this behavior both for small subsystems, where we can prove that the negativity is a necessary and sufficient condition for separability, as well as for extended subsystems, where it is only a necessary condition. We further observe that the negativity per boundary degree of freedom at a given temperature increases (parametrically) with the size of the boundary, and that quantum correlations between subsystems with extended boundaries are more robust to thermal fluctuations.
Locality-preserving logical operators in topological stabilizer codes
NASA Astrophysics Data System (ADS)
Webster, Paul; Bartlett, Stephen D.
2018-01-01
Locality-preserving logical operators in topological codes are naturally fault tolerant, since they preserve the correctability of local errors. Using a correspondence between such operators and gapped domain walls, we describe a procedure for finding all locality-preserving logical operators admitted by a large and important class of topological stabilizer codes. In particular, we focus on those equivalent to a stack of a finite number of surface codes of any spatial dimension, where our procedure fully specifies the group of locality-preserving logical operators. We also present examples of how our procedure applies to codes with different boundary conditions, including color codes and toric codes, as well as more general codes such as Abelian quantum double models and codes with fermionic excitations in more than two dimensions.
A new hybrid code (CHIEF) implementing the inertial electron fluid equation without approximation
NASA Astrophysics Data System (ADS)
Muñoz, P. A.; Jain, N.; Kilian, P.; Büchner, J.
2018-03-01
We present a new hybrid algorithm implemented in the code CHIEF (Code Hybrid with Inertial Electron Fluid) for simulations of electron-ion plasmas. The algorithm treats the ions kinetically, modeled by the Particle-in-Cell (PiC) method, and electrons as an inertial fluid, modeled by electron fluid equations without any of the approximations used in most of the other hybrid codes with an inertial electron fluid. This kind of code is appropriate to model a large variety of quasineutral plasma phenomena where the electron inertia and/or ion kinetic effects are relevant. We present here the governing equations of the model, how these are discretized and implemented numerically, as well as six test problems to validate our numerical approach. Our chosen test problems, where the electron inertia and ion kinetic effects play the essential role, are: 0) Excitation of parallel eigenmodes to check numerical convergence and stability, 1) parallel (to a background magnetic field) propagating electromagnetic waves, 2) perpendicular propagating electrostatic waves (ion Bernstein modes), 3) ion beam right-hand instability (resonant and non-resonant), 4) ion Landau damping, 5) ion firehose instability, and 6) 2D oblique ion firehose instability. Our results reproduce successfully the predictions of linear and non-linear theory for all these problems, validating our code. All properties of this hybrid code make it ideal to study multi-scale phenomena between electron and ion scales such as collisionless shocks, magnetic reconnection and kinetic plasma turbulence in the dissipation range above the electron scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek
2016-10-06
We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less
Synaptic E-I Balance Underlies Efficient Neural Coding.
Zhou, Shanglin; Yu, Yuguo
2018-01-01
Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.
Synaptic E-I Balance Underlies Efficient Neural Coding
Zhou, Shanglin; Yu, Yuguo
2018-01-01
Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding. PMID:29456491
Signature of chaos in the 4 f -core-excited states for highly-charged tungsten ions
NASA Astrophysics Data System (ADS)
Safronova, Ulyana; Safronova, Alla
2014-05-01
We evaluate radiative and autoionizing transition rates in highly charged W ions in search for the signature of chaos. In particularly, previously published results for Ag-like W27+, Tm-like W5+, and Yb-like W4+ ions as well as newly obtained for I-like W21+, Xe-like W20+, Cs-like W19+, and La-like W17+ ions (with ground configuration [Kr] 4d10 4fk with k = 7, 8, 9, and 11, respectively) are considered that were calculated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). The main emphasis was on verification of Gaussian statistics of rates as a function of transition energy. There was no evidence of such statistics for above mentioned previously published results as well as for the transitions between the excited and autoionizing states for newly calculated results. However, we did find the Gaussian profile for the transitions between excited states such as the [Kr] 4d10 4fk - [Kr] 4d10 4f k - 1 5 d transitions , for newly calculated W ions. This work is supported in part by DOE under NNSA Cooperative Agreement DE-NA0001984.
Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks
NASA Astrophysics Data System (ADS)
Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.
2016-12-01
The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.
Bendor, Daniel
2015-01-01
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843
^235U(n,xnγ) Excitation Function Measurements Using Gamma-Ray Spectroscopy at GEANIE
NASA Astrophysics Data System (ADS)
Younes, W.; Becker, J. A.; Bernstein, L. A.; Archer, D. E.; Stoyer, M. A.; Hauschild, K.; Drake, D. M.; Johns, G. D.; Nelson, R. O.; Wilburn, S. W.
1998-04-01
The ^235U(n,xn) cross sections (where x<=2) have previously been measured at several incident neutron energies. In particular, the ^235U(n,2n) cross section has been measured(J. Frehaut et al.), Nucl. Sci. Eng. 74,29 (1980). reliably up to peak near E_n≈ 11 MeV, but not along the tail which is predicted by some(M.B. Chadwick, private communication.) codes to yield significant (e.g. >= 10% of peak) cross section out to E_n≈ 30 MeV. We have measured gamma-ray spectra resulting from ^235U(n,xn) as a function of neutron energy in the range 1 MeV <~ En <~ 200 MeV using the GEANIE spectrometer at the LANSCE/WNR ``white'' neutron source. We will present excitation functions for the de-excitation gamma rays in ^234,235U compared to predictions from the Hauser-Feshbach-preequilibrium code GNASH(M.B. Chadwick and P.G. Young, Los Alamos Report No. LA-UR-93-104, 1993.).
Start-Up Scenario in Gyrotrons with a Nonstationary Microwave-Field Structure
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Yeddulla, M.; Antonsen, T. M., Jr.; Vlasov, A. N.
2006-03-01
Megawatt class gyrotrons operate in very high-order modes. Therefore, control of a gyrotron oscillator’s start-up is important for excitation of the desired mode in the presence of the many undesired modes. Analysis of such scenario using the self-consistent code MAGY [M. Botton , IEEE Trans. Plasma Sci. 26,ITPSBD0093-3813 882 (1998)10.1109/27.700860] reveals that during start-up not only mode amplitudes vary in time, but also their axial structure can be time dependent. Simulations done for a 1.5 MW gyrotron show that the excitation of a single operating TE22,6 mode can exhibit a sort of intermittency when, first, it is excited as a mode whose axial structure extends outside the interaction cavity, then it ceases and then reappears as a mode mostly localized in the cavity. This phenomenon makes it necessary to analyze start-up scenarios in such gyrotrons with the use of codes that account for the possible evolution of field profiles.
Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.
Ly, Cheng; Marsat, Gary
2018-02-01
Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Charlson C.
2008-07-15
Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the {delta}f particle-in-cell method [S. E. Parker and W. W. Lee,more » Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.« less
Phase synchronization motion and neural coding in dynamic transmission of neural information.
Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting
2011-07-01
In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
Computational Analysis of a Wells Turbine with Flexible Trailing Edges
NASA Astrophysics Data System (ADS)
Kincaid, Kellis; Macphee, David
2017-11-01
The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.
Computer modeling of pulsed CO2 lasers for lidar applications
NASA Technical Reports Server (NTRS)
Spiers, Gary D.
1993-01-01
The object of this effort is to develop code to enable the accurate prediction of the performance of pulsed transversely excited (TE) CO2 lasers prior to their construction. This is of particular benefit to the NASA Laser Atmospheric Wind Sounder (LAWS) project. A benefit of the completed code is that although developed specifically for the pulsed CO2 laser much of the code can be modified to model other laser systems of interest to the lidar community. A Boltzmann equation solver has been developed which enables the electron excitation rates for the vibrational levels of CO2 and N2, together with the electron ionization and attachment coefficients to be determined for any CO2 laser gas mixture consisting of a combination of CO2, N2, CO, He and CO. The validity of the model has been verified by comparison with published material. The results from the Boltzmann equation solver have been used as input to the laser kinetics code which is currently under development. A numerical code to model the laser induced medium perturbation (LIMP) arising from the relaxation of the lower laser level has been developed and used to determine the effect of LIMP on the frequency spectrum of the LAWS laser output pulse. The enclosed figures show representative results for a laser operating at 0.5 atm. with a discharge cross-section of 4.5 cm to produce a 20 J pulse with aFWHM of 3.1 microns. The first four plots show the temporal evolution of the laser pulse power, energy evolution, LIMP frequency chirp and electric field magnitude. The electric field magnitude is taken by beating the calculated complex electric field and beating it with a local oscillator signal. The remaining two figures show the power spectrum and energy distribution in the pulse as a function of the varying pulse frequency. The LIMP theory has been compared with experimental data from the NOAA Windvan Lidar and has been found to be in good agreement.
NASA Astrophysics Data System (ADS)
Belyayev, Serhiy; Ivchenko, Nickolay
2018-04-01
Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself.
A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code
NASA Astrophysics Data System (ADS)
Le Petit, Franck; Nehmé, Cyrine; Le Bourlot, Jacques; Roueff, Evelyne
2006-06-01
We present the revised ``Meudon'' model of photon-dominated region (PDR) code, available on the Web under the GNU Public License. General organization of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low-excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelization highlighted.
Kamiki, Eriko; Boehringer, Roman; Polygalov, Denis; Ohshima, Toshio; McHugh, Thomas J.
2018-01-01
p35 is an activating co-factor of Cyclin-dependent kinase 5 (Cdk5), a protein whose dysfunction has been implicated in a wide-range of neurological disorders including cognitive impairment and disease. Inducible deletion of the p35 gene in adult mice results in profound deficits in hippocampal-dependent spatial learning and synaptic physiology, however the impact of the loss of p35 function on hippocampal in vivo physiology and spatial coding remains unknown. Here, we recorded CA1 pyramidal cell activity in freely behaving p35 cKO and control mice and found that place cells in the mutant mice have elevated firing rates and impaired spatial coding, accompanied by changes in the temporal organization of spiking both during exploration and rest. These data shed light on the role of p35 in maintaining cellular and network excitability and provide a physiological correlate of the spatial learning deficits in these mice. PMID:29867369
The Use of Barker Coded Signal on the Measurement of Wave Velocity of Rock
NASA Astrophysics Data System (ADS)
Zhu, W.; Wu, H.
2016-12-01
The wave velocity of the rock is important petro physics parameters; it can be used to calculate the elastic parameters, monitor the variations in the stress suffered by rock; and the velocity anisotropy reflects the rock anisotropy. Furthermore, since the coda wave is more sensitive to the change in rock properties, its velocity variation has been applied to monitor the variations in rock structures caused by varying temperature, stress, water saturation and other factors. However, the measurements of velocities heavily depend on signal-to-noise ratio (SNR) of the signals, because low signal-to-noise ratio would result in the difficulty in the identification of information. Fortunately coded excitation technique, widely used in radar, and medical system, just can solve the problem above. Although this technique can effectively improve the SNR and resolution of received signal, there exits very high sidelobes after traditional matched filter. So a pseudo inverse filter was successfully applied to suppress the side lobes. After comparing different coded signals, Barker coded signal are selected to measure the velocity of P wave of Plexiglas, sandstone, granite, marble with automatic measurement method, which are compared with the measurement results of single pulse; the results showed that the measurement of coded signals is more closely to the manual measurement. Moreover, coda wave measurement of loading granite was also made with Barker coded signal, the results of which also showed that the detection result of coded signals is better than that of the single pulse. In conclusion, the experiments verify the effectiveness and reliability of coded signals used on the measurement of wave velocity of rock.
NASA Astrophysics Data System (ADS)
van Swaaij, G. A.; Bystrov, K.; Borodin, D.; Kirschner, A.; van der Vegt, L. B.; van Rooij, G. J.; De Temmerman, G.; Goedheer, W. J.
2012-09-01
For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A 2Δ-X 2Π Gerö band around 430 nm. The CH A-level can be excited either by electron-impact (EI) or by dissociative recombination (DR) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by DR dominates at Te < 1.5 eV. The results indicate that the fraction of DR events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by EI de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at ne = 1.3 × 1020 m-3, to 2.8 at ne = 9.3 × 1020 m-3. Its inclusion significantly improved agreement between experiment and modeling.
The fully relativistic implementation of the convergent close-coupling method
NASA Astrophysics Data System (ADS)
Bostock, Christopher James
2011-04-01
The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures.
Impact of energetic-particle-driven geodesic acoustic modes on turbulence.
Zarzoso, D; Sarazin, Y; Garbet, X; Dumont, R; Strugarek, A; Abiteboul, J; Cartier-Michaud, T; Dif-Pradalier, G; Ghendrih, Ph; Grandgirard, V; Latu, G; Passeron, C; Thomine, O
2013-03-22
The impact on turbulent transport of geodesic acoustic modes excited by energetic particles is evidenced for the first time in flux-driven 5D gyrokinetic simulations using the Gysela code. Energetic geodesic acoustic modes (EGAMs) are excited in a regime with a transport barrier in the outer radial region. The interaction between EGAMs and turbulence is such that turbulent transport can be enhanced in the presence of EGAMs, with the subsequent destruction of the transport barrier. This scenario could be particularly critical in those plasmas, such as burning plasmas, exhibiting a rich population of suprathermal particles capable of exciting energetic modes.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2008-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Simultaneous Excitation of Multiple-Input Multiple-Output CFD-Based Unsteady Aerodynamic Systems
NASA Technical Reports Server (NTRS)
Silva, Walter A.
2007-01-01
A significant improvement to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) is presented. This improvement involves the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system that enables the computation of the unsteady aerodynamic state-space model using a single CFD execution, independent of the number of structural modes. Four different types of inputs are presented that can be used for the simultaneous excitation of the structural modes. Results are presented for a flexible, supersonic semi-span configuration using the CFL3Dv6.4 code.
Improved Design of Beam Tunnel for 42 GHz Gyrotron
NASA Astrophysics Data System (ADS)
Singh, Udaybir; Kumar, Nitin; Purohit, L. P.; Sinha, A. K.
2011-04-01
In gyrotron, there is the chance of generation and excitation of unwanted RF modes (parasite oscillations). These modes may interact with electron beam and consequently degrade the beam quality. This paper presents the improved design of the beam tunnel to reduce the parasite oscillations and the effect of beam tunnel geometry on the electron beam parameters. The design optimization of the beam tunnel has been done with the help of 3-D simulation software CST-Microwave Studio and the effect of beam tunnel geometry on the electron beam parameters has been analyzed by EGUN code.
Recoil distance lifetime measurements in 122,124Xe
NASA Astrophysics Data System (ADS)
Govil, I. M.; Kumar, A.; Iyer, H.; Li, H.; Garg, U.; Ghugre, S. S.; Johnson, T.; Kaczarowski, R.; Kharraja, B.; Naguleswaran, S.; Walpe, J. C.
1998-02-01
Lifetimes of the lower-excited states in 122,124Xe are measured using the recoil-distance Doppler-shift technique. The reactions 110Pd(16O,4n)122Xe and 110Pd(18O,4n)124Xe at a beam energy of 66 MeV were used for this experiment. The lifetimes of the 2+, 4+, 6+, and 8+ states of the ground state band were extracted using the computer code LIFETIME including the corrections due to the side feeding and the nuclear deorientation effects. The lifetime of the 2+ state in 122Xe agrees with the recoil distance method (RDM) measurements but for the 124Xe it does not agree with the RDM measurements but agrees with the Coulomb-excitation experiment. The measured B(E2) values for both the nuclei are compared with the standard algebraic and the multishell models.
NASA Astrophysics Data System (ADS)
Strodel, Paul; Tavan, Paul
2002-09-01
We present a revised multi-reference configuration interaction (MRCI) algorithm for balanced and efficient calculation of electronic excitations in molecules. The revision takes up an earlier method, which had been designed for flexible, state-specific, and individual selection (IS) of MRCI expansions, included perturbational corrections (PERT), and used the spin-coupled hole-particle formalism of Tavan and Schulten (1980) for matrix-element evaluation. It removes the deficiencies of this method by introducing tree structures, which code the CI bases and allow us to efficiently exploit the sparseness of the Hamiltonian matrices. The algorithmic complexity is shown to be optimal for IS/MRCI applications. The revised IS/MRCI/PERT module is combined with the effective valence shell Hamiltonian OM2 suggested by Weber and Thiel (2000). This coupling serves the purpose of making excited state surfaces of organic dye molecules accessible to relatively cheap and sufficiently precise descriptions.
Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2017-07-05
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.
Electron Scattering from MERCURY-198 and Mercury -204.
NASA Astrophysics Data System (ADS)
Laksanaboonsong, Jarungsaeng
This experiment is the first electron scattering study on mercury isotopes. Electron scattering from ^{198}Hg and ^{204 }Hg has been performed at the NIKHEF-K Medium Energy Accelerator. Measured cross sections cover an effective momentum transfer range from 0.4 to 2.9 fm^ {-1}. Elastic cross sections were determined for scattering from both isotopes. Cross section for inelastic excitations in ^{198}Hg below 3 MeV were also determined. Measured cross sections were fit using DWBA phase shift codes to determine coefficients for Fourier-Bessel expansions of ground state and transition charge densities. Differences between the ground state charge densities of the two isotopes reveal the effect of the polarization of the proton core in response to the addition of neutrons. Spin and parity of several excited states of ^{198}Hg were determined. Extracted transition densities of these states show their predominantly collective nature. Charge densities for members of the ground state rotational band were compared with axially symmetric Hartree-Fock and geometrical model predictions.
Experimental identification of closely spaced modes using NExT-ERA
NASA Astrophysics Data System (ADS)
Hosseini Kordkheili, S. A.; Momeni Massouleh, S. H.; Hajirezayi, S.; Bahai, H.
2018-01-01
This article presents a study on the capability of the time domain OMA method, NExT-ERA, to identify closely spaced structural dynamic modes. A survey in the literature reveals that few experimental studies have been conducted on the effectiveness of the NExT-ERA methodology in case of closely spaced modes specifically. In this paper we present the formulation for NExT-ERA. This formulation is then implemented in an algorithm and a code, developed in house to identify the modal parameters of different systems using their generated time history data. Some numerical models are firstly investigated to validate the code. Two different case studies involving a plate with closely spaced modes and a pulley ring with greater extent of closeness in repeated modes are presented. Both structures are excited by random impulses under the laboratory condition. The resulting time response acceleration data are then used as input in the developed code to extract modal parameters of the structures. The accuracy of the results is checked against those obtained from experimental tests.
NLTE opacity calculations: C-Si and C-Ge mixtures
NASA Astrophysics Data System (ADS)
Jarrah, W.; Benredjem, D.; Pain, J.-C.; Dubau, J.
2017-09-01
The opacity is an important issue in the knowledge of the radiative properties of ICF and astrophysical plasmas. We present the opacity of dopants (silicon, germanium) embedded in the ablator of some ICF capsules. In recent works, Hill and Rose calculated the opacity of silicon in LTE and non-LTE plasmas, while Minguez and co-workers focused on the opacity of carbon. We have used the Cowan code to calculate the atomic structure of carbon, silicon and germanium in various ionic stages. The cross-sections of atomic processes (collisional excitation, collisional ionization) are obtained by fitting the values given by the code FAC to the Van Regemorter-like formulas of Sampson and Zhang. A corrected Gaunt factor is then obtained. A collisional-radiative code was developed in order to obtain the ionic populations, the level populations and the opacity. Line broadening and line shift are taken into account. The ionization potential depression is included in our calculations. The effect of a radiation field on the opacity is examined.
NASA Astrophysics Data System (ADS)
Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain
2004-09-01
A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h
Energy levels, oscillator strengths, and transition probabilities for sulfur-like scandium, Sc VI
NASA Astrophysics Data System (ADS)
El-Maaref, A. A.; Abou Halaka, M. M.; Saddeek, Yasser B.
2017-09-01
Energy levels, Oscillator strengths, and transition probabilities for sulfur-like scandium are calculated using CIV3 code. The calculations have been executed in an intermediate coupling scheme using Breit-Pauli Hamiltonian. The present calculations have been compared with the experimental data and other theoretical calculations. LANL code has been used to confirm the accuracy of the present calculations, where the calculations using CIV3 code agree well with the corresponding values by LANL code. The calculated energy levels and oscillator strengths are in reasonable agreement with the published experimental data and theoretical values. We have calculated lifetimes of some excited levels, as well.
Toutounji, Hazem; Pipa, Gordon
2014-01-01
It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447
Schumacher, Joseph W.; Schneider, David M.
2011-01-01
The majority of sensory physiology experiments have used anesthesia to facilitate the recording of neural activity. Current techniques allow researchers to study sensory function in the context of varying behavioral states. To reconcile results across multiple behavioral and anesthetic states, it is important to consider how and to what extent anesthesia plays a role in shaping neural response properties. The role of anesthesia has been the subject of much debate, but the extent to which sensory coding properties are altered by anesthesia has yet to be fully defined. In this study we asked how urethane, an anesthetic commonly used for avian and mammalian sensory physiology, affects the coding of complex communication vocalizations (songs) and simple artificial stimuli in the songbird auditory midbrain. We measured spontaneous and song-driven spike rates, spectrotemporal receptive fields, and neural discriminability from responses to songs in single auditory midbrain neurons. In the same neurons, we recorded responses to pure tone stimuli ranging in frequency and intensity. Finally, we assessed the effect of urethane on population-level representations of birdsong. Results showed that intrinsic neural excitability is significantly depressed by urethane but that spectral tuning, single neuron discriminability, and population representations of song do not differ significantly between unanesthetized and anesthetized animals. PMID:21543752
Thermosensory processing in the Drosophila brain
Liu, Wendy W.; Mazor, Ofer; Wilson, Rachel I.
2014-01-01
In Drosophila, just as in vertebrates, changes in external temperature are encoded by bidirectional opponent thermoreceptor cells: some cells are excited by warming and inhibited by cooling, whereas others are excited by cooling and inhibited by warming1,2. The central circuits that process these signals are not understood. In Drosophila, a specific brain region receives input from thermoreceptor cells2,3. Here we show that distinct genetically-identified projection neurons (PNs) in this brain region are excited by cooling, warming, or both. The PNs excited by cooling receive mainly feedforward excitation from cool thermoreceptors. In contrast, the PNs excited by warming (“warm-PNs”) receive both excitation from warm thermoreceptors and crossover inhibition from cool thermoreceptors via inhibitory interneurons. Notably, this crossover inhibition elicits warming-evoked excitation, because warming suppresses tonic activity in cool thermoreceptors. This in turn disinhibits warm-PNs and sums with feedforward excitation evoked by warming. Crossover inhibition could cancel non-thermal activity (noise) that is positively-correlated among warm and cool thermoreceptor cells, while reinforcing thermal activity which is anti-correlated. Our results show how central circuits can combine signals from bidirectional opponent neurons to construct sensitive and robust neural codes. PMID:25739502
Retinal Photoisomerization in Rhodopsin: Electrostatic and Steric Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasello, Gaia; Altoe, Piero; Stenta, Marco
2007-12-26
Excited state QM(CASPT2//CASSCF)/MM(GAFF) calculations, by our recently developed code COBRAMM (Computations at Bologna Relating Ab-initio and Molecular Mechanic Methods), were carried out in rhodopsin to investigate on the steric and electrostatic effects in retinal photoisomerization catalysis due to the {beta}-ionone ring and glutammate 181 (GLU 181), respectively. The excited state photoisomerization channel has been mapped and a new christallographyc structure (2.2 Aa resolution) has been used for this purpose. Two different set-ups have been used to evaluate the electrostatic effects of GLU 181 (which is very close to the central double bond of the chromophore): the first with a neutralmore » GLU 181 (as commonly accepted), the second with a negatively charged (i.e. deprotonated) GLU 181 (as very recent experimental findings seem to suggest). On the other hand, {beta}-ionone ring steric effects were evaluated by calculating the photoisomerization path of a modified chromophore, where the ring double bond has been saturated. Spectroscopic properties were calculated and compared with the available experimental data.« less
ESTEST: A Framework for the Verification and Validation of Electronic Structure Codes
NASA Astrophysics Data System (ADS)
Yuan, Gary; Gygi, Francois
2011-03-01
ESTEST is a verification and validation (V& V) framework for electronic structure codes that supports Qbox, Quantum Espresso, ABINIT, the Exciting Code and plans support for many more. We discuss various approaches to the electronic structure V& V problem implemented in ESTEST, that are related to parsing, formats, data management, search, comparison and analyses. Additionally, an early experiment in the distribution of V& V ESTEST servers among the electronic structure community will be presented. Supported by NSF-OCI 0749217 and DOE FC02-06ER25777.
Fractonic line excitations: An inroad from three-dimensional elasticity theory
NASA Astrophysics Data System (ADS)
Pai, Shriya; Pretko, Michael
2018-06-01
We demonstrate the existence of a fundamentally new type of excitation, fractonic lines, which are linelike excitations with the restricted mobility properties of fractons. These excitations, described using an amalgamation of higher-form gauge theories with symmetric tensor gauge theories, see direct physical realization as the topological lattice defects of ordinary three-dimensional quantum crystals. Starting with the more familiar elasticity theory, we show how theory maps onto a rank-4 tensor gauge theory, with phonons corresponding to gapless gauge modes and disclination defects corresponding to linelike charges. We derive flux conservation laws which lock these linelike excitations in place, analogous to the higher moment charge conservation laws of fracton theories. This way of encoding mobility restrictions of lattice defects could shed light on melting transitions in three dimensions. This new type of extended object may also be a useful tool in the search for improved quantum error-correcting codes in three dimensions.
Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier
NASA Astrophysics Data System (ADS)
Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2017-10-01
In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.
Parkinson, Rachel H; Little, Jacelyn M; Gray, John R
2017-04-20
Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.
In-Beam Gamma-ray Spectroscopy in the sdpf 37Ar Nucleus
NASA Astrophysics Data System (ADS)
Silveira, M. A. G.; Medina, N. H.; Seale, W. A.; Ribas, R. V.; de Oliveira, J. R. B.; Zilio, S.; Lenzi, S. M.; Napoli, D. R.; Marginean, N.; Vedova, F. Della; Farnea, E.; Ionescu-Bujor, M.; Iordachescu, A.
2007-10-01
The nucleus 37Ar has been studied with γ-ray spectroscopy in the 24Mg(16O,2pn) reaction at a beam energy of 70 MeV. Twenty two new excited states up to an excitation energy of 13 MeV have been observed. We compare the first negative and positive parity yrast states with large-scale-shell-model calculations using the Antoine code and the SDPF interaction, considering the excitation of the 1d5/2,2s1/2 and 1d3/2 nucleons to 1f7/2 and 2p3/2 in the sdpf valence space.
The expanding regulatory universe of p53 in gastrointestinal cancer.
Fesler, Andrew; Zhang, Ning; Ju, Jingfang
2016-01-01
Tumor suppresser gene TP53 is one of the most frequently deleted or mutated genes in gastrointestinal cancers. As a transcription factor, p53 regulates a number of important protein coding genes to control cell cycle, cell death, DNA damage/repair, stemness, differentiation and other key cellular functions. In addition, p53 is also able to activate the expression of a number of small non-coding microRNAs (miRNAs) through direct binding to the promoter region of these miRNAs. Many miRNAs have been identified to be potential tumor suppressors by regulating key effecter target mRNAs. Our understanding of the regulatory network of p53 has recently expanded to include long non-coding RNAs (lncRNAs). Like miRNA, lncRNAs have been found to play important roles in cancer biology. With our increased understanding of the important functions of these non-coding RNAs and their relationship with p53, we are gaining exciting new insights into the biology and function of cells in response to various growth environment changes. In this review we summarize the current understanding of the ever expanding involvement of non-coding RNAs in the p53 regulatory network and its implications for our understanding of gastrointestinal cancer.
Thick-target transmission method for excitation functions of interaction cross sections
NASA Astrophysics Data System (ADS)
Aikawa, M.; Ebata, S.; Imai, S.
2016-09-01
We propose a method, called as thick-target transmission (T3) method, to obtain an excitation function of interaction cross sections. In an ordinal experiment to measure the excitation function of interaction cross sections by the transmission method, we need to change the beam energy for each cross section. In the T3 method, the excitation function is derived from the beam attenuations measured at the targets of different thicknesses without changing the beam energy. The advantage of the T3 method is the simplicity and availability for radioactive beams. To confirm the availability, we perform a simulation for the 12C + 27Al system with the PHITS code instead of actual experiments. Our results have large uncertainties but well reproduce the tendency of the experimental data.
2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander
2015-08-01
We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.
NASA Astrophysics Data System (ADS)
Roy, Abhishek; Chen, Xiao; Teo, Jeffrey
2013-03-01
We investigate homological orders in two, three and four dimensions by studying Zk toric code models on simplicial, cellular or in general differential complexes. The ground state degeneracy is obtained from Wilson loop and surface operators, and the homological intersection form. We compute these for a series of closed 3 and 4 dimensional manifolds and study the projective representations of mapping class groups (modular transformations). Braiding statistics between point and string excitations in (3+1)-dimensions or between dual string excitations in (4+1)-dimensions are topologically determined by the higher dimensional linking number, and can be understood by an effective topological field theory. An algorithm for calculating entanglemnent entropy of any bipartition of closed manifolds is presented, and its topological signature is completely characterized homologically. Extrinsic twist defects (or disclinations) are studied in 2,3 and 4 dimensions and are shown to carry exotic fusion and braiding properties. Simons Fellowship
Toward Supersonic Retropropulsion CFD Validation
NASA Technical Reports Server (NTRS)
Kleb, Bil; Schauerhamer, D. Guy; Trumble, Kerry; Sozer, Emre; Barnhardt, Michael; Carlson, Jan-Renee; Edquist, Karl
2011-01-01
This paper begins the process of verifying and validating computational fluid dynamics (CFD) codes for supersonic retropropulsive flows. Four CFD codes (DPLR, FUN3D, OVERFLOW, and US3D) are used to perform various numerical and physical modeling studies toward the goal of comparing predictions with a wind tunnel experiment specifically designed to support CFD validation. Numerical studies run the gamut in rigor from code-to-code comparisons to observed order-of-accuracy tests. Results indicate that this complex flowfield, involving time-dependent shocks and vortex shedding, design order of accuracy is not clearly evident. Also explored is the extent of physical modeling necessary to predict the salient flowfield features found in high-speed Schlieren images and surface pressure measurements taken during the validation experiment. Physical modeling studies include geometric items such as wind tunnel wall and sting mount interference, as well as turbulence modeling that ranges from a RANS (Reynolds-Averaged Navier-Stokes) 2-equation model to DES (Detached Eddy Simulation) models. These studies indicate that tunnel wall interference is minimal for the cases investigated; model mounting hardware effects are confined to the aft end of the model; and sparse grid resolution and turbulence modeling can damp or entirely dissipate the unsteadiness of this self-excited flow.
Spectral fitting, shock layer modeling, and production of nitrogen oxides and excited nitrogen
NASA Technical Reports Server (NTRS)
Blackwell, H. E.
1991-01-01
An analysis was made of N2 emission from 8.72 MJ/kg shock layer at 2.54, 1.91, and 1.27 cm positions and vibrational state distributions, temperatures, and relative electronic state populations was obtained from data sets. Other recorded arc jet N2 and air spectral data were reviewed and NO emission characteristics were studied. A review of operational procedures of the DSMC code was made. Information on other appropriate codes and modifications, including ionization, were made as well as a determination of the applicability of codes reviewed to task requirement. A review was also made of computational procedures used in CFD codes of Li and other codes on JSC computers. An analysis was made of problems associated with integration of specific chemical kinetics applicable to task into CFD codes.
Electron-Impact Cross Sections for Ground State to np Excitations of Sodium and Potassium.
Stone, Philip M; Kim, Yong-Ki
2004-01-01
Cross sections for electron impact excitation of atoms are important for modeling of low temperature plasmas and gases. While there are many experimental and theoretical results for excitation to the first excited states, little information is available for excitation to higher states. We present here calculations of excitations from the ground state to the np levels of sodium (n = 3 through 11) and potassium (n = 4 through 12). We also present a calculation for a transition from the excited sodium level 3p to 3d to show the generality of the method. Scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. These formulas have been shown to be remarkably accurate yet simple to use. We have used a core polarization potential in a Dirac-Fock wave function code to calculate target atom wave functions and a matching form of the dipole transition operator to calculate oscillator strengths and Born cross sections. The scaled Born results here for excitation to the first excited levels are in very good agreement with experimental and other theoretical data, and the results for excitation to the next few levels are in satisfactory agreement with the limited data available. The present results for excitation to the higher levels are believed to be the only data available.
Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals
NASA Astrophysics Data System (ADS)
Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.
2015-10-01
The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.
MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection
NASA Astrophysics Data System (ADS)
Bierwage, A.; Toma, M.; Shinohara, K.
2017-12-01
The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.
2016-01-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846
Similarity-transformed equation-of-motion vibrational coupled-cluster theory.
Faucheaux, Jacob A; Nooijen, Marcel; Hirata, So
2018-02-07
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Similarity-transformed equation-of-motion vibrational coupled-cluster theory
NASA Astrophysics Data System (ADS)
Faucheaux, Jacob A.; Nooijen, Marcel; Hirata, So
2018-02-01
A similarity-transformed equation-of-motion vibrational coupled-cluster (STEOM-XVCC) method is introduced as a one-mode theory with an effective vibrational Hamiltonian, which is similarity transformed twice so that its lower-order operators are dressed with higher-order anharmonic effects. The first transformation uses an exponential excitation operator, defining the equation-of-motion vibrational coupled-cluster (EOM-XVCC) method, and the second uses an exponential excitation-deexcitation operator. From diagonalization of this doubly similarity-transformed Hamiltonian in the small one-mode excitation space, the method simultaneously computes accurate anharmonic vibrational frequencies of all fundamentals, which have unique significance in vibrational analyses. We establish a diagrammatic method of deriving the working equations of STEOM-XVCC and prove their connectedness and thus size-consistency as well as the exact equality of its frequencies with the corresponding roots of EOM-XVCC. We furthermore elucidate the similarities and differences between electronic and vibrational STEOM methods and between STEOM-XVCC and vibrational many-body Green's function theory based on the Dyson equation, which is also an anharmonic one-mode theory. The latter comparison inspires three approximate STEOM-XVCC methods utilizing the common approximations made in the Dyson equation: the diagonal approximation, a perturbative expansion of the Dyson self-energy, and the frequency-independent approximation. The STEOM-XVCC method including up to the simultaneous four-mode excitation operator in a quartic force field and its three approximate variants are formulated and implemented in computer codes with the aid of computer algebra, and they are applied to small test cases with varied degrees of anharmonicity.
Structured codebook design in CELP
NASA Technical Reports Server (NTRS)
Leblanc, W. P.; Mahmoud, S. A.
1990-01-01
Codebook Excited Linear Protection (CELP) is a popular analysis by synthesis technique for quantizing speech at bit rates from 4 to 6 kbps. Codebook design techniques to date have been largely based on either random (often Gaussian) codebooks, or on known binary or ternary codes which efficiently map the space of (assumed white) excitation codevectors. It has been shown that by introducing symmetries into the codebook, good complexity reduction can be realized with only marginal decrease in performance. Codebook design algorithms are considered for a wide range of structured codebooks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
campione, Salvatore; Warne, Larry K.; Schiek, Richard
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank
A variable rate speech compressor for mobile applications
NASA Technical Reports Server (NTRS)
Yeldener, S.; Kondoz, A. M.; Evans, B. G.
1990-01-01
One of the most promising speech coder at the bit rate of 9.6 to 4.8 kbits/s is CELP. Code Excited Linear Prediction (CELP) has been dominating 9.6 to 4.8 kbits/s region during the past 3 to 4 years. Its set back however, is its expensive implementation. As an alternative to CELP, the Base-Band CELP (CELP-BB) was developed which produced good quality speech comparable to CELP and a single chip implementable complexity as reported previously. Its robustness was also improved to tolerate errors up to 1.0 pct. and maintain intelligibility up to 5.0 pct. and more. Although, CELP-BB produces good quality speech at around 4.8 kbits/s, it has a fundamental problem when updating the pitch filter memory. A sub-optimal solution is proposed for this problem. Below 4.8 kbits/s, however, CELP-BB suffers from noticeable quantization noise as a result of the large vector dimensions used. Efficient representation of speech below 4.8 kbits/s is reported by introducing Sinusoidal Transform Coding (STC) to represent the LPC excitation which is called Sine Wave Excited LPC (SWELP). In this case, natural sounding good quality synthetic speech is obtained at around 2.4 kbits/s.
Enhancements to the SSME transfer function modeling code
NASA Technical Reports Server (NTRS)
Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.
1995-01-01
This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an effort to filter out high frequency characteristics. The fourth method removes the presumed system excitation and its harmonics in order to investigate the effects of the excitation on the modeling process. The fifth method is an attempt to apply constrained RID to obtain better transfer functions through more accurate modeling over certain frequency ranges. Section 4 presents some new C main files which were created to round out the functionality of the existing SSME transfer function modeling code. It is now possible to go from time data to transfer function models using only the C codes; it is not necessary to rely on external software. The new C main files and instructions for their use are included. Section 5 presents current and future enhancements to the XPLOT graphics program which was delivered with the initial software. Several new features which have been added to the program are detailed in the first part of this section. The remainder of Section 5 then lists some possible features which may be added in the future. Section 6 contains the conclusion section of this report. Section 6.1 is an overview of the work including a summary and observations relating to finding transfer functions with the SSME code. Section 6.2 contains information relating to future work on the project.
Measurement of excitation functions in alpha induced reactions on natCu
NASA Astrophysics Data System (ADS)
Shahid, Muhammad; Kim, Kwangsoo; Kim, Guinyun; Zaman, Muhammad; Nadeem, Muhammad
2015-09-01
The excitation functions of 66,67,68Ga, 62,63,65Zn, 61,64Cu, and 58,60Co radionuclides in the natCu(α, x) reaction were measured in the energy range from 15 to 42 MeV by using a stacked-foil activation method at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences. The measured results were compared with the literature data as well as the theoretical values obtained from the TENDL-2013 and TENDL-2014 libraries based on the TALYS-1.6 code. The integral yields for thick targets of the produced radionuclides were also determined from the measured excitation functions and the stopping power of natural copper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voinov, Alexander V.; Grimes, Steven M.; Brune, Carl R.
Proton double-differential cross sections from 59Co(α,p) 62Ni, 57Fe(α,p) 60Co, 56Fe( 7Li,p) 62Ni, and 55Mn( 6Li,p) 60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys. 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtainedmore » with a Monte Carlo technique. Furthermore, excitation energy dependencies were found to be inconsistent with the Fermi-gas model.« less
Numerical Tests and Properties of Waves in Radiating Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less
Hughes, Michelle L.; Baudhuin, Jacquelyn L.; Goehring, Jenny L.
2014-01-01
Objective In newer-generation Cochlear Ltd. cochlear implants, two adjacent electrodes can be electrically coupled to produce a single contact or “dual electrode” (DE). The goal of the present study was to evaluate whether relatively large impedance differences (>3.0 kOhms) between coupled electrodes affect the excitation pattern and pitch percepts produced by the DE. Design Fifteen electrode pairs in six recipients were tested. Neural spread-of-excitation (SOE) patterns and pitch perception were measured for adjacent physical electrodes (PEs) and the resulting DE to determine if the lower-impedance PE in the pair dominates the DE response pattern. Results were compared to a “normative sample” (impedance differences <3.0 kOhms) from two earlier studies. Results In general, SOE patterns for DEs more closely approximated those of the lower-impedance PE in each pair. The DE was more easily distinguished in pitch from the higher-impedance PE than the lower-impedance PE. The ECAP and perceptual results generally differed from those of the normative group. Conclusions Impedance differences between adjacent PEs should be considered if DE stimulation is implemented in future research studies or clinical coding strategies. PMID:25250960
ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.
2013-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.
NASA Astrophysics Data System (ADS)
Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.
2015-03-01
DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.
Added-mass effects on a horizontal-axis tidal turbine using FAST v8
Murray, Robynne E.; Thresher, Robert; Jonkman, Jason
2018-04-09
Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less
Added-mass effects on a horizontal-axis tidal turbine using FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Robynne E.; Thresher, Robert; Jonkman, Jason
Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.
Han, M; Gao, X; Su, J Z; Nie, S
2001-07-01
Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.
NASA Astrophysics Data System (ADS)
Rhazi, Dilal
In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt to address this need. A numerical tool based on two approaches (Wave and Modal) is developed. It allows a fast computation of the vibroacoustic response for multilayer structures over full frequency spectrum and for various kinds of excitations (monople, rain on the roof, diffuse acoustic filed, turbulent boundary layer) . A comparison between results obtained by the developed model, experimental tests and the finite element method is given and discussed. The results are very promising with respect to the potential of such a model for industrial use as a prediction tool, and even for design. The code can be also integrated within an SEA (Statistical Energy Analysis) strategy in order to model a full vehicle by computing in particular the insertion loss and the equivalent damping added by the sound package. Keywords: Transfer Matrix Method, Wave Approach,Turbulent Boundary Layer, Rain on the Roof, Monopole, Insertion loss, Double-wall, Sound Package.
Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.
NASA Astrophysics Data System (ADS)
Wu, Hua
One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but "intelligent" truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated turncation scheme is introduced in nuclear physics for the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, we find that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDU0 was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a al Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves "chaotically". This information is certainly crucial to understanding quantum "chaotic" behavior. Also, some of the primitive assumptions of the FDSM are investigated and we concluded that the assumption of the quasi-spin behavior for the so-called abnormal parity particles is inadequate and needs to be extended. Suggestions of extensions are made. Finally, the newly developed physical quantity, the collective spin, is explored in terms of dynamical symmetries in the FDSM.
Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk
2010-01-01
It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than −40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of −20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe ‘ripples’ when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm × 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 °C to 71 °C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging. PMID:20224162
Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk
2010-04-07
It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could increase the temperature of the soft biological tissue from 55 degrees C to 71 degrees C within 60 s. Two types of experiments for simultaneous therapy and imaging were conducted to acquire a single scan-line and B-mode image with an aluminum plate and a slice of porcine muscle, respectively. The B-mode image was obtained using the single element imaging system during HIFU beam transmission. The experimental results proved that the combination of the traditional short-pulse excitation and the adaptive noise canceling method could significantly reduce therapeutic interference and remnant ripples and thus may be a better way to implement real-time simultaneous therapy and imaging.
NASA Astrophysics Data System (ADS)
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-01
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-27
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
Nuclear energy release from fragmentation
NASA Astrophysics Data System (ADS)
Li, Cheng; Souza, S. R.; Tsang, M. B.; Zhang, Feng-Shou
2016-08-01
It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting 230,232Th and 235,238U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for 230,232Th and 235,238U are around 0.7-0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.
Nothing can be coincidence: synaptic inhibition and plasticity in the cerebellar nuclei
Pugh, Jason R.; Raman, Indira M.
2009-01-01
Many cerebellar neurons fire spontaneously, generating 10–100 action potentials per second even without synaptic input. This high basal activity correlates with information-coding mechanisms that differ from those of cells that are quiescent until excited synaptically. For example, in the deep cerebellar nuclei, Hebbian patterns of coincident synaptic excitation and postsynaptic firing fail to induce long-term increases in the strength of excitatory inputs. Instead, excitatory synaptic currents are potentiated by combinations of inhibition and excitation that resemble the activity of Purkinje and mossy fiber afferents that is predicted to occur during cerebellar associative learning tasks. Such results indicate that circuits with intrinsically active neurons have rules for information transfer and storage that distinguish them from other brain regions. PMID:19178955
Knockout and fragmentation reactions using a broad range of tin isotopes
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Bertulani, C. A.; Vargas, J.; Ayyad, Y.; Alvarez-Pol, H.; Atkinson, J.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Díaz-Cortes, J.; Fernández, P. Díaz; Estrade, A.; Geissel, H.; Kelić-Heil, A.; Litvinov, Yu. A.; Mostazo, M.; Paradela, C.; Pérez-Loureiro, D.; Pietri, S.; Prochazka, A.; Takechi, M.; Weick, H.; Winfield, J. S.
2017-09-01
Production cross sections of residual nuclei obtained by knockout and fragmentation reactions of different tin isotopes accelerated at 1 A GeV have been measured with the fragment separator (FRS) at GSI, Darmstadt. The new measurements are used to investigate the neutron-excess dependence of the neutron- and proton-knockout cross sections. These cross sections are compared to Glauber model calculations coupled to a nuclear de-excitation code in order to investigate the role of the remnant excitations. This bench marking shows an overestimation of the cross sections for the removal of deeply bound nucleons. A phenomenological increase in the excitation energy induced in the remnants produced in these cases allows us to reproduce the measured cross sections.
Dielectronic recombination of the 4p and 4d open sub-shell tungsten ions
NASA Astrophysics Data System (ADS)
Li, M. J.; Fu, Y. B.; Zhang, G. D.; Zhang, Y. Z.; Dong, C. Z.; Koike, F.
2014-04-01
Dielectronic recombination rate coefficients are given theoretically for several highly charged tungsten ions. As 4p open sub-shell ions, Ga-, Ge-, As-, Br-, Kr-like ions are considered. Rb-like ion is further considered as a 4d open sub-shell ion. Theoretical calculations are carried out using a relativistic atomic code FAC. The effect of configuration interaction is taking into account. Inner-shell electron excitations play a significant role for the dielectronic recombination process. Simple analytical formulae are given for the total rate coefficients by fitting to the presently obtained numerical results.
Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk
2009-01-01
For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994
Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk
2009-09-01
For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.
Zhou, Ming; Chang, Shoude; Grover, Chander
2004-06-28
Further to the optical coding based on fluorescent semiconductor quantum dots (QDs), a concept of using mixtures of multiple single-color QDs for creating highly secret cryptograms based on their absorption/emission properties was demonstrated. The key to readout of the optical codes is a group of excitation lights with the predetermined wavelengths programmed in a secret manner. The cryptograms can be printed on the surfaces of different objects such as valuable documents for security purposes.
NASA Astrophysics Data System (ADS)
Arora, Vanita; Mulaveesala, Ravibabu
2017-06-01
In recent years, InfraRed Thermography (IRT) has become a widely accepted non-destructive testing technique to evaluate the structural integrity of composite sandwich structures due to its full-field, remote, fast and in-service inspection capabilities. This paper presents a novel infrared thermographic approach named as Golay complementary coded thermal wave imaging is presented to detect disbonds in a sandwich structure having face sheets from Glass/Carbon Fibre Reinforced (GFR/CFR) laminates and core of the wooden block.
RNA meets disease in paradise.
Winter, Julia; Roth, Anna; Diederichs, Sven
2011-01-01
Getting off the train in Jena-Paradies, 60 participants joined for the 12 (th) Young Scientist Meeting of the German Society for Cell Biology (DGZ) entitled "RNA & Disease". Excellent speakers from around the world, graduate students, postdocs and young group leaders enjoyed a meeting in a familiar atmosphere to exchange inspiring new data and vibrant scientific discussions about the fascinating history and exciting future of non-coding RNA research including microRNA, piRNA and long non-coding RNA as well as their function in cancer, diabetes and neurodegenerative diseases.
Proton bombarded reactions of Calcium target nuclei
NASA Astrophysics Data System (ADS)
Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Depedelen, Mesut
2017-09-01
In this study, proton bombarded nuclear reactions calculations of Calcium target nuclei have been investigated in the incident proton energy range of 1-50 MeV. The excitation functions for 40Ca target nuclei reactions have been calculated by using PCROSS nuclear reaction calculation code. Weisskopf-Ewing and the full exciton models were used for equilibrium and for pre-equilibrium calculations, respectively. The excitation functions for 40Ca target nuclei reactions (p,α), (p,n), (p,p) have been calculated using the semi-empirical formula Tel et al. [5].
Ultrasound strain imaging using Barker code
NASA Astrophysics Data System (ADS)
Peng, Hui; Tie, Juhong; Guo, Dequan
2017-01-01
Ultrasound strain imaging is showing promise as a new way of imaging soft tissue elasticity in order to help clinicians detect lesions or cancers in tissues. In this paper, Barker code is applied to strain imaging to improve its quality. Barker code as a coded excitation signal can be used to improve the echo signal-to-noise ratio (eSNR) in ultrasound imaging system. For the Baker code of length 13, the sidelobe level of the matched filter output is -22dB, which is unacceptable for ultrasound strain imaging, because high sidelobe level will cause high decorrelation noise. Instead of using the conventional matched filter, we use the Wiener filter to decode the Barker-coded echo signal to suppress the range sidelobes. We also compare the performance of Barker code and the conventional short pulse in simulation method. The simulation results demonstrate that the performance of the Wiener filter is much better than the matched filter, and Baker code achieves higher elastographic signal-to-noise ratio (SNRe) than the short pulse in low eSNR or great depth conditions due to the increased eSNR with it.
A user's manual for the Electromagnetic Surface Patch code: ESP version 3
NASA Technical Reports Server (NTRS)
Newman, E. H.; Dilsavor, R. L.
1987-01-01
This report serves as a user's manual for Version III of the Electromagnetic Surface Patch Code or ESP code. ESP is user-oriented, based on the method of moments (MM) for treating geometries consisting of an interconnection of thin wires and perfectly conducting polygonal plates. Wire/plate junctions must be about 0.1 lambda or more from any plate edge. Several plates may intersect along a common edge. Excitation may be by either a delta-gap voltage generator or by a plane wave. The thin wires may have finite conductivity and also may contain lumped loads. The code computes most of the usual quantities of interest such as current distribution, input impedance, radiation efficiency, mutual coupling, far zone gain patterns (both polarizations) and radar-cross-section (both/cross polarizations).
Reassigning stop codons via translation termination: How a few eukaryotes broke the dogma.
Alkalaeva, Elena; Mikhailova, Tatiana
2017-03-01
The genetic code determines how amino acids are encoded within mRNA. It is universal among the vast majority of organisms, although several exceptions are known. Variant genetic codes are found in ciliates, mitochondria, and numerous other organisms. All revealed genetic codes (standard and variant) have at least one codon encoding a translation stop signal. However, recently two new genetic codes with a reassignment of all three stop codons were revealed in studies examining the protozoa transcriptomes. Here, we discuss this finding and the recent studies of variant genetic codes in eukaryotes. We consider the possible molecular mechanisms allowing the use of certain codons as sense and stop signals simultaneously. The results obtained by studying these amazing organisms represent a new and exciting insight into the mechanism of stop codon decoding in eukaryotes. Also see the video abstract here. © 2017 WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn
2016-12-01
To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.
Jetting of a ultrasound contrast microbubble near a rigid wall
NASA Astrophysics Data System (ADS)
Sarkar, Kausik; Mobadersany, Nima
2017-11-01
Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.
Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Jovaišaitė, J; Vaya, I; Nenov, A; Markovitsi, D; Gustavsson, T; Banyasz, A; Garavelli, M; Improta, R
2017-06-14
The study concerns the relaxation of electronic excited states of the DNA nucleoside deoxycytidine (dCyd) and its methylated analogue 5-methyldeoxycytidine (5mdCyd), known to be involved in the formation of UV-induced lesions of the genetic code. Due to the existence of four closely lying and potentially coupled excited states, the deactivation pathways in these systems are particularly complex and have not been assessed so far. Here, we provide a complete mechanistic picture of the excited state relaxation of dCyd/5mdCyd in three solvents-water, acetonitrile, and tetrahydrofuran-by combining femtosecond fluorescence experiments, addressing the effect of solvent proticity on the relaxation dynamics of dCyd and 5mdCyd for the first time, and two complementary quantum mechanical approaches (CASPT2/MM and PCM/TD-CAM-B3LYP). The lowest energy ππ* state is responsible for the sub-picosecond lifetime observed for dCyd in all the solvents. In addition, computed excited state absorption and transient IR spectra allow one, for the first time, to assign the tens of picoseconds time constant, reported previously, to a dark state (n O π*) involving the carbonyl lone pair. A second low-lying dark state, involving the nitrogen lone pair (n N π*), does significantly participate in the excited state dynamics. The 267 nm excitation of dCyd leads to a non-negligible population of the second bright ππ* state, which affects the dynamics, acting mainly as a "doorway" state for the n O π* state. The solvent plays a key role governing the interplay between the different excited states; unexpectedly, water favors population of the dark states. In the case of 5mdCyd, an energy barrier present on the main nonradiative decay route explains the 6-fold lengthening of the excited state lifetime compared to that of dCyd, observed for all the examined solvents. Moreover, C5-methylation destabilizes both n O π* and n N π* dark states, thus preventing them from being populated.
Photoionization of Co+ and electron-impact excitation of Co2 + using the Dirac R-matrix method
NASA Astrophysics Data System (ADS)
Tyndall, N. B.; Ramsbottom, C. A.; Ballance, C. P.; Hibbert, A.
2016-11-01
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound-bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co III has been generated using GRASP0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co III. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co II and compared directly with existing work.
Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.
Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A
2016-08-01
The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Abbasi, Samira; Maran, Selva K.; Cao, Ying; Abbasi, Ataollah; Heck, Detlef H.
2017-01-01
Neural coding through inhibitory projection pathways remains poorly understood. We analyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway in a modeling study using a data set recorded in awake mice containing respiratory rate modulation. We find that inhibitory transmission from tonically active PCs can transmit a behavioral rate code with high fidelity. We parameterized the required population code in PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs also accounts for the high coefficient of variation in CN spike trains, while the balance between excitation and inhibition determines spike rate and local spike train variability. Overall, our modeling study can fully account for observed spike train properties of cerebellar output in awake mice, and strongly supports rate coding in the cerebellum. PMID:28617798
NASA Astrophysics Data System (ADS)
Ragona, R.; Messiaen, A.
2016-07-01
For the central heating of a fusion reactor ion cyclotron radio frequency heating (ICRH) is the first choice method as it is able to couple RF power to the ions without density limit. The drawback of this heating method is the problem of excitation of the magneto-sonic wave through the plasma boundary layer from the antenna located along the wall, without exceeding its voltage standoff. The amount of coupling depends on the antenna excitation and the surface admittance at the antenna output due to the plasma profile. The paper deals with the optimization of the antenna excitation by the use of sections of traveling-wave antennas (TWAs) distributed all along the reactor wall between the blanket modules. They are mounted and fed in resonant ring system(s). First, the physics of the coupling of a strap array is studied by simple models and the coupling code ANTITER II. Then, after the study of the basic properties of a TWA section, its feeding problem is solved by hybrids driving them in resonant ring circuit(s). The complete modeling is obtained from the matrices of the TWA sections connected to one of the feeding hybrid(s). The solution is iterated with the coupling code to determine the loading for a reference low-coupling ITER plasma profile. The resulting wave pattern up to the plasma bulk is derived. The proposed system is totally load resilient and allows us to obtain a very selective exciting wave spectrum. A discussion of some practical implementation problems is added.
Nano-optical conveyor belt with waveguide-coupled excitation.
Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping
2016-02-01
We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.
Hönigsperger, Christoph; Marosi, Máté; Murphy, Ricardo; Storm, Johan F
2015-01-01
Key points Kv7 (KCNQ/M) channels are known to control excitability and generate subthreshold M-resonance in CA1 hippocampal pyramidal cells, but their properties and functions have not previously been compared along the dorsoventral (septotemporal) axis We used whole-cell recordings to compare electrophysiological properties of dorsal and ventral CA1 pyramidal cells in hippocampal slices from 3- to 4-week-old rats Blockade of Kv7/M-channels with 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) had a stronger impact on electrical properties in dorsal than ventral pyramidal cells, including input resistance, temporal summation, M-resonance, spike threshold, medium after-hyperpolarization, excitability, and spike frequency adaptation. Voltage-clamp recordings revealed a larger amplitude and left-shifted voltage dependence of XE991-sensitive current (IM) in dorsal vs. ventral cells. IM-dependent differences in excitability and resonance may be important for rate and phase coding of CA1 place cells along the dorsoventral axis and may enhance epileptiform activity in ventral pyramidal cells. Abstract In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D–V) axis. CA1 pyramidal cells show increasing excitability along the D–V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D–V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic potentials, and M-resonance; (ii) IM activated at more negative potentials (left-shifted) and had larger peak amplitude in the dorsal than ventral CA1; and (iii) the initial spike threshold (during ramp depolarizations) was elevated, and the medium after-hyperpolarization and spike frequency adaptation were increased (i.e. excitability was lower) in the dorsal rather than ventral CA1. These differences were abolished or reduced by application of XE991, indicating that they were caused by IM. Thus, it appears that IM has stronger effects in dorsal than in ventral rat CA1 pyramidal cells because of a larger maximal M-conductance and left-shifted activation curve in the dorsal cells. These mechanisms may contribute to D–V differences in the rate and phase coding of position by CA1 place cells, and may also enhance epileptiform activity in ventral CA1. PMID:25656084
Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger
2012-01-01
Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916
Theta phase precession and phase selectivity: a cognitive device description of neural coding
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Bardakjian, Berj L.
2009-06-01
Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.
SEADYN Analysis of a Tow Line for a High Altitude Towed Glider
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
1996-01-01
The concept of using a system, consisting of a tow aircraft, glider and tow line, which would enable subsonic flight at altitudes above 24 km (78 kft) has previously been investigated. The preliminary results from these studies seem encouraging. Under certain conditions these studies indicate the concept is feasible. However, the previous studies did not accurately take into account the forces acting on the tow line. Therefore in order to investigate the concept further a more detailed analysis was needed. The code that was selected was the SEADYN cable dynamics computer program which was developed at the Naval Facilities Engineering Service Center. The program is a finite element based structural analysis code that was developed over a period of 10 years. The results have been validated by the Navy in both laboratory and at actual sea conditions. This code was used to simulate arbitrarily-configured cable structures subjected to excitations encountered in real-world operations. The Navy's interest was mainly for modeling underwater tow lines, however the code is also usable for tow lines in air when the change in fluid properties is taken into account. For underwater applications the fluid properties are basically constant over the length of the tow line. For the tow aircraft/glider application the change in fluid properties is considerable along the length of the tow line. Therefore the code had to be modified in order to take into account the variation in atmospheric properties that would be encountered in this application. This modification consisted of adding a variable density to the fluid based on the altitude of the node being calculated. This change in the way the code handled the fluid density had no effect on the method of calculation or any other factor related to the codes validation.
Propagation of radio frequency waves through density fluctuations
NASA Astrophysics Data System (ADS)
Valvis, S. I.; Papagiannis, P.; Papadopoulos, A.; Hizanidis, K.; Glytsis, E.; Bairaktaris, F.; Zisis, A.; Tigelis, I.; Ram, A. K.
2017-10-01
On their way to the core of a tokamak plasma, radio frequency (RF) waves, excited in the vacuum region, have to propagate through a variety of density fluctuations in the edge region. These fluctuations include coherent structures, like blobs that can be field aligned or not, as well as turbulent and filamentary structures. We have been studying the effect of fluctuations on RF propagation using both theoretical (analytical) and computational models. The theoretical results are being compared with those obtained by two different numerical codes ``a Finite Difference Frequency Domain code and the commercial COMSOL package. For plasmas with arbitrary distribution of coherent and turbulent fluctuations, we have formulated an effective dielectric permittivity of the edge plasma. This permittivity tensor is then used in numerical simulations to study the effect of multi-scale turbulence on RF waves. We not only consider plane waves but also Gaussian beams in the electron cyclotron and lower hybrid range of frequencies. The analytical theory and results from simulations on the propagation of RF waves will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium and by DoE Grant DE-FG02-91ER-54109.
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Muravyov, Alexander A.
2002-01-01
Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Bipin Kumar, E-mail: bipinbhu@yahoo.com; Kumar, Arun; Amity Institute of Applied Science, Amity University, Noida, Uttar Pradesh 201303
Herein, a novel green emitting long-persistent Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor was synthesized in a single phase form using facile solid state reaction method under the reducing atmosphere of 10% H{sub 2} and 90% N{sub 2}. The resulting phosphor exhibits hyper-sensitive strong broad green emission, peaking at 510 nm upon 340 nm excitation wavelength, which is attributed to the 4f{sup 6}5d{sup 1}-4f{sup 7} transitions of emission center of europium (Eu{sup 2+}) ions. Moreover, the incorporation of dysprosium (Dy{sup 3+}) ions, which act as effective hole trap centers with appropriate depth, largely enhances the photoluminescence characteristics and greatly improves the persistentmore » intense luminescence behavior of Sr{sub 3}SiAl{sub 4}O{sub 11}:Eu{sup 2+}/Dy{sup 3+} phosphor under ultraviolet (UV) excitation. In addition, with the optimum doping concentration and sufficient UV excitation time period, the as-synthesized phosphor can be persisted afterglow for time duration ∼4 h with maximum luminescence intensity. Thus, these results suggest that this phosphor could be expected as an ultimate choice for next generation advanced luminescent materials in security applications such as latent finger-marks detection, photo-masking induced phosphorescent images, and security code detection.« less
A numerical study of defect detection in a plaster dome ceiling using structural acoustics.
Bucaro, J A; Romano, A J; Valdivia, N; Houston, B H; Dey, S
2009-07-01
A numerical study is carried out to evaluate the effectiveness of using measured surface displacements resulting from acoustic speaker excitation to detect and localize flaws in a domed, plaster ceiling. The response of the structure to an incident acoustic pressure is obtained at four frequencies between 100 and 400 Hz using a parallel h-p structural acoustic finite element-based code. Three ceiling conditions are modeled: the pristine ceiling considered rigidly attached to the domed-shape support, partial detachment of a segment of the plaster layer from the support, and an interior pocket of plaster deconsolidation modeled as a heavy fluid. Spatial maps of the normal displacement resulting from speaker excitation are interpreted with the help of predictions based on static analysis. It is found that acoustic speaker excitation can provide displacement levels readily detected by commercially available laser Doppler vibrometer systems. Further, it is concluded that for 1 in. thick plaster layers, detachment sizes as small as 4 cm are detectable by direct observation of the measured displacement maps. Finally, spatial structure differences are observed in the displacement maps beneath the two defect types, which may provide a wavenumber-based feature useful for distinguishing plaster detachment from other defects such as deconsolidation.
Optical Excitations and Energy Transfer in Nanoparticle Waveguides
2009-03-01
All calculations were performed using our own codes given in the Appendix section. The calculations were performed using Scilab programming package...January 2007, invited Speaker) 12. Scilab is a free software compatible to the famous Matlab package. It can be found at their webpage http
A 4.8 kbps code-excited linear predictive coder
NASA Technical Reports Server (NTRS)
Tremain, Thomas E.; Campbell, Joseph P., Jr.; Welch, Vanoy C.
1988-01-01
A secure voice system STU-3 capable of providing end-to-end secure voice communications (1984) was developed. The terminal for the new system will be built around the standard LPC-10 voice processor algorithm. The performance of the present STU-3 processor is considered to be good, its response to nonspeech sounds such as whistles, coughs and impulse-like noises may not be completely acceptable. Speech in noisy environments also causes problems with the LPC-10 voice algorithm. In addition, there is always a demand for something better. It is hoped that LPC-10's 2.4 kbps voice performance will be complemented with a very high quality speech coder operating at a higher data rate. This new coder is one of a number of candidate algorithms being considered for an upgraded version of the STU-3 in late 1989. The problems of designing a code-excited linear predictive (CELP) coder to provide very high quality speech at a 4.8 kbps data rate that can be implemented on today's hardware are considered.
A Monte Carlo Simulation of Prompt Gamma Emission from Fission Fragments
NASA Astrophysics Data System (ADS)
Regnier, D.; Litaize, O.; Serot, O.
2013-03-01
The prompt fission gamma spectra and multiplicities are investigated through the Monte Carlo code FIFRELIN which is developed at the Cadarache CEA research center. Knowing the fully accelerated fragment properties, their de-excitation is simulated through a cascade of neutron, gamma and/or electron emissions. This paper presents the recent developments in the FIFRELIN code and the results obtained on the spontaneous fission of 252Cf. Concerning the decay cascades simulation, a fully Hauser-Feshbach model is compared with a previous one using a Weisskopf spectrum for neutron emission. A particular attention is paid to the treatment of the neutron/gamma competition. Calculations lead using different level density and gamma strength function models show significant discrepancies of the slope of the gamma spectra at high energy. The underestimation of the prompt gamma spectra obtained regardless our de-excitation cascade modeling choice is discussed. This discrepancy is probably linked to an underestimation of the post-neutron fragments spin in our calculation.
Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval.
Beyeler, Anna; Namburi, Praneeth; Glober, Gordon F; Simonnet, Clémence; Calhoon, Gwendolyn G; Conyers, Garrett F; Luck, Robert; Wildes, Craig P; Tye, Kay M
2016-04-20
Although the basolateral amygdala (BLA) is known to play a critical role in the formation of memories of both positive and negative valence, the coding and routing of valence-related information is poorly understood. Here, we recorded BLA neurons during the retrieval of associative memories and used optogenetic-mediated phototagging to identify populations of neurons that synapse in the nucleus accumbens (NAc), the central amygdala (CeA), or ventral hippocampus (vHPC). We found that despite heterogeneous neural responses within each population, the proportions of BLA-NAc neurons excited by reward predictive cues and of BLA-CeA neurons excited by aversion predictive cues were higher than within the entire BLA. Although the BLA-vHPC projection is known to drive behaviors of innate negative valence, these neurons did not preferentially code for learned negative valence. Together, these findings suggest that valence encoding in the BLA is at least partially mediated via divergent activity of anatomically defined neural populations. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prowell, I.; Elgamal, A.; Romanowitz, H.
Demand parameters for turbines, such as tower moment demand, are primarily driven by wind excitation and dynamics associated with operation. For that purpose, computational simulation platforms have been developed, such as FAST, maintained by the National Renewable Energy Laboratory (NREL). For seismically active regions, building codes also require the consideration of earthquake loading. Historically, it has been common to use simple building code approaches to estimate the structural demand from earthquake shaking, as an independent loading scenario. Currently, International Electrotechnical Commission (IEC) design requirements include the consideration of earthquake shaking while the turbine is operating. Numerical and analytical tools usedmore » to consider earthquake loads for buildings and other static civil structures are not well suited for modeling simultaneous wind and earthquake excitation in conjunction with operational dynamics. Through the addition of seismic loading capabilities to FAST, it is possible to simulate earthquake shaking in the time domain, which allows consideration of non-linear effects such as structural nonlinearities, aerodynamic hysteresis, control system influence, and transients. This paper presents a FAST model of a modern 900-kW wind turbine, which is calibrated based on field vibration measurements. With this calibrated model, both coupled and uncoupled simulations are conducted looking at the structural demand for the turbine tower. Response is compared under the conditions of normal operation and potential emergency shutdown due the earthquake induced vibrations. The results highlight the availability of a numerical tool for conducting such studies, and provide insights into the combined wind-earthquake loading mechanism.« less
NASA Astrophysics Data System (ADS)
Li, Yonghui; Ullrich, Carsten
2013-03-01
The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
A computational theory for the classification of natural biosonar targets based on a spike code.
Müller, Rolf
2003-08-01
A computational theory for the classification of natural biosonar targets is developed based on the properties of an example stimulus ensemble. An extensive set of echoes (84 800) from four different foliages was transcribed into a spike code using a parsimonious model (linear filtering, half-wave rectification, thresholding). The spike code is assumed to consist of time differences (interspike intervals) between threshold crossings. Among the elementary interspike intervals flanked by exceedances of adjacent thresholds, a few intervals triggered by disjoint half-cycles of the carrier oscillation stand out in terms of resolvability, visibility across resolution scales and a simple stochastic structure (uncorrelatedness). They are therefore argued to be a stochastic analogue to edges in vision. A three-dimensional feature vector representing these interspike intervals sustained a reliable target classification performance (0.06% classification error) in a sequential probability ratio test, which models sequential processing of echo trains by biological sonar systems. The dimensions of the representation are the first moments of duration and amplitude location of these interspike intervals as well as their number. All three quantities are readily reconciled with known principles of neural signal representation, since they correspond to the centre of gravity of excitation on a neural map and the total amount of excitation.
Superconducting quantum simulator for topological order and the toric code
NASA Astrophysics Data System (ADS)
Sameti, Mahdi; Potočnik, Anton; Browne, Dan E.; Wallraff, Andreas; Hartmann, Michael J.
2017-04-01
Topological order is now being established as a central criterion for characterizing and classifying ground states of condensed matter systems and complements categorizations based on symmetries. Fractional quantum Hall systems and quantum spin liquids are receiving substantial interest because of their intriguing quantum correlations, their exotic excitations, and prospects for protecting stored quantum information against errors. Here, we show that the Hamiltonian of the central model of this class of systems, the toric code, can be directly implemented as an analog quantum simulator in lattices of superconducting circuits. The four-body interactions, which lie at its heart, are in our concept realized via superconducting quantum interference devices (SQUIDs) that are driven by a suitably oscillating flux bias. All physical qubits and coupling SQUIDs can be individually controlled with high precision. Topologically ordered states can be prepared via an adiabatic ramp of the stabilizer interactions. Strings of qubit operators, including the stabilizers and correlations along noncontractible loops, can be read out via a capacitive coupling to read-out resonators. Moreover, the available single-qubit operations allow to create and propagate elementary excitations of the toric code and to verify their fractional statistics. The architecture we propose allows to implement a large variety of many-body interactions and thus provides a versatile analog quantum simulator for topological order and lattice gauge theories.
Monte Carlo track structure for radiation biology and space applications
NASA Technical Reports Server (NTRS)
Nikjoo, H.; Uehara, S.; Khvostunov, I. G.; Cucinotta, F. A.; Wilson, W. E.; Goodhead, D. T.
2001-01-01
Over the past two decades event by event Monte Carlo track structure codes have increasingly been used for biophysical modelling and radiotherapy. Advent of these codes has helped to shed light on many aspects of microdosimetry and mechanism of damage by ionising radiation in the cell. These codes have continuously been modified to include new improved cross sections and computational techniques. This paper provides a summary of input data for ionizations, excitations and elastic scattering cross sections for event by event Monte Carlo track structure simulations for electrons and ions in the form of parametric equations, which makes it easy to reproduce the data. Stopping power and radial distribution of dose are presented for ions and compared with experimental data. A model is described for simulation of full slowing down of proton tracks in water in the range 1 keV to 1 MeV. Modelling and calculations are presented for the response of a TEPC proportional counter irradiated with 5 MeV alpha-particles. Distributions are presented for the wall and wall-less counters. Data shows contribution of indirect effects to the lineal energy distribution for the wall counters responses even at such a low ion energy.
Detailed opacity calculations for stellar models
NASA Astrophysics Data System (ADS)
Pain, Jean-Christophe; Gilleron, Franck
2016-10-01
We present a state of the art of precise spectral opacity calculations illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments of hot dense plasmas produced by ultra-high-intensity laser interaction. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. Focus is put on iron, due to its crucial role in the understanding of asteroseismic observations of Beta Cephei-type and Slowly Pulsating B stars, as well as in the Sun. For instance, in Beta Cephei-type stars (which should not be confused with Cepheid variables), the iron-group opacity peak excites acoustic modes through the kappa-mechanism. A particular attention is paid to the higher-than-predicted iron opacity measured on Sandia's Z facility at solar interior conditions (boundary of the convective zone). We discuss some theoretical aspects such as orbital relaxation, electron collisional broadening, ionic Stark effect, oscillator-strength sum rules, photo-ionization, or the ``filling-the-gap'' effect of highly excited states.
Critical speeds and forced response solutions for active magnetic bearing turbomachinery, part 2
NASA Technical Reports Server (NTRS)
Rawal, D.; Keesee, J.; Kirk, R. Gordon
1991-01-01
The need for better performance of turbomachinery with active magnetic bearings has necessitated a study of such systems for accurate prediction of their vibrational characteristics. A modification of existing transfer matrix methods for rotor analysis is presented to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of the rotor system is studied. The modified algorithm is validated using a simpler Jeffcott model described previously. The effect of changing from a rotating unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code. The results for a two mass Jeffcott model were presented previously. The results obtained by running this model with the transfer matrix method were compared with the results of the Jeffcott analysis for the purposes of verification. Also included are plots of amplitude versus frequency for the eight stage centrifugal compressor rotor. These plots demonstrate the significant influence that sensor location has on the amplitude and critical frequencies of the rotor system.
Topological order and memory time in marginally-self-correcting quantum memory
NASA Astrophysics Data System (ADS)
Siva, Karthik; Yoshida, Beni
2017-03-01
We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.
Adiabatic topological quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
Adiabatic topological quantum computing
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...
2015-07-31
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less
The Effects of Surface Roughness on the NEAR XRS Elemental Results: Monte-Carlo Modeling
NASA Technical Reports Server (NTRS)
Lin, Lucy F.; Nittler, Larry R.
2011-01-01
The objective of the NEAR-Shoemaker X-ray Gamma-Ray Spec1roscopy ("XGRS") investigation was to determine the elemental composition of the near-Earth asteroid 433 Eros. The X-ray Spectrometer (XRS) system measured the characteristic fluorescence of six major elements (Mg, Al, Si, S, Ca, Fe) in the 1-10 keV energy range excited by the interaction of solar X-rays with the upper 100 microns of the surface of 433 Eros. Various investigators, using both laboratory experiments and computer simulations have established that X-ray fluorescent line ratios can be influenced by small-scale surface roughness at high incidence or emission angles. The effect on the line ratio is specific to the geometry, excitation spectrum, and composition involved, In general, however, the effect is only substantial for ratios of lines with a significant energy difference between them: Fe/Si and Ca/Si are much more likely to be affected than AI/Si or Mg/Si. We apply a Monte-Carlo code to the specific geometry and spectrum of a major NEAR XRS solar flare observation, using an H chondrite composition as the substrate. The seventeen most abundant elements were included in the composition model, from oxygen to titanium.
Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration
NASA Astrophysics Data System (ADS)
Sharma, B. S.; Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.
2014-02-01
Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃1019 W/cm2) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.
Numerical design and analysis of parasitic mode oscillations for 95 GHz gyrotron beam tunnel
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Singh, Udaybir; Yadav, Vivek; Kumar, Anil; Sinha, A. K.
2013-05-01
The beam tunnel, equipped with the high lossy ceramics, is designed for 95 GHz gyrotron. The geometry of the beam tunnel is optimized considering the maximum RF absorption (ideally 100%) and the suppression of parasitic oscillations. The excitation of parasitic modes is a concerning problem for high frequency, high power gyrotrons. Considering the problem of parasitic mode excitation in beam tunnel, a detail analysis is performed for the suppression of these kinds of modes. Trajectory code EGUN and CST Microwave Studio are used for the simulations of electron beam trajectory and electromagnetic analysis, respectively.
Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.
2015-01-01
In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.
NASA Astrophysics Data System (ADS)
Gu, Ming Feng
2018-02-01
FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
Fluorescent image tracking velocimeter
Shaffer, Franklin D.
1994-01-01
A multiple-exposure fluorescent image tracking velocimeter (FITV) detects and measures the motion (trajectory, direction and velocity) of small particles close to light scattering surfaces. The small particles may follow the motion of a carrier medium such as a liquid, gas or multi-phase mixture, allowing the motion of the carrier medium to be observed, measured and recorded. The main components of the FITV include: (1) fluorescent particles; (2) a pulsed fluorescent excitation laser source; (3) an imaging camera; and (4) an image analyzer. FITV uses fluorescing particles excited by visible laser light to enhance particle image detectability near light scattering surfaces. The excitation laser light is filtered out before reaching the imaging camera allowing the fluoresced wavelengths emitted by the particles to be detected and recorded by the camera. FITV employs multiple exposures of a single camera image by pulsing the excitation laser light for producing a series of images of each particle along its trajectory. The time-lapsed image may be used to determine trajectory and velocity and the exposures may be coded to derive directional information.
Atomic Processes for XUV Lasers: Alkali Atoms and Ions
NASA Astrophysics Data System (ADS)
Dimiduk, David Paul
The development of extreme ultraviolet (XUV) lasers is dependent upon knowledge of processes in highly excited atoms. Described here are spectroscopy experiments which have identified and characterized certain autoionizing energy levels in core-excited alkali atoms and ions. Such levels, termed quasi-metastable, have desirable characteristics as upper levels for efficient, powerful XUV lasers. Quasi -metastable levels are among the most intense emission lines in the XUV spectra of core-excited alkalis. Laser experiments utilizing these levels have proved to be useful in characterizing other core-excited levels. Three experiments to study quasi-metastable levels are reported. The first experiment is vacuum ultraviolet (VUV) absorption spectroscopy on the Cs 109 nm transitions using high-resolution laser techniques. This experiment confirms the identification of transitions to a quasi-metastable level, estimates transition oscillator strengths, and estimates the hyperfine splitting of the quasi-metastable level. The second experiment, XUV emission spectroscopy of Ca II and Sr II in a microwave-heated plasma, identifies transitions from quasi-metastable levels in these ions, and provides confirming evidence of their radiative, rather than autoionizing, character. In the third experiment, core-excited Ca II ions are produced by inner-shell photoionization of Ca with soft x-rays from a laser-produced plasma. This preliminary experiment demonstrated a method of creating large numbers of these highly-excited ions for future spectroscopic experiments. Experimental and theoretical evidence suggests the CA II 3{ rm p}^5 3d4s ^4 {rm F}^circ_{3/2 } quasi-metastable level may be directly pumped via a dipole ionization process from the Ca I ground state. The direct process is permitted by J conservation, and occurs due to configuration mixing in the final state and possibly the initial state as well. The experiments identifying and characterizing quasi-metastable levels are compared to calculations using the Hartree-Fock code RCN/RCG. Calculated parameters include energy levels, wavefunctions, and transition rates. Based on an extension of this code, earlier unexplained experiments showing strong two-electron radiative transitions from quasi-metastable levels are now understood.
Multiline Transfer and the Dynamics of Stellar Winds
NASA Technical Reports Server (NTRS)
Abbott, D. C.; Lucy, L. B.
1985-01-01
A Monte Carlo technique for treating multiline transfer in stellar winds is described. With a line list containing many thousands of transitions and with fairly realistic treatments of ionization, excitation and line formation, the resulting code allows the dynamic effects of overlapping lines the investigation of and provides the means to directly synthesize the complete spectrum of a star and its wind. It is found that the computed mass loss rate for data Puppis agrees with the observed rate. The synthesized spectrum of zeta Puppis also agrees with observational data. This confirms that line driving is the dominant acceleration mechanism in this star's wind.
Effects of unconventional breakup modes on incomplete fusion of weakly bound nuclei
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis; Quraishi, Daanish
2018-02-01
The incomplete fusion dynamics of 6Li+209Bi collisions at energies above the Coulomb barrier is investigated. The classical dynamical model implemented in the platypus code is used to understand and quantify the impact of both 6Li resonance states and transfer-triggered breakup modes (involving short-lived projectile-like nuclei such as 8Be and 5Li) on the formation of incomplete fusion products. Model calculations explain the experimental incomplete-fusion excitation function fairly well, indicating that (i) delayed direct breakup of 6Li reduces the incomplete fusion cross sections and (ii) the neutron-stripping channel practically determines those cross sections.
The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.
Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh
2015-07-01
Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.
Special features of isomeric ratios in nuclear reactions induced by various projectile particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.
2016-05-15
Calculations for (p, n) and (α, p3n) reactions were performed with the aid of the TALYS-1.4 code. Reactions in which the mass numbers of target and product nuclei were identical were examined in the range of A = 44–124. Excitation functions were obtained for product nuclei in ground and isomeric states, and isomeric ratios were calculated. The calculated data reflect well the dependence of the isomeric ratios on the projectile type. A comparison of the calculated and experimental data reveals, that, for some nuclei in a high-spin state, the calculated data fall greatly short of their experimental counterparts. These discrepanciesmore » may be due to the presence of high-spin yrast states and rotational bands in these nuclei. Calculations involving various level-density models included in the TALYS-1.4 code with allowance for the enhancement of collective effects do not remove the discrepancies in the majority of cases.« less
ERIC Educational Resources Information Center
Fouse, Adam S.
2013-01-01
Advances in technology now make it possible to capture detailed multimodal data about real-world everyday activity. Researchers have taken advantage of these advances to address questions about activity in more systematic and precise ways. Along with exciting opportunities to record data in ways that were not possible before, there are also…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinnikova, E. I.; Levchenko, V. D.
2008-04-15
Results are presented from full-scale numerical simulations of the excitation of wake waves by a sequence of weakly relativistic laser pulses in a subcritical plasma. Computations were carried out with a 2D3V version of the SUR-CA code that is based on the local-recursive nonlocal-asynchronous algorithm of the particle-in-cell method. The parameters of a train of laser pulses were chosen to correspond to the resonant excitation of the wake field. The curvature of the envelope of the pulses was chosen to depend on the number of the pulse in the train. Numerical simulations showed that there are plane waves during themore » first period of the plasma wave behind the pulse train.« less
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, J.F.; Ng, L.C.
1998-03-17
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, John F.; Ng, Lawrence C.
1998-01-01
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.
StePar: an automatic code for stellar parameter determination
NASA Astrophysics Data System (ADS)
Tabernero, H. M.; González Hernández, J. I.; Montes, D.
2013-05-01
We introduce a new automatic code (StePar) for determinig stellar atmospheric parameters (T_{eff}, log{g}, ξ and [Fe/H]) in an automated way. StePar employs the 2002 version of the MOOG code (Sneden 1973) and a grid of Kurucz ATLAS9 plane-paralell model atmospheres (Kurucz 1993). The atmospheric parameters are obtained from the EWs of 263 Fe I and 36 Fe II lines (obtained from Sousa et al. 2008, A&A, 487, 373) iterating until the excitation and ionization equilibrium are fullfilled. StePar uses a Downhill Simplex method that minimizes a quadratic form composed by the excitation and ionization equilibrium conditions. Atmospheric parameters determined by StePar are independent of the stellar parameters initial-guess for the problem star, therefore we employ the canonical solar values as initial input. StePar can only deal with FGK stars from F6 to K4, also it can not work with fast rotators, veiled spectra, very metal poor stars or Signal to noise ratio below 30. Optionally StePar can operate with MARCS models (Gustafson et al. 2008, A&A, 486, 951) instead of Kurucz ATLAS9 models, additionally Turbospectrum (Alvarez & Plez 1998, A&A, 330, 1109) can replace the MOOG code and play its role during the parameter determination. StePar has been used to determine stellar parameters for some studies (Tabernero et al. 2012, A&A, 547, A13; Wisniewski et al. 2012, AJ, 143, 107). In addition StePar is being used to obtain parameters for FGK stars from the GAIA-ESO Survey.
A Radiation Shielding Code for Spacecraft and Its Validation
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Cucinotta, F. A.; Singleterry, R. C.; Wilson, J. W.; Badavi, F. F.; Badhwar, G. D.; Miller, J.; Zeitlin, C.; Heilbronn, L.; Tripathi, R. K.
2000-01-01
The HZETRN code, which uses a deterministic approach pioneered at NASA Langley Research Center, has been developed over the past decade to evaluate the local radiation fields within sensitive materials (electronic devices and human tissue) on spacecraft in the space environment. The code describes the interactions of shield materials with the incident galactic cosmic rays, trapped protons, or energetic protons from solar particle events in free space and low Earth orbit. The content of incident radiations is modified by atomic and nuclear reactions with the spacecraft and radiation shield materials. High-energy heavy ions are fragmented into less massive reaction products, and reaction products are produced by direct knockout of shield constituents or from de-excitation products. An overview of the computational procedures and database which describe these interactions is given. Validation of the code with recent Monte Carlo benchmarks, and laboratory and flight measurement is also included.
Pazzaglia, Mariella; Galli, Giulia
2015-01-01
The bidirectional flow of perceptual and motor information has recently proven useful as rehabilitative tool for re-building motor memories. We analyzed how the visual-motor approach has been successfully applied in neurorehabilitation, leading to surprisingly rapid and effective improvements in action execution. We proposed that the contribution of multiple sensory channels during treatment enables individuals to predict and optimize motor behavior, having a greater effect than visual input alone. We explored how the state-of-the-art neuroscience techniques show direct evidence that employment of visual-motor approach leads to increased motor cortex excitability and synaptic and cortical map plasticity. This super-additive response to multimodal stimulation may maximize neural plasticity, potentiating the effect of conventional treatment, and will be a valuable approach when it comes to advances in innovative methodologies.
NASA Astrophysics Data System (ADS)
Tsung, Frank; Weaver, J.; Lehmberg, R.
2017-10-01
We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.
NASA Technical Reports Server (NTRS)
Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George
2000-01-01
This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.
Characterization of plasma wake excitation and particle trapping in the nonlinear bubble regime
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2010-11-01
We investigate the excitation of nonlinear wake (bubble) formation by an ultra-short (kpL ˜2), intense (e Alaser/mc^2 > 2) laser pulse interacting with an underdense plasma. A detailed analysis of particle orbits in the wakefield is performed by using reduced analytical models and numerical simulations performed with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO, recently developed at LBNL. In particular we study the requirements for injection and/or trapping of background plasma electrons in the nonlinear wake. Characterization of the phase-space properties of the injected particle bunch will also be discussed.
NERVA dynamic analysis methodology, SPRVIB
NASA Technical Reports Server (NTRS)
Vronay, D. F.
1972-01-01
The general dynamic computer code called SPRVIB (Spring Vib) developed in support of the NERVA (nuclear engine for rocket vehicle application) program is described. Using normal mode techniques, the program computes kinematical responses of a structure caused by various combinations of harmonic and elliptic forcing functions or base excitations. Provision is made for a graphical type of force or base excitation input to the structure. A description of the required input format and a listing of the program are presented, along with several examples illustrating the use of the program. SPRVIB is written in FORTRAN 4 computer language for use on the CDC 6600 or the IBM 360/75 computers.
Investigation of activation cross-sections of deuteron induced reactions on vanadium up to 40 MeV
NASA Astrophysics Data System (ADS)
Tárkányi, F.; Ditrói, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.
2011-08-01
Experimental excitation functions for deuteron induced reactions up to 40 MeV on natural vanadium were measured with the activation method using a stacked foil irradiation technique. From high resolution gamma spectrometry cross-section data for the production of 51Cr, 48V, 48,47,46Sc and 47Ca were determined. Comparisons with the earlier published data are presented and results for values predicted by different theoretical codes are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental data. Depth distribution curves used for thin layer activation (TLA) are also presented.
NASA Astrophysics Data System (ADS)
Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.
2018-04-01
NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.
Influence of fusion dynamics on fission observables: A multidimensional analysis
NASA Astrophysics Data System (ADS)
Schmitt, C.; Mazurek, K.; Nadtochy, P. N.
2018-01-01
An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.
Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenjeres, S.; Hanjalic, K.; Renaudier, S.
2006-12-15
Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000); A. Gailitis et al., Physics of Plasmas 11, 2838 (2004)], consisting of a helical motion of sodium in a long pipe followed by a straight backflow in a surrounding annular passage, which provided adequate conditions for magnetic-field self-excitation. In this paper, a first attempt to simulate computationally the Riga experiment is reported. The velocity and turbulence fields are modeledmore » by a finite-volume Navier-Stokes solver using a Reynolds-averaged-Navier-Stokes turbulence model. The magnetic field is computed by an Adams-Bashforth finite-difference solver. The coupling of the two computational codes, although performed sequentially, provides an improved understanding of the interaction between the fluid velocity and magnetic fields in the saturation regime of the Riga dynamo experiment under realistic working conditions.« less
Ultrasonic level sensors for liquids under high pressure
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.
1986-01-01
An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.
Self-correcting quantum memory with a boundary
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Wootton, James R.; Röthlisberger, Beat; Loss, Daniel
2012-11-01
We study the two-dimensional toric-code Hamiltonian with effective long-range interactions between its anyonic excitations induced by coupling the toric code to external fields. It has been shown that such interactions allow an arbitrary increase in the lifetime of the stored quantum information by making L, the linear size of the memory, larger [Chesi , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.022305 82, 022305 (2010)]. We show that for these systems the choice of boundary conditions (open boundaries as opposed to periodic boundary conditions) is not a mere technicality; the influence of anyons produced at the boundaries becomes in fact dominant for large enough L. This influence can be either beneficial or detrimental. In particular, we study an effective Hamiltonian proposed by Pedrocchi [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115415 83, 115415 (2011)] that describes repulsion between anyons and anyon holes. For this system, we find a lifetime of the stored quantum information that grows exponentially in L2 for both periodic and open boundary conditions, although the exponent in the latter case is found to be less favorable. However, L is upper bounded through the breakdown of the perturbative treatment of the underlying Hamiltonian.
Electron impact excitation of Kr XXVIII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, K.M., E-mail: K.Aggarwal@qub.ac.u; Keenan, F.P.; Lawson, K.D.
2011-05-15
Collision strengths ({Omega}) are calculated for all 6328 transitions among the lowest 113 levels belonging to the 2s{sup 2}2p{sup 5},2s2p{sup 6},2s{sup 2}2p{sup 4}3l,2s2p{sup 5}3l, and 2p{sup 6}3l configurations of fluorine-like krypton, Kr XXVIII, using the Dirac Atomic R-matrix Code. All partial waves with angular momentum J{<=}40 are included, sufficient for the convergence of {Omega} for forbidden transitions. For allowed transitions a top-up is employed to obtain converged values of {Omega} up to an energy of 400 Ryd. Resonances in the thresholds region are resolved on a narrow energy mesh, and results for effective collision strengths (Y) are obtained after averagingmore » the values of {Omega} over a Maxwellian distribution of electron velocities. Values of Y are reported over a wide temperature range below 10{sup 7.1}K, and the accuracy of the results is assessed. In addition, effective collision strengths are listed for the temperature range 7.0{<=}logT{sub e}(K){<=}9.0, obtained from non-resonant collision strengths generated with the FAC code.« less
Multiblock grid generation with automatic zoning
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1995-01-01
An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.
Fission Reaction Event Yield Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona
FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).
A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations
2015-08-01
environment. The model consists of an ultra - wideband , forward-looking radar imaging system, equipped with a multi-static antenna array and mounted on a...of the receiving antenna. 2.2 Huygens Surface Implementation Details The NAFDTD code implements the excitation waveform as a short, ultra - wideband ...
Bidirectional tornado modes on the Joint European Torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandquist, P.; Sharapov, S. E.; Lisak, M.
In discharges on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] with safety factor q(0)<1 and high-power ion cyclotron resonance heating (ICRH), monster sawtooth crashes are preceded by frequency sweeping 'tornado modes' in the toroidal Alfven eigenmode frequency range. A suite of equilibrium and spectral magnetohydrodynamical codes is used for explaining the observed evolution of the tornado mode frequency and for identifying temporal evolution of the safety factor inside the q=1 radius just before sawtooth crashes. In some cases, the tornado modes are observed simultaneously with both positive and negative toroidal modemore » numbers. Hence, a free energy source other than the radial gradient of the energetic ion pressure exciting these modes is sought. The distribution function of the ICRH-accelerated ions is assessed with the SELFO code [J. Hedin et al., Nucl. Fusion 42, 527 (2002)] and energetic particle drive due to the velocity space anisotropy of ICRH-accelerated ions is considered analytically as the possible source for excitation of bidirectional tornado modes.« less
Precision measurement of the electromagnetic dipole strengths in Be11
NASA Astrophysics Data System (ADS)
Kwan, E.; Wu, C. Y.; Summers, N. C.; Hackman, G.; Drake, T. E.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Boston, A. J.; Boston, H. C.; Chester, A.; Close, A.; Cline, D.; Cross, D. S.; Dunlop, R.; Finlay, A.; Garnsworthy, A. B.; Hayes, A. B.; Laffoley, A. T.; Nano, T.; Navrátil, P.; Pearson, C. J.; Pore, J.; Quaglioni, S.; Svensson, C. E.; Starosta, K.; Thompson, I. J.; Voss, P.; Williams, S. J.; Wang, Z. M.
2014-05-01
The electromagnetic dipole strength in Be11 between the bound states has been measured using low-energy projectile Coulomb excitation at bombarding energies of 1.73 and 2.09 MeV/nucleon on a Pt196 target. An electric dipole transition probability B(E1;1/2-→1/2+)=0.102(2) e2fm was determined using the semi-classical code Gosia, and a value of 0.098(4) e2fm was determined using the Extended Continuum Discretized Coupled Channels method with the quantum mechanical code FRESCO. These extracted B(E1) values are consistent with the average value determined by a model-dependent analysis of intermediate energy Coulomb excitation measurements and are approximately 14% lower than that determined by a lifetime measurement. The much-improved precisions of 2% and 4% in the measured B(E1) values between the bound states deduced using Gosia and the Extended Continuum Discretized Coupled Channels method, respectively, compared to the previous accuracy of ˜10% will help in our understanding of and better improve the realistic inter-nucleon interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.
2016-01-15
A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less
Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, H.L.
1981-04-01
Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections whichmore » is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)« less
Internal Wave Generation by Convection
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.
NASA Astrophysics Data System (ADS)
Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi
2018-03-01
This paper describes the design of a new probe forming lens system consisting of a high excitation magnetic quadrupole lens quadruplet that incorporates a single magnetic octupole lens. This system achieves both a high demagnification and a low spherical aberration compared to conventional high excitation systems and is intended for deployment for the Harbin 300 MeV proton microprobe for applications in space science and ion beam therapy. This relative simplicity of the ion optical design to include a single octupole lens minimizes the risks associated with the constructional and operational precision usually needed for the probe forming lens system and this system could also be deployed in microprobe systems that operate with less magnetically rigid ions. The design of the new system is validated with reference to two independent ion optical computer codes.
Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls
NASA Astrophysics Data System (ADS)
Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.
2015-11-01
Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.
Excitation functions for (d,x) reactions on (133)Cs up to Ed=40MeV.
Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Baba, M; Ignatyuk, A V
2016-04-01
In the frame of a systematic study of excitation functions of deuteron induced reactions the excitation functions of the (133)Cs(d,x)(133m,133mg,131mg)Ba,(134,)(132)Cs and (12)(9m)Xe nuclear reactions were measured up to 40MeV deuteron energies by using the stacked foil irradiation technique and γ-ray spectroscopy of activated samples. The results were compared with calculations performed with the theoretical nuclear reaction codes ALICE-IPPE-D, EMPIRE II-D and TALYS calculation listed in the TENDL-2014 library. A moderate agreement was obtained. Based on the integral yields deduced from our measured cross sections, production of (131)Cs via the (133)Cs(d,4n)(131)Ba→(131)Cs reaction and (133)Ba via (133)Cs(d,2n) reactions is discussed in comparison with other charged particle production routes. Copyright © 2016 Elsevier Ltd. All rights reserved.
First measurement with a new setup for low-energy Coulomb excitation studies at INFN LNL
NASA Astrophysics Data System (ADS)
Rocchini, M.; Hadyńska-Klȩk, K.; Nannini, A.; Valiente-Dobón, J. J.; Goasduff, A.; Testov, D.; John, P. R.; Mengoni, D.; Zielińska, M.; Bazzacco, D.; Benzoni, G.; Boso, A.; Cocconi, P.; Chiari, M.; Doherty, D. T.; Galtarossa, F.; Jaworski, G.; Komorowska, M.; Matejska-Minda, M.; Melon, B.; Menegazzo, R.; Napiorkowski, P.; Napoli, D. R.; Ottanelli, M.; Perego, A.; Ramina, L.; Rampazzo, M.; Recchia, F.; Riccetto, S.; Rosso, D.; Siciliano, M.; Sona, P.
2017-07-01
A new segmented particle detector, SPIDER, has been designed to be used as an ancillary device with the GALILEO γ-ray spectrometer, as well as with other multi-detector γ-ray arrays that will be available at LNL in the future (e.g. AGATA). To commission the SPIDER-GALILEO experimental setup, a multi-step Coulomb excitation experiment was carried out with a 240 MeV beam of 66Zn produced by the Tandem-XTU accelerator at INFN Laboratori Nazionali di Legnaro. The measured particle and γ-ray spectra are compared with the results of detailed GEANT4 simulations which used the Coulomb excitation cross sections, estimated with the computer code GOSIA, as an input. The preliminary results indicate that precise transition probabilities will be obtained which are essential for solving discrepancies reported in the literature for this nucleus.
Theoretical studies of solar oscillations
NASA Technical Reports Server (NTRS)
Goldreich, P.
1980-01-01
Possible sources for the excitation of the solar 5 minute oscillations were investigated and a linear non-adiabatic stability code was applied to a preliminary study of the solar g-modes with periods near 160 minutes. Although no definitive conclusions concerning the excitation of these modes were reached, the excitation of the 5 minute oscillations by turbulent stresses in the convection zone remains a viable possibility. Theoretical calculations do not offer much support for the identification of the 160 minute global solar oscillation (reported by several independent observers) as a solar g-mode. A significant advance was made in attempting to reconcile mixing-length theory with the results of the calculations of linearly unstable normal modes. Calculations show that in a convective envelope prepared according to mixing length theory, the only linearly unstable modes are those which correspond to the turbulent eddies which are the basic element of the heuristic mixing length theory.
SPITZER IRAC COLOR DIAGNOSTICS FOR EXTENDED EMISSION IN STAR-FORMING REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ybarra, Jason E.; Tapia, Mauricio; Román-Zúñiga, Carlos G.
2014-10-20
The infrared data from the Spitzer Space Telescope are an invaluable tool for identifying physical processes in star formation. In this study, we calculate the Infrared Array Camera (IRAC) color space of UV fluorescent H{sub 2} and polycyclic aromatic hydrocarbon (PAH) emission in photodissociation regions (PDRs) using the Cloudy code with PAH opacities from Draine and Li. We create a set of color diagnostics that can be applied to study the structure of PDRs and to distinguish between FUV-excited and shock-excited H{sub 2} emission. To test this method, we apply these diagnostics to Spitzer IRAC data of NGC 2316. Our analysismore » of the structure of the PDR is consistent with previous studies of the region. In addition to UV excited emission, we identify shocked gas that may be part of an outflow originating from the cluster.« less
Mokri, Yasamin; Worland, Kate; Ford, Mark; Rajan, Ramesh
2015-01-01
Humans can accurately localize sounds even in unfavourable signal-to-noise conditions. To investigate the neural mechanisms underlying this, we studied the effect of background wide-band noise on neural sensitivity to variations in interaural level difference (ILD), the predominant cue for sound localization in azimuth for high-frequency sounds, at the characteristic frequency of cells in rat inferior colliculus (IC). Binaural noise at high levels generally resulted in suppression of responses (55.8%), but at lower levels resulted in enhancement (34.8%) as well as suppression (30.3%). When recording conditions permitted, we then examined if any binaural noise effects were related to selective noise effects at each of the two ears, which we interpreted in light of well-known differences in input type (excitation and inhibition) from each ear shaping particular forms of ILD sensitivity in the IC. At high signal-to-noise ratios (SNR), in most ILD functions (41%), the effect of background noise appeared to be due to effects on inputs from both ears, while for a large percentage (35.8%) appeared to be accounted for by effects on excitatory input. However, as SNR decreased, change in excitation became the dominant contributor to the change due to binaural background noise (63.6%). These novel findings shed light on the IC neural mechanisms for sound localization in the presence of continuous background noise. They also suggest that some effects of background noise on encoding of sound location reported to be emergent in upstream auditory areas can also be observed at the level of the midbrain. PMID:25865218
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, J.F.; Ng, L.C.
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.
Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less
Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer
Saus, Ester; Brunet-Vega, Anna; Iraola-Guzmán, Susana; Pegueroles, Cinta; Gabaldón, Toni; Pericay, Carles
2016-01-01
Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression. PMID:27148353
NASA Astrophysics Data System (ADS)
Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.
2017-08-01
Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.; ...
2017-10-01
This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Amy N.; Wendt, Fabian; Jonkman, Jason M.
This paper summarizes the findings from Phase II of the Offshore Code Comparison, Collaboration, Continued, with Correlation project. The project is run under the International Energy Agency Wind Research Task 30, and is focused on validating the tools used for modeling offshore wind systems through the comparison of simulated responses of select system designs to physical test data. Validation activities such as these lead to improvement of offshore wind modeling tools, which will enable the development of more innovative and cost-effective offshore wind designs. For Phase II of the project, numerical models of the DeepCwind floating semisubmersible wind system weremore » validated using measurement data from a 1/50th-scale validation campaign performed at the Maritime Research Institute Netherlands offshore wave basin. Validation of the models was performed by comparing the calculated ultimate and fatigue loads for eight different wave-only and combined wind/wave test cases against the measured data, after calibration was performed using free-decay, wind-only, and wave-only tests. The results show a decent estimation of both the ultimate and fatigue loads for the simulated results, but with a fairly consistent underestimation in the tower and upwind mooring line loads that can be attributed to an underestimation of wave-excitation forces outside the linear wave-excitation region, and the presence of broadband frequency excitation in the experimental measurements from wind. Participant results showed varied agreement with the experimental measurements based on the modeling approach used. Modeling attributes that enabled better agreement included: the use of a dynamic mooring model; wave stretching, or some other hydrodynamic modeling approach that excites frequencies outside the linear wave region; nonlinear wave kinematics models; and unsteady aerodynamics models. Also, it was observed that a Morison-only hydrodynamic modeling approach could create excessive pitch excitation and resulting tower loads in some frequency bands.« less
Influence of vibrational relaxation on perturbations in a shock layer on a plate
NASA Astrophysics Data System (ADS)
Kirilovskiy, S. V.; Maslov, A. A.; Poplavskaya, T. V.; Tsyryul'nikov, I. S.
2015-05-01
The influence of excitation of molecular vibrational degrees of freedom on the mean flow and perturbation development in a hypersonic (M = 6-14) viscous shock layer is studied. The layer originates on a plate placed in a flow of air, carbon dioxide, or their mixture at high stagnation temperatures (2000-3000 K). The mean flow and pressure pulsation on the surface of the plate are measured in an IT-302M pulsed wind tunnel (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences). Numerical simulation is carried out in terms of a model of a thermally perfect gas using the ANSYS Fluent program package based on solving nonstationary two-dimensional Navier-Stokes equations. External flow perturbations are introduced into the computational domain in the form of plane monochromatic acoustic waves using UDF modules built in the computational code. It is shown that the excitation of vibrational degrees of freedom in carbon dioxide molecules considerably influences the position of the head wave and intensifies perturbations in contrast to air in which the fraction of vibrationally excited molecules is low at the same parameters of the oncoming low. The influence of the excitation of vibrational degrees of freedom is studied both for equilibrium gas and for a vibrationally nonequilibrium gas. Nonequilibrium vibrational degrees of freedom are simulated using a two-temperature model of relaxation flows in which the time variation of the vibrational energy is described by the Landau-Teller equation with regard to a finite time of energy exchange between vibrational and translational-rotational degrees of freedom of molecules. It is found that the vibrational nonequilibrium has a damping effect on perturbations.
Girls Build Excitement for Math from Scratch
ERIC Educational Resources Information Center
Amador, Julie M.; Soule, Terence
2015-01-01
By 2020, five of the top ten in-demand jobs in the United States will be in information technology (Moeller 2012). Companies across the nation are seeking a new type of employee: one who is computer savvy and who is familiar with computer coding, data, mathematics, and augmented reality (Leber 2013). Recent reports indicate that, although students…
NASA Technical Reports Server (NTRS)
Harrison, Phil; LaVerde, Bruce; Teague,David
2009-01-01
Statistical Energy Analysis (SEA) response has been fairly well anchored to test observations for Diffuse Acoustic Field (DAF) loading by others. Meanwhile, not many examples can be found in the literature anchoring the SEA vehicle panel response results to Turbulent Boundary Layer (TBL) fluctuating pressure excitations. This deficiency is especially true for supersonic trajectories such as those required by this nation s launch vehicles. Response and excitation data from vehicle flight measurements gathered during the development flight era of the Space Shuttle have been used in a trial to assess the sensitivity of response analysis to certain known and unknown parameters of the flight. This assessment compares vibration response predictions for TBL excitations produced by the SEA tool to flight measurements. A secondary, but perhaps more important objective, is to provide more clarity concerning the accuracy and conservatism that can be expected from response estimates to TBL-excited vehicle models in SEA. What range of parameters must be included in such an analysis in order to land on the conservative side in response predictions? What is the variability produced in the results with changes in these parameters? The TBL fluid structure loading model used for this study is provided from the SEA module of the commercial code VA One.
Aslam, M N; Sudár, S; Hussain, M; Malik, A A; Shah, H A; Qaim, S M
2010-09-01
Cross-section data for the production of medically important radionuclide (124)I via five proton and deuteron induced reactions on enriched tellurium isotopes were evaluated. The nuclear model codes, STAPRE, EMPIRE and TALYS, were used for consistency checks of the experimental data. Recommended excitation functions were derived using a well-defined statistical procedure. Therefrom integral yields were calculated. The various production routes of (124)I were compared. Presently the (124)Te(p,n)(124)I reaction is the method of choice; however, the (125)Te(p,2n)(124)I reaction also appears to have great potential.
Excitation function of alpha-particle-induced reactions on natNi from threshold to 44 MeV
NASA Astrophysics Data System (ADS)
Uddin, M. S.; Kim, K. S.; Nadeem, M.; Sudár, S.; Kim, G. N.
2017-05-01
Excitation functions of the natNi(α,x)62,63,65Zn, natNi(α,x)56,57Ni and natNi(α,x)56,57,58m+gCo reactions were measured from the respective thresholds to 44MeV using the stacked-foil activation technique. The tests for the beam characterization are described. The radioactivity was measured using HPGe γ-ray detectors. Theoretical calculations on α-particles-induced reactions on natNi were performed using the nuclear model code TALYS-1.8. A few results are new, the others strengthen the database. Our experimental data were compared with results of nuclear model calculations and described the reaction mechanism.
Coherence and linewidth studies of a 4-nm high power FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, W.M.; Sessler, A.M.; Scharlemann, E.T.
Recently the SSRL/SLAC and its collaborators elsewhere have considered the merits of a 2 to 4-nm high power FEL utilizing the SLAC linac electron beam. The FEL would be a single pass amplifier excited by spontaneous emission rather than an oscillator, in order to eliminate the need for a soft X-ray resonant cavity. We have used GINGER, a multifrequency 2D FEL simulation code, to study the expected linewidth and coherence properties of the FEL, in both the exponential and saturated gain regimes. We present results concerning the effective shot noise input power and mode shape, the expected subpercent output linemore » widths, photon flux, and the field temporal and spatial correlation functions. We also discuss the effects of tapering the wiggler upon the output power and line width.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasrabadi, M. N., E-mail: mnnasrabadi@ast.ui.ac.ir; Sepiani, M.
2015-03-30
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Astrophysics Data System (ADS)
Nasrabadi, M. N.; Sepiani, M.
2015-03-01
Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE & LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.
NASA Astrophysics Data System (ADS)
Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire
2017-02-01
In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.
Calculation and Correlation of the Unsteady Flowfield in a High Pressure Turbine
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Liu, Jong S.; Panovsky, Josef; Keith, Theo G., Jr.; Mehmed, Oral
2002-01-01
Forced vibrations in turbomachinery components can cause blades to crack or fail due to high-cycle fatigue. Such forced response problems will become more pronounced in newer engines with higher pressure ratios and smaller axial gap between blade rows. An accurate numerical prediction of the unsteady aerodynamics phenomena that cause resonant forced vibrations is increasingly important to designers. Validation of the computational fluid dynamics (CFD) codes used to model the unsteady aerodynamic excitations is necessary before these codes can be used with confidence. Recently published benchmark data, including unsteady pressures and vibratory strains, for a high-pressure turbine stage makes such code validation possible. In the present work, a three dimensional, unsteady, multi blade-row, Reynolds-Averaged Navier Stokes code is applied to a turbine stage that was recently tested in a short duration test facility. Two configurations with three operating conditions corresponding to modes 2, 3, and 4 crossings on the Campbell diagram are analyzed. Unsteady pressures on the rotor surface are compared with data.
Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics.
Dos Santos, Serge; Prevorovsky, Zdenek
2011-08-01
Human tooth imaging sonography is investigated experimentally with an acousto-optic noncoupling set-up based on the chirp-coded nonlinear time reversal acoustic concept. The complexity of the tooth internal structure (enamel-dentine interface, cracks between internal tubules) is analyzed by adapting the nonlinear elastic wave spectroscopy (NEWS) with the objective of the tomography of damage. Optimization of excitations using intrinsic symmetries, such as time reversal (TR) invariance, reciprocity, correlation properties are then proposed and implemented experimentally. The proposed medical application of this TR-NEWS approach is implemented on a third molar human tooth and constitutes an alternative of noncoupling echodentography techniques. A 10 MHz bandwidth ultrasonic instrumentation has been developed including a laser vibrometer and a 20 MHz contact piezoelectric transducer. The calibrated chirp-coded TR-NEWS imaging of the tooth is obtained using symmetrized excitations, pre- and post-signal processing, and the highly sensitive 14 bit resolution TR-NEWS instrumentation previously calibrated. Nonlinear signature coming from the symmetry properties is observed experimentally in the tooth using this bi-modal TR-NEWS imaging after and before the focusing induced by the time-compression process. The TR-NEWS polar B-scan of the tooth is described and suggested as a potential application for modern echodentography. It constitutes the basis of the self-consistent harmonic imaging sonography for monitoring cracks propagation in the dentine, responsible of human tooth structural health. Copyright © 2011 Elsevier B.V. All rights reserved.
Li, Junli; Li, Chunyan; Qiu, Rui; Yan, Congchong; Xie, Wenzhang; Wu, Zhen; Zeng, Zhi; Tung, Chuanjong
2015-09-01
The method of Monte Carlo simulation is a powerful tool to investigate the details of radiation biological damage at the molecular level. In this paper, a Monte Carlo code called NASIC (Nanodosimetry Monte Carlo Simulation Code) was developed. It includes physical module, pre-chemical module, chemical module, geometric module and DNA damage module. The physical module can simulate physical tracks of low-energy electrons in the liquid water event-by-event. More than one set of inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with different optical data sets and dispersion models. In the pre-chemical module, the ionised and excited water molecules undergo dissociation processes. In the chemical module, the produced radiolytic chemical species diffuse and react. In the geometric module, an atomic model of 46 chromatin fibres in a spherical nucleus of human lymphocyte was established. In the DNA damage module, the direct damages induced by the energy depositions of the electrons and the indirect damages induced by the radiolytic chemical species were calculated. The parameters should be adjusted to make the simulation results be agreed with the experimental results. In this paper, the influence study of the inelastic cross sections and vibrational excitation reaction on the parameters and the DNA strand break yields were studied. Further work of NASIC is underway. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics
NASA Astrophysics Data System (ADS)
Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.
2017-10-01
We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the
Electron impact excitation of Kr XXXII
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.
2009-09-01
Collision strengths (Ω) have been calculated for all 7750 transitions among the lowest 125 levels belonging to the 2s2p,2s2p,2p,2s3ℓ,2s2p3ℓ, and 2p3ℓ configurations of boron-like krypton, Kr XXXII, for which the Dirac Atomic R-matrix Code has been adopted. All partial waves with angular momentum J⩽40 have been included, sufficient for the convergence of Ω for forbidden transitions. For allowed transitions, a top-up has been included in order to obtain converged values of Ω up to an energy of 500 Ryd. Resonances in the thresholds region have been resolved in a narrow energy mesh, and results for effective collision strengths (ϒ) have been obtained after averaging the values of Ω over a Maxwellian distribution of electron velocities. Values of ϒ are reported over a wide temperature range below 107.3K, and the accuracy of the results is assessed. Values of ϒ are also listed in the temperature range 7.3⩽logTe(K)⩽9.0, obtained from the nonresonant collision strengths from the Flexible Atomic Code.
Information Theory, Inference and Learning Algorithms
NASA Astrophysics Data System (ADS)
Mackay, David J. C.
2003-10-01
Information theory and inference, often taught separately, are here united in one entertaining textbook. These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Deformed quantum double realization of the toric code and beyond
NASA Astrophysics Data System (ADS)
Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo
2016-09-01
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
Orestes Kinetics Model for the Electra KrF Laser
NASA Astrophysics Data System (ADS)
Giuliani, J. L.; Kepple, P.; Lehmberg, R. H.; Myers, M. C.; Sethian, J. D.; Petrov, G.; Wolford, M.; Hegeler, F.
2003-10-01
Orestes is a first principles simulation code for the electron deposition, plasma chemistry, laser transport, and amplified spontaneous emission (ASE) in an e-beam pumped KrF laser. Orestes has been benchmarked against results from Nike at NRL and the Keio laser facility. The modeling tasks are to support ongoing oscillator experiments on the Electra laser ( 500 J), to predict performance of Electra as an amplifier, and to develop scaling relations for larger systems such as envisioned for an inertial fusion energy power plant. In Orestes the energy deposition of the primary beam electrons is assumed to be spatially uniform, but the excitation and ionization of the Ar/Kr/F2 target gas by the secondary electrons is determined from the energy distribution function as calculated by a Boltzmann code. The subsequent plasma kinetics of 23 species subject to over 100 reactions is followed with 1-D spatial resolution along the lasing axis. In addition, the vibrational relaxation among excited electronic states of the KrF molecule are included in the kinetics since lasing at 248 nm can occur from several vibrational lines of the B state. Transport of the lasing photons is solved by the method of characteristics. The time dependent ASE is calculated in 3-D using a ``local look-back'' scheme with discrete ordinates and includes specular reflection off the side walls and rear mirror. Gain narrowing is treated by multi-frequency transport of the ASE. Calculations for the gain, saturation intensity, extraction efficiency, and laser output from the Orestes model will be presented and compared with available data from Electra operated as an oscillator. Potential implications for the difference in optimal F2 concentration will be discussed along with the effects of window transmissivity at 248 nm.
Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.
2011-07-15
In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8)more » are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement. - Highlights: {yields} Radiative and collisional atomic data are presented for the lowest 241 fine-structure levels in Ne-like Se. {yields} Calculations are performed using the FAC package. {yields} Resonances enhance significantly a large amount of transitions. {yields} Radiative damping effects are significant for many transitions. {yields} Close-coupling effects are small in Ne-like Se.« less
Classifying the Quantum Phases of Matter
2015-01-01
Kim related entanglement entropy to topological storage of quantum information [8]. Michalakis et al. showed that a particle-like excitation spectrum...Perturbative analysis of topological entanglement entropy from conditional independence, Phys. Rev. B 86, 254116 (2012), arXiv:1210.2360. [3] I. Kim...symmetries or long-range entanglement ), (2) elucidating the properties of three-dimensional quantum codes (in particular those which admit no string-like
Theoretical Interpretation of the Fluorescence Spectra of Toluene and P- Cresol
1994-07-01
NUMBER OF PAGES Toluene Geometrica 25 p-Cresol Fluorescence Is. PRICE CODE Spectra 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 19...State Frequencies of Toluene ................ 19 6 Computed and exp" Ground State Frequencies of p-Cresol ............... 20 7 Correction Factors for...Computed Ground State Vibrational Frequencies ....... 21 8 Computed and Corrected Excited State Frequencies of Toluene ............. 22 9 Computed and
Multiple tag labeling method for DNA sequencing
Mathies, Richard A.; Huang, Xiaohua C.; Quesada, Mark A.
1995-01-01
A DNA sequencing method described which uses single lane or channel electrophoresis. Sequencing fragments are separated in said lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radio-isotope labels.
High-frequency Pulse-compression Ultrasound Imaging with an Annular Array
NASA Astrophysics Data System (ADS)
Mamou, J.; Ketterling, J. A.; Silverman, R. H.
High-frequency ultrasound (HFU) allows fine-resolution imaging at the expense of limited depth-of-field (DOF) and shallow acoustic penetration depth. Coded-excitation imaging permits a significant increase in the signal-to-noise ratio (SNR) and therefore, the acoustic penetration depth. A 17-MHz, five-element annular array with a focal length of 31 mm and a total aperture of 10 mm was fabricated using a 25-μm thick piezopolymer membrane. An optimized 8-μs linear chirp spanning 6.5-32 MHz was used to excite the transducer. After data acquisition, the received signals were linearly filtered by a compression filter and synthetically focused. To compare the chirp-array imaging method with conventional impulse imaging in terms of resolution, a 25-μm wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. A tissue-mimicking phantom containing 10-μm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex-vivo ophthalmic images were formed and chirp-coded images showed features that were not visible in conventional impulse images.
Global modeling of thermospheric airglow in the far ultraviolet
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.
2017-07-01
The Global Airglow (GLOW) model has been updated and extended to calculate thermospheric emissions in the far ultraviolet, including sources from daytime photoelectron-driven processes, nighttime recombination radiation, and auroral excitation. It can be run using inputs from empirical models of the neutral atmosphere and ionosphere or from numerical general circulation models of the coupled ionosphere-thermosphere system. It uses a solar flux module, photoelectron generation routine, and the Nagy-Banks two-stream electron transport algorithm to simultaneously handle energetic electron distributions from photon and auroral electron sources. It contains an ion-neutral chemistry module that calculates excited and ionized species densities and the resulting airglow volume emission rates. This paper describes the inputs, algorithms, and code structure of the model and demonstrates example outputs for daytime and auroral cases. Simulations of far ultraviolet emissions by the atomic oxygen doublet at 135.6 nm and the molecular nitrogen Lyman-Birge-Hopfield bands, as viewed from geostationary orbit, are shown, and model calculations are compared to limb-scan observations by the Global Ultraviolet Imager on the TIMED satellite. The GLOW model code is provided to the community through an open-source academic research license.
Rotationally Adaptive Flight Test Surface
NASA Technical Reports Server (NTRS)
Barrett, Ron
1999-01-01
Research on a new design of flutter exciter vane using adaptive materials was conducted. This novel design is based on all-moving aerodynamic surface technology and consists of a structurally stiff main spar, a series of piezoelectric actuator elements and an aerodynamic shell which is pivoted around the main spar. The work was built upon the current missile-type all-moving surface designs and change them so they are better suited for flutter excitation through the transonic flight regime. The first portion of research will be centered on aerodynamic and structural modeling of the system. USAF DatCom and vortex lattice codes was used to capture the fundamental aerodynamics of the vane. Finite element codes and laminated plate theory and virtual work analyses will be used to structurally model the aerodynamic vane and wing tip. Following the basic modeling, a flutter test vane was designed. Each component within the structure was designed to meet the design loads. After the design loads are met, then the deflections will be maximized and the internal structure will be laid out. In addition to the structure, a basic electrical control network will be designed which will be capable of driving a scaled exciter vane. The third and final stage of main investigation involved the fabrication of a 1/4 scale vane. This scaled vane was used to verify kinematics and structural mechanics theories on all-moving actuation. Following assembly, a series of bench tests was conducted to determine frequency response, electrical characteristics, mechanical and kinematic properties. Test results indicate peak-to-peak deflections of 1.1 deg with a corner frequency of just over 130 Hz.
Krystal, John H; Anticevic, Alan; Yang, Genevieve J; Dragoi, George; Driesen, Naomi R; Wang, Xiao-Jing; Murray, John D
2017-05-15
The functional optimization of neural ensembles is central to human higher cognitive functions. When the functions through which neural activity is tuned fail to develop or break down, symptoms and cognitive impairments arise. This review considers ways in which disturbances in the balance of excitation and inhibition might develop and be expressed in cortical networks in association with schizophrenia. This presentation is framed within a developmental perspective that begins with disturbances in glutamate synaptic development in utero. It considers developmental correlates and consequences, including compensatory mechanisms that increase intrinsic excitability or reduce inhibitory tone. It also considers the possibility that these homeostatic increases in excitability have potential negative functional and structural consequences. These negative functional consequences of disinhibition may include reduced working memory-related cortical activity associated with the downslope of the "inverted-U" input-output curve, impaired spatial tuning of neural activity and impaired sparse coding of information, and deficits in the temporal tuning of neural activity and its implication for neural codes. The review concludes by considering the functional significance of noisy activity for neural network function. The presentation draws on computational neuroscience and pharmacologic and genetic studies in animals and humans, particularly those involving N-methyl-D-aspartate glutamate receptor antagonists, to illustrate principles of network regulation that give rise to features of neural dysfunction associated with schizophrenia. While this presentation focuses on schizophrenia, the general principles outlined in the review may have broad implications for considering disturbances in the regulation of neural ensembles in psychiatric disorders. Published by Elsevier Inc.
Investigation of Infra-red and Nonequilibrium Air Radiation
NASA Technical Reports Server (NTRS)
Kruger, Charles H.; Laux, Christophe O.
1994-01-01
This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.
Optimization of an electrokinetic mixer for microfluidic applications.
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P J
2012-06-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly.
Optimization of an electrokinetic mixer for microfluidic applications
Bockelmann, Hendryk; Heuveline, Vincent; Barz, Dominik P. J.
2012-01-01
This work is concerned with the investigation of the concentration fields in an electrokinetic micromixer and its optimization in order to achieve high mixing rates. The mixing concept is based on the combination of an alternating electrical excitation applied to a pressure-driven base flow in a meandering microchannel geometry. The electrical excitation induces a secondary electrokinetic velocity component, which results in a complex flow field within the meander bends. A mathematical model describing the physicochemical phenomena present within the micromixer is implemented in an in-house finite-element-method code. We first perform simulations comparable to experiments concerned with the investigation of the flow field in the bends. The comparison of the complex flow topology found in simulation and experiment reveals excellent agreement. Hence, the validated model and numerical schemes are employed for a numerical optimization of the micromixer performance. In detail, we optimize the secondary electrokinetic flow by finding the best electrical excitation parameters, i.e., frequency and amplitude, for a given waveform. Two optimized electrical excitations featuring a discrete and a continuous waveform are discussed with respect to characteristic time scales of our mixing problem. The results demonstrate that the micromixer is able to achieve high mixing degrees very rapidly. PMID:22712034
NASA Astrophysics Data System (ADS)
Burgholzer, P.; Motz, C.; Lang, O.; Berer, T.; Huemer, M.
2018-02-01
In photoacoustic imaging, optically generated acoustic waves transport the information about embedded structures to the sample surface. Usually, short laser pulses are used for the acoustic excitation. Acoustic attenuation increases for higher frequencies, which reduces the bandwidth and limits the spatial resolution. One could think of more efficient waveforms than single short pulses, such as pseudo noise codes, chirped, or harmonic excitation, which could enable a higher information-transfer from the samples interior to its surface by acoustic waves. We used a linear state space model to discretize the wave equation, such as the Stoke's equation, but this method could be used for any other linear wave equation. Linear estimators and a non-linear function inversion were applied to the measured surface data, for onedimensional image reconstruction. The proposed estimation method allows optimizing the temporal modulation of the excitation laser such that the accuracy and spatial resolution of the reconstructed image is maximized. We have restricted ourselves to one-dimensional models, as for higher dimensions the one-dimensional reconstruction, which corresponds to the acoustic wave without attenuation, can be used as input for any ultrasound imaging method, such as back-projection or time-reversal method.
Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.; ...
2017-07-05
Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less
NASA Astrophysics Data System (ADS)
Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.
2018-07-01
The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.
Hidden multiparticle excitation in a weakly interacting Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Watabe, Shohei
2018-03-01
We investigate multiparticle excitation effect on a collective density excitation as well as a single-particle excitation in a weakly interacting Bose-Einstein condensate (BEC). We find that although the weakly interacting BEC offers weak multiparticle excitation spectrum at low temperatures, this multiparticle excitation effect may not remain hidden, but emerges as bimodality in the density response function through the single-particle excitation. Identification of spectra in the BEC between the single-particle excitation and the density excitation is also assessed at nonzero temperatures, which has been known to be unique nature in the BEC at absolute zero temperature.
Dielectronic recombination of lowly charged tungsten ions Wq+(q = 5 - 10)
NASA Astrophysics Data System (ADS)
Kwon, Duck-Hee
2018-03-01
Dielectronic recombination (DR) rate coefficients for the ground levels of low ionization state Wq+ (q = 5 - 10) ions have been obtained by an ab-inito level-by-level calculation using the flexible atomic code (FAC) based on relativistic jj coupling scheme and independent process, isolated resonance, distorted wave approximation. The radiative transition calculation in the original FAC has been adapted into parallel programming for time effective dealing with so many resonance levels of the complex open 4f, 5p, or 5d-shell structure ion. Core excitations Δnc = 0 , 1 of 4f, 5p, and 5d (W5+), Δnc = 2 of 4f, and Δnc = 0 of 4d (W7+), and 5s (W8+) are included to the total DR rate coefficient. The core excitations Δnc = 0 , 5p → 5l and Δnc = 1 , 4f → 5l mainly contribute to the total DR rate coefficients. The strong resonances involved in the DR are analyzed and the total DR rate coefficients are compared with available previous ab-initio predictions and with ADAS data by a simple semiempirical formula.
Optimization of Antenna Current Feeding for the Alfvén Eigenmodes Active Diagnostic System of JET
NASA Astrophysics Data System (ADS)
Albarracin Manrique, Marcos A.; Ruchko, L.; Pires, C. J. A.; Galvão, R. M. O.; Elfimov, A. G.
2018-04-01
The possibility of exploring proper phasing of the feeding currents in the existing antenna of the Alfvén Eigenmodes Active Diagnostic system of JET, to excite pure toroidal spectra of Toroidal Alfvén Eigenmodes, is numerically investigated. Special attention is given to the actual perturbed fields excited in the plasma, which are calculated self-consistently using the antenna version of the CASTOR code. It is found that due to the close spacing of the JET antenna modules and quasi degeneracy of modes with medium to high values of the toroidal mode number n, although a proper choice of the phasing of the feeding currents of the antenna modules indeed leads to an increase of the perturbed fields of the selected mode, modes with nearby values of n are also excited with large amplitudes, so that a scheme to proper select the detected modes remains necessary. A scheme using different antenna position distribution is proposed to achieve successful optimization.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Cartwright, D. C.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Bottema, M. J.
2004-09-01
We report on the extension of our Statistical Equlibrium Code (SEC) to determine the electronic-vibrational behaviour of O2 in the thermosphere, under night-time auroral conditions. This work was necessitated by the inadequacies in previous studies where the electron-impact cross section data bases employed have been superceeded, and/or direct excitation of states via electron impact has been neglected. Here we use the latest electron-impact cross section data bases to present the first electron-impact excitation rates for the 8 lowest lying electronic states of O_2. We then use these rates in conjunction with the most accurately available Franck-Condon factors, transition probabilities and quenching rates to determine the excited state populations. Note that predissociation, which is important for O_2, is also included in our model. We present radiative rates for various transitions and compare these results with those from other models and experimental rocket measurements.
Watching excitons move: the time-dependent transition density matrix
NASA Astrophysics Data System (ADS)
Ullrich, Carsten
2012-02-01
Time-dependent density-functional theory allows one to calculate excitation energies and the associated transition densities in principle exactly. The transition density matrix (TDM) provides additional information on electron-hole localization and coherence of specific excitations of the many-body system. We have extended the TDM concept into the real-time domain in order to visualize the excited-state dynamics in conjugated molecules. The time-dependent TDM is defined as an implicit density functional, and can be approximately obtained from the time-dependent Kohn-Sham orbitals. The quality of this approximation is assessed in simple model systems. A computational scheme for real molecular systems is presented: the time-dependent Kohn-Sham equations are solved with the OCTOPUS code and the time-dependent Kohn-Sham TDM is calculated using a spatial partitioning scheme. The method is applied to show in real time how locally created electron-hole pairs spread out over neighboring conjugated molecular chains. The coupling mechanism, electron-hole coherence, and the possibility of charge separation are discussed.
Quenching from highly-excited SiO rotational levels due to H2 collision
NASA Astrophysics Data System (ADS)
Stancil, Phillip C.; Belayneh, Michael; Wan, Yier; Yang, Benhui H.
2018-06-01
Using a full quantum-mechanical close-coupling approach on a 4D rigid-rotor potential energy surface (PES), we performed scattering calculations for highly-excited rotational levels (j=6-10) of SiO for interactions with H2 for the first time. Emission lines from highly excited SiO rotational levels are observed in a variety of environments including outflows from AGB stars. However, explicit collisional data are lacking for H2 colliders, except for recent work from our group for j=1-5. Here we extend that work using a hybrid OpenMP/MPI scattering code and a PES computed at the CCSD(T)-F12b level of theory. The H2 and SiO bond lengths are fixed at their equilibrium values. The current results will allow for non-local thermodynamic models of SiO rotational emission from AGB stars. This work was funded by NASA grant NNX16AF09G.
Real-time electron dynamics for massively parallel excited-state simulations
NASA Astrophysics Data System (ADS)
Andrade, Xavier
The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.
Influence of primary fragment excitation energy and spin distributions on fission observables
NASA Astrophysics Data System (ADS)
Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre
2018-03-01
Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.
Simplified Thermo-Chemical Modelling For Hypersonic Flow
NASA Astrophysics Data System (ADS)
Sancho, Jorge; Alvarez, Paula; Gonzalez, Ezequiel; Rodriguez, Manuel
2011-05-01
Hypersonic flows are connected with high temperatures, generally associated with strong shock waves that appear in such flows. At high temperatures vibrational degrees of freedom of the molecules may become excited, the molecules may dissociate into atoms, the molecules or free atoms may ionize, and molecular or ionic species, unimportant at lower temperatures, may be formed. In order to take into account these effects, a chemical model is needed, but this model should be simplified in order to be handled by a CFD code, but with a sufficient precision to take into account the physics more important. This work is related to a chemical non-equilibrium model validation, implemented into a commercial CFD code, in order to obtain the flow field around bodies in hypersonic flow. The selected non-equilibrium model is composed of seven species and six direct reactions together with their inverse. The commercial CFD code where the non- equilibrium model has been implemented is FLUENT. For the validation, the X38/Sphynx Mach 20 case is rebuilt on a reduced geometry, including the 1/3 Lref forebody. This case has been run in laminar regime, non catalytic wall and with radiative equilibrium wall temperature. The validated non-equilibrium model is applied to the EXPERT (European Experimental Re-entry Test-bed) vehicle at a specified trajectory point (Mach number 14). This case has been run also in laminar regime, non catalytic wall and with radiative equilibrium wall temperature.
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
[Conversion of sound into auditory nerve action potentials].
Encke, J; Kreh, J; Völk, F; Hemmert, W
2016-11-01
Outer hair cells play a major role in the hearing process: they amplify the motion of the basilar membrane up to a 1000-fold and at the same time sharpen the excitation patterns. These patterns are converted by inner hair cells into action potentials of the auditory nerve. Outer hair cells are delicate structures and easily damaged, e. g., by overexposure to noise. Hearing aids can amplify the amplitude of the excitation patterns, but they cannot restore their degraded frequency selectivity. Noise overexposure also leads to delayed degeneration of auditory nerve fibers, particularly those with low a spontaneous rate, which are important for the coding of sound in noise. However, this loss cannot be diagnosed by pure-tone audiometry.
Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range
NASA Astrophysics Data System (ADS)
Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.
2016-08-01
Experimental excitation functions for proton induced reactions on natural vanadium in the 37-65 MeV energy range were measured with the activation method using a stacked foil irradiation technique. By using high resolution gamma spectrometry cross-section data for the production of 51,48Cr, 48V, 48,47,46,44m,44g,43Sc and 43,42K were determined. Comparisons with the earlier published data are presented and results predicted by different theoretical codes (EMPIRE and TALYS) are included. Thick target yields were calculated from a fit to our experimental excitation curves and compared with the earlier experimental yield data. Depth distribution curves to be used for thin layer activation (TLA) are also presented.
NASA Astrophysics Data System (ADS)
Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping
2015-04-01
The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.
Benchmarking of Computational Models for NDE and SHM of Composites
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.
2009-01-01
Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.
Radar transponder antenna pattern analysis for the space shuttle
NASA Technical Reports Server (NTRS)
Radcliff, Roger
1989-01-01
In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.
On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments
NASA Technical Reports Server (NTRS)
Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.
1997-01-01
Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.
Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.
Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael
2010-07-01
The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.
Noise-enhanced coding in phasic neuron spike trains.
Ly, Cheng; Doiron, Brent
2017-01-01
The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.
A project based on multi-configuration Dirac-Fock calculations for plasma spectroscopy
NASA Astrophysics Data System (ADS)
Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.
2017-09-01
We present a project dedicated to hot plasma spectroscopy based on a Multi-Configuration Dirac-Fock (MCDF) code, initially developed by J. Bruneau. The code is briefly described and the use of the transition state method for plasma spectroscopy is detailed. Then an opacity code for local-thermodynamic-equilibrium plasmas using MCDF data, named OPAMCDF, is presented. Transition arrays for which the number of lines is too large to be handled in a Detailed Line Accounting (DLA) calculation can be modeled within the Partially Resolved Transition Array method or using the Unresolved Transition Arrays formalism in jj-coupling. An improvement of the original Partially Resolved Transition Array method is presented which gives a better agreement with DLA computations. Comparisons with some absorption and emission experimental spectra are shown. Finally, the capability of the MCDF code to compute atomic data required for collisional-radiative modeling of plasma at non local thermodynamic equilibrium is illustrated. In addition to photoexcitation, this code can be used to calculate photoionization, electron impact excitation and ionization cross-sections as well as autoionization rates in the Distorted-Wave or Close Coupling approximations. Comparisons with cross-sections and rates available in the literature are discussed.
Earthquake Damping Device for Steel Frame
NASA Astrophysics Data System (ADS)
Zamri Ramli, Mohd; Delfy, Dezoura; Adnan, Azlan; Torman, Zaida
2018-04-01
Structures such as buildings, bridges and towers are prone to collapse when natural phenomena like earthquake occurred. Therefore, many design codes are reviewed and new technologies are introduced to resist earthquake energy especially on building to avoid collapse. The tuned mass damper is one of the earthquake reduction products introduced on structures to minimise the earthquake effect. This study aims to analyse the effectiveness of tuned mass damper by experimental works and finite element modelling. The comparisons are made between these two models under harmonic excitation. Based on the result, it is proven that installing tuned mass damper will reduce the dynamic response of the frame but only in several input frequencies. At the highest input frequency applied, the tuned mass damper failed to reduce the responses. In conclusion, in order to use a proper design of damper, detailed analysis must be carried out to have sufficient design based on the location of the structures with specific ground accelerations.
Impedance computations and beam-based measurements: A problem of discrepancy
NASA Astrophysics Data System (ADS)
Smaluk, Victor
2018-04-01
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictions based on the computed impedance budgets show a significant discrepancy. Three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGlynn, S.P.
1977-08-18
The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties. (JSR)
Multiple tag labeling method for DNA sequencing
Mathies, R.A.; Huang, X.C.; Quesada, M.A.
1995-07-25
A DNA sequencing method is described which uses single lane or channel electrophoresis. Sequencing fragments are separated in the lane and detected using a laser-excited, confocal fluorescence scanner. Each set of DNA sequencing fragments is separated in the same lane and then distinguished using a binary coding scheme employing only two different fluorescent labels. Also described is a method of using radioisotope labels. 5 figs.
NASA Astrophysics Data System (ADS)
Xu, Wenrui; Lai, Dong
2017-10-01
In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.
Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko
2016-11-01
To simulate the deceleration processes of secondary electrons produced by a high-energy Auger electron in water, and particularly to focus on the spatial and temporal distributions of the secondary electron and the collision events (e.g. ionization, electronic excitation, and dissociative electron attachment) that are involved in the multiplication of lesions at sites of DNA damage. We developed a dynamic Monte Carlo code that considers the Coulombic force between an ejected electron and its parent cation produced by the Auger electron in water. Thus our code can simulate some return electrons to the parent cations. Using the code, we calculated to within the order of femtoseconds the temporal evolution of collision events, the mean energy, and the mean traveling distance (including its spatial probability distribution) of the electron at an ejected energy of 20 eV. Some of the decelerating electrons in water in the Coulombic field were attracted to the ionized atoms (cations) by the Coulombic force within hundreds of femtoseconds, although the force did not significantly enhance the number of ionization, electronic excitation, and dissociative electron attachment collision events leading to water radiolysis. The secondary electrons are decelerated in water by the Coulombic force and recombined to the ionized atoms (cations). Furthermore, the some return electrons might be prehydrated in water layer near the parent cation in DNA if the electrons might be emitted from the DNA. The prehydrated electron originated from the return electron might play a significant role in inducing DNA damage.
Nonlinear pulse compression in pulse-inversion fundamental imaging.
Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi
2007-04-01
Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.
Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.
Scarpetta, Silvia; Giacco, Ferdinando
2013-04-01
We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.
Population Dynamics of Excited Atoms in Dissipative Cavities
NASA Astrophysics Data System (ADS)
Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa
2016-10-01
Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.
Excited-State Effective Masses in Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Fleming, Saul Cohen, Huey-Wen Lin
2009-10-01
We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.
This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developedmore » to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of the two concepts was also performed. Key cost components included the material and construction costs of the buoy; material and installation costs of the tethers, mooring lines, and anchor technologies; costs of transporting and installing the system at the chosen site; and the cost of mounting the wind turbine to the platform. The two systems were evaluated based on their static and dynamic performance and the total system installed cost. Both systems demonstrated acceptable motions, and have estimated costs of $1.4-$1.8 million, not including the cost of the wind turbine, the power electronics, or the electrical transmission.« less
Simulations of plasma dynamo in cylindrical and spherical geometries
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Forest, Cary; Schnack, Dalton; Ebrahimi, Fatima
2010-11-01
We have performed the numerical investigation of plasma flow and possibility of dynamo effect in Madison Plasma Couette Experiment (MPCX) and Madison Plasma Dynamo Experiment (MPDX), which are being installed at the University of Wisconsin- Madison. Using the extended MHD code, NIMROD, we have studied several types of plasma flows appropriate for dynamo excitation. Calculations are done for isothermal compressible plasma model including two-fluid effects (Hall term), which is beyond the standard incompressible MHD picture. It is found that for magnetic Reynolds numbers exceeding the critical one the counter-rotating Von Karman flow (in cylinder) and Dudley- James flow (in sphere) result in self-generation of magnetic field. Depending on geometry and plasma parameters this field can either saturate at certain amplitude corresponding to a new stable equilibrium (laminar dynamo) or lead to turbulent dynamo. It is shown that plasma compressibility results in increase of the critical magnetic Reynolds number while two- fluid effects change the level of saturated dynamo field. The work is supported by NSF.
Pulse compression of harmonic chirp signals using the fractional fourier transform.
Arif, M; Cowell, D M J; Freear, S
2010-06-01
In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Simulated imaging properties of a series of magnetic electron lenses
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1995-01-01
The paraxial lens data were determined for a series of symmetrical magnetic lenses of equal lens diameter but variable air gap width for a wide range of lens excitations using the three-dimensional electrodynamic computer code MAFIA. The results are compared with a similar study done by Liebman and Grad wherein the field distributions within the lenses were measured experimentally with a resistance network analogue. Using these fields the lens data were obtained through numerical trajectory tracing. The utility of using MAFIA, instead of experimental methods for lens design is shown by the excellent agreement of the simulated results compared to experiment. Also demonstrated is the capability of using MAFIA to investigate aberration sources such as higher order off-axis magnetic field and space-charge effects.
Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation
NASA Astrophysics Data System (ADS)
Rulin, Zhang; Xudong, Cheng; Youhai, Guan
2017-06-01
The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.
A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.
Ling, Hong; Luo, Ercang; Dai, Wei
2006-12-22
Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.
Baker, Christa A.
2014-01-01
A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741
Excitation functions for 7Be, 22,24Na production in Mg and Al by deuteron irradiations up to 50 MeV.
Hermanne, A; Takács, S; Tárkányi, F; Adam-Rebeles, R; Ignatyuk, A
2012-12-01
New experimental data for production of (7)Be and (22,24)Na in deuteron irradiation of (nat)Mg and Al up to 50 MeV are presented. The induced activity, measured with HPGe spectroscopy, allows us to determine excitation functions of (nat)Mg(d,x) and (27)Al(d,x) reactions involved in the activation process with reference to (nat)Ti(d,x)(48)V monitor cross sections. A comparison with experimental literature values and results from updated theoretical codes is discussed. Thick target yields were derived from fits to our cross-sections and integrated personnel dose was calculated for different irradiation cycles and exposure scenarios around high power deuteron accelerator facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Field, E. C.; Bloom, R. M.
1993-05-01
In this report, the principal of reciprocity is used in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80 to 90 km. The highest efficiency occurs for a source altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 km.
Energy distributions and radiation transport in uranium plasmas
NASA Technical Reports Server (NTRS)
Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.
1976-01-01
An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.
Quantum Engineering of Dynamical Gauge Fields on Optical Lattices
2016-07-08
opens the door for exciting new research directions, such as quantum simulation of the Schwinger model and of non-Abelian models. (a) Papers...exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian
NASA Astrophysics Data System (ADS)
Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv
2017-04-01
We have analyzed the complete and incomplete fusion excitation function for 9Be +169Tm, 187Re reactions at around barrier energies using the code PLATYPUS based on classical dynamical model. The quantum mechanical tunnelling correction is incorporated at near and sub barrier energies which significantly improves the matching between the data and prediction.
Ion Kinetics in Silane Plasmas
1988-04-20
field and orthogonal to the excite plates. The image current is amplified, digitized, and Fourier analyzed to yield a spectrum of 0 cyclotron...Laboratory (AFWAL/P0OC). 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 20 U9 09 03...d.c., microwave, or capacatively coupled, radiofrequency electric fields . Alternatively, hollow cath- ode or electron beam approaches may be employed
NASA Astrophysics Data System (ADS)
Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.
2017-02-01
We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Ke, Y.; Gao, X.; Lu, Q.; Wang, X.; Wang, S.
2017-12-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. We have developed a two-dimensional(2-D) general curvilinear PIC simulation code, and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator, and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are formed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the finite wave normal angle. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves are found to be larger along a field line more close to the middle field line in the mirror field.
NASA Astrophysics Data System (ADS)
Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Xueyi; Wang, Shui
2017-08-01
Recently, the generation of rising-tone chorus has been implemented with one-dimensional (1-D) particle-in-cell (PIC) simulations in an inhomogeneous background magnetic field, where both the propagation of waves and motion of electrons are simply forced to be parallel to the background magnetic field. In this paper, we have developed a two-dimensional (2-D) general curvilinear PIC simulation code and successfully reproduced rising-tone chorus waves excited from an anisotropic electron distribution in a 2-D mirror field. Our simulation results show that whistler waves are mainly generated around the magnetic equator and continuously gain growth during their propagation toward higher-latitude regions. The rising-tone chorus waves are observed off the magnetic equator, which propagate quasi-parallel to the background magnetic field with the wave normal angle smaller than 25°. Due to the propagating effect, the wave normal angle of chorus waves is increasing during their propagation toward higher-latitude regions along an enough curved field line. The chirping rate of chorus waves is found to be larger along a field line with a smaller curvature.
Nikjou, A; Sadeghi, M
2018-06-01
The 123 I radionuclide (T 1/2 = 13.22 h, β+ = 100%) is one of the most potent gamma emitters for nuclear medicine. In this study, the cyclotron production of this radionuclide via different nuclear reactions namely, the 121 Sb(α,2n), 122 Te(d,n), 123 Te(p,n), 124 Te(p,2n), 124 Xe(p,2n), 127 I(p,5n) and 127 I(d,6n) were investigated. The effect of the various phenomenological nuclear level density models such as Fermi gas model (FGM), Back-shifted Fermi gas model (BSFGM), Generalized superfluid model (GSM) and Enhanced generalized superfluid model (EGSM) moreover, the three microscopic level density models were evaluated for predicting of cross sections and production yield predictions. The SRIM code was used to obtain the target thickness. The 123 I excitation function of reactions were calculated by using of the TALYS-1.8, EMPIRE-3.2 nuclear codes and with data which taken from TENDL-2015 database, and finally the theoretical calculations were compared with reported experimental measurements in which taken from EXFOR database. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation of the external flow analysis for density measurements at high altitude
NASA Technical Reports Server (NTRS)
Bienkowski, G. K.
1984-01-01
The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.
Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan Balasubramanian
2009-07-18
This is a continuing DOE-BES funded project on transition metal and actinide containing species, aimed at the electronic structure and spectroscopy of transition metal and actinide containing species. While a long term connection of these species is to catalysis and environmental management of high-level nuclear wastes, the immediate relevance is directly to other DOE-BES funded experimental projects at DOE-National labs and universities. There are a number of ongoing gas-phase spectroscopic studies of these species at various places, and our computational work has been inspired by these experimental studies and we have also inspired other experimental and theoretical studies. Thus ourmore » studies have varied from spectroscopy of diatomic transition metal carbides to large complexes containing transition metals, and actinide complexes that are critical to the environment. In addition, we are continuing to make code enhancements and modernization of ALCHEMY II set of codes and its interface with relativistic configuration interaction (RCI). At present these codes can carry out multi-reference computations that included up to 60 million configurations and multiple states from each such CI expansion. ALCHEMY II codes have been modernized and converted to a variety of platforms such as Windows XP, and Linux. We have revamped the symbolic CI code to automate the MRSDCI technique so that the references are automatically chosen with a given cutoff from the CASSCF and thus we are doing accurate MRSDCI computations with 10,000 or larger reference space of configurations. The RCI code can also handle a large number of reference configurations, which include up to 10,000 reference configurations. Another major progress is in routinely including larger basis sets up to 5g functions in thee computations. Of course higher angular momenta functions can also be handled using Gaussian and other codes with other methods such as DFT, MP2, CCSD(T), etc. We have also calibrated our RECP methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the environmental management of high-level nuclear wastes. In collaboration with experimental colleague Prof Hieno Nitsche (Berkeley) and Dr. Pat Allen (Livermore, EXAFS) we have studied the uranyl complexes with silicates and carbonates. It should be stressed that although our computed ionization potential of uranium oxide was in conflict with the existing experimental data at the time, a subsequent gas-phase experimental work by Prof Mike Haven and coworkers published as communication in JACS confirmed our computed result to within 0.1 eV. This provides considerable confidence that the computed results in large basis sets with highly-correlated wave functions have excellent accuracies and they have the capabilities to predict the excited states also with great accuracy. Computations of actinide complexes (Uranyl and plutonyl complexes) are critical to management of high-level nuclear wastes.« less
Leaders’ Smiles Reflect Cultural Differences in Ideal Affect
Tsai, Jeanne L.; Ang, Jen Ying Zhen; Blevins, Elizabeth; Goernandt, Julia; Fung, Helene H.; Jiang, Da; Elliott, Julian; Kölzer, Anna; Uchida, Yukiko; Lee, Yi-Chen; Lin, Yicheng; Zhang, Xiulan; Govindama, Yolande; Haddouk, Lise
2015-01-01
Cultures differ in the emotions they teach their members to value (“ideal affect”). We conducted three studies to examine whether leaders’ smiles reflect these cultural differences in ideal affect. In Study 1, we compared the smiles of top ranked American and Chinese government leaders, chief-executive-officers (CEOs), and university presidents in their official photos. Consistent with findings that Americans value excitement and other high arousal positive states more than Chinese, American top ranked leaders (N = 98) showed more excited smiles than Chinese top ranked leaders (N = 91) across occupations. In Study 2, we compared the smiles of winning vs. losing political candidates and higher vs. lower ranking CEOs and university presidents in the US and Taiwan/China. American leaders (N = 223) showed more excited smiles than Taiwanese/Chinese leaders (N =266), regardless of election outcome or ranking. In Study 3, we administered self-report measures of ideal affect in college student samples from 10 different nations (N = 1,267) and then eight years later, coded the smiles that legislators from those nations showed in their official photos (N = 3,372). The more nations valued excitement and other high arousal positive states, the more their leaders showed excited smiles; similarly, the more nations valued calm and other low arousal positive states, the more their leaders showed calm smiles. These results held after controlling for national differences in GDP per capita, democratization, and human development. Together, these findings suggest that leaders’ smiles reflect the affective states valued by their cultures. PMID:26751631
Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.
2010-12-01
This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.
NASA Astrophysics Data System (ADS)
Mashhadi, L.
2017-12-01
Optical vortices are currently one of the most intensively studied topics in light-matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian-Gaussian-Laguerre-Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre-Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.
Security printing of covert quick response codes using upconverting nanoparticle inks
NASA Astrophysics Data System (ADS)
Meruga, Jeevan M.; Cross, William M.; May, P. Stanley; Luu, QuocAnh; Crawford, Grant A.; Kellar, Jon J.
2012-10-01
Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF4 nanoparticles for security printing applications. Inks comprised of Yb3+/Er3+ and Yb3+/Tm3+ doped β-NaYF4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting®. The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er3+/Yb3+ and Tm3+/Yb3+, respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.
Security printing of covert quick response codes using upconverting nanoparticle inks.
Meruga, Jeevan M; Cross, William M; Stanley May, P; Luu, QuocAnh; Crawford, Grant A; Kellar, Jon J
2012-10-05
Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF(4) nanoparticles for security printing applications. Inks comprised of Yb(3+)/Er(3+) and Yb(3+)/Tm(3+) doped β-NaYF(4) nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting(®). The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er(3+)/Yb(3+) and Tm(3+)/Yb(3+), respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.
NASA Astrophysics Data System (ADS)
Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.
2012-08-01
Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.
The dynamic flexural response of propeller blades. M.S. Thesis
NASA Technical Reports Server (NTRS)
Djordjevic, S. Z.
1982-01-01
The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.
Quadrupole collectivity in 42Ca from low-energy Coulomb excitation with AGATA
NASA Astrophysics Data System (ADS)
Hadyńska-Klęk, K.; Napiorkowski, P. J.; Zielińska, M.; Srebrny, J.; Maj, A.; Azaiez, F.; Valiente Dobón, J. J.; Kicińska-Habior, M.; Nowacki, F.; Naïdja, H.; Bounthong, B.; Rodríguez, T. R.; de Angelis, G.; Abraham, T.; Anil Kumar, G.; Bazzacco, D.; Bellato, M.; Bortolato, D.; Bednarczyk, P.; Benzoni, G.; Berti, L.; Birkenbach, B.; Bruyneel, B.; Brambilla, S.; Camera, F.; Chavas, J.; Cederwall, B.; Charles, L.; Ciemała, M.; Cocconi, P.; Coleman-Smith, P.; Colombo, A.; Corsi, A.; Crespi, F. C. L.; Cullen, D. M.; Czermak, A.; Désesquelles, P.; Doherty, D. T.; Dulny, B.; Eberth, J.; Farnea, E.; Fornal, B.; Franchoo, S.; Gadea, A.; Giaz, A.; Gottardo, A.; Grave, X.; Grębosz, J.; Görgen, A.; Gulmini, M.; Habermann, T.; Hess, H.; Isocrate, R.; Iwanicki, J.; Jaworski, G.; Judson, D. S.; Jungclaus, A.; Karkour, N.; Kmiecik, M.; Karpiński, D.; Kisieliński, M.; Kondratyev, N.; Korichi, A.; Komorowska, M.; Kowalczyk, M.; Korten, W.; Krzysiek, M.; Lehaut, G.; Leoni, S.; Ljungvall, J.; Lopez-Martens, A.; Lunardi, S.; Maron, G.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Merchán, E.; Męczyński, W.; Michelagnoli, C.; Million, B.; Myalski, S.; Napoli, D. R.; Niikura, M.; Obertelli, A.; Özmen, S. F.; Palacz, M.; Próchniak, L.; Pullia, A.; Quintana, B.; Rampazzo, G.; Recchia, F.; Redon, N.; Reiter, P.; Rosso, D.; Rusek, K.; Sahin, E.; Salsac, M.-D.; Söderström, P.-A.; Stefan, I.; Stézowski, O.; Styczeń, J.; Theisen, Ch.; Toniolo, N.; Ur, C. A.; Wadsworth, R.; Wasilewska, B.; Wiens, A.; Wood, J. L.; Wrzosek-Lipska, K.; Ziębliński, M.
2018-02-01
A Coulomb-excitation experiment to study electromagnetic properties of 42Ca was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. γ rays from excited states in 42Ca were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E 2 matrix elements coupling six low-lying states in 42Ca, including the diagonal E 2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E 2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2 + and 21,2 + states, as well as triaxiality for 01,2 + states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in 42Ca. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in 42Ca.
NASA Astrophysics Data System (ADS)
Vick, Michelle; Lai, Dong; Fuller, Jim
2017-06-01
A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.
A numerical study of self-sustained oscillations in wind instruments
NASA Astrophysics Data System (ADS)
Rendon, Pablo L.; Velasco-Segura, Roberto
2017-11-01
The study of sustained notes in wind musical instruments in realistic conditions requires consideration of both excitation and propagation mechanisms, and the manner in which these two interact. Further, to model adequately acoustic propagation inside the instrument, a variety of competing effects must be taken into account, such as nonlinearity, thermoviscous attenuation and radiation at the open end. Physical solutions also involve some degree of feedback at the excitation end, and here we propose the simplest boundary conditions possible at this end, given by a simple harmonic oscillator with fixed stiffness. By feeding single-frequency acoustic waves into the system we are able to study the formation of self-sustained oscillations, which are stationary states associated with resonance frequencies, and also to observe transitory states. Visualizations are presented of waves traveling in both directions. As expected, resonance frequencies are dependent on the stiffness parameter, and this dependence is examined. The full-wave simulation is performed in the time domain over a 2D spatial domain assuming axial symmetry, and it is based on a previously validated open source code, using a finite volume method (FiVoNAGI) implemented in a GPU [Velasco-Segura & Rendn, 2015]. The authors acknowledge the financial support of DGAPA-UNAM through project PAPIIT IG100717.
A Study of Cavitation-Ignition Bubble Combustion
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Jacqmin, David A.
2005-01-01
We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.
Spallation reactions: A successful interplay between modeling and applications
NASA Astrophysics Data System (ADS)
David, J.-C.
2015-06-01
The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200MeV deuterons and 400MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. In the same year, R. Serber described the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a workshop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argueello, J.G.; Dohrmann, C.R.; Carne, T.G.
The combined analysis/test effort described in this paper compares predictions with measured data from a step-relaxation test in the absence of significant wind-driven aerodynamic loading. The process described here is intended to illustrate a method for validation of time domain codes for structural analysis of wind turbine structures. Preliminary analyses were performed to investigate the transient dynamic response that the rotating Sandia 34 m Vertical Axis Wind Turbine (VAWT) would undergo when one of the two blades was excited by step-relaxation. The calculations served two purposes. The first was for pretest planning to evaluate the relative importance of the variousmore » forces that would be acting on the structure during the test and to determine if the applied force in the step-relaxation would be sufficient to produce an excitation that was distinguishable from that produced by the aerodynamic loads. The second was to provide predictions that could subsequently be compared to the data from the test. The test was carried out specifically to help in the validation of the time-domain structural dynamics code, VAWT-SDS, which predicts the dynamic response of VAWTs subject to transient events. Post-test comparisons with the data were performed and showed a qualitative agreement between pretest predictions and measured response. However, they also showed that there was significantly more damping in the measurements than included in the predictions. Efforts to resolve this difference, including post-test analyses, were undertaken and are reported herein. The overall effort described in this paper represents a major step in the process of arriving at a validated structural dynamics code.« less
Effect of wave localization on plasma instabilities
NASA Astrophysics Data System (ADS)
Levedahl, William Kirk
1987-10-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
JDFTx: Software for joint density-functional theory
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...
2017-11-14
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
Prediction of sound radiated from different practical jet engine inlets
NASA Technical Reports Server (NTRS)
Zinn, B. T.; Meyer, W. L.
1980-01-01
Existing computer codes for calculating the far field radiation patterns surrounding various practical jet engine inlet configurations under different excitation conditions were upgraded. The computer codes were refined and expanded so that they are now more efficient computationally by a factor of about three and they are now capable of producing accurate results up to nondimensional wave numbers of twenty. Computer programs were also developed to help generate accurate geometrical representations of the inlets to be investigated. This data is required as input for the computer programs which calculate the sound fields. This new geometry generating computer program considerably reduces the time required to generate the input data which was one of the most time consuming steps in the process. The results of sample runs using the NASA-Lewis QCSEE inlet are presented and comparison of run times and accuracy are made between the old and upgraded computer codes. The overall accuracy of the computations is determined by comparison of the results of the computations with simple source solutions.
JDFTx: Software for joint density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less
Status and future of the 3D MAFIA group of codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebeling, F.; Klatt, R.; Krawzcyk, F.
1988-12-01
The group of fully three dimensional computer codes for solving Maxwell's equations for a wide range of applications, MAFIA, is already well established. Extensive comparisons with measurements have demonstrated the accuracy of the computations. A large numer of components have been designed for accelerators, such as kicker magnets, non cyclindrical cavities, ferrite loaded cavities, vacuum chambers with slots and transitions, etc. The latest additions to the system include a new static solver that can calculate 3D magneto- and electrostatic fields, and a self consistent version of the 2D-BCI that solves the field equations and the equations of motion in parallel.more » Work on new eddy current modules has started, which will allow treatment of laminated and/or solid iron cores excited by low frequency currents. Based on our experience with the present releases 1 and 2, we have started a complete revision of the whole user interface and data structure, which will make the codes even more user-friendly and flexible.« less
State-to-State Thermal/Hyperthermal Collision Dynamics of Atmospheric Species
2012-02-28
kinetics 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT 18 . SECURITY CLASSIFICATION OF THIS PAGE 19. SECURITY CLASSIFICATION...OF ABSTRACT 20. LIMITATION OF ABSTRACT NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39- 18 298-102 AFRL...populations, though colder, are also highly excited in a non-Boltzmann distribution, [ Erot =1.0(1) kcal/mol], which indicates that a substantial fraction
Predictions of the residue cross-sections for the elements Z = 113 and Z = 114
NASA Astrophysics Data System (ADS)
Bouriquet, B.; Abe, Y.; Kosenko, G.
2004-10-01
A good reproduction of experimental excitation functions is obtained for the 1 n reactions producing the elements with Z = 108, 110, 111 and 112 by the combined usage of the two-step model for fusion and the statistical decay code KEWPIE. Furthermore, the model provides reliable predictions of productions of the elements with Z = 113 and Z = 114 which will be a useful guide for plannings of experiments.
Kowalski, Karol
2009-05-21
In this article we discuss the problem of proper balancing of the noniterative corrections to the ground- and excited-state energies obtained with approximate coupled cluster (CC) and equation-of-motion CC (EOMCC) approaches. It is demonstrated that for a class of excited states dominated by single excitations and for states with medium doubly excited component, the newly introduced nested variant of the method of moments of CC equations provides mathematically rigorous way of balancing the ground- and excited-state correlation effects. The resulting noniterative methodology accounting for the effect of triples is tested using its parallel implementation on the systems, for which iterative CC/EOMCC calculations with full inclusion of triply excited configurations or their most important subset are numerically feasible.
NASA Astrophysics Data System (ADS)
Wu, Guohong; Shirato, Hideyuki
SCG (Superconducting Generator) has a superconducting field winding, which leads to many advantages such as small size, high generation efficiency, low impedance, and so on, and be considered as one of the candidates to meet the needs of high stability and high efficiency in the future power system networks. SCG with high response excitation is especially expected to be able to enhance the transient stability of power system by its SMES (Superconducting Magnetic Energy System) effect. The SMES effect of SCG is recognized that its behaviors are dominated by the structures and controls of its excitation system. For this reason, in order to verify exactly how the SMES effect of SCG influences on the power system stability, the electrical circuits of SCG high response excitation are modeled in detail for conducting digital simulation, and its influence on excitation voltage and active power output of SCG are discussed as well. The simulation results with a typical one machine - infinite bus power system model shows that the SMES effect can be certainly obtained when its exciting power is supplied from SCG terminal bus and may considerably lead to an improvement of power system transient stability.
HIFI Spectroscopy of H2O Submillimeter Lines in Nuclei of Actively Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Liu, L.; Weiß, A.; Perez-Beaupuits, J. P.; Güsten, R.; Liu, D.; Gao, Y.; Menten, K. M.; van der Werf, P.; Israel, F. P.; Harris, A.; Martin-Pintado, J.; Requena-Torres, M. A.; Stutzki, J.
2017-09-01
We present a systematic survey of multiple velocity-resolved H2O spectra using Herschel/Heterodyne Instrument for the Far Infrared (HIFI) toward nine nearby actively star-forming galaxies. The ground-state and low-excitation lines (E up ≤ 130 K) show profiles with emission and absorption blended together, while absorption-free medium-excitation lines (130 K ≤ E up ≤ 350 K) typically display line shapes similar to CO. We analyze the HIFI observation together with archival SPIRE/PACS H2O data using a state-of-the-art 3D radiative transfer code that includes the interaction between continuum and line emission. The water excitation models are combined with information on the dust and CO spectral line energy distribution to determine the physical structure of the interstellar medium (ISM). We identify two ISM components that are common to all galaxies: a warm ({T}{dust}˜ 40{--}70 K), dense (n({{H}})˜ {10}5{--}{10}6 {{cm}}-3) phase that dominates the emission of medium-excitation H2O lines. This gas phase also dominates the far-IR emission and the CO intensities for {J}{up}> 8. In addition, a cold ({T}{dust}˜ 20{--}30 K), dense (n({{H}})˜ {10}4{--}{10}5 {{cm}}-3), more extended phase is present. It outputs the emission in the low-excitation H2O lines and typically also produces the prominent line absorption features. For the two ULIRGs in our sample (Arp 220 and Mrk 231) an even hotter and more compact (R s ≤ 100 pc) region is present, which is possibly linked to AGN activity. We find that collisions dominate the water excitation in the cold gas and for lines with {E}{up}≤slant 300 K and {E}{up}≤slant 800 K in the warm and hot component, respectively. Higher-energy levels are mainly excited by IR pumping.
Violations of K-Conservation in 178Hf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, A. B.; Cline, D.; Wu, C. Y.
2006-03-13
Coulomb excitation of K{pi}=6+(t1/2=77 ns), 8-(t1/2=4.0 s) and 16+(t1/2=31 y) 178Hf isomers has led to the measurement of a set of E{lambda} matrix elements, coupling the isomer bands to the {gamma}- and ground state bands. The resulting matrix elements, derived using a coupled-channel semiclassical Coulomb excitation search code, have been used to probe the K-components in the wave functions and revealed the onset and saturation of K-mixing in low-K bands, whereas K-mixing is negligible in the high-K bands. The implications can be applied to other quadrupole-deformed nuclei. An upper limit on the Coulomb depopulation yield of the 16+ isomer wasmore » calculated based on the present set of matrix elements.« less
Wavelengths and energy levels for the Zn I isoelectronic sequence Sn{sup 20+} through U{sup 62+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.M.; Seely, J.F.; Kania, D.R.
Calculated and experimentally determined transition energies are presented for the Zn I isoelectronic sequence for the elements with atomic numbers Z = 50-92. The excitation energies were calculated for the 84 levels belonging to the 10 configurations of the type 4l4l{prime} by using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). The analysis of the energy level structure along the isoelectronic sequence accounted for 20 avoided level crossings. The differences between the calculated and experimental transition energies were determined for 16 transitions, and the excitation energies of the levels belonging to the 4s4p, 4p{sup 2}, 4s4d, and 4s4f configurations weremore » derived from the semiempirically corrected transition energies. 16 refs., 3 figs., 1 tab.« less
Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV
NASA Astrophysics Data System (ADS)
Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.
2011-09-01
In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103Rh(d,x) 100,101,103Pd, 100g,101m,101g,102m,102gRh and 103gRu reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.
Proton and deuteron induced reactions on natGa: Experimental and calculated excitation functions
NASA Astrophysics Data System (ADS)
Hermanne, A.; Adam-Rebeles, R.; Tárkányi, F.; Takács, S.; Ditrói, F.
2015-09-01
Cross-sections for reactions on natGa, induced by protons (up to 65 MeV) and deuterons (up to 50 MeV), producing γ-emitting radionuclides with half-lives longer than 1 h were measured in a stacked-foil irradiation using thin Ga-Ni alloy (70-30%) targets electroplated on Cu or Au backings. Excitation functions for generation of 68,69Ge, 66,67,68,72Ga and 65,69mZn on natGa are discussed, relative to the monitor reactions natAl(d,x)24,22Na, natAl(p,x)24,22Na, natCu(p,x)62Zn and natNi(p,x)57Ni. The results are compared to our earlier measurements, the scarce literature values and to the results of the code TALYS 1.6 (online database TENDL-2014).
Andrews, Rebecca K; Schabrun, Siobhan M; Ridding, Michael C; Galea, Mary P; Hodges, Paul W; Chipchase, Lucinda S
2013-06-10
In humans, corticospinal excitability is known to increase following motor electrical stimulation (ES) designed to mimic a voluntary contraction. However, whether the effect is equivalent with different application durations and whether similar effects are apparent for short and long applications is unknown. The aim of this study was to investigate whether the duration of peripheral motor ES influenced its effect on corticospinal excitability. The excitability of the corticomotor pathway to abductor pollicis brevis (APB) was measured in fourteen health subjects using transcranial magnetic stimulation before, immediately after and 10 minutes after three different durations (20-, 40-, 60-min) of motor ES (30Hz, ramped). This intervention was designed to mimic a voluntary contraction in APB. To control for effects of motor ES on the peripheral elements (muscle fibre, membrane, neuromuscular junction), maximum compound muscle actions potentials (M-waves) were also recorded at each time point. Results were analysed using a repeated measures analysis of variance. Peripheral excitability was reduced following all three motor ES interventions. Conversely, corticospinal excitability was increased immediately following 20- and 40-min applications of motor ES and this increase was maintained at least 20-min following the intervention. A 60-min application of motor ES did not alter corticospinal excitability. A 20-min application of motor ES that is designed to mimic voluntary muscle contraction is as effective as that applied for 40-min when the aim of the intervention is to increase corticospinal excitability. Longer motor ES durations of 60-min do not influence corticospinal excitability, possibly as a result of homeostatic plasticity mechanisms.
Effects of core turbulence on jet excitability
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.
1989-01-01
The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.
Nitsche, M A; Fricke, K; Henschke, U; Schlitterlau, A; Liebetanz, D; Lang, N; Henning, S; Tergau, F; Paulus, W
2003-11-15
Transcranial direct current stimulation (tDCS) of the human motor cortex results in polarity-specific shifts of cortical excitability during and after stimulation. Anodal tDCS enhances and cathodal stimulation reduces excitability. Animal experiments have demonstrated that the effect of anodal tDCS is caused by neuronal depolarisation, while cathodal tDCS hyperpolarises cortical neurones. However, not much is known about the ion channels and receptors involved in these effects. Thus, the impact of the sodium channel blocker carbamazepine, the calcium channel blocker flunarizine and the NMDA receptor antagonist dextromethorphane on tDCS-elicited motor cortical excitability changes of healthy human subjects were tested. tDCS-protocols inducing excitability alterations (1) only during tDCS and (2) eliciting long-lasting after-effects were applied after drug administration. Carbamazepine selectively eliminated the excitability enhancement induced by anodal stimulation during and after tDCS. Flunarizine resulted in similar changes. Antagonising NMDA receptors did not alter current-generated excitability changes during a short stimulation, which elicits no after-effects, but prevented the induction of long-lasting after-effects independent of their direction. These results suggest that, like in other animals, cortical excitability shifts induced during tDCS in humans also depend on membrane polarisation, thus modulating the conductance of sodium and calcium channels. Moreover, they suggest that the after-effects may be NMDA receptor dependent. Since NMDA receptors are involved in neuroplastic changes, the results suggest a possible application of tDCS in the modulation or induction of these processes in a clinical setting. The selective elimination of tDCS-driven excitability enhancements by carbamazepine proposes a role for this drug in focussing the effects of cathodal tDCS, which may have important future clinical applications.
Nitsche, M A; Fricke, K; Henschke, U; Schlitterlau, A; Liebetanz, D; Lang, N; Henning, S; Tergau, F; Paulus, W
2003-01-01
Transcranial direct current stimulation (tDCS) of the human motor cortex results in polarity-specific shifts of cortical excitability during and after stimulation. Anodal tDCS enhances and cathodal stimulation reduces excitability. Animal experiments have demonstrated that the effect of anodal tDCS is caused by neuronal depolarisation, while cathodal tDCS hyperpolarises cortical neurones. However, not much is known about the ion channels and receptors involved in these effects. Thus, the impact of the sodium channel blocker carbamazepine, the calcium channel blocker flunarizine and the NMDA receptor antagonist dextromethorphane on tDCS-elicited motor cortical excitability changes of healthy human subjects were tested. tDCS-protocols inducing excitability alterations (1) only during tDCS and (2) eliciting long-lasting after-effects were applied after drug administration. Carbamazepine selectively eliminated the excitability enhancement induced by anodal stimulation during and after tDCS. Flunarizine resulted in similar changes. Antagonising NMDA receptors did not alter current-generated excitability changes during a short stimulation, which elicits no after-effects, but prevented the induction of long-lasting after-effects independent of their direction. These results suggest that, like in other animals, cortical excitability shifts induced during tDCS in humans also depend on membrane polarisation, thus modulating the conductance of sodium and calcium channels. Moreover, they suggest that the after-effects may be NMDA receptor dependent. Since NMDA receptors are involved in neuroplastic changes, the results suggest a possible application of tDCS in the modulation or induction of these processes in a clinical setting. The selective elimination of tDCS-driven excitability enhancements by carbamazepine proposes a role for this drug in focussing the effects of cathodal tDCS, which may have important future clinical applications. PMID:12949224
Aeroacoustic Analysis of Turbofan Noise Generation
NASA Technical Reports Server (NTRS)
Meyer, Harold D.; Envia, Edmane
1996-01-01
This report provides an updated version of analytical documentation for the V072 Rotor Wake/Stator Interaction Code. It presents the theoretical derivation of the equations used in the code and, where necessary, it documents the enhancements and changes made to the original code since its first release. V072 is a package of FORTRAN computer programs which calculate the in-duct acoustic modes excited by a fan/stator stage operating in a subsonic mean flow. Sound is generated by the stator vanes interacting with the mean wakes of the rotor blades. In this updated version, only the tonal noise produced at the blade passing frequency and its harmonics, is described. The broadband noise component analysis, which was part of the original report, is not included here. The code provides outputs of modal pressure and power amplitudes generated by the rotor-wake/stator interaction. The rotor/stator stage is modeled as an ensemble of blades and vanes of zero camber and thickness enclosed within an infinite hard-walled annular duct. The amplitude of each propagating mode is computed and summed to obtain the harmonics of sound power flux within the duct for both upstream and downstream propagating modes.
Nonlinear pulse propagation and phase velocity of laser-driven plasma waves
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Rossi, Francesco; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2014-10-01
We investigate and characterize the laser evolution and plasma wave excitation by a relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, including the effects of pulse steepening, frequency redshifting, and energy depletion. We derived in 3D, and in the weakly relativistic intensity regime, analytical expressions for the laser energy depletion, the pulse self-steepening rate, the laser intensity centroid velocity, and the phase velocity of the plasma wave. Analytical results have been validated numerically using the 2D-cylindrical, ponderomotive code INF&RNO. We also discuss the extension of these results to the nonlinear regime, where an analytical theory of the nonlinear wake phase velocity is lacking. Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Relativistic Atomic Data for Lines in Ge-Like Sm and Eu Ions
NASA Astrophysics Data System (ADS)
Nagy, O.; El Sayed, Fatma
2012-11-01
Energies, wavelengths, transition probabilities, and oscillator strengths have been calculated for the 4s24p2 - 4s4p3, 4s24p2 - 4s24p4d and 4s4p3 - 4p4 allowed transitions in heavy Ge-like Sm and Eu ions. The fully relativistic Multiconfiguration Dirac-Fock (MCDF) method taking into account both the correlations within the n = 4 complex and the quantum electrodynamic (QED) effects have been used in the calculations. MCDFGME code is used to calculate electron impact excitation cross sections for the 4s24p2 - 4s4p3, and 4s24p2 - 4s24p4d transitions with plane-wave Born approximation. The results of SmXXXI and Eu XXXII are compared with HFR method results.
Correlated prompt fission data in transport simulations
Talou, P.; Vogt, R.; Randrup, J.; ...
2018-01-24
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ raysmore » from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. Here, this review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Lastly, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.« less
Correlated prompt fission data in transport simulations
NASA Astrophysics Data System (ADS)
Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.
2018-01-01
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.
Correlated prompt fission data in transport simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talou, P.; Vogt, R.; Randrup, J.
Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n -n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ raysmore » from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. Here, this review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Lastly, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.« less
Turbofan noise generation. Volume 2: Computer programs
NASA Technical Reports Server (NTRS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-01-01
The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.
The functional role of long non-coding RNA in digestive system carcinomas.
Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao
2014-09-01
In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.
A framework for streamlining research workflow in neuroscience and psychology
Kubilius, Jonas
2014-01-01
Successful accumulation of knowledge is critically dependent on the ability to verify and replicate every part of scientific conduct. However, such principles are difficult to enact when researchers continue to resort on ad-hoc workflows and with poorly maintained code base. In this paper I examine the needs of neuroscience and psychology community, and introduce psychopy_ext, a unifying framework that seamlessly integrates popular experiment building, analysis and manuscript preparation tools by choosing reasonable defaults and implementing relatively rigid patterns of workflow. This structure allows for automation of multiple tasks, such as generated user interfaces, unit testing, control analyses of stimuli, single-command access to descriptive statistics, and publication quality plotting. Taken together, psychopy_ext opens an exciting possibility for a faster, more robust code development and collaboration for researchers. PMID:24478691
A Wideband Circularly Polarized Pixelated Dielectric Resonator Antenna.
Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol
2016-08-23
The design of a wideband circularly polarized pixelated dielectric resonator antenna using a real-coded genetic algorithm (GA) is presented for far-field wireless power transfer applications. The antenna consists of a dielectric resonator (DR) which is discretized into 8 × 8 grid DR bars. The real-coded GA is utilized to estimate the optimal heights of the 64 DR bars to realize circular polarization. The proposed antenna is excited by a narrow rectangular slot etched on the ground plane. A prototype of the proposed antenna is fabricated and tested. The measured -10 dB reflection and 3 dB axial ratio bandwidths are 32.32% (2.62-3.63 GHz) and 14.63% (2.85-3.30 GHz), respectively. A measured peak gain of 6.13 dBic is achieved at 3.2 GHz.
Turbofan noise generation. Volume 2: Computer programs
NASA Astrophysics Data System (ADS)
Ventres, C. S.; Theobald, M. A.; Mark, W. D.
1982-07-01
The use of a package of computer programs developed to calculate the in duct acoustic mods excited by a fan/stator stage operating at subsonic tip speed is described. The following three noise source mechanisms are included: (1) sound generated by the rotor blades interacting with turbulence ingested into, or generated within, the inlet duct; (2) sound generated by the stator vanes interacting with the turbulent wakes of the rotor blades; and (3) sound generated by the stator vanes interacting with the velocity deficits in the mean wakes of the rotor blades. The computations for three different noise mechanisms are coded as three separate computer program packages. The computer codes are described by means of block diagrams, tables of data and variables, and example program executions; FORTRAN listings are included.
(86)Y production via (86)Sr(p,n) for PET imaging at a cyclotron.
Sadeghi, M; Aboudzadeh, M; Zali, A; Zeinali, B
2009-01-01
Excitation functions of (86)Y production via (86)Sr(p,xn), (86)Sr(d,xn), (85)Rb(alpha,xn), (85)Rb((3)He,xn), and (nat)Zr(d,alphaxn) reactions were studied by means of ALICE-ASH code and the results were compared with ALICE-91 code and experimental data. The greatest nuclear reaction of cyclotron (86)Y production was found out as (86)Sr(p,n)(86)Y process. (86)Y production yield was calculated too. A SrCO(3) thick film was deposited on a copper substrate by sedimentation method. The deposited (nat)SrCO(3) was irradiated with 15MeV proton at 30microA current beam. The separation of Y from Cu and Sr was carried out by means of dual ion exchange chromatography.
Leaders' smiles reflect cultural differences in ideal affect.
Tsai, Jeanne L; Ang, Jen Ying Zhen; Blevins, Elizabeth; Goernandt, Julia; Fung, Helene H; Jiang, Da; Elliott, Julian; Kölzer, Anna; Uchida, Yukiko; Lee, Yi-Chen; Lin, Yicheng; Zhang, Xiulan; Govindama, Yolande; Haddouk, Lise
2016-03-01
Cultures differ in the emotions they teach their members to value ("ideal affect"). We conducted 3 studies to examine whether leaders' smiles reflect these cultural differences in ideal affect. In Study 1, we compared the smiles of top-ranked American and Chinese government leaders, chief executive officers, and university presidents in their official photos. Consistent with findings that Americans value excitement and other high-arousal positive states more than Chinese, American top-ranked leaders (N = 98) showed more excited smiles than Chinese top-ranked leaders (N = 91) across occupations. In Study 2, we compared the smiles of winning versus losing political candidates and higher versus lower ranking chief executive officers and university presidents in the United States and Taiwan/China. American leaders (N = 223) showed more excited smiles than Taiwanese/Chinese leaders (N = 266), regardless of election outcome or ranking. In Study 3, we administered self-report measures of ideal affect in college student samples from 10 different nations (N = 1,267) and then 8 years later, coded the smiles that legislators from those nations showed in their official photos (N = 3,372). The more nations valued excitement and other high arousal positive states, the more their leaders showed excited smiles; similarly, the more nations valued calm and other low-arousal positive states, the more their leaders showed calm smiles. These results held after controlling for national differences in democratization, human development, and gross domestic product per capita. Together, these findings suggest that leaders' smiles reflect the affective states valued by their cultures. (c) 2016 APA, all rights reserved).
A steadying effect of acoustic excitation on transitory stall
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1991-01-01
The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyra, Wladimir; Mac Low, Mordecai-Mark, E-mail: wlyra@jpl.nasa.gov, E-mail: mordecai@amnh.org
It has been suggested that the transition between magnetorotationally active and dead zones in protoplanetary disks should be prone to the excitation of vortices via Rossby wave instability (RWI). However, the only numerical evidence for this has come from alpha disk models, where the magnetic field evolution is not followed, and the effect of turbulence is parameterized by Laplacian viscosity. We aim to establish the phenomenology of the flow in the transition in three-dimensional resistive-magnetohydrodynamical models. We model the transition by a sharp jump in resistivity, as expected in the inner dead zone boundary, using the PENCIL CODE to simulatemore » the flow. We find that vortices are readily excited in the dead side of the transition. We measure the mass accretion rate finding similar levels of Reynolds stress at the dead and active zones, at the {alpha} Almost-Equal-To 10{sup -2} level. The vortex sits in a pressure maximum and does not migrate, surviving until the end of the simulation. A pressure maximum in the active zone also triggers the RWI. The magnetized vortex that results should be disrupted by parasitical magneto-elliptic instabilities, yet it subsists in high resolution. This suggests that either the parasitic modes are still numerically damped or that the RWI supplies vorticity faster than they can destroy it. We conclude that the resistive transition between the active and dead zones in the inner regions of protoplanetary disks, if sharp enough, can indeed excite vortices via RWI. Our results lend credence to previous works that relied on the alpha-disk approximation, and caution against the use of overly reduced azimuthal coverage on modeling this transition.« less
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, E.C.; Bloom, R.M.
1993-05-21
In this report the authors use the principal of reciprocity in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Their results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80-to-90 km. The highest efficiency occurs for a sourcemore » altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 Km. Ionospheric modification, Ionospheric currents, Ionospheric heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Kerner, W.; Borba, D.
1995-05-01
The active excitation of global Alfven modes using the saddle coils in the Joint European Torus (JET) [{ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Nuclear} {ital Fusion} {ital Research} 1984, Proceedings of the 10th International Conference, London (International Atomic Energy Agency, Vienna, 1985), Vol. 1, p. 11] as the external antenna, will provide information on the damping of global modes without the need to drive the modes unstable. For the modeling of the Alfven mode excitation, the toroidal resistive magnetohydrodynamics (MHD) code CASTOR (Complex Alfven Spectrum in TORoidal geometry) [18{ital th} {ital EPS} {ital Conference} {ital On} {italmore » Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Physics}, Berlin, 1991, edited by P. Bachmann and D. C. Robinson (The European Physical Society, Petit-Lancy, 1991), Vol. 15, Part IV, p. 89] has been extended to calculate the response to an external antenna. The excitation of a high-performance, high beta JET discharge is studied numerically. In particular, the influence of a finite pressure is investigated. Weakly damped low-{ital n} global modes do exist in the gaps in the continuous spectrum at high beta. A pressure-driven global mode is found due to the interaction of Alfven and slow modes. Its frequency scales solely with the plasma temperature, not like a pure Alfven mode with a density and magnetic field.« less
Investigating Response from Turbulent Boundary Layer Excitations on a Real Launch Vehicle using SEA
NASA Technical Reports Server (NTRS)
Harrison, Phillip; LaVerde,Bruce; Teague, David
2009-01-01
Statistical Energy Analysis (SEA) response has been fairly well anchored to test observations for Diffuse Acoustic Field (DAF) loading by others. Meanwhile, not many examples can be found in the literature anchoring the SEA vehicle panel response results to Turbulent Boundary Layer (TBL) fluctuating pressure excitations. This deficiency is especially true for supersonic trajectories such as those required by this nation s launch vehicles. Space Shuttle response and excitation data recorded from vehicle flight measurements during the development flights were used in a trial to assess the capability of the SEA tool to predict similar responses. Various known/measured inputs were used. These were supplemented with a range of assumed values in order to cover unknown parameters of the flight. This comparison is presented as "Part A" of the study. A secondary, but perhaps more important, objective is to provide more clarity concerning the accuracy and conservatism that can be expected from response estimates of TBL-excited vehicle models in SEA (Part B). What range of parameters must be included in such an analysis in order to land on the conservative side in response predictions? What is the sensitivity of changes in these input parameters on the results? The TBL fluid structure loading model used for this study is provided by the SEA module of the commercial code VA One.
Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver
2016-01-01
Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.
Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.
2016-11-02
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]more » $$4{s}^{2}4{p}^{6}{nl}$$, [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$, ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–7), and [Ni]$$4s4{p}^{6}6l^{\\prime} {nl}$$ (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]$$4{s}^{2}4{p}^{6}$$ threshold are considered. It is found that configuration mixing among [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ and [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$ plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]$$4{s}^{2}4{p}^{6}{nl}$$ (n = 4–7) singly excited states, as well as the [Ni]$$4{s}^{2}4{p}^{5}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{5}4{fnl}$$, [Ni]$$4s4{p}^{6}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{6}4{fnl}$$, (n = 4–6), and [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} 5l$$ doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]$$4s24{p}^{6}4{fnl}$$ (n = 6–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–6), and [Ni]$$4{s}^{2}4{p}^{5}6l^{\\prime} {nl}$$ (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.« less
Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada
2013-01-01
Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, V. A., E-mail: ivanov@fpl.gpi.ru; Sakharov, A. S.; Konyzhev, M. E.
2016-06-15
Results are presented from experimental and analytical studies of the processes resulting in the excitation of microplasma discharges (MPDs) on a metal surface partially covered with a thin dielectric film under the action of an external plasma flow in vacuum. It is shown experimentally that MPDs are excited at the interface between the open metal surface and the region covered by the dielectric film. The probability of MPD excitation is investigated as a function of the thickness of the dielectric film deposited on the metal. It is found that, for a film thickness of 1 μm, the probability of MPDmore » excitation is close to unity. As the film thickness decreases below ~10 nm or increases above ~10 μm, the probability of MPD excitation is reduced by more than two orders of magnitude. A two-dimensional kinetic numerical code is developed that allows one to model the processes of Debye sheath formation and generation of a strong electric field near the edge of a finite-thickness dielectric film on a metal surface in a plasma flow for different configurations of the film edge. It is shown that the maximum value of the tangential component of the electric field is reached at the film edge and amounts to E{sub max} ≈ |φ{sub 0}|/2d (where φ{sub 0} < 0 is the electric potential applied to the metal and d is the film thickness), which for typical conditions of experiments on the excitation of MPDs on metal surfaces (φ{sub 0} ≈–400 V, d ≈ 1 μm) yields E{sub max} ≈ 2 MV/cm. The results of kinetic simulations confirm the qualitative idea about the mechanism of the formation of a strong electric field resulting in the excitation of MPDs at the edge of a dielectric film on a metal surface in a plasma flow and agree with experimental data.« less
Cholinergic Overstimulation Attenuates Rule Selectivity in Macaque Prefrontal Cortex.
Major, Alex J; Vijayraghavan, Susheel; Everling, Stefan
2018-01-31
Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively explored as promising targets for ameliorating cognitive deficits in Alzheimer's disease. We hypothesized that cholinergic stimulation of PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoretically applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol application had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions. Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholinergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition, cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. Moreover, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active exploration with respect to the development of cognitive enhancers. SIGNIFICANCE STATEMENT The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetylcholine from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer's disease, which is characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to create cognitive enhancers for the treatment of Alzheimer's disease and other psychiatric diseases. Here, we stimulated cholinergic receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic stimulation decreased neurons' ability to discriminate between rules. This work suggests that overstimulation of acetylcholine receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on stimulating the cholinergic system. Copyright © 2018 the authors 0270-6474/18/381137-14$15.00/0.
Advanced helium purge seals for Liquid Oxygen (LOX) turbopumps
NASA Technical Reports Server (NTRS)
Shapiro, Wilbur; Lee, Chester C.
1989-01-01
Program objectives were to determine three advanced configurations of helium buffer seals capable of providing improved performance in a space shuttle main engine (SSME), high-pressure liquid oxygen (LOX) turbopump environment, and to provide NASA with the analytical tools to determine performance of a variety of seal configurations. The three seal designs included solid-ring fluid-film seals often referred to as floating ring seals, back-to-back fluid-film face seals, and a circumferential sectored seal that incorporated inherent clearance adjustment capabilities. Of the three seals designed, the sectored seal is favored because the self-adjusting clearance features accommodate the variations in clearance that will occur because of thermal and centrifugal distortions without compromising performance. Moreover, leakage can be contained well below the maximum target values; minimizing leakage is important on the SSME since helium is provided by an external tank. A reduction in tank size translates to an increase in payload that can be carried on board the shuttle. The computer codes supplied under this program included a code for analyzing a variety of gas-lubricated, floating ring, and sector seals; a code for analyzing gas-lubricated face seals; a code for optimizing and analyzing gas-lubricated spiral-groove face seals; and a code for determining fluid-film face seal response to runner excitations in as many as five degrees of freedom. These codes proved invaluable for optimizing designs and estimating final performance of the seals described.
Hansen, J H; Nandkumar, S
1995-01-01
The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.
Impedance computations and beam-based measurements: A problem of discrepancy
Smaluk, Victor
2018-04-21
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
Impedance computations and beam-based measurements: A problem of discrepancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smaluk, Victor
High intensity of particle beams is crucial for high-performance operation of modern electron-positron storage rings, both colliders and light sources. The beam intensity is limited by the interaction of the beam with self-induced electromagnetic fields (wake fields) proportional to the vacuum chamber impedance. For a new accelerator project, the total broadband impedance is computed by element-wise wake-field simulations using computer codes. For a machine in operation, the impedance can be measured experimentally using beam-based techniques. In this article, a comparative analysis of impedance computations and beam-based measurements is presented for 15 electron-positron storage rings. The measured data and the predictionsmore » based on the computed impedance budgets show a significant discrepancy. For this article, three possible reasons for the discrepancy are discussed: interference of the wake fields excited by a beam in adjacent components of the vacuum chamber, effect of computation mesh size, and effect of insufficient bandwidth of the computed impedance.« less
NASA Astrophysics Data System (ADS)
Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team
2017-11-01
The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.
An Infrared Spectral Radiance Code for the Auroral Thermosphere (AARC)
1987-11-24
Program Description and Usage 136 3,1 Main Modules 136 3.2 Input, Output, and Program Communication 138 3.2.1 Input of User-Defined Program Control ...a test date set with which to compare the model predic- tions. Secondly, a number of theoretical papers are available describing some of the basic...necessary since secondary electrons aro a very important source of molecular nitrogen in vibrationally excited states [N2(v)), and the N2 (v) controls
Atomic Data and Spectral Line Intensities for NI XVII
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Landi, E.
2011-01-01
Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database
Unsteady Flowfield in a High-Pressure Turbine Modeled by TURBO
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.; Mehmed, Oral
2003-01-01
Forced response, or resonant vibrations, in turbomachinery components can cause blades to crack or fail because of the large vibratory blade stresses and subsequent high-cycle fatigue. Forced-response vibrations occur when turbomachinery blades are subjected to periodic excitation at a frequency close to their natural frequency. Rotor blades in a turbine are constantly subjected to periodic excitations when they pass through the spatially nonuniform flowfield created by upstream vanes. Accurate numerical prediction of the unsteady aerodynamics phenomena that cause forced-response vibrations can lead to an improved understanding of the problem and offer potential approaches to reduce or eliminate specific forced-response problems. The objective of the current work was to validate an unsteady aerodynamics code (named TURBO) for the modeling of the unsteady blade row interactions that can cause forced response vibrations. The three-dimensional, unsteady, multi-blade-row, Reynolds-averaged Navier-Stokes turbomachinery code named TURBO was used to model a high-pressure turbine stage for which benchmark data were recently acquired under a NASA contract by researchers at the Ohio State University. The test article was an initial design for a high-pressure turbine stage that experienced forced-response vibrations which were eliminated by increasing the axial gap. The data, acquired in a short duration or shock tunnel test facility, included unsteady blade surface pressures and vibratory strains.
Influence of the normal modes on the plasma uniformity in large scale CCP reactors
NASA Astrophysics Data System (ADS)
Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Lane, Barton; Matsukuma, Masaaki; Ventzek, Peter
2016-09-01
Large scale capacitively coupled plasmas (CCP) driven by sources with high frequency components often exhibit phenomena which are absent in relatively well understood small scale CCPs driven at low frequencies. Of particular interest are such phenomena which affect discharge parameters of direct relevance to the plasma processing applications. One of such parameters is plasma uniformity. By using a self-consistent 2d3v Particle-in-cell/Monte-Carlo (PIC/MCC) code parallelized on GPU we have been able to show that uniformity of the plasma generated is influenced predominantly by two factors, the ionization pattern caused by high-energy electrons and the average temperature of low-energy plasma electrons. The heating mechanisms for these two groups of electrons appear to be different leading to different transversal (radial) profiles of the corresponding factors, which is well captured by the kinetic PIC/MCC code. We find that the heating mechanisms are intrinsically connected with excitation of normal modes inherent to a plasma-filled CCP reactor. In this work we study the wave nature of these phenomena, such as their excitation, propagation, and interaction with electrons. Supported by SFB-TR 87 project of the German Research Foundation and by the ``Experimental and numerical analysis of very high frequency capacitively coupled plasma discharges'' mutual research project between RUB and Tokyo Electron Ltd.
Safdie, Gracia; Liewald, Jana F.; Kagan, Sarah; Battat, Emil; Gottschalk, Alexander; Treinin, Millet
2016-01-01
Brain function depends on a delicate balance between excitation and inhibition. Similarly, Caenorhabditis elegans motor system function depends on a precise balance between excitation and inhibition, as C. elegans muscles receive both inhibitory, GABAergic and excitatory, cholinergic inputs from motor neurons. Here we show that phosphorylation of the ER-resident chaperone of nicotinic acetylcholine receptors, RIC-3, leads to increased muscle excitability. RIC-3 phosphorylation at Ser-164 depends on opposing functions of the phosphatase calcineurin (TAX-6), and of the casein kinase II homologue KIN-10. Effects of calcineurin down-regulation and of phosphorylated RIC-3 on muscle excitability are mediated by GABAA receptor inhibition. Thus RIC-3 phosphorylation enables effects of this chaperone on GABAA receptors in addition to nAChRs. This dual effect provides coordinated regulation of excitation and inhibition and enables fine-tuning of the excitation–inhibition balance. Moreover, regulation of inhibitory GABAA signaling by calcineurin, a calcium- and calmodulin-dependent phosphatase, enables homeostatic balancing of excitation and inhibition. PMID:27489343
Shining light on the antenna chromophore in lanthanide based dyes.
Junker, Anne Kathrine R; Hill, Leila R; Thompson, Amber L; Faulkner, Stephen; Sørensen, Thomas Just
2018-04-03
Lanthanide based dyes and assays exploit the antenna effect, where a sensitiser-chromophore is used as a light harvesting antenna and subsequent excited state energy transfer populates the emitting lanthanide centred excited state. A rudimentary understanding of the design criteria for designing efficient dyes and assays based on the antenna effect is in place. By preparing kinetically inert lanthanide complexes based on the DO3A scaffold, we are able to study the excited state energy transfer from a 7-methoxy-coumarin antenna chromophore to europium(iii) and terbium(iii) centred excited states. By contrasting the photophysical properties of complexes of metal centres with and without accessible excited states, we are able to separate the contributions from the heavy atom effect, photoinduced electron transfer quenching, excited state energy transfer and molecular conformations. Furthermore, by studying the photophysical properties of the antenna chromophore, we can directly monitor the solution structure and are able to conclude that excited state energy transfer from the chromophore singlet state to the lanthanide centre does occur.
Excited state properties of the astaxanthin radical cation: A quantum chemical study
NASA Astrophysics Data System (ADS)
Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef
2010-07-01
Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.
On the correlation of plume centerline velocity decay of turbulent acoustically excited jets
NASA Technical Reports Server (NTRS)
Vonglahn, Uwe H.
1987-01-01
Acoustic excitation was shown to alter the velocity decay and spreading characteristics of jet plumes by modifying the large-scale structures in the plume shear layer. The present work consists of reviewing and analyzing available published and unpublished experimental data in order to determine the importance and magnitude of the several variables that contribute to plume modification by acoustic excitation. Included in the study were consideration of the effects of internal and external acoustic excitation, excitation Strouhal number, acoustic excitation level, nozzle size, and flow conditions. The last include jet Mach number and jet temperature. The effects of these factors on the plume centerline velocity decay are then summarized in an overall empirical correlation.
Performance optimization of Qbox and WEST on Intel Knights Landing
NASA Astrophysics Data System (ADS)
Zheng, Huihuo; Knight, Christopher; Galli, Giulia; Govoni, Marco; Gygi, Francois
We present the optimization of electronic structure codes Qbox and WEST targeting the Intel®Xeon Phi™processor, codenamed Knights Landing (KNL). Qbox is an ab-initio molecular dynamics code based on plane wave density functional theory (DFT) and WEST is a post-DFT code for excited state calculations within many-body perturbation theory. Both Qbox and WEST employ highly scalable algorithms which enable accurate large-scale electronic structure calculations on leadership class supercomputer platforms beyond 100,000 cores, such as Mira and Theta at the Argonne Leadership Computing Facility. In this work, features of the KNL architecture (e.g. hierarchical memory) are explored to achieve higher performance in key algorithms of the Qbox and WEST codes and to develop a road-map for further development targeting next-generation computing architectures. In particular, the optimizations of the Qbox and WEST codes on the KNL platform will target efficient large-scale electronic structure calculations of nanostructured materials exhibiting complex structures and prediction of their electronic and thermal properties for use in solar and thermal energy conversion device. This work was supported by MICCoM, as part of Comp. Mats. Sci. Program funded by the U.S. DOE, Office of Sci., BES, MSE Division. This research used resources of the ALCF, which is a DOE Office of Sci. User Facility under Contract DE-AC02-06CH11357.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location of excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from, and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms of performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction. The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
Separation Control at Flight Reynolds Numbers: Lessons Learned and Future Directions
NASA Technical Reports Server (NTRS)
Seifert, Avi; Pack, LaTunia G.
2000-01-01
Active separation control, using periodic excitation, was studied experimentally at high Reynolds numbers. The effects of compressibility, mild sweep, location o excitation slot and steady momentum transfer on the efficacy of the method were identified. Tests conducted at chord Reynolds numbers as high as 40 x 10(exp 6) demonstrated that active control using oscillatory flow excitation can effectively delay flow separation from and reattach separated flow to aerodynamic surfaces at flight conditions. The effective frequencies generate one to four vortices over the controlled region at all times, regardless of the Reynolds number. The vortices are initially amplified by the separated shear-layer, and after initiating reattachment, the strength of the vortices decay as they are convected downstream. Large amplitude, low frequency vortices break down to smaller ones upon introduction at the excitation slot. The effects of steady mass transfer were compared to those of periodic excitation. It was found that steady blowing is significantly inferior to periodic excitation in terms o performance benefits and that the response to steady blowing is abrupt, and therefore undesirable from a control point of view. Steady suction and periodic excitation are comparable in effectiveness and both exhibit a gradual response to changes in the magnitude of the control input. The combination of weak steady suction and periodic excitation is extremely effective while the addition of steady blowing could be detrimental. Compressibility effects are weak as long as separation is not caused by a shock-wave/boundary-layer interaction The undesirable effects of the shock-induced separation could be alleviated by the introduction of periodic excitation upstream of the shock wave, inside the region of supersonic flow. The effects of mild sweep were also studied and periodic excitation was found to be very effective in reattaching three-dimensional separated flow. Scaling laws that correlate 2D and 3D controlled flows were tested and verified. Several performance benefits could be gained by applying the method to existing configurations, but it is expected that the full potential of the method can only be realized through the design of new configurations. A comprehensive, fully turbulent, database was generated in order to guide the development, and enable validation, of candidate unsteady CFD design tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamasha, Safeia, E-mail: safeia@hu.edu.jo
2013-11-15
The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are consideredmore » by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.« less
Plasma interface of the EC waves to the LHD peripheral region
NASA Astrophysics Data System (ADS)
Kubo, S.; Igami, H.; Tsujimura, T. I.; Shimozuma, T.; Takahashi, H.; Yoshimura, Y.; Nishiura, M.; Makino, R.; Mutoh, T.
2015-12-01
In order to realize an efficient ECRH and also to reduce stray radiation due to non-absorbed power during ECRH, it is necessary to excite a wave that is absorbed well near the electron cyclotron resonance. In the normal fusion magnetic field confinement machine and in the electron cyclotron frequency range, WKB approximation is valid almost all the way from antenna to the absorption region due to the large scale-length of the plasma density λn and the magnetic shear τs as compared with the local wavelength λ0. In these situation, it is well known that the O/X mode propagates as O/X mode if τs ≫ λ0. Even in these situation, if τs and λn are comparable and |1/λO-1/λX|τs ≪ 1, there still remains the question from where "X" - or "O" - mode become "X" - or "O" mode at the peripheral region. In order to simulate this situation, one dimensional full wave calculation code which solve electromagnetic wave equation under arbitrary magnetic field configuration and arbitrary density profile for a given polarization state are developed and incorporated in the upgraded ray tracing code LHDGauss. It is tried to find the density and shear scale lengths region where the mode mixing effect is not negligible.
Black Hole Accretion Discs on a Moving Mesh
NASA Astrophysics Data System (ADS)
Ryan, Geoffrey
2017-01-01
We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.
NASA Astrophysics Data System (ADS)
Ignatov, A. I.; Merzlikin, A. M.
2018-03-01
A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.
NASA Astrophysics Data System (ADS)
Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed
2017-10-01
Low temperature plasmas (Te < 10 eV) are ubiquitous in the medical, industrial, basic, and dusty plasma communities, and offer an opportunity for researchers to gain a better understanding of atomic processes in plasmas. Here, we report on a new atomic dataset for neutral and low charge states of argon, from which rate coefficients and cross-sections for the electron-impact excitation of neutral argon are determined. We benchmark by comparing with electron impact excitation cross-sections available in the literature, with very good agreement. We have used the Atomic Data and Analysis Structure (ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.
NASA Astrophysics Data System (ADS)
Amerikheirabadi, Fatemeh
Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.
Cross sections of proton-induced nuclear reactions on bismuth and lead up to 100 MeV
NASA Astrophysics Data System (ADS)
Mokhtari Oranj, L.; Jung, N. S.; Bakhtiari, M.; Lee, A.; Lee, H. S.
2017-04-01
Production cross sections of 209Bi(p , x n )207,206,205,204,203Po, 209Bi(p , pxn) 207,206,205,204,203,202Bi, and natPb(p , x n ) 206,205,204,203,202,201Bi reactions were measured to fill the gap in the excitation functions up to 100 MeV as well as to figure out the effects of different nuclear properties on proton-induced reactions including heavy nuclei. The targets were arranged in two different stacks consisting of Bi, Pb, Al, Au foils and Pb plates. The proton beam intensity was determined by the activation analysis method using 27Al(p ,3 p n )24Na, 197Au(p ,p n )196Au, and 197Au(p , p 3 n )194Au monitor reactions in parallel as well as the Gafchromic film dosimetry method. The activities of produced radionuclei in the foils were measured by the HPGe spectroscopy system. Over 40 new cross sections were measured in the investigated energy range. A satisfactory agreement was observed between the present experimental data and the previously published data. Excitation functions of mentioned reactions were calculated by using the theoretical model based on the latest version of the TALYS code and compared to the new data as well as with other data in the literature. Additionally, the effects of various combinations of the nuclear input parameters of different level density models, optical model potentials, and γ-ray strength functions were considered. It was concluded that if certain level density models are used, the calculated cross sections could be comparable to the measured data. Furthermore, the effects of optical model potential and γ-ray strength functions were considerably lower than that of nuclear level densities.
Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skytt, P.; Glans, P.; Gunnelin, K.
1997-04-01
The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons couldmore » not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.« less
Low-Frequency Waves in HF Heating of the Ionosphere
NASA Astrophysics Data System (ADS)
Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.
2016-02-01
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.
Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.
2017-04-01
We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ -> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. Work supported by the French CNRS, the NSF, the XSEDE, and USMA.
NASA Astrophysics Data System (ADS)
Muhammed Shan, P. T.; Musthafa, M. M.; Najmunnisa, T.; Mohamed Aslam, P.; Rajesh, K. K.; Hajara, K.; Surendran, P.; Nair, J. P.; Shanbagh, Anil; Ghugre, S.
2018-06-01
The excitation functions for reaction residues populated via 115In(p , p) 115 mIn, 115In(p , pn) 114 mIn, 115In(p , p 2 n) 113 mIn, 113In(p , p) 113 mIn, 115In(p , nα) 111 mCd, 115In(p , 3 n) 113Sn and 113In(p , n) 113Sn channels were measured over the proton energy range of 8-22 MeV using stacked foil activation technique. Theoretical analysis of the data were performed within the framework of two statistical model codes EMPIRE-3.2 and TALYS-1.8. Isomeric cross section ratio for isomeric pairs m,g 115In, m,g 114In, m,g 113In, 113Sn m,g and m,g 111Cd were determined for the first time. The dependence of isomeric cross section ratio on various factors are analysed.
Novel strategy to implement active-space coupled-cluster methods
NASA Astrophysics Data System (ADS)
Rolik, Zoltán; Kállay, Mihály
2018-03-01
A new approach is presented for the efficient implementation of coupled-cluster (CC) methods including higher excitations based on a molecular orbital space partitioned into active and inactive orbitals. In the new framework, the string representation of amplitudes and intermediates is used as long as it is beneficial, but the contractions are evaluated as matrix products. Using a new diagrammatic technique, the CC equations are represented in a compact form due to the string notations we introduced. As an application of these ideas, a new automated implementation of the single-reference-based multi-reference CC equations is presented for arbitrary excitation levels. The new program can be considered as an improvement over the previous implementations in many respects; e.g., diagram contributions are evaluated by efficient vectorized subroutines. Timings for test calculations for various complete active-space problems are presented. As an application of the new code, the weak interactions in the Be dimer were studied.
Piskorowski, Rebecca A; Chevaleyre, Vivien
2018-04-26
The hippocampus is a central region in the coding of spatial, temporal and episodic memory. Recent discoveries have revealed surprising and complex roles of the small area CA2 in hippocampal function. Lesion studies have revealed that this region is required for social memory formation. Area CA2 is targeted by extra-hippocampal paraventricular inputs that release vasopressin and can act to enhance social memory performance. In vivo recordings have revealed nonconventional activity by neurons in this region that act to both initiate hippocampal sharp-wave ripple events as well as encode spatial information during immobility. Silencing of CA2 pyramidal neurons has revealed that this area also acts to control hippocampal network excitability during encoding, and this balance of excitation and inhibition is disrupted in disease. This review summarizes recent findings and attempts to integrate these results into pre-existing models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Theoretical Studies of Dissociative Recombination of Electrons with SH+ Ions
NASA Astrophysics Data System (ADS)
Kashinski, D. O.; di Nallo, O. E.; Hickman, A. P.; Mezei, J. Zs.; Colboc, F.; Schneider, I. F.; Chakrabarti, K.; Talbi, D.
2016-05-01
We are investigating the dissociative recombination (DR) of electrons with the molecular ion SH+, i.e. e- +SH+ --> S + H . SH+ is found in the interstellar medium (ISM), and little is known concerning its chemistry. Understanding the role of DR of electrons with SH+ will lead to more accurate astrophysical models. Large active-space multi-reference configuration interaction (MRCI) electronic structure calculations were performed using the GAMESS code to obtain ground and excited 2 Π state potential energy curves (PECs) for several values of SH separation. Core-excited Rydberg states have proven to be of huge importance. The block diagonalization method was used to disentangle interacting states and form a diabatic representation of the PECs. Currently we are performing dynamics calculations using Multichannel Quantum Defect Theory (MQDT) to obtain DR rates. The status of the work will be presented at the conference. work supported by the French CNRS, the NSF, the XSEDE, and USMA.
Study of fission fragment de-excitation by gamma-ray spectrometry with the EXILL experiment
NASA Astrophysics Data System (ADS)
Materna, Thomas; a, Michal Rapał; Letourneau, Alain; Marchix, Anthony; Litaize, Olivier; Sérot, Olivier; Urban, Waldemar; Blanc, Aurélien; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Soldner, Torsten; Simpson, Gary; Ur, Călin A.; France, Gilles de
2017-09-01
A large array of Ge detectors installed at ILL, around a 235U target irradiated with cold neutrons, (EXILL) allowed measurement of prompt gamma-ray cascades occurring in fission fragments with an unambiguous determination of fragments. Here we present preliminary results of a systematic comparison between experimental γ-ray intensities and those obtained from the Monte-Carlo simulation code FIFRELIN, which is dedicated to the de-excitation of fission fragments. Major γ-ray intensities in the 142Ba and 92Kr fission products, extracted from EXILL data, were compared to FIFRELIN, as well as to reported values (when available) obtained with EUROGAM2 in the spontaneous fission of 248Cm. The evolution of γ-ray intensities in 92Kr versus the complementary partner in fission (i.e. versus the total number of evaporated neutrons by the fission pair) was then extracted and compared to FIFRELIN.
NASA Technical Reports Server (NTRS)
Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.
1994-01-01
We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.
Acoustically excited heated jets. 2: In search of a better understanding
NASA Technical Reports Server (NTRS)
Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.
1988-01-01
The second part of a three-part report on the effects of acoustic excitation on jet mixing includes the results of an experimental investigation directed at resolving the question of poor excitability of some of the heated jets. The theoretical predictions discussed in Part 1 are examined to find explanations for the observed discrepancies between the measured and the predicted results. Additional testing was performed by studying the self excitation of the shock containing hot jets and also by exciting the jet by sound radiated through source tubes located externally around the periphery of the jet. The effects of nozzle-exit boundary layer conditions on jet excitability was also investigated. It is concluded that high-speed, heated jet mixing rates and consequently also the jet excitability strongly depends on nozzle exit boundary layer conditions.
NASA Astrophysics Data System (ADS)
Xia, D.; Xia, Z.
2017-12-01
The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.
On the correlation of plume centerline velocity decay of turbulent acoustically excited jets
NASA Technical Reports Server (NTRS)
Von Glahn, Uwe H.
1987-01-01
Acoustic excitation has been shown to alter the velocity decay and spreading characteristics of jet plumes by modifying the large-scale structures in the plume shear layer. The present work consists of reviewing and analyzing available published and unpublished experimental data in order to determine the importance and magnitude of the several variables that contribute to plume modification by acoustic excitation. Included in the study were consideration of the effects of internal or external acoustic excitation, excitation Strouhal number, acoustic excitation level, nozzle size and flow conditions. The last include jet Mach number and jet temperature. The effects of these factors on the plume centerline velocity decay are then summarized in an overall empirical correlation.
Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C
2003-03-07
Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
Multiple Mode Actuation of a Turbulent Jet
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Seifert, Avi
2001-01-01
The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.
Effects of Long Period Ocean Tides on the Earth's Rotation
NASA Technical Reports Server (NTRS)
Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.
1996-01-01
The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.
A search for evidence of below threshold dielectronic recombination in low temperature plasmas
NASA Astrophysics Data System (ADS)
Nemer, Ahmad; Loch, Stuart; Sterling, Nicholas C.; Raymond, John C.
2018-06-01
There are two main types of photoionized gaseous nebulae that exist in the universe, H II regions and Planetary Nebulae (PNe), that mark the endpoints of stellar evolution, and understanding their composition will lead to better understanding of stellar evolution processes, and galactic chemical nucleosynthesis. Determination of heavy elements’ abundances is essential in the analysis of these nebulae. In addition, lines emitted from these heavy elements are typically used for nebular condition deduction. There has been a long-standing problem regarding discrepancy of temperatures and abundances resolved from optical recombination lines and collisionally excited lines. One of the reasons suggested to explain the discrepancy is Dielectronic Recombination (DR). DR is thought to necessarily occur through continuum states overlapping with autoionizing states that are above the ionization threshold. Robicheaux et al. (2010) proposed that DR to below threshold states is possible through ‘negative’ energy electrons recombining to below threshold doubly excited states. The spectral lines emitted from this process could provide an efficient mechanism to cool off plasma in addition to having satellite lines blended with collisionally excited lines related to plasma diagnostics. Furthermore, this phenomenon would occur significantly in low temperature plasmas which makes it challenging to prepare an experiment for testing it in a lab. In this research we present a spectroscopic study into this process through observed optical spectra from seven PNe that suffer from abundance discrepancy problem. A code was developed that produces a synthetic spectrum for 2 cases; namely, C IV recombining to C III and C III to C II. There is faint emission in the optical for these cases. Other possible mechismas to activiate these lines were included in the model and found insignificant. The Auger rates were calculated using the atomic physics code AUTOSTRUCTURE, and the lines were synthesized using a collisional-radiative model.
The Totality App — General Lessons and Future Eclipses
NASA Astrophysics Data System (ADS)
Bennett, Jeffrey
2018-06-01
With the excitement around the 2017 eclipse, I worked with an app development company to create the Totality app, which featured eclipse predictions from the code of Xavier Jubier. We have since updated the app for future eclipses, including a Spanish version given the upcoming eclipses in Chile/Argentina. I will briefly discuss the current app, the process through which we developed it, and relevant lessons learned along the way that may be useful to others interested in developing apps for astronomy education.
1983-11-01
successfully. I- Accession For NTIS -GO iiiONa DTIC TAB t Unannounced - Justificatio Distribution/ I Availability Codes vail and/or DIst Special IA-11...terms of initial signal power. An active sensor must be excited externally. Such a sensor receives its power from an external source and merely modulates...electrons in the material to gain L enough energy to be emitted. The voltage source causes a positive potential to be felt on the collector, thus causing the
DOE Office of Scientific and Technical Information (OSTI.GOV)
campione, Salvatore; Warne, Larry K.; Schiek, Richard
2017-09-01
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a frequency-domain method based on transmission line theory and implemented it in a code we call ATLOG - Analytic Transmission Line Over Ground. Select results are compared to ones computed using the circuit simulator Xyce. Intentionally Left Blank
The Cadmium Zinc Telluride Imager on AstroSat
NASA Astrophysics Data System (ADS)
Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.
2017-06-01
The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.
Analysis of the possibility of using G.729 codec for steganographic transmission
NASA Astrophysics Data System (ADS)
Piotrowski, Zbigniew; Ciołek, Michał; Dołowski, Jerzy; Wojtuń, Jarosław
2017-04-01
Network steganography is dedicated in particular for those communication services for which there are no bridges or nodes carrying out unintentional attacks on steganographic sequence. In order to set up a hidden communication channel the method of data encoding and decoding was implemented using code books of codec G.729. G.729 codec includes, in its construction, linear prediction vocoder CS-ACELP (Conjugate Structure Algebraic Code Excited Linear Prediction), and by modifying the binary content of the codebook, it is easy to change a binary output stream. The article describes the results of research on the selection of these bits of the codebook codec G.729 which the negation of the least have influence to the loss of quality and fidelity of the output signal. The study was performed with the use of subjective and objective listening tests.
Alfvén cascades in JET discharges with NBI-heating
NASA Astrophysics Data System (ADS)
Sharapov, S. E.; Alper, B.; Baranov, Yu. F.; Berk, H. L.; Borba, D.; Boswell, C.; Breizman, B. N.; Challis, C. D.; de Baar, M.; DeLa Luna, E.; Evangelidis, E. A.; Hacquin, S.; Hawkes, N. C.; Kiptily, V. G.; Pinches, S. D.; Sandquist, P.; Voitsekhovich, I.; Young, N. P.; Contributors, JET-EFDA
2006-10-01
Alfvén cascade (AC) eigenmodes excited by energetic ions accelerated with ion-cyclotron resonance heating in JET reversed-shear discharges are studied experimentally in high-density plasmas fuelled by neutral beam injection (NBI) and by deuterium pellets. The recently developed O-mode interferometry technique and Mirnov coils are employed for detecting ACs. The spontaneous improvements in plasma confinement (internal transport barrier (ITB) triggering events) and grand ACs are found to correlate within 0.2 s in JET plasmas with densities up to ~5 × 1019 m-3. Measurements with high time resolution show that ITB triggering events happen before 'grand' ACs in the majority of JET discharges, indicating that this improvement in confinement is likely to be associated with the decrease in the density of rational magnetic surfaces just before qmin(t) passes an integer value. Experimentally observed ACs excited by sub-Alfvénic NBI-produced ions with parallel velocities as low as V||NBI ap 0.2 · VA are found to be most likely associated with the geodesic acoustic effect that significantly modifies the shear-Alfvén dispersion relation at low frequency. Experiments were performed with a tritium NBI-blip (short time pulse) into JET plasmas with NBI-driven ACs. Although considerable NBI-driven AC activity was present, good agreement was found both in the radial profile and in the time evolution of DT neutrons between the neutron measurements and the TRANSP code modelling based on the Coulomb collision model, indicating the ACs have at most a small effect on fast particle confinement in this case.
Effect of wave localization on plasma instabilities. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Levedahl, William Kirk
1987-01-01
The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.
NASA Astrophysics Data System (ADS)
L'Heureux, B.; Gurden, H.; Pinot, L.; Mastrippolito, R.; Lefebvre, F.; Lanièce, P.; Pain, F.
2007-07-01
Understanding the cellular mechanisms of energy supply to neurons following physiological activation is still challenging and has strong implications to the interpretation of clinical functional images based on metabolic signals such as Blood Oxygen Level Dependent Magnetic Resonance Imaging or 18F-Fluorodexoy-Glucose Positron Emission Tomography. Intrinsic Optical Signal Imaging provides with high spatio temporal resolution in vivo imaging in the anaesthetized rat. In that context, intrinsic signals are mainly related to changes in the optical absorption of haemoglobin depending on its oxygenation state. This technique has been validated for imaging of the rat olfactory bulb, providing with maps of the actived olfactory glomeruli, the functional modules involved in the first step of olfactory coding. A complementary approach would be autofluorescence imaging relying on the fluorescence properties of endogenous Flavin Adenine Dinucleotide (FAD) or Nicotinamide Adenine Dinucleotide (NADH) both involved in intracellular metabolic pathways. The purpose of the present study was to investigate the feasibility of in vivo autofluorescence imaging in the rat olfactory bulb. We performed standard Monte Carlo simulations of photons scattering and absorption at the excitation and emission wavelengths of FAD and NADH fluorescence. Characterization of the fluorescence distribution in the glomerulus, effect of hemoglobin absorption at the excitation and absorption wavelengths as well as the effect of the blurring due to photon scattering and the depth of focus of the optical apparatus have been studied. Finally, optimal experimental parameters are proposed to achieve in vivo validation of the technique in the rat olfactory bulb.
Fine-structure excitation of Fe II and Fe III due to collisions with electrons
NASA Astrophysics Data System (ADS)
Wan, Yier; Qi, Yueying; Favreau, Connor; Loch, Stuart; Stancil, P.; Ballance, Connor; McLaughlin, Brendan
2018-06-01
Atomic data of iron peak elements are of great importance in astronomical observations. Among all the ionization stages of iron, Fe II and Fe III are of particular importance because of the high cosmic abundance, relatively low ionization potential and complex open d-shell atomic structure. Fe II and Fe III emission are observed from nearly all classes of astronomical objects over a wide spectral range from the infrared to the ultraviolet. To meaningfully interpret these spectra, astronomers have to employ highly complex modeling codes with reliable collision data to simulate the astrophysical observations. The major aim of this work is to provide reliable atomic data for diagnostics. We present new collision strengths and effective collisions for electron impact excitation of Fe II and Fe III for the forbidden transitions among the fine-structure levels of the ground terms. A very fine energy mesh is used for the collision strengths and the effective collision strengths are calculated over a wide range of electron temperatures of astrophysical importance (10-2000 K). The configuration interaction state wave functions are generated with a scaled Thomas-Fermi-Dirac-Amaldi (TFDA) potential, while the R-matrix plus intermediate coupling frame transformation (ICFT), Breit-Pauli R-matrix and Dirac R-matrix packages are used to obtain collision strengths. Influences of the different methods and configuration expansions on the collisional data are discussed. Comparison is made with earlier theoretical work and differences are found to occur at the low temperatures considered here.This work was funded by NASA grant NNX15AE47G.
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Coronal Seismology of Flare-Excited Standing Slow-Mode Waves Observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Wang, Tongjiang; Ofman, Leon; Davila, Joseph M.
2016-05-01
Flare-excited longitudinal intensity oscillations in hot flaring loops have been recently detected by SDO/AIA in 94 and 131 Å bandpasses. Based on the interpretation in terms of a slow-mode wave, quantitative evidence of thermal conduction suppression in hot (>9 MK) loops has been obtained for the first time from measurements of the polytropic index and phase shift between the temperature and density perturbations (Wang et al. 2015, ApJL, 811, L13). This result has significant implications in two aspects. One is that the thermal conduction suppression suggests the need of greatly enhanced compressive viscosity to interpret the observed strong wave damping. The other is that the conduction suppression provides a reasonable mechanism for explaining the long-duration events where the thermal plasma is sustained well beyond the duration of impulsive hard X-ray bursts in many flares, for a time much longer than expected by the classical Spitzer conductive cooling. In this study, we model the observed standing slow-mode wave in Wang et al. (2015) using a 1D nonlinear MHD code. With the seismology-derived transport coefficients for thermal conduction and compressive viscosity, we successfully simulate the oscillation period and damping time of the observed waves. Based on the parametric study of the effect of thermal conduction suppression and viscosity enhancement on the observables, we discuss the inversion scheme for determining the energy transport coefficients by coronal seismology.
Elementary dispersion analysis of some mimetic discretizations on triangular C-grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korn, P., E-mail: peter.korn@mpimet.mpg.de; Danilov, S.; A.M. Obukhov Institute of Atmospheric Physics, Moscow
2017-02-01
Spurious modes supported by triangular C-grids limit their application for modeling large-scale atmospheric and oceanic flows. Their behavior can be modified within a mimetic approach that generalizes the scalar product underlying the triangular C-grid discretization. The mimetic approach provides a discrete continuity equation which operates on an averaged combination of normal edge velocities instead of normal edge velocities proper. An elementary analysis of the wave dispersion of the new discretization for Poincaré, Rossby and Kelvin waves shows that, although spurious Poincaré modes are preserved, their frequency tends to zero in the limit of small wavenumbers, which removes the divergence noisemore » in this limit. However, the frequencies of spurious and physical modes become close on shorter scales indicating that spurious modes can be excited unless high-frequency short-scale motions are effectively filtered in numerical codes. We argue that filtering by viscous dissipation is more efficient in the mimetic approach than in the standard C-grid discretization. Lumping of mass matrices appearing with the velocity time derivative in the mimetic discretization only slightly reduces the accuracy of the wave dispersion and can be used in practice. Thus, the mimetic approach cures some difficulties of the traditional triangular C-grid discretization but may still need appropriately tuned viscosity to filter small scales and high frequencies in solutions of full primitive equations when these are excited by nonlinear dynamics.« less
Investigation of deformation effects on the decay properties of 12 C + α Cluster states in 16O
NASA Astrophysics Data System (ADS)
Soylu, A.; Koyuncu, F.; Coban, A.; Bayrak, O.; Freer, M.
2018-04-01
We have analyzed the elastic scattering angular distributions data of the α +12C reaction over a wide energy range (Elab = 28 . 2 to 35.5 MeV) within the framework of the Optical Model formalism. A double folding (DF) type real potential was used with a phenomenological Woods-Saxon-squared (WS2) type imaginary potential. Good agreement between the calculations and experimental data was obtained. By using the real DF potential we have calculated the properties of the α-cluster states in 16O by using the Gamow code as well as the α-decay widths by using the WKB method. We implemented a 12C + α cluster framework for the calculation of the excitation energies and decay widths of 16O as a function of the orientation of the planar 12C nucleus with respect to the α-particle. These calculations showed strong sensitivity of the widths and excitation energies to the orientation. Branching ratios were also calculated and though less sensitive to the 12C orientation, it was found that 12Cgs + α structure, with the α-particle orbiting the 12C in its ground state, is dominant. This work demonstrates that deformation, and the orientation, of 12C plays a crucial role in the understanding of the nature of the α-cluster states in 16O.
NASA Astrophysics Data System (ADS)
Jabbari, S.; Brandenburg, A.
2014-12-01
Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et al. 2013). When the field is vertical, the resulting magnetic flux concentrations lead to the magnetic spots and can be of equipartition field strength. DNS, MFS, and implicit large eddy simulations (ILES) confirm that in a proper parameter regime, vertical imposed fields lead to the formation of circular magnetic spots (Brandenburg et al. 2014).
Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.
2006-10-01
In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.
Turbine blade forced response prediction using FREPS
NASA Technical Reports Server (NTRS)
Murthy, Durbha, V.; Morel, Michael R.
1993-01-01
This paper describes a software system called FREPS (Forced REsponse Prediction System) that integrates structural dynamic, steady and unsteady aerodynamic analyses to efficiently predict the forced response dynamic stresses in axial flow turbomachinery blades due to aerodynamic and mechanical excitations. A flutter analysis capability is also incorporated into the system. The FREPS system performs aeroelastic analysis by modeling the motion of the blade in terms of its normal modes. The structural dynamic analysis is performed by a finite element code such as MSC/NASTRAN. The steady aerodynamic analysis is based on nonlinear potential theory and the unsteady aerodynamic analyses is based on the linearization of the non-uniform potential flow mean. The program description and presentation of the capabilities are reported herein. The effectiveness of the FREPS package is demonstrated on the High Pressure Oxygen Turbopump turbine of the Space Shuttle Main Engine. Both flutter and forced response analyses are performed and typical results are illustrated.
NASA Astrophysics Data System (ADS)
Hadi, Muhammad N. S.; Uz, Mehmet E.
2015-02-01
This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.
Buzsáki, György; Watson, Brendon O.
2012-01-01
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413
VLF campaign during the total eclipse of July 22nd, 2009: Observational results and interpretations
NASA Astrophysics Data System (ADS)
Chakrabarti, S. K.; Pal, S.; Sasmal, S.; Mondal, S. K.; Ray, S.; Basak, T.; Maji, S. K.; Khadka, B.; Bhowmick, D.; Chowdhury, A. K.
2012-09-01
A Total Solar Eclipse (TSE) provides us with an exciting opportunity to study the VLF propagation effects under a controlled experimental condition where the extreme ultraviolet and the X-rays from the sun are totally blocked by the moon. During the total eclipse of July 22nd, 2009, the Indian Centre for Space Physics conducted a VLF campaign to obtain the signal from a dozen of places in the Indian sub-continent. Six of these locations gave very good and noise-free data. In some of these data, the signal amplitude is found to be higher than that at non-eclipse condition, while in some other places, it is lower. We present the results of our campaign and give an interpretation of the results using the Long Wavelength Propagation Capability (LWPC) code in a perturbed waveguide both for the easterly and westerly propagation paths.
Franklin, Nicholas T; Frank, Michael J
2015-12-25
Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values, whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies. A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population, allowing the system to self-tune and optimize performance across stochastic environments.
Bidirectional holographic codes and sub-AdS locality
NASA Astrophysics Data System (ADS)
Yang, Zhao; Hayden, Patrick; Qi, Xiaoliang
Tensor networks implementing quantum error correcting codes have recently been used as toy models of the holographic duality which explicitly realize some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this talk. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a ''code'' subspace, (2) a set of bulk states playing the role of ''classical geometries'' which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and the ability to describe geometry at sub-AdS resolutions or even flat space. David and Lucile Packard Foundation.
Bidirectional holographic codes and sub-AdS locality
NASA Astrophysics Data System (ADS)
Yang, Zhao; Hayden, Patrick; Qi, Xiao-Liang
2016-01-01
Tensor networks implementing quantum error correcting codes have recently been used to construct toy models of holographic duality explicitly realizing some of the more puzzling features of the AdS/CFT correspondence. These models reproduce the Ryu-Takayanagi entropy formula for boundary intervals, and allow bulk operators to be mapped to the boundary in a redundant fashion. These exactly solvable, explicit models have provided valuable insight but nonetheless suffer from many deficiencies, some of which we attempt to address in this article. We propose a new class of tensor network models that subsume the earlier advances and, in addition, incorporate additional features of holographic duality, including: (1) a holographic interpretation of all boundary states, not just those in a "code" subspace, (2) a set of bulk states playing the role of "classical geometries" which reproduce the Ryu-Takayanagi formula for boundary intervals, (3) a bulk gauge symmetry analogous to diffeomorphism invariance in gravitational theories, (4) emergent bulk locality for sufficiently sparse excitations, and (5) the ability to describe geometry at sub-AdS resolutions or even flat space.
GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT
NASA Astrophysics Data System (ADS)
Strubbe, David A.
GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.
Application of Fast Multipole Methods to the NASA Fast Scattering Code
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Tinetti, Ana F.
2008-01-01
The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.
molgw 1: Many-body perturbation theory software for atoms, molecules, and clusters
Bruneval, Fabien; Rangel, Tonatiuh; Hamed, Samia M.; ...
2016-07-12
Here, we summarize the MOLGW code that implements density-functional theory and many-body perturbation theory in a Gaussian basis set. The code is dedicated to the calculation of the many-body self-energy within the GW approximation and the solution of the Bethe–Salpeter equation. These two types of calculations allow the user to evaluate physical quantities that can be compared to spectroscopic experiments. Quasiparticle energies, obtained through the calculation of the GW self-energy, can be compared to photoemission or transport experiments, and neutral excitation energies and oscillator strengths, obtained via solution of the Bethe–Salpeter equation, are measurable by optical absorption. The implementation choicesmore » outlined here have aimed at the accuracy and robustness of calculated quantities with respect to measurements. Furthermore, the algorithms implemented in MOLGW allow users to consider molecules or clusters containing up to 100 atoms with rather accurate basis sets, and to choose whether or not to apply the resolution-of-the-identity approximation. Finally, we demonstrate the parallelization efficacy of the MOLGW code over several hundreds of processors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusoglu Sarikaya, C.; Rafatov, I., E-mail: rafatov@metu.edu.tr; Kudryavtsev, A. A.
2016-06-15
The work deals with the Particle in Cell/Monte Carlo Collision (PIC/MCC) analysis of the problem of detection and identification of impurities in the nonlocal plasma of gas discharge using the Plasma Electron Spectroscopy (PLES) method. For this purpose, 1d3v PIC/MCC code for numerical simulation of glow discharge with nonlocal electron energy distribution function is developed. The elastic, excitation, and ionization collisions between electron-neutral pairs and isotropic scattering and charge exchange collisions between ion-neutral pairs and Penning ionizations are taken into account. Applicability of the numerical code is verified under the Radio-Frequency capacitively coupled discharge conditions. The efficiency of the codemore » is increased by its parallelization using Open Message Passing Interface. As a demonstration of the PLES method, parallel PIC/MCC code is applied to the direct current glow discharge in helium doped with a small amount of argon. Numerical results are consistent with the theoretical analysis of formation of nonlocal EEDF and existing experimental data.« less
Excitation of parasitic waves near cutoff in forward-wave amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, Gregory S.; Sinitsyn, Oleksandr V.; Antonsen, Thomas M. Jr.
2010-10-15
In this paper, excitation of parasitic waves near cutoff in forward-wave amplifiers is studied in a rather general form. This problem is important for developing high-power sources of coherent, phase controlled short-wavelength electromagnetic radiation because just the waves which can be excited near cutoff have low group velocities. Since the wave coupling to an electron beam is inversely proportional to the group velocity, these waves are the most dangerous parasitic waves preventing stable amplification of desired signal waves. Two effects are analyzed in the paper. The first one is the effect of signal wave parameters on the self-excitation conditions ofmore » such parasitic waves. The second effect is the role of the beam geometry on excitation of these parasitic waves in forward-wave amplifiers with spatially extended interaction space, such as sheet-beam devices. It is shown that a large-amplitude signal wave can greatly influence the self-excitation conditions of the parasitic waves which define stability of operation. Therefore the effect described is important for accurate designing of high-power amplifiers of electromagnetic waves.« less
Lang, Nicolas; Rothkegel, Holger; Peckolt, Hannes; Deuschl, Günther
2013-11-01
Lacosamide (LCM) and carbamazepine (CBZ) are antiepileptic drugs both acting on neuronal voltage-gated sodium channels. Patch-clamp studies demonstrated significant differences in how LCM and CBZ affect neuronal membrane excitability. Despite valuable information patch-clamp studies provide, they also comprise some constraints. For example, little is known about effects of LCM on intracortical synaptic excitability. In contrast, transcranial magnetic stimulation (TMS) can describe drug-induced changes at the system level of the human cerebral cortex. The present study was designed to explore dose-depended effects of LCM and effects of CBZ on motor cortex excitability with TMS in a randomized, double-blind, placebo-controlled crossover trial in healthy human subjects. Subjects received 600 mg CBZ, 200 mg LCM, 400 mg LCM or placebo preceding TMS measurements. Compared to placebo, TMS motor thresholds were significantly increased after carbamazepine and lacosamide, with a trend for a dose dependent effect of lacosamide. Both, carbamazepine and lacosamide did not affect TMS parameters of intracortical synaptic excitability. TMS measurements suggest that lacosamide and carbamazepine predominantly act on neuronal membrane excitability. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
The Diagnostic Potential of Fe Lines Applied to Protostellar Jets
NASA Astrophysics Data System (ADS)
Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J. M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E. T.
2013-11-01
We investigate the diagnostic capabilities of iron lines for tracing the physical conditions of shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 3000-25000 Å, X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Hα 574 and Par-Lup 3-4. Both spectra are very rich in [Fe II] lines over the whole spectral range; in addition, lines from [Fe III] are detected in the ESO-Hα 574 spectrum. Non-local thermal equilibrium codes solving the equations of the statistical equilibrium along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density and fractional ionization. An estimate of the iron gas-phase abundance is provided by comparing the iron lines emissivity with that of neutral oxygen at 6300 Å. The [Fe II] line analysis indicates that the jet driven by ESO-Hα 574 is, on average, colder (T e ~ 9000 K), less dense (n e ~ 2 × 104 cm-3), and more ionized (x e ~ 0.7) than the Par-Lup 3-4 jet (T e ~ 13,000 K, n e ~ 6 × 104 cm-3, x e < 0.4), even if the existence of a higher density component (n e ~ 2 × 105 cm-3) is probed by the [Fe III] and [Fe II] ultra-violet lines. The physical conditions derived from the iron lines are compared with shock models suggesting that the shock at work in ESO-Hα 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Hα 574 (50%-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Hα 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines. Based on observations collected with X-shooter at the Very Large Telescope on Cerro Paranal (Chile), operated by the European Southern Observatory (ESO). Program ID: 085.C-0238(A).
Ates, Mehlika Panpalli; Alaydin, Halil Can; Cengiz, Bulent
2018-04-25
This study was designed to investigate whether the cerebellum has an inhibitory effect on motor cortical excitability. Sixteen healthy adults (age range, 25-50 years, five female) participated in the study. Anodal cerebellar transcranial direct current stimulation (a-cTDCS) was used to modulate cerebellar excitability. A-cTDCS was given for 20 min at 1 mA intensity. The automatic threshold tracking method was used to investigate cortical excitability. Resting motor threshold (RMT), short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), intracortical facilitation (ICF), and the input output curve (I-O curve) were motor cortical excitability parameters. a-cTDCS caused a reduction in overall SICI and the reduced SICF for interstimulus intervals (ISIs) to 2.4-4.4 ms. a-cTDCS has no effect on ICF, RMT, and the I-O curve. There were no significant changes in any of these cortical excitability parameters after sham cTDCS. Results of the study indicate that a-cTDCS has a dual (both inhibitory and excitatory) effect on motor cortical excitability, rather than a simple inhibitory effect. The cerebellum modulates both the inhibitory and facilitatory activities of motor cortex (M1) and suggest that cerebello-cerebral motor connectivity is more complex than solely inhibitory or facilitatory connections. Copyright © 2018 Elsevier Inc. All rights reserved.
New excitations in the Thirring model
NASA Astrophysics Data System (ADS)
Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.
1998-12-01
The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.
Further studies on liquid sloshing
NASA Astrophysics Data System (ADS)
Lou, Y. K.; Wu, M. C.; Lee, C. K.
1985-03-01
Sloshing is especially of concern for LNG Carriers and large oil tankers because of their tank size and geometrical configurations and the likelihood of near resonant excitation of the contained liquid. When a tank is under multidegree of freedom excitations the phase relationships among the excitations might have a significant effect on sloshing loads. An analytical solution is obtained for liquid sloshing under combined excitations with phase difference. A series of physical model tests has also been conducted to investigate the effects of the phase angle on liquid sloshing loads for tanks under combined roll and sway and roll and heave excitations. The experimental results are in general agreement with the analytical findings.
Speech dynamics are coded in the left motor cortex in fluent speakers but not in adults who stutter
Hoang, T. N. Linh; Neef, Andreas; Paulus, Walter; Sommer, Martin
2015-01-01
The precise excitability regulation of neuronal circuits in the primary motor cortex is central to the successful and fluent production of speech. Our question was whether the involuntary execution of undesirable movements, e.g. stuttering, is linked to an insufficient excitability tuning of neural populations in the orofacial region of the primary motor cortex. We determined the speech-related time course of excitability modulation in the left and right primary motor tongue representation. Thirteen fluent speakers (four females, nine males; aged 23–44) and 13 adults who stutter (four females, nine males, aged 21–55) were asked to build verbs with the verbal prefix ‘auf’. Single-pulse transcranial magnetic stimulation was applied over the primary motor cortex during the transition phase between a fixed labiodental articulatory configuration and immediately following articulatory configurations, at different latencies after transition onset. Bilateral electromyography was recorded from self-adhesive electrodes placed on the surface of the tongue. Off-line, we extracted the motor evoked potential amplitudes and normalized these amplitudes to the individual baseline excitability during the fixed configuration. Fluent speakers demonstrated a prominent left hemisphere increase of motor cortex excitability in the transition phase (P = 0.009). In contrast, the excitability of the right primary motor tongue representation was unchanged. Interestingly, adults afflicted with stuttering revealed a lack of left-hemisphere facilitation. Moreover, the magnitude of facilitation was negatively correlated with stuttering frequency. Although orofacial midline muscles are bilaterally innervated from corticobulbar projections of both hemispheres, our results indicate that speech motor plans are controlled primarily in the left primary speech motor cortex. This speech motor planning-related asymmetry towards the left orofacial motor cortex is missing in stuttering. Moreover, a negative correlation between the amount of facilitation and stuttering severity suggests that we discovered a main physiological principle of fluent speech production and its role in stuttering. PMID:25595146
Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.
Champion, C; Le Loirec, C
2006-04-07
When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.
Chang, Yuan-Ping; Wang, Hsiu-Hung; Huang, Shan; Wang, Huang-I
2014-03-01
The current shortage of professional nurses in Taiwan both undermines hospital quality of care and raises hospitals' human resource management costs. Few studies have concurrently investigated the interaction effect between professional commitment and, respectively, the positive and negative work attitudes of nurses. Results of this investigation may help improve strategies designed to raise nurse retention rates. This study used the interaction effects of work excitement and work frustration to assess their influence on the professional commitment of nurses. This study was conducted at one hospital in southern Taiwan and used a cross-sectional design with self-administrated questionnaires. Seven hundred thirty-five nurses completed and submitted valid questionnaires (valid response rate: 68.5%). Exploratory and confirmatory factor analysis confirmed the reliability and validity of the three measurement models of work excitement, work frustration, and professional commitment. Correlation and hierarchical regression analysis verified the direct and interaction effects with the correlations among the three measured variables. Work frustration was higher than work excitement among participants (M = 2.72, SD = 0.71 vs. M = 2.26, SD = 0.62). The mean participant score for professional commitment was 2.72 (SD = 0.45) on a 4-point Likert scale. There was a significant and positive correlation between work excitement and professional commitment and a significant and negative correlation between work frustration and professional commitment. High work frustration had a negative effect on professional commitment, whereas high work excitement had a higher positive effect on professional commitment. The two-way interaction between work excitement and frustration was statistically significant in explaining the effects of professional commitment (p < .01). Nurses often work in conditions that are highly frustrating. Although work excitement has been shown as having a greater influence on professional commitment when nurses experienced the dual work affects simultaneously, work frustration significantly reduces the professional commitment effect of nurses. This study suggests that managers should not only construct a positive and exciting work environment but also work to mitigate the causes of work frustration to promote professional commitment and retention among nurses.
Polarization of resonantly excited X-ray lines
NASA Astrophysics Data System (ADS)
Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav
2017-08-01
For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015)[3] S. Weber et al., Rev. Sci. Instr. 86, 093110 (2015)[4] P. Amaro et al., Phys. Rev. A 95, 022712 (2017)[5] M. F. Gu, Can. Phys. J 86, 675 (2008)[6] S. Fritzsche, Comput. Phys. Commu. 183, 1525-1559 (2012)[7] C. Shah et al., submitted (2017)
General Description of Fission Observables: GEF Model Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, K.-H.; Jurado, B., E-mail: jurado@cenbg.in2p3.fr; Amouroux, C.
2016-01-15
The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energymore » spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is consistent with the collective enhancement of the level density. The exchange of excitation energy and nucleons between the nascent fragments on the way from saddle to scission is estimated according to statistical mechanics. As a result, excitation energy and unpaired nucleons are predominantly transferred to the heavy fragment in the superfluid regime. This description reproduces some rather peculiar observed features of the prompt-neutron multiplicities and of the even-odd effect in fission-fragment Z distributions. For completeness, some conventional descriptions are used for calculating pre-equilibrium emission, fission probabilities and statistical emission of neutrons and gamma radiation from the excited fragments. Preference is given to simple models that can also be applied to exotic nuclei compared to more sophisticated models that need precise empirical input of nuclear properties, e.g. spectroscopic information. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that complies with the needs for applications in nuclear technology without specific adjustments to measured data of individual systems. The GEF executable runs out of the box with no need for entering any empirical data. This unique feature is of valuable importance, because the number of systems and energies of potential significance for fundamental and applied science will never be possible to be measured. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated.« less
Stochastic stability of parametrically excited random systems
NASA Astrophysics Data System (ADS)
Labou, M.
2004-01-01
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.
Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas
NASA Astrophysics Data System (ADS)
Capitelli, Mario
2016-09-01
The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.
Dynamic Loads Generation for Multi-Point Vibration Excitation Problems
NASA Technical Reports Server (NTRS)
Shen, Lawrence
2011-01-01
A random-force method has been developed to predict dynamic loads produced by rocket-engine random vibrations for new rocket-engine designs. The method develops random forces at multiple excitation points based on random vibration environments scaled from accelerometer data obtained during hot-fire tests of existing rocket engines. This random-force method applies random forces to the model and creates expected dynamic response in a manner that simulates the way the operating engine applies self-generated random vibration forces (random pressure acting on an area) with the resulting responses that we measure with accelerometers. This innovation includes the methodology (implementation sequence), the computer code, two methods to generate the random-force vibration spectra, and two methods to reduce some of the inherent conservatism in the dynamic loads. This methodology would be implemented to generate the random-force spectra at excitation nodes without requiring the use of artificial boundary conditions in a finite element model. More accurate random dynamic loads than those predicted by current industry methods can then be generated using the random force spectra. The scaling method used to develop the initial power spectral density (PSD) environments for deriving the random forces for the rocket engine case is based on the Barrett Criteria developed at Marshall Space Flight Center in 1963. This invention approach can be applied in the aerospace, automotive, and other industries to obtain reliable dynamic loads and responses from a finite element model for any structure subject to multipoint random vibration excitations.
Systematic study of fission barriers of excited superheavy nuclei
NASA Astrophysics Data System (ADS)
Sheikh, J. A.; Nazarewicz, W.; Pei, J. C.
2009-07-01
A systematic study of fission-barrier dependence on excitation energy has been performed using the self-consistent finite-temperature Hartree-Fock + BCS (FT-HF + BCS) formalism with the SkM* Skyrme energy density functional. The calculations have been carried out for even-even superheavy nuclei with Z ranging between 110 and 124. For an accurate description of fission pathways, the effects of triaxial and reflection-asymmetric degrees of freedom have been fully incorporated. Our survey demonstrates that the dependence of isentropic fission barriers on excitation energy changes rapidly with particle number, pointing to the importance of shell effects even at large excitation energies characteristic of compound nuclei. The fastest decrease of fission barriers with excitation energy is predicted for deformed nuclei around N=164 and spherical nuclei around N=184 that are strongly stabilized by ground-state shell effects. For the nuclei Pu240 and Fm256, which exhibit asymmetric spontaneous fission, our calculations predict a transition to symmetric fission at high excitation energies owing to the thermal quenching of static reflection asymmetric deformations.
Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations
Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...
2015-01-22
In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.
Numerical Modeling of Electromagnetic Radiation Within a Particulate Medium.
NASA Astrophysics Data System (ADS)
Noe Dobrea, E. Z.
2017-12-01
Numerical modeling of electromagnetic radiation with a particulate medium. Understanding the effect of particulate media and coatings on electromagnetic radiation is key to understanding the effects of multiple scattering on the spectra of geologic materials. Multiple radiative transfer theories have been developed that provide a good approximation to these effects [1,2]. However, approximations regarding particle size, distribution, shape, and other parameters need to be made and in some cases, the theory is limited to specific geometries [2]. In this work, we seek to develop an numerical radiative transfer algorithm to simulate the passage of light through a particulate medium. The code allows arbitrary particle size distributions (uniform, bimodal, trimodal, composition dependent), compositions, and viewing geometries, as well as arbitrary coating thicknesses and compositions. Here, we report on the the status of our model and present comparisons of model predictions with the spectra of well-characterize minerals and mixtures. Future work will include particle size-dependent effects of diffraction as well as particle emittance due to fluorescence and Raman excitation. [1] Hapke, B. (2012). Theory of reflectance and emittance spectroscopy. Cambridge University Press, 2nd edition, 528 p. [2] Shkuratov et al. (1999) Icarus 137
NASA Technical Reports Server (NTRS)
Nissim, Eli
1990-01-01
The effectiveness of aerodynamic excitation is evaluated analytically in conjunction with the experimental determination of flutter dynamic pressure by parameter identification. Existing control surfaces were used, with an additional vane located at the wingtip. The equations leading to the identification of the equations of motion were reformulated to accommodate excitation forces of aerodynamic origin. The aerodynamic coefficients of the excitation forces do not need to be known since they are determined by the identification procedure. The 12 degree-of-freedom numerical example treated in this work revealed the best wingtip vane locations, and demonstrated the effectiveness of the aileron-vane excitation system. Results from simulated data gathered at much lower dynamic pressures (approximately half the value of flutter dynamic pressure) predicted flutter dynamic pressures with 2-percent errors.
Mean excitation energies for molecular ions
NASA Astrophysics Data System (ADS)
Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.
2017-03-01
The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.
SHAPEMOL: Modelling molecular line emission in protoplanetary and planetary nebulae with SHAPE
NASA Astrophysics Data System (ADS)
Santander-García, M.; Bujarrabal, V.; Steffen, W.; Koning, N.
2014-04-01
Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window for probing molecular warm gas (˜50-1000 K). On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE v5.0 with which we intend to fill the so far empty molecular niche. Shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the young planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the 12CO and 13CO J=1-0 to J=17-16 lines. Shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
Ab Initio Study of Electronic Excitation Effects on SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less
Ab Initio Study of Electronic Excitation Effects on SrTiO 3
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
2017-11-14
Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less
Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity.
Han, Fang; Wiercigroch, Marian; Fang, Jian-An; Wang, Zhijie
2011-10-01
Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one.
NASA Astrophysics Data System (ADS)
Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito
2017-08-01
A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bičiūnas, A.; Arlauskas, A.; Adamonis, J.
We report on terahertz (THz) emission from tellurium crystal surfaces excited by femtosecond optical pulses. Measurements were performed on three differently cut Te samples and with different wavelength optical excitation pulses. THz pulse amplitude dependences on the azimuthal angle measured at various excitation wavelengths have evidenced that three different mechanisms are responsible for THz generation in tellurium: second order nonlinear optical rectification effect, dominating at lower excitation photon energies, as well as transverse and ordinary photo-Dember effects, which emerge at energies larger than 0.9 eV. The shapes of the azimuthal angle dependences were also explained by theoretical model.
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
NASA Astrophysics Data System (ADS)
Li, Jian-jun; Chen, Yu; Wang, A.-qing; Zhu, Jian; Zhao, Jun-wu
2011-01-01
The effect of colloid gold nanoparticles (AuNPs) on the fluorescence excitation spectrum of α-fetoprotein (AFP) has been investigated experimentally. The excitation spectral peaks of AFP with low concentration from 0.01 ng ml -1 to 12 ng ml -1 increase monotonically with increasing of AFP concentration. When some gold colloids were added to the AFP solution, the excitation peak at 285 nm decreases distinctly. By comparing the excitation peak intensity of AFP solution with gold colloids and without gold colloids at different AFP concentrations, the quenching effect from gold nanoparticle was more effective at lower AFP concentration. So the range of concentration from 0.01 ng ml -1 to 0.09 ng ml -1 will be the potential range of applications because of the higher sensitivity. The physical origin based on local field effect was investigated to illuminate this local environment dependent fluorescence quenching. The changing extent of quenching with different AFP concentrations can be attributed to the nonlinear decreasing of the local field factor of gold nanoparticles as a function of environmental dielectric constant.
Dyke, Katherine; Kim, Soyoung; Jackson, Georgina M; Jackson, Stephen R
Transcranial direct current stimulation (tDCS) is a popular non-invasive brain stimulation technique that has been shown to influence cortical excitability. While polarity specific effects have often been reported, this is not always the case, and variability in both the magnitude and direction of the effects have been observed. We aimed to explore the consistency and reliability of the effects of tDCS by investigating changes in cortical excitability across multiple testing sessions in the same individuals. A within subjects design was used to investigate the effects of anodal and cathodal tDCS applied to the motor cortex. Four experimental sessions were tested for each polarity in addition to two sham sessions. Transcranial magnetic stimulation (TMS) was used to measure cortical excitability (TMS recruitment curves). Changes in excitability were measured by comparing baseline measures and those taken immediately following 20 minutes of 2 mA stimulation or sham stimulation. Anodal tDCS significantly increased cortical excitability at a group level, whereas cathodal tDCS failed to have any significant effects. The sham condition also failed to show any significant changes. Analysis of intra-subject responses to anodal stimulation across four sessions suggest that the amount of change in excitability across sessions was only weakly associated, and was found to have poor reliability across sessions (ICC = 0.276). The effects of cathodal stimulation show even poorer reliability across sessions (ICC = 0.137). In contrast ICC analysis for the two sessions of sham stimulation reflect a moderate level of reliability (ICC = .424). Our findings indicate that although 2 mA anodal tDCS is effective at increasing cortical excitability at group level, the effects are unreliable across repeated testing sessions within individual participants. Our results suggest that 2 mA cathodal tDCS does not significantly alter cortical excitability immediately following stimulation and that there is poor reliability of the effect within the same individual across different testing sessions. Copyright © 2016. Published by Elsevier Inc.
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
NASA Astrophysics Data System (ADS)
Kirsch, L. E.; Bernstein, L. A.
2018-06-01
A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.
Topological entanglement entropy of fracton stabilizer codes
NASA Astrophysics Data System (ADS)
Ma, Han; Schmitz, A. T.; Parameswaran, S. A.; Hermele, Michael; Nandkishore, Rahul M.
2018-03-01
Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter that lack a TQFT description. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground-state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models, the "X-cube model" and "Haah's code," and demonstrate the existence of a nonlocal contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that this piece of the entanglement entropy of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.
A microflow cytometer on a chip
NASA Astrophysics Data System (ADS)
Golden, Joel P.; Kim, Jason; Anderson, George P.; Hashemi, Nastaran; Howell, Peter J.; Ligler, Frances S.
2010-02-01
A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for onsite diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly multiplexed assays. Optical analysis at four different wavelengths identified six sets of the coded microspheres recognizing Escherichia coli, Listeria, and Salmonella as well as cholera toxin, staphylococcal enterotoxin B (SEB), and ricin, and assay results were compared with those of a commercial Luminex analysis system.
NASA Technical Reports Server (NTRS)
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
NASA Astrophysics Data System (ADS)
Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.
2009-06-01
Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.
Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure
Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming
2011-01-01
Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688
Hybrid simulation of fishbone instabilities in the EAST tokamak
Shen, Wei; Wang, Feng; Fu, G. Y.; ...
2017-08-11
Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in the experimental advanced superconducting tokamak (EAST) experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. Our results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a beta-induced Alfvenmore » eigenmode (BAE) with much higher frequency. This BAE is driven by higher energy beam ions. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. Furthermore, for the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution.« less
GABAergic circuits control input-spike coupling in the piriform cortex.
Luna, Victor M; Schoppa, Nathan E
2008-08-27
Odor coding in mammals is widely believed to involve synchronized gamma frequency (30-70 Hz) oscillations in the first processing structure, the olfactory bulb. How such inputs are read in downstream cortical structures however is not known. Here we used patch-clamp recordings in rat piriform cortex slices to examine cellular mechanisms that shape how the cortex integrates inputs from bulb mitral cells. Electrical stimulation of mitral cell axons in the lateral olfactory tract (LOT) resulted in excitation of pyramidal cells (PCs), which was followed approximately 10 ms later by inhibition that was highly reproducible between trials in its onset time. This inhibition was somatic in origin and appeared to be driven through a feedforward mechanism, wherein GABAergic interneurons were directly excited by mitral cell axons. The precise inhibition affected action potential firing in PCs in two distinct ways. First, by abruptly terminating PC excitation, it limited the PC response to each EPSP to exactly one, precisely timed action potential. In addition, inhibition limited the summation of EPSPs across time, such that PCs fired action potentials in strong preference for synchronized inputs arriving in a time window of <5 ms. Both mechanisms would help ensure that PCs respond faithfully and selectively to mitral cell inputs arriving as a synchronized gamma frequency pattern.
Sensitivity Analysis of Cf-252 (sf) Neutron and Gamma Observables in CGMF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Austin Lewis; Talou, Patrick; Stetcu, Ionel
CGMF is a Monte Carlo code that simulates the decay of primary fission fragments by emission of neutrons and gamma rays, according to the Hauser-Feshbach equations. As the CGMF code was recently integrated into the MCNP6.2 transport code, great emphasis has been placed on providing optimal parameters to CGMF such that many different observables are accurately represented. Of these observables, the prompt neutron spectrum, prompt neutron multiplicity, prompt gamma spectrum, and prompt gamma multiplicity are crucial for accurate transport simulations of criticality and nonproliferation applications. This contribution to the ongoing efforts to improve CGMF presents a study of the sensitivitymore » of various neutron and gamma observables to several input parameters for Californium-252 spontaneous fission. Among the most influential parameters are those that affect the input yield distributions in fragment mass and total kinetic energy (TKE). A new scheme for representing Y(A,TKE) was implemented in CGMF using three fission modes, S1, S2 and SL. The sensitivity profiles were calculated for 17 total parameters, which show that the neutron multiplicity distribution is strongly affected by the TKE distribution of the fragments. The total excitation energy (TXE) of the fragments is shared according to a parameter RT, which is defined as the ratio of the light to heavy initial temperatures. The sensitivity profile of the neutron multiplicity shows a second order effect of RT on the mean neutron multiplicity. A final sensitivity profile was produced for the parameter alpha, which affects the spin of the fragments. Higher values of alpha lead to higher fragment spins, which inhibit the emission of neutrons. Understanding the sensitivity of the prompt neutron and gamma observables to the many CGMF input parameters provides a platform for the optimization of these parameters.« less