Sample records for effective computational methods

  1. Discovering Synergistic Drug Combination from a Computational Perspective.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Liang, Cheng; Xiao, Qiu; Cao, Buwen; Li, Guanghui

    2018-03-30

    Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The Effect of Computer Assisted and Computer Based Teaching Methods on Computer Course Success and Computer Using Attitudes of Students

    ERIC Educational Resources Information Center

    Tosun, Nilgün; Suçsuz, Nursen; Yigit, Birol

    2006-01-01

    The purpose of this research was to investigate the effects of the computer-assisted and computer-based instructional methods on students achievement at computer classes and on their attitudes towards using computers. The study, which was completed in 6 weeks, were carried out with 94 sophomores studying in formal education program of Primary…

  3. Effective atomic numbers of some tissue substitutes by different methods: A comparative study.

    PubMed

    Singh, Vishwanath P; Badiger, N M

    2014-01-01

    Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV) where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV). The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV). The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.

  4. Effective atomic numbers of some tissue substitutes by different methods: A comparative study

    PubMed Central

    Singh, Vishwanath P.; Badiger, N. M.

    2014-01-01

    Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Zeff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Zeff, direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV) where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Zeff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Zeff, direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV). The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV). The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters. PMID:24600169

  5. 47 CFR 80.771 - Method of computing coverage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Method of computing coverage. 80.771 Section 80... STATIONS IN THE MARITIME SERVICES Standards for Computing Public Coast Station VHF Coverage § 80.771 Method of computing coverage. Compute the +17 dBu contour as follows: (a) Determine the effective antenna...

  6. An Evaluation of the Effectiveness of a Computer-Assisted Reading Intervention

    ERIC Educational Resources Information Center

    Messer, David; Nash, Gilly

    2018-01-01

    Background: A cost-effective method to address reading delays is to use computer-assisted learning, but these techniques are not always effective. Methods: We evaluated a commercially available computer system that uses visual mnemonics, in a randomised controlled trial with 78 English-speaking children (mean age 7 years) who their schools…

  7. Computing Fiber/Matrix Interfacial Effects In SiC/RBSN

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1996-01-01

    Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.

  8. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse

    PubMed Central

    2013-01-01

    Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913

  9. The Effect of Instructional Method on Cardiopulmonary Resuscitation Skill Performance: A Comparison Between Instructor-Led Basic Life Support and Computer-Based Basic Life Support With Voice-Activated Manikin.

    PubMed

    Wilson-Sands, Cathy; Brahn, Pamela; Graves, Kristal

    2015-01-01

    Validating participants' ability to correctly perform cardiopulmonary resuscitation (CPR) skills during basic life support courses can be a challenge for nursing professional development specialists. This study compares two methods of basic life support training, instructor-led and computer-based learning with voice-activated manikins, to identify if one method is more effective for performance of CPR skills. The findings suggest that a computer-based learning course with voice-activated manikins is a more effective method of training for improved CPR performance.

  10. Delivering Continuing Education to the Pharmacist: Correspondence Course versus Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Knoll, K. Richard; And Others

    1988-01-01

    A study of the effectiveness of two teaching methods, correspondence study and computer-assisted instruction, for professional continuing education in pharmacokinetics found that both were effective methods. (AUTHOR/MSE)

  11. Paper-Based and Computer-Based Concept Mappings: The Effects on Computer Achievement, Computer Anxiety and Computer Attitude

    ERIC Educational Resources Information Center

    Erdogan, Yavuz

    2009-01-01

    The purpose of this paper is to compare the effects of paper-based and computer-based concept mappings on computer hardware achievement, computer anxiety and computer attitude of the eight grade secondary school students. The students were randomly allocated to three groups and were given instruction on computer hardware. The teaching methods used…

  12. A Note on Testing Mediated Effects in Structural Equation Models: Reconciling Past and Current Research on the Performance of the Test of Joint Significance

    ERIC Educational Resources Information Center

    Valente, Matthew J.; Gonzalez, Oscar; Miocevic, Milica; MacKinnon, David P.

    2016-01-01

    Methods to assess the significance of mediated effects in education and the social sciences are well studied and fall into two categories: single sample methods and computer-intensive methods. A popular single sample method to detect the significance of the mediated effect is the test of joint significance, and a popular computer-intensive method…

  13. Introduction to computational aero-acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1996-01-01

    Computational aeroacoustics (CAA) is introduced, by presenting its definition, advantages, applications, and initial challenges. The effects of Mach number and Reynolds number on CAA are considered. The CAA method combines the methods of aeroacoustics and computational fluid dynamics.

  14. Influence of computational domain size on the pattern formation of the phase field crystals

    NASA Astrophysics Data System (ADS)

    Starodumov, Ilya; Galenko, Peter; Alexandrov, Dmitri; Kropotin, Nikolai

    2017-04-01

    Modeling of crystallization process by the phase field crystal method (PFC) represents one of the important directions of modern computational materials science. This method makes it possible to research the formation of stable or metastable crystal structures. In this paper, we study the effect of computational domain size on the crystal pattern formation obtained as a result of computer simulation by the PFC method. In the current report, we show that if the size of a computational domain is changed, the result of modeling may be a structure in metastable phase instead of pure stable state. The authors present a possible theoretical justification for the observed effect and provide explanations on the possible modification of the PFC method to account for this phenomenon.

  15. Effects of Learning Style and Training Method on Computer Attitude and Performance in World Wide Web Page Design Training.

    ERIC Educational Resources Information Center

    Chou, Huey-Wen; Wang, Yu-Fang

    1999-01-01

    Compares the effects of two training methods on computer attitude and performance in a World Wide Web page design program in a field experiment with high school students in Taiwan. Discusses individual differences, Kolb's Experiential Learning Theory and Learning Style Inventory, Computer Attitude Scale, and results of statistical analyses.…

  16. Student perceptions and learning outcomes of computer-assisted versus traditional instruction in physiology.

    PubMed

    Richardson, D

    1997-12-01

    This study compared student perceptions and learning outcomes of computer-assisted instruction against those of traditional didactic lectures. Components of Quantitative Circulatory Physiology (Biological Simulators) and Mechanical Properties of Active Muscle (Trinity Software) were used to teach regulation of tissue blood flow and muscle mechanics, respectively, in the course Medical Physiology. These topics were each taught, in part, by 1) standard didactic lectures, 2) computer-assisted lectures, and 3) computer laboratory assignment. Subjective evaluation was derived from a questionnaire assessing student opinions of the effectiveness of each method. Objective evaluation consisted of comparing scores on examination questions generated from each method. On a 1-10 scale, effectiveness ratings were higher (P < 0.0001) for the didactic lectures (7.7) compared with either computer-assisted lecture (3.8) or computer laboratory (4.2) methods. A follow-up discussion with representatives from the class indicated that students did not perceive computer instruction as being time effective. However, examination scores from computer laboratory questions (94.3%) were significantly higher compared with ones from either computer-assisted (89.9%; P < 0.025) or didactic (86.6%; P < 0.001) lectures. Thus computer laboratory instruction enhanced learning outcomes in medical physiology despite student perceptions to the contrary.

  17. Computation of Standard Errors

    PubMed Central

    Dowd, Bryan E; Greene, William H; Norton, Edward C

    2014-01-01

    Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304

  18. Shielding and activity estimator for template-based nuclide identification methods

    DOEpatents

    Nelson, Karl Einar

    2013-04-09

    According to one embodiment, a method for estimating an activity of one or more radio-nuclides includes receiving one or more templates, the one or more templates corresponding to one or more radio-nuclides which contribute to a probable solution, receiving one or more weighting factors, each weighting factor representing a contribution of one radio-nuclide to the probable solution, computing an effective areal density for each of the one more radio-nuclides, computing an effective atomic number (Z) for each of the one more radio-nuclides, computing an effective metric for each of the one or more radio-nuclides, and computing an estimated activity for each of the one or more radio-nuclides. In other embodiments, computer program products, systems, and other methods are presented for estimating an activity of one or more radio-nuclides.

  19. Human sense utilization method on real-time computer graphics

    NASA Astrophysics Data System (ADS)

    Maehara, Hideaki; Ohgashi, Hitoshi; Hirata, Takao

    1997-06-01

    We are developing an adjustment method of real-time computer graphics, to obtain effective ones which give audience various senses intended by producer, utilizing human sensibility technologically. Generally, production of real-time computer graphics needs much adjustment of various parameters, such as 3D object models/their motions/attributes/view angle/parallax etc., in order that the graphics gives audience superior effects as reality of materials, sense of experience and so on. And it is also known it costs much to adjust such various parameters by trial and error. A graphics producer often evaluates his graphics to improve it. For example, it may lack 'sense of speed' or be necessary to be given more 'sense of settle down,' to improve it. On the other hand, we can know how the parameters in computer graphics affect such senses by means of statistically analyzing several samples of computer graphics which provide different senses. We paid attention to these two facts, so that we designed an adjustment method of the parameters by inputting phases of sense into a computer. By the way of using this method, it becomes possible to adjust real-time computer graphics more effectively than by conventional way of trial and error.

  20. Multiprocessor computer overset grid method and apparatus

    DOEpatents

    Barnette, Daniel W.; Ober, Curtis C.

    2003-01-01

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  1. An approximate solution to improve computational efficiency of impedance-type payload load prediction

    NASA Technical Reports Server (NTRS)

    White, C. W.

    1981-01-01

    The computational efficiency of the impedance type loads prediction method was studied. Three goals were addressed: devise a method to make the impedance method operate more efficiently in the computer; assess the accuracy and convenience of the method for determining the effect of design changes; and investigate the use of the method to identify design changes for reduction of payload loads. The method is suitable for calculation of dynamic response in either the frequency or time domain. It is concluded that: the choice of an orthogonal coordinate system will allow the impedance method to operate more efficiently in the computer; the approximate mode impedance technique is adequate for determining the effect of design changes, and is applicable for both statically determinate and statically indeterminate payload attachments; and beneficial design changes to reduce payload loads can be identified by the combined application of impedance techniques and energy distribution review techniques.

  2. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  3. On computational methods for crashworthiness

    NASA Technical Reports Server (NTRS)

    Belytschko, T.

    1992-01-01

    The evolution of computational methods for crashworthiness and related fields is described and linked with the decreasing cost of computational resources and with improvements in computation methodologies. The latter includes more effective time integration procedures and more efficient elements. Some recent developments in methodologies and future trends are also summarized. These include multi-time step integration (or subcycling), further improvements in elements, adaptive meshes, and the exploitation of parallel computers.

  4. On the minimum orbital intersection distance computation: a new effective method

    NASA Astrophysics Data System (ADS)

    Hedo, José M.; Ruíz, Manuel; Peláez, Jesús

    2018-06-01

    The computation of the Minimum Orbital Intersection Distance (MOID) is an old, but increasingly relevant problem. Fast and precise methods for MOID computation are needed to select potentially hazardous asteroids from a large catalogue. The same applies to debris with respect to spacecraft. An iterative method that strictly meets these two premises is presented.

  5. Developing and utilizing an Euler computational method for predicting the airframe/propulsion effects for an aft-mounted turboprop transport. Volume 2: User guide

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Neback, H. E.; Kao, T. J.; Yu, N. Y.; Kusunose, K.

    1991-01-01

    This manual explains how to use an Euler based computational method for predicting the airframe/propulsion integration effects for an aft-mounted turboprop transport. The propeller power effects are simulated by the actuator disk concept. This method consists of global flow field analysis and the embedded flow solution for predicting the detailed flow characteristics in the local vicinity of an aft-mounted propfan engine. The computational procedure includes the use of several computer programs performing four main functions: grid generation, Euler solution, grid embedding, and streamline tracing. This user's guide provides information for these programs, including input data preparations with sample input decks, output descriptions, and sample Unix scripts for program execution in the UNICOS environment.

  6. The Effects of Computer-Supported Inquiry-Based Learning Methods and Peer Interaction on Learning Stellar Parallax

    ERIC Educational Resources Information Center

    Ruzhitskaya, Lanika

    2011-01-01

    The presented research study investigated the effects of computer-supported inquiry-based learning and peer interaction methods on effectiveness of learning a scientific concept. The stellar parallax concept was selected as a basic, and yet important in astronomy, scientific construct, which is based on a straightforward relationship of several…

  7. A simplified analysis of propulsion installation losses for computerized aircraft design

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.; Nelms, W. P., Jr.; Bailey, R. O.

    1976-01-01

    A simplified method is presented for computing the installation losses of aircraft gas turbine propulsion systems. The method has been programmed for use in computer aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.

  8. Vectorization on the star computer of several numerical methods for a fluid flow problem

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  9. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial fabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating (1) complex composite structural behavior in general and (2) specific aerospace propulsion structural components in particular.

  10. Computational composite mechanics for aerospace propulsion structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  11. Viscous-inviscid interaction method including wake effects for three-dimensional wing-body configurations

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1981-01-01

    A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.

  12. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  13. Analysis of Five Instructional Methods for Teaching Sketchpad to Junior High Students

    ERIC Educational Resources Information Center

    Wright, Geoffrey; Shumway, Steve; Terry, Ronald; Bartholomew, Scott

    2012-01-01

    This manuscript addresses a problem teachers of computer software applications face today: What is an effective method for teaching new computer software? Technology and engineering teachers, specifically those with communications and other related courses that involve computer software applications, face this problem when teaching computer…

  14. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    PubMed

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  15. The effectiveness of a training method using self-modeling webcam photos for reducing musculoskeletal risk among office workers using computers.

    PubMed

    Taieb-Maimon, Meirav; Cwikel, Julie; Shapira, Bracha; Orenstein, Ido

    2012-03-01

    An intervention study was conducted to examine the effectiveness of an innovative self-modeling photo-training method for reducing musculoskeletal risk among office workers using computers. Sixty workers were randomly assigned to either: 1) a control group; 2) an office training group that received personal, ergonomic training and workstation adjustments or 3) a photo-training group that received both office training and an automatic frequent-feedback system that displayed on the computer screen a photo of the worker's current sitting posture together with the correct posture photo taken earlier during office training. Musculoskeletal risk was evaluated using the Rapid Upper Limb Assessment (RULA) method before, during and after the six weeks intervention. Both training methods provided effective short-term posture improvement; however, sustained improvement was only attained with the photo-training method. Both interventions had a greater effect on older workers and on workers suffering more musculoskeletal pain. The photo-training method had a greater positive effect on women than on men. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. A vectorized Lanczos eigensolver for high-performance computers

    NASA Technical Reports Server (NTRS)

    Bostic, Susan W.

    1990-01-01

    The computational strategies used to implement a Lanczos-based-method eigensolver on the latest generation of supercomputers are described. Several examples of structural vibration and buckling problems are presented that show the effects of using optimization techniques to increase the vectorization of the computational steps. The data storage and access schemes and the tools and strategies that best exploit the computer resources are presented. The method is implemented on the Convex C220, the Cray 2, and the Cray Y-MP computers. Results show that very good computation rates are achieved for the most computationally intensive steps of the Lanczos algorithm and that the Lanczos algorithm is many times faster than other methods extensively used in the past.

  17. Comparison of Knowledge and Attitudes Using Computer-Based and Face-to-Face Personal Hygiene Training Methods in Food Processing Facilities

    ERIC Educational Resources Information Center

    Fenton, Ginger D.; LaBorde, Luke F.; Radhakrishna, Rama B.; Brown, J. Lynne; Cutter, Catherine N.

    2006-01-01

    Computer-based training is increasingly favored by food companies for training workers due to convenience, self-pacing ability, and ease of use. The objectives of this study were to determine if personal hygiene training, offered through a computer-based method, is as effective as a face-to-face method in knowledge acquisition and improved…

  18. Computer design of porous active materials at different dimensional scales

    NASA Astrophysics Data System (ADS)

    Nasedkin, Andrey

    2017-12-01

    The paper presents a mathematical and computer modeling of effective properties of porous piezoelectric materials of three types: with ordinary porosity, with metallized pore surfaces, and with nanoscale porosity structure. The described integrated approach includes the effective moduli method of composite mechanics, simulation of representative volumes, and finite element method.

  19. The Effect of Computer Games on Students' Critical Thinking Disposition and Educational Achievement

    ERIC Educational Resources Information Center

    Seifi, Mohammad; Derikvandi, Zahra; Moosavipour, Saeed; Khodabandelou, Rouhollah

    2015-01-01

    The main aim of this research was to investigate the effect of computer games on student' critical thinking disposition and educational achievement. The research method was descriptive, and its type was casual-comparative. The sample included 270 female high school students in Andimeshk town selected by multistage cluster method. Ricketts…

  20. Improved patient size estimates for accurate dose calculations in abdomen computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Lae

    2017-07-01

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  1. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  2. The effectiveness of computer-managed instruction versus traditional classroom lecture on achievement outcomes.

    PubMed

    Schmidt, S M; Arndt, M J; Gaston, S; Miller, B J

    1991-01-01

    This controlled experimental study examines the effect of two teaching methods on achievement outcomes from a 15-week, 2 credit hour semester course taught at two midwestern universities. Students were randomly assigned to either computer-managed instruction in which faculty function as tutors or the traditional classroom course of study. In addition, the effects of age, grade point average, attitudes toward computers, and satisfaction with the course on teaching method were analyzed using analysis of covariance. Younger students achieved better scores than did older students. Regardless of teaching method, however, neither method appeared to be better than the other for teaching course content. Students did not prefer one method over the other as indicated by their satisfaction scores. With demands upon university faculty to conduct research and publish, alternative methods of teaching that free faculty from the classroom should be considered. This study suggests that educators can select such an alternative teaching method to traditional classroom teaching without sacrificing quality education for certain courses.

  3. Comparing Virtual and Physical Robotics Environments for Supporting Complex Systems and Computational Thinking

    ERIC Educational Resources Information Center

    Berland, Matthew; Wilensky, Uri

    2015-01-01

    Both complex systems methods (such as agent-based modeling) and computational methods (such as programming) provide powerful ways for students to understand new phenomena. To understand how to effectively teach complex systems and computational content to younger students, we conducted a study in four urban middle school classrooms comparing…

  4. A method of non-contact reading code based on computer vision

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Zong, Xiaoyu; Guo, Bingxuan

    2018-03-01

    With the purpose of guarantee the computer information exchange security between internal and external network (trusted network and un-trusted network), A non-contact Reading code method based on machine vision has been proposed. Which is different from the existing network physical isolation method. By using the computer monitors, camera and other equipment. Deal with the information which will be on exchanged, Include image coding ,Generate the standard image , Display and get the actual image , Calculate homography matrix, Image distort correction and decoding in calibration, To achieve the computer information security, Non-contact, One-way transmission between the internal and external network , The effectiveness of the proposed method is verified by experiments on real computer text data, The speed of data transfer can be achieved 24kb/s. The experiment shows that this algorithm has the characteristics of high security, fast velocity and less loss of information. Which can meet the daily needs of the confidentiality department to update the data effectively and reliably, Solved the difficulty of computer information exchange between Secret network and non-secret network, With distinctive originality, practicability, and practical research value.

  5. Computational methods in drug discovery

    PubMed Central

    Leelananda, Sumudu P

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed. PMID:28144341

  6. Computational methods in drug discovery.

    PubMed

    Leelananda, Sumudu P; Lindert, Steffen

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  7. The Effectiveness of Computer-Aid, Self-Instructional Programs in Dental Education: A Systematic Review of the Literature.

    ERIC Educational Resources Information Center

    Rosenberg, Harold; Grad, Helen A.; Matear, David W.

    2003-01-01

    Performed a systematic review of the published literature comparing computer-aided learning (CAL) with other teaching methods in dental education. Concluded that CAL is as effective as other methods of teaching and can be used as an adjunct to traditional education or as a means of self-instruction. (EV)

  8. Hybrid transport and diffusion modeling using electron thermal transport Monte Carlo SNB in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Moses, Gregory

    2017-10-01

    The iSNB (implicit Schurtz Nicolai Busquet) multigroup diffusion electron thermal transport method is adapted into an Electron Thermal Transport Monte Carlo (ETTMC) transport method to better model angular and long mean free path non-local effects. Previously, the ETTMC model had been implemented in the 2D DRACO multiphysics code and found to produce consistent results with the iSNB method. Current work is focused on a hybridization of the computationally slower but higher fidelity ETTMC transport method with the computationally faster iSNB diffusion method in order to maximize computational efficiency. Furthermore, effects on the energy distribution of the heat flux divergence are studied. Work to date on the hybrid method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  9. An overview of computational simulation methods for composite structures failure and life analysis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1993-01-01

    Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.

  10. Physical-geometric optics method for large size faceted particles.

    PubMed

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Zhang, Xiaodong

    2017-10-02

    A new physical-geometric optics method is developed to compute the single-scattering properties of faceted particles. It incorporates a general absorption vector to accurately account for inhomogeneous wave effects, and subsequently yields the relevant analytical formulas effective and computationally efficient for absorptive scattering particles. A bundle of rays incident on a certain facet can be traced as a single beam. For a beam incident on multiple facets, a systematic beam-splitting technique based on computer graphics is used to split the original beam into several sub-beams so that each sub-beam is incident only on an individual facet. The new beam-splitting technique significantly reduces the computational burden. The present physical-geometric optics method can be generalized to arbitrary faceted particles with either convex or concave shapes and with a homogeneous or an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared to their counterparts from two other methods including a numerically rigorous method.

  11. Semiannual report, 1 April - 30 September 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software for parallel computers. Research in these areas is discussed.

  12. A hybrid parallel architecture for electrostatic interactions in the simulation of dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Chun; Lu, Zhong-Yuan; Qian, Hu-Jun; Wang, Yong-Lei; Han, Jie-Ping

    2017-11-01

    In this work, we upgraded the electrostatic interaction method of CU-ENUF (Yang, et al., 2016) which first applied CUNFFT (nonequispaced Fourier transforms based on CUDA) to the reciprocal-space electrostatic computation and made the computation of electrostatic interaction done thoroughly in GPU. The upgraded edition of CU-ENUF runs concurrently in a hybrid parallel way that enables the computation parallelizing on multiple computer nodes firstly, then further on the installed GPU in each computer. By this parallel strategy, the size of simulation system will be never restricted to the throughput of a single CPU or GPU. The most critical technical problem is how to parallelize a CUNFFT in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Furthermore, the upgraded method is capable of computing electrostatic interactions for both the atomistic molecular dynamics (MD) and the dissipative particle dynamics (DPD). Finally, the benchmarks conducted for validation and performance indicate that the upgraded method is able to not only present a good precision when setting suitable parameters, but also give an efficient way to compute electrostatic interactions for huge simulation systems. Program Files doi:http://dx.doi.org/10.17632/zncf24fhpv.1 Licensing provisions: GNU General Public License 3 (GPL) Programming language: C, C++, and CUDA C Supplementary material: The program is designed for effective electrostatic interactions of large-scale simulation systems, which runs on particular computers equipped with NVIDIA GPUs. It has been tested on (a) single computer node with Intel(R) Core(TM) i7-3770@ 3.40 GHz (CPU) and GTX 980 Ti (GPU), and (b) MPI parallel computer nodes with the same configurations. Nature of problem: For molecular dynamics simulation, the electrostatic interaction is the most time-consuming computation because of its long-range feature and slow convergence in simulation space, which approximately take up most of the total simulation time. Although the parallel method CU-ENUF (Yang et al., 2016) based on GPU has achieved a qualitative leap compared with previous methods in electrostatic interactions computation, the computation capability is limited to the throughput capacity of a single GPU for super-scale simulation system. Therefore, we should look for an effective method to handle the calculation of electrostatic interactions efficiently for a simulation system with super-scale size. Solution method: We constructed a hybrid parallel architecture, in which CPU and GPU are combined to accelerate the electrostatic computation effectively. Firstly, the simulation system is divided into many subtasks via domain-decomposition method. Then MPI (Message Passing Interface) is used to implement the CPU-parallel computation with each computer node corresponding to a particular subtask, and furthermore each subtask in one computer node will be executed in GPU in parallel efficiently. In this hybrid parallel method, the most critical technical problem is how to parallelize a CUNFFT (nonequispaced fast Fourier transform based on CUDA) in the parallel strategy, which is conquered effectively by deep-seated research of basic principles and some algorithm skills. Restrictions: The HP-ENUF is mainly oriented to super-scale system simulations, in which the performance superiority is shown adequately. However, for a small simulation system containing less than 106 particles, the mode of multiple computer nodes has no apparent efficiency advantage or even lower efficiency due to the serious network delay among computer nodes, than the mode of single computer node. References: (1) S.-C. Yang, H.-J. Qian, Z.-Y. Lu, Appl. Comput. Harmon. Anal. 2016, http://dx.doi.org/10.1016/j.acha.2016.04.009. (2) S.-C. Yang, Y.-L. Wang, G.-S. Jiao, H.-J. Qian, Z.-Y. Lu, J. Comput. Chem. 37 (2016) 378. (3) S.-C. Yang, Y.-L. Zhu, H.-J. Qian, Z.-Y. Lu, Appl. Chem. Res. Chin. Univ., 2017, http://dx.doi.org/10.1007/s40242-016-6354-5. (4) Y.-L. Zhu, H. Liu, Z.-W. Li, H.-J. Qian, G. Milano, Z.-Y. Lu, J. Comput. Chem. 34 (2013) 2197.

  13. Effects of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Academic Achievement in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' academic achievement in electrochemistry in Makurdi metropolis. Six research questions and six hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  14. Relative Effect of Lecture Method Supplemented with Music and Computer Animation on Senior Secondary School Students' Retention in Electrochemistry

    ERIC Educational Resources Information Center

    Akpoghol, T. V.; Ezeudu, F. O.; Adzape, J. N.; Otor, E. E.

    2016-01-01

    The study investigated the effects of Lecture Method Supplemented with Music (LMM) and Computer Animation (LMC) on senior secondary school students' retention in electrochemistry in Makurdi metropolis. Three research questions and three hypotheses guided the study. The design of the study was quasi experimental, specifically the pre-test,…

  15. A Comparison of the Effectiveness between Computer Aided Drafting and the Traditional Drafting Techniques as Methods of Teaching Pictorial and Multiview Drawings.

    ERIC Educational Resources Information Center

    Kashef, Ali E.

    A study was conducted to determine the effectiveness of teaching multiview and pictorial drawing using traditional methods and using computer-aided drafting (CAD). Research used a quasi-experimental design; subjects were 37 full- and part-time undergraduate students in industrial technology or technology education courses. The students were…

  16. A Comparative Study on the Effectiveness of the Computer Assisted Method and the Interactionist Approach to Teaching Geometry Shapes to Young Children

    ERIC Educational Resources Information Center

    Zaranis, Nicholas; Synodi, Evanthia

    2017-01-01

    The purpose of this study is to compare and evaluate the effectiveness of computer assisted teaching of geometry shapes and an interactionist approach to teaching geometry in kindergarten versus other more traditional teaching methods. Our research compares the improvement of the children's geometrical competence using two teaching approaches. The…

  17. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  18. Algorithms for the optimization of RBE-weighted dose in particle therapy.

    PubMed

    Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M

    2013-01-21

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  19. Algorithms for the optimization of RBE-weighted dose in particle therapy

    NASA Astrophysics Data System (ADS)

    Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.

    2013-01-01

    We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.

  20. Improved look-up table method of computer-generated holograms.

    PubMed

    Wei, Hui; Gong, Guanghong; Li, Ni

    2016-11-10

    Heavy computation load and vast memory requirements are major bottlenecks of computer-generated holograms (CGHs), which are promising and challenging in three-dimensional displays. To solve these problems, an improved look-up table (LUT) method suitable for arbitrarily sampled object points is proposed and implemented on a graphics processing unit (GPU) whose reconstructed object quality is consistent with that of the coherent ray-trace (CRT) method. The concept of distance factor is defined, and the distance factors are pre-computed off-line and stored in a look-up table. The results show that while reconstruction quality close to that of the CRT method is obtained, the on-line computation time is dramatically reduced compared with the LUT method on the GPU and the memory usage is lower than that of the novel-LUT considerably. Optical experiments are carried out to validate the effectiveness of the proposed method.

  1. Soil structure characterized using computed tomographic images

    Treesearch

    Zhanqi Cheng; Stephen H. Anderson; Clark J. Gantzer; J. W. Van Sambeek

    2003-01-01

    Fractal analysis of soil structure is a relatively new method for quantifying the effects of management systems on soil properties and quality. The objective of this work was to explore several methods of studying images to describe and quantify structure of soils under forest management. This research uses computed tomography and a topological method called Multiple...

  2. A potential tool for clinicians; evaluating a computer-led dietary assessment method in overweight and obese women during weight loss

    USDA-ARS?s Scientific Manuscript database

    Background: Dietary assessment methods used in overweight/obese participants have been scrutinized for underreporting energy. Objective: Evaluate the effectiveness of a computer-administered, 24-hour recall method (ASA24) to measure energy and nutrient intake in overweight/obese women and to further...

  3. Methodological Issues in Mobile Computer-Supported Collaborative Learning (mCSCL): What Methods, What to Measure and When to Measure?

    ERIC Educational Resources Information Center

    Song, Yanjie

    2014-01-01

    This study aims to investigate (1) methods utilized in mobile computer-supported collaborative learning (mCSCL) research which focuses on studying, learning and collaboration mediated by mobile devices; (2) whether these methods have examined mCSCL effectively; (3) when the methods are administered; and (4) what methodological issues exist in…

  4. Survey of methods for secure connection to the internet

    NASA Astrophysics Data System (ADS)

    Matsui, Shouichi

    1994-04-01

    This paper describes a study of a security method of protecting inside network computers against outside miscreants and unwelcome visitors and a control method when these computers are connected with the Internet. In the present Internet, a method to encipher all data cannot be used, so that it is necessary to utilize PEM (Privacy Enhanced Mail) capable of the encipherment and conversion of secret information. For preventing miscreant access by eavesdropping password, one-time password is effective. The most cost-effective method is a firewall system. This system lies between the outside and inside network. By limiting computers that directly communicate with the Internet, control is centralized and inside network security is protected. If the security of firewall systems is strictly controlled under correct setting, security within the network can be secured even in open networks such as the Internet.

  5. Calculation of heat transfer on shuttle type configurations including the effects of variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.

    1972-01-01

    A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.

  6. A Simple and Computationally Efficient Sampling Approach to Covariate Adjustment for Multifactor Dimensionality Reduction Analysis of Epistasis

    PubMed Central

    Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.

    2010-01-01

    Epistasis or gene-gene interaction is a fundamental component of the genetic architecture of complex traits such as disease susceptibility. Multifactor dimensionality reduction (MDR) was developed as a nonparametric and model-free method to detect epistasis when there are no significant marginal genetic effects. However, in many studies of complex disease, other covariates like age of onset and smoking status could have a strong main effect and may potentially interfere with MDR's ability to achieve its goal. In this paper, we present a simple and computationally efficient sampling method to adjust for covariate effects in MDR. We use simulation to show that after adjustment, MDR has sufficient power to detect true gene-gene interactions. We also compare our method with the state-of-art technique in covariate adjustment. The results suggest that our proposed method performs similarly, but is more computationally efficient. We then apply this new method to an analysis of a population-based bladder cancer study in New Hampshire. PMID:20924193

  7. An Evaluation of Attitude-Independent Magnetometer-Bias Determination Methods

    NASA Technical Reports Server (NTRS)

    Hashmall, J. A.; Deutschmann, Julie

    1996-01-01

    Although several algorithms now exist for determining three-axis magnetometer (TAM) biases without the use of attitude data, there are few studies on the effectiveness of these methods, especially in comparison with attitude dependent methods. This paper presents the results of a comparison of three attitude independent methods and an attitude dependent method for computing TAM biases. The comparisons are based on in-flight data from the Extreme Ultraviolet Explorer (EUVE), the Upper Atmosphere Research Satellite (UARS), and the Compton Gamma Ray Observatory (GRO). The effectiveness of an algorithm is measured by the accuracy of attitudes computed using biases determined with that algorithm. The attitude accuracies are determined by comparison with known, extremely accurate, star-tracker-based attitudes. In addition, the effect of knowledge of calibration parameters other than the biases on the effectiveness of all bias determination methods is examined.

  8. A novel patient-specific model to compute coronary fractional flow reserve.

    PubMed

    Kwon, Soon-Sung; Chung, Eui-Chul; Park, Jin-Seo; Kim, Gook-Tae; Kim, Jun-Woo; Kim, Keun-Hong; Shin, Eun-Seok; Shim, Eun Bo

    2014-09-01

    The fractional flow reserve (FFR) is a widely used clinical index to evaluate the functional severity of coronary stenosis. A computer simulation method based on patients' computed tomography (CT) data is a plausible non-invasive approach for computing the FFR. This method can provide a detailed solution for the stenosed coronary hemodynamics by coupling computational fluid dynamics (CFD) with the lumped parameter model (LPM) of the cardiovascular system. In this work, we have implemented a simple computational method to compute the FFR. As this method uses only coronary arteries for the CFD model and includes only the LPM of the coronary vascular system, it provides simpler boundary conditions for the coronary geometry and is computationally more efficient than existing approaches. To test the efficacy of this method, we simulated a three-dimensional straight vessel using CFD coupled with the LPM. The computed results were compared with those of the LPM. To validate this method in terms of clinically realistic geometry, a patient-specific model of stenosed coronary arteries was constructed from CT images, and the computed FFR was compared with clinically measured results. We evaluated the effect of a model aorta on the computed FFR and compared this with a model without the aorta. Computationally, the model without the aorta was more efficient than that with the aorta, reducing the CPU time required for computing a cardiac cycle to 43.4%. Copyright © 2014. Published by Elsevier Ltd.

  9. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    PubMed

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  10. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    PubMed Central

    Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827

  11. Computational flow development for unsteady viscous flows: Foundation of the numerical method

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Spehert, T.

    1978-01-01

    A procedure is presented for effective consideration of viscous effects in computational development of high Reynolds number flows. The procedure is based on the interpretation of the Navier-Stokes equations as vorticity transport equations. The physics of the flow was represented in a form suitable for numerical analysis. Lighthill's concept for flow development for computational purposes was adapted. The vorticity transport equations were cast in a form convenient for computation. A statement for these equations was written using the method of weighted residuals and applying the Galerkin criterion. An integral representation of the induced velocity was applied on the basis of the Biot-Savart law. Distribution of new vorticity, produced at wing surfaces over small computational time intervals, was assumed to be confined to a thin region around the wing surfaces.

  12. The Effect of Computer-Assisted Teaching on Remedying Misconceptions: The Case of the Subject "Probability"

    ERIC Educational Resources Information Center

    Gurbuz, Ramazan; Birgin, Osman

    2012-01-01

    The aim of this study is to determine the effects of computer-assisted teaching (CAT) on remedying misconceptions students often have regarding some probability concepts in mathematics. Toward this aim, computer-assisted teaching materials were developed and used in the process of teaching. Within the true-experimental research method, a pre- and…

  13. Short-Term Effects of Playing Computer Games on Attention

    ERIC Educational Resources Information Center

    Tahiroglu, Aysegul Yolga; Celik, Gonca Gul; Avci, Ayse; Seydaoglu, Gulsah; Uzel, Mehtap; Altunbas, Handan

    2010-01-01

    Objective: The main aim of the present study is to investigate the short-term cognitive effects of computer games in children with different psychiatric disorders and normal controls. Method: One hundred one children are recruited for the study (aged between 9 and 12 years). All participants played a motor-racing game on the computer for 1 hour.…

  14. Effects of Attitudes and Behaviours on Learning Mathematics with Computer Tools

    ERIC Educational Resources Information Center

    Reed, Helen C.; Drijvers, Paul; Kirschner, Paul A.

    2010-01-01

    This mixed-methods study investigates the effects of student attitudes and behaviours on the outcomes of learning mathematics with computer tools. A computer tool was used to help students develop the mathematical concept of function. In the whole sample (N = 521), student attitudes could account for a 3.4 point difference in test scores between…

  15. Neural network approach to proximity effect corrections in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.

    1990-05-01

    The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.

  16. An Investigation of High-Order Shock-Capturing Methods for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Baysal, Oktay

    1997-01-01

    Topics covered include: Low-dispersion scheme for nonlinear acoustic waves in nonuniform flow; Computation of acoustic scattering by a low-dispersion scheme; Algorithmic extension of low-dispersion scheme and modeling effects for acoustic wave simulation; The accuracy of shock capturing in two spatial dimensions; Using high-order methods on lower-order geometries; and Computational considerations for the simulation of discontinuous flows.

  17. Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography.

    PubMed

    Matthews, Thomas P; Wang, Kun; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2017-05-01

    Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique has been combined with stochastic gradient descent (SGD) to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing SGD with a structured optimization method, such as the regularized dual averaging method, that exploits knowledge of the composition of the cost function. In this paper, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing nonsmooth regularization penalties to be naturally incorporated. The wave equation is solved by the use of a time-domain method. The effectiveness of this approach is demonstrated through computer simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by the use of SGD.

  18. Forward calculation of gravity and its gradient using polyhedral representation of density interfaces: an application of spherical or ellipsoidal topographic gravity effect

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chen, Chao

    2018-02-01

    A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.

  19. A RUTCOR Project on Discrete Applied Mathematics

    DTIC Science & Technology

    1989-01-30

    the more important results of this work is the possibility that Groebner basis methods of computational commutative algebra might lead to effective...Billera, L.J., " Groebner Basis Methods for Multivariate Splines," prepared for the Proceedings of the Oslo Conference on Computer-aided Geometric Design

  20. An empirical method for computing leeside centerline heating on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Helms, V. T., III

    1981-01-01

    An empirical method is presented for computing top centerline heating on the Space Shuttle Orbiter at simulated reentry conditions. It is shown that the Shuttle's top centerline can be thought of as being under the influence of a swept cylinder flow field. The effective geometry of the flow field, as well as top centerline heating, are directly related to oil-flow patterns on the upper surface of the fuselage. An empirical turbulent swept cylinder heating method was developed based on these considerations. The method takes into account the effects of the vortex-dominated leeside flow field without actually having to compute the detailed properties of such a complex flow. The heating method closely predicts experimental heat-transfer values on the top centerline of a Shuttle model at Mach numbers of 6 and 10 over a wide range in Reynolds number and angle of attack.

  1. A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.

    PubMed

    Prakash, Jaya; Yalavarthy, Phaneendra K

    2013-03-01

    Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.

  2. Computer program for pulsed thermocouples with corrections for radiation effects

    NASA Technical Reports Server (NTRS)

    Will, H. A.

    1981-01-01

    A pulsed thermocouple was used for measuring gas temperatures above the melting point of common thermocouples. This was done by allowing the thermocouple to heat until it approaches its melting point and then turning on the protective cooling gas. This method required a computer to extrapolate the thermocouple data to the higher gas temperatures. A method that includes the effect of radiation in the extrapolation is described. Computations of gas temperature are provided, along with the estimate of the final thermocouple wire temperature. Results from tests on high temperature combustor research rigs are presented.

  3. Technical Development and Application of Soft Computing in Agricultural and Biological Engineering

    USDA-ARS?s Scientific Manuscript database

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  4. Development of Soft Computing and Applications in Agricultural and Biological Engineering

    USDA-ARS?s Scientific Manuscript database

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  5. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  6. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  7. The “Silent Dog” Method: Analyzing the Impact of Self-Generated Rules When Teaching Different Computer Chains to Boys with Autism

    PubMed Central

    Arntzen, Erik; Halstadtro, Lill-Beathe; Halstadtro, Monica

    2009-01-01

    The purpose of the study was to extend the literature on verbal self-regulation by using the “silent dog” method to evaluate the role of verbal regulation over nonverbal behavior in 2 individuals with autism. Participants were required to talk-aloud while performing functional computer tasks.Then the effects of distracters with increasing demands on target behavior were evaluated as well as whether self-talk emitted by Participant 1 could be used to alter Participant 2's performance. Results suggest that participants' tasks seemed to be under control of self-instructions, and the rules generated from Participants 1's self-talk were effective in teaching computer skills to Participant 2. The silent dog method was useful in evaluating the possible role of self-generated rules in teaching computer skills to participants with autism. PMID:22477428

  8. The "silent dog" method: analyzing the impact of self-generated rules when teaching different computer chains to boys with autism.

    PubMed

    Arntzen, Erik; Halstadtro, Lill-Beathe; Halstadtro, Monica

    2009-01-01

    The purpose of the study was to extend the literature on verbal self-regulation by using the "silent dog" method to evaluate the role of verbal regulation over nonverbal behavior in 2 individuals with autism. Participants were required to talk-aloud while performing functional computer tasks.Then the effects of distracters with increasing demands on target behavior were evaluated as well as whether self-talk emitted by Participant 1 could be used to alter Participant 2's performance. Results suggest that participants' tasks seemed to be under control of self-instructions, and the rules generated from Participants 1's self-talk were effective in teaching computer skills to Participant 2. The silent dog method was useful in evaluating the possible role of self-generated rules in teaching computer skills to participants with autism.

  9. Acoustic computer tomographic pyrometry for two-dimensional measurement of gases taking into account the effect of refraction of sound wave paths

    NASA Astrophysics Data System (ADS)

    Lu, J.; Wakai, K.; Takahashi, S.; Shimizu, S.

    2000-06-01

    The algorithm which takes into account the effect of refraction of sound wave paths for acoustic computer tomography (CT) is developed. Incorporating the algorithm of refraction into ordinary CT algorithms which are based on Fourier transformation is very difficult. In this paper, the least-squares method, which is capable of considering the refraction effect, is employed to reconstruct the two-dimensional temperature distribution. The refraction effect is solved by writing a set of differential equations which is derived from Fermat's theorem and the calculus of variations. It is impossible to carry out refraction analysis and the reconstruction of temperature distribution simultaneously, so the problem is solved using the iteration method. The measurement field is assumed to take the shape of a circle and 16 speakers, also serving as the receivers, are set around it isometrically. The algorithm is checked through computer simulation with various kinds of temperature distributions. It is shown that the present method which takes into account the algorithm of the refraction effect can reconstruct temperature distributions with much greater accuracy than can methods which do not include the refraction effect.

  10. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    ERIC Educational Resources Information Center

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  11. Integrating Computational Science Tools into a Thermodynamics Course

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  12. Incorporating the gas analyzer response time in gas exchange computations.

    PubMed

    Mitchell, R R

    1979-11-01

    A simple method for including the gas analyzer response time in the breath-by-breath computation of gas exchange rates is described. The method uses a difference equation form of a model for the gas analyzer in the computation of oxygen uptake and carbon dioxide production and avoids a numerical differentiation required to correct the gas fraction wave forms. The effect of not accounting for analyzer response time is shown to be a 20% underestimation in gas exchange rate. The present method accurately measures gas exchange rate, is relatively insensitive to measurement errors in the analyzer time constant, and does not significantly increase the computation time.

  13. Computing Nash equilibria through computational intelligence methods

    NASA Astrophysics Data System (ADS)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  14. Optimal pre-scheduling of problem remappings

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Saltz, Joel H.

    1987-01-01

    A large class of scientific computational problems can be characterized as a sequence of steps where a significant amount of computation occurs each step, but the work performed at each step is not necessarily identical. Two good examples of this type of computation are: (1) regridding methods which change the problem discretization during the course of the computation, and (2) methods for solving sparse triangular systems of linear equations. Recent work has investigated a means of mapping such computations onto parallel processors; the method defines a family of static mappings with differing degrees of importance placed on the conflicting goals of good load balance and low communication/synchronization overhead. The performance tradeoffs are controllable by adjusting the parameters of the mapping method. To achieve good performance it may be necessary to dynamically change these parameters at run-time, but such changes can impose additional costs. If the computation's behavior can be determined prior to its execution, it can be possible to construct an optimal parameter schedule using a low-order-polynomial-time dynamic programming algorithm. Since the latter can be expensive, the performance is studied of the effect of a linear-time scheduling heuristic on one of the model problems, and it is shown to be effective and nearly optimal.

  15. Computational methods for structural load and resistance modeling

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  16. Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.; Werth, J.

    1979-01-01

    The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided.

  17. Current status of computational methods for transonic unsteady aerodynamics and aeroelastic applications

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Malone, John B.

    1992-01-01

    The current status of computational methods for unsteady aerodynamics and aeroelasticity is reviewed. The key features of challenging aeroelastic applications are discussed in terms of the flowfield state: low-angle high speed flows and high-angle vortex-dominated flows. The critical role played by viscous effects in determining aeroelastic stability for conditions of incipient flow separation is stressed. The need for a variety of flow modeling tools, from linear formulations to implementations of the Navier-Stokes equations, is emphasized. Estimates of computer run times for flutter calculations using several computational methods are given. Applications of these methods for unsteady aerodynamic and transonic flutter calculations for airfoils, wings, and configurations are summarized. Finally, recommendations are made concerning future research directions.

  18. Examining Information Problem-Solving, Knowledge, and Application Gains within Two Instructional Methods: Problem-Based and Computer-Mediated Participatory Simulation

    ERIC Educational Resources Information Center

    Newell, Terrance S.

    2008-01-01

    This study compared the effectiveness of two instructional methods--problem-based instruction within a face-to-face context and computer-mediated participatory simulation--in increasing students' content knowledge and application gains in the area of information problem-solving. The instructional methods were implemented over a four-week period. A…

  19. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    PubMed

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-04

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.

  20. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  1. Mastering Cognitive Development Theory in Computer Science Education

    ERIC Educational Resources Information Center

    Gluga, Richard; Kay, Judy; Lister, Raymond; Kleitman, Simon; Kleitman, Sabina

    2013-01-01

    To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that…

  2. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  3. Methods for the computation of detailed geoids and their accuracy

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.; Rummel, R.

    1975-01-01

    Two methods for the computation of geoid undulations using potential coefficients and 1 deg x 1 deg terrestrial anomaly data are examined. It was found that both methods give the same final result but that one method allows a more simplified error analysis. Specific equations were considered for the effect of the mass of the atmosphere and a cap dependent zero-order undulation term was derived. Although a correction to a gravity anomaly for the effect of the atmosphere is only about -0.87 mgal, this correction causes a fairly large undulation correction that was not considered previously. The accuracy of a geoid undulation computed by these techniques was estimated considering anomaly data errors, potential coefficient errors, and truncation (only a finite set of potential coefficients being used) errors. It was found that an optimum cap size of 20 deg should be used. The geoid and its accuracy were computed in the Geos 3 calibration area using the GEM 6 potential coefficients and 1 deg x 1 deg terrestrial anomaly data. The accuracy of the computed geoid is on the order of plus or minus 2 m with respect to an unknown set of best earth parameter constants.

  4. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  5. The Effect of the Computer Assisted Teaching and 7e Model of the Constructivist Learning Methods on the Achievements and Attitudes of High School Students

    ERIC Educational Resources Information Center

    Gönen, Selahattin; Kocakaya, Serhat; Inan, Cemil

    2006-01-01

    This study provides a comparative effect study of the Computer Assisted Teaching and the 7E model of the Constructivist Learning methods on attitudes and achievements of the students in physics classes. The experiments have been carried out in a private high school in Diyarbakir/Turkey on groups of first year students whose pre-test scores of…

  6. A Computational Method to Determine Glucose Infusion Rates for Isoglycemic Intravenous Glucose Infusion Study.

    PubMed

    Choi, Karam; Lee, Jung Chan; Oh, Tae Jung; Kim, Myeungseon; Kim, Hee Chan; Cho, Young Min; Kim, Sungwan

    2016-01-01

    The results of the isoglycemic intravenous glucose infusion (IIGI) study need to mimic the dynamic glucose profiles during the oral glucose tolerance test (OGTT) to accurately calculate the incretin effect. The glucose infusion rates during IIGI studies have historically been determined by experienced research personnel using the manual ad-hoc method. In this study, a computational method was developed to automatically determine the infusion rates for IIGI study based on a glucose-dynamics model. To evaluate the computational method, 18 subjects with normal glucose tolerance underwent a 75 g OGTT. One-week later, Group 1 (n = 9) and Group 2 (n = 9) underwent IIGI studies using the ad-hoc method and the computational method, respectively. Both methods were evaluated using correlation coefficient, mean absolute relative difference (MARD), and root mean square error (RMSE) between the glucose profiles from the OGTT and the IIGI study. The computational method exhibited significantly higher correlation (0.95 ± 0.03 versus 0.86 ± 0.10, P = 0.019), lower MARD (8.72 ± 1.83% versus 13.11 ± 3.66%, P = 0.002), and lower RMSE (10.33 ± 1.99 mg/dL versus 16.84 ± 4.43 mg/dL, P = 0.002) than the ad-hoc method. The computational method can facilitate IIGI study, and enhance its accuracy and stability. Using this computational method, a high-quality IIGI study can be accomplished without the need for experienced personnel.

  7. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  8. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

    PubMed

    Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C

    2006-02-28

    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.

  9. Computational Issues in Damping Identification for Large Scale Problems

    NASA Technical Reports Server (NTRS)

    Pilkey, Deborah L.; Roe, Kevin P.; Inman, Daniel J.

    1997-01-01

    Two damping identification methods are tested for efficiency in large-scale applications. One is an iterative routine, and the other a least squares method. Numerical simulations have been performed on multiple degree-of-freedom models to test the effectiveness of the algorithm and the usefulness of parallel computation for the problems. High Performance Fortran is used to parallelize the algorithm. Tests were performed using the IBM-SP2 at NASA Ames Research Center. The least squares method tested incurs high communication costs, which reduces the benefit of high performance computing. This method's memory requirement grows at a very rapid rate meaning that larger problems can quickly exceed available computer memory. The iterative method's memory requirement grows at a much slower pace and is able to handle problems with 500+ degrees of freedom on a single processor. This method benefits from parallelization, and significant speedup can he seen for problems of 100+ degrees-of-freedom.

  10. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  11. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  12. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.

  13. Large scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU)

    PubMed Central

    Shi, Yulin; Veidenbaum, Alexander V.; Nicolau, Alex; Xu, Xiangmin

    2014-01-01

    Background Modern neuroscience research demands computing power. Neural circuit mapping studies such as those using laser scanning photostimulation (LSPS) produce large amounts of data and require intensive computation for post-hoc processing and analysis. New Method Here we report on the design and implementation of a cost-effective desktop computer system for accelerated experimental data processing with recent GPU computing technology. A new version of Matlab software with GPU enabled functions is used to develop programs that run on Nvidia GPUs to harness their parallel computing power. Results We evaluated both the central processing unit (CPU) and GPU-enabled computational performance of our system in benchmark testing and practical applications. The experimental results show that the GPU-CPU co-processing of simulated data and actual LSPS experimental data clearly outperformed the multi-core CPU with up to a 22x speedup, depending on computational tasks. Further, we present a comparison of numerical accuracy between GPU and CPU computation to verify the precision of GPU computation. In addition, we show how GPUs can be effectively adapted to improve the performance of commercial image processing software such as Adobe Photoshop. Comparison with Existing Method(s) To our best knowledge, this is the first demonstration of GPU application in neural circuit mapping and electrophysiology-based data processing. Conclusions Together, GPU enabled computation enhances our ability to process large-scale data sets derived from neural circuit mapping studies, allowing for increased processing speeds while retaining data precision. PMID:25277633

  14. Wireless Infrared Networking in the Duke Paperless Classroom.

    ERIC Educational Resources Information Center

    Stetten, George D.; Guthrie, Scott D.

    1995-01-01

    Discusses wireless (diffuse infrared) networking technology to link laptop computers in a computer programming and numerical methods course at Duke University (North Carolina). Describes products and technologies, and effects on classroom dynamics. Reports on effective instructional strategies for lecture, solving student problems, building shared…

  15. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    PubMed

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  16. Graphics Flutter Analysis Methods, an interactive computing system at Lockheed-California Company

    NASA Technical Reports Server (NTRS)

    Radovcich, N. A.

    1975-01-01

    An interactive computer graphics system, Graphics Flutter Analysis Methods (GFAM), was developed to complement FAMAS, a matrix-oriented batch computing system, and other computer programs in performing complex numerical calculations using a fully integrated data management system. GFAM has many of the matrix operation capabilities found in FAMAS, but on a smaller scale, and is utilized when the analysis requires a high degree of interaction between the engineer and computer, and schedule constraints exclude the use of batch entry programs. Applications of GFAM to a variety of preliminary design, development design, and project modification programs suggest that interactive flutter analysis using matrix representations is a feasible and cost effective computing tool.

  17. A method for the modelling of porous and solid wind tunnel walls in computational fluid dynamics codes

    NASA Technical Reports Server (NTRS)

    Beutner, Thomas John

    1993-01-01

    Porous wall wind tunnels have been used for several decades and have proven effective in reducing wall interference effects in both low speed and transonic testing. They allow for testing through Mach 1, reduce blockage effects and reduce shock wave reflections in the test section. Their usefulness in developing computational fluid dynamics (CFD) codes has been limited, however, by the difficulties associated with modelling the effect of a porous wall in CFD codes. Previous approaches to modelling porous wall effects have depended either upon a simplified linear boundary condition, which has proven inadequate, or upon detailed measurements of the normal velocity near the wall, which require extensive wind tunnel time. The current work was initiated in an effort to find a simple, accurate method of modelling a porous wall boundary condition in CFD codes. The development of such a method would allow data from porous wall wind tunnels to be used more readily in validating CFD codes. This would be beneficial when transonic validations are desired, or when large models are used to achieve high Reynolds numbers in testing. A computational and experimental study was undertaken to investigate a new method of modelling solid and porous wall boundary conditions in CFD codes. The method utilized experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution was then imposed as a pressure boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the effect of porosity changes on the wall was investigated. Also, the effectiveness of this method when only sparse experimental measurements were available has been investigated. The current work demonstrated this approach for low speed flows and compared the results with experimental data obtained from a heavily instrumented variable porosity test section. The approach developed was simple, computationally inexpensive, and did not require extensive or intrusive measurements of the boundary conditions during the wind tunnel test. It may be applied to both solid and porous wall wind tunnel tests.

  18. Supersonic nonlinear potential analysis

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1984-01-01

    The NCOREL computer code was established to compute supersonic flow fields of wings and bodies. The method encompasses an implicit finite difference transonic relaxation method to solve the full potential equation in a spherical coordinate system. Two basic topic to broaden the applicability and usefulness of the present method which is encompassed within the computer code NCOREL for the treatment of supersonic flow problems were studied. The first topic is that of computing efficiency. Accelerated schemes are in use for transonic flow problems. One such scheme is the approximate factorization (AF) method and an AF scheme to the supersonic flow problem is developed. The second topic is the computation of wake flows. The proper modeling of wake flows is important for multicomponent configurations such as wing-body and multiple lifting surfaces where the wake of one lifting surface has a pronounced effect on a downstream body or other lifting surfaces.

  19. Fast hydrological model calibration based on the heterogeneous parallel computing accelerated shuffled complex evolution method

    NASA Astrophysics Data System (ADS)

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Hong, Yang; Zuo, Depeng; Ren, Minglei; Lei, Tianjie; Liang, Ke

    2018-01-01

    Hydrological model calibration has been a hot issue for decades. The shuffled complex evolution method developed at the University of Arizona (SCE-UA) has been proved to be an effective and robust optimization approach. However, its computational efficiency deteriorates significantly when the amount of hydrometeorological data increases. In recent years, the rise of heterogeneous parallel computing has brought hope for the acceleration of hydrological model calibration. This study proposed a parallel SCE-UA method and applied it to the calibration of a watershed rainfall-runoff model, the Xinanjiang model. The parallel method was implemented on heterogeneous computing systems using OpenMP and CUDA. Performance testing and sensitivity analysis were carried out to verify its correctness and efficiency. Comparison results indicated that heterogeneous parallel computing-accelerated SCE-UA converged much more quickly than the original serial version and possessed satisfactory accuracy and stability for the task of fast hydrological model calibration.

  20. VORSTAB: A computer program for calculating lateral-directional stability derivatives with vortex flow effect

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward

    1985-01-01

    A computer program based on the Quasi-Vortex-Lattice Method of Lan is presented for calculating longitudinal and lateral-directional aerodynamic characteristics of nonplanar wing-body combination. The method is based on the assumption of inviscid subsonic flow. Both attached and vortex-separated flows are treated. For the vortex-separated flow, the calculation is based on the method of suction analogy. The effect of vortex breakdown is accounted for by an empirical method. A summary of the theoretical method, program capabilities, input format, output variables and program job control set-up are described. Three test cases are presented as guides for potential users of the code.

  1. Methods of parallel computation applied on granular simulations

    NASA Astrophysics Data System (ADS)

    Martins, Gustavo H. B.; Atman, Allbens P. F.

    2017-06-01

    Every year, parallel computing has becoming cheaper and more accessible. As consequence, applications were spreading over all research areas. Granular materials is a promising area for parallel computing. To prove this statement we study the impact of parallel computing in simulations of the BNE (Brazil Nut Effect). This property is due the remarkable arising of an intruder confined to a granular media when vertically shaken against gravity. By means of DEM (Discrete Element Methods) simulations, we study the code performance testing different methods to improve clock time. A comparison between serial and parallel algorithms, using OpenMP® is also shown. The best improvement was obtained by optimizing the function that find contacts using Verlet's cells.

  2. Iterative-method performance evaluation for multiple vectors associated with a large-scale sparse matrix

    NASA Astrophysics Data System (ADS)

    Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo

    2016-07-01

    Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.

  3. A comparison of transport algorithms for premixed, laminar steady state flames

    NASA Technical Reports Server (NTRS)

    Coffee, T. P.; Heimerl, J. M.

    1980-01-01

    The effects of different methods of approximating multispecies transport phenomena in models of premixed, laminar, steady state flames were studied. Five approximation methods that span a wide range of computational complexity were developed. Identical data for individual species properties were used for each method. Each approximation method is employed in the numerical solution of a set of five H2-02-N2 flames. For each flame the computed species and temperature profiles, as well as the computed flame speeds, are found to be very nearly independent of the approximation method used. This does not indicate that transport phenomena are unimportant, but rather that the selection of the input values for the individual species transport properties is more important than the selection of the method used to approximate the multispecies transport. Based on these results, a sixth approximation method was developed that is computationally efficient and provides results extremely close to the most sophisticated and precise method used.

  4. An Intelligent Model for Pairs Trading Using Genetic Algorithms.

    PubMed

    Huang, Chien-Feng; Hsu, Chi-Jen; Chen, Chi-Chung; Chang, Bao Rong; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

  5. An Intelligent Model for Pairs Trading Using Genetic Algorithms

    PubMed Central

    Hsu, Chi-Jen; Chen, Chi-Chung; Li, Chen-An

    2015-01-01

    Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel methodology for pairs trading using genetic algorithms (GA). Our results showed that the GA-based models are able to significantly outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice. PMID:26339236

  6. New algorithms to compute the nearness symmetric solution of the matrix equation.

    PubMed

    Peng, Zhen-Yun; Fang, Yang-Zhi; Xiao, Xian-Wei; Du, Dan-Dan

    2016-01-01

    In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).

  7. Vectorization of transport and diffusion computations on the CDC Cyber 205

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Shumays, I.K.

    1986-01-01

    The development and testing of alternative numerical methods and computational algorithms specifically designed for the vectorization of transport and diffusion computations on a Control Data Corporation (CDC) Cyber 205 vector computer are described. Two solution methods for the discrete ordinates approximation to the transport equation are summarized and compared. Factors of 4 to 7 reduction in run times for certain large transport problems were achieved on a Cyber 205 as compared with run times on a CDC-7600. The solution of tridiagonal systems of linear equations, central to several efficient numerical methods for multidimensional diffusion computations and essential for fluid flowmore » and other physics and engineering problems, is also dealt with. Among the methods tested, a combined odd-even cyclic reduction and modified Cholesky factorization algorithm for solving linear symmetric positive definite tridiagonal systems is found to be the most effective for these systems on a Cyber 205. For large tridiagonal systems, computation with this algorithm is an order of magnitude faster on a Cyber 205 than computation with the best algorithm for tridiagonal systems on a CDC-7600.« less

  8. A Computational Methodology to Screen Activities of Enzyme Variants

    PubMed Central

    Hediger, Martin R.; De Vico, Luca; Svendsen, Allan; Besenmatter, Werner; Jensen, Jan H.

    2012-01-01

    We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing. PMID:23284627

  9. Kinetic isotope effects and how to describe them

    PubMed Central

    Karandashev, Konstantin; Xu, Zhen-Hao; Meuwly, Markus; Vaníček, Jiří; Richardson, Jeremy O.

    2017-01-01

    We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved. PMID:29282447

  10. Fast approximation for joint optimization of segmentation, shape, and location priors, and its application in gallbladder segmentation.

    PubMed

    Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu

    2017-05-01

    This paper addresses joint optimization for segmentation and shape priors, including translation, to overcome inter-subject variability in the location of an organ. Because a simple extension of the previous exact optimization method is too computationally complex, we propose a fast approximation for optimization. The effectiveness of the proposed approximation is validated in the context of gallbladder segmentation from a non-contrast computed tomography (CT) volume. After spatial standardization and estimation of the posterior probability of the target organ, simultaneous optimization of the segmentation, shape, and location priors is performed using a branch-and-bound method. Fast approximation is achieved by combining sampling in the eigenshape space to reduce the number of shape priors and an efficient computational technique for evaluating the lower bound. Performance was evaluated using threefold cross-validation of 27 CT volumes. Optimization in terms of translation of the shape prior significantly improved segmentation performance. The proposed method achieved a result of 0.623 on the Jaccard index in gallbladder segmentation, which is comparable to that of state-of-the-art methods. The computational efficiency of the algorithm is confirmed to be good enough to allow execution on a personal computer. Joint optimization of the segmentation, shape, and location priors was proposed, and it proved to be effective in gallbladder segmentation with high computational efficiency.

  11. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  12. Physics and Computational Methods for X-ray Scatter Estimation and Correction in Cone-Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bootsma, Gregory J.

    X-ray scatter in cone-beam computed tomography (CBCT) is known to reduce image quality by introducing image artifacts, reducing contrast, and limiting computed tomography (CT) number accuracy. The extent of the effect of x-ray scatter on CBCT image quality is determined by the shape and magnitude of the scatter distribution in the projections. A method to allay the effects of scatter is imperative to enable application of CBCT to solve a wider domain of clinical problems. The work contained herein proposes such a method. A characterization of the scatter distribution through the use of a validated Monte Carlo (MC) model is carried out. The effects of imaging parameters and compensators on the scatter distribution are investigated. The spectral frequency components of the scatter distribution in CBCT projection sets are analyzed using Fourier analysis and found to reside predominately in the low frequency domain. The exact frequency extents of the scatter distribution are explored for different imaging configurations and patient geometries. Based on the Fourier analysis it is hypothesized the scatter distribution can be represented by a finite sum of sine and cosine functions. The fitting of MC scatter distribution estimates enables the reduction of the MC computation time by diminishing the number of photon tracks required by over three orders of magnitude. The fitting method is incorporated into a novel scatter correction method using an algorithm that simultaneously combines multiple MC scatter simulations. Running concurrent MC simulations while simultaneously fitting the results allows for the physical accuracy and flexibility of MC methods to be maintained while enhancing the overall efficiency. CBCT projection set scatter estimates, using the algorithm, are computed on the order of 1--2 minutes instead of hours or days. Resulting scatter corrected reconstructions show a reduction in artifacts and improvement in tissue contrast and voxel value accuracy.

  13. Effective description of a 3D object for photon transportation in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suganuma, R.; Ogawa, K.

    2000-06-01

    Photon transport simulation by means of the Monte Carlo method is an indispensable technique for examining scatter and absorption correction methods in SPECT and PET. The authors have developed a method for object description with maximum size regions (maximum rectangular regions: MRRs) to speed up photon transport simulation, and compared the computation time with that for conventional object description methods, a voxel-based (VB) method and an octree method, in the simulations of two kinds of phantoms. The simulation results showed that the computation time with the proposed method became about 50% of that with the VD method and about 70% of that with the octree method for a high resolution MCAT phantom. Here, details of the expansion of the MRR method to three dimensions are given. Moreover, the effectiveness of the proposed method was compared with the VB and octree methods.

  14. Comparative study of the effectiveness and limitations of current methods for detecting sequence coevolution.

    PubMed

    Mao, Wenzhi; Kaya, Cihan; Dutta, Anindita; Horovitz, Amnon; Bahar, Ivet

    2015-06-15

    With rapid accumulation of sequence data on several species, extracting rational and systematic information from multiple sequence alignments (MSAs) is becoming increasingly important. Currently, there is a plethora of computational methods for investigating coupled evolutionary changes in pairs of positions along the amino acid sequence, and making inferences on structure and function. Yet, the significance of coevolution signals remains to be established. Also, a large number of false positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings. Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the effectiveness and limitations of different methods. The analysis shows that recent computationally expensive methods designed to remove biases from indirect couplings outperform others in detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional methods such as mutual information benefit from refinements such as shuffling, while being highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome database corroborated these results. Finally, using a training dataset of 162 families of proteins, we propose a combined method that outperforms existing individual methods. Overall, the study provides simple guidelines towards the choice of suitable methods and strategies based on available MSA size and computing resources. Software is freely available through the Evol component of ProDy API. © The Author 2015. Published by Oxford University Press.

  15. Computer-Assisted Dieting: Effects of a Randomized Nutrition Intervention

    ERIC Educational Resources Information Center

    Schroder, Kerstin E. E.

    2011-01-01

    Objectives: To compare the effects of a computer-assisted dieting intervention (CAD) with and without self-management training on dieting among 55 overweight and obese adults. Methods: Random assignment to a single-session nutrition intervention (CAD-only) or a combined CAD plus self-management group intervention (CADG). Dependent variables were…

  16. An Integrated Evaluation Method for E-Learning: A Case Study

    ERIC Educational Resources Information Center

    Rentroia-Bonito, M. A.; Figueiredo, F.; Martins, A.; Jorge, J. A.; Ghaoui, C.

    2006-01-01

    Technological improvements in broadband and distributed computing are making it possible to distribute live media content cost-effectively. Because of this, organizations are looking into cost-effective approaches to implement e-Learning initiatives. Indeed, computing resources are not enough by themselves to promote better e-Learning experiences.…

  17. The computer coordination method and research of inland river traffic based on ship database

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Li, Gen

    2018-04-01

    A computer coordinated management method for inland river ship traffic is proposed in this paper, Get the inland ship's position, speed and other navigation information by VTS, building ship's statics and dynamic data bases, writing a program of computer coordinated management of inland river traffic by VB software, Automatic simulation and calculation of the meeting states of ships, Providing ship's long-distance collision avoidance information. The long-distance collision avoidance of ships will be realized. The results show that, Ships avoid or reduce meetings, this method can effectively control the macro collision avoidance of ships.

  18. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less

  19. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  20. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  1. VORCAM: A computer program for calculating vortex lift effect of cambered wings by the suction analogy

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Chang, J. F.

    1981-01-01

    A user's guide to an improved version of Woodward's chord plane aerodynamic panel computer code is presumed. The guide can be applied to cambered wings exhibiting edge separated flow, including those with leading edge vortex flow at subsonic and supersonic speeds. New orientations for the rotated suction force are employed based on the momentum principal. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semiempirical method.

  2. A review of randomized controlled trials comparing the effectiveness of hand held computers with paper methods for data collection

    PubMed Central

    Lane, Shannon J; Heddle, Nancy M; Arnold, Emmy; Walker, Irwin

    2006-01-01

    Background Handheld computers are increasingly favoured over paper and pencil methods to capture data in clinical research. Methods This study systematically identified and reviewed randomized controlled trials (RCTs) that compared the two methods for self-recording and reporting data, and where at least one of the following outcomes was assessed: data accuracy; timeliness of data capture; and adherence to protocols for data collection. Results A comprehensive key word search of NLM Gateway's database yielded 9 studies fitting the criteria for inclusion. Data extraction was performed and checked by two of the authors. None of the studies included all outcomes. The results overall, favor handheld computers over paper and pencil for data collection among study participants but the data are not uniform for the different outcomes. Handheld computers appear superior in timeliness of receipt and data handling (four of four studies) and are preferred by most subjects (three of four studies). On the other hand, only one of the trials adequately compared adherence to instructions for recording and submission of data (handheld computers were superior), and comparisons of accuracy were inconsistent between five studies. Conclusion Handhelds are an effective alternative to paper and pencil modes of data collection; they are faster and were preferred by most users. PMID:16737535

  3. Capability of GPGPU for Faster Thermal Analysis Used in Data Assimilation

    NASA Astrophysics Data System (ADS)

    Takaki, Ryoji; Akita, Takeshi; Shima, Eiji

    A thermal mathematical model plays an important role in operations on orbit as well as spacecraft thermal designs. The thermal mathematical model has some uncertain thermal characteristic parameters, such as thermal contact resistances between components, effective emittances of multilayer insulation (MLI) blankets, discouraging make up efficiency and accuracy of the model. A particle filter which is one of successive data assimilation methods has been applied to construct spacecraft thermal mathematical models. This method conducts a lot of ensemble computations, which require large computational power. Recently, General Purpose computing in Graphics Processing Unit (GPGPU) has been attracted attention in high performance computing. Therefore GPGPU is applied to increase the computational speed of thermal analysis used in the particle filter. This paper shows the speed-up results by using GPGPU as well as the application method of GPGPU.

  4. Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Saad, Yousef; Skolnick, Jeffrey

    2012-01-01

    Hydrodynamic interactions play an important role in the dynamics of macromolecules. The most common way to take into account hydrodynamic effects in molecular simulations is in the context of a Brownian dynamics simulation. However, the calculation of correlated Brownian noise vectors in these simulations is computationally very demanding and alternative methods are desirable. This paper studies methods based on Krylov subspaces for computing Brownian noise vectors. These methods are related to Chebyshev polynomial approximations, but do not require eigenvalue estimates. We show that only low accuracy is required in the Brownian noise vectors to accurately compute values of dynamic and static properties of polymer and monodisperse suspension models. With this level of accuracy, the computational time of Krylov subspace methods scales very nearly as O(N2) for the number of particles N up to 10 000, which was the limit tested. The performance of the Krylov subspace methods, especially the “block” version, is slightly better than that of the Chebyshev method, even without taking into account the additional cost of eigenvalue estimates required by the latter. Furthermore, at N = 10 000, the Krylov subspace method is 13 times faster than the exact Cholesky method. Thus, Krylov subspace methods are recommended for performing large-scale Brownian dynamics simulations with hydrodynamic interactions. PMID:22897254

  5. Comparison of computer-assisted instruction (CAI) versus traditional textbook methods for training in abdominal examination (Japanese experience).

    PubMed

    Qayumi, A K; Kurihara, Y; Imai, M; Pachev, G; Seo, H; Hoshino, Y; Cheifetz, R; Matsuura, K; Momoi, M; Saleem, M; Lara-Guerra, H; Miki, Y; Kariya, Y

    2004-10-01

    This study aimed to compare the effects of computer-assisted, text-based and computer-and-text learning conditions on the performances of 3 groups of medical students in the pre-clinical years of their programme, taking into account their academic achievement to date. A fourth group of students served as a control (no-study) group. Participants were recruited from the pre-clinical years of the training programmes in 2 medical schools in Japan, Jichi Medical School near Tokyo and Kochi Medical School near Osaka. Participants were randomly assigned to 4 learning conditions and tested before and after the study on their knowledge of and skill in performing an abdominal examination, in a multiple-choice test and an objective structured clinical examination (OSCE), respectively. Information about performance in the programme was collected from school records and students were classified as average, good or excellent. Student and faculty evaluations of their experience in the study were explored by means of a short evaluation survey. Compared to the control group, all 3 study groups exhibited significant gains in performance on knowledge and performance measures. For the knowledge measure, the gains of the computer-assisted and computer-assisted plus text-based learning groups were significantly greater than the gains of the text-based learning group. The performances of the 3 groups did not differ on the OSCE measure. Analyses of gains by performance level revealed that high achieving students' learning was independent of study method. Lower achieving students performed better after using computer-based learning methods. The results suggest that computer-assisted learning methods will be of greater help to students who do not find the traditional methods effective. Explorations of the factors behind this are a matter for future research.

  6. Structural Analysis Methods for Structural Health Management of Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander

    2007-01-01

    Two finite element based computational methods, Smoothing Element Analysis (SEA) and the inverse Finite Element Method (iFEM), are reviewed, and examples of their use for structural health monitoring are discussed. Due to their versatility, robustness, and computational efficiency, the methods are well suited for real-time structural health monitoring of future space vehicles, large space structures, and habitats. The methods may be effectively employed to enable real-time processing of sensing information, specifically for identifying three-dimensional deformed structural shapes as well as the internal loads. In addition, they may be used in conjunction with evolutionary algorithms to design optimally distributed sensors. These computational tools have demonstrated substantial promise for utilization in future Structural Health Management (SHM) systems.

  7. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics - a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    NASA Astrophysics Data System (ADS)

    Jamroz, Benjamin F.; Klöfkorn, Robert

    2016-08-01

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scale simulations.

  8. Educationally and Cost Effective: Computers in the Classroom.

    ERIC Educational Resources Information Center

    Agee, Roy

    1986-01-01

    The author states that the educational community must provide programs that assure students they will be able to learn how to use and control computers. He discusses micro labs, prerequisites to computer literacy, curriculum development, teaching methods, simulation projects, a systems analysis project, new job titles, and primary basic skills…

  9. Evaluating the Effectiveness of an Interactive Multimedia Computer-based Patient Education Program in Cardiac Rehabilitation.

    ERIC Educational Resources Information Center

    Jenny, Ng Yuen Yee; Fai, Tam Sing

    2001-01-01

    A study compared 48 cardiac patients who used an interactive multimedia computer-assisted patient education program and 48 taught by tutorial. The computer-assisted instructional method resulted in significantly better knowledge about exercise and self-management of chronic diseases. (Contains 29 references.) (JOW)

  10. Variability in Reading Ability Gains as a Function of Computer-Assisted Instruction Method of Presentation

    ERIC Educational Resources Information Center

    Johnson, Erin Phinney; Perry, Justin; Shamir, Haya

    2010-01-01

    This study examines the effects on early reading skills of three different methods of presenting material with computer-assisted instruction (CAI): (1) learner-controlled picture menu, which allows the student to choose activities, (2) linear sequencer, which progresses the students through lessons at a pre-specified pace, and (3) mastery-based…

  11. A computational study on the interaction between a vortex and a shock wave

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.; Kumar, Ajay; Hussaini, M. Y.

    1989-01-01

    A computational study of two-dimensional shock vortex interaction is discussed in this paper. A second order upwind finite volume method is used to solve the Euler equations in conservation form. In this method, the shock wave is captured rather than fitted so that the cases where shock vortex interaction may cause secondary shocks can also be investigated. The effects of vortex strength on the computed flow and acoustic field generated by the interaction are qualitatively evaluated.

  12. Case Study: The Use of a Hypercard Simulation to Aid in the Teaching of Laboratory Apparatus Operation.

    ERIC Educational Resources Information Center

    Waddick, John

    1994-01-01

    Compares the effect of a chemistry computer simulation, written by the author, with the effect of an instructor demonstration. The study indicates that in this particular situation the operation of a spectrophotometer can be effectively taught by computer simulation method. The program is written using HyperTalk, the HyperCard programming…

  13. Quantum Mechanical Modeling: A Tool for the Understanding of Enzyme Reactions

    PubMed Central

    Náray-Szabó, Gábor; Oláh, Julianna; Krámos, Balázs

    2013-01-01

    Most enzyme reactions involve formation and cleavage of covalent bonds, while electrostatic effects, as well as dynamics of the active site and surrounding protein regions, may also be crucial. Accordingly, special computational methods are needed to provide an adequate description, which combine quantum mechanics for the reactive region with molecular mechanics and molecular dynamics describing the environment and dynamic effects, respectively. In this review we intend to give an overview to non-specialists on various enzyme models as well as established computational methods and describe applications to some specific cases. For the treatment of various enzyme mechanisms, special approaches are often needed to obtain results, which adequately refer to experimental data. As a result of the spectacular progress in the last two decades, most enzyme reactions can be quite precisely treated by various computational methods. PMID:24970187

  14. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE PAGES

    Burr, P. A.; Cooper, M. W. D.

    2017-09-15

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  15. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, P. A.; Cooper, M. W. D.

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  16. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  17. Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations

    NASA Astrophysics Data System (ADS)

    Detrixhe, Miles; Gibou, Frédéric

    2016-10-01

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton-Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling, and show state-of-the-art speedup values for the fast sweeping method.

  18. Computational method for the correction of proximity effect in electron-beam lithography (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas

    1992-07-01

    Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.

  19. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2006-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  20. Using an Adjoint Approach to Eliminate Mesh Sensitivities in Computational Design

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Park, Michael A.

    2005-01-01

    An algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design framework is introduced. The method is based on an adjoint approach and eliminates the need for explicit linearizations of the mesh movement scheme with respect to the geometric parameterization variables, an expense that has hindered practical large-scale design optimization using discrete adjoint methods. The effects of the mesh sensitivities can be accounted for through the solution of an adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix-vector product scaling with the number of design variables and the resolution of the parameterized surface grid. The accuracy of the implementation is established and dramatic computational savings obtained using the new approach are demonstrated using several test cases. Sample design optimizations are also shown.

  1. Computational drug discovery

    PubMed Central

    Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang

    2012-01-01

    Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346

  2. A Very High Order, Adaptable MESA Implementation for Aeroacoustic Computations

    NASA Technical Reports Server (NTRS)

    Dydson, Roger W.; Goodrich, John W.

    2000-01-01

    Since computational efficiency and wave resolution scale with accuracy, the ideal would be infinitely high accuracy for problems with widely varying wavelength scales. Currently, many of the computational aeroacoustics methods are limited to 4th order accurate Runge-Kutta methods in time which limits their resolution and efficiency. However, a new procedure for implementing the Modified Expansion Solution Approximation (MESA) schemes, based upon Hermitian divided differences, is presented which extends the effective accuracy of the MESA schemes to 57th order in space and time when using 128 bit floating point precision. This new approach has the advantages of reducing round-off error, being easy to program. and is more computationally efficient when compared to previous approaches. Its accuracy is limited only by the floating point hardware. The advantages of this new approach are demonstrated by solving the linearized Euler equations in an open bi-periodic domain. A 500th order MESA scheme can now be created in seconds, making these schemes ideally suited for the next generation of high performance 256-bit (double quadruple) or higher precision computers. This ease of creation makes it possible to adapt the algorithm to the mesh in time instead of its converse: this is ideal for resolving varying wavelength scales which occur in noise generation simulations. And finally, the sources of round-off error which effect the very high order methods are examined and remedies provided that effectively increase the accuracy of the MESA schemes while using current computer technology.

  3. Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods

    NASA Astrophysics Data System (ADS)

    Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.

    2017-12-01

    The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).

  4. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method.

    PubMed

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-07-22

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account.

  5. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method

    PubMed Central

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-01-01

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105

  6. Quantifying relative importance: Computing standardized effects in models with binary outcomes

    USGS Publications Warehouse

    Grace, James B.; Johnson, Darren; Lefcheck, Jonathan S.; Byrnes, Jarrett E.K.

    2018-01-01

    Results from simulation studies show that both the LT and OE methods of standardization support a similarly-broad range of coefficient comparisons. The LT method estimates effects that reflect underlying latent-linear propensities, while the OE method computes a linear approximation for the effects of predictors on binary responses. The contrast between assumptions for the two methods is reflected in persistently weaker standardized effects associated with OE standardization. Reliance on standard deviations for standardization (the traditional approach) is critically examined and shown to introduce substantial biases when predictors are non-Gaussian. The use of relevant ranges in place of standard deviations has the capacity to place LT and OE standardized coefficients on a more comparable scale. As ecologists address increasingly complex hypotheses, especially those that involve comparing the influences of different controlling factors (e.g., top-down versus bottom-up or biotic versus abiotic controls), comparable coefficients become a necessary component for evaluations.

  7. Computation of aerodynamic interference effects on oscillating airfoils with controls in ventilated subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Golberg, M. A.

    1979-01-01

    Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.

  8. Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria

    PubMed Central

    Magesh, R.; George Priya Doss, C.

    2012-01-01

    A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research. In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene causing alkaptonuria. PMID:22606059

  9. Asthma management simulation for children: translating theory, methods, and strategies to effect behavior change.

    PubMed

    Shegog, Ross; Bartholomew, L Kay; Gold, Robert S; Pierrel, Elaine; Parcel, Guy S; Sockrider, Marianna M; Czyzewski, Danita I; Fernandez, Maria E; Berlin, Nina J; Abramson, Stuart

    2006-01-01

    Translating behavioral theories, models, and strategies to guide the development and structure of computer-based health applications is well recognized, although a continued challenge for program developers. A stepped approach to translate behavioral theory in the design of simulations to teach chronic disease management to children is described. This includes the translation steps to: 1) define target behaviors and their determinants, 2) identify theoretical methods to optimize behavioral change, and 3) choose educational strategies to effectively apply these methods and combine these into a cohesive computer-based simulation for health education. Asthma is used to exemplify a chronic health management problem and a computer-based asthma management simulation (Watch, Discover, Think and Act) that has been evaluated and shown to effect asthma self-management in children is used to exemplify the application of theory to practice. Impact and outcome evaluation studies have indicated the effectiveness of these steps in providing increased rigor and accountability, suggesting their utility for educators and developers seeking to apply simulations to enhance self-management behaviors in patients.

  10. A Comparison of Computer-Assisted Instruction and Tutorials in Hematology and Oncology.

    ERIC Educational Resources Information Center

    Garrett, T. J.; And Others

    1987-01-01

    A study comparing the effectiveness of computer-assisted instruction (CAI) and small group instruction found no significant difference in medical student achievement in oncology but higher achievement through small-group instruction in hematology. Students did not view CAI as more effective, but saw it as a supplement to traditional methods. (MSE)

  11. A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function

    ERIC Educational Resources Information Center

    Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.; Blemker, Silvia S.

    2015-01-01

    Purpose: This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method: We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy…

  12. Effective Computer-Aided Assessment of Mathematics; Principles, Practice and Results

    ERIC Educational Resources Information Center

    Greenhow, Martin

    2015-01-01

    This article outlines some key issues for writing effective computer-aided assessment (CAA) questions in subjects with substantial mathematical or statistical content, especially the importance of control of random parameters and the encoding of wrong methods of solution (mal-rules) commonly used by students. The pros and cons of using CAA and…

  13. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.

    PubMed

    Ghaderi, Forouzan; Ghaderi, Amir H; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose.

  14. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network

    PubMed Central

    Ghaderi, Forouzan; Ghaderi, Amir H.; Ghaderi, Noushin; Najafi, Bijan

    2017-01-01

    Background: The thermal conductivity of fluids can be calculated by several computational methods. However, these methods are reliable only at the confined levels of density, and there is no specific computational method for calculating thermal conductivity in the wide ranges of density. Methods: In this paper, two methods, an Artificial Neural Network (ANN) approach and a computational method established upon the Rainwater-Friend theory, were used to predict the value of thermal conductivity in all ranges of density. The thermal conductivity of six refrigerants, R12, R14, R32, R115, R143, and R152 was predicted by these methods and the effectiveness of models was specified and compared. Results: The results show that the computational method is a usable method for predicting thermal conductivity at low levels of density. However, the efficiency of this model is considerably reduced in the mid-range of density. It means that this model cannot be used at density levels which are higher than 6. On the other hand, the ANN approach is a reliable method for thermal conductivity prediction in all ranges of density. The best accuracy of ANN is achieved when the number of units is increased in the hidden layer. Conclusion: The results of the computational method indicate that the regular dependence between thermal conductivity and density at higher densities is eliminated. It can develop a nonlinear problem. Therefore, analytical approaches are not able to predict thermal conductivity in wide ranges of density. Instead, a nonlinear approach such as, ANN is a valuable method for this purpose. PMID:29188217

  15. Physical Principle for Generation of Randomness

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)

  16. The Distributed Diagonal Force Decomposition Method for Parallelizing Molecular Dynamics Simulations

    PubMed Central

    Boršnik, Urban; Miller, Benjamin T.; Brooks, Bernard R.; Janežič, Dušanka

    2011-01-01

    Parallelization is an effective way to reduce the computational time needed for molecular dynamics simulations. We describe a new parallelization method, the distributed-diagonal force decomposition method, with which we extend and improve the existing force decomposition methods. Our new method requires less data communication during molecular dynamics simulations than replicated data and current force decomposition methods, increasing the parallel efficiency. It also dynamically load-balances the processors' computational load throughout the simulation. The method is readily implemented in existing molecular dynamics codes and it has been incorporated into the CHARMM program, allowing its immediate use in conjunction with the many molecular dynamics simulation techniques that are already present in the program. We also present the design of the Force Decomposition Machine, a cluster of personal computers and networks that is tailored to running molecular dynamics simulations using the distributed diagonal force decomposition method. The design is expandable and provides various degrees of fault resilience. This approach is easily adaptable to computers with Graphics Processing Units because it is independent of the processor type being used. PMID:21793007

  17. A simplified gross thrust computing technique for an afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Hamer, M. J.; Kurtenbach, F. J.

    1978-01-01

    A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.

  18. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  19. Parallel solution of the symmetric tridiagonal eigenproblem. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1989-10-01

    This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less

  20. Parallel solution of the symmetric tridiagonal eigenproblem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessup, E.R.

    1989-01-01

    This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed memory MIMD multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues, and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-cube multiprocessor reveal that Cuppen's method is the most accuratemore » approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effects of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptations of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less

  1. Dimension reduction method for SPH equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-08-26

    Smoothed Particle Hydrodynamics model of a complex multiscale processe often results in a system of ODEs with an enormous number of unknowns. Furthermore, a time integration of the SPH equations usually requires time steps that are smaller than the observation time by many orders of magnitude. A direct solution of these ODEs can be extremely expensive. Here we propose a novel dimension reduction method that gives an approximate solution of the SPH ODEs and provides an accurate prediction of the average behavior of the modeled system. The method consists of two main elements. First, effective equationss for evolution of averagemore » variables (e.g. average velocity, concentration and mass of a mineral precipitate) are obtained by averaging the SPH ODEs over the entire computational domain. These effective ODEs contain non-local terms in the form of volume integrals of functions of the SPH variables. Second, a computational closure is used to close the system of the effective equations. The computational closure is achieved via short bursts of the SPH model. The dimension reduction model is used to simulate flow and transport with mixing controlled reactions and mineral precipitation. An SPH model is used model transport at the porescale. Good agreement between direct solutions of the SPH equations and solutions obtained with the dimension reduction method for different boundary conditions confirms the accuracy and computational efficiency of the dimension reduction model. The method significantly accelerates SPH simulations, while providing accurate approximation of the solution and accurate prediction of the average behavior of the system.« less

  2. Big data mining analysis method based on cloud computing

    NASA Astrophysics Data System (ADS)

    Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao

    2017-08-01

    Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.

  3. Comparing the Performance of Two Dynamic Load Distribution Methods

    NASA Technical Reports Server (NTRS)

    Kale, L. V.

    1987-01-01

    Parallel processing of symbolic computations on a message-passing multi-processor presents one challenge: To effectively utilize the available processors, the load must be distributed uniformly to all the processors. However, the structure of these computations cannot be predicted in advance. go, static scheduling methods are not applicable. In this paper, we compare the performance of two dynamic, distributed load balancing methods with extensive simulation studies. The two schemes are: the Contracting Within a Neighborhood (CWN) scheme proposed by us, and the Gradient Model proposed by Lin and Keller. We conclude that although simpler, the CWN is significantly more effective at distributing the work than the Gradient model.

  4. Laser-optical methods and systems of computer-automated investigation of bio-objects (plants, seeds, food products, and others)

    NASA Astrophysics Data System (ADS)

    Lisker, Joseph S.

    1999-01-01

    A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.

  5. Aerodynamic analysis for aircraft with nacelles, pylons, and winglets at transonic speeds

    NASA Technical Reports Server (NTRS)

    Boppe, Charles W.

    1987-01-01

    A computational method has been developed to provide an analysis for complex realistic aircraft configurations at transonic speeds. Wing-fuselage configurations with various combinations of pods, pylons, nacelles, and winglets can be analyzed along with simpler shapes such as airfoils, isolated wings, and isolated bodies. The flexibility required for the treatment of such diverse geometries is obtained by using a multiple nested grid approach in the finite-difference relaxation scheme. Aircraft components (and their grid systems) can be added or removed as required. As a result, the computational method can be used in the same manner as a wind tunnel to study high-speed aerodynamic interference effects. The multiple grid approach also provides high boundary point density/cost ratio. High resolution pressure distributions can be obtained. Computed results are correlated with wind tunnel and flight data using four different transport configurations. Experimental/computational component interference effects are included for cases where data are available. The computer code used for these comparisons is described in the appendices.

  6. Computer technique for simulating the combustion of cellulose and other fuels

    Treesearch

    Andrew M. Stein; Brian W. Bauske

    1971-01-01

    A computer method has been developed for simulating the combustion of wood and other cellulosic fuels. The products of combustion are used as input for a convection model that slimulates real fires. The method allows the chemical process to proceed to equilibrium and then examines the effects of mass addition and repartitioning on the fluid mechanics of the convection...

  7. Gaming via Computer Simulation Techniques for Junior College Economics Education. Final Report.

    ERIC Educational Resources Information Center

    Thompson, Fred A.

    A study designed to answer the need for more attractive and effective economics education involved the teaching of one junior college economics class by the conventional (lecture) method and an experimental class by computer simulation techniques. Econometric models approximating the "real world" were computer programed to enable the experimental…

  8. Evaluation of a Computer Simulation in a Therapeutics Case Discussion.

    ERIC Educational Resources Information Center

    Kinkade, Raenel E.; And Others

    1995-01-01

    A computer program was used to simulate a case presentation in pharmacotherapeutics. Students (n=24) used their knowledge of the disease (glaucoma) and various topical agents on the computer program's formulary to "treat" the patient. Comparison of results with a control group found the method as effective as traditional case…

  9. Computer Games Application within Alternative Classroom Goal Structures: Cognitive, Metacognitive, and Affective Evaluation

    ERIC Educational Resources Information Center

    Ke, Fengfeng

    2008-01-01

    This article reports findings on a study of educational computer games used within various classroom situations. Employing an across-stage, mixed method model, the study examined whether educational computer games, in comparison to traditional paper-and-pencil drills, would be more effective in facilitating comprehensive math learning outcomes,…

  10. Teaching and Learning with Computers! A Method for American Indian Bilingual Classrooms.

    ERIC Educational Resources Information Center

    Bennett, Ruth

    Computer instruction can offer particular benefits to the Indian child. Computer use emphasizes the visual facets of learning, teaches language based skills needed for higher education and careers, and provides types of instruction proven effective with Indian children, such as private self-testing and cooperative learning. The Hupa, Yurok, Karuk,…

  11. An information retrieval system for research file data

    Treesearch

    Joan E. Lengel; John W. Koning

    1978-01-01

    Research file data have been successfully retrieved at the Forest Products Laboratory through a high-speed cross-referencing system involving the computer program FAMULUS as modified by the Madison Academic Computing Center at the University of Wisconsin. The method of data input, transfer to computer storage, system utilization, and effectiveness are discussed....

  12. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  13. Determinant Computation on the GPU using the Condensation Method

    NASA Astrophysics Data System (ADS)

    Anisul Haque, Sardar; Moreno Maza, Marc

    2012-02-01

    We report on a GPU implementation of the condensation method designed by Abdelmalek Salem and Kouachi Said for computing the determinant of a matrix. We consider two types of coefficients: modular integers and floating point numbers. We evaluate the performance of our code by measuring its effective bandwidth and argue that it is numerical stable in the floating point number case. In addition, we compare our code with serial implementation of determinant computation from well-known mathematical packages. Our results suggest that a GPU implementation of the condensation method has a large potential for improving those packages in terms of running time and numerical stability.

  14. Influence of global heterogeneities on regional imaging based upon full waveform inversion of teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Beller, Stephen; Operto, Stephane; Virieux, Jean

    2015-04-01

    The current development of dense seismic arrays and high performance computing make feasible today application of full-waveform inversion (FWI) on teleseismic data for high-resolution lithospheric imaging. In teleseismic configuration, the source is often considered to first order as a planar wave that impinges the base of the lithospheric target located below the receiver array. Recently, injection methods coupling global propagation in 1D or axisymmetric earth model with regional 3D methods (Discontinuous Galerkin finite element methods, Spectral elements methods or finite differences) allow us to consider more realistic teleseismic phases. Those teleseismic phases can be propagated inside 3D regional model in order to exploit not only the forward-scattered waves propagating up to the receiver but also second-order arrivals that are back-scattered from the free-surface and the reflectors before their recordings on the surface. However, those computation are performed assuming simple global model. In this presentation, we review some key specifications that might be considered for mitigating the effect on FWI of heterogeneities situated outside the regional domain. We consider synthetic models and data computed using our recently developed hybrid method AxiSEM/SEM. The global simulation is done by AxiSEM code which allows us to consider axisymmetric anomalies. The 3D regional computation is performed by Spectral Element Method. We investigate the effect of external anomalies on the regional model obtained by FWI when one neglects them by considering only 1D global propagation. We also investigate the effect of the source time function and the focal mechanism on results of the FWI approach.

  15. Discovery of Boolean metabolic networks: integer linear programming based approach.

    PubMed

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  16. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamroz, Benjamin F.; Klofkorn, Robert

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scalemore » simulations.« less

  17. Asynchronous communication in spectral-element and discontinuous Galerkin methods for atmospheric dynamics – a case study using the High-Order Methods Modeling Environment (HOMME-homme_dg_branch)

    DOE PAGES

    Jamroz, Benjamin F.; Klofkorn, Robert

    2016-08-26

    The scalability of computational applications on current and next-generation supercomputers is increasingly limited by the cost of inter-process communication. We implement non-blocking asynchronous communication in the High-Order Methods Modeling Environment for the time integration of the hydrostatic fluid equations using both the spectral-element and discontinuous Galerkin methods. This allows the overlap of computation with communication, effectively hiding some of the costs of communication. A novel detail about our approach is that it provides some data movement to be performed during the asynchronous communication even in the absence of other computations. This method produces significant performance and scalability gains in large-scalemore » simulations.« less

  18. Advances in mixed-integer programming methods for chemical production scheduling.

    PubMed

    Velez, Sara; Maravelias, Christos T

    2014-01-01

    The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.

  19. Fusing literature and full network data improves disease similarity computation.

    PubMed

    Li, Ping; Nie, Yaling; Yu, Jingkai

    2016-08-30

    Identifying relatedness among diseases could help deepen understanding for the underlying pathogenic mechanisms of diseases, and facilitate drug repositioning projects. A number of methods for computing disease similarity had been developed; however, none of them were designed to utilize information of the entire protein interaction network, using instead only those interactions involving disease causing genes. Most of previously published methods required gene-disease association data, unfortunately, many diseases still have very few or no associated genes, which impeded broad adoption of those methods. In this study, we propose a new method (MedNetSim) for computing disease similarity by integrating medical literature and protein interaction network. MedNetSim consists of a network-based method (NetSim), which employs the entire protein interaction network, and a MEDLINE-based method (MedSim), which computes disease similarity by mining the biomedical literature. Among function-based methods, NetSim achieved the best performance. Its average AUC (area under the receiver operating characteristic curve) reached 95.2 %. MedSim, whose performance was even comparable to some function-based methods, acquired the highest average AUC in all semantic-based methods. Integration of MedSim and NetSim (MedNetSim) further improved the average AUC to 96.4 %. We further studied the effectiveness of different data sources. It was found that quality of protein interaction data was more important than its volume. On the contrary, higher volume of gene-disease association data was more beneficial, even with a lower reliability. Utilizing higher volume of disease-related gene data further improved the average AUC of MedNetSim and NetSim to 97.5 % and 96.7 %, respectively. Integrating biomedical literature and protein interaction network can be an effective way to compute disease similarity. Lacking sufficient disease-related gene data, literature-based methods such as MedSim can be a great addition to function-based algorithms. It may be beneficial to steer more resources torward studying gene-disease associations and improving the quality of protein interaction data. Disease similarities can be computed using the proposed methods at http:// www.digintelli.com:8000/ .

  20. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  1. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  2. Algorithms and software used in selecting structure of machine-training cluster based on neurocomputers

    NASA Astrophysics Data System (ADS)

    Romanchuk, V. A.; Lukashenko, V. V.

    2018-05-01

    The technique of functioning of a control system by a computing cluster based on neurocomputers is proposed. Particular attention is paid to the method of choosing the structure of the computing cluster due to the fact that the existing methods are not effective because of a specialized hardware base - neurocomputers, which are highly parallel computer devices with an architecture different from the von Neumann architecture. A developed algorithm for choosing the computational structure of a cloud cluster is described, starting from the direction of data transfer in the flow control graph of the program and its adjacency matrix.

  3. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.

    PubMed

    Caricato, Marco

    2013-07-28

    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.

  4. The reduced basis method for the electric field integral equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fares, M., E-mail: fares@cerfacs.f; Hesthaven, J.S., E-mail: Jan_Hesthaven@Brown.ed; Maday, Y., E-mail: maday@ann.jussieu.f

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, formore » many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.« less

  5. Method for Identification of Results of Dynamic Overloads in Assessment of Safety Use of the Mine Auxiliary Transportation System

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Jarosław

    2016-12-01

    Method for identification the effects of dynamic overload affecting the people, which may occur in the emergency state of suspended monorail is presented in the paper. The braking curve using MBS (Multi-Body System) simulation was determined. For this purpose a computational model (MBS) of suspended monorail was developed and two different variants of numerical calculations were carried out. An algorithm of conducting numerical simulations to assess the effects of dynamic overload acting on the suspended monorails' users is also posted in the paper. An example of computational model FEM (Finite Element Method) composed of technical mean and the anthropometrical model ATB (Articulated Total Body) is shown. The simulation results are presented: graph of HIC (Head Injury Criterion) parameter and successive phases of dislocation of ATB model. Generator of computational models for safety criterion, which enables preparation of input data and remote starting the simulation, is proposed.

  6. Rapid high performance liquid chromatography method development with high prediction accuracy, using 5cm long narrow bore columns packed with sub-2microm particles and Design Space computer modeling.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Molnár, Imre; Ganzler, Katalin

    2009-11-06

    Many different strategies of reversed phase high performance liquid chromatographic (RP-HPLC) method development are used today. This paper describes a strategy for the systematic development of ultrahigh-pressure liquid chromatographic (UHPLC or UPLC) methods using 5cmx2.1mm columns packed with sub-2microm particles and computer simulation (DryLab((R)) package). Data for the accuracy of computer modeling in the Design Space under ultrahigh-pressure conditions are reported. An acceptable accuracy for these predictions of the computer models is presented. This work illustrates a method development strategy, focusing on time reduction up to a factor 3-5, compared to the conventional HPLC method development and exhibits parts of the Design Space elaboration as requested by the FDA and ICH Q8R1. Furthermore this paper demonstrates the accuracy of retention time prediction at elevated pressure (enhanced flow-rate) and shows that the computer-assisted simulation can be applied with sufficient precision for UHPLC applications (p>400bar). Examples of fast and effective method development in pharmaceutical analysis, both for gradient and isocratic separations are presented.

  7. Trajectory Prediction of Spin-Stabilized Projectiles With a Steady Liquid Payload

    DTIC Science & Technology

    2011-11-01

    analysis assumes the effect of a liquid payload is similar to the Magnus effect . Spectral analysis used to numerically compute liquid-fill induced...the internal motion of a liquid payload can induce destabilizing moments on the projectile. This report creates a method to include the effect of... effect , liquid payload moments are added to the applied loads on the projectile. These loads are computed by solving the linearized Navier-Stokes

  8. A systematic investigation of computation models for predicting Adverse Drug Reactions (ADRs).

    PubMed

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms.

  9. Development and application of QM/MM methods to study the solvation effects and surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibya, Pooja Arora

    2010-01-01

    Quantum mechanical (QM) calculations have the advantage of attaining high-level accuracy, however QM calculations become computationally inefficient as the size of the system grows. Solving complex molecular problems on large systems and ensembles by using quantum mechanics still poses a challenge in terms of the computational cost. Methods that are based on classical mechanics are an inexpensive alternative, but they lack accuracy. A good trade off between accuracy and efficiency is achieved by combining QM methods with molecular mechanics (MM) methods to use the robustness of the QM methods in terms of accuracy and the MM methods to minimize themore » computational cost. Two types of QM combined with MM (QM/MM) methods are the main focus of the present dissertation: the application and development of QM/MM methods for solvation studies and reactions on the Si(100) surface. The solvation studies were performed using a discreet solvation model that is largely based on first principles called the effective fragment potential method (EFP). The main idea of combining the EFP method with quantum mechanics is to accurately treat the solute-solvent and solvent-solvent interactions, such as electrostatic, polarization, dispersion and charge transfer, that are important in correctly calculating solvent effects on systems of interest. A second QM/MM method called SIMOMM (surface integrated molecular orbital molecular mechanics) is a hybrid QM/MM embedded cluster model that mimics the real surface.3 This method was employed to calculate the potential energy surfaces for reactions of atomic O on the Si(100) surface. The hybrid QM/MM method is a computationally inexpensive approach for studying reactions on larger surfaces in a reasonably accurate and efficient manner. This thesis is comprised of four chapters: Chapter 1 describes the general overview and motivation of the dissertation and gives a broad background of the computational methods that have been employed in this work. Chapter 2 illustrates the methodology of the interface of the EFP method with the configuration interaction with single excitations (CIS) method to study solvent effects in excited states. Chapter 3 discusses the study of the adiabatic electron affinity of the hydroxyl radical in aqueous solution and in micro-solvated clusters using a QM/EFP method. Chapter 4 describes the study of etching and diffusion of oxygen atom on a reconstructed Si(100)-2 x 1 surface using a hybrid QM/MM embedded cluster model (SIMOMM). Chapter 4 elucidates the application of the EFP method towards the understanding of the aqueous ionization potential of Na atom. Finally, a general conclusion of this dissertation work and prospective future direction are presented in Chapter 6.« less

  10. Exploring Effective Decision Making through Human-Centered and Computational Intelligence Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kyungsik; Cook, Kristin A.; Shih, Patrick C.

    Decision-making has long been studied to understand a psychological, cognitive, and social process of selecting an effective choice from alternative options. Its studies have been extended from a personal level to a group and collaborative level, and many computer-aided decision-making systems have been developed to help people make right decisions. There has been significant research growth in computational aspects of decision-making systems, yet comparatively little effort has existed in identifying and articulating user needs and requirements in assessing system outputs and the extent to which human judgments could be utilized for making accurate and reliable decisions. Our research focus ismore » decision-making through human-centered and computational intelligence methods in a collaborative environment, and the objectives of this position paper are to bring our research ideas to the workshop, and share and discuss ideas.« less

  11. Computational modeling of radiobiological effects in bone metastases for different radionuclides.

    PubMed

    Liberal, Francisco D C Guerra; Tavares, Adriana Alexandre S; Tavares, João Manuel R S

    2017-06-01

    Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 ( 89 Sr), Samarium-153 ( 153 Sm), Lutetium-177 ( 177 Lu), and Radium-223 ( 223 Ra). Cellular kinetics post-irradiation using 89 Sr β - particles, 153 Sm β -  particles, 177 Lu β -  particles and 223 Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177 Lu beta minus particles and, in particular, 223 Ra alpha particles, yielded the lowest survival fraction of all investigated particles. 223 Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β -  radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.

  12. Numerical computation of solar neutrino flux attenuated by the MSW mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Jai Sam; Chae, Yoon Sang; Kim, Jung Dae

    1999-07-01

    We compute the survival probability of an electron neutrino in its flight through the solar core experiencing the Mikheyev-Smirnov-Wolfenstein effect with all three neutrino species considered. We adopted a hybrid method that uses an accurate approximation formula in the non-resonance region and numerical integration in the non-adiabatic resonance region. The key of our algorithm is to use the importance sampling method for sampling the neutrino creation energy and position and to find the optimum radii to start and stop numerical integration. We further developed a parallel algorithm for a message passing parallel computer. By using an idea of job token, we have developed a dynamical load balancing mechanism which is effective under any irregular load distributions

  13. Hybrid massively parallel fast sweeping method for static Hamilton–Jacobi equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrixhe, Miles, E-mail: mdetrixhe@engineering.ucsb.edu; University of California Santa Barbara, Santa Barbara, CA, 93106; Gibou, Frédéric, E-mail: fgibou@engineering.ucsb.edu

    The fast sweeping method is a popular algorithm for solving a variety of static Hamilton–Jacobi equations. Fast sweeping algorithms for parallel computing have been developed, but are severely limited. In this work, we present a multilevel, hybrid parallel algorithm that combines the desirable traits of two distinct parallel methods. The fine and coarse grained components of the algorithm take advantage of heterogeneous computer architecture common in high performance computing facilities. We present the algorithm and demonstrate its effectiveness on a set of example problems including optimal control, dynamic games, and seismic wave propagation. We give results for convergence, parallel scaling,more » and show state-of-the-art speedup values for the fast sweeping method.« less

  14. Integrative Analysis of “-Omics” Data Using Penalty Functions

    PubMed Central

    Zhao, Qing; Shi, Xingjie; Huang, Jian; Liu, Jin; Li, Yang; Ma, Shuangge

    2014-01-01

    In the analysis of omics data, integrative analysis provides an effective way of pooling information across multiple datasets or multiple correlated responses, and can be more effective than single-dataset (response) analysis. Multiple families of integrative analysis methods have been proposed in the literature. The current review focuses on the penalization methods. Special attention is paid to sparse meta-analysis methods that pool summary statistics across datasets, and integrative analysis methods that pool raw data across datasets. We discuss their formulation and rationale. Beyond “standard” penalized selection, we also review contrasted penalization and Laplacian penalization which accommodate finer data structures. The computational aspects, including computational algorithms and tuning parameter selection, are examined. This review concludes with possible limitations and extensions. PMID:25691921

  15. Improving the Efficiency and Effectiveness of Grading through the Use of Computer-Assisted Grading Rubrics

    ERIC Educational Resources Information Center

    Anglin, Linda; Anglin, Kenneth; Schumann, Paul L.; Kaliski, John A.

    2008-01-01

    This study tests the use of computer-assisted grading rubrics compared to other grading methods with respect to the efficiency and effectiveness of different grading processes for subjective assignments. The test was performed on a large Introduction to Business course. The students in this course were randomly assigned to four treatment groups…

  16. An Effective Online Teaching Method: The Combination of Collaborative Learning with Initiation and Self-Regulation Learning with Feedback

    ERIC Educational Resources Information Center

    Tsai, Chia-Wen

    2013-01-01

    In modern business environments, work and tasks have become more complex and require more interdisciplinary skills to complete, including collaborative and computing skills for website design. However, the computing education in Taiwan can hardly be recognised as effective in developing and transforming students into competitive employees. In this…

  17. FuelCalc: A Method for Estimating Fuel Characteristics

    Treesearch

    Elizabeth Reinhardt; Duncan Lutes; Joe Scott

    2006-01-01

    This paper describes the FuelCalc computer program. FuelCalc is a tool to compute surface and canopy fuel loads and characteristics from inventory data, to support fuel treatment decisions by simulating effects of a wide range of silvicultural treatments on surface fuels and canopy fuels, and to provide linkages to stand visualization, fire behavior and fire effects...

  18. The Effect of Employing Self-Explanation Strategy with Worked Examples on Acquiring Computer Programing Skills

    ERIC Educational Resources Information Center

    Alhassan, Riyadh

    2017-01-01

    The purpose of this study was to examine the effect of employing self-explanation learning strategy supported with Worked Examples on acquiring computer programing skills among freshmen high school students. The study adopted a quasi-experimental method, where an experimental group (n = 33) used the self-explanation strategy supported with worked…

  19. The Effect of Computer-Assisted Cooperative Learning Methods and Group Size on the EFL Learners' Achievement in Communication Skills

    ERIC Educational Resources Information Center

    AbuSeileek, Ali Farhan

    2012-01-01

    This study explored the effect of cooperative learning small group size and two different instructional modes (positive interdependence vs. individual accountability) on English as a Foreign Language (EFL) undergraduate learners' communication skills (speaking and writing) achievement in computer-based environments. The study also examined the…

  20. Evaluation of the Effectiveness of a Tablet Computer Application (App) in Helping Students with Visual Impairments Solve Mathematics Problems

    ERIC Educational Resources Information Center

    Beal, Carole R.; Rosenblum, L. Penny

    2018-01-01

    Introduction: The authors examined a tablet computer application (iPad app) for its effectiveness in helping students studying prealgebra to solve mathematical word problems. Methods: Forty-three visually impaired students (that is, those who are blind or have low vision) completed eight alternating mathematics units presented using their…

  1. Color image watermarking against fog effects

    NASA Astrophysics Data System (ADS)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-07-01

    Fog effects in various computer and camera software can partially or fully damage the watermark information within the watermarked image. In this paper, we propose a color image watermarking based on the modification of reflectance component against fog effects. The reflectance component is extracted from the blue color channel in the RGB color space of a host image, and then used to carry a watermark signal. The watermark extraction is blindly achieved by subtracting the estimation of the original reflectance component from the watermarked component. The performance of the proposed watermarking method in terms of wPSNR and NC is evaluated, and then compared with the previous method. The experimental results on robustness against various levels of fog effect, from both computer software and mobile application, demonstrated a higher robustness of our proposed method, compared to the previous one.

  2. RPM-WEBBSYS: A web-based computer system to apply the rational polynomial method for estimating static formation temperatures of petroleum and geothermal wells

    NASA Astrophysics Data System (ADS)

    Wong-Loya, J. A.; Santoyo, E.; Andaverde, J. A.; Quiroz-Ruiz, A.

    2015-12-01

    A Web-Based Computer System (RPM-WEBBSYS) has been developed for the application of the Rational Polynomial Method (RPM) to estimate static formation temperatures (SFT) of geothermal and petroleum wells. The system is also capable to reproduce the full thermal recovery processes occurred during the well completion. RPM-WEBBSYS has been programmed using advances of the information technology to perform more efficiently computations of SFT. RPM-WEBBSYS may be friendly and rapidly executed by using any computing device (e.g., personal computers and portable computing devices such as tablets or smartphones) with Internet access and a web browser. The computer system was validated using bottomhole temperature (BHT) measurements logged in a synthetic heat transfer experiment, where a good matching between predicted and true SFT was achieved. RPM-WEBBSYS was finally applied to BHT logs collected from well drilling and shut-in operations, where the typical problems of the under- and over-estimation of the SFT (exhibited by most of the existing analytical methods) were effectively corrected.

  3. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    PubMed Central

    Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan

    2004-01-01

    Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335

  4. Crystallization mosaic effect generation by superpixels

    NASA Astrophysics Data System (ADS)

    Xie, Yuqi; Bo, Pengbo; Yuan, Ye; Wang, Kuanquan

    2015-03-01

    Art effect generation from digital images using computational tools has been a hot research topic in recent years. We propose a new method for generating crystallization mosaic effects from color images. Two key problems in generating pleasant mosaic effect are studied: grouping pixels into mosaic tiles and arrangement of mosaic tiles adapting to image features. To give visually pleasant mosaic effect, we propose to create mosaic tiles by pixel clustering in feature space of color information, taking compactness of tiles into consideration as well. Moreover, we propose a method for processing feature boundaries in images which gives guidance for arranging mosaic tiles near image features. This method gives nearly uniform shape of mosaic tiles, adapting to feature lines in an esthetic way. The new approach considers both color distance and Euclidean distance of pixels, and thus is capable of giving mosaic tiles in a more pleasing manner. Some experiments are included to demonstrate the computational efficiency of the present method and its capability of generating visually pleasant mosaic tiles. Comparisons with existing approaches are also included to show the superiority of the new method.

  5. A locally p-adaptive approach for Large Eddy Simulation of compressible flows in a DG framework

    NASA Astrophysics Data System (ADS)

    Tugnoli, Matteo; Abbà, Antonella; Bonaventura, Luca; Restelli, Marco

    2017-11-01

    We investigate the possibility of reducing the computational burden of LES models by employing local polynomial degree adaptivity in the framework of a high-order DG method. A novel degree adaptation technique especially featured to be effective for LES applications is proposed and its effectiveness is compared to that of other criteria already employed in the literature. The resulting locally adaptive approach allows to achieve significant reductions in computational cost of representative LES computations.

  6. Importance of resonance interference effects in multigroup self-shielding calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachowski, R.E.; Protsik, R.

    1995-12-31

    The impact of the resonance interference method (RIF) on multigroup neutron cross sections is significant for major isotopes in the fuel, indicating the importance of resonance interference in the computation of gadolinia burnout and plutonium buildup. The self-shielding factor method with the RIF method effectively eliminates shortcomings in multigroup resonance calculations.

  7. The Relative Effectiveness of Training Methods for Attaining Training Objectives: Current Opinion of Training Practitioners.

    ERIC Educational Resources Information Center

    Shoenfelt, Elizabeth L.; And Others

    This study replicated the earlier survey efforts of Carroll, Paine, and Ivancevich (1972) and Neider (1981) on the relative effectiveness among practitioners of various training methods for attaining different training objectives. Ten training methods were assessed: (1) computer aided instruction (CAI); (2) programmed instruction; (3) lecture…

  8. Development and Application of Explicitly Correlated Wave Function Based Methods for the Investigation of Optical Properties of Semiconductor Nanomaterials

    NASA Astrophysics Data System (ADS)

    Elward, Jennifer Mary

    Semiconductor nanoparticles, or quantum dots (QDs), are well known to have very unique optical and electronic properties. These properties can be controlled and tailored as a function of several influential factors, including but not limited to the particle size and shape, effect of composition and heterojunction as well as the effect of ligand on the particle surface. This customizable nature leads to extensive experimental and theoretical research on the capabilities of these quantum dots for many application purposes. However, in order to be able to understand and thus further the development of these materials, one must first understand the fundamental interaction within these nanoparticles. In this thesis, I have developed a theoretical method which is called electron-hole explicitly correlated Hartee-Fock (eh-XCHF). It is a variational method for solving the electron-hole Schrodinger equation and has been used in this work to study electron-hole interaction in semiconductor quantum dots. The method was benchmarked with respect to a parabolic quantum dot system, and ground state energy and electron-hole recombination probability were computed. Both of these properties were found to be in good agreement with expected results. Upon successful benchmarking, I have applied the eh-XCHF method to study optical properties of several quantum dot systems including the effect of dot size on exciton binding energy and recombination probability in a CdSe quantum dot, the effect of shape on a CdSe quantum dot, the effect of heterojunction on a CdSe/ZnS quantum dot and the effect of quantum dot-biomolecule interaction within a CdSe-firefly Luciferase protein conjugate system. As metrics for assessing the effect of these influencers on the electron-hole interaction, the exciton binding energy, electron-hole recombination probability and the average electron-hole separation distance have been computed. These excitonic properties have been found to be strongly infuenced by the changing composition of the particle. It has also been found through this work that the explicitly correlated method performs very well when computing these properties as it provides a feasible computational route to compare to both experimental and other theoretical results.

  9. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.

    PubMed

    Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang

    2017-07-24

    With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.

  10. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes.

    PubMed

    Austin, Peter C

    2018-01-01

    Propensity score methods are frequently used to estimate the effects of interventions using observational data. The propensity score was originally developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (e.g. pack-years of cigarettes smoked, dose of medication, or years of education). We describe how the GPS can be used to estimate the effect of continuous exposures on survival or time-to-event outcomes. To do so we modified the concept of the dose-response function for use with time-to-event outcomes. We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of quantitative exposures on survival or time-to-event outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. The use of methods based on the GPS was compared with the use of conventional G-computation and weighted G-computation. Conventional G-computation resulted in estimates of the dose-response function that displayed the lowest bias and the lowest variability. Amongst the two GPS-based methods, covariate adjustment using the GPS tended to have the better performance. We illustrate the application of these methods by estimating the effect of average neighbourhood income on the probability of survival following hospitalization for an acute myocardial infarction.

  11. Intravenous catheter training system: computer-based education versus traditional learning methods.

    PubMed

    Engum, Scott A; Jeffries, Pamela; Fisher, Lisa

    2003-07-01

    Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors. Technology alone is not a solution for stand alone IV catheter placement education. A traditional learning method was preferred by students. The combination of these two methods of education may further enhance the trainee's satisfaction and skill acquisition level.

  12. The pKa Cooperative: A Collaborative Effort to Advance Structure-Based Calculations of pKa values and Electrostatic Effects in Proteins

    PubMed Central

    Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.

    2012-01-01

    The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877

  13. The Effects of Computer-Assisted Instruction Based on Top-Level Structure Method in English Reading and Writing Abilities of Thai EFL Students

    ERIC Educational Resources Information Center

    Jinajai, Nattapong; Rattanavich, Saowalak

    2015-01-01

    This research aims to study the development of ninth grade students' reading and writing abilities and interests in learning English taught through computer-assisted instruction (CAI) based on the top-level structure (TLS) method. An experimental group time series design was used, and the data was analyzed by multivariate analysis of variance…

  14. The "Silent Dog" Method: Analyzing the Impact of Self-Generated Rules when Teaching Different Computer Chains to Boys with Autism

    ERIC Educational Resources Information Center

    Arntzen, Erik; Halstadtro, Lill-Beathe; Halstadtro, Monica

    2009-01-01

    The purpose of the study was to extend the literature on verbal self-regulation by using the "silent dog" method to evaluate the role of verbal regulation over nonverbal behavior in 2 individuals with autism. Participants were required to talk-aloud while performing functional computer tasks.Then the effects of distracters with increasing demands…

  15. Identification of an Adaptable Computer Program Design for Analyzing a Modular Organizational Assessment Instrument.

    DTIC Science & Technology

    1981-09-01

    ber) Survey-guided development Organizational effectiveness Computer program Organizational diagnosis Management 20. ABSTRACT (Continue an reverse...Army. Doctoral dissertation, Purdue University, December 1977. (DTIC AD-A059-542) Bowers, D. G. Organizational diagnosis : A review and a proposed method...G. E. Compara- tive issues and methods in organizational diagnosis . Ann Arbor MI: Institute for Social Research, University of Michigan, November 1977

  16. Computational inverse methods of heat source in fatigue damage problems

    NASA Astrophysics Data System (ADS)

    Chen, Aizhou; Li, Yuan; Yan, Bo

    2018-04-01

    Fatigue dissipation energy is the research focus in field of fatigue damage at present. It is a new idea to solve the problem of calculating fatigue dissipation energy by introducing inverse method of heat source into parameter identification of fatigue dissipation energy model. This paper introduces the research advances on computational inverse method of heat source and regularization technique to solve inverse problem, as well as the existing heat source solution method in fatigue process, prospects inverse method of heat source applying in fatigue damage field, lays the foundation for further improving the effectiveness of fatigue dissipation energy rapid prediction.

  17. Enabling Self-Directed Computer Use for Individuals with Cerebral Palsy: A Systematic Review of Assistive Devices and Technologies

    ERIC Educational Resources Information Center

    Davies, T. Claire; Mudge, Suzie; Ameratunga, Shanthi; Stott, N. Susan

    2010-01-01

    Aim: The purpose of this study was to systematically review published evidence on the development, use, and effectiveness of devices and technologies that enable or enhance self-directed computer access by individuals with cerebral palsy (CP). Methods: Nine electronic databases were searched using keywords "computer", "software", "spastic",…

  18. Mind and Material: The Interplay between Computer-Related and Second Language Factors in Online Communication Dialogues

    ERIC Educational Resources Information Center

    Wu, Pin-hsiang Natalie; Kawamura, Michelle

    2014-01-01

    With a growing demand for learning English and a trend of utilizing computers in education, methods that can achieve the effectiveness of computer-mediated communication (CMC) to support language learning in higher education have been examined. However, second language factors manipulate both the process and production of CMC and, therefore,…

  19. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for prediction of in vivo metabolism, which is reflected by the diverse and comprehensive data sources and methods for metabolism prediction reviewed here. This review attempts to survey the range and scope of computational methods applied to metabolism prediction and also to compare and contrast their applicability and performance. PMID:22339582

  20. High-efficiency photorealistic computer-generated holograms based on the backward ray-tracing technique

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Chen, Zhidong; Sang, Xinzhu; Li, Hui; Zhao, Linmin

    2018-03-01

    Holographic displays can provide the complete optical wave field of a three-dimensional (3D) scene, including the depth perception. However, it often takes a long computation time to produce traditional computer-generated holograms (CGHs) without more complex and photorealistic rendering. The backward ray-tracing technique is able to render photorealistic high-quality images, which noticeably reduce the computation time achieved from the high-degree parallelism. Here, a high-efficiency photorealistic computer-generated hologram method is presented based on the ray-tracing technique. Rays are parallelly launched and traced under different illuminations and circumstances. Experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional point cloud CGH, the computation time is decreased to 24 s to reconstruct a 3D object of 100 ×100 rays with continuous depth change.

  1. A Simplified Guidance for Target Missiles Used in Ballistic Missile Defence Evaluation

    NASA Astrophysics Data System (ADS)

    Prabhakar, N.; Kumar, I. D.; Tata, S. K.; Vaithiyanathan, V.

    2013-01-01

    A simplified guidance scheme for the target missiles used in Ballistic Missile Defence is presented in this paper. The proposed method has two major components, a Ground Guidance Computation (GGC) and an In-Flight Guidance Computation. The GGC which runs on the ground uses a missile model to generate attitude history in pitch plane and computes launch azimuth of the missile to compensate for the effect of earth rotation. The vehicle follows the pre launch computed attitude (theta) history in pitch plane and also applies the course correction in azimuth plane based on its deviation from the pre launch computed azimuth plane. This scheme requires less computations and counters In-flight disturbances such as wind, gust etc. quite efficiently. The simulation results show that the proposed method provides the satisfactory performance and robustness.

  2. Using a computer simulation for teaching communication skills: A blinded multisite mixed methods randomized controlled trial

    PubMed Central

    Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.

    2016-01-01

    Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846

  3. Delta Clipper-Experimental In-Ground Effect on Base-Heating Environment

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    1998-01-01

    A quasitransient in-ground effect method is developed to study the effect of vertical landing on a launch vehicle base-heating environment. This computational methodology is based on a three-dimensional, pressure-based, viscous flow, chemically reacting, computational fluid dynamics formulation. Important in-ground base-flow physics such as the fountain-jet formation, plume growth, air entrainment, and plume afterburning are captured with the present methodology. Convective and radiative base-heat fluxes are computed for comparison with those of a flight test. The influence of the laminar Prandtl number on the convective heat flux is included in this study. A radiative direction-dependency test is conducted using both the discrete ordinate and finite volume methods. Treatment of the plume afterburning is found to be very important for accurate prediction of the base-heat fluxes. Convective and radiative base-heat fluxes predicted by the model using a finite rate chemistry option compared reasonably well with flight-test data.

  4. Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo

    NASA Technical Reports Server (NTRS)

    Borner, A.; Ferguson, C.; Panerai, F.; Mansour, Nagi N.

    2017-01-01

    Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes.

  5. Time-Domain Computation Of Electromagnetic Fields In MMICs

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1995-01-01

    Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.

  6. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less

  7. Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks

    PubMed Central

    Kaltenbacher, Barbara; Hasenauer, Jan

    2017-01-01

    Mechanistic mathematical modeling of biochemical reaction networks using ordinary differential equation (ODE) models has improved our understanding of small- and medium-scale biological processes. While the same should in principle hold for large- and genome-scale processes, the computational methods for the analysis of ODE models which describe hundreds or thousands of biochemical species and reactions are missing so far. While individual simulations are feasible, the inference of the model parameters from experimental data is computationally too intensive. In this manuscript, we evaluate adjoint sensitivity analysis for parameter estimation in large scale biochemical reaction networks. We present the approach for time-discrete measurement and compare it to state-of-the-art methods used in systems and computational biology. Our comparison reveals a significantly improved computational efficiency and a superior scalability of adjoint sensitivity analysis. The computational complexity is effectively independent of the number of parameters, enabling the analysis of large- and genome-scale models. Our study of a comprehensive kinetic model of ErbB signaling shows that parameter estimation using adjoint sensitivity analysis requires a fraction of the computation time of established methods. The proposed method will facilitate mechanistic modeling of genome-scale cellular processes, as required in the age of omics. PMID:28114351

  8. Accurate optimization of amino acid form factors for computing small-angle X-ray scattering intensity of atomistic protein structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Dudu; Yang, Sichun; Lu, Lanyuan

    2016-06-20

    Structure modellingviasmall-angle X-ray scattering (SAXS) data generally requires intensive computations of scattering intensity from any given biomolecular structure, where the accurate evaluation of SAXS profiles using coarse-grained (CG) methods is vital to improve computational efficiency. To date, most CG SAXS computing methods have been based on a single-bead-per-residue approximation but have neglected structural correlations between amino acids. To improve the accuracy of scattering calculations, accurate CG form factors of amino acids are now derived using a rigorous optimization strategy, termed electron-density matching (EDM), to best fit electron-density distributions of protein structures. This EDM method is compared with and tested againstmore » other CG SAXS computing methods, and the resulting CG SAXS profiles from EDM agree better with all-atom theoretical SAXS data. By including the protein hydration shell represented by explicit CG water molecules and the correction of protein excluded volume, the developed CG form factors also reproduce the selected experimental SAXS profiles with very small deviations. Taken together, these EDM-derived CG form factors present an accurate and efficient computational approach for SAXS computing, especially when higher molecular details (represented by theqrange of the SAXS data) become necessary for effective structure modelling.« less

  9. Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Li, Xiaoqin; Bian, Yan

    2018-04-01

    Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.

  10. Development of an Efficient Binaural Simulation for the Analysis of Structural Acoustic Data

    NASA Technical Reports Server (NTRS)

    Lalime, Aimee L.; Johnson, Marty E.; Rizzi, Stephen A. (Technical Monitor)

    2002-01-01

    Binaural or "virtual acoustic" representation has been proposed as a method of analyzing acoustic and vibroacoustic data. Unfortunately, this binaural representation can require extensive computer power to apply the Head Related Transfer Functions (HRTFs) to a large number of sources, as with a vibrating structure. This work focuses on reducing the number of real-time computations required in this binaural analysis through the use of Singular Value Decomposition (SVD) and Equivalent Source Reduction (ESR). The SVD method reduces the complexity of the HRTF computations by breaking the HRTFs into dominant singular values (and vectors). The ESR method reduces the number of sources to be analyzed in real-time computation by replacing sources on the scale of a structural wavelength with sources on the scale of an acoustic wavelength. It is shown that the effectiveness of the SVD and ESR methods improves as the complexity of the source increases. In addition, preliminary auralization tests have shown that the results from both the SVD and ESR methods are indistinguishable from the results found with the exhaustive method.

  11. The application of computer image analysis in life sciences and environmental engineering

    NASA Astrophysics Data System (ADS)

    Mazur, R.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.

    2014-04-01

    The main aim of the article was to present research on the application of computer image analysis in Life Science and Environmental Engineering. The authors used different methods of computer image analysis in developing of an innovative biotest in modern biomonitoring of water quality. Created tools were based on live organisms such as bioindicators Lemna minor L. and Hydra vulgaris Pallas as well as computer image analysis method in the assessment of negatives reactions during the exposition of the organisms to selected water toxicants. All of these methods belong to acute toxicity tests and are particularly essential in ecotoxicological assessment of water pollutants. Developed bioassays can be used not only in scientific research but are also applicable in environmental engineering and agriculture in the study of adverse effects on water quality of various compounds used in agriculture and industry.

  12. A Meta-Analytic Study Concerning the Effect of Computer-Based Teaching on Academic Success in Turkey

    ERIC Educational Resources Information Center

    Batdi, Veli

    2015-01-01

    This research aims to investigate the effect of computer-based teaching (CBT) on students' academic success. The research used a meta-analytic method to reach a general conclusion by statistically calculating the results of a number of independent studies. In total, 78 studies (62 master's theses, 4 PhD theses, and 12 articles) concerning this…

  13. The Effect of Animation in Multimedia Computer-Based Learning and Learning Style to the Learning Results

    ERIC Educational Resources Information Center

    Rusli, Muhammad; Negara, I. Komang Rinartha Yasa

    2017-01-01

    The effectiveness of a learning depends on four main elements, they are content, desired learning outcome, instructional method and the delivery media. The integration of those four elements can be manifested into a learning module which is called multimedia learning or learning by using multimedia. In learning context by using computer-based…

  14. The Effects of Computer Assisted Instruction Materials on Approximate Number Skills of Students with Dyscalculia

    ERIC Educational Resources Information Center

    Mutlu, Yilmaz; Akgün, Levent

    2017-01-01

    The aim of this study is to examine the effects of computer assisted instruction materials on approximate number skills of students with mathematics learning difficulties. The study was carried out with pretest-posttest quasi experimental method with a single subject. The participants of the study consist of a girl and two boys who attend 3rd…

  15. Effect of Jigsaw II, Reading-Writing-Presentation, and Computer Animations on the Teaching of "Light" Unit

    ERIC Educational Resources Information Center

    Koç, Yasemin; Yildiz, Emre; Çaliklar, Seyma; Simsek, Ümit

    2016-01-01

    The aim of this study is to determine the effect of Jigsaw II technique, reading-writing-presentation method, and computer animation on students' academic achievements, epistemological beliefs, attitudes towards science lesson, and the retention of knowledge in the "Light" unit covered in the 7th grade. The sample of the study consists…

  16. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    ERIC Educational Resources Information Center

    Akcay, Hüsamettin; Durmaz, Asli; Tüysüz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  17. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  18. Memory reduction through higher level language hardware

    NASA Technical Reports Server (NTRS)

    Kerner, H.; Gellman, L.

    1972-01-01

    Application of large scale integration in computers to reduce size and manufacturing costs and to produce improvements in logic function is discussed. Use of FORTRAN 4 as computer language for this purpose is described. Effectiveness of method in storing information is illustrated.

  19. Computed atmospheric corrections for satellite data. [in visible and near IR spectra

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.

    1975-01-01

    The corrections are presented for the visible and near infrared spectrum. The specifications of earth-atmosphere models are given. Herman's and Dave's methods of computing the four Stokes parameters are presented. The relative differences between the two sets of values are one percent. The absolute accuracy of the computations can be established only by comparisons with measured data. Suitable observations do not yet exist. Nevertheless, comparisons are made between computed and aircraft and satellite measured radiances. Particulates are the principal atmospheric variable in the window bands. They have a large effect on the radiances when the surface reflectivity is low. When the surface reflectivity exceeds 0.1, only absorbing particulates have a large effect on the reflectivity, unless the atmospheric turbidity is high. The ranges of the Multispectral Scanner responses to atmospheric effects are computed.

  20. Multicomponent Density Functional Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries.

    PubMed

    Brorsen, Kurt R; Yang, Yang; Hammes-Schiffer, Sharon

    2017-08-03

    Nuclear quantum effects such as zero point energy play a critical role in computational chemistry and often are included as energetic corrections following geometry optimizations. The nuclear-electronic orbital (NEO) multicomponent density functional theory (DFT) method treats select nuclei, typically protons, quantum mechanically on the same level as the electrons. Electron-proton correlation is highly significant, and inadequate treatments lead to highly overlocalized nuclear densities. A recently developed electron-proton correlation functional, epc17, has been shown to provide accurate nuclear densities for molecular systems. Herein, the NEO-DFT/epc17 method is used to compute the proton affinities for a set of molecules and to examine the role of nuclear quantum effects on the equilibrium geometry of FHF - . The agreement of the computed results with experimental and benchmark values demonstrates the promise of this approach for including nuclear quantum effects in calculations of proton affinities, pK a 's, optimized geometries, and reaction paths.

  1. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  2. Survey of Computer-Based Message Systems; COM/PortaCOM Conference System: Design Goals and Principles; Computer Conferencing Is More Than Electronic Mail; Effects of the COM Computer Conference System.

    ERIC Educational Resources Information Center

    Palme, Jacob

    The four papers contained in this document provide: (1) a survey of computer based mail and conference systems; (2) an evaluation of systems for both individually addressed mail and group addressing through conferences and distribution lists; (3) a discussion of various methods of structuring the text data in existing systems; and (4) a…

  3. Cost-Benefit Analysis for ECIA Chapter 1 and State DPPF Programs Comparing Groups Receiving Regular Program Instruction and Groups Receiving Computer Assisted Instruction/Computer Management System (CAI/CMS). 1986-87.

    ERIC Educational Resources Information Center

    Chamberlain, Ed

    A cost benefit study was conducted to determine the effectiveness of a computer assisted instruction/computer management system (CAI/CMS) as an alternative to conventional methods of teaching reading within Chapter 1 and DPPF funded programs of the Columbus (Ohio) Public Schools. The Chapter 1 funded Compensatory Language Experiences and Reading…

  4. ICASE semiannual report, April 1 - September 30, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Institute conducts unclassified basic research in applied mathematics, numerical analysis, and computer science in order to extend and improve problem-solving capabilities in science and engineering, particularly in aeronautics and space. The major categories of the current Institute for Computer Applications in Science and Engineering (ICASE) research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification problems, with emphasis on effective numerical methods; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers. ICASE reports are considered to be primarily preprints of manuscripts that have been submitted to appropriate research journals or that are to appear in conference proceedings.

  5. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  6. A new impedance accounting for short- and long-range effects in mixed substructured formulations of nonlinear problems

    NASA Astrophysics Data System (ADS)

    Negrello, Camille; Gosselet, Pierre; Rey, Christian

    2018-05-01

    An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal value for this parameter is often too expensive to be computed exactly in practice: an approximate version has to be sought for, along with a compromise between efficiency and computational cost. In the context of parallel algorithms for solving nonlinear structural mechanical problems, we propose a new heuristic for the impedance which combines short and long range effects at a low computational cost.

  7. Numerical Simulation of Rolling-Airframes Using a Multi-Level Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A supersonic rolling missile with two synchronous canard control surfaces is analyzed using an automated, inviscid, Cartesian method. Sequential-static and time-dependent dynamic simulations of the complete motion are computed for canard dither schedules for level flight, pitch, and yaw maneuver. The dynamic simulations are compared directly against both high-resolution viscous simulations and relevant experimental data, and are also utilized to compute dynamic stability derivatives. The results show that both the body roll rate and canard dither motion influence the roll-averaged forces and moments on the body. At the relatively, low roll rates analyzed in the current work these dynamic effects are modest, however the dynamic computations are effective in predicting the dynamic stability derivatives which can be significant for highly-maneuverable missiles.

  8. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  9. Sediment transport and effective discharge of the North Platte, South Platte, and Platte Rivers in Nebraska

    USGS Publications Warehouse

    Kircher, J.E.

    1981-01-01

    Sediment discharge was computed for four locations along the North Platte, South Platte, and the Platte Rivers between North Platte and Grand Island, Nebraska in order to determine the effective discharge. The total-sediment discharge was computed by the Colby method and modified Einstein method so that comparisons could be made with the measured total-sediment discharge. The results agreed closely. The Colby method is the simplest and most convenient to use. The mean annual total-sediment discharge for the four sites investigated ranged from 150 tons per day for the South Platte River at North Platte to 1,260 tons per day for the Platte River near Grand Island. The effective discharge at the sites ranged from 41 to 158 cubic meters per second. The probability of the effective discharge being equaled or exceeded ranged from 1 to 30 percent for the four sites. (USGS)

  10. Study on validation method for femur finite element model under multiple loading conditions

    NASA Astrophysics Data System (ADS)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  11. A method for mapping fire hazard and risk across multiple scales and its application in fire management

    Treesearch

    Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds

    2010-01-01

    This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...

  12. Modeling of unit operating considerations in generating-capacity reliability evaluation. Volume 1. Mathematical models, computing methods, and results. Final report. [GENESIS, OPCON and OPPLAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, A.D.; Ayoub, A.K.; Singh, C.

    1982-07-01

    Existing methods for generating capacity reliability evaluation do not explicitly recognize a number of operating considerations which may have important effects in system reliability performance. Thus, current methods may yield estimates of system reliability which differ appreciably from actual observed reliability. Further, current methods offer no means of accurately studying or evaluating alternatives which may differ in one or more operating considerations. Operating considerations which are considered to be important in generating capacity reliability evaluation include: unit duty cycles as influenced by load cycle shape, reliability performance of other units, unit commitment policy, and operating reserve policy; unit start-up failuresmore » distinct from unit running failures; unit start-up times; and unit outage postponability and the management of postponable outages. A detailed Monte Carlo simulation computer model called GENESIS and two analytical models called OPCON and OPPLAN have been developed which are capable of incorporating the effects of many operating considerations including those noted above. These computer models have been used to study a variety of actual and synthetic systems and are available from EPRI. The new models are shown to produce system reliability indices which differ appreciably from index values computed using traditional models which do not recognize operating considerations.« less

  13. Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP

    NASA Technical Reports Server (NTRS)

    Gupta, V. K.; Zillmer, S. D.; Allison, R. E.

    1986-01-01

    The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix.

  14. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  15. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  16. Effectiveness of a computer-based tutorial for teaching how to make a blood smear.

    PubMed

    Preast, Vanessa; Danielson, Jared; Bender, Holly; Bousson, Maury

    2007-09-01

    Computer-aided instruction (CAI) was developed to teach veterinary students how to make blood smears. This instruction was intended to replace the traditional instructional method in order to promote efficient use of faculty resources while maintaining learning outcomes and student satisfaction. The purpose of this study was to evaluate the effect of a computer-aided blood smear tutorial on 1) instructor's teaching time, 2) students' ability to make blood smears, and 3) students' ability to recognize smear quality. Three laboratory sessions for senior veterinary students were taught using traditional methods (control group) and 4 sessions were taught using the CAI tutorial (experimental group). Students in the control group received a short demonstration and lecture by the instructor at the beginning of the laboratory and then practiced making blood smears. Students in the experimental group received their instruction through the self-paced, multimedia tutorial on a laptop computer and then practiced making blood smears. Data was collected from observation, interview, survey questionnaires, and smear evaluation by students and experts using a scoring rubric. Students using the CAI made better smears and were better able to recognize smear quality. The average time the instructor spent in the room was not significantly different between groups, but the quality of the instructor time was improved with the experimental instruction. The tutorial implementation effectively provided students and instructors with a teaching and learning experience superior to the traditional method of instruction. Using CAI is a viable method of teaching students to make blood smears.

  17. A Systematic Investigation of Computation Models for Predicting Adverse Drug Reactions (ADRs)

    PubMed Central

    Kuang, Qifan; Wang, MinQi; Li, Rong; Dong, YongCheng; Li, Yizhou; Li, Menglong

    2014-01-01

    Background Early and accurate identification of adverse drug reactions (ADRs) is critically important for drug development and clinical safety. Computer-aided prediction of ADRs has attracted increasing attention in recent years, and many computational models have been proposed. However, because of the lack of systematic analysis and comparison of the different computational models, there remain limitations in designing more effective algorithms and selecting more useful features. There is therefore an urgent need to review and analyze previous computation models to obtain general conclusions that can provide useful guidance to construct more effective computational models to predict ADRs. Principal Findings In the current study, the main work is to compare and analyze the performance of existing computational methods to predict ADRs, by implementing and evaluating additional algorithms that have been earlier used for predicting drug targets. Our results indicated that topological and intrinsic features were complementary to an extent and the Jaccard coefficient had an important and general effect on the prediction of drug-ADR associations. By comparing the structure of each algorithm, final formulas of these algorithms were all converted to linear model in form, based on this finding we propose a new algorithm called the general weighted profile method and it yielded the best overall performance among the algorithms investigated in this paper. Conclusion Several meaningful conclusions and useful findings regarding the prediction of ADRs are provided for selecting optimal features and algorithms. PMID:25180585

  18. Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jinting; Lu, Liqiao; Zhu, Fei

    2018-01-01

    Finite element (FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations (RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time (TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method (CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ (λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.

  19. Cost efficient CFD simulations: Proper selection of domain partitioning strategies

    NASA Astrophysics Data System (ADS)

    Haddadi, Bahram; Jordan, Christian; Harasek, Michael

    2017-10-01

    Computational Fluid Dynamics (CFD) is one of the most powerful simulation methods, which is used for temporally and spatially resolved solutions of fluid flow, heat transfer, mass transfer, etc. One of the challenges of Computational Fluid Dynamics is the extreme hardware demand. Nowadays super-computers (e.g. High Performance Computing, HPC) featuring multiple CPU cores are applied for solving-the simulation domain is split into partitions for each core. Some of the different methods for partitioning are investigated in this paper. As a practical example, a new open source based solver was utilized for simulating packed bed adsorption, a common separation method within the field of thermal process engineering. Adsorption can for example be applied for removal of trace gases from a gas stream or pure gases production like Hydrogen. For comparing the performance of the partitioning methods, a 60 million cell mesh for a packed bed of spherical adsorbents was created; one second of the adsorption process was simulated. Different partitioning methods available in OpenFOAM® (Scotch, Simple, and Hierarchical) have been used with different numbers of sub-domains. The effect of the different methods and number of processor cores on the simulation speedup and also energy consumption were investigated for two different hardware infrastructures (Vienna Scientific Clusters VSC 2 and VSC 3). As a general recommendation an optimum number of cells per processor core was calculated. Optimized simulation speed, lower energy consumption and consequently the cost effects are reported here.

  20. The method of a joint intraday security check system based on cloud computing

    NASA Astrophysics Data System (ADS)

    Dong, Wei; Feng, Changyou; Zhou, Caiqi; Cai, Zhi; Dan, Xu; Dai, Sai; Zhang, Chuancheng

    2017-01-01

    The intraday security check is the core application in the dispatching control system. The existing security check calculation only uses the dispatch center’s local model and data as the functional margin. This paper introduces the design of all-grid intraday joint security check system based on cloud computing and its implementation. To reduce the effect of subarea bad data on the all-grid security check, a new power flow algorithm basing on comparison and adjustment with inter-provincial tie-line plan is presented. And the numerical example illustrated the effectiveness and feasibility of the proposed method.

  1. Progressive damage, fracture predictions and post mortem correlations for fiber composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and fracture of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.

  2. An evaluation of four single element airfoil analytic methods

    NASA Technical Reports Server (NTRS)

    Freuler, R. J.; Gregorek, G. M.

    1979-01-01

    A comparison of four computer codes for the analysis of two-dimensional single element airfoil sections is presented for three classes of section geometries. Two of the computer codes utilize vortex singularities methods to obtain the potential flow solution. The other two codes solve the full inviscid potential flow equation using finite differencing techniques, allowing results to be obtained for transonic flow about an airfoil including weak shocks. Each program incorporates boundary layer routines for computing the boundary layer displacement thickness and boundary layer effects on aerodynamic coefficients. Computational results are given for a symmetrical section represented by an NACA 0012 profile, a conventional section illustrated by an NACA 65A413 profile, and a supercritical type section for general aviation applications typified by a NASA LS(1)-0413 section. The four codes are compared and contrasted in the areas of method of approach, range of applicability, agreement among each other and with experiment, individual advantages and disadvantages, computer run times and memory requirements, and operational idiosyncrasies.

  3. Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data

    PubMed Central

    Yang, Yan; Simpson, Douglas

    2010-01-01

    Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950

  4. Computational compliance criteria in water hammer modelling

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Kamil

    2017-10-01

    Among many numerical methods (finite: difference, element, volume etc.) used to solve the system of partial differential equations describing unsteady pipe flow, the method of characteristics (MOC) is most appreciated. With its help, it is possible to examine the effect of numerical discretisation carried over the pipe length. It was noticed, based on the tests performed in this study, that convergence of the calculation results occurred on a rectangular grid with the division of each pipe of the analysed system into at least 10 elements. Therefore, it is advisable to introduce computational compliance criteria (CCC), which will be responsible for optimal discretisation of the examined system. The results of this study, based on the assumption of various values of the Courant-Friedrichs-Levy (CFL) number, indicate also that the CFL number should be equal to one for optimum computational results. Application of the CCC criterion to own written and commercial computer programmes based on the method of characteristics will guarantee fast simulations and the necessary computational coherence.

  5. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  6. Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory

    NASA Astrophysics Data System (ADS)

    MacDonald, Christopher L.; Bhattacharya, Nirupama; Sprouse, Brian P.; Silva, Gabriel A.

    2015-09-01

    Computing numerical solutions to fractional differential equations can be computationally intensive due to the effect of non-local derivatives in which all previous time points contribute to the current iteration. In general, numerical approaches that depend on truncating part of the system history while efficient, can suffer from high degrees of error and inaccuracy. Here we present an adaptive time step memory method for smooth functions applied to the Grünwald-Letnikov fractional diffusion derivative. This method is computationally efficient and results in smaller errors during numerical simulations. Sampled points along the system's history at progressively longer intervals are assumed to reflect the values of neighboring time points. By including progressively fewer points backward in time, a temporally 'weighted' history is computed that includes contributions from the entire past of the system, maintaining accuracy, but with fewer points actually calculated, greatly improving computational efficiency.

  7. Reanalysis, compatibility and correlation in analysis of modified antenna structures

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1989-01-01

    A simple computational procedure is synthesized to process changes in the microwave-antenna pathlength-error measure when there are changes in the antenna structure model. The procedure employs structural modification reanalysis methods combined with new extensions of correlation analysis to provide the revised rms pathlength error. Mainframe finite-element-method processing of the structure model is required only for the initial unmodified structure, and elementary postprocessor computations develop and deal with the effects of the changes. Several illustrative computational examples are included. The procedure adapts readily to processing spectra of changes for parameter studies or sensitivity analyses.

  8. The ensemble switch method for computing interfacial tensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, Fabian; Virnau, Peter

    2015-04-14

    We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.

  9. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  10. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environmentmore » without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.« less

  11. Response Matrix Monte Carlo for electron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, C.T.; Nielsen, D.E. Jr.; Rathkopf, J.A.

    1990-11-01

    A Response Matrix Monte Carol (RMMC) method has been developed for solving electron transport problems. This method was born of the need to have a reliable, computationally efficient transport method for low energy electrons (below a few hundred keV) in all materials. Today, condensed history methods are used which reduce the computation time by modeling the combined effect of many collisions but fail at low energy because of the assumptions required to characterize the electron scattering. Analog Monte Carlo simulations are prohibitively expensive since electrons undergo coulombic scattering with little state change after a collision. The RMMC method attempts tomore » combine the accuracy of an analog Monte Carlo simulation with the speed of the condensed history methods. The combined effect of many collisions is modeled, like condensed history, except it is precalculated via an analog Monte Carol simulation. This avoids the scattering kernel assumptions associated with condensed history methods. Results show good agreement between the RMMC method and analog Monte Carlo. 11 refs., 7 figs., 1 tabs.« less

  12. Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows

    NASA Astrophysics Data System (ADS)

    Gizon, Laurent; Barucq, Hélène; Duruflé, Marc; Hanson, Chris S.; Leguèbe, Michael; Birch, Aaron C.; Chabassier, Juliette; Fournier, Damien; Hohage, Thorsten; Papini, Emanuele

    2017-04-01

    Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims: Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods: We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results: We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions: The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.

  13. Time-Accurate Computations of Isolated Circular Synthetic Jets in Crossflow

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Schaeffler, N. W.; Milanovic, I. M.; Zaman, K. B. M. Q.

    2007-01-01

    Results from unsteady Reynolds-averaged Navier-Stokes computations are described for two different synthetic jet flows issuing into a turbulent boundary layer crossflow through a circular orifice. In one case the jet effect is mostly contained within the boundary layer, while in the other case the jet effect extends beyond the boundary layer edge. Both cases have momentum flux ratios less than 2. Several numerical parameters are investigated, and some lessons learned regarding the CFD methods for computing these types of flow fields are summarized. Results in both cases are compared to experiment.

  14. Computer aided drug design

    NASA Astrophysics Data System (ADS)

    Jain, A.

    2017-08-01

    Computer based method can help in discovery of leads and can potentially eliminate chemical synthesis and screening of many irrelevant compounds, and in this way, it save time as well as cost. Molecular modeling systems are powerful tools for building, visualizing, analyzing and storing models of complex molecular structure that can help to interpretate structure activity relationship. The use of various techniques of molecular mechanics and dynamics and software in Computer aided drug design along with statistics analysis is powerful tool for the medicinal chemistry to synthesis therapeutic and effective drugs with minimum side effect.

  15. A theoretical method for the analysis and design of axisymmetric bodies. [flow distribution and incompressible fluids

    NASA Technical Reports Server (NTRS)

    Beatty, T. D.

    1975-01-01

    A theoretical method is presented for the computation of the flow field about an axisymmetric body operating in a viscous, incompressible fluid. A potential flow method was used to determine the inviscid flow field and to yield the boundary conditions for the boundary layer solutions. Boundary layer effects in the forces of displacement thickness and empirically modeled separation streamlines are accounted for in subsequent potential flow solutions. This procedure is repeated until the solutions converge. An empirical method was used to determine base drag allowing configuration drag to be computed.

  16. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  17. Boundary element analysis of post-tensioned slabs

    NASA Astrophysics Data System (ADS)

    Rashed, Youssef F.

    2015-06-01

    In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.

  18. A new method for enhancer prediction based on deep belief network.

    PubMed

    Bu, Hongda; Gan, Yanglan; Wang, Yang; Zhou, Shuigeng; Guan, Jihong

    2017-10-16

    Studies have shown that enhancers are significant regulatory elements to play crucial roles in gene expression regulation. Since enhancers are unrelated to the orientation and distance to their target genes, it is a challenging mission for scholars and researchers to accurately predicting distal enhancers. In the past years, with the high-throughout ChiP-seq technologies development, several computational techniques emerge to predict enhancers using epigenetic or genomic features. Nevertheless, the inconsistency of computational models across different cell-lines and the unsatisfactory prediction performance call for further research in this area. Here, we propose a new Deep Belief Network (DBN) based computational method for enhancer prediction, which is called EnhancerDBN. This method combines diverse features, composed of DNA sequence compositional features, DNA methylation and histone modifications. Our computational results indicate that 1) EnhancerDBN outperforms 13 existing methods in prediction, and 2) GC content and DNA methylation can serve as relevant features for enhancer prediction. Deep learning is effective in boosting the performance of enhancer prediction.

  19. LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS

    PubMed Central

    Einstein, Daniel R.; Dyedov, Vladimir

    2010-01-01

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method called local orthogonal cutting (LOC) for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stability and consistency tests. These concepts lend themselves to robust numerical techniques and result in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods. PMID:20628546

  20. Space-time least-squares finite element method for convection-reaction system with transformed variables

    PubMed Central

    Nam, Jaewook

    2011-01-01

    We present a method to solve a convection-reaction system based on a least-squares finite element method (LSFEM). For steady-state computations, issues related to recirculation flow are stated and demonstrated with a simple example. The method can compute concentration profiles in open flow even when the generation term is small. This is the case for estimating hemolysis in blood. Time-dependent flows are computed with the space-time LSFEM discretization. We observe that the computed hemoglobin concentration can become negative in certain regions of the flow; it is a physically unacceptable result. To prevent this, we propose a quadratic transformation of variables. The transformed governing equation can be solved in a straightforward way by LSFEM with no sign of unphysical behavior. The effect of localized high shear on blood damage is shown in a circular Couette-flow-with-blade configuration, and a physiological condition is tested in an arterial graft flow. PMID:21709752

  1. Infrared image segmentation method based on spatial coherence histogram and maximum entropy

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Shen, Tongsheng; Dai, Yao

    2014-11-01

    In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.

  2. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  3. Chemical calculations on Cray computers

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1989-01-01

    The influence of recent developments in supercomputing on computational chemistry is discussed with particular reference to Cray computers and their pipelined vector/limited parallel architectures. After reviewing Cray hardware and software the performance of different elementary program structures are examined, and effective methods for improving program performance are outlined. The computational strategies appropriate for obtaining optimum performance in applications to quantum chemistry and dynamics are discussed. Finally, some discussion is given of new developments and future hardware and software improvements.

  4. Cluster-Randomized Controlled Trial Evaluating the Effectiveness of Computer-Assisted Intervention Delivered by Educators for Children with Speech Sound Disorders

    ERIC Educational Resources Information Center

    McLeod, Sharynne; Baker, Elise; McCormack, Jane; Wren, Yvonne; Roulstone, Sue; Crowe, Kathryn; Masso, Sarah; White, Paul; Howland, Charlotte

    2017-01-01

    Purpose: The aim was to evaluate the effectiveness of computer-assisted input-based intervention for children with speech sound disorders (SSD). Method: The Sound Start Study was a cluster-randomized controlled trial. Seventy-nine early childhood centers were invited to participate, 45 were recruited, and 1,205 parents and educators of 4- and…

  5. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle.

    PubMed

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-02-26

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions.

  6. Computationally Efficient 2D DOA Estimation with Uniform Rectangular Array in Low-Grazing Angle

    PubMed Central

    Shi, Junpeng; Hu, Guoping; Zhang, Xiaofei; Sun, Fenggang; Xiao, Yu

    2017-01-01

    In this paper, we propose a computationally efficient spatial differencing matrix set (SDMS) method for two-dimensional direction of arrival (2D DOA) estimation with uniform rectangular arrays (URAs) in a low-grazing angle (LGA) condition. By rearranging the auto-correlation and cross-correlation matrices in turn among different subarrays, the SDMS method can estimate the two parameters independently with one-dimensional (1D) subspace-based estimation techniques, where we only perform difference for auto-correlation matrices and the cross-correlation matrices are kept completely. Then, the pair-matching of two parameters is achieved by extracting the diagonal elements of URA. Thus, the proposed method can decrease the computational complexity, suppress the effect of additive noise and also have little information loss. Simulation results show that, in LGA, compared to other methods, the proposed methods can achieve performance improvement in the white or colored noise conditions. PMID:28245634

  7. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, David A., E-mail: dave.winkler@csiro.au

    2016-05-15

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based,more » have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.« less

  8. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  9. Numerical simulation using vorticity-vector potential formulation

    NASA Technical Reports Server (NTRS)

    Tokunaga, Hiroshi

    1993-01-01

    An accurate and efficient computational method is needed for three-dimensional incompressible viscous flows in engineering applications. On solving the turbulent shear flows directly or using the subgrid scale model, it is indispensable to resolve the small scale fluid motions as well as the large scale motions. From this point of view, the pseudo-spectral method is used so far as the computational method. However, the finite difference or the finite element methods are widely applied for computing the flow with practical importance since these methods are easily applied to the flows with complex geometric configurations. However, there exist several problems in applying the finite difference method to direct and large eddy simulations. Accuracy is one of most important problems. This point was already addressed by the present author on the direct simulations on the instability of the plane Poiseuille flow and also on the transition to turbulence. In order to obtain high efficiency, the multi-grid Poisson solver is combined with the higher-order, accurate finite difference method. The formulation method is also one of the most important problems in applying the finite difference method to the incompressible turbulent flows. The three-dimensional Navier-Stokes equations have been solved so far in the primitive variables formulation. One of the major difficulties of this method is the rigorous satisfaction of the equation of continuity. In general, the staggered grid is used for the satisfaction of the solenoidal condition for the velocity field at the wall boundary. However, the velocity field satisfies the equation of continuity automatically in the vorticity-vector potential formulation. From this point of view, the vorticity-vector potential method was extended to the generalized coordinate system. In the present article, we adopt the vorticity-vector potential formulation, the generalized coordinate system, and the 4th-order accurate difference method as the computational method. We present the computational method and apply the present method to computations of flows in a square cavity at large Reynolds number in order to investigate its effectiveness.

  10. Insomnia symptoms among Greek adolescent students with excessive computer use

    PubMed Central

    Siomos, K E; Braimiotis, D; Floros, G D; Dafoulis, V; Angelopoulos, N V

    2010-01-01

    Background: The aim of the present study is to assess the intensity of computer use and insomnia epidemiology among Greek adolescents, to examine any possible age and gender differences and to investigate whether excessive computer use is a risk factor for developing insomnia symptoms. Patients and Methods: Cross-sectional study of a stratified sample of 2195 high school students. Demographic data were recorded and two specific questionnaires were used, the Adolescent Computer Addiction Test (ACAT) and the Athens Insomnia Scale (AIS). Results: Females scored higher than males on insomnia complaints but lower on computer use and addiction. A dosemediated effect of computer use on insomnia complaints was recorded. Computer use had a larger effect size than sex on insomnia complaints. Duration of computer use was longer for those adolescents classified as suffering from insomnia compared to those who were not. Conclusions: Computer use can be a significant cause of insomnia complaints in an adolescent population regardless of whether the individual is classified as addicted or not. PMID:20981171

  11. Reconstruction method for fluorescent X-ray computed tomography by least-squares method using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-02-01

    We describe a new attenuation correction method for fluorescent X-ray computed tomography (FXCT) applied to image nonradioactive contrast materials in vivo. The principle of the FXCT imaging is that of computed tomography of the first generation. Using monochromatized synchrotron radiation from the BLNE-5A bending-magnet beam line of Tristan Accumulation Ring in KEK, Japan, we studied phantoms with the FXCT method, and we succeeded in delineating a 4-mm-diameter channel filled with a 500 /spl mu/g I/ml iodine solution in a 20-mm-diameter acrylic cylindrical phantom. However, to detect smaller iodine concentrations, attenuation correction is needed. We present a correction method based on the equation representing the measurement process. The discretized equation system is solved by the least-squares method using the singular value decomposition. The attenuation correction method is applied to the projections by the Monte Carlo simulation and the experiment to confirm its effectiveness.

  12. MS-CASPT2 study of hole transfer in guanine-indole complexes using the generalized Mulliken-Hush method: effective two-state treatment.

    PubMed

    Butchosa, C; Simon, S; Blancafort, L; Voityuk, A

    2012-07-12

    Because hole transfer from nucleobases to amino acid residues in DNA-protein complexes can prevent oxidative damage of DNA in living cells, computational modeling of the process is of high interest. We performed MS-CASPT2 calculations of several model structures of π-stacked guanine and indole and derived electron-transfer (ET) parameters for these systems using the generalized Mulliken-Hush (GMH) method. We show that the two-state model commonly applied to treat thermal ET between adjacent donor and acceptor is of limited use for the considered systems because of the small gap between the ground and first excited states in the indole radical cation. The ET parameters obtained within the two-state GMH scheme can deviate significantly from the corresponding matrix elements of the two-state effective Hamiltonian based on the GMH treatment of three adiabatic states. The computed values of diabatic energies and electronic couplings provide benchmarks to assess the performance of less sophisticated computational methods.

  13. A Novel Resource Management Method of Providing Operating System as a Service for Mobile Transparent Computing

    PubMed Central

    Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua

    2014-01-01

    This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable. PMID:24883353

  14. A novel resource management method of providing operating system as a service for mobile transparent computing.

    PubMed

    Xiong, Yonghua; Huang, Suzhen; Wu, Min; Zhang, Yaoxue; She, Jinhua

    2014-01-01

    This paper presents a framework for mobile transparent computing. It extends the PC transparent computing to mobile terminals. Since resources contain different kinds of operating systems and user data that are stored in a remote server, how to manage the network resources is essential. In this paper, we apply the technologies of quick emulator (QEMU) virtualization and mobile agent for mobile transparent computing (MTC) to devise a method of managing shared resources and services management (SRSM). It has three layers: a user layer, a manage layer, and a resource layer. A mobile virtual terminal in the user layer and virtual resource management in the manage layer cooperate to maintain the SRSM function accurately according to the user's requirements. An example of SRSM is used to validate this method. Experiment results show that the strategy is effective and stable.

  15. Converting differential-equation models of biological systems to membrane computing.

    PubMed

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components, part 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.

  17. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.

    PubMed

    Raman, E Prabhu; Lakkaraju, Sirish Kaushik; Denny, Rajiah Aldrin; MacKerell, Alexander D

    2017-06-05

    Accurate and rapid estimation of relative binding affinities of ligand-protein complexes is a requirement of computational methods for their effective use in rational ligand design. Of the approaches commonly used, free energy perturbation (FEP) methods are considered one of the most accurate, although they require significant computational resources. Accordingly, it is desirable to have alternative methods of similar accuracy but greater computational efficiency to facilitate ligand design. In the present study relative free energies of binding are estimated for one or two non-hydrogen atom changes in compounds targeting the proteins ACK1 and p38 MAP kinase using three methods. The methods include standard FEP, single-step free energy perturbation (SSFEP) and the site-identification by ligand competitive saturation (SILCS) ligand grid free energy (LGFE) approach. Results show the SSFEP and SILCS LGFE methods to be competitive with or better than the FEP results for the studied systems, with SILCS LGFE giving the best agreement with experimental results. This is supported by additional comparisons with published FEP data on p38 MAP kinase inhibitors. While both the SSFEP and SILCS LGFE approaches require a significant upfront computational investment, they offer a 1000-fold computational savings over FEP for calculating the relative affinities of ligand modifications once those pre-computations are complete. An illustrative example of the potential application of these methods in the context of screening large numbers of transformations is presented. Thus, the SSFEP and SILCS LGFE approaches represent viable alternatives for actively driving ligand design during drug discovery and development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Computational biology in the cloud: methods and new insights from computing at scale.

    PubMed

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  19. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms

    PubMed Central

    Thomas, Phillip S.

    2017-01-01

    We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C2H4O) and cyclopentadiene (C5H6), with 7 and 11 atoms, respectively. PMID:28571348

  20. An intertwined method for making low-rank, sum-of-product basis functions that makes it possible to compute vibrational spectra of molecules with more than 10 atoms.

    PubMed

    Thomas, Phillip S; Carrington, Tucker

    2017-05-28

    We propose a method for solving the vibrational Schrödinger equation with which one can compute spectra for molecules with more than ten atoms. It uses sum-of-product (SOP) basis functions stored in a canonical polyadic tensor format and generated by evaluating matrix-vector products. By doing a sequence of partial optimizations, in each of which the factors in a SOP basis function for a single coordinate are optimized, the rank of the basis functions is reduced as matrix-vector products are computed. This is better than using an alternating least squares method to reduce the rank, as is done in the reduced-rank block power method. Partial optimization is better because it speeds up the calculation by about an order of magnitude and allows one to significantly reduce the memory cost. We demonstrate the effectiveness of the new method by computing vibrational spectra of two molecules, ethylene oxide (C 2 H 4 O) and cyclopentadiene (C 5 H 6 ), with 7 and 11 atoms, respectively.

  1. Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation.

    PubMed

    Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia

    2014-03-01

    Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.

  2. DEVELOPMENT OF DNA MICROARRAYS FOR ECOLOGICAL EXPOSURE ASSESSMENT

    EPA Science Inventory

    EPA/ORD is moving forward with a computational toxicology initiative in FY 04 which aims to integrate genomics and computational methods to provide a mechanistic basis for prediction of exposure and effects of chemical stressors in the environment.

    The goal of the presen...

  3. Editorial

    NASA Astrophysics Data System (ADS)

    Wang, Tianmin; Gao, Fei; Hu, Wangyu; Lai, Wensheng; Lu, Guang-Hong; Zu, Xiaotao

    2009-09-01

    The Ninth International Conference on Computer Simulation of Radiation Effects in Solids (COSIRES 2008) was hosted by Beihang University in Beijing, China from 12 to 17 October 2008. Started in 1992 in Berlin, Germany, this conference series has been held biennially in Santa Barbara, CA, USA (1994); Guildford, UK (1996); Okayama, Japan (1998); State College, PA, USA (2000); Dresden, Germany (2002); Helsinki Finland (2004); and Richland, WA USA (2006). The COSIRES conferences are the foremost international forum on the theory, development and application of advanced computer simulation methods and algorithms to achieve fundamental understanding and predictive modeling of the interaction of energetic particles and clusters with solids. As can be noticed in the proceedings of the COSIRES conferences, these computer simulation methods and algorithms have been proven to be very useful for the study of fundamental radiation effect processes, which are not easily accessible by experimental methods owing to small time and length scales. Moreover, with advance in computing power, they have remarkably been developed in the different scales ranging from meso to atomistic, and even down to electronic levels, as well as coupling of the different scales. They are now becoming increasingly applicable for materials processing and performance prediction in advance engineering and energy-production technologies.

  4. Transonic Shock Oscillations and Wing Flutter Calculated with an Interactive Boundary Layer Coupling Method

    NASA Technical Reports Server (NTRS)

    Edwards, John W.

    1996-01-01

    A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.

  5. Long-Term Retention after Self-Instructional Methods.

    ERIC Educational Resources Information Center

    Puskas, Jane C.; And Others

    1992-01-01

    A study of the effectiveness of self-instructional booklets and computer software for teaching dental students endodontic diagnosis found that the self-teaching method may be as effective as traditional lectures in teaching concepts central to development of clinical decision-making skills. Sampling difficulties created problems in assessment of…

  6. A randomized, controlled trial of interactive, multimedia software for patient colonoscopy education.

    PubMed

    Shaw, M J; Beebe, T J; Tomshine, P A; Adlis, S A; Cass, O W

    2001-02-01

    The purpose of our study was to assess the effectiveness of computer-assisted instruction (CAI) in patients having colonoscopies. We conducted a randomized, controlled trial in large, multispecialty clinic. Eighty-six patients were referred for colonoscopies. The interventions were standard education versus standard education plus CAI, and the outcome measures were anxiety, comprehension, and satisfaction. Computer-assisted instruction had no effect on patients' anxiety. The group receiving CAI demonstrated better overall comprehension (p < 0.001). However, Comprehension of certain aspects of serious complications and appropriate postsedation behavior were unaffected by educational method. Patients in the CAI group were more likely to indicate satisfaction with the amount of information provided when compared with the standard education counterparts (p = 0.001). Overall satisfaction was unaffected by educational method. Computer-assisted instruction for colonoscopy provided better comprehension and greater satisfaction with the adequacy of education than standard education. Computer-assisted instruction helps physicians meet their educational responsibilities with no decrement to the interpersonal aspects of the patient-physician relationship.

  7. Using 3D computer simulations to enhance ophthalmic training.

    PubMed

    Glittenberg, C; Binder, S

    2006-01-01

    To develop more effective methods of demonstrating and teaching complex topics in ophthalmology with the use of computer aided three-dimensional (3D) animation and interactive multimedia technologies. We created 3D animations and interactive computer programmes demonstrating the neuroophthalmological nature of the oculomotor system, including the anatomy, physiology and pathophysiology of the extra-ocular eye muscles and the oculomotor cranial nerves, as well as pupillary symptoms of neurological diseases. At the University of Vienna we compared their teaching effectiveness to conventional teaching methods in a comparative study involving 100 medical students, a multiple choice exam and a survey. The comparative study showed that our students achieved significantly better test results (80%) than the control group (63%) (diff. = 17 +/- 5%, p = 0.004). The survey showed a positive reaction to the software and a strong preference to have more subjects and techniques demonstrated in this fashion. Three-dimensional computer animation technology can significantly increase the quality and efficiency of the education and demonstration of complex topics in ophthalmology.

  8. A GPU-based mipmapping method for water surface visualization

    NASA Astrophysics Data System (ADS)

    Li, Hua; Quan, Wei; Xu, Chao; Wu, Yan

    2018-03-01

    Visualization of water surface is a hot topic in computer graphics. In this paper, we presented a fast method to generate wide range of water surface with good image quality both near and far from the viewpoint. This method utilized uniform mesh and Fractal Perlin noise to model water surface. Mipmapping technology was enforced to the surface textures, which adjust the resolution with respect to the distance from the viewpoint and reduce the computing cost. Lighting effect was computed based on shadow mapping technology, Snell's law and Fresnel term. The render pipeline utilizes a CPU-GPU shared memory structure, which improves the rendering efficiency. Experiment results show that our approach visualizes water surface with good image quality at real-time frame rates performance.

  9. Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion.

    PubMed

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2018-04-16

    In the calculation of large-scale computer-generated holograms, an approach called "tiling," which divides the hologram plane into small rectangles, is often employed due to limitations on computational memory. However, the total amount of computational complexity severely increases with the number of divisions. In this paper, we propose an efficient method for calculating tiled large-scale holograms using ray-wavefront conversion. In experiments, the effectiveness of the proposed method was verified by comparing its calculation cost with that using the previous method. Additionally, a hologram of 128K × 128K pixels was calculated and fabricated by a laser-lithography system, and a high-quality 105 mm × 105 mm 3D image including complicated reflection and translucency was optically reconstructed.

  10. On a method computing transient wave propagation in ionospheric regions

    NASA Technical Reports Server (NTRS)

    Gray, K. G.; Bowhill, S. A.

    1978-01-01

    A consequence of an exoatmospheric nuclear burst is an electromagnetic pulse (EMP) radiated from it. In a region far enough away from the burst, where nonlinear effects can be ignored, the EMP can be represented by a large-amplitude narrow-time-width plane-wave pulse. If the ionosphere intervenes the origin and destination of the EMP, frequency dispersion can cause significant changes in the original pulse upon reception. A method of computing these dispersive effects of transient wave propagation is summarized. The method described is different from the standard transform techniques and provides physical insight into the transient wave process. The method, although exact, can be used in approximating the early-time transient response of an ionospheric region by a simple integration with only explicit knowledge of the electron density, electron collision frequency, and electron gyrofrequency required. As an illustration of the method, it is applied to a simple example and contrasted with the corresponding transform solution.

  11. Effective teaching strategies and methods of delivery for patient education: a systematic review and practice guideline recommendations.

    PubMed

    Friedman, Audrey Jusko; Cosby, Roxanne; Boyko, Susan; Hatton-Bauer, Jane; Turnbull, Gale

    2011-03-01

    The objective of this study was to determine effective teaching strategies and methods of delivery for patient education (PE). A systematic review was conducted and reviews with or without meta-analyses, which examined teaching strategies and methods of delivery for PE, were included. Teaching strategies identified are traditional lectures, discussions, simulated games, computer technology, written material, audiovisual sources, verbal recall, demonstration, and role playing. Methods of delivery focused on how to deliver the teaching strategies. Teaching strategies that increased knowledge, decreased anxiety, and increased satisfaction included computer technology, audio and videotapes, written materials, and demonstrations. Various teaching strategies used in combination were similarly successful. Moreover, structured-, culturally appropriate- and patient-specific teachings were found to be better than ad hoc teaching or generalized teaching. Findings provide guidance for establishing provincial standards for the delivery of PE. Recommendations concerning the efficacy of the teaching strategies and delivery methods are provided.

  12. Tensor-based spatiotemporal saliency detection

    NASA Astrophysics Data System (ADS)

    Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen

    2018-03-01

    This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.

  13. Model-Averaged ℓ1 Regularization using Markov Chain Monte Carlo Model Composition

    PubMed Central

    Fraley, Chris; Percival, Daniel

    2014-01-01

    Bayesian Model Averaging (BMA) is an effective technique for addressing model uncertainty in variable selection problems. However, current BMA approaches have computational difficulty dealing with data in which there are many more measurements (variables) than samples. This paper presents a method for combining ℓ1 regularization and Markov chain Monte Carlo model composition techniques for BMA. By treating the ℓ1 regularization path as a model space, we propose a method to resolve the model uncertainty issues arising in model averaging from solution path point selection. We show that this method is computationally and empirically effective for regression and classification in high-dimensional datasets. We apply our technique in simulations, as well as to some applications that arise in genomics. PMID:25642001

  14. GPU-accelerated computational tool for studying the effectiveness of asteroid disruption techniques

    NASA Astrophysics Data System (ADS)

    Zimmerman, Ben J.; Wie, Bong

    2016-10-01

    This paper presents the development of a new Graphics Processing Unit (GPU) accelerated computational tool for asteroid disruption techniques. Numerical simulations are completed using the high-order spectral difference (SD) method. Due to the compact nature of the SD method, it is well suited for implementation with the GPU architecture, hence solutions are generated at orders of magnitude faster than the Central Processing Unit (CPU) counterpart. A multiphase model integrated with the SD method is introduced, and several asteroid disruption simulations are conducted, including kinetic-energy impactors, multi-kinetic energy impactor systems, and nuclear options. Results illustrate the benefits of using multi-kinetic energy impactor systems when compared to a single impactor system. In addition, the effectiveness of nuclear options is observed.

  15. Mastery Learning through Individualized Instruction: A Reinforcement Strategy

    ERIC Educational Resources Information Center

    Sagy, John; Ravi, R.; Ananthasayanam, R.

    2009-01-01

    The present study attempts to gauge the effect of individualized instructional methods as a reinforcement strategy for mastery learning. Among various individualized instructional methods, the study focuses on PIM (Programmed Instructional Method) and CAIM (Computer Assisted Instruction Method). Mastery learning is a process where students achieve…

  16. Analysis and optimization of cyclic methods in orbit computation

    NASA Technical Reports Server (NTRS)

    Pierce, S.

    1973-01-01

    The mathematical analysis and computation of the K=3, order 4; K=4, order 6; and K=5, order 7 cyclic methods and the K=5, order 6 Cowell method and some results of optimizing the 3 backpoint cyclic multistep methods for solving ordinary differential equations are presented. Cyclic methods have the advantage over traditional methods of having higher order for a given number of backpoints while at the same time having more free parameters. After considering several error sources the primary source for the cyclic methods has been isolated. The free parameters for three backpoint methods were used to minimize the effects of some of these error sources. They now yield more accuracy with the same computing time as Cowell's method on selected problems. This work is being extended to the five backpoint methods. The analysis and optimization are more difficult here since the matrices are larger and the dimension of the optimizing space is larger. Indications are that the primary error source can be reduced. This will still leave several parameters free to minimize other sources.

  17. Improved sonic-box computer program for calculating transonic aerodynamic loads on oscillating wings with thickness

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1978-01-01

    A computer program was developed to account approximately for the effects of finite wing thickness in transonic potential flow over an oscillation wing of finite span. The program is based on the original sonic box computer program for planar wing which was extended to account for the effect of wing thickness. Computational efficiency and accuracy were improved and swept trailing edges were accounted for. Account for the nonuniform flow caused by finite thickness was made by application of the local linearization concept with appropriate coordinate transformation. A brief description of each computer routine and the applications of cubic spline and spline surface data fitting techniques used in the program are given, and the method of input was shown in detail. Sample calculations as well as a complete listing of the computer program listing are presented.

  18. A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing

    PubMed Central

    Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang

    2017-01-01

    With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733

  19. X-ray solution scattering combined with computation characterizing protein folds and multiple conformational states : computation and application.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, S.; Park, S.; Makowski, L.

    Small angle X-ray scattering (SAXS) is an increasingly powerful technique to characterize the structure of biomolecules in solution. We present a computational method for accurately and efficiently computing the solution scattering curve from a protein with dynamical fluctuations. The method is built upon a coarse-grained (CG) representation of the protein. This CG approach takes advantage of the low-resolution character of solution scattering. It allows rapid determination of the scattering pattern from conformations extracted from CG simulations to obtain scattering characterization of the protein conformational landscapes. Important elements incorporated in the method include an effective residue-based structure factor for each aminomore » acid, an explicit treatment of the hydration layer at the surface of the protein, and an ensemble average of scattering from all accessible conformations to account for macromolecular flexibility. The CG model is calibrated and illustrated to accurately reproduce the experimental scattering curve of Hen egg white lysozyme. We then illustrate the computational method by calculating the solution scattering pattern of several representative protein folds and multiple conformational states. The results suggest that solution scattering data, when combined with a reliable computational method, have great potential for a better structural description of multi-domain complexes in different functional states, and for recognizing structural folds when sequence similarity to a protein of known structure is low. Possible applications of the method are discussed.« less

  20. A Non-Cut Cell Immersed Boundary Method for Use in Icing Simulations

    NASA Technical Reports Server (NTRS)

    Sarofeen, Christian M.; Noack, Ralph W.; Kreeger, Richard E.

    2013-01-01

    This paper describes a computational fluid dynamic method used for modelling changes in aircraft geometry due to icing. While an aircraft undergoes icing, the accumulated ice results in a geometric alteration of the aerodynamic surfaces. In computational simulations for icing, it is necessary that the corresponding geometric change is taken into consideration. The method used, herein, for the representation of the geometric change due to icing is a non-cut cell Immersed Boundary Method (IBM). Computational cells that are in a body fitted grid of a clean aerodynamic geometry that are inside a predicted ice formation are identified. An IBM is then used to change these cells from being active computational cells to having properties of viscous solid bodies. This method has been implemented in the NASA developed node centered, finite volume computational fluid dynamics code, FUN3D. The presented capability is tested for two-dimensional airfoils including a clean airfoil, an iced airfoil, and an airfoil in harmonic pitching motion about its quarter chord. For these simulations velocity contours, pressure distributions, coefficients of lift, coefficients of drag, and coefficients of pitching moment about the airfoil's quarter chord are computed and used for comparison against experimental results, a higher order panel method code with viscous effects, XFOIL, and the results from FUN3D's original solution process. The results of the IBM simulations show that the accuracy of the IBM compares satisfactorily with the experimental results, XFOIL results, and the results from FUN3D's original solution process.

  1. Computer aided analysis and optimization of mechanical system dynamics

    NASA Technical Reports Server (NTRS)

    Haug, E. J.

    1984-01-01

    The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.

  2. Scheduling based on a dynamic resource connection

    NASA Astrophysics Data System (ADS)

    Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.

    2017-02-01

    The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.

  3. Transonic Flow Field Analysis for Wing-Fuselage Configurations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.

    1980-01-01

    A computational method for simulating the aerodynamics of wing-fuselage configurations at transonic speeds is developed. The finite difference scheme is characterized by a multiple embedded mesh system coupled with a modified or extended small disturbance flow equation. This approach permits a high degree of computational resolution in addition to coordinate system flexibility for treating complex realistic aircraft shapes. To augment the analysis method and permit applications to a wide range of practical engineering design problems, an arbitrary fuselage geometry modeling system is incorporated as well as methodology for computing wing viscous effects. Configuration drag is broken down into its friction, wave, and lift induced components. Typical computed results for isolated bodies, isolated wings, and wing-body combinations are presented. The results are correlated with experimental data. A computer code which employs this methodology is described.

  4. Development of an efficient procedure for calculating the aerodynamic effects of planform variation

    NASA Technical Reports Server (NTRS)

    Mercer, J. E.; Geller, E. W.

    1981-01-01

    Numerical procedures to compute gradients in aerodynamic loading due to planform shape changes using panel method codes were studied. Two procedures were investigated: one computed the aerodynamic perturbation directly; the other computed the aerodynamic loading on the perturbed planform and on the base planform and then differenced these values to obtain the perturbation in loading. It is indicated that computing the perturbed values directly can not be done satisfactorily without proper aerodynamic representation of the pressure singularity at the leading edge of a thin wing. For the alternative procedure, a technique was developed which saves most of the time-consuming computations from a panel method calculation for the base planform. Using this procedure the perturbed loading can be calculated in about one-tenth the time of that for the base solution.

  5. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  6. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  7. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  8. Precise computation of the direct and indirect topographic effects of Helmert's 2nd method of condensation using SRTM30 digital elevation model

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2011-01-01

    The direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2nd method of condensation are computed using the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively. The mean value and standard deviation of the DTE are -0.8 and ±7.6 mGal over land areas. The extreme value -274.3 mGal is located at latitude -13.579° and longitude 289.496°, at the height of 1426 meter in the Andes Mountains. The ITE is negative everywhere and has its minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are ±15.6 cm and -6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the ITE can't be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean value in the ITE is required.

  9. An extensible framework for capturing solvent effects in computer generated kinetic models.

    PubMed

    Jalan, Amrit; West, Richard H; Green, William H

    2013-03-14

    Detailed kinetic models provide useful mechanistic insight into a chemical system. Manual construction of such models is laborious and error-prone, which has led to the development of automated methods for exploring chemical pathways. These methods rely on fast, high-throughput estimation of species thermochemistry and kinetic parameters. In this paper, we present a methodology for extending automatic mechanism generation to solution phase systems which requires estimation of solvent effects on reaction rates and equilibria. The linear solvation energy relationship (LSER) method of Abraham and co-workers is combined with Mintz correlations to estimate ΔG(solv)°(T) in over 30 solvents using solute descriptors estimated from group additivity. Simple corrections are found to be adequate for the treatment of radical sites, as suggested by comparison with known experimental data. The performance of scaled particle theory expressions for enthalpic-entropic decomposition of ΔG(solv)°(T) is also presented along with the associated computational issues. Similar high-throughput methods for solvent effects on free-radical kinetics are only available for a handful of reactions due to lack of reliable experimental data, and continuum dielectric calculations offer an alternative method for their estimation. For illustration, we model liquid phase oxidation of tetralin in different solvents computing the solvent dependence for ROO• + ROO• and ROO• + solvent reactions using polarizable continuum quantum chemistry methods. The resulting kinetic models show an increase in oxidation rate with solvent polarity, consistent with experiment. Further work needed to make this approach more generally useful is outlined.

  10. 47 CFR 76.980 - Charges for customer changes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....980 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... charge for customer changes in service tiers effected solely by coded entry on a computer terminal or by... involve more than coded entry on a computer or other similarly simple method shall be based on actual cost...

  11. 47 CFR 76.980 - Charges for customer changes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....980 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... charge for customer changes in service tiers effected solely by coded entry on a computer terminal or by... involve more than coded entry on a computer or other similarly simple method shall be based on actual cost...

  12. 47 CFR 76.980 - Charges for customer changes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....980 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... charge for customer changes in service tiers effected solely by coded entry on a computer terminal or by... involve more than coded entry on a computer or other similarly simple method shall be based on actual cost...

  13. 47 CFR 76.980 - Charges for customer changes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....980 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... charge for customer changes in service tiers effected solely by coded entry on a computer terminal or by... involve more than coded entry on a computer or other similarly simple method shall be based on actual cost...

  14. 47 CFR 76.980 - Charges for customer changes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....980 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES... charge for customer changes in service tiers effected solely by coded entry on a computer terminal or by... involve more than coded entry on a computer or other similarly simple method shall be based on actual cost...

  15. An Evaluation of Computer-Aided Instruction in an Introductory Biostatistics Course.

    ERIC Educational Resources Information Center

    Forsythe, Alan B.; Freed, James R.

    1979-01-01

    Evaluates the effectiveness of computer assisted instruction for teaching biostatistics to first year students at the UCLA School of Dentistry. Results do not demonstrate the superiority of CAI but do suggest that CAI compares favorably to conventional lecture and programed instruction methods. (RAO)

  16. A Comparison of Four Simulation and Instructional Methods for Endodontic Review.

    ERIC Educational Resources Information Center

    Sandoval, Victor A.; And Others

    1987-01-01

    The effects of four different endodontic self-instructional review formats (slide-tape, latent-image simulation, computer text simulation, and computer-assisted video interactive simulation) on senior clinical endodontic performance are compared. Student evaluations, as well as comparative developmental expenditures, are discussed. (Author/MLW)

  17. Sentence Building with a Macintosh Microcomputer.

    ERIC Educational Resources Information Center

    Bennett, Ruth

    A study using microcomputers for instruction in sentence-building skills with two groups of American Indians in bilingual education programs found computer-assisted instruction to be effective in developing differential skills in the different age groups. The method used small group activity at the computer, emphasizing the cooperative learning…

  18. Pervasive Computing and Communication Technologies for U-Learning

    ERIC Educational Resources Information Center

    Park, Young C.

    2014-01-01

    The development of digital information transfer, storage and communication methods influences a significant effect on education. The assimilation of pervasive computing and communication technologies marks another great step forward, with Ubiquitous Learning (U-learning) emerging for next generation learners. In the evolutionary view the 5G (or…

  19. Computer-Based Instruction in Dietetics Education.

    ERIC Educational Resources Information Center

    Schroeder, Lois; Kent, Phyllis

    1982-01-01

    Details the development and system design of a computer-based instruction (CBI) program designed to provide tutorial training in diet modification as part of renal therapy and provides the results of a study that compared the effectiveness of the CBI program with the traditional lecture/laboratory method. (EAO)

  20. Promoting Technology-Assisted Active Learning in Computer Science Education

    ERIC Educational Resources Information Center

    Gao, Jinzhu; Hargis, Jace

    2010-01-01

    This paper describes specific active learning strategies for teaching computer science, integrating both instructional technologies and non-technology-based strategies shown to be effective in the literature. The theoretical learning components addressed include an intentional method to help students build metacognitive abilities, as well as…

  1. Finite Element Methods for real-time Haptic Feedback of Soft-Tissue Models in Virtual Reality Simulators

    NASA Technical Reports Server (NTRS)

    Frank, Andreas O.; Twombly, I. Alexander; Barth, Timothy J.; Smith, Jeffrey D.; Dalton, Bonnie P. (Technical Monitor)

    2001-01-01

    We have applied the linear elastic finite element method to compute haptic force feedback and domain deformations of soft tissue models for use in virtual reality simulators. Our results show that, for virtual object models of high-resolution 3D data (>10,000 nodes), haptic real time computations (>500 Hz) are not currently possible using traditional methods. Current research efforts are focused in the following areas: 1) efficient implementation of fully adaptive multi-resolution methods and 2) multi-resolution methods with specialized basis functions to capture the singularity at the haptic interface (point loading). To achieve real time computations, we propose parallel processing of a Jacobi preconditioned conjugate gradient method applied to a reduced system of equations resulting from surface domain decomposition. This can effectively be achieved using reconfigurable computing systems such as field programmable gate arrays (FPGA), thereby providing a flexible solution that allows for new FPGA implementations as improved algorithms become available. The resulting soft tissue simulation system would meet NASA Virtual Glovebox requirements and, at the same time, provide a generalized simulation engine for any immersive environment application, such as biomedical/surgical procedures or interactive scientific applications.

  2. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  3. Structured Problem Solving and the Basic Graphic Methods within a Total Quality Leadership Setting: Case Study

    DTIC Science & Technology

    1992-02-01

    develop,, and maintains computer programs for the Department of the Navy. It provides life cycle support for over 50 computer programs installed at over...the computer programs . Table 4 presents a list of possible product or output measures of functionality for ACDS Block 0 programs . Examples of output...were identified as important "causes" of process performance. Functionality of the computer programs was the result or "effect" of the combination of

  4. Crew/computer communications study. Volume 1: Final report. [onboard computerized communications system for spacecrews

    NASA Technical Reports Server (NTRS)

    Johannes, J. D.

    1974-01-01

    Techniques, methods, and system requirements are reported for an onboard computerized communications system that provides on-line computing capability during manned space exploration. Communications between man and computer take place by sequential execution of each discrete step of a procedure, by interactive progression through a tree-type structure to initiate tasks or by interactive optimization of a task requiring man to furnish a set of parameters. Effective communication between astronaut and computer utilizes structured vocabulary techniques and a word recognition system.

  5. Comparison of techniques for approximating ocean bottom topography in a wave-refraction computer model

    NASA Technical Reports Server (NTRS)

    Poole, L. R.

    1975-01-01

    A study of the effects of using different methods for approximating bottom topography in a wave-refraction computer model was conducted. Approximation techniques involving quadratic least squares, cubic least squares, and constrained bicubic polynomial interpolation were compared for computed wave patterns and parameters in the region of Saco Bay, Maine. Although substantial local differences can be attributed to use of the different approximation techniques, results indicated that overall computed wave patterns and parameter distributions were quite similar.

  6. Derek Vigil-Fowler | NREL

    Science.gov Websites

    simulation methods for materials physics and chemistry, with particular expertise in post-DFT, high accuracy methods such as the GW approximation for electronic structure and random phase approximation (RPA) total the art in computational methods, including efficient methods for including the effects of substrates

  7. The educational effectiveness of computer-based instruction

    NASA Astrophysics Data System (ADS)

    Renshaw, Carl E.; Taylor, Holly A.

    2000-07-01

    Although numerous studies have shown that computer-based education is effective for enhancing rote memorization, the impact of these tools on higher-order cognitive skills, such as critical thinking, is less clear. Existing methods for evaluating educational effectiveness, such as surveys, quizzes and pre- or post-interviews, may not be effective for evaluating impact on critical thinking skills because students are not always aware of the effects the software has on their thought processes. We review an alternative evaluation strategy whereby the student's mastery of a specific cognitive skill is directly assessed both before and after participating in a computer-based exercise. Methodologies for assessing cognitive skill are based on recent advances in the fields of cognitive science. Results from two studies show that computer-based exercises can positively impact the higher-order cognitive skills of some students. However, a given exercise will not impact all students equally. This suggests that further work is needed to understand how and why CAI software is more or less effective within a given population.

  8. A Generalized Least Squares Regression Approach for Computing Effect Sizes in Single-Case Research: Application Examples

    ERIC Educational Resources Information Center

    Maggin, Daniel M.; Swaminathan, Hariharan; Rogers, Helen J.; O'Keeffe, Breda V.; Sugai, George; Horner, Robert H.

    2011-01-01

    A new method for deriving effect sizes from single-case designs is proposed. The strategy is applicable to small-sample time-series data with autoregressive errors. The method uses Generalized Least Squares (GLS) to model the autocorrelation of the data and estimate regression parameters to produce an effect size that represents the magnitude of…

  9. Translating an Effective Group-Based HIV Prevention Program to a Program Delivered Primarily by a Computer: Methods and Outcomes

    ERIC Educational Resources Information Center

    Card, Josefina J.; Kuhn, Tamara; Solomon, Julie; Benner, Tabitha A.; Wingood, Gina M.; DiClemente, Ralph J.

    2011-01-01

    We describe development of SAHARA (SiSTAS Accessing HIV/AIDS Resources At-a-click), an innovative HIV prevention program that uses a computer to deliver an updated version of SiSTA, a widely used, effective group-level HIV prevention intervention for African American women ages 18-29. Fidelity to SiSTA's core components was achieved using: (1)…

  10. A Detailed Study of Sonar Tomographic Imaging

    DTIC Science & Technology

    2013-08-01

    BPA ) to form an object image. As the data is collected radially about the axis of rotation, one computation method computes an inverse Fourier...images are not quite as sharp. It is concluded UNCLASSIFIED iii DSTO–RR–0394 UNCLASSIFIED that polar BPA processing requires an appropriate choice of...attenuation factor to reduce the effect of the specular reflections, while for the 2DIFT BPA approach the degrading effect from these reflections is

  11. Effects of the Multiple Solutions and Question Prompts on Generalization and Justification for Non-Routine Mathematical Problem Solving in a Computer Game Context

    ERIC Educational Resources Information Center

    Lee, Chun-Yi; Chen, Ming-Jang; Chang, Wen-Long

    2014-01-01

    The aim of this study is to investigate the effects of solution methods and question prompts on generalization and justification of non-routine problem solving for Grade 9 students. The learning activities are based on the context of the frog jumping game. In addition, related computer tools were used to support generalization and justification of…

  12. Longitudinal data analysis with non-ignorable missing data.

    PubMed

    Tseng, Chi-hong; Elashoff, Robert; Li, Ning; Li, Gang

    2016-02-01

    A common problem in the longitudinal data analysis is the missing data problem. Two types of missing patterns are generally considered in statistical literature: monotone and non-monotone missing data. Nonmonotone missing data occur when study participants intermittently miss scheduled visits, while monotone missing data can be from discontinued participation, loss to follow-up, and mortality. Although many novel statistical approaches have been developed to handle missing data in recent years, few methods are available to provide inferences to handle both types of missing data simultaneously. In this article, a latent random effects model is proposed to analyze longitudinal outcomes with both monotone and non-monotone missingness in the context of missing not at random. Another significant contribution of this article is to propose a new computational algorithm for latent random effects models. To reduce the computational burden of high-dimensional integration problem in latent random effects models, we develop a new computational algorithm that uses a new adaptive quadrature approach in conjunction with the Taylor series approximation for the likelihood function to simplify the E-step computation in the expectation-maximization algorithm. Simulation study is performed and the data from the scleroderma lung study are used to demonstrate the effectiveness of this method. © The Author(s) 2012.

  13. Orthorectification by Using Gpgpu Method

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Kulur, S.

    2012-07-01

    Thanks to the nature of the graphics processing, the newly released products offer highly parallel processing units with high-memory bandwidth and computational power of more than teraflops per second. The modern GPUs are not only powerful graphic engines but also they are high level parallel programmable processors with very fast computing capabilities and high-memory bandwidth speed compared to central processing units (CPU). Data-parallel computations can be shortly described as mapping data elements to parallel processing threads. The rapid development of GPUs programmability and capabilities attracted the attentions of researchers dealing with complex problems which need high level calculations. This interest has revealed the concepts of "General Purpose Computation on Graphics Processing Units (GPGPU)" and "stream processing". The graphic processors are powerful hardware which is really cheap and affordable. So the graphic processors became an alternative to computer processors. The graphic chips which were standard application hardware have been transformed into modern, powerful and programmable processors to meet the overall needs. Especially in recent years, the phenomenon of the usage of graphics processing units in general purpose computation has led the researchers and developers to this point. The biggest problem is that the graphics processing units use different programming models unlike current programming methods. Therefore, an efficient GPU programming requires re-coding of the current program algorithm by considering the limitations and the structure of the graphics hardware. Currently, multi-core processors can not be programmed by using traditional programming methods. Event procedure programming method can not be used for programming the multi-core processors. GPUs are especially effective in finding solution for repetition of the computing steps for many data elements when high accuracy is needed. Thus, it provides the computing process more quickly and accurately. Compared to the GPUs, CPUs which perform just one computing in a time according to the flow control are slower in performance. This structure can be evaluated for various applications of computer technology. In this study covers how general purpose parallel programming and computational power of the GPUs can be used in photogrammetric applications especially direct georeferencing. The direct georeferencing algorithm is coded by using GPGPU method and CUDA (Compute Unified Device Architecture) programming language. Results provided by this method were compared with the traditional CPU programming. In the other application the projective rectification is coded by using GPGPU method and CUDA programming language. Sample images of various sizes, as compared to the results of the program were evaluated. GPGPU method can be used especially in repetition of same computations on highly dense data, thus finding the solution quickly.

  14. Scatter correction for cone-beam computed tomography using self-adaptive scatter kernel superposition

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Peng; Luo, Li-Min

    2012-06-01

    The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.

  15. Experimental comparison between performance of the PM and LPM methods in computed radiography

    NASA Astrophysics Data System (ADS)

    Kermani, Aboutaleb; Feghhi, Seyed Amir Hossein; Rokrok, Behrouz

    2018-07-01

    The scatter downgrades the image quality and reduces its information efficiency in quantitative measurement usages when creating projections with ionizing radiation. Therefore, the variety of methods have been applied for scatter reduction and correction of the undesirable effects. As new approaches, the ordinary and localized primary modulation methods have already been used individually through experiments and simulations in medical and industrial computed tomography, respectively. The aim of this study is the evaluation of capabilities and limitations of these methods in comparison with each other. For this mean, the ordinary primary modulation has been implemented in computed radiography for the first time and the potential of both methods has been assessed in thickness measurement as well as scatter to primary signal ratio determination. The comparison results, based on the experimental outputs which obtained using aluminum specimens and continuous X-ray spectra, are to the benefit of the localized primary modulation method because of improved accuracy and higher performance especially at the edges.

  16. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  17. Automated problem scheduling and reduction of synchronization delay effects

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.

    1987-01-01

    It is anticipated that in order to make effective use of many future high performance architectures, programs will have to exhibit at least a medium grained parallelism. A framework is presented for partitioning very sparse triangular systems of linear equations that is designed to produce favorable preformance results in a wide variety of parallel architectures. Efficient methods for solving these systems are of interest because: (1) they provide a useful model problem for use in exploring heuristics for the aggregation, mapping and scheduling of relatively fine grained computations whose data dependencies are specified by directed acrylic graphs, and (2) because such efficient methods can find direct application in the development of parallel algorithms for scientific computation. Simple expressions are derived that describe how to schedule computational work with varying degrees of granularity. The Encore Multimax was used as a hardware simulator to investigate the performance effects of using the partitioning techniques presented in shared memory architectures with varying relative synchronization costs.

  18. Effect of external disturbances and data rate on the response of an automatic landing system capable of curved trajectories

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1975-01-01

    The effects of steady wind, turbulence, data sample rate, and control-actuator natural frequency on the response of a possible automatic landing system were investigated in a nonstatistical study. The results indicate that the system, which interfaces with the microwave landing system, functions well in winds and turbulence as long as the guidance law contains proper compensation for wind. The system response was satisfactory down to five data samples per second, which makes the system compatible with the microwave landing system. No adverse effects were observed when actuator natural frequency was lowered. For limiting cases, those cases where the roll angle goes to zero just as the airplane touches down, the basic method for computing the turn-algorithm gains proved unsatisfactory and unacceptable landings resulted. Revised computation methods gave turn-algorithm gains that resulted in acceptable landings. The gains provided by the new method also improved the touchdown conditions for acceptable landings over those obtained when the gains were determined by the old method.

  19. Framework for computing the spatial coherence effects of polycapillary x-ray optics

    PubMed Central

    Zysk, Adam M.; Schoonover, Robert W.; Xu, Qiaofeng; Anastasio, Mark A.

    2012-01-01

    Despite the extensive use of polycapillary x-ray optics for focusing and collimating applications, there remains a significant need for characterization of the coherence properties of the output wavefield. In this work, we present the first quantitative computational method for calculation of the spatial coherence effects of polycapillary x-ray optical devices. This method employs the coherent mode decomposition of an extended x-ray source, geometric optical propagation of individual wavefield modes through a polycapillary device, output wavefield calculation by ray data resampling onto a uniform grid, and the calculation of spatial coherence properties by way of the spectral degree of coherence. PMID:22418154

  20. Massive Photons: An Infrared Regularization Scheme for Lattice QCD+QED.

    PubMed

    Endres, Michael G; Shindler, Andrea; Tiburzi, Brian C; Walker-Loud, André

    2016-08-12

    Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

  1. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  2. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  3. A computer program to generate two-dimensional grids about airfoils and other shapes by the use of Poisson's equation

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1980-01-01

    A method for generating two dimensional finite difference grids about airfoils and other shapes by the use of the Poisson differential equation is developed. The inhomogeneous terms are automatically chosen such that two important effects are imposed on the grid at both the inner and outer boundaries. The first effect is control of the spacing between mesh points along mesh lines intersecting the boundaries. The second effect is control of the angles with which mesh lines intersect the boundaries. A FORTRAN computer program has been written to use this method. A description of the program, a discussion of the control parameters, and a set of sample cases are included.

  4. Diallel analysis for sex-linked and maternal effects.

    PubMed

    Zhu, J; Weir, B S

    1996-01-01

    Genetic models including sex-linked and maternal effects as well as autosomal gene effects are described. Monte Carlo simulations were conducted to compare efficiencies of estimation by minimum norm quadratic unbiased estimation (MINQUE) and restricted maximum likelihood (REML) methods. MINQUE(1), which has 1 for all prior values, has a similar efficiency to MINQUE(θ), which requires prior estimates of parameter values. MINQUE(1) has the advantage over REML of unbiased estimation and convenient computation. An adjusted unbiased prediction (AUP) method is developed for predicting random genetic effects. AUP is desirable for its easy computation and unbiasedness of both mean and variance of predictors. The jackknife procedure is appropriate for estimating the sampling variances of estimated variances (or covariances) and of predicted genetic effects. A t-test based on jackknife variances is applicable for detecting significance of variation. Worked examples from mice and silkworm data are given in order to demonstrate variance and covariance estimation and genetic effect prediction.

  5. Sonic-box method employing local Mach number for oscillating wings with thickness

    NASA Technical Reports Server (NTRS)

    Ruo, S. Y.

    1978-01-01

    A computer program was developed to account approximately for the effects of finite wing thickness in the transonic potential flow over an oscillating wing of finite span. The program is based on the original sonic-box program for planar wing which was previously extended to include the effects of the swept trailing edge and the thickness of the wing. Account for the nonuniform flow caused by finite thickness is made by application of the local linearization concept. The thickness effect, expressed in terms of the local Mach number, is included in the basic solution to replace the coordinate transformation method used in the earlier work. Calculations were made for a delta wing and a rectangular wing performing plunge and pitch oscillations, and the results were compared with those obtained from other methods. An input quide and a complete listing of the computer code are presented.

  6. A comparative trial of paper-and-pencil versus computer administration of the Quality of Life in Reflux and Dyspepsia (QOLRAD) questionnaire.

    PubMed

    Kleinman, L; Leidy, N K; Crawley, J; Bonomi, A; Schoenfeld, P

    2001-02-01

    Although most health-related quality of life questionnaires are self-administered by means of paper and pencil, new technologies for automated computer administration are becoming more readily available. Novel methods of instrument administration must be assessed for score equivalence in addition to consistency in reliability and validity. The present study compared the psychometric characteristics (score equivalence and structure, internal consistency, and reproducibility reliability and construct validity) of the Quality of Life in Reflux And Dyspepsia (QOLRAD) questionnaire when self-administered by means of paper and pencil versus touch-screen computer. The influence of age, education, and prior experience with computers on score equivalence was also examined. This crossover trial randomized 134 patients with gastroesophageal reflux disease to 1 of 2 groups: paper-and-pencil questionnaire administration followed by computer administration or computer administration followed by use of paper and pencil. To minimize learning effects and respondent fatigue, administrations were scheduled 3 days apart. A random sample of 32 patients participated in a 1-week reproducibility evaluation of the computer-administered QOLRAD. QOLRAD scores were equivalent across the 2 methods of administration regardless of subject age, education, and prior computer use. Internal consistency levels were very high (alpha = 0.93-0.99). Interscale correlations were strong and generally consistent across methods (r = 0.7-0.87). Correlations between the QOLRAD and Short Form 36 (SF-36) were high, with no significant differences by method. Test-retest reliability of the computer-administered QOLRAD was also very high (ICC = 0.93-0.96). Results of the present study suggest that the QOLRAD is reliable and valid when self-administered by means of computer touch-screen or paper and pencil.

  7. Computational simulation of composite structures with and without damage. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas F.

    1994-01-01

    A methodology is described which uses finite element analysis of various laminates to computationally simulate the effects of delamination damage initiation and growth on the structural behavior of laminated composite structures. The delamination area is expanded according to a set pattern. As the delamination area increases, how the structural response of the laminate changes with respect to buckling and strain energy release rate are investigated. Rules are presented for laminates of different configurations, materials and thickness. These results demonstrate that computational simulation methods can provide alternate methods to investigate the complex delamination damage mechanisms found in composite structures.

  8. A study of the optimization method used in the NAVY/NASA gas turbine engine computer code

    NASA Technical Reports Server (NTRS)

    Horsewood, J. L.; Pines, S.

    1977-01-01

    Sources of numerical noise affecting the convergence properties of the Powell's Principal Axis Method of Optimization in the NAVY/NASA gas turbine engine computer code were investigated. The principal noise source discovered resulted from loose input tolerances used in terminating iterations performed in subroutine CALCFX to satisfy specified control functions. A minor source of noise was found to be introduced by an insufficient number of digits in stored coefficients used by subroutine THERM in polynomial expressions of thermodynamic properties. Tabular results of several computer runs are presented to show the effects on program performance of selective corrective actions taken to reduce noise.

  9. Quasi-Maximum Likelihood Estimation of Structural Equation Models with Multiple Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Klein, Andreas G.; Muthen, Bengt O.

    2007-01-01

    In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…

  10. Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain

    NASA Astrophysics Data System (ADS)

    Löwe, H.; Helbig, N.

    2012-04-01

    We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.

  11. Mapping Computation with No Memory

    NASA Astrophysics Data System (ADS)

    Burckel, Serge; Gioan, Emeric; Thomé, Emmanuel

    We investigate the computation of mappings from a set S n to itself with in situ programs, that is using no extra variables than the input, and performing modifications of one component at a time. We consider several types of mappings and obtain effective computation and decomposition methods, together with upper bounds on the program length (number of assignments). Our technique is combinatorial and algebraic (graph coloration, partition ordering, modular arithmetics).

  12. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  13. Numerical Simulations Of High-Altitude Aerothermodynamics Of A Prospective Spacecraft Model

    NASA Astrophysics Data System (ADS)

    Vashchenkov, P. V.; Kaskovsky, A. V.; Krylov, A. N.; Ivanov, M. S.

    2011-05-01

    The paper describes the computations of aerothermodynamic characteristics of a promising spacecraft (Prospective Piloted Transport System) along its de- scent trajectory at altitudes from 120 to 60 km. The computations are performed by the DSMC method with the use of the SMILE software system and by the engineering technique (local bridging method) with the use of the RuSat software system. The influence of real gas effects (excitation of rotational and vibrational energy modes and chemical reactions) on aerothermodynamic characteristics of the vehicle is studied. A comparison of results obtained by the approximate engineering method and the DSMC method allow the accuracy of prediction of aerodynamic characteristics by the local bridging method to be estimated.

  14. Learning Sorting Algorithms through Visualization Construction

    ERIC Educational Resources Information Center

    Cetin, Ibrahim; Andrews-Larson, Christine

    2016-01-01

    Recent increased interest in computational thinking poses an important question to researchers: What are the best ways to teach fundamental computing concepts to students? Visualization is suggested as one way of supporting student learning. This mixed-method study aimed to (i) examine the effect of instruction in which students constructed…

  15. Effects of Computer-Based Training on Procedural Modifications to Standard Functional Analyses

    ERIC Educational Resources Information Center

    Schnell, Lauren K.; Sidener, Tina M.; DeBar, Ruth M.; Vladescu, Jason C.; Kahng, SungWoo

    2018-01-01

    Few studies have evaluated methods for training decision-making when functional analysis data are undifferentiated. The current study evaluated computer-based training to teach 20 graduate students to arrange functional analysis conditions, analyze functional analysis data, and implement procedural modifications. Participants were exposed to…

  16. Enhancing Creative Thinking through Designing Electronic Slides

    ERIC Educational Resources Information Center

    Mokaram, Al-Ali Khaled; Al-Shabatat, Ahmad Mohammad; Fong, Fook Soon; Abdallah, Andaleeb Ahmad

    2011-01-01

    During the shifting of teaching and learning methods using computer technologies, much emphasis was paid on the knowledge content more than the thinking skills. Thus, this study investigated the effects of a computer application, namely, designing electronic slides on the development of creative thinking skills of a sample of undergraduate…

  17. Fast Reduction Method in Dominance-Based Information Systems

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhou, Qinghua; Wen, Yongchuan

    2018-01-01

    In real world applications, there are often some data with continuous values or preference-ordered values. Rough sets based on dominance relations can effectively deal with these kinds of data. Attribute reduction can be done in the framework of dominance-relation based approach to better extract decision rules. However, the computational cost of the dominance classes greatly affects the efficiency of attribute reduction and rule extraction. This paper presents an efficient method of computing dominance classes, and further compares it with traditional method with increasing attributes and samples. Experiments on UCI data sets show that the proposed algorithm obviously improves the efficiency of the traditional method, especially for large-scale data.

  18. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that have resulted from this work. A review of computational aeroacoustics has recently been given by Lele.

  19. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  20. Usability of an Adaptive Computer Assistant that Improves Self-care and Health Literacy of Older Adults

    PubMed Central

    Blanson Henkemans, O. A.; Rogers, W. A.; Fisk, A. D.; Neerincx, M. A.; Lindenberg, J.; van der Mast, C. A. P. G.

    2014-01-01

    Summary Objectives We developed an adaptive computer assistant for the supervision of diabetics’ self-care, to support limiting illness and need for acute treatment, and improve health literacy. This assistant monitors self-care activities logged in the patient’s electronic diary. Accordingly, it provides context-aware feedback. The objective was to evaluate whether older adults in general can make use of the computer assistant and to compare an adaptive computer assistant with a fixed one, concerning its usability and contribution to health literacy. Methods We conducted a laboratory experiment in the Georgia Tech Aware Home wherein 28 older adults participated in a usability evaluation of the computer assistant, while engaged in scenarios reflecting normal and health-critical situations. We evaluated the assistant on effectiveness, efficiency, satisfaction, and educational value. Finally, we studied the moderating effects of the subjects’ personal characteristics. Results Logging self-care tasks and receiving feedback from the computer assistant enhanced the subjects’ knowledge of diabetes. The adaptive assistant was more effective in dealing with normal and health-critical situations, and, generally, it led to more time efficiency. Subjects’ personal characteristics had substantial effects on the effectiveness and efficiency of the two computer assistants. Conclusions Older adults were able to use the adaptive computer assistant. In addition, it had a positive effect on the development of health literacy. The assistant has the potential to support older diabetics’ self care while maintaining quality of life. PMID:18213433

  1. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-06-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  2. Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts

    NASA Astrophysics Data System (ADS)

    Köbler, Jonathan; Schneider, Matti; Ospald, Felix; Andrä, Heiko; Müller, Ralf

    2018-04-01

    For short fiber reinforced plastic parts the local fiber orientation has a strong influence on the mechanical properties. To enable multiscale computations using surrogate models we advocate a two-step identification strategy. Firstly, for a number of sample orientations an effective model is derived by numerical methods available in the literature. Secondly, to cover a general orientation state, these effective models are interpolated. In this article we develop a novel and effective strategy to carry out this interpolation. Firstly, taking into account symmetry arguments, we reduce the fiber orientation phase space to a triangle in R^2 . For an associated triangulation of this triangle we furnish each node with an surrogate model. Then, we use linear interpolation on the fiber orientation triangle to equip each fiber orientation state with an effective stress. The proposed approach is quite general, and works for any physically nonlinear constitutive law on the micro-scale, as long as surrogate models for single fiber orientation states can be extracted. To demonstrate the capabilities of our scheme we study the viscoelastic creep behavior of short glass fiber reinforced PA66, and use Schapery's collocation method together with FFT-based computational homogenization to derive single orientation state effective models. We discuss the efficient implementation of our method, and present results of a component scale computation on a benchmark component by using ABAQUS ®.

  3. Optimal Multicomponent Analysis Using the Generalized Standard Addition Method.

    ERIC Educational Resources Information Center

    Raymond, Margaret; And Others

    1983-01-01

    Describes an experiment on the simultaneous determination of chromium and magnesium by spectophotometry modified to include the Generalized Standard Addition Method computer program, a multivariate calibration method that provides optimal multicomponent analysis in the presence of interference and matrix effects. Provides instructions for…

  4. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com; Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can bemore » computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.« less

  5. A Comparison of Three Theoretical Methods of Calculating Span Load Distribution on Swept Wings

    NASA Technical Reports Server (NTRS)

    VanDorn, Nicholas H.; DeYoung, John

    1947-01-01

    Three methods for calculating span load distribution, those developed by V.M Falkner, Wm. Mutterperl, and J. Weissinger, have been applied to five swept wings. The angles of sweep ranged from -45 degrees to +45 degrees. These methods were examined to establish their relative accuracy and case of application. Experimentally determined loadings were used as a basis for judging accuracy. For the convenience of the readers the computing forms and all information requisite to their application are included in appendixes. From the analysis it was found that the Weissinger method would be best suited to an over-all study of the effects of plan form on the span loading and associated characteristics of wings. The method gave good, but not best, accuracy and involved by far the least computing effort. The Falkner method gave the best accuracy but at a considerable expanse in computing effort and hence appeared to be most useful for a detailed study of a specific wing. The Mutterperl method offered no advantages in accuracy of facility over either of the other methods and hence is not recommended for use.

  6. An improved panel method for the solution of three-dimensional leading-edge vortex flows. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Lu, P.; Tinoco, E. N.

    1980-01-01

    An improved panel method for the solution of three dimensional flow and wing and wing-body combinations with leading edge vortex separation is presented. The method employs a three dimensional inviscid flow model in which the configuration, the rolled-up vortex sheets, and the wake are represented by quadratic doublet distributions. The strength of the singularity distribution as well as shape and position of the vortex spirals are computed in an iterative fashion starting with an assumed initial sheet geometry. The method calculates forces and moments as well as detail surface pressure distributions. Improvements include the implementation of improved panel numerics for the purpose of elimination the highly nonlinear effects of ring vortices around double panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A complete description of the method is included. A variety of cases generated by the computer program implementing the method are presented which verify the mathematical assumptions of the method and which compare computed results with experimental data to verify the underlying physical assumptions made by the method.

  7. Development of an effective dose coefficient database using a computational human phantom and Monte Carlo simulations to evaluate exposure dose for the usage of NORM-added consumer products.

    PubMed

    Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee

    2017-11-01

    After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation.

    PubMed

    Technow, Frank; Messina, Carlos D; Totir, L Radu; Cooper, Mark

    2015-01-01

    Genomic selection, enabled by whole genome prediction (WGP) methods, is revolutionizing plant breeding. Existing WGP methods have been shown to deliver accurate predictions in the most common settings, such as prediction of across environment performance for traits with additive gene effects. However, prediction of traits with non-additive gene effects and prediction of genotype by environment interaction (G×E), continues to be challenging. Previous attempts to increase prediction accuracy for these particularly difficult tasks employed prediction methods that are purely statistical in nature. Augmenting the statistical methods with biological knowledge has been largely overlooked thus far. Crop growth models (CGMs) attempt to represent the impact of functional relationships between plant physiology and the environment in the formation of yield and similar output traits of interest. Thus, they can explain the impact of G×E and certain types of non-additive gene effects on the expressed phenotype. Approximate Bayesian computation (ABC), a novel and powerful computational procedure, allows the incorporation of CGMs directly into the estimation of whole genome marker effects in WGP. Here we provide a proof of concept study for this novel approach and demonstrate its use with synthetic data sets. We show that this novel approach can be considerably more accurate than the benchmark WGP method GBLUP in predicting performance in environments represented in the estimation set as well as in previously unobserved environments for traits determined by non-additive gene effects. We conclude that this proof of concept demonstrates that using ABC for incorporating biological knowledge in the form of CGMs into WGP is a very promising and novel approach to improving prediction accuracy for some of the most challenging scenarios in plant breeding and applied genetics.

  9. Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation

    PubMed Central

    Technow, Frank; Messina, Carlos D.; Totir, L. Radu; Cooper, Mark

    2015-01-01

    Genomic selection, enabled by whole genome prediction (WGP) methods, is revolutionizing plant breeding. Existing WGP methods have been shown to deliver accurate predictions in the most common settings, such as prediction of across environment performance for traits with additive gene effects. However, prediction of traits with non-additive gene effects and prediction of genotype by environment interaction (G×E), continues to be challenging. Previous attempts to increase prediction accuracy for these particularly difficult tasks employed prediction methods that are purely statistical in nature. Augmenting the statistical methods with biological knowledge has been largely overlooked thus far. Crop growth models (CGMs) attempt to represent the impact of functional relationships between plant physiology and the environment in the formation of yield and similar output traits of interest. Thus, they can explain the impact of G×E and certain types of non-additive gene effects on the expressed phenotype. Approximate Bayesian computation (ABC), a novel and powerful computational procedure, allows the incorporation of CGMs directly into the estimation of whole genome marker effects in WGP. Here we provide a proof of concept study for this novel approach and demonstrate its use with synthetic data sets. We show that this novel approach can be considerably more accurate than the benchmark WGP method GBLUP in predicting performance in environments represented in the estimation set as well as in previously unobserved environments for traits determined by non-additive gene effects. We conclude that this proof of concept demonstrates that using ABC for incorporating biological knowledge in the form of CGMs into WGP is a very promising and novel approach to improving prediction accuracy for some of the most challenging scenarios in plant breeding and applied genetics. PMID:26121133

  10. On the generalized VIP time integral methodology for transient thermal problems

    NASA Technical Reports Server (NTRS)

    Mei, Youping; Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong

    1993-01-01

    The paper describes the development and applicability of a generalized VIrtual-Pulse (VIP) time integral method of computation for thermal problems. Unlike past approaches for general heat transfer computations, and with the advent of high speed computing technology and the importance of parallel computations for efficient use of computing environments, a major motivation via the developments described in this paper is the need for developing explicit computational procedures with improved accuracy and stability characteristics. As a consequence, a new and effective VIP methodology is described which inherits these improved characteristics. Numerical illustrative examples are provided to demonstrate the developments and validate the results obtained for thermal problems.

  11. A comparison between computer-controlled and set work rate exercise based on target heart rate

    NASA Technical Reports Server (NTRS)

    Pratt, Wanda M.; Siconolfi, Steven F.; Webster, Laurie; Hayes, Judith C.; Mazzocca, Augustus D.; Harris, Bernard A., Jr.

    1991-01-01

    Two methods are compared for observing the heart rate (HR), metabolic equivalents, and time in target HR zone (defined as the target HR + or - 5 bpm) during 20 min of exercise at a prescribed intensity of the maximum working capacity. In one method, called set-work rate exercise, the information from a graded exercise test is used to select a target HR and to calculate a corresponding constant work rate that should induce the desired HR. In the other method, the work rate is controlled by a computer algorithm to achieve and maintain a prescribed target HR. It is shown that computer-controlled exercise is an effective alternative to the traditional set work rate exercise, particularly when tight control of cardiovascular responses is necessary.

  12. Aircraft Engine Noise Scattering By Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  13. Aircraft Engine Noise Scattering by Fuselage and Wings: A Computational Approach

    NASA Technical Reports Server (NTRS)

    Stanescu, D.; Hussaini, M. Y.; Farassat, F.

    2003-01-01

    The paper presents a time-domain method for computation of sound radiation from aircraft engine sources to the far-field. The effects of nonuniform flow around the aircraft and scattering of sound by fuselage and wings are accounted for in the formulation. The approach is based on the discretization of the inviscid flow equations through a collocation form of the Discontinuous Galerkin spectral element method. An isoparametric representation of the underlying geometry is used in order to take full advantage of the spectral accuracy of the method. Large-scale computations are made possible by a parallel implementation based on message passing. Results obtained for radiation from an axisymmetric nacelle alone are compared with those obtained when the same nacelle is installed in a generic configuration, with and without a wing.

  14. Self-Organized Service Negotiation for Collaborative Decision Making

    PubMed Central

    Zhang, Bo; Zheng, Ziming

    2014-01-01

    This paper proposes a self-organized service negotiation method for CDM in intelligent and automatic manners. It mainly includes three phases: semantic-based capacity evaluation for the CDM sponsor, trust computation of the CDM organization, and negotiation selection of the decision-making service provider (DMSP). In the first phase, the CDM sponsor produces the formal semantic description of the complex decision task for DMSP and computes the capacity evaluation values according to participator instructions from different DMSPs. In the second phase, a novel trust computation approach is presented to compute the subjective belief value, the objective reputation value, and the recommended trust value. And in the third phase, based on the capacity evaluation and trust computation, a negotiation mechanism is given to efficiently implement the service selection. The simulation experiment results show that our self-organized service negotiation method is feasible and effective for CDM. PMID:25243228

  15. Self-organized service negotiation for collaborative decision making.

    PubMed

    Zhang, Bo; Huang, Zhenhua; Zheng, Ziming

    2014-01-01

    This paper proposes a self-organized service negotiation method for CDM in intelligent and automatic manners. It mainly includes three phases: semantic-based capacity evaluation for the CDM sponsor, trust computation of the CDM organization, and negotiation selection of the decision-making service provider (DMSP). In the first phase, the CDM sponsor produces the formal semantic description of the complex decision task for DMSP and computes the capacity evaluation values according to participator instructions from different DMSPs. In the second phase, a novel trust computation approach is presented to compute the subjective belief value, the objective reputation value, and the recommended trust value. And in the third phase, based on the capacity evaluation and trust computation, a negotiation mechanism is given to efficiently implement the service selection. The simulation experiment results show that our self-organized service negotiation method is feasible and effective for CDM.

  16. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    PubMed

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  17. Robust Derivation of Risk Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Richardson, Julian; Port, Daniel; Feather, Martin

    2007-01-01

    Effective risk reduction strategies can be derived mechanically given sufficient characterization of the risks present in the system and the effectiveness of available risk reduction techniques. In this paper, we address an important question: can we reliably expect mechanically derived risk reduction strategies to be better than fixed or hand-selected risk reduction strategies, given that the quantitative assessment of risks and risk reduction techniques upon which mechanical derivation is based is difficult and likely to be inaccurate? We consider this question relative to two methods for deriving effective risk reduction strategies: the strategic method defined by Kazman, Port et al [Port et al, 2005], and the Defect Detection and Prevention (DDP) tool [Feather & Cornford, 2003]. We performed a number of sensitivity experiments to evaluate how inaccurate knowledge of risk and risk reduction techniques affect the performance of the strategies computed by the Strategic Method compared to a variety of alternative strategies. The experimental results indicate that strategies computed by the Strategic Method were significantly more effective than the alternative risk reduction strategies, even when knowledge of risk and risk reduction techniques was very inaccurate. The robustness of the Strategic Method suggests that its use should be considered in a wide range of projects.

  18. Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit

    NASA Technical Reports Server (NTRS)

    Barry, B. F.; Pimm, R. S.; Rowe, C. K.

    1971-01-01

    In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.

  19. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.

    PubMed

    Zhang, Wen; Yue, Xiang; Liu, Feng; Chen, Yanlin; Tu, Shikui; Zhang, Xining

    2017-12-14

    Drug side effects are one of main concerns in the drug discovery, which gains wide attentions. Investigating drug side effects is of great importance, and the computational prediction can help to guide wet experiments. As far as we known, a great number of computational methods have been proposed for the side effect predictions. The assumption that similar drugs may induce same side effects is usually employed for modeling, and how to calculate the drug-drug similarity is critical in the side effect predictions. In this paper, we present a novel measure of drug-drug similarity named "linear neighborhood similarity", which is calculated in a drug feature space by exploring linear neighborhood relationship. Then, we transfer the similarity from the feature space into the side effect space, and predict drug side effects by propagating known side effect information through a similarity-based graph. Under a unified frame based on the linear neighborhood similarity, we propose method "LNSM" and its extension "LNSM-SMI" to predict side effects of new drugs, and propose the method "LNSM-MSE" to predict unobserved side effect of approved drugs. We evaluate the performances of LNSM and LNSM-SMI in predicting side effects of new drugs, and evaluate the performances of LNSM-MSE in predicting missing side effects of approved drugs. The results demonstrate that the linear neighborhood similarity can improve the performances of side effect prediction, and the linear neighborhood similarity-based methods can outperform existing side effect prediction methods. More importantly, the proposed methods can predict side effects of new drugs as well as unobserved side effects of approved drugs under a unified frame.

  20. Web-based continuing medical education. (II): Evaluation study of computer-mediated continuing medical education.

    PubMed

    Curran, V R; Hoekman, T; Gulliver, W; Landells, I; Hatcher, L

    2000-01-01

    Over the years, various distance learning technologies and methods have been applied to the continuing medical education needs of rural and remote physicians. They have included audio teleconferencing, slow scan imaging, correspondence study, and compressed videoconferencing. The recent emergence and growth of Internet, World Wide Web (Web), and compact disk read-only-memory (CD-ROM) technologies have introduced new opportunities for providing continuing education to the rural medical practitioner. This evaluation study assessed the instructional effectiveness of a hybrid computer-mediated courseware delivery system on dermatologic office procedures. A hybrid delivery system merges Web documents, multimedia, computer-mediated communications, and CD-ROMs to enable self-paced instruction and collaborative learning. Using a modified pretest to post-test control group study design, several evaluative criteria (participant reaction, learning achievement, self-reported performance change, and instructional transactions) were assessed by various qualitative and quantitative data collection methods. This evaluation revealed that a hybrid computer-mediated courseware system was an effective means for increasing knowledge (p < .05) and improving self-reported competency (p < .05) in dermatologic office procedures, and that participants were very satisfied with the self-paced instruction and use of asynchronous computer conferencing for collaborative information sharing among colleagues.

  1. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  2. Computationally efficient control allocation

    NASA Technical Reports Server (NTRS)

    Durham, Wayne (Inventor)

    2001-01-01

    A computationally efficient method for calculating near-optimal solutions to the three-objective, linear control allocation problem is disclosed. The control allocation problem is that of distributing the effort of redundant control effectors to achieve some desired set of objectives. The problem is deemed linear if control effectiveness is affine with respect to the individual control effectors. The optimal solution is that which exploits the collective maximum capability of the effectors within their individual physical limits. Computational efficiency is measured by the number of floating-point operations required for solution. The method presented returned optimal solutions in more than 90% of the cases examined; non-optimal solutions returned by the method were typically much less than 1% different from optimal and the errors tended to become smaller than 0.01% as the number of controls was increased. The magnitude of the errors returned by the present method was much smaller than those that resulted from either pseudo inverse or cascaded generalized inverse solutions. The computational complexity of the method presented varied linearly with increasing numbers of controls; the number of required floating point operations increased from 5.5 i, to seven times faster than did the minimum-norm solution (the pseudoinverse), and at about the same rate as did the cascaded generalized inverse solution. The computational requirements of the method presented were much better than that of previously described facet-searching methods which increase in proportion to the square of the number of controls.

  3. Robust Optimization Design for Turbine Blade-Tip Radial Running Clearance using Hierarchically Response Surface Method

    NASA Astrophysics Data System (ADS)

    Zhiying, Chen; Ping, Zhou

    2017-11-01

    Considering the robust optimization computational precision and efficiency for complex mechanical assembly relationship like turbine blade-tip radial running clearance, a hierarchically response surface robust optimization algorithm is proposed. The distribute collaborative response surface method is used to generate assembly system level approximation model of overall parameters and blade-tip clearance, and then a set samples of design parameters and objective response mean and/or standard deviation is generated by using system approximation model and design of experiment method. Finally, a new response surface approximation model is constructed by using those samples, and this approximation model is used for robust optimization process. The analyses results demonstrate the proposed method can dramatic reduce the computational cost and ensure the computational precision. The presented research offers an effective way for the robust optimization design of turbine blade-tip radial running clearance.

  4. Getting more from accuracy and response time data: methods for fitting the linear ballistic accumulator.

    PubMed

    Donkin, Chris; Averell, Lee; Brown, Scott; Heathcote, Andrew

    2009-11-01

    Cognitive models of the decision process provide greater insight into response time and accuracy than do standard ANOVA techniques. However, such models can be mathematically and computationally difficult to apply. We provide instructions and computer code for three methods for estimating the parameters of the linear ballistic accumulator (LBA), a new and computationally tractable model of decisions between two or more choices. These methods-a Microsoft Excel worksheet, scripts for the statistical program R, and code for implementation of the LBA into the Bayesian sampling software WinBUGS-vary in their flexibility and user accessibility. We also provide scripts in R that produce a graphical summary of the data and model predictions. In a simulation study, we explored the effect of sample size on parameter recovery for each method. The materials discussed in this article may be downloaded as a supplement from http://brm.psychonomic-journals.org/content/supplemental.

  5. Computer support for physiological cell modelling using an ontology on cell physiology.

    PubMed

    Takao, Shimayoshi; Kazuhiro, Komurasaki; Akira, Amano; Takeshi, Iwashita; Masanori, Kanazawa; Tetsuya, Matsuda

    2006-01-01

    The development of electrophysiological whole cell models to support the understanding of biological mechanisms is increasing rapidly. Due to the complexity of biological systems, comprehensive cell models, which are composed of many imported sub-models of functional elements, can get quite complicated as well, making computer modification difficult. Here, we propose a computer support to enhance structural changes of cell models, employing the markup languages CellML and our original PMSML (physiological model structure markup language), in addition to a new ontology for cell physiological modelling. In particular, a method to make references from CellML files to the ontology and a method to assist manipulation of model structures using markup languages together with the ontology are reported. Using these methods three software utilities, including a graphical model editor, are implemented. Experimental results proved that these methods are effective for the modification of electrophysiological models.

  6. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raudabaugh, J; Moore, B; Nguyen, G

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDImore » phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.« less

  7. Computations of turbulent lean premixed combustion using conditional moment closure

    NASA Astrophysics Data System (ADS)

    Amzin, Shokri; Swaminathan, Nedunchezhian

    2013-12-01

    Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-ɛ model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC.

  8. Light aircraft lift, drag, and moment prediction: A review and analysis

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

    1975-01-01

    The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

  9. Flow and Turbulence Modeling and Computation of Shock Buffet Onset for Conventional and Supercritical Airfoils

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    1998-01-01

    Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.

  10. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  11. Permeability of three-dimensional rock masses containing geomechanically-grown anisotropic fracture networks

    NASA Astrophysics Data System (ADS)

    Thomas, R. N.; Ebigbo, A.; Paluszny, A.; Zimmerman, R. W.

    2016-12-01

    The macroscopic permeability of 3D anisotropic geomechanically-generated fractured rock masses is investigated. The explicitly computed permeabilities are compared to the predictions of classical inclusion-based effective medium theories, and to the permeability of networks of randomly oriented and stochastically generated fractures. Stochastically generated fracture networks lack features that arise from fracture interaction, such as non-planarity, and termination of fractures upon intersection. Recent discrete fracture network studies include heuristic rules that introduce these features to some extent. In this work, fractures grow and extend under tension from a finite set of initial flaws. The finite element method is used to compute displacements, and modal stress intensity factors are computed around each fracture tip using the interaction integral accumulated over a set of virtual discs. Fracture apertures emerge as a result of simulations that honour the constraints of stress equilibrium and mass conservation. The macroscopic permeabilities are explicitly calculated by solving the local cubic law in the fractures, on an element-by-element basis, coupled to Darcy's law in the matrix. The permeabilities are then compared to the estimates given by the symmetric and asymmetric versions of the self-consistent approximation, which, for randomly fractured volumes, were previously demonstrated to be most accurate of the inclusion-based effective medium methods (Ebigbo et al., Transport in Porous Media, 2016). The permeabilities of several dozen geomechanical networks are computed as a function of density and in situ stresses. For anisotropic networks, we find that the asymmetric and symmetric self-consistent methods overestimate the effective permeability in the direction of the dominant fracture set. Effective permeabilities that are more strongly dependent on the connectivity of two or more fracture sets are more accurately captured by the effective medium models.

  12. A comparative study of gamma-ray interaction and absorption in some building materials using Zeff-toolkit

    NASA Astrophysics Data System (ADS)

    Mann, Kulwinder Singh; Heer, Manmohan Singh; Rani, Asha

    2016-07-01

    The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001-20 MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002 MeV and above 0.3 MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002-0.3 MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.

  13. A generic, cost-effective, and scalable cell lineage analysis platform

    PubMed Central

    Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud

    2016-01-01

    Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250

  14. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  15. Hybrid RANS-LES using high order numerical methods

    NASA Astrophysics Data System (ADS)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  16. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  17. Parallel implementation of the particle simulation method with dynamic load balancing: Toward realistic geodynamical simulation

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nishiura, D.

    2015-12-01

    Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our approach is suitable for solving the particles with different calculation costs (e.g. boundary particles) as well as the heterogeneous computer architecture. We analyze the parallel efficiency and scalability on the super computer systems (K-computer, Earth simulator 3, etc.).

  18. PyFly: A fast, portable aerodynamics simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  19. PyFly: A fast, portable aerodynamics simulator

    DOE PAGES

    Garcia, Daniel; Ghommem, M.; Collier, Nathaniel O.; ...

    2018-03-14

    Here, we present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approachmore » to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. Finally, we simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.« less

  20. Post-Fisherian Experimentation: From Physical to Virtual

    DOE PAGES

    Jeff Wu, C. F.

    2014-04-24

    Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.

  1. Application of CHAD hydrodynamics to shock-wave problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.

    1997-12-31

    CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, itmore » is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.« less

  2. A dimension-wise analysis method for the structural-acoustic system with interval parameters

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong

    2017-04-01

    The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.

  3. [Elastic registration method to compute deformation functions for mitral valve].

    PubMed

    Yang, Jinyu; Zhang, Wan; Yin, Ran; Deng, Yuxiao; Wei, Yunfeng; Zeng, Junyi; Wen, Tong; Ding, Lu; Liu, Xiaojian; Li, Yipeng

    2014-10-01

    Mitral valve disease is one of the most popular heart valve diseases. Precise positioning and displaying of the valve characteristics is necessary for the minimally invasive mitral valve repairing procedures. This paper presents a multi-resolution elastic registration method to compute the deformation functions constructed from cubic B-splines in three dimensional ultrasound images, in which the objective functional to be optimized was generated by maximum likelihood method based on the probabilistic distribution of the ultrasound speckle noise. The algorithm was then applied to register the mitral valve voxels. Numerical results proved the effectiveness of the algorithm.

  4. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    NASA Astrophysics Data System (ADS)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  5. An evaluation of three methods of saying "no" to avoid an escalating response class hierarchy.

    PubMed

    Mace, F Charles; Pratt, Jamie L; Prager, Kevin L; Pritchard, Duncan

    2011-01-01

    We evaluated the effects of three different methods of denying access to requested high-preference activities on escalating problem behavior. Functional analysis and response class hierarchy (RCH) assessment results indicated that 4 topographies of problem behaviors displayed by a 13-year-old boy with high-functioning autism constituted an RCH maintained by positive (tangible) reinforcement. Identification of the RCH comprised the baseline phase, during which computer access was denied by saying "no" and providing an explanation for the restriction. Two alternative methods of saying "no" were then evaluated. These methods included (a) denying computer access while providing an opportunity to engage in an alternative preferred activity and (b) denying immediate computer access by arranging a contingency between completion of a low-preference task and subsequent computer access. Results indicated that a hierarchy of problem behavior may be identified in the context of denying access to a preferred activity and that it may be possible to prevent occurrences of escalating problem behavior by either presenting alternative options or arranging contingencies when saying "no" to a child's requests.

  6. Local Orthogonal Cutting Method for Computing Medial Curves and Its Biomedical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Xiangmin; Einstein, Daniel R.; Dyedov, Volodymyr

    2010-03-24

    Medial curves have a wide range of applications in geometric modeling and analysis (such as shape matching) and biomedical engineering (such as morphometry and computer assisted surgery). The computation of medial curves poses significant challenges, both in terms of theoretical analysis and practical efficiency and reliability. In this paper, we propose a definition and analysis of medial curves and also describe an efficient and robust method for computing medial curves. Our approach is based on three key concepts: a local orthogonal decomposition of objects into substructures, a differential geometry concept called the interior center of curvature (ICC), and integrated stabilitymore » and consistency tests. These concepts lend themselves to robust numerical techniques including eigenvalue analysis, weighted least squares approximations, and numerical minimization, resulting in an algorithm that is efficient and noise resistant. We illustrate the effectiveness and robustness of our approach with some highly complex, large-scale, noisy biomedical geometries derived from medical images, including lung airways and blood vessels. We also present comparisons of our method with some existing methods.« less

  7. The PDF method for turbulent combustion

    NASA Technical Reports Server (NTRS)

    Pope, S. B.

    1991-01-01

    Probability Density Function (PDF) methods provide a means of calculating the properties of turbulent reacting flows. They have been successfully applied to many turbulent flames, including some with finite rate kinetic effects. Here the methods are reviewed with an emphasis on computational issues and their application to turbulent combustion.

  8. Theory and Computation of Optimal Low- and Medium- Thrust Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Goodson, Troy D.; Chuang, Jason C. H.; Ledsinger, Laura A.

    1996-01-01

    This report presents new theoretical results which lead to new algorithms for the computation of fuel-optimal multiple-burn orbit transfers of low and medium thrust. Theoretical results introduced herein show how to add burns to an optimal trajectory and show that the traditional set of necessary conditions may be replaced with a much simpler set of equations. Numerical results are presented to demonstrate the utility of the theoretical results and the new algorithms. Two indirect methods from the literature are shown to be effective for the optimal orbit transfer problem with relatively small numbers of burns. These methods are the Minimizing Boundary Condition Method (MBCM) and BOUNDSCO. Both of these methods make use of the first-order necessary conditions exactly as derived by optimal control theory. Perturbations due to Earth's oblateness and atmospheric drag are considered. These perturbations are of greatest interest for transfers that take place between low Earth orbit altitudes and geosynchronous orbit altitudes. Example extremal solutions including these effects and computed by the aforementioned methods are presented. An investigation is also made into a suboptimal multiple-burn guidance scheme. The FORTRAN code developed for this study has been collected together in a package named ORBPACK. ORBPACK's user manual is provided as an appendix to this report.

  9. NLOphoric rigid pyrazino-phenanthroline donor-π-acceptor compounds: Investigation of structural and solvent effects on non-linear optical properties using computational methods

    NASA Astrophysics Data System (ADS)

    Kothavale, Shantaram; Katariya, Santosh; Sekar, Nagaiyan

    2018-01-01

    Rigid pyrazino-phenanthroline based donor-π-acceptor-π-auxiliary acceptor type compounds have been studied for their linear and non-linear optical properties. The non-linear optical (NLO) behavior of these dyes was studied by calculating the values of static α , β and γ using solvatochromic as well as computational methods. The results obtained by solvatochromic method are correlated theoretically with Density Functional Theory (DFT) using B3LYP/6-31G (d), CAM B3LYP/6-31 G(d), B3LYP/6-31++ g(d,P) and CAM B3LYP/6-31++ g(d,P) methods. The results reveal that, among all four computational methods CAM-B3LYP/6-31++ g(d,P) performs well for the calculation of linear polarizability (α) and first order hyperpolarizability (β), while CAM-B3LYP/6-31 g(d,P) for the calculation of second order hyperpolarizability (ϒ). Overall TPA depends on the molecular structure variation with increase in complexity and molecular weight, which implies that both the number of branches and the size of π-framework are important factors for the molecular TPA in this chromophoric system. Generalized Mulliken-Hush (GMH) analysis is performed to study the effective charge transfer from donor to acceptor.

  10. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    NASA Astrophysics Data System (ADS)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  11. Evaluation of normalization methods for cDNA microarray data by k-NN classification

    PubMed Central

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J

    2005-01-01

    Background Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics. PMID:16045803

  12. Evaluation of normalization methods for cDNA microarray data by k-NN classification.

    PubMed

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J

    2005-07-26

    Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics.

  13. Real Time Measures of Effectiveness

    DOT National Transportation Integrated Search

    2003-06-01

    This report describes research that is focused on identifying and determining methods for automatically computing measures of effectiveness (MOEs) when supplied with real time information. The MOEs, along with detection devices such as cameras, roadw...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, A.; Davis, A.; University of Wisconsin-Madison, Madison, WI 53706

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise tomore » extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)« less

  15. Computation of subsonic flow around airfoil systems with multiple separation

    NASA Technical Reports Server (NTRS)

    Jacob, K.

    1982-01-01

    A numerical method for computing the subsonic flow around multi-element airfoil systems was developed, allowing for flow separation at one or more elements. Besides multiple rear separation also sort bubbles on the upper surface and cove bubbles can approximately be taken into account. Also, compressibility effects for pure subsonic flow are approximately accounted for. After presentation the method is applied to several examples and improved in some details. Finally, the present limitations and desirable extensions are discussed.

  16. Wetland mapping from digitized aerial photography. [Sheboygen Marsh, Sheboygen County, Wisconsin

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Quirk, B. K.; Kiefer, R. W.; Wynn, S. L.

    1981-01-01

    Computer assisted interpretation of small scale aerial imagery was found to be a cost effective and accurate method of mapping complex vegetation patterns if high resolution information is desired. This type of technique is suited for problems such as monitoring changes in species composition due to environmental factors and is a feasible method of monitoring and mapping large areas of wetlands. The technique has the added advantage of being in a computer compatible form which can be transformed into any georeference system of interest.

  17. Controlled Ecological Life Support System: Regenerative Life Support Systems in Space

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.

  18. Anytime query-tuned kernel machine classifiers via Cholesky factorization

    NASA Technical Reports Server (NTRS)

    DeCoste, D.

    2002-01-01

    We recently demonstrated 2 to 64-fold query-time speedups of Support Vector Machine and Kernel Fisher classifiers via a new computational geometry method for anytime output bounds (DeCoste,2002). This new paper refines our approach in two key ways. First, we introduce a simple linear algebra formulation based on Cholesky factorization, yielding simpler equations and lower computational overhead. Second, this new formulation suggests new methods for achieving additional speedups, including tuning on query samples. We demonstrate effectiveness on benchmark datasets.

  19. Testing For EM Upsets In Aircraft Control Computers

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1994-01-01

    Effects of transient electrical signals evaluated in laboratory tests. Method of evaluating nominally fault-tolerant, aircraft-type digital-computer-based control system devised. Provides for evaluation of susceptibility of system to upset and evaluation of integrity of control when system subjected to transient electrical signals like those induced by electromagnetic (EM) source, in this case lightning. Beyond aerospace applications, fault-tolerant control systems becoming more wide-spread in industry; such as in automobiles. Method supports practical, systematic tests for evaluation of designs of fault-tolerant control systems.

  20. Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).

    PubMed

    Bag, Arijit; Ghorai, Pradip Kr

    2016-05-01

    Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    NASA Astrophysics Data System (ADS)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  2. Computing eigenfunctions and eigenvalues of boundary-value problems with the orthogonal spectral renormalization method

    NASA Astrophysics Data System (ADS)

    Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter

    2018-03-01

    The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.

  3. Accelerated Training for Large Feedforward Neural Networks

    NASA Technical Reports Server (NTRS)

    Stepniewski, Slawomir W.; Jorgensen, Charles C.

    1998-01-01

    In this paper we introduce a new training algorithm, the scaled variable metric (SVM) method. Our approach attempts to increase the convergence rate of the modified variable metric method. It is also combined with the RBackprop algorithm, which computes the product of the matrix of second derivatives (Hessian) with an arbitrary vector. The RBackprop method allows us to avoid computationally expensive, direct line searches. In addition, it can be utilized in the new, 'predictive' updating technique of the inverse Hessian approximation. We have used directional slope testing to adjust the step size and found that this strategy works exceptionally well in conjunction with the Rbackprop algorithm. Some supplementary, but nevertheless important enhancements to the basic training scheme such as improved setting of a scaling factor for the variable metric update and computationally more efficient procedure for updating the inverse Hessian approximation are presented as well. We summarize by comparing the SVM method with four first- and second- order optimization algorithms including a very effective implementation of the Levenberg-Marquardt method. Our tests indicate promising computational speed gains of the new training technique, particularly for large feedforward networks, i.e., for problems where the training process may be the most laborious.

  4. Nurses' computer literacy and attitudes towards the use of computers in health care.

    PubMed

    Gürdaş Topkaya, Sati; Kaya, Nurten

    2015-05-01

    This descriptive and cross-sectional study was designed to address nurses' computer literacy and attitudes towards the use of computers in health care and to determine the correlation between these two variables. This study was conducted with the participation of 688 nurses who worked at two university-affiliated hospitals. These nurses were chosen using a stratified random sampling method. The data were collected using the Multicomponent Assessment of Computer Literacy and the Pretest for Attitudes Towards Computers in Healthcare Assessment Scale v. 2. The nurses, in general, had positive attitudes towards computers, and their computer literacy was good. Computer literacy in general had significant positive correlations with individual elements of computer competency and with attitudes towards computers. If the computer is to be an effective and beneficial part of the health-care system, it is necessary to help nurses improve their computer competency. © 2014 Wiley Publishing Asia Pty Ltd.

  5. Computational Analysis of Gravitational Effects in Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2004-01-01

    This study deals with the computational analysis of buoyancy-induced instability in the nearfield of an isothermal helium jet injected into quiescent ambient air environment. Laminar, axisymmetric, unsteady flow conditions were considered for the analysis. The transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum were solved using a staggered grid finite volume method. The jet Richardson numbers of 1.5 and 0.018 were considered to encompass both buoyant and inertial jet flow regimes. Buoyancy effects were isolated by initiating computations in Earth gravity and subsequently, reducing gravity to simulate the microgravity conditions. Computed results concur with experimental observations that the periodic flow oscillations observed in Earth gravity subside in microgravity.

  6. Study of eigenfrequencies with the help of Prony's method

    NASA Astrophysics Data System (ADS)

    Drobakhin, O. O.; Olevskyi, O. V.; Olevskyi, V. I.

    2017-10-01

    Eigenfrequencies can be crucial in the design of a construction. They define many parameters that determine limit parameters of the structure. Exceeding these values can lead to the structural failure of an object. It is especially important in the design of structures which support heavy equipment or are subjected to the forces of airflow. One of the most effective ways to acquire the frequencies' values is a computer-based numerical simulation. The existing methods do not allow to acquire the whole range of needed parameters. It is well known that Prony's method, is highly effective for the investigation of dynamic processes. Thus, it is rational to adapt Prony's method for such investigation. The Prony method has advantage in comparison with other numerical schemes because it provides the possibility to process not only the results of numerical simulation, but also real experimental data. The research was carried out for a computer model of a steel plate. The input data was obtained by using the Dassault Systems SolidWorks computer package with the Simulation add-on. We investigated the acquired input data with the help of Prony's method. The result of the numerical experiment shows that Prony's method can be used to investigate the mechanical eigenfrequencies with good accuracy. The output of Prony's method not only contains the information about values of frequencies themselves, but also contains data regarding the amplitudes, initial phases and decaying factors of any given mode of oscillation, which can also be used in engineering.

  7. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  8. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less

  9. Computing wave functions in multichannel collisions with non-local potentials using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bonitati, Joey; Slimmer, Ben; Li, Weichuan; Potel, Gregory; Nunes, Filomena

    2017-09-01

    The calculable form of the R-matrix method has been previously shown to be a useful tool in approximately solving the Schrodinger equation in nuclear scattering problems. We use this technique combined with the Gauss quadrature for the Lagrange-mesh method to efficiently solve for the wave functions of projectile nuclei in low energy collisions (1-100 MeV) involving an arbitrary number of channels. We include the local Woods-Saxon potential, the non-local potential of Perey and Buck, a Coulomb potential, and a coupling potential to computationally solve for the wave function of two nuclei at short distances. Object oriented programming is used to increase modularity, and parallel programming techniques are introduced to reduce computation time. We conclude that the R-matrix method is an effective method to predict the wave functions of nuclei in scattering problems involving both multiple channels and non-local potentials. Michigan State University iCER ACRES REU.

  10. A thin-shock-layer solution for nonequilibrium, inviscid hypersonic flows in earth, Martian, and Venusian atmospheres

    NASA Technical Reports Server (NTRS)

    Grose, W. L.

    1971-01-01

    An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.

  11. IMPLEMENTATION OF THE IMPROVED QUASI-STATIC METHOD IN RATTLESNAKE/MOOSE FOR TIME-DEPENDENT RADIATION TRANSPORT MODELLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachary M. Prince; Jean C. Ragusa; Yaqi Wang

    Because of the recent interest in reactor transient modeling and the restart of the Transient Reactor (TREAT) Facility, there has been a need for more efficient, robust methods in computation frameworks. This is the impetus of implementing the Improved Quasi-Static method (IQS) in the RATTLESNAKE/MOOSE framework. IQS has implemented with CFEM diffusion by factorizing flux into time-dependent amplitude and spacial- and weakly time-dependent shape. The shape evaluation is very similar to a flux diffusion solve and is computed at large (macro) time steps. While the amplitude evaluation is a PRKE solve where the parameters are dependent on the shape andmore » is computed at small (micro) time steps. IQS has been tested with a custom one-dimensional example and the TWIGL ramp benchmark. These examples prove it to be a viable and effective method for highly transient cases. More complex cases are intended to be applied to further test the method and its implementation.« less

  12. Wall Interference in Two-Dimensional Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.

    1986-01-01

    Viscosity and tunnel-wall constraints introduced via boundary conditions. TWINTN4 computer program developed to implement method of posttest assessment of wall interference in two-dimensional wind tunnels. Offers two methods for combining sidewall boundary-layer effects with upper and lower wall interference. In sequential procedure, Sewall method used to define flow free of sidewall effects, then assessed for upper and lower wall effects. In unified procedure, wind-tunnel flow equations altered to incorporate effects from all four walls at once. Program written in FORTRAN IV for batch execution.

  13. Structural analysis at aircraft conceptual design stage

    NASA Astrophysics Data System (ADS)

    Mansouri, Reza

    In the past 50 years, computers have helped by augmenting human efforts with tremendous pace. The aircraft industry is not an exception. Aircraft industry is more than ever dependent on computing because of a high level of complexity and the increasing need for excellence to survive a highly competitive marketplace. Designers choose computers to perform almost every analysis task. But while doing so, existing effective, accurate and easy to use classical analytical methods are often forgotten, which can be very useful especially in the early phases of the aircraft design where concept generation and evaluation demands physical visibility of design parameters to make decisions [39, 2004]. Structural analysis methods have been used by human beings since the very early civilization. Centuries before computers were invented; the pyramids were designed and constructed by Egyptians around 2000 B.C, the Parthenon was built by the Greeks, around 240 B.C, Dujiangyan was built by the Chinese. Persepolis, Hagia Sophia, Taj Mahal, Eiffel tower are only few more examples of historical buildings, bridges and monuments that were constructed before we had any advancement made in computer aided engineering. Aircraft industry is no exception either. In the first half of the 20th century, engineers used classical method and designed civil transport aircraft such as Ford Tri Motor (1926), Lockheed Vega (1927), Lockheed 9 Orion (1931), Douglas DC-3 (1935), Douglas DC-4/C-54 Skymaster (1938), Boeing 307 (1938) and Boeing 314 Clipper (1939) and managed to become airborne without difficulty. Evidencing, while advanced numerical methods such as the finite element analysis is one of the most effective structural analysis methods; classical structural analysis methods can also be as useful especially during the early phase of a fixed wing aircraft design where major decisions are made and concept generation and evaluation demands physical visibility of design parameters to make decisions. Considering the strength and limitations of both methodologies, the question to be answered in this thesis is: How valuable and compatible are the classical analytical methods in today's conceptual design environment? And can these methods complement each other? To answer these questions, this thesis investigates the pros and cons of classical analytical structural analysis methods during the conceptual design stage through the following objectives: Illustrate structural design methodology of these methods within the framework of Aerospace Vehicle Design (AVD) lab's design lifecycle. Demonstrate the effectiveness of moment distribution method through four case studies. This will be done by considering and evaluating the strength and limitation of these methods. In order to objectively quantify the limitation and capabilities of the analytical method at the conceptual design stage, each case study becomes more complex than the one before.

  14. Validation of a low cost computer-based method for quantification of immunohistochemistry-stained sections.

    PubMed

    Montgomery, Jill D; Hensler, Heather R; Jacobson, Lisa P; Jenkins, Frank J

    2008-07-01

    The aim of the present study was to determine if the Alpha DigiDoc RT system would be an effective method of quantifying immunohistochemical staining as compared with a manual counting method, which is considered the gold standard. Two readers were used to count 31 samples by both methods. The results obtained using the Bland-Altman for concordance deemed no statistical difference between the 2 methods. Thus, the Alpha DigiDoc RT system is an effective, low cost method to quantify immunohistochemical data.

  15. DVS-SOFTWARE: An Effective Tool for Applying Highly Parallelized Hardware To Computational Geophysics

    NASA Astrophysics Data System (ADS)

    Herrera, I.; Herrera, G. S.

    2015-12-01

    Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  16. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    PubMed

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  17. Boosting antibody developability through rational sequence optimization.

    PubMed

    Seeliger, Daniel; Schulz, Patrick; Litzenburger, Tobias; Spitz, Julia; Hoerer, Stefan; Blech, Michaela; Enenkel, Barbara; Studts, Joey M; Garidel, Patrick; Karow, Anne R

    2015-01-01

    The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.

  18. Inverse targeting —An effective immunization strategy

    NASA Astrophysics Data System (ADS)

    Schneider, C. M.; Mihaljev, T.; Herrmann, H. J.

    2012-05-01

    We propose a new method to immunize populations or computer networks against epidemics which is more efficient than any continuous immunization method considered before. The novelty of our method resides in the way of determining the immunization targets. First we identify those individuals or computers that contribute the least to the disease spreading measured through their contribution to the size of the largest connected cluster in the social or a computer network. The immunization process follows the list of identified individuals or computers in inverse order, immunizing first those which are most relevant for the epidemic spreading. We have applied our immunization strategy to several model networks and two real networks, the Internet and the collaboration network of high-energy physicists. We find that our new immunization strategy is in the case of model networks up to 14%, and for real networks up to 33% more efficient than immunizing dynamically the most connected nodes in a network. Our strategy is also numerically efficient and can therefore be applied to large systems.

  19. Efficient Strategies for Estimating the Spatial Coherence of Backscatter

    PubMed Central

    Hyun, Dongwoon; Crowley, Anna Lisa C.; Dahl, Jeremy J.

    2017-01-01

    The spatial coherence of ultrasound backscatter has been proposed to reduce clutter in medical imaging, to measure the anisotropy of the scattering source, and to improve the detection of blood flow. These techniques rely on correlation estimates that are obtained using computationally expensive strategies. In this study, we assess existing spatial coherence estimation methods and propose three computationally efficient modifications: a reduced kernel, a downsampled receive aperture, and the use of an ensemble correlation coefficient. The proposed methods are implemented in simulation and in vivo studies. Reducing the kernel to a single sample improved computational throughput and improved axial resolution. Downsampling the receive aperture was found to have negligible effect on estimator variance, and improved computational throughput by an order of magnitude for a downsample factor of 4. The ensemble correlation estimator demonstrated lower variance than the currently used average correlation. Combining the three methods, the throughput was improved 105-fold in simulation with a downsample factor of 4 and 20-fold in vivo with a downsample factor of 2. PMID:27913342

  20. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  1. Machine learning and computer vision approaches for phenotypic profiling.

    PubMed

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  2. Machine learning and computer vision approaches for phenotypic profiling

    PubMed Central

    Morris, Quaid

    2017-01-01

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887

  3. Effectiveness of Interactive Computer-Based Instruction: A Review of Studies Published between 1995 and 2007

    ERIC Educational Resources Information Center

    Johnson, Douglas A.; Rubin, Sophie

    2011-01-01

    Computer-based instruction (CBI) has been growing rapidly as a training tool in organizational settings, but close attention to behavioral factors has often been neglected. CBI represents a promising instructional advancement over current training methods. This review article summarizes 12 years of comparative research in interactive…

  4. Evaluation of a Computer-Tailored Osteoporosis Prevention Intervention in Young Women

    ERIC Educational Resources Information Center

    Lein, Donald H., Jr.; Clark, Diane; Turner, Lori W.; Kohler, Connie L.; Snyder, Scott; Morgan, Sarah L.; Schoenberger, Yu-Mei M.

    2014-01-01

    Purpose: The purpose of this study was to evaluate the effectiveness of a theory-based computer-tailored osteoporosis prevention program on calcium and vitamin D intake and osteoporosis health beliefs in young women. Additionally, this study tested whether adding bone density testing to the intervention improved the outcomes. Methods: One hundred…

  5. A method to efficiently apply a biogeochemical model to a landscape.

    Treesearch

    Robert E. Kennedy; David P. Turner; Warren B. Cohen; Michael Guzy

    2006-01-01

    Biogeochemical models offer an important means of understanding carbon dynamics, but the computational complexity of many models means that modeling all grid cells on a large landscape is computationally burdensome. Because most biogeochemical models ignore adjacency effects between cells, however, a more efficient approach is possible. Recognizing that spatial...

  6. Critical Emergency Medicine Procedural Skills: A Comparative Study of Methods for Teaching and Assessment.

    ERIC Educational Resources Information Center

    Chapman, Dane M.; And Others

    Three critical procedural skills in emergency medicine were evaluated using three assessment modalities--written, computer, and animal model. The effects of computer practice and previous procedure experience on skill competence were also examined in an experimental sequential assessment design. Subjects were six medical students, six residents,…

  7. Computer-Assisted, Programmed Text, and Lecture Modes of Instruction in Three Medical Training Courses: Comparative Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Deignan, Gerard M.; And Others

    This report contains a comparative analysis of the differential effectiveness of computer-assisted instruction (CAI), programmed instructional text (PIT), and lecture methods of instruction in three medical courses--Medical Laboratory, Radiology, and Dental. The summative evaluation includes (1) multiple regression analyses conducted to predict…

  8. Computer-Based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention

    ERIC Educational Resources Information Center

    Chariker, Julia H.; Naaz, Farah; Pani, John R.

    2011-01-01

    A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a three-dimensional graphical model of the human brain and sections derived from the model, tools for exploring neuroanatomy were developed to encourage "adaptive exploration". This is an…

  9. A Text-Computer Assisted Instruction Program as a Viable Alternative for Continuing Education in Laboratory Medicine.

    ERIC Educational Resources Information Center

    Bruce, A. Wayne

    1986-01-01

    Describes reasons for developing combined text and computer assisted instruction (CAI) teaching programs for delivery of continuing education to laboratory professionals, and mechanisms used for developing a CAI program on method evaluation in the clinical laboratory. Results of an evaluation of the software's cost effectiveness and instructional…

  10. Assessment of Computer-Mediated Module Intervention in a Pharmacy Calculations Course

    ERIC Educational Resources Information Center

    Bell, Edward C.; Fike, David S.; Liang, Dong; Lockman, Paul R.; McCall, Kenneth L.

    2017-01-01

    Computer module intervention is the process of exposing students to a series of discrete exercises for the purpose of strengthening students' familiarity with conceptual material. The method has been suggested as a remedy to student under-preparedness. This study was conducted to determine the effectiveness of module intervention in improving and…

  11. Application of Computer Aided Mathematics Teaching in a Secondary School

    ERIC Educational Resources Information Center

    Yenitepe, Mehmet Emin; Karadag, Zekeriya

    2003-01-01

    This is a case study that examines the effect of using presentations developed by teacher in addition to using commercially produced educational software CD-ROM in Audio-Visual Room/Computer Laboratory after classroom teaching, on students' academic achievement, as a method of Teaching Mathematics compared with only classroom teaching or after…

  12. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  13. Evaluation of Imagine Learning English, a Computer-Assisted Instruction of Language and Literacy for Kindergarten Students

    ERIC Educational Resources Information Center

    Longberg, Pauline Oliphant

    2012-01-01

    As computer assisted instruction (CAI) becomes increasingly sophisticated, its appeal as a viable method of literacy intervention with young children continues despite limited evidence of effectiveness. The present study sought to assess the impact of one such CAI program, "Imagine Learning English" (ILE), on both the receptive…

  14. Evaluating the Effects of Scripted Distributed Pair Programming on Student Performance and Participation

    ERIC Educational Resources Information Center

    Tsompanoudi, Despina; Satratzemi, Maya; Xinogalos, Stelios

    2016-01-01

    The results presented in this paper contribute to research on two different areas of teaching methods: distributed pair programming (DPP) and computer-supported collaborative learning (CSCL). An evaluation study of a DPP system that supports collaboration scripts was conducted over one semester of a computer science course. Seventy-four students…

  15. Component-Based Approach for Educating Students in Bioinformatics

    ERIC Educational Resources Information Center

    Poe, D.; Venkatraman, N.; Hansen, C.; Singh, G.

    2009-01-01

    There is an increasing need for an effective method of teaching bioinformatics. Increased progress and availability of computer-based tools for educating students have led to the implementation of a computer-based system for teaching bioinformatics as described in this paper. Bioinformatics is a recent, hybrid field of study combining elements of…

  16. Effects of Synchronicity and Belongingness on Face-to-Face and Computer-Mediated Constructive Controversy

    ERIC Educational Resources Information Center

    Saltarelli, Andy J.; Roseth, Cary J.

    2014-01-01

    Adapting face-to-face (FTF) pedagogies to online settings raises boundary questions about the contextual conditions in which the same instructional method stimulates different outcomes. We address this issue by examining FTF and computer-mediated communication (CMC) versions of constructive controversy, a cooperative learning procedure involving…

  17. Uncertainty Aware Structural Topology Optimization Via a Stochastic Reduced Order Model Approach

    NASA Technical Reports Server (NTRS)

    Aguilo, Miguel A.; Warner, James E.

    2017-01-01

    This work presents a stochastic reduced order modeling strategy for the quantification and propagation of uncertainties in topology optimization. Uncertainty aware optimization problems can be computationally complex due to the substantial number of model evaluations that are necessary to accurately quantify and propagate uncertainties. This computational complexity is greatly magnified if a high-fidelity, physics-based numerical model is used for the topology optimization calculations. Stochastic reduced order model (SROM) methods are applied here to effectively 1) alleviate the prohibitive computational cost associated with an uncertainty aware topology optimization problem; and 2) quantify and propagate the inherent uncertainties due to design imperfections. A generic SROM framework that transforms the uncertainty aware, stochastic topology optimization problem into a deterministic optimization problem that relies only on independent calls to a deterministic numerical model is presented. This approach facilitates the use of existing optimization and modeling tools to accurately solve the uncertainty aware topology optimization problems in a fraction of the computational demand required by Monte Carlo methods. Finally, an example in structural topology optimization is presented to demonstrate the effectiveness of the proposed uncertainty aware structural topology optimization approach.

  18. Robust Duplication with Comparison Methods in Microcontrollers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather Marie; Baker, Zachary Kent; Fairbanks, Thomas D.

    Commercial microprocessors could be useful computational platforms in space systems, as long as the risk is bound. Many spacecraft are computationally constrained because all of the computation is done on a single radiation-hardened microprocessor. It is possible that a commercial microprocessor could be used for configuration, monitoring and background tasks that are not mission critical. Most commercial microprocessors are affected by radiation, including single-event effects (SEEs) that could be destructive to the component or corrupt the data. Part screening can help designers avoid components with destructive failure modes, and mitigation can suppress data corruption. We have been experimenting with amore » method for masking radiation-induced faults through the software executing on the microprocessor. While triple-modular redundancy (TMR) techniques are very effective at masking faults in software, the increased amount of execution time to complete the computation is not desirable. Here in this article we present a technique for combining duplication with compare (DWC) with TMR that decreases observable errors by as much as 145 times with only a 2.35 time decrease in performance.« less

  19. Robust Duplication with Comparison Methods in Microcontrollers

    DOE PAGES

    Quinn, Heather Marie; Baker, Zachary Kent; Fairbanks, Thomas D.; ...

    2016-01-01

    Commercial microprocessors could be useful computational platforms in space systems, as long as the risk is bound. Many spacecraft are computationally constrained because all of the computation is done on a single radiation-hardened microprocessor. It is possible that a commercial microprocessor could be used for configuration, monitoring and background tasks that are not mission critical. Most commercial microprocessors are affected by radiation, including single-event effects (SEEs) that could be destructive to the component or corrupt the data. Part screening can help designers avoid components with destructive failure modes, and mitigation can suppress data corruption. We have been experimenting with amore » method for masking radiation-induced faults through the software executing on the microprocessor. While triple-modular redundancy (TMR) techniques are very effective at masking faults in software, the increased amount of execution time to complete the computation is not desirable. Here in this article we present a technique for combining duplication with compare (DWC) with TMR that decreases observable errors by as much as 145 times with only a 2.35 time decrease in performance.« less

  20. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0

Top