Text feature extraction based on deep learning: a review.
Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan
2017-01-01
Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.
A novel feature extraction approach for microarray data based on multi-algorithm fusion
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277
A novel feature extraction approach for microarray data based on multi-algorithm fusion.
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
Single-trial laser-evoked potentials feature extraction for prediction of pain perception.
Huang, Gan; Xiao, Ping; Hu, Li; Hung, Yeung Sam; Zhang, Zhiguo
2013-01-01
Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.
Wen, Tingxi; Zhang, Zhongnan
2017-01-01
Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789
Wen, Tingxi; Zhang, Zhongnan
2017-05-01
In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.
Zhang, Heng; Pan, Zhongming; Zhang, Wenna
2018-06-07
An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-01-01
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features. PMID:27649171
Efficient feature extraction from wide-area motion imagery by MapReduce in Hadoop
NASA Astrophysics Data System (ADS)
Cheng, Erkang; Ma, Liya; Blaisse, Adam; Blasch, Erik; Sheaff, Carolyn; Chen, Genshe; Wu, Jie; Ling, Haibin
2014-06-01
Wide-Area Motion Imagery (WAMI) feature extraction is important for applications such as target tracking, traffic management and accident discovery. With the increasing amount of WAMI collections and feature extraction from the data, a scalable framework is needed to handle the large amount of information. Cloud computing is one of the approaches recently applied in large scale or big data. In this paper, MapReduce in Hadoop is investigated for large scale feature extraction tasks for WAMI. Specifically, a large dataset of WAMI images is divided into several splits. Each split has a small subset of WAMI images. The feature extractions of WAMI images in each split are distributed to slave nodes in the Hadoop system. Feature extraction of each image is performed individually in the assigned slave node. Finally, the feature extraction results are sent to the Hadoop File System (HDFS) to aggregate the feature information over the collected imagery. Experiments of feature extraction with and without MapReduce are conducted to illustrate the effectiveness of our proposed Cloud-Enabled WAMI Exploitation (CAWE) approach.
Experience improves feature extraction in Drosophila.
Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike
2007-05-09
Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.
Variogram-based feature extraction for neural network recognition of logos
NASA Astrophysics Data System (ADS)
Pham, Tuan D.
2003-03-01
This paper presents a new approach for extracting spatial features of images based on the theory of regionalized variables. These features can be effectively used for automatic recognition of logo images using neural networks. Experimental results on a public-domain logo database show the effectiveness of the proposed approach.
Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xiaojia; Mao Qirong; Zhan Yongzhao
There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less
Decomposition and extraction: a new framework for visual classification.
Fang, Yuqiang; Chen, Qiang; Sun, Lin; Dai, Bin; Yan, Shuicheng
2014-08-01
In this paper, we present a novel framework for visual classification based on hierarchical image decomposition and hybrid midlevel feature extraction. Unlike most midlevel feature learning methods, which focus on the process of coding or pooling, we emphasize that the mechanism of image composition also strongly influences the feature extraction. To effectively explore the image content for the feature extraction, we model a multiplicity feature representation mechanism through meaningful hierarchical image decomposition followed by a fusion step. In particularly, we first propose a new hierarchical image decomposition approach in which each image is decomposed into a series of hierarchical semantical components, i.e, the structure and texture images. Then, different feature extraction schemes can be adopted to match the decomposed structure and texture processes in a dissociative manner. Here, two schemes are explored to produce property related feature representations. One is based on a single-stage network over hand-crafted features and the other is based on a multistage network, which can learn features from raw pixels automatically. Finally, those multiple midlevel features are incorporated by solving a multiple kernel learning task. Extensive experiments are conducted on several challenging data sets for visual classification, and experimental results demonstrate the effectiveness of the proposed method.
Sample-space-based feature extraction and class preserving projection for gene expression data.
Wang, Wenjun
2013-01-01
In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
Ma, Teng; Li, Hui; Yang, Hao; Lv, Xulin; Li, Peiyang; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2017-01-01
Motion-onset visual evoked potentials (mVEP) can provide a softer stimulus with reduced fatigue, and it has potential applications for brain computer interface(BCI)systems. However, the mVEP waveform is seriously masked in the strong background EEG activities, and an effective approach is needed to extract the corresponding mVEP features to perform task recognition for BCI control. In the current study, we combine deep learning with compressed sensing to mine discriminative mVEP information to improve the mVEP BCI performance. The deep learning and compressed sensing approach can generate the multi-modality features which can effectively improve the BCI performance with approximately 3.5% accuracy incensement over all 11 subjects and is more effective for those subjects with relatively poor performance when using the conventional features. Compared with the conventional amplitude-based mVEP feature extraction approach, the deep learning and compressed sensing approach has a higher classification accuracy and is more effective for subjects with relatively poor performance. According to the results, the deep learning and compressed sensing approach is more effective for extracting the mVEP feature to construct the corresponding BCI system, and the proposed feature extraction framework is easy to extend to other types of BCIs, such as motor imagery (MI), steady-state visual evoked potential (SSVEP)and P300. Copyright © 2016 Elsevier B.V. All rights reserved.
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
Image feature extraction based on the camouflage effectiveness evaluation
NASA Astrophysics Data System (ADS)
Yuan, Xin; Lv, Xuliang; Li, Ling; Wang, Xinzhu; Zhang, Zhi
2018-04-01
The key step of camouflage effectiveness evaluation is how to combine the human visual physiological features, psychological features to select effectively evaluation indexes. Based on the predecessors' camo comprehensive evaluation method, this paper chooses the suitable indexes combining with the image quality awareness, and optimizes those indexes combining with human subjective perception. Thus, it perfects the theory of index extraction.
NASA Astrophysics Data System (ADS)
Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab
2017-11-01
Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.
Extraction and representation of common feature from uncertain facial expressions with cloud model.
Wang, Shuliang; Chi, Hehua; Yuan, Hanning; Geng, Jing
2017-12-01
Human facial expressions are key ingredient to convert an individual's innate emotion in communication. However, the variation of facial expressions affects the reliable identification of human emotions. In this paper, we present a cloud model to extract facial features for representing human emotion. First, the uncertainties in facial expression are analyzed in the context of cloud model. The feature extraction and representation algorithm is established under cloud generators. With forward cloud generator, facial expression images can be re-generated as many as we like for visually representing the extracted three features, and each feature shows different roles. The effectiveness of the computing model is tested on Japanese Female Facial Expression database. Three common features are extracted from seven facial expression images. Finally, the paper is concluded and remarked.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images.
Gumaei, Abdu; Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-05-15
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang's method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used.
Shape Adaptive, Robust Iris Feature Extraction from Noisy Iris Images
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-01-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate. PMID:24696801
Shape adaptive, robust iris feature extraction from noisy iris images.
Ghodrati, Hamed; Dehghani, Mohammad Javad; Danyali, Habibolah
2013-10-01
In the current iris recognition systems, noise removing step is only used to detect noisy parts of the iris region and features extracted from there will be excluded in matching step. Whereas depending on the filter structure used in feature extraction, the noisy parts may influence relevant features. To the best of our knowledge, the effect of noise factors on feature extraction has not been considered in the previous works. This paper investigates the effect of shape adaptive wavelet transform and shape adaptive Gabor-wavelet for feature extraction on the iris recognition performance. In addition, an effective noise-removing approach is proposed in this paper. The contribution is to detect eyelashes and reflections by calculating appropriate thresholds by a procedure called statistical decision making. The eyelids are segmented by parabolic Hough transform in normalized iris image to decrease computational burden through omitting rotation term. The iris is localized by an accurate and fast algorithm based on coarse-to-fine strategy. The principle of mask code generation is to assign the noisy bits in an iris code in order to exclude them in matching step is presented in details. An experimental result shows that by using the shape adaptive Gabor-wavelet technique there is an improvement on the accuracy of recognition rate.
An ensemble method for extracting adverse drug events from social media.
Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi
2016-06-01
Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Su, Zuqiang; Xiao, Hong; Zhang, Yi; Tang, Baoping; Jiang, Yonghua
2017-04-01
Extraction of sensitive features is a challenging but key task in data-driven machinery running state identification. Aimed at solving this problem, a method for machinery running state identification that applies discriminant semi-supervised local tangent space alignment (DSS-LTSA) for feature fusion and extraction is proposed. Firstly, in order to extract more distinct features, the vibration signals are decomposed by wavelet packet decomposition WPD, and a mixed-domain feature set consisted of statistical features, autoregressive (AR) model coefficients, instantaneous amplitude Shannon entropy and WPD energy spectrum is extracted to comprehensively characterize the properties of machinery running state(s). Then, the mixed-dimension feature set is inputted into DSS-LTSA for feature fusion and extraction to eliminate redundant information and interference noise. The proposed DSS-LTSA can extract intrinsic structure information of both labeled and unlabeled state samples, and as a result the over-fitting problem of supervised manifold learning and blindness problem of unsupervised manifold learning are overcome. Simultaneously, class discrimination information is integrated within the dimension reduction process in a semi-supervised manner to improve sensitivity of the extracted fusion features. Lastly, the extracted fusion features are inputted into a pattern recognition algorithm to achieve the running state identification. The effectiveness of the proposed method is verified by a running state identification case in a gearbox, and the results confirm the improved accuracy of the running state identification.
User-oriented summary extraction for soccer video based on multimodal analysis
NASA Astrophysics Data System (ADS)
Liu, Huayong; Jiang, Shanshan; He, Tingting
2011-11-01
An advanced user-oriented summary extraction method for soccer video is proposed in this work. Firstly, an algorithm of user-oriented summary extraction for soccer video is introduced. A novel approach that integrates multimodal analysis, such as extraction and analysis of the stadium features, moving object features, audio features and text features is introduced. By these features the semantic of the soccer video and the highlight mode are obtained. Then we can find the highlight position and put them together by highlight degrees to obtain the video summary. The experimental results for sports video of world cup soccer games indicate that multimodal analysis is effective for soccer video browsing and retrieval.
An Effective Palmprint Recognition Approach for Visible and Multispectral Sensor Images
Sammouda, Rachid; Al-Salman, Abdul Malik; Alsanad, Ahmed
2018-01-01
Among several palmprint feature extraction methods the HOG-based method is attractive and performs well against changes in illumination and shadowing of palmprint images. However, it still lacks the robustness to extract the palmprint features at different rotation angles. To solve this problem, this paper presents a hybrid feature extraction method, named HOG-SGF that combines the histogram of oriented gradients (HOG) with a steerable Gaussian filter (SGF) to develop an effective palmprint recognition approach. The approach starts by processing all palmprint images by David Zhang’s method to segment only the region of interests. Next, we extracted palmprint features based on the hybrid HOG-SGF feature extraction method. Then, an optimized auto-encoder (AE) was utilized to reduce the dimensionality of the extracted features. Finally, a fast and robust regularized extreme learning machine (RELM) was applied for the classification task. In the evaluation phase of the proposed approach, a number of experiments were conducted on three publicly available palmprint databases, namely MS-PolyU of multispectral palmprint images and CASIA and Tongji of contactless palmprint images. Experimentally, the results reveal that the proposed approach outperforms the existing state-of-the-art approaches even when a small number of training samples are used. PMID:29762519
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators
Bai, Xiangzhi
2015-01-01
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion. PMID:26184229
Infrared and Visual Image Fusion through Fuzzy Measure and Alternating Operators.
Bai, Xiangzhi
2015-07-15
The crucial problem of infrared and visual image fusion is how to effectively extract the image features, including the image regions and details and combine these features into the final fusion result to produce a clear fused image. To obtain an effective fusion result with clear image details, an algorithm for infrared and visual image fusion through the fuzzy measure and alternating operators is proposed in this paper. Firstly, the alternating operators constructed using the opening and closing based toggle operator are analyzed. Secondly, two types of the constructed alternating operators are used to extract the multi-scale features of the original infrared and visual images for fusion. Thirdly, the extracted multi-scale features are combined through the fuzzy measure-based weight strategy to form the final fusion features. Finally, the final fusion features are incorporated with the original infrared and visual images using the contrast enlargement strategy. All the experimental results indicate that the proposed algorithm is effective for infrared and visual image fusion.
Effective traffic features selection algorithm for cyber-attacks samples
NASA Astrophysics Data System (ADS)
Li, Yihong; Liu, Fangzheng; Du, Zhenyu
2018-05-01
By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.
Feature extraction applied to agricultural crops as seen by LANDSAT
NASA Technical Reports Server (NTRS)
Kauth, R. J.; Lambeck, P. F.; Richardson, W.; Thomas, G. S.; Pentland, A. P. (Principal Investigator)
1979-01-01
The physical interpretation of the spectral-temporal structure of LANDSAT data can be conveniently described in terms of a graphic descriptive model called the Tassled Cap. This model has been a source of development not only in crop-related feature extraction, but also for data screening and for haze effects correction. Following its qualitative description and an indication of its applications, the model is used to analyze several feature extraction algorithms.
Optical character recognition with feature extraction and associative memory matrix
NASA Astrophysics Data System (ADS)
Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa
1998-06-01
A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.
A harmonic linear dynamical system for prominent ECG feature extraction.
Thi, Ngoc Anh Nguyen; Yang, Hyung-Jeong; Kim, SunHee; Do, Luu Ngoc
2014-01-01
Unsupervised mining of electrocardiography (ECG) time series is a crucial task in biomedical applications. To have efficiency of the clustering results, the prominent features extracted from preprocessing analysis on multiple ECG time series need to be investigated. In this paper, a Harmonic Linear Dynamical System is applied to discover vital prominent features via mining the evolving hidden dynamics and correlations in ECG time series. The discovery of the comprehensible and interpretable features of the proposed feature extraction methodology effectively represents the accuracy and the reliability of clustering results. Particularly, the empirical evaluation results of the proposed method demonstrate the improved performance of clustering compared to the previous main stream feature extraction approaches for ECG time series clustering tasks. Furthermore, the experimental results on real-world datasets show scalability with linear computation time to the duration of the time series.
Region of interest extraction based on multiscale visual saliency analysis for remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yinggang; Zhang, Libao; Yu, Xianchuan
2015-01-01
Region of interest (ROI) extraction is an important component of remote sensing image processing. However, traditional ROI extraction methods are usually prior knowledge-based and depend on classification, segmentation, and a global searching solution, which are time-consuming and computationally complex. We propose a more efficient ROI extraction model for remote sensing images based on multiscale visual saliency analysis (MVS), implemented in the CIE L*a*b* color space, which is similar to visual perception of the human eye. We first extract the intensity, orientation, and color feature of the image using different methods: the visual attention mechanism is used to eliminate the intensity feature using a difference of Gaussian template; the integer wavelet transform is used to extract the orientation feature; and color information content analysis is used to obtain the color feature. Then, a new feature-competition method is proposed that addresses the different contributions of each feature map to calculate the weight of each feature image for combining them into the final saliency map. Qualitative and quantitative experimental results of the MVS model as compared with those of other models show that it is more effective and provides more accurate ROI extraction results with fewer holes inside the ROI.
Dai, Wensheng; Wu, Jui-Yu; Lu, Chi-Jie
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting.
Dai, Wensheng
2014-01-01
Sales forecasting is one of the most important issues in managing information technology (IT) chain store sales since an IT chain store has many branches. Integrating feature extraction method and prediction tool, such as support vector regression (SVR), is a useful method for constructing an effective sales forecasting scheme. Independent component analysis (ICA) is a novel feature extraction technique and has been widely applied to deal with various forecasting problems. But, up to now, only the basic ICA method (i.e., temporal ICA model) was applied to sale forecasting problem. In this paper, we utilize three different ICA methods including spatial ICA (sICA), temporal ICA (tICA), and spatiotemporal ICA (stICA) to extract features from the sales data and compare their performance in sales forecasting of IT chain store. Experimental results from a real sales data show that the sales forecasting scheme by integrating stICA and SVR outperforms the comparison models in terms of forecasting error. The stICA is a promising tool for extracting effective features from branch sales data and the extracted features can improve the prediction performance of SVR for sales forecasting. PMID:25165740
Spectral Regression Based Fault Feature Extraction for Bearing Accelerometer Sensor Signals
Xia, Zhanguo; Xia, Shixiong; Wan, Ling; Cai, Shiyu
2012-01-01
Bearings are not only the most important element but also a common source of failures in rotary machinery. Bearing fault prognosis technology has been receiving more and more attention recently, in particular because it plays an increasingly important role in avoiding the occurrence of accidents. Therein, fault feature extraction (FFE) of bearing accelerometer sensor signals is essential to highlight representative features of bearing conditions for machinery fault diagnosis and prognosis. This paper proposes a spectral regression (SR)-based approach for fault feature extraction from original features including time, frequency and time-frequency domain features of bearing accelerometer sensor signals. SR is a novel regression framework for efficient regularized subspace learning and feature extraction technology, and it uses the least squares method to obtain the best projection direction, rather than computing the density matrix of features, so it also has the advantage in dimensionality reduction. The effectiveness of the SR-based method is validated experimentally by applying the acquired vibration signals data to bearings. The experimental results indicate that SR can reduce the computation cost and preserve more structure information about different bearing faults and severities, and it is demonstrated that the proposed feature extraction scheme has an advantage over other similar approaches. PMID:23202017
Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui
2017-08-17
It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.
Mladinich, C.
2010-01-01
Human disturbance is a leading ecosystem stressor. Human-induced modifications include transportation networks, areal disturbances due to resource extraction, and recreation activities. High-resolution imagery and object-oriented classification rather than pixel-based techniques have successfully identified roads, buildings, and other anthropogenic features. Three commercial, automated feature-extraction software packages (Visual Learning Systems' Feature Analyst, ENVI Feature Extraction, and Definiens Developer) were evaluated by comparing their ability to effectively detect the disturbed surface patterns from motorized vehicle traffic. Each package achieved overall accuracies in the 70% range, demonstrating the potential to map the surface patterns. The Definiens classification was more consistent and statistically valid. Copyright ?? 2010 by Bellwether Publishing, Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, K; O’Dwyer, R; Bradford, T
Purpose: To reduce differences in features calculated from MRI brain scans acquired at different field strengths with or without Gadolinium contrast. Methods: Brain scans were processed for 111 epilepsy patients to extract hippocampus and thalamus features. Scans were acquired on 1.5 T scanners with Gadolinium contrast (group A), 1.5T scanners without Gd (group B), and 3.0 T scanners without Gd (group C). A total of 72 features were extracted. Features were extracted from original scans and from scans where the image pixel values were rescaled to the mean of the hippocampi and thalami values. For each data set, cluster analysismore » was performed on the raw feature set and for feature sets with normalization (conversion to Z scores). Two methods of normalization were used: The first was over all values of a given feature, and the second by normalizing within the patient group membership. The clustering software was configured to produce 3 clusters. Group fractions in each cluster were calculated. Results: For features calculated from both the non-rescaled and rescaled data, cluster membership was identical for both the non-normalized and normalized data sets. Cluster 1 was comprised entirely of Group A data, Cluster 2 contained data from all three groups, and Cluster 3 contained data from only groups 1 and 2. For the categorically normalized data sets there was a more uniform distribution of group data in the three Clusters. A less pronounced effect was seen in the rescaled image data features. Conclusion: Image Rescaling and feature renormalization can have a significant effect on the results of clustering analysis. These effects are also likely to influence the results of supervised machine learning algorithms. It may be possible to partly remove the influence of scanner field strength and the presence of Gadolinium based contrast in feature extraction for radiomics applications.« less
Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko
2017-12-28
Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.
Wen, Tingxi; Zhang, Zhongnan; Qiu, Ming; Zeng, Ming; Luo, Weizhen
2017-01-01
The computer mouse is an important human-computer interaction device. But patients with physical finger disability are unable to operate this device. Surface EMG (sEMG) can be monitored by electrodes on the skin surface and is a reflection of the neuromuscular activities. Therefore, we can control limbs auxiliary equipment by utilizing sEMG classification in order to help the physically disabled patients to operate the mouse. To develop a new a method to extract sEMG generated by finger motion and apply novel features to classify sEMG. A window-based data acquisition method was presented to extract signal samples from sEMG electordes. Afterwards, a two-dimensional matrix image based feature extraction method, which differs from the classical methods based on time domain or frequency domain, was employed to transform signal samples to feature maps used for classification. In the experiments, sEMG data samples produced by the index and middle fingers at the click of a mouse button were separately acquired. Then, characteristics of the samples were analyzed to generate a feature map for each sample. Finally, the machine learning classification algorithms (SVM, KNN, RBF-NN) were employed to classify these feature maps on a GPU. The study demonstrated that all classifiers can identify and classify sEMG samples effectively. In particular, the accuracy of the SVM classifier reached up to 100%. The signal separation method is a convenient, efficient and quick method, which can effectively extract the sEMG samples produced by fingers. In addition, unlike the classical methods, the new method enables to extract features by enlarging sample signals' energy appropriately. The classical machine learning classifiers all performed well by using these features.
Palmprint verification using Lagrangian decomposition and invariant interest points
NASA Astrophysics Data System (ADS)
Gupta, P.; Rattani, A.; Kisku, D. R.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper presents a palmprint based verification system using SIFT features and Lagrangian network graph technique. We employ SIFT for feature extraction from palmprint images whereas the region of interest (ROI) which has been extracted from wide palm texture at the preprocessing stage, is considered for invariant points extraction. Finally, identity is established by finding permutation matrix for a pair of reference and probe palm graphs drawn on extracted SIFT features. Permutation matrix is used to minimize the distance between two graphs. The propsed system has been tested on CASIA and IITK palmprint databases and experimental results reveal the effectiveness and robustness of the system.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
Extraction of linear features on SAR imagery
NASA Astrophysics Data System (ADS)
Liu, Junyi; Li, Deren; Mei, Xin
2006-10-01
Linear features are usually extracted from SAR imagery by a few edge detectors derived from the contrast ratio edge detector with a constant probability of false alarm. On the other hand, the Hough Transform is an elegant way of extracting global features like curve segments from binary edge images. Randomized Hough Transform can reduce the computation time and memory usage of the HT drastically. While Randomized Hough Transform will bring about a great deal of cells invalid during the randomized sample. In this paper, we propose a new approach to extract linear features on SAR imagery, which is an almost automatic algorithm based on edge detection and Randomized Hough Transform. The presented improved method makes full use of the directional information of each edge candidate points so as to solve invalid cumulate problems. Applied result is in good agreement with the theoretical study, and the main linear features on SAR imagery have been extracted automatically. The method saves storage space and computational time, which shows its effectiveness and applicability.
NASA Astrophysics Data System (ADS)
Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien
2017-09-01
Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.
Feature extraction inspired by V1 in visual cortex
NASA Astrophysics Data System (ADS)
Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang
2018-04-01
Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.
A method for automatic feature points extraction of human vertebrae three-dimensional model
NASA Astrophysics Data System (ADS)
Wu, Zhen; Wu, Junsheng
2017-05-01
A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.
Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi
2016-12-02
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works.
Xu, Huile; Liu, Jinyi; Hu, Haibo; Zhang, Yi
2016-01-01
Wearable sensors-based human activity recognition introduces many useful applications and services in health care, rehabilitation training, elderly monitoring and many other areas of human interaction. Existing works in this field mainly focus on recognizing activities by using traditional features extracted from Fourier transform (FT) or wavelet transform (WT). However, these signal processing approaches are suitable for a linear signal but not for a nonlinear signal. In this paper, we investigate the characteristics of the Hilbert-Huang transform (HHT) for dealing with activity data with properties such as nonlinearity and non-stationarity. A multi-features extraction method based on HHT is then proposed to improve the effect of activity recognition. The extracted multi-features include instantaneous amplitude (IA) and instantaneous frequency (IF) by means of empirical mode decomposition (EMD), as well as instantaneous energy density (IE) and marginal spectrum (MS) derived from Hilbert spectral analysis. Experimental studies are performed to verify the proposed approach by using the PAMAP2 dataset from the University of California, Irvine for wearable sensors-based activity recognition. Moreover, the effect of combining multi-features vs. a single-feature are investigated and discussed in the scenario of a dependent subject. The experimental results show that multi-features combination can further improve the performance measures. Finally, we test the effect of multi-features combination in the scenario of an independent subject. Our experimental results show that we achieve four performance indexes: recall, precision, F-measure, and accuracy to 0.9337, 0.9417, 0.9353, and 0.9377 respectively, which are all better than the achievements of related works. PMID:27918414
NASA Astrophysics Data System (ADS)
Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei
2017-09-01
Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.
Ensemble methods with simple features for document zone classification
NASA Astrophysics Data System (ADS)
Obafemi-Ajayi, Tayo; Agam, Gady; Xie, Bingqing
2012-01-01
Document layout analysis is of fundamental importance for document image understanding and information retrieval. It requires the identification of blocks extracted from a document image via features extraction and block classification. In this paper, we focus on the classification of the extracted blocks into five classes: text (machine printed), handwriting, graphics, images, and noise. We propose a new set of features for efficient classifications of these blocks. We present a comparative evaluation of three ensemble based classification algorithms (boosting, bagging, and combined model trees) in addition to other known learning algorithms. Experimental results are demonstrated for a set of 36503 zones extracted from 416 document images which were randomly selected from the tobacco legacy document collection. The results obtained verify the robustness and effectiveness of the proposed set of features in comparison to the commonly used Ocropus recognition features. When used in conjunction with the Ocropus feature set, we further improve the performance of the block classification system to obtain a classification accuracy of 99.21%.
Improving the performance of univariate control charts for abnormal detection and classification
NASA Astrophysics Data System (ADS)
Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis
2017-03-01
Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
NASA Astrophysics Data System (ADS)
Lim, Meng-Hui; Teoh, Andrew Beng Jin
2011-12-01
Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.
NASA Astrophysics Data System (ADS)
Sultana, Maryam; Bhatti, Naeem; Javed, Sajid; Jung, Soon Ki
2017-09-01
Facial expression recognition (FER) is an important task for various computer vision applications. The task becomes challenging when it requires the detection and encoding of macro- and micropatterns of facial expressions. We present a two-stage texture feature extraction framework based on the local binary pattern (LBP) variants and evaluate its significance in recognizing posed and nonposed facial expressions. We focus on the parametric limitations of the LBP variants and investigate their effects for optimal FER. The size of the local neighborhood is an important parameter of the LBP technique for its extraction in images. To make the LBP adaptive, we exploit the granulometric information of the facial images to find the local neighborhood size for the extraction of center-symmetric LBP (CS-LBP) features. Our two-stage texture representations consist of an LBP variant and the adaptive CS-LBP features. Among the presented two-stage texture feature extractions, the binarized statistical image features and adaptive CS-LBP features were found showing high FER rates. Evaluation of the adaptive texture features shows competitive and higher performance than the nonadaptive features and other state-of-the-art approaches, respectively.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum
NASA Astrophysics Data System (ADS)
Guan, Shan; Song, Weijie; Pang, Hongyang
2017-09-01
In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.
FEX: A Knowledge-Based System For Planimetric Feature Extraction
NASA Astrophysics Data System (ADS)
Zelek, John S.
1988-10-01
Topographical planimetric features include natural surfaces (rivers, lakes) and man-made surfaces (roads, railways, bridges). In conventional planimetric feature extraction, a photointerpreter manually interprets and extracts features from imagery on a stereoplotter. Visual planimetric feature extraction is a very labour intensive operation. The advantages of automating feature extraction include: time and labour savings; accuracy improvements; and planimetric data consistency. FEX (Feature EXtraction) combines techniques from image processing, remote sensing and artificial intelligence for automatic feature extraction. The feature extraction process co-ordinates the information and knowledge in a hierarchical data structure. The system simulates the reasoning of a photointerpreter in determining the planimetric features. Present efforts have concentrated on the extraction of road-like features in SPOT imagery. Keywords: Remote Sensing, Artificial Intelligence (AI), SPOT, image understanding, knowledge base, apars.
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Tseng, Tzu-Liang B.; Zheng, Bin; Zhang, Jianying; Qian, Wei
2015-03-01
A novel breast cancer risk analysis approach is proposed for enhancing performance of computerized breast cancer risk analysis using bilateral mammograms. Based on the intensity of breast area, five different sub-regions were acquired from one mammogram, and bilateral features were extracted from every sub-region. Our dataset includes 180 bilateral mammograms from 180 women who underwent routine screening examinations, all interpreted as negative and not recalled by the radiologists during the original screening procedures. A computerized breast cancer risk analysis scheme using four image processing modules, including sub-region segmentation, bilateral feature extraction, feature selection, and classification was designed to detect and compute image feature asymmetry between the left and right breasts imaged on the mammograms. The highest computed area under the curve (AUC) is 0.763 ± 0.021 when applying the multiple sub-region features to our testing dataset. The positive predictive value and the negative predictive value were 0.60 and 0.73, respectively. The study demonstrates that (1) features extracted from multiple sub-regions can improve the performance of our scheme compared to using features from whole breast area only; (2) a classifier using asymmetry bilateral features can effectively predict breast cancer risk; (3) incorporating texture and morphological features with density features can boost the classification accuracy.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
Face-iris multimodal biometric scheme based on feature level fusion
NASA Astrophysics Data System (ADS)
Huo, Guang; Liu, Yuanning; Zhu, Xiaodong; Dong, Hongxing; He, Fei
2015-11-01
Unlike score level fusion, feature level fusion demands all the features extracted from unimodal traits with high distinguishability, as well as homogeneity and compatibility, which is difficult to achieve. Therefore, most multimodal biometric research focuses on score level fusion, whereas few investigate feature level fusion. We propose a face-iris recognition method based on feature level fusion. We build a special two-dimensional-Gabor filter bank to extract local texture features from face and iris images, and then transform them by histogram statistics into an energy-orientation variance histogram feature with lower dimensions and higher distinguishability. Finally, through a fusion-recognition strategy based on principal components analysis and support vector machine (FRSPS), feature level fusion and one-to-n identification are accomplished. The experimental results demonstrate that this method can not only effectively extract face and iris features but also provide higher recognition accuracy. Compared with some state-of-the-art fusion methods, the proposed method has a significant performance advantage.
Average combination difference morphological filters for fault feature extraction of bearing
NASA Astrophysics Data System (ADS)
Lv, Jingxiang; Yu, Jianbo
2018-02-01
In order to extract impulse components from vibration signals with much noise and harmonics, a new morphological filter called average combination difference morphological filter (ACDIF) is proposed in this paper. ACDIF constructs firstly several new combination difference (CDIF) operators, and then integrates the best two CDIFs as the final morphological filter. This design scheme enables ACIDF to extract positive and negative impacts existing in vibration signals to enhance accuracy of bearing fault diagnosis. The length of structure element (SE) that affects the performance of ACDIF is determined adaptively by a new indicator called Teager energy kurtosis (TEK). TEK further improves the effectiveness of ACDIF for fault feature extraction. Experimental results on the simulation and bearing vibration signals demonstrate that ACDIF can effectively suppress noise and extract periodic impulses from bearing vibration signals.
A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
Zarei, Roozbeh; He, Jing; Siuly, Siuly; Zhang, Yanchun
2017-07-01
Feature extraction of EEG signals plays a significant role in Brain-computer interface (BCI) as it can significantly affect the performance and the computational time of the system. The main aim of the current work is to introduce an innovative algorithm for acquiring reliable discriminating features from EEG signals to improve classification performances and to reduce the time complexity. This study develops a robust feature extraction method combining the principal component analysis (PCA) and the cross-covariance technique (CCOV) for the extraction of discriminatory information from the mental states based on EEG signals in BCI applications. We apply the correlation based variable selection method with the best first search on the extracted features to identify the best feature set for characterizing the distribution of mental state signals. To verify the robustness of the proposed feature extraction method, three machine learning techniques: multilayer perceptron neural networks (MLP), least square support vector machine (LS-SVM), and logistic regression (LR) are employed on the obtained features. The proposed methods are evaluated on two publicly available datasets. Furthermore, we evaluate the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that all three classifiers achieve high performance (above 99% overall classification accuracy) for the proposed feature set. Among these classifiers, the MLP and LS-SVM methods yield the best performance for the obtained feature. The average sensitivity, specificity and classification accuracy for these two classifiers are same, which are 99.32%, 100%, and 99.66%, respectively for the BCI competition dataset IVa and 100%, 100%, and 100%, for the BCI competition dataset IVb. The results also indicate the proposed methods outperform the most recently reported methods by at least 0.25% average accuracy improvement in dataset IVa. The execution time results show that the proposed method has less time complexity after feature selection. The proposed feature extraction method is very effective for getting representatives information from mental states EEG signals in BCI applications and reducing the computational complexity of classifiers by reducing the number of extracted features. Copyright © 2017 Elsevier B.V. All rights reserved.
He, Dengchao; Zhang, Hongjun; Hao, Wenning; Zhang, Rui; Cheng, Kai
2017-07-01
Distant supervision, a widely applied approach in the field of relation extraction can automatically generate large amounts of labeled training corpus with minimal manual effort. However, the labeled training corpus may have many false-positive data, which would hurt the performance of relation extraction. Moreover, in traditional feature-based distant supervised approaches, extraction models adopt human design features with natural language processing. It may also cause poor performance. To address these two shortcomings, we propose a customized attention-based long short-term memory network. Our approach adopts word-level attention to achieve better data representation for relation extraction without manually designed features to perform distant supervision instead of fully supervised relation extraction, and it utilizes instance-level attention to tackle the problem of false-positive data. Experimental results demonstrate that our proposed approach is effective and achieves better performance than traditional methods.
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
NASA Astrophysics Data System (ADS)
Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.
2013-05-01
Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-10-20
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
Li, Hongqiang; Yuan, Danyang; Wang, Youxi; Cui, Dianyin; Cao, Lu
2016-01-01
Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG) recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias. PMID:27775596
Chinese character recognition based on Gabor feature extraction and CNN
NASA Astrophysics Data System (ADS)
Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan
2018-03-01
As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.
Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang
2018-05-16
The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.
Zhang, Yanjun; Liu, Wen-zhe; Fu, Xing-hu; Bi, Wei-hong
2016-02-01
Given that the traditional signal processing methods can not effectively distinguish the different vibration intrusion signal, a feature extraction and recognition method of the vibration information is proposed based on EMD-AWPP and HOSA-SVM, using for high precision signal recognition of distributed fiber optic intrusion detection system. When dealing with different types of vibration, the method firstly utilizes the adaptive wavelet processing algorithm based on empirical mode decomposition effect to reduce the abnormal value influence of sensing signal and improve the accuracy of signal feature extraction. Not only the low frequency part of the signal is decomposed, but also the high frequency part the details of the signal disposed better by time-frequency localization process. Secondly, it uses the bispectrum and bicoherence spectrum to accurately extract the feature vector which contains different types of intrusion vibration. Finally, based on the BPNN reference model, the recognition parameters of SVM after the implementation of the particle swarm optimization can distinguish signals of different intrusion vibration, which endows the identification model stronger adaptive and self-learning ability. It overcomes the shortcomings, such as easy to fall into local optimum. The simulation experiment results showed that this new method can effectively extract the feature vector of sensing information, eliminate the influence of random noise and reduce the effects of outliers for different types of invasion source. The predicted category identifies with the output category and the accurate rate of vibration identification can reach above 95%. So it is better than BPNN recognition algorithm and improves the accuracy of the information analysis effectively.
Prominent feature extraction for review analysis: an empirical study
NASA Astrophysics Data System (ADS)
Agarwal, Basant; Mittal, Namita
2016-05-01
Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.
Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan
2016-04-01
To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the reconstruction algorithm used (average of 3.33 features affected by MBIR throughout lesion types; P < .002, for all comparisons), no significant effect of the radiation dose setting was observed for all but one of the texture features (P = .002-.998). Radiation dose settings and reconstruction algorithms affect the extraction and analysis of quantitative imaging features in lesions at multi-detector row CT.
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi
2018-01-01
Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931
Feature extraction and classification algorithms for high dimensional data
NASA Technical Reports Server (NTRS)
Lee, Chulhee; Landgrebe, David
1993-01-01
Feature extraction and classification algorithms for high dimensional data are investigated. Developments with regard to sensors for Earth observation are moving in the direction of providing much higher dimensional multispectral imagery than is now possible. In analyzing such high dimensional data, processing time becomes an important factor. With large increases in dimensionality and the number of classes, processing time will increase significantly. To address this problem, a multistage classification scheme is proposed which reduces the processing time substantially by eliminating unlikely classes from further consideration at each stage. Several truncation criteria are developed and the relationship between thresholds and the error caused by the truncation is investigated. Next an approach to feature extraction for classification is proposed based directly on the decision boundaries. It is shown that all the features needed for classification can be extracted from decision boundaries. A characteristic of the proposed method arises by noting that only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is introduced. The proposed feature extraction algorithm has several desirable properties: it predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal means or equal covariances as some previous algorithms do. In addition, the decision boundary feature extraction algorithm can be used both for parametric and non-parametric classifiers. Finally, some problems encountered in analyzing high dimensional data are studied and possible solutions are proposed. First, the increased importance of the second order statistics in analyzing high dimensional data is recognized. By investigating the characteristics of high dimensional data, the reason why the second order statistics must be taken into account in high dimensional data is suggested. Recognizing the importance of the second order statistics, there is a need to represent the second order statistics. A method to visualize statistics using a color code is proposed. By representing statistics using color coding, one can easily extract and compare the first and the second statistics.
Hierarchical Feature Extraction With Local Neural Response for Image Recognition.
Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P
2013-04-01
In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.
Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen
2016-06-01
High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.
NASA Astrophysics Data System (ADS)
Liu, X.; Zhang, J. X.; Zhao, Z.; Ma, A. D.
2015-06-01
Synthetic aperture radar in the application of remote sensing technology is becoming more and more widely because of its all-time and all-weather operation, feature extraction research in high resolution SAR image has become a hot topic of concern. In particular, with the continuous improvement of airborne SAR image resolution, image texture information become more abundant. It's of great significance to classification and extraction. In this paper, a novel method for built-up areas extraction using both statistical and structural features is proposed according to the built-up texture features. First of all, statistical texture features and structural features are respectively extracted by classical method of gray level co-occurrence matrix and method of variogram function, and the direction information is considered in this process. Next, feature weights are calculated innovatively according to the Bhattacharyya distance. Then, all features are weighted fusion. At last, the fused image is classified with K-means classification method and the built-up areas are extracted after post classification process. The proposed method has been tested by domestic airborne P band polarization SAR images, at the same time, two groups of experiments based on the method of statistical texture and the method of structural texture were carried out respectively. On the basis of qualitative analysis, quantitative analysis based on the built-up area selected artificially is enforced, in the relatively simple experimentation area, detection rate is more than 90%, in the relatively complex experimentation area, detection rate is also higher than the other two methods. In the study-area, the results show that this method can effectively and accurately extract built-up areas in high resolution airborne SAR imagery.
Capability of geometric features to classify ships in SAR imagery
NASA Astrophysics Data System (ADS)
Lang, Haitao; Wu, Siwen; Lai, Quan; Ma, Li
2016-10-01
Ship classification in synthetic aperture radar (SAR) imagery has become a new hotspot in remote sensing community for its valuable potential in many maritime applications. Several kinds of ship features, such as geometric features, polarimetric features, and scattering features have been widely applied on ship classification tasks. Compared with polarimetric features and scattering features, which are subject to SAR parameters (e.g., sensor type, incidence angle, polarization, etc.) and environment factors (e.g., sea state, wind, wave, current, etc.), geometric features are relatively independent of SAR and environment factors, and easy to be extracted stably from SAR imagery. In this paper, the capability of geometric features to classify ships in SAR imagery with various resolution has been investigated. Firstly, the relationship between the geometric feature extraction accuracy and the SAR imagery resolution is analyzed. It shows that the minimum bounding rectangle (MBR) of ship can be extracted exactly in terms of absolute precision by the proposed automatic ship-sea segmentation method. Next, six simple but effective geometric features are extracted to build a ship representation for the subsequent classification task. These six geometric features are composed of length (f1), width (f2), area (f3), perimeter (f4), elongatedness (f5) and compactness (f6). Among them, two basic features, length (f1) and width (f2), are directly extracted based on the MBR of ship, the other four are derived from those two basic features. The capability of the utilized geometric features to classify ships are validated on two data set with different image resolutions. The results show that the performance of ship classification solely by geometric features is close to that obtained by the state-of-the-art methods, which obtained by a combination of multiple kinds of features, including scattering features and geometric features after a complex feature selection process.
A neural joint model for entity and relation extraction from biomedical text.
Li, Fei; Zhang, Meishan; Fu, Guohong; Ji, Donghong
2017-03-31
Extracting biomedical entities and their relations from text has important applications on biomedical research. Previous work primarily utilized feature-based pipeline models to process this task. Many efforts need to be made on feature engineering when feature-based models are employed. Moreover, pipeline models may suffer error propagation and are not able to utilize the interactions between subtasks. Therefore, we propose a neural joint model to extract biomedical entities as well as their relations simultaneously, and it can alleviate the problems above. Our model was evaluated on two tasks, i.e., the task of extracting adverse drug events between drug and disease entities, and the task of extracting resident relations between bacteria and location entities. Compared with the state-of-the-art systems in these tasks, our model improved the F1 scores of the first task by 5.1% in entity recognition and 8.0% in relation extraction, and that of the second task by 9.2% in relation extraction. The proposed model achieves competitive performances with less work on feature engineering. We demonstrate that the model based on neural networks is effective for biomedical entity and relation extraction. In addition, parameter sharing is an alternative method for neural models to jointly process this task. Our work can facilitate the research on biomedical text mining.
Generalized Feature Extraction for Wrist Pulse Analysis: From 1-D Time Series to 2-D Matrix.
Dimin Wang; Zhang, David; Guangming Lu
2017-07-01
Traditional Chinese pulse diagnosis, known as an empirical science, depends on the subjective experience. Inconsistent diagnostic results may be obtained among different practitioners. A scientific way of studying the pulse should be to analyze the objectified wrist pulse waveforms. In recent years, many pulse acquisition platforms have been developed with the advances in sensor and computer technology. And the pulse diagnosis using pattern recognition theories is also increasingly attracting attentions. Though many literatures on pulse feature extraction have been published, they just handle the pulse signals as simple 1-D time series and ignore the information within the class. This paper presents a generalized method of pulse feature extraction, extending the feature dimension from 1-D time series to 2-D matrix. The conventional wrist pulse features correspond to a particular case of the generalized models. The proposed method is validated through pattern classification on actual pulse records. Both quantitative and qualitative results relative to the 1-D pulse features are given through diabetes diagnosis. The experimental results show that the generalized 2-D matrix feature is effective in extracting both the periodic and nonperiodic information. And it is practical for wrist pulse analysis.
Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei
2018-02-01
Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.
Classification of speech dysfluencies using LPC based parameterization techniques.
Hariharan, M; Chee, Lim Sin; Ai, Ooi Chia; Yaacob, Sazali
2012-06-01
The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Constrained dictionary learning and probabilistic hypergraph ranking for person re-identification
NASA Astrophysics Data System (ADS)
He, You; Wu, Song; Pu, Nan; Qian, Li; Xiao, Guoqiang
2018-04-01
Person re-identification is a fundamental and inevitable task in public security. In this paper, we propose a novel framework to improve the performance of this task. First, two different types of descriptors are extracted to represent a pedestrian: (1) appearance-based superpixel features, which are constituted mainly by conventional color features and extracted from the supepixel rather than a whole picture and (2) due to the limitation of discrimination of appearance features, the deep features extracted by feature fusion Network are also used. Second, a view invariant subspace is learned by dictionary learning constrained by the minimum negative sample (termed as DL-cMN) to reduce the noise in appearance-based superpixel feature domain. Then, we use deep features and sparse codes transformed by appearancebased features to establish the hyperedges respectively by k-nearest neighbor, rather than jointing different features simply. Finally, a final ranking is performed by probabilistic hypergraph ranking algorithm. Extensive experiments on three challenging datasets (VIPeR, PRID450S and CUHK01) demonstrate the advantages and effectiveness of our proposed algorithm.
Research on feature extraction techniques of Hainan Li brocade pattern
NASA Astrophysics Data System (ADS)
Zhou, Yuping; Chen, Fuqiang; Zhou, Yuhua
2016-03-01
Hainan Li brocade skills has been listed as world non-material cultural heritage preservation, therefore, the research on Hainan Li brocade patterns plays an important role in Li brocade culture inheritance. The meaning of Li brocade patterns was analyzed and the shape feature extraction techniques to original Li brocade patterns were advanced in this paper, based on the contour tracking algorithm. First, edge detection was made on the design patterns, and then the morphological closing operation was used to smooth the image, and finally contour tracking was used to extract the outer contours of Li brocade patterns. The extracted contour features were processed by means of morphology, and digital characteristics of contours are obtained by invariant moments. At last, different patterns of Li brocade design are briefly analyzed according to the digital characteristics. The results showed that the pattern extraction method to Li brocade pattern shapes is feasible and effective according to above method.
Iravani, B; Towhidkhah, F; Roghani, M
2014-12-01
Parkinson Disease (PD) is one of the most common neural disorders worldwide. Different treatments such as medication and deep brain stimulation (DBS) have been proposed to minimize and control Parkinson's symptoms. DBS has been recognized as an effective approach to decrease most movement disorders of PD. In this study, a new method is proposed for feature extraction and separation of treated and untreated Parkinsonan rats. For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA, 12.5 μg/5 μl of saline-ascorbate)-lesioned rats were treated with DBS. We performed a behavioral experiment and video tracked traveled trajectories of rats. Then, we investigated the effect of deep brain stimulation of subthalamus nucleus on their behavioral movements. Time, frequency and chaotic features of traveled trajectories were extracted. These features provide the ability to quantify the behavioral movements of Parkinsonian rats. The results showed that the traveled trajectories of untreated were more convoluted with the different time/frequency response. Compared to the traditional features used before to quantify the animals' behavior, the new features improved classification accuracy up to 80 % for untreated and treated rats.
Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie
2016-01-01
Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894
SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.
Xu, Wenxuan; Zhang, Li; Lu, Yaping
2016-06-01
The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of preprocessing Landsat MSS data on derived features
NASA Technical Reports Server (NTRS)
Parris, T. M.; Cicone, R. C.
1983-01-01
Important to the use of multitemporal Landsat MSS data for earth resources monitoring, such as agricultural inventories, is the ability to minimize the effects of varying atmospheric and satellite viewing conditions, while extracting physically meaningful features from the data. In general, the approaches to the preprocessing problem have been derived from either physical or statistical models. This paper compares three proposed algorithms; XSTAR haze correction, Color Normalization, and Multiple Acquisition Mean Level Adjustment. These techniques represent physical, statistical, and hybrid physical-statistical models, respectively. The comparisons are made in the context of three feature extraction techniques; the Tasseled Cap, the Cate Color Cube. and Normalized Difference.
Automatic feature design for optical character recognition using an evolutionary search procedure.
Stentiford, F W
1985-03-01
An automatic evolutionary search is applied to the problem of feature extraction in an OCR application. A performance measure based on feature independence is used to generate features which do not appear to suffer from peaking effects [17]. Features are extracted from a training set of 30 600 machine printed 34 class alphanumeric characters derived from British mail. Classification results on the training set and a test set of 10 200 characters are reported for an increasing number of features. A 1.01 percent forced decision error rate is obtained on the test data using 316 features. The hardware implementation should be cheap and fast to operate. The performance compares favorably with current low cost OCR page readers.
Effects of band selection on endmember extraction for forestry applications
NASA Astrophysics Data System (ADS)
Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis
2014-10-01
In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to leaf spectral characteristics are selected. Experiments comprise application of well-known signal subspace estimation and endmember extraction methods on a hyperspectral imagery that presents a forest area. Evaluation of the extracted endmembers showed that more forest species can be extracted as endmembers using selected bands.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
The feature extraction of "cat-eye" targets based on bi-spectrum
NASA Astrophysics Data System (ADS)
Zhang, Tinghua; Fan, Guihua; Sun, Huayan
2016-10-01
In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue
2018-04-01
The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.
NASA Astrophysics Data System (ADS)
Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan
2014-09-01
In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
NASA Astrophysics Data System (ADS)
Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina
2017-02-01
Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.
Gene/protein name recognition based on support vector machine using dictionary as features.
Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi
2005-01-01
Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing
Wen, Tailai; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-01
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors’ responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose’s classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods. PMID:29382146
Feature Extraction of Electronic Nose Signals Using QPSO-Based Multiple KFDA Signal Processing.
Wen, Tailai; Yan, Jia; Huang, Daoyu; Lu, Kun; Deng, Changjian; Zeng, Tanyue; Yu, Song; He, Zhiyi
2018-01-29
The aim of this research was to enhance the classification accuracy of an electronic nose (E-nose) in different detecting applications. During the learning process of the E-nose to predict the types of different odors, the prediction accuracy was not quite satisfying because the raw features extracted from sensors' responses were regarded as the input of a classifier without any feature extraction processing. Therefore, in order to obtain more useful information and improve the E-nose's classification accuracy, in this paper, a Weighted Kernels Fisher Discriminant Analysis (WKFDA) combined with Quantum-behaved Particle Swarm Optimization (QPSO), i.e., QWKFDA, was presented to reprocess the original feature matrix. In addition, we have also compared the proposed method with quite a few previously existing ones including Principal Component Analysis (PCA), Locality Preserving Projections (LPP), Fisher Discriminant Analysis (FDA) and Kernels Fisher Discriminant Analysis (KFDA). Experimental results proved that QWKFDA is an effective feature extraction method for E-nose in predicting the types of wound infection and inflammable gases, which shared much higher classification accuracy than those of the contrast methods.
The effects of TIS and MI on the texture features in ultrasonic fatty liver images
NASA Astrophysics Data System (ADS)
Zhao, Yuan; Cheng, Xinyao; Ding, Mingyue
2017-03-01
Nonalcoholic fatty liver disease (NAFLD) is prevalent and has a worldwide distribution now. Although ultrasound imaging technology has been deemed as the common method to diagnose fatty liver, it is not able to detect NAFLD in its early stage and limited by the diagnostic instruments and some other factors. B-scan image feature extraction of fatty liver can assist doctor to analyze the patient's situation and enhance the efficiency and accuracy of clinical diagnoses. However, some uncertain factors in ultrasonic diagnoses are often been ignored during feature extraction. In this study, the nonalcoholic fatty liver rabbit model was made and its liver ultrasound images were collected by setting different Thermal index of soft tissue (TIS) and mechanical index (MI). Then, texture features were calculated based on gray level co-occurrence matrix (GLCM) and the impacts of TIS and MI on these features were analyzed and discussed. Furthermore, the receiver operating characteristic (ROC) curve was used to evaluate whether each feature was effective or not when TIS and MI were given. The results showed that TIS and MI do affect the features extracted from the healthy liver, while the texture features of fatty liver are relatively stable. In addition, TIS set to 0.3 and MI equal to 0.9 might be a better choice when using a computer aided diagnosis (CAD) method for fatty liver recognition.
Rahman, Md Mostafizur; Fattah, Shaikh Anowarul
2017-01-01
In view of recent increase of brain computer interface (BCI) based applications, the importance of efficient classification of various mental tasks has increased prodigiously nowadays. In order to obtain effective classification, efficient feature extraction scheme is necessary, for which, in the proposed method, the interchannel relationship among electroencephalogram (EEG) data is utilized. It is expected that the correlation obtained from different combination of channels will be different for different mental tasks, which can be exploited to extract distinctive feature. The empirical mode decomposition (EMD) technique is employed on a test EEG signal obtained from a channel, which provides a number of intrinsic mode functions (IMFs), and correlation coefficient is extracted from interchannel IMF data. Simultaneously, different statistical features are also obtained from each IMF. Finally, the feature matrix is formed utilizing interchannel correlation features and intrachannel statistical features of the selected IMFs of EEG signal. Different kernels of the support vector machine (SVM) classifier are used to carry out the classification task. An EEG dataset containing ten different combinations of five different mental tasks is utilized to demonstrate the classification performance and a very high level of accuracy is achieved by the proposed scheme compared to existing methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, S; Jeraj, R; Galavis, P
Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less
Target recognition based on convolutional neural network
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
Compressed normalized block difference for object tracking
NASA Astrophysics Data System (ADS)
Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge
2018-04-01
Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2012-01-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
NASA Astrophysics Data System (ADS)
Jafari, Mehdi; Kasaei, Shohreh
2011-12-01
Automatic brain tissue segmentation is a crucial task in diagnosis and treatment of medical images. This paper presents a new algorithm to segment different brain tissues, such as white matter (WM), gray matter (GM), cerebral spinal fluid (CSF), background (BKG), and tumor tissues. The proposed technique uses the modified intraframe coding yielded from H.264/(AVC), for feature extraction. Extracted features are then imposed to an artificial back propagation neural network (BPN) classifier to assign each block to its appropriate class. Since the newest coding standard, H.264/AVC, has the highest compression ratio, it decreases the dimension of extracted features and thus yields to a more accurate classifier with low computational complexity. The performance of the BPN classifier is evaluated using the classification accuracy and computational complexity terms. The results show that the proposed technique is more robust and effective with low computational complexity compared to other recent works.
Research of infrared laser based pavement imaging and crack detection
NASA Astrophysics Data System (ADS)
Hong, Hanyu; Wang, Shu; Zhang, Xiuhua; Jing, Genqiang
2013-08-01
Road crack detection is seriously affected by many factors in actual applications, such as some shadows, road signs, oil stains, high frequency noise and so on. Due to these factors, the current crack detection methods can not distinguish the cracks in complex scenes. In order to solve this problem, a novel method based on infrared laser pavement imaging is proposed. Firstly, single sensor laser pavement imaging system is adopted to obtain pavement images, high power laser line projector is well used to resist various shadows. Secondly, the crack extraction algorithm which has merged multiple features intelligently is proposed to extract crack information. In this step, the non-negative feature and contrast feature are used to extract the basic crack information, and circular projection based on linearity feature is applied to enhance the crack area and eliminate noise. A series of experiments have been performed to test the proposed method, which shows that the proposed automatic extraction method is effective and advanced.
Wang, Jinjia; Liu, Yuan
2015-04-01
This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competition III and competition IV reached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.
Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.
Yang, Banghua; Li, Huarong; Wang, Qian; Zhang, Yunyuan
2016-06-01
Feature extraction of electroencephalogram (EEG) plays a vital role in brain-computer interfaces (BCIs). In recent years, common spatial pattern (CSP) has been proven to be an effective feature extraction method. However, the traditional CSP has disadvantages of requiring a lot of input channels and the lack of frequency information. In order to remedy the defects of CSP, wavelet packet decomposition (WPD) and CSP are combined to extract effective features. But WPD-CSP method considers less about extracting specific features that are fitted for the specific subject. So a subject-based feature extraction method using fisher WPD-CSP is proposed in this paper. The idea of proposed method is to adapt fisher WPD-CSP to each subject separately. It mainly includes the following six steps: (1) original EEG signals from all channels are decomposed into a series of sub-bands using WPD; (2) average power values of obtained sub-bands are computed; (3) the specified sub-bands with larger values of fisher distance according to average power are selected for that particular subject; (4) each selected sub-band is reconstructed to be regarded as a new EEG channel; (5) all new EEG channels are used as input of the CSP and a six-dimensional feature vector is obtained by the CSP. The subject-based feature extraction model is so formed; (6) the probabilistic neural network (PNN) is used as the classifier and the classification accuracy is obtained. Data from six subjects are processed by the subject-based fisher WPD-CSP, the non-subject-based fisher WPD-CSP and WPD-CSP, respectively. Compared with non-subject-based fisher WPD-CSP and WPD-CSP, the results show that the proposed method yields better performance (sensitivity: 88.7±0.9%, and specificity: 91±1%) and the classification accuracy from subject-based fisher WPD-CSP is increased by 6-12% and 14%, respectively. The proposed subject-based fisher WPD-CSP method can not only remedy disadvantages of CSP by WPD but also discriminate helpless sub-bands for each subject and make remaining fewer sub-bands keep better separability by fisher distance, which leads to a higher classification accuracy than WPD-CSP method. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Vertical Feature Mask Feature Classification Flag Extraction
Atmospheric Science Data Center
2013-03-28
Vertical Feature Mask Feature Classification Flag Extraction This routine demonstrates extraction of the ... in a CALIPSO Lidar Level 2 Vertical Feature Mask feature classification flag value. It is written in Interactive Data Language (IDL) ...
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
A face and palmprint recognition approach based on discriminant DCT feature extraction.
Jing, Xiao-Yuan; Zhang, David
2004-12-01
In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.
Face recognition via Gabor and convolutional neural network
NASA Astrophysics Data System (ADS)
Lu, Tongwei; Wu, Menglu; Lu, Tao
2018-04-01
In recent years, the powerful feature learning and classification ability of convolutional neural network have attracted widely attention. Compared with the deep learning, the traditional machine learning algorithm has a good explanatory which deep learning does not have. Thus, In this paper, we propose a method to extract the feature of the traditional algorithm as the input of convolution neural network. In order to reduce the complexity of the network, the kernel function of Gabor wavelet is used to extract the feature from different position, frequency and direction of target image. It is sensitive to edge of image which can provide good direction and scale selection. The extraction of the image from eight directions on a scale are as the input of network that we proposed. The network have the advantage of weight sharing and local connection and texture feature of the input image can reduce the influence of facial expression, gesture and illumination. At the same time, we introduced a layer which combined the results of the pooling and convolution can extract deeper features. The training network used the open source caffe framework which is beneficial to feature extraction. The experiment results of the proposed method proved that the network structure effectively overcame the barrier of illumination and had a good robustness as well as more accurate and rapid than the traditional algorithm.
Normalized distance aggregation of discriminative features for person reidentification
NASA Astrophysics Data System (ADS)
Hou, Li; Han, Kang; Wan, Wanggen; Hwang, Jenq-Neng; Yao, Haiyan
2018-03-01
We propose an effective person reidentification method based on normalized distance aggregation of discriminative features. Our framework is built on the integration of three high-performance discriminative feature extraction models, including local maximal occurrence (LOMO), feature fusion net (FFN), and a concatenation of LOMO and FFN called LOMO-FFN, through two fast and discriminant metric learning models, i.e., cross-view quadratic discriminant analysis (XQDA) and large-scale similarity learning (LSSL). More specifically, we first represent all the cross-view person images using LOMO, FFN, and LOMO-FFN, respectively, and then apply each extracted feature representation to train XQDA and LSSL, respectively, to obtain the optimized individual cross-view distance metric. Finally, the cross-view person matching is computed as the sum of the optimized individual cross-view distance metric through the min-max normalization. Experimental results have shown the effectiveness of the proposed algorithm on three challenging datasets (VIPeR, PRID450s, and CUHK01).
Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.
Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui
2017-03-29
In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Wang, Yanchun; Liu, Wu
2017-11-01
This paper proposes a novel classification paradigm for hyperspectral image (HSI) using feature-level fusion and deep learning-based methodologies. Operation is carried out in three main steps. First, during a pre-processing stage, wave atoms are introduced into bilateral filter to smooth HSI, and this strategy can effectively attenuate noise and restore texture information. Meanwhile, high quality spectral-spatial features can be extracted from HSI by taking geometric closeness and photometric similarity among pixels into consideration simultaneously. Second, higher order statistics techniques are firstly introduced into hyperspectral data classification to characterize the phase correlations of spectral curves. Third, multifractal spectrum features are extracted to characterize the singularities and self-similarities of spectra shapes. To this end, a feature-level fusion is applied to the extracted spectral-spatial features along with higher order statistics and multifractal spectrum features. Finally, stacked sparse autoencoder is utilized to learn more abstract and invariant high-level features from the multiple feature sets, and then random forest classifier is employed to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate that the proposed method outperforms some traditional alternatives.
Extracting the frequencies of the pinna spectral notches in measured head related impulse responses
NASA Astrophysics Data System (ADS)
Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.
2005-07-01
The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.
[Terahertz Spectroscopic Identification with Deep Belief Network].
Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao
2015-12-01
Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.
Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel
2017-08-18
Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.
Adaptive Learning and Pruning Using Periodic Packet for Fast Invariance Extraction and Recognition
NASA Astrophysics Data System (ADS)
Chang, Sheng-Jiang; Zhang, Bian-Li; Lin, Lie; Xiong, Tao; Shen, Jin-Yuan
2005-02-01
A new learning scheme using a periodic packet as the neuronal activation function is proposed for invariance extraction and recognition of handwritten digits. Simulation results show that the proposed network can extract the invariant feature effectively and improve both the convergence and the recognition rate.
MindDigger: Feature Identification and Opinion Association for Chinese Movie Reviews
NASA Astrophysics Data System (ADS)
Zhao, Lili; Li, Chunping
In this paper, we present a prototype system called MindDigger, which can be used to analyze the opinions in Chinese movie reviews. Different from previous research that employed techniques on product reviews, we focus on Chinese movie reviews, in which opinions are expressed in subtle and varied ways. The system designed in this work aims to extract the opinion expressions and assign them to the corresponding features. The core tasks include feature and opinion extraction, and feature-opinion association. To deal with Chinese effectively, several novel approaches based on syntactic analysis are proposed in this paper. Running results show the performance is satisfactory.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2016-08-02
Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
[The application of wavelet analysis of remote detection of pollution clouds].
Zhang, J; Jiang, F
2001-08-01
The discrete wavelet transform (DWT) is used to analyse the spectra of pollution clouds in complicated environment and extract the small-features. The DWT is a time-frequency analysis technology, which detects the subtle small changes in the target spectrum. The results show that the DWT is a quite effective method to extract features of target-cloud and improve the reliability of monitoring alarm system.
Learning Spatio-Temporal Representations for Action Recognition: A Genetic Programming Approach.
Liu, Li; Shao, Ling; Li, Xuelong; Lu, Ke
2016-01-01
Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the motion feature descriptor on a population of primitive 3D operators (e.g., 3D-Gabor and wavelet). In this way, the scale and shift invariant features can be effectively extracted from both color and optical flow sequences. We intend to learn data adaptive descriptors for different datasets with multiple layers, which makes fully use of the knowledge to mimic the physical structure of the human visual cortex for action recognition and simultaneously reduce the GP searching space to effectively accelerate the convergence of optimal solutions. In our evolutionary architecture, the average cross-validation classification error, which is calculated by an support-vector-machine classifier on the training set, is adopted as the evaluation criterion for the GP fitness function. After the entire evolution procedure finishes, the best-so-far solution selected by GP is regarded as the (near-)optimal action descriptor obtained. The GP-evolving feature extraction method is evaluated on four popular action datasets, namely KTH, HMDB51, UCF YouTube, and Hollywood2. Experimental results show that our method significantly outperforms other types of features, either hand-designed or machine-learned.
Carvajal, Gonzalo; Figueroa, Miguel
2014-07-01
Typical image recognition systems operate in two stages: feature extraction to reduce the dimensionality of the input space, and classification based on the extracted features. Analog Very Large Scale Integration (VLSI) is an attractive technology to achieve compact and low-power implementations of these computationally intensive tasks for portable embedded devices. However, device mismatch limits the resolution of the circuits fabricated with this technology. Traditional layout techniques to reduce the mismatch aim to increase the resolution at the transistor level, without considering the intended application. Relating mismatch parameters to specific effects in the application level would allow designers to apply focalized mismatch compensation techniques according to predefined performance/cost tradeoffs. This paper models, analyzes, and evaluates the effects of mismatched analog arithmetic in both feature extraction and classification circuits. For the feature extraction, we propose analog adaptive linear combiners with on-chip learning for both Least Mean Square (LMS) and Generalized Hebbian Algorithm (GHA). Using mathematical abstractions of analog circuits, we identify mismatch parameters that are naturally compensated during the learning process, and propose cost-effective guidelines to reduce the effect of the rest. For the classification, we derive analog models for the circuits necessary to implement Nearest Neighbor (NN) approach and Radial Basis Function (RBF) networks, and use them to emulate analog classifiers with standard databases of face and hand-writing digits. Formal analysis and experiments show how we can exploit adaptive structures and properties of the input space to compensate the effects of device mismatch at the application level, thus reducing the design overhead of traditional layout techniques. Results are also directly extensible to multiple application domains using linear subspace methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using Activity-Related Behavioural Features towards More Effective Automatic Stress Detection
Giakoumis, Dimitris; Drosou, Anastasios; Cipresso, Pietro; Tzovaras, Dimitrios; Hassapis, George; Gaggioli, Andrea; Riva, Giuseppe
2012-01-01
This paper introduces activity-related behavioural features that can be automatically extracted from a computer system, with the aim to increase the effectiveness of automatic stress detection. The proposed features are based on processing of appropriate video and accelerometer recordings taken from the monitored subjects. For the purposes of the present study, an experiment was conducted that utilized a stress-induction protocol based on the stroop colour word test. Video, accelerometer and biosignal (Electrocardiogram and Galvanic Skin Response) recordings were collected from nineteen participants. Then, an explorative study was conducted by following a methodology mainly based on spatiotemporal descriptors (Motion History Images) that are extracted from video sequences. A large set of activity-related behavioural features, potentially useful for automatic stress detection, were proposed and examined. Experimental evaluation showed that several of these behavioural features significantly correlate to self-reported stress. Moreover, it was found that the use of the proposed features can significantly enhance the performance of typical automatic stress detection systems, commonly based on biosignal processing. PMID:23028461
Effective Moment Feature Vectors for Protein Domain Structures
Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun
2013-01-01
Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828
Compact and Hybrid Feature Description for Building Extraction
NASA Astrophysics Data System (ADS)
Li, Z.; Liu, Y.; Hu, Y.; Li, P.; Ding, Y.
2017-05-01
Building extraction in aerial orthophotos is crucial for various applications. Currently, deep learning has been shown to be successful in addressing building extraction with high accuracy and high robustness. However, quite a large number of samples is required in training a classifier when using deep learning model. In order to realize accurate and semi-interactive labelling, the performance of feature description is crucial, as it has significant effect on the accuracy of classification. In this paper, we bring forward a compact and hybrid feature description method, in order to guarantees desirable classification accuracy of the corners on the building roof contours. The proposed descriptor is a hybrid description of an image patch constructed from 4 sets of binary intensity tests. Experiments show that benefiting from binary description and making full use of color channels, this descriptor is not only computationally frugal, but also accurate than SURF for building extraction.
Feature extraction for document text using Latent Dirichlet Allocation
NASA Astrophysics Data System (ADS)
Prihatini, P. M.; Suryawan, I. K.; Mandia, IN
2018-01-01
Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.
Kruskal-Wallis-based computationally efficient feature selection for face recognition.
Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz
2014-01-01
Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.
NASA Astrophysics Data System (ADS)
Gangeh, Mehrdad J.; Fung, Brandon; Tadayyon, Hadi; Tran, William T.; Czarnota, Gregory J.
2016-03-01
A non-invasive computer-aided-theragnosis (CAT) system was developed for the early assessment of responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer. The CAT system was based on quantitative ultrasound spectroscopy methods comprising several modules including feature extraction, a metric to measure the dissimilarity between "pre-" and "mid-treatment" scans, and a supervised learning algorithm for the classification of patients to responders/non-responders. One major requirement for the successful design of a high-performance CAT system is to accurately measure the changes in parametric maps before treatment onset and during the course of treatment. To this end, a unified framework based on Hilbert-Schmidt independence criterion (HSIC) was used for the design of feature extraction from parametric maps and the dissimilarity measure between the "pre-" and "mid-treatment" scans. For the feature extraction, HSIC was used to design a supervised dictionary learning (SDL) method by maximizing the dependency between the scans taken from "pre-" and "mid-treatment" with "dummy labels" given to the scans. For the dissimilarity measure, an HSIC-based metric was employed to effectively measure the changes in parametric maps as an indication of treatment effectiveness. The HSIC-based feature extraction and dissimilarity measure used a kernel function to nonlinearly transform input vectors into a higher dimensional feature space and computed the population means in the new space, where enhanced group separability was ideally obtained. The results of the classification using the developed CAT system indicated an improvement of performance compared to a CAT system with basic features using histogram of intensity.
Integrated feature extraction and selection for neuroimage classification
NASA Astrophysics Data System (ADS)
Fan, Yong; Shen, Dinggang
2009-02-01
Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
Real-Time Detection and Measurement of Eye Features from Color Images
Borza, Diana; Darabant, Adrian Sergiu; Danescu, Radu
2016-01-01
The accurate extraction and measurement of eye features is crucial to a variety of domains, including human-computer interaction, biometry, and medical research. This paper presents a fast and accurate method for extracting multiple features around the eyes: the center of the pupil, the iris radius, and the external shape of the eye. These features are extracted using a multistage algorithm. On the first stage the pupil center is localized using a fast circular symmetry detector and the iris radius is computed using radial gradient projections, and on the second stage the external shape of the eye (of the eyelids) is determined through a Monte Carlo sampling framework based on both color and shape information. Extensive experiments performed on a different dataset demonstrate the effectiveness of our approach. In addition, this work provides eye annotation data for a publicly-available database. PMID:27438838
A Generic multi-dimensional feature extraction method using multiobjective genetic programming.
Zhang, Yang; Rockett, Peter I
2009-01-01
In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.
Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images.
Al-Khafaji, Suhad Lateef; Jun Zhou; Zia, Ali; Liew, Alan Wee-Chung
2018-02-01
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
A Fault Alarm and Diagnosis Method Based on Sensitive Parameters and Support Vector Machine
NASA Astrophysics Data System (ADS)
Zhang, Jinjie; Yao, Ziyun; Lv, Zhiquan; Zhu, Qunxiong; Xu, Fengtian; Jiang, Zhinong
2015-08-01
Study on the extraction of fault feature and the diagnostic technique of reciprocating compressor is one of the hot research topics in the field of reciprocating machinery fault diagnosis at present. A large number of feature extraction and classification methods have been widely applied in the related research, but the practical fault alarm and the accuracy of diagnosis have not been effectively improved. Developing feature extraction and classification methods to meet the requirements of typical fault alarm and automatic diagnosis in practical engineering is urgent task. The typical mechanical faults of reciprocating compressor are presented in the paper, and the existing data of online monitoring system is used to extract fault feature parameters within 15 types in total; the inner sensitive connection between faults and the feature parameters has been made clear by using the distance evaluation technique, also sensitive characteristic parameters of different faults have been obtained. On this basis, a method based on fault feature parameters and support vector machine (SVM) is developed, which will be applied to practical fault diagnosis. A better ability of early fault warning has been proved by the experiment and the practical fault cases. Automatic classification by using the SVM to the data of fault alarm has obtained better diagnostic accuracy.
Qin, Lei; Snoussi, Hichem; Abdallah, Fahed
2014-01-01
We propose a novel approach for tracking an arbitrary object in video sequences for visual surveillance. The first contribution of this work is an automatic feature extraction method that is able to extract compact discriminative features from a feature pool before computing the region covariance descriptor. As the feature extraction method is adaptive to a specific object of interest, we refer to the region covariance descriptor computed using the extracted features as the adaptive covariance descriptor. The second contribution is to propose a weakly supervised method for updating the object appearance model during tracking. The method performs a mean-shift clustering procedure among the tracking result samples accumulated during a period of time and selects a group of reliable samples for updating the object appearance model. As such, the object appearance model is kept up-to-date and is prevented from contamination even in case of tracking mistakes. We conducted comparing experiments on real-world video sequences, which confirmed the effectiveness of the proposed approaches. The tracking system that integrates the adaptive covariance descriptor and the clustering-based model updating method accomplished stable object tracking on challenging video sequences. PMID:24865883
Tabei, Yasuo; Pauwels, Edouard; Stoven, Véronique; Takemoto, Kazuhiro; Yamanishi, Yoshihiro
2012-01-01
Motivation: Drug effects are mainly caused by the interactions between drug molecules and their target proteins including primary targets and off-targets. Identification of the molecular mechanisms behind overall drug–target interactions is crucial in the drug design process. Results: We develop a classifier-based approach to identify chemogenomic features (the underlying associations between drug chemical substructures and protein domains) that are involved in drug–target interaction networks. We propose a novel algorithm for extracting informative chemogenomic features by using L1 regularized classifiers over the tensor product space of possible drug–target pairs. It is shown that the proposed method can extract a very limited number of chemogenomic features without loosing the performance of predicting drug–target interactions and the extracted features are biologically meaningful. The extracted substructure–domain association network enables us to suggest ligand chemical fragments specific for each protein domain and ligand core substructures important for a wide range of protein families. Availability: Softwares are available at the supplemental website. Contact: yamanishi@bioreg.kyushu-u.ac.jp Supplementary Information: Datasets and all results are available at http://cbio.ensmp.fr/~yyamanishi/l1binary/ . PMID:22962471
NASA Astrophysics Data System (ADS)
Yang, Hongxin; Su, Fulin
2018-01-01
We propose a moving target analysis algorithm using speeded-up robust features (SURF) and regular moment in inverse synthetic aperture radar (ISAR) image sequences. In our study, we first extract interest points from ISAR image sequences by SURF. Different from traditional feature point extraction methods, SURF-based feature points are invariant to scattering intensity, target rotation, and image size. Then, we employ a bilateral feature registering model to match these feature points. The feature registering scheme can not only search the isotropic feature points to link the image sequences but also reduce the error matching pairs. After that, the target centroid is detected by regular moment. Consequently, a cost function based on correlation coefficient is adopted to analyze the motion information. Experimental results based on simulated and real data validate the effectiveness and practicability of the proposed method.
NASA Astrophysics Data System (ADS)
Li, M.; Jiang, Y. S.
2014-11-01
Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.
Feature extraction via KPCA for classification of gait patterns.
Wu, Jianning; Wang, Jue; Liu, Li
2007-06-01
Automated recognition of gait pattern change is important in medical diagnostics as well as in the early identification of at-risk gait in the elderly. We evaluated the use of Kernel-based Principal Component Analysis (KPCA) to extract more gait features (i.e., to obtain more significant amounts of information about human movement) and thus to improve the classification of gait patterns. 3D gait data of 24 young and 24 elderly participants were acquired using an OPTOTRAK 3020 motion analysis system during normal walking, and a total of 36 gait spatio-temporal and kinematic variables were extracted from the recorded data. KPCA was used first for nonlinear feature extraction to then evaluate its effect on a subsequent classification in combination with learning algorithms such as support vector machines (SVMs). Cross-validation test results indicated that the proposed technique could allow spreading the information about the gait's kinematic structure into more nonlinear principal components, thus providing additional discriminatory information for the improvement of gait classification performance. The feature extraction ability of KPCA was affected slightly with different kernel functions as polynomial and radial basis function. The combination of KPCA and SVM could identify young-elderly gait patterns with 91% accuracy, resulting in a markedly improved performance compared to the combination of PCA and SVM. These results suggest that nonlinear feature extraction by KPCA improves the classification of young-elderly gait patterns, and holds considerable potential for future applications in direct dimensionality reduction and interpretation of multiple gait signals.
A framework for feature extraction from hospital medical data with applications in risk prediction.
Tran, Truyen; Luo, Wei; Phung, Dinh; Gupta, Sunil; Rana, Santu; Kennedy, Richard Lee; Larkins, Ann; Venkatesh, Svetha
2014-12-30
Feature engineering is a time consuming component of predictive modeling. We propose a versatile platform to automatically extract features for risk prediction, based on a pre-defined and extensible entity schema. The extraction is independent of disease type or risk prediction task. We contrast auto-extracted features to baselines generated from the Elixhauser comorbidities. Hospital medical records was transformed to event sequences, to which filters were applied to extract feature sets capturing diversity in temporal scales and data types. The features were evaluated on a readmission prediction task, comparing with baseline feature sets generated from the Elixhauser comorbidities. The prediction model was through logistic regression with elastic net regularization. Predictions horizons of 1, 2, 3, 6, 12 months were considered for four diverse diseases: diabetes, COPD, mental disorders and pneumonia, with derivation and validation cohorts defined on non-overlapping data-collection periods. For unplanned readmissions, auto-extracted feature set using socio-demographic information and medical records, outperformed baselines derived from the socio-demographic information and Elixhauser comorbidities, over 20 settings (5 prediction horizons over 4 diseases). In particular over 30-day prediction, the AUCs are: COPD-baseline: 0.60 (95% CI: 0.57, 0.63), auto-extracted: 0.67 (0.64, 0.70); diabetes-baseline: 0.60 (0.58, 0.63), auto-extracted: 0.67 (0.64, 0.69); mental disorders-baseline: 0.57 (0.54, 0.60), auto-extracted: 0.69 (0.64,0.70); pneumonia-baseline: 0.61 (0.59, 0.63), auto-extracted: 0.70 (0.67, 0.72). The advantages of auto-extracted standard features from complex medical records, in a disease and task agnostic manner were demonstrated. Auto-extracted features have good predictive power over multiple time horizons. Such feature sets have potential to form the foundation of complex automated analytic tasks.
Comparative analysis of feature extraction methods in satellite imagery
NASA Astrophysics Data System (ADS)
Karim, Shahid; Zhang, Ye; Asif, Muhammad Rizwan; Ali, Saad
2017-10-01
Feature extraction techniques are extensively being used in satellite imagery and getting impressive attention for remote sensing applications. The state-of-the-art feature extraction methods are appropriate according to the categories and structures of the objects to be detected. Based on distinctive computations of each feature extraction method, different types of images are selected to evaluate the performance of the methods, such as binary robust invariant scalable keypoints (BRISK), scale-invariant feature transform, speeded-up robust features (SURF), features from accelerated segment test (FAST), histogram of oriented gradients, and local binary patterns. Total computational time is calculated to evaluate the speed of each feature extraction method. The extracted features are counted under shadow regions and preprocessed shadow regions to compare the functioning of each method. We have studied the combination of SURF with FAST and BRISK individually and found very promising results with an increased number of features and less computational time. Finally, feature matching is conferred for all methods.
Simulation of target interpretation based on infrared image features and psychology principle
NASA Astrophysics Data System (ADS)
Lin, Wei; Chen, Yu-hua; Gao, Hong-sheng; Wang, Zhan-feng; Wang, Ji-jun; Su, Rong-hua; Huang, Yan-ping
2009-07-01
It's an important and complicated process in target interpretation that target features extraction and identification, which effect psychosensorial quantity of interpretation person to target infrared image directly, and decide target viability finally. Using statistical decision theory and psychology principle, designing four psychophysical experiment, the interpretation model of the infrared target is established. The model can get target detection probability by calculating four features similarity degree between target region and background region, which were plotted out on the infrared image. With the verification of a great deal target interpretation in practice, the model can simulate target interpretation and detection process effectively, get the result of target interpretation impersonality, which can provide technique support for target extraction, identification and decision-making.
A rapid extraction of landslide disaster information research based on GF-1 image
NASA Astrophysics Data System (ADS)
Wang, Sai; Xu, Suning; Peng, Ling; Wang, Zhiyi; Wang, Na
2015-08-01
In recent years, the landslide disasters occurred frequently because of the seismic activity. It brings great harm to people's life. It has caused high attention of the state and the extensive concern of society. In the field of geological disaster, landslide information extraction based on remote sensing has been controversial, but high resolution remote sensing image can improve the accuracy of information extraction effectively with its rich texture and geometry information. Therefore, it is feasible to extract the information of earthquake- triggered landslides with serious surface damage and large scale. Taking the Wenchuan county as the study area, this paper uses multi-scale segmentation method to extract the landslide image object through domestic GF-1 images and DEM data, which uses the estimation of scale parameter tool to determine the optimal segmentation scale; After analyzing the characteristics of landslide high-resolution image comprehensively and selecting spectrum feature, texture feature, geometric features and landform characteristics of the image, we can establish the extracting rules to extract landslide disaster information. The extraction results show that there are 20 landslide whose total area is 521279.31 .Compared with visual interpretation results, the extraction accuracy is 72.22%. This study indicates its efficient and feasible to extract earthquake landslide disaster information based on high resolution remote sensing and it provides important technical support for post-disaster emergency investigation and disaster assessment.
Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Ponnaluru, Gopi Krishna
2006-01-01
The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.
Breast cancer mitosis detection in histopathological images with spatial feature extraction
NASA Astrophysics Data System (ADS)
Albayrak, Abdülkadir; Bilgin, Gökhan
2013-12-01
In this work, cellular mitosis detection in histopathological images has been investigated. Mitosis detection is very expensive and time consuming process. Development of digital imaging in pathology has enabled reasonable and effective solution to this problem. Segmentation of digital images provides easier analysis of cell structures in histopathological data. To differentiate normal and mitotic cells in histopathological images, feature extraction step is very crucial step for the system accuracy. A mitotic cell has more distinctive textural dissimilarities than the other normal cells. Hence, it is important to incorporate spatial information in feature extraction or in post-processing steps. As a main part of this study, Haralick texture descriptor has been proposed with different spatial window sizes in RGB and La*b* color spaces. So, spatial dependencies of normal and mitotic cellular pixels can be evaluated within different pixel neighborhoods. Extracted features are compared with various sample sizes by Support Vector Machines using k-fold cross validation method. According to the represented results, it has been shown that separation accuracy on mitotic and non-mitotic cellular pixels gets better with the increasing size of spatial window.
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
Automatic extraction of planetary image features
NASA Technical Reports Server (NTRS)
LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)
2013-01-01
A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.
Khotanlou, Hassan; Afrasiabi, Mahlagha
2012-10-01
This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.
Extracting the driving force from ozone data using slow feature analysis
NASA Astrophysics Data System (ADS)
Wang, Geli; Yang, Peicai; Zhou, Xiuji
2016-05-01
Slow feature analysis (SFA) is a recommended technique for extracting slowly varying features from a quickly varying signal. In this work, we apply SFA to total ozone data from Arosa, Switzerland. The results show that the signal of volcanic eruptions can be found in the driving force, and wavelet analysis of this driving force shows that there are two main dominant scales, which may be connected with the effect of climate mode such as North Atlantic Oscillation (NAO) and solar activity. The findings of this study represent a contribution to our understanding of the causality from observed climate data.
Hyperspectral image classification based on local binary patterns and PCANet
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang
2018-04-01
Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.
Effect of interpolation on parameters extracted from seating interface pressure arrays.
Wininger, Michael; Crane, Barbara
2014-01-01
Interpolation is a common data processing step in the study of interface pressure data collected at the wheelchair seating interface. However, there has been no focused study on the effect of interpolation on features extracted from these pressure maps, nor on whether these parameters are sensitive to the manner in which the interpolation is implemented. Here, two different interpolation paradigms, bilinear versus bicubic spline, are tested for their influence on parameters extracted from pressure array data and compared against a conventional low-pass filtering operation. Additionally, analysis of the effect of tandem filtering and interpolation, as well as the interpolation degree (interpolating to 2, 4, and 8 times sampling density), was undertaken. The following recommendations are made regarding approaches that minimized distortion of features extracted from the pressure maps: (1) filter prior to interpolate (strong effect); (2) use of cubic interpolation versus linear (slight effect); and (3) nominal difference between interpolation orders of 2, 4, and 8 times (negligible effect). We invite other investigators to perform similar benchmark analyses on their own data in the interest of establishing a community consensus of best practices in pressure array data processing.
Dessouky, Mohamed M; Elrashidy, Mohamed A; Taha, Taha E; Abdelkader, Hatem M
2016-05-01
The different discrete transform techniques such as discrete cosine transform (DCT), discrete sine transform (DST), discrete wavelet transform (DWT), and mel-scale frequency cepstral coefficients (MFCCs) are powerful feature extraction techniques. This article presents a proposed computer-aided diagnosis (CAD) system for extracting the most effective and significant features of Alzheimer's disease (AD) using these different discrete transform techniques and MFCC techniques. Linear support vector machine has been used as a classifier in this article. Experimental results conclude that the proposed CAD system using MFCC technique for AD recognition has a great improvement for the system performance with small number of significant extracted features, as compared with the CAD system based on DCT, DST, DWT, and the hybrid combination methods of the different transform techniques. © The Author(s) 2015.
A nonlinear discriminant algorithm for feature extraction and data classification.
Santa Cruz, C; Dorronsoro, J R
1998-01-01
This paper presents a nonlinear supervised feature extraction algorithm that combines Fisher's criterion function with a preliminary perceptron-like nonlinear projection of vectors in pattern space. Its main motivation is to combine the approximation properties of multilayer perceptrons (MLP's) with the target free nature of Fisher's classical discriminant analysis. In fact, although MLP's provide good classifiers for many problems, there may be some situations, such as unequal class sizes with a high degree of pattern mixing among them, that may make difficult the construction of good MLP classifiers. In these instances, the features extracted by our procedure could be more effective. After the description of its construction and the analysis of its complexity, we will illustrate its use over a synthetic problem with the above characteristics.
NASA Astrophysics Data System (ADS)
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
A DFT-Based Method of Feature Extraction for Palmprint Recognition
NASA Astrophysics Data System (ADS)
Choge, H. Kipsang; Karungaru, Stephen G.; Tsuge, Satoru; Fukumi, Minoru
Over the last quarter century, research in biometric systems has developed at a breathtaking pace and what started with the focus on the fingerprint has now expanded to include face, voice, iris, and behavioral characteristics such as gait. Palmprint is one of the most recent additions, and is currently the subject of great research interest due to its inherent uniqueness, stability, user-friendliness and ease of acquisition. This paper describes an effective and procedurally simple method of palmprint feature extraction specifically for palmprint recognition, although verification experiments are also conducted. This method takes advantage of the correspondences that exist between prominent palmprint features or objects in the spatial domain with those in the frequency or Fourier domain. Multi-dimensional feature vectors are formed by extracting a GA-optimized set of points from the 2-D Fourier spectrum of the palmprint images. The feature vectors are then used for palmprint recognition, before and after dimensionality reduction via the Karhunen-Loeve Transform (KLT). Experiments performed using palmprint images from the ‘PolyU Palmprint Database’ indicate that using a compact set of DFT coefficients, combined with KLT and data preprocessing, produces a recognition accuracy of more than 98% and can provide a fast and effective technique for personal identification.
Emotion recognition based on multiple order features using fractional Fourier transform
NASA Astrophysics Data System (ADS)
Ren, Bo; Liu, Deyin; Qi, Lin
2017-07-01
In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.
Machine vision extracted plant movement for early detection of plant water stress.
Kacira, M; Ling, P P; Short, T H
2002-01-01
A methodology was established for early, non-contact, and quantitative detection of plant water stress with machine vision extracted plant features. Top-projected canopy area (TPCA) of the plants was extracted from plant images using image-processing techniques. Water stress induced plant movement was decoupled from plant diurnal movement and plant growth using coefficient of relative variation of TPCA (CRV[TPCA)] and was found to be an effective marker for water stress detection. Threshold value of CRV(TPCA) as an indicator of water stress was determined by a parametric approach. The effectiveness of the sensing technique was evaluated against the timing of stress detection by an operator. Results of this study suggested that plant water stress detection using projected canopy area based features of the plants was feasible.
A hybrid model based on neural networks for biomedical relation extraction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang
2018-05-01
Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.
Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.
2018-01-01
Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546
Cross-Domain Multi-View Object Retrieval via Multi-Scale Topic Models.
Hong, Richang; Hu, Zhenzhen; Wang, Ruxin; Wang, Meng; Tao, Dacheng
2016-09-27
The increasing number of 3D objects in various applications has increased the requirement for effective and efficient 3D object retrieval methods, which attracted extensive research efforts in recent years. Existing works mainly focus on how to extract features and conduct object matching. With the increasing applications, 3D objects come from different areas. In such circumstances, how to conduct object retrieval becomes more important. To address this issue, we propose a multi-view object retrieval method using multi-scale topic models in this paper. In our method, multiple views are first extracted from each object, and then the dense visual features are extracted to represent each view. To represent the 3D object, multi-scale topic models are employed to extract the hidden relationship among these features with respected to varied topic numbers in the topic model. In this way, each object can be represented by a set of bag of topics. To compare the objects, we first conduct topic clustering for the basic topics from two datasets, and then generate the common topic dictionary for new representation. Then, the two objects can be aligned to the same common feature space for comparison. To evaluate the performance of the proposed method, experiments are conducted on two datasets. The 3D object retrieval experimental results and comparison with existing methods demonstrate the effectiveness of the proposed method.
Tan, Lirong; Holland, Scott K; Deshpande, Aniruddha K; Chen, Ye; Choo, Daniel I; Lu, Long J
2015-12-01
We developed a machine learning model to predict whether or not a cochlear implant (CI) candidate will develop effective language skills within 2 years after the CI surgery by using the pre-implant brain fMRI data from the candidate. The language performance was measured 2 years after the CI surgery by the Clinical Evaluation of Language Fundamentals-Preschool, Second Edition (CELF-P2). Based on the CELF-P2 scores, the CI recipients were designated as either effective or ineffective CI users. For feature extraction from the fMRI data, we constructed contrast maps using the general linear model, and then utilized the Bag-of-Words (BoW) approach that we previously published to convert the contrast maps into feature vectors. We trained both supervised models and semi-supervised models to classify CI users as effective or ineffective. Compared with the conventional feature extraction approach, which used each single voxel as a feature, our BoW approach gave rise to much better performance for the classification of effective versus ineffective CI users. The semi-supervised model with the feature set extracted by the BoW approach from the contrast of speech versus silence achieved a leave-one-out cross-validation AUC as high as 0.97. Recursive feature elimination unexpectedly revealed that two features were sufficient to provide highly accurate classification of effective versus ineffective CI users based on our current dataset. We have validated the hypothesis that pre-implant cortical activation patterns revealed by fMRI during infancy correlate with language performance 2 years after cochlear implantation. The two brain regions highlighted by our classifier are potential biomarkers for the prediction of CI outcomes. Our study also demonstrated the superiority of the semi-supervised model over the supervised model. It is always worthwhile to try a semi-supervised model when unlabeled data are available.
Wang, Yin; Zhao, Nan-jing; Liu, Wen-qing; Yu, Yang; Fang, Li; Meng, De-shuo; Hu, Li; Zhang, Da-hai; Ma, Min-jun; Xiao, Xue; Wang, Yu; Liu, Jian-guo
2015-02-01
In recent years, the technology of laser induced breakdown spectroscopy has been developed rapidly. As one kind of new material composition detection technology, laser induced breakdown spectroscopy can simultaneously detect multi elements fast and simply without any complex sample preparation and realize field, in-situ material composition detection of the sample to be tested. This kind of technology is very promising in many fields. It is very important to separate, fit and extract spectral feature lines in laser induced breakdown spectroscopy, which is the cornerstone of spectral feature recognition and subsequent elements concentrations inversion research. In order to realize effective separation, fitting and extraction of spectral feature lines in laser induced breakdown spectroscopy, the original parameters for spectral lines fitting before iteration were analyzed and determined. The spectral feature line of' chromium (Cr I : 427.480 nm) in fly ash gathered from a coal-fired power station, which was overlapped with another line(FeI: 427.176 nm), was separated from the other one and extracted by using damped least squares method. Based on Gauss-Newton iteration, damped least squares method adds damping factor to step and adjust step length dynamically according to the feedback information after each iteration, in order to prevent the iteration from diverging and make sure that the iteration could converge fast. Damped least squares method helps to obtain better results of separating, fitting and extracting spectral feature lines and give more accurate intensity values of these spectral feature lines: The spectral feature lines of chromium in samples which contain different concentrations of chromium were separated and extracted. And then, the intensity values of corresponding spectral lines were given by using damped least squares method and least squares method separately. The calibration curves were plotted, which showed the relationship between spectral line intensity values and chromium concentrations in different samples. And then their respective linear correlations were compared. The experimental results showed that the linear correlation of the intensity values of spectral feature lines and the concentrations of chromium in different samples, which was obtained by damped least squares method, was better than that one obtained by least squares method. And therefore, damped least squares method was stable, reliable and suitable for separating, fitting and extracting spectral feature lines in laser induced breakdown spectroscopy.
ECG Identification System Using Neural Network with Global and Local Features
ERIC Educational Resources Information Center
Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles
2016-01-01
This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…
Study on Hybrid Image Search Technology Based on Texts and Contents
NASA Astrophysics Data System (ADS)
Wang, H. T.; Ma, F. L.; Yan, C.; Pan, H.
2018-05-01
Image search was studied first here based on texts and contents, respectively. The text-based image feature extraction was put forward by integrating the statistical and topic features in view of the limitation of extraction of keywords only by means of statistical features of words. On the other hand, a search-by-image method was put forward based on multi-feature fusion in view of the imprecision of the content-based image search by means of a single feature. The layered-searching method depended on primarily the text-based image search method and additionally the content-based image search was then put forward in view of differences between the text-based and content-based methods and their difficult direct fusion. The feasibility and effectiveness of the hybrid search algorithm were experimentally verified.
NASA Astrophysics Data System (ADS)
Chen, Xiang; Li, Jingchao; Han, Hui; Ying, Yulong
2018-05-01
Because of the limitations of the traditional fractal box-counting dimension algorithm in subtle feature extraction of radiation source signals, a dual improved generalized fractal box-counting dimension eigenvector algorithm is proposed. First, the radiation source signal was preprocessed, and a Hilbert transform was performed to obtain the instantaneous amplitude of the signal. Then, the improved fractal box-counting dimension of the signal instantaneous amplitude was extracted as the first eigenvector. At the same time, the improved fractal box-counting dimension of the signal without the Hilbert transform was extracted as the second eigenvector. Finally, the dual improved fractal box-counting dimension eigenvectors formed the multi-dimensional eigenvectors as signal subtle features, which were used for radiation source signal recognition by the grey relation algorithm. The experimental results show that, compared with the traditional fractal box-counting dimension algorithm and the single improved fractal box-counting dimension algorithm, the proposed dual improved fractal box-counting dimension algorithm can better extract the signal subtle distribution characteristics under different reconstruction phase space, and has a better recognition effect with good real-time performance.
Pathological speech signal analysis and classification using empirical mode decomposition.
Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar
2013-07-01
Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.
Feature-level sentiment analysis by using comparative domain corpora
NASA Astrophysics Data System (ADS)
Quan, Changqin; Ren, Fuji
2016-06-01
Feature-level sentiment analysis (SA) is able to provide more fine-grained SA on certain opinion targets and has a wider range of applications on E-business. This study proposes an approach based on comparative domain corpora for feature-level SA. The proposed approach makes use of word associations for domain-specific feature extraction. First, we assign a similarity score for each candidate feature to denote its similarity extent to a domain. Then we identify domain features based on their similarity scores on different comparative domain corpora. After that, dependency grammar and a general sentiment lexicon are applied to extract and expand feature-oriented opinion words. Lastly, the semantic orientation of a domain-specific feature is determined based on the feature-oriented opinion lexicons. In evaluation, we compare the proposed method with several state-of-the-art methods (including unsupervised and semi-supervised) using a standard product review test collection. The experimental results demonstrate the effectiveness of using comparative domain corpora.
Incipient fault feature extraction of rolling bearings based on the MVMD and Teager energy operator.
Ma, Jun; Wu, Jiande; Wang, Xiaodong
2018-06-04
Aiming at the problems that the incipient fault of rolling bearings is difficult to recognize and the number of intrinsic mode functions (IMFs) decomposed by variational mode decomposition (VMD) must be set in advance and can not be adaptively selected, taking full advantages of the adaptive segmentation of scale spectrum and Teager energy operator (TEO) demodulation, a new method for early fault feature extraction of rolling bearings based on the modified VMD and Teager energy operator (MVMD-TEO) is proposed. Firstly, the vibration signal of rolling bearings is analyzed by adaptive scale space spectrum segmentation to obtain the spectrum segmentation support boundary, and then the number K of IMFs decomposed by VMD is adaptively determined. Secondly, the original vibration signal is adaptively decomposed into K IMFs, and the effective IMF components are extracted based on the correlation coefficient criterion. Finally, the Teager energy spectrum of the reconstructed signal of the effective IMF components is calculated by the TEO, and then the early fault features of rolling bearings are extracted to realize the fault identification and location. Comparative experiments of the proposed method and the existing fault feature extraction method based on Local Mean Decomposition and Teager energy operator (LMD-TEO) have been implemented using experimental data-sets and a measured data-set. The results of comparative experiments in three application cases show that the presented method can achieve a fairly or slightly better performance than LMD-TEO method, and the validity and feasibility of the proposed method are proved. Copyright © 2018. Published by Elsevier Ltd.
An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors
Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai
2017-01-01
RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553
Near infrared and visible face recognition based on decision fusion of LBP and DCT features
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-03-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.
Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong
2017-11-01
With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.
The GPU implementation of micro - Doppler period estimation
NASA Astrophysics Data System (ADS)
Yang, Liyuan; Wang, Junling; Bi, Ran
2018-03-01
Aiming at the problem that the computational complexity and the deficiency of real-time of the wideband radar echo signal, a program is designed to improve the performance of real-time extraction of micro-motion feature in this paper based on the CPU-GPU heterogeneous parallel structure. Firstly, we discuss the principle of the micro-Doppler effect generated by the rolling of the scattering points on the orbiting satellite, analyses how to use Kalman filter to compensate the translational motion of tumbling satellite and how to use the joint time-frequency analysis and inverse Radon transform to extract the micro-motion features from the echo after compensation. Secondly, the advantages of GPU in terms of real-time processing and the working principle of CPU-GPU heterogeneous parallelism are analysed, and a program flow based on GPU to extract the micro-motion feature from the radar echo signal of rolling satellite is designed. At the end of the article the results of extraction are given to verify the correctness of the program and algorithm.
Image segmentation-based robust feature extraction for color image watermarking
NASA Astrophysics Data System (ADS)
Li, Mianjie; Deng, Zeyu; Yuan, Xiaochen
2018-04-01
This paper proposes a local digital image watermarking method based on Robust Feature Extraction. The segmentation is achieved by Simple Linear Iterative Clustering (SLIC) based on which an Image Segmentation-based Robust Feature Extraction (ISRFE) method is proposed for feature extraction. Our method can adaptively extract feature regions from the blocks segmented by SLIC. This novel method can extract the most robust feature region in every segmented image. Each feature region is decomposed into low-frequency domain and high-frequency domain by Discrete Cosine Transform (DCT). Watermark images are then embedded into the coefficients in the low-frequency domain. The Distortion-Compensated Dither Modulation (DC-DM) algorithm is chosen as the quantization method for embedding. The experimental results indicate that the method has good performance under various attacks. Furthermore, the proposed method can obtain a trade-off between high robustness and good image quality.
A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis
NASA Astrophysics Data System (ADS)
Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui
2015-07-01
Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Membership-degree preserving discriminant analysis with applications to face recognition.
Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun
2013-01-01
In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246
Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.
Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie
2016-01-01
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.
Contact-free palm-vein recognition based on local invariant features.
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
Contact-Free Palm-Vein Recognition Based on Local Invariant Features
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176
MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection
NASA Astrophysics Data System (ADS)
Huang, Weiqing; Hou, Erhang; Zheng, Liang; Feng, Weimiao
2018-05-01
In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes' effectiveness in Android malware detection.
Multiscale deep features learning for land-use scene recognition
NASA Astrophysics Data System (ADS)
Yuan, Baohua; Li, Shijin; Li, Ning
2018-01-01
The features extracted from deep convolutional neural networks (CNNs) have shown their promise as generic descriptors for land-use scene recognition. However, most of the work directly adopts the deep features for the classification of remote sensing images, and does not encode the deep features for improving their discriminative power, which can affect the performance of deep feature representations. To address this issue, we propose an effective framework, LASC-CNN, obtained by locality-constrained affine subspace coding (LASC) pooling of a CNN filter bank. LASC-CNN obtains more discriminative deep features than directly extracted from CNNs. Furthermore, LASC-CNN builds on the top convolutional layers of CNNs, which can incorporate multiscale information and regions of arbitrary resolution and sizes. Our experiments have been conducted using two widely used remote sensing image databases, and the results show that the proposed method significantly improves the performance when compared to other state-of-the-art methods.
An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks.
Chen, Huan-Yuan; Chen, Chih-Chang; Hwang, Wen-Jyi
2017-09-28
This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.
An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks
Chen, Huan-Yuan; Chen, Chih-Chang
2017-01-01
This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting. PMID:28956859
Detection of faults in rotating machinery using periodic time-frequency sparsity
NASA Astrophysics Data System (ADS)
Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.
2016-11-01
This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
Li, Frédéric; Nisar, Muhammad Adeel; Köping, Lukas; Grzegorzek, Marcin
2018-01-01
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches—in particular deep-learning based—have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data. PMID:29495310
Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors.
Li, Frédéric; Shirahama, Kimiaki; Nisar, Muhammad Adeel; Köping, Lukas; Grzegorzek, Marcin
2018-02-24
Getting a good feature representation of data is paramount for Human Activity Recognition (HAR) using wearable sensors. An increasing number of feature learning approaches-in particular deep-learning based-have been proposed to extract an effective feature representation by analyzing large amounts of data. However, getting an objective interpretation of their performances faces two problems: the lack of a baseline evaluation setup, which makes a strict comparison between them impossible, and the insufficiency of implementation details, which can hinder their use. In this paper, we attempt to address both issues: we firstly propose an evaluation framework allowing a rigorous comparison of features extracted by different methods, and use it to carry out extensive experiments with state-of-the-art feature learning approaches. We then provide all the codes and implementation details to make both the reproduction of the results reported in this paper and the re-use of our framework easier for other researchers. Our studies carried out on the OPPORTUNITY and UniMiB-SHAR datasets highlight the effectiveness of hybrid deep-learning architectures involving convolutional and Long-Short-Term-Memory (LSTM) to obtain features characterising both short- and long-term time dependencies in the data.
Uniform competency-based local feature extraction for remote sensing images
NASA Astrophysics Data System (ADS)
Sedaghat, Amin; Mohammadi, Nazila
2018-01-01
Local feature detectors are widely used in many photogrammetry and remote sensing applications. The quantity and distribution of the local features play a critical role in the quality of the image matching process, particularly for multi-sensor high resolution remote sensing image registration. However, conventional local feature detectors cannot extract desirable matched features either in terms of the number of correct matches or the spatial and scale distribution in multi-sensor remote sensing images. To address this problem, this paper proposes a novel method for uniform and robust local feature extraction for remote sensing images, which is based on a novel competency criterion and scale and location distribution constraints. The proposed method, called uniform competency (UC) local feature extraction, can be easily applied to any local feature detector for various kinds of applications. The proposed competency criterion is based on a weighted ranking process using three quality measures, including robustness, spatial saliency and scale parameters, which is performed in a multi-layer gridding schema. For evaluation, five state-of-the-art local feature detector approaches, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), scale-invariant feature operator (SFOP), maximally stable extremal region (MSER) and hessian-affine, are used. The proposed UC-based feature extraction algorithms were successfully applied to match various synthetic and real satellite image pairs, and the results demonstrate its capability to increase matching performance and to improve the spatial distribution. The code to carry out the UC feature extraction is available from href="https://www.researchgate.net/publication/317956777_UC-Feature_Extraction.
Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.
Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng
2018-01-01
In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas
2017-12-01
In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.
Kernel-based discriminant feature extraction using a representative dataset
NASA Astrophysics Data System (ADS)
Li, Honglin; Sancho Gomez, Jose-Luis; Ahalt, Stanley C.
2002-07-01
Discriminant Feature Extraction (DFE) is widely recognized as an important pre-processing step in classification applications. Most DFE algorithms are linear and thus can only explore the linear discriminant information among the different classes. Recently, there has been several promising attempts to develop nonlinear DFE algorithms, among which is Kernel-based Feature Extraction (KFE). The efficacy of KFE has been experimentally verified by both synthetic data and real problems. However, KFE has some known limitations. First, KFE does not work well for strongly overlapped data. Second, KFE employs all of the training set samples during the feature extraction phase, which can result in significant computation when applied to very large datasets. Finally, KFE can result in overfitting. In this paper, we propose a substantial improvement to KFE that overcomes the above limitations by using a representative dataset, which consists of critical points that are generated from data-editing techniques and centroid points that are determined by using the Frequency Sensitive Competitive Learning (FSCL) algorithm. Experiments show that this new KFE algorithm performs well on significantly overlapped datasets, and it also reduces computational complexity. Further, by controlling the number of centroids, the overfitting problem can be effectively alleviated.
Four-Channel Biosignal Analysis and Feature Extraction for Automatic Emotion Recognition
NASA Astrophysics Data System (ADS)
Kim, Jonghwa; André, Elisabeth
This paper investigates the potential of physiological signals as a reliable channel for automatic recognition of user's emotial state. For the emotion recognition, little attention has been paid so far to physiological signals compared to audio-visual emotion channels such as facial expression or speech. All essential stages of automatic recognition system using biosignals are discussed, from recording physiological dataset up to feature-based multiclass classification. Four-channel biosensors are used to measure electromyogram, electrocardiogram, skin conductivity and respiration changes. A wide range of physiological features from various analysis domains, including time/frequency, entropy, geometric analysis, subband spectra, multiscale entropy, etc., is proposed in order to search the best emotion-relevant features and to correlate them with emotional states. The best features extracted are specified in detail and their effectiveness is proven by emotion recognition results.
NASA Astrophysics Data System (ADS)
Werdiningsih, Indah; Zaman, Badrus; Nuqoba, Barry
2017-08-01
This paper presents classification of brain cancer using wavelet transformation and Adaptive Neighborhood Based Modified Backpropagation (ANMBP). Three stages of the processes, namely features extraction, features reduction, and classification process. Wavelet transformation is used for feature extraction and ANMBP is used for classification process. The result of features extraction is feature vectors. Features reduction used 100 energy values per feature and 10 energy values per feature. Classifications of brain cancer are normal, alzheimer, glioma, and carcinoma. Based on simulation results, 10 energy values per feature can be used to classify brain cancer correctly. The correct classification rate of proposed system is 95 %. This research demonstrated that wavelet transformation can be used for features extraction and ANMBP can be used for classification of brain cancer.
Zhang, Hanyuan; Tian, Xuemin; Deng, Xiaogang; Cao, Yuping
2018-05-16
As an attractive nonlinear dynamic data analysis tool, global preserving kernel slow feature analysis (GKSFA) has achieved great success in extracting the high nonlinearity and inherently time-varying dynamics of batch process. However, GKSFA is an unsupervised feature extraction method and lacks the ability to utilize batch process class label information, which may not offer the most effective means for dealing with batch process monitoring. To overcome this problem, we propose a novel batch process monitoring method based on the modified GKSFA, referred to as discriminant global preserving kernel slow feature analysis (DGKSFA), by closely integrating discriminant analysis and GKSFA. The proposed DGKSFA method can extract discriminant feature of batch process as well as preserve global and local geometrical structure information of observed data. For the purpose of fault detection, a monitoring statistic is constructed based on the distance between the optimal kernel feature vectors of test data and normal data. To tackle the challenging issue of nonlinear fault variable identification, a new nonlinear contribution plot method is also developed to help identifying the fault variable after a fault is detected, which is derived from the idea of variable pseudo-sample trajectory projection in DGKSFA nonlinear biplot. Simulation results conducted on a numerical nonlinear dynamic system and the benchmark fed-batch penicillin fermentation process demonstrate that the proposed process monitoring and fault diagnosis approach can effectively detect fault and distinguish fault variables from normal variables. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Stability of deep features across CT scanners and field of view using a physical phantom
NASA Astrophysics Data System (ADS)
Paul, Rahul; Shafiq-ul-Hassan, Muhammad; Moros, Eduardo G.; Gillies, Robert J.; Hall, Lawrence O.; Goldgof, Dmitry B.
2018-02-01
Radiomics is the process of analyzing radiological images by extracting quantitative features for monitoring and diagnosis of various cancers. Analyzing images acquired from different medical centers is confounded by many choices in acquisition, reconstruction parameters and differences among device manufacturers. Consequently, scanning the same patient or phantom using various acquisition/reconstruction parameters as well as different scanners may result in different feature values. To further evaluate this issue, in this study, CT images from a physical radiomic phantom were used. Recent studies showed that some quantitative features were dependent on voxel size and that this dependency could be reduced or removed by the appropriate normalization factor. Deep features extracted from a convolutional neural network, may also provide additional features for image analysis. Using a transfer learning approach, we obtained deep features from three convolutional neural networks pre-trained on color camera images. An we examination of the dependency of deep features on image pixel size was done. We found that some deep features were pixel size dependent, and to remove this dependency we proposed two effective normalization approaches. For analyzing the effects of normalization, a threshold has been used based on the calculated standard deviation and average distance from a best fit horizontal line among the features' underlying pixel size before and after normalization. The inter and intra scanner dependency of deep features has also been evaluated.
Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali
2009-12-01
Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.
Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.
Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana
2017-07-01
Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.
Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil
2018-01-25
Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.
Low complexity feature extraction for classification of harmonic signals
NASA Astrophysics Data System (ADS)
William, Peter E.
In this dissertation, feature extraction algorithms have been developed for extraction of characteristic features from harmonic signals. The common theme for all developed algorithms is the simplicity in generating a significant set of features directly from the time domain harmonic signal. The features are a time domain representation of the composite, yet sparse, harmonic signature in the spectral domain. The algorithms are adequate for low-power unattended sensors which perform sensing, feature extraction, and classification in a standalone scenario. The first algorithm generates the characteristic features using only the duration between successive zero-crossing intervals. The second algorithm estimates the harmonics' amplitudes of the harmonic structure employing a simplified least squares method without the need to estimate the true harmonic parameters of the source signal. The third algorithm, resulting from a collaborative effort with Daniel White at the DSP Lab, University of Nebraska-Lincoln, presents an analog front end approach that utilizes a multichannel analog projection and integration to extract the sparse spectral features from the analog time domain signal. Classification is performed using a multilayer feedforward neural network. Evaluation of the proposed feature extraction algorithms for classification through the processing of several acoustic and vibration data sets (including military vehicles and rotating electric machines) with comparison to spectral features shows that, for harmonic signals, time domain features are simpler to extract and provide equivalent or improved reliability over the spectral features in both the detection probabilities and false alarm rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, Lynn L.; Trease, Harold E.; Fowler, John
2007-03-15
One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less
Effect of window length on performance of the elbow-joint angle prediction based on electromyography
NASA Astrophysics Data System (ADS)
Triwiyanto; Wahyunggoro, Oyas; Adi Nugroho, Hanung; Herianto
2017-05-01
The high performance of the elbow joint angle prediction is essential on the development of the devices based on electromyography (EMG) control. The performance of the prediction depends on the feature of extraction parameters such as window length. In this paper, we evaluated the effect of the window length on the performance of the elbow-joint angle prediction. The prediction algorithm consists of zero-crossing feature extraction and second order of Butterworth low pass filter. The feature was used to extract the EMG signal by varying window length. The EMG signal was collected from the biceps muscle while the elbow was moved in the flexion and extension motion. The subject performed the elbow motion by holding a 1-kg load and moved the elbow in different periods (12 seconds, 8 seconds and 6 seconds). The results indicated that the window length affected the performance of the prediction. The 250 window lengths yielded the best performance of the prediction algorithm of (mean±SD) root mean square error = 5.68%±1.53% and Person’s correlation = 0.99±0.0059.
Research on oral test modeling based on multi-feature fusion
NASA Astrophysics Data System (ADS)
Shi, Yuliang; Tao, Yiyue; Lei, Jun
2018-04-01
In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.
Tiwari, Mayank; Gupta, Bhupendra
2018-04-01
For source camera identification (SCI), photo response non-uniformity (PRNU) has been widely used as the fingerprint of the camera. The PRNU is extracted from the image by applying a de-noising filter then taking the difference between the original image and the de-noised image. However, it is observed that intensity-based features and high-frequency details (edges and texture) of the image, effect quality of the extracted PRNU. This effects correlation calculation and creates problems in SCI. For solving this problem, we propose a weighting function based on image features. We have experimentally identified image features (intensity and high-frequency contents) effect on the estimated PRNU, and then develop a weighting function which gives higher weights to image regions which give reliable PRNU and at the same point it gives comparatively less weights to the image regions which do not give reliable PRNU. Experimental results show that the proposed weighting function is able to improve the accuracy of SCI up to a great extent. Copyright © 2018 Elsevier B.V. All rights reserved.
Audio feature extraction using probability distribution function
NASA Astrophysics Data System (ADS)
Suhaib, A.; Wan, Khairunizam; Aziz, Azri A.; Hazry, D.; Razlan, Zuradzman M.; Shahriman A., B.
2015-05-01
Voice recognition has been one of the popular applications in robotic field. It is also known to be recently used for biometric and multimedia information retrieval system. This technology is attained from successive research on audio feature extraction analysis. Probability Distribution Function (PDF) is a statistical method which is usually used as one of the processes in complex feature extraction methods such as GMM and PCA. In this paper, a new method for audio feature extraction is proposed which is by using only PDF as a feature extraction method itself for speech analysis purpose. Certain pre-processing techniques are performed in prior to the proposed feature extraction method. Subsequently, the PDF result values for each frame of sampled voice signals obtained from certain numbers of individuals are plotted. From the experimental results obtained, it can be seen visually from the plotted data that each individuals' voice has comparable PDF values and shapes.
Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364
Competitive region orientation code for palmprint verification and identification
NASA Astrophysics Data System (ADS)
Tang, Wenliang
2015-11-01
Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.
Liu, Jing; Zhao, Songzheng; Wang, Gang
2018-01-01
With the development of Web 2.0 technology, social media websites have become lucrative but under-explored data sources for extracting adverse drug events (ADEs), which is a serious health problem. Besides ADE, other semantic relation types (e.g., drug indication and beneficial effect) could hold between the drug and adverse event mentions, making ADE relation extraction - distinguishing ADE relationship from other relation types - necessary. However, conducting ADE relation extraction in social media environment is not a trivial task because of the expertise-dependent, time-consuming and costly annotation process, and the feature space's high-dimensionality attributed to intrinsic characteristics of social media data. This study aims to develop a framework for ADE relation extraction using patient-generated content in social media with better performance than that delivered by previous efforts. To achieve the objective, a general semi-supervised ensemble learning framework, SSEL-ADE, was developed. The framework exploited various lexical, semantic, and syntactic features, and integrated ensemble learning and semi-supervised learning. A series of experiments were conducted to verify the effectiveness of the proposed framework. Empirical results demonstrate the effectiveness of each component of SSEL-ADE and reveal that our proposed framework outperforms most of existing ADE relation extraction methods The SSEL-ADE can facilitate enhanced ADE relation extraction performance, thereby providing more reliable support for pharmacovigilance. Moreover, the proposed semi-supervised ensemble methods have the potential of being applied to effectively deal with other social media-based problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Group sparse multiview patch alignment framework with view consistency for image classification.
Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan
2014-07-01
No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.
Feature reconstruction of LFP signals based on PLSR in the neural information decoding study.
Yonghui Dong; Zhigang Shang; Mengmeng Li; Xinyu Liu; Hong Wan
2017-07-01
To solve the problems of Signal-to-Noise Ratio (SNR) and multicollinearity when the Local Field Potential (LFP) signals is used for the decoding of animal motion intention, a feature reconstruction of LFP signals based on partial least squares regression (PLSR) in the neural information decoding study is proposed in this paper. Firstly, the feature information of LFP coding band is extracted based on wavelet transform. Then the PLSR model is constructed by the extracted LFP coding features. According to the multicollinearity characteristics among the coding features, several latent variables which contribute greatly to the steering behavior are obtained, and the new LFP coding features are reconstructed. Finally, the K-Nearest Neighbor (KNN) method is used to classify the reconstructed coding features to verify the decoding performance. The results show that the proposed method can achieve the highest accuracy compared to the other three methods and the decoding effect of the proposed method is robust.
Morphological Feature Extraction for Automatic Registration of Multispectral Images
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
The task of image registration can be divided into two major components, i.e., the extraction of control points or features from images, and the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual extraction of control features can be subjective and extremely time consuming, and often results in few usable points. On the other hand, automated feature extraction allows using invariant target features such as edges, corners, and line intersections as relevant landmarks for registration purposes. In this paper, we present an extension of a recently developed morphological approach for automatic extraction of landmark chips and corresponding windows in a fully unsupervised manner for the registration of multispectral images. Once a set of chip-window pairs is obtained, a (hierarchical) robust feature matching procedure, based on a multiresolution overcomplete wavelet decomposition scheme, is used for registration purposes. The proposed method is validated on a pair of remotely sensed scenes acquired by the Advanced Land Imager (ALI) multispectral instrument and the Hyperion hyperspectral instrument aboard NASA's Earth Observing-1 satellite.
NASA Astrophysics Data System (ADS)
Jayasekare, Ajith S.; Wickramasuriya, Rohan; Namazi-Rad, Mohammad-Reza; Perez, Pascal; Singh, Gaurav
2017-07-01
A continuous update of building information is necessary in today's urban planning. Digital images acquired by remote sensing platforms at appropriate spatial and temporal resolutions provide an excellent data source to achieve this. In particular, high-resolution satellite images are often used to retrieve objects such as rooftops using feature extraction. However, high-resolution images acquired over built-up areas are associated with noises such as shadows that reduce the accuracy of feature extraction. Feature extraction heavily relies on the reflectance purity of objects, which is difficult to perfect in complex urban landscapes. An attempt was made to increase the reflectance purity of building rooftops affected by shadows. In addition to the multispectral (MS) image, derivatives thereof namely, normalized difference vegetation index and principle component (PC) images were incorporated in generating the probability image. This hybrid probability image generation ensured that the effect of shadows on rooftop extraction, particularly on light-colored roofs, is largely eliminated. The PC image was also used for image segmentation, which further increased the accuracy compared to segmentation performed on an MS image. Results show that the presented method can achieve higher rooftop extraction accuracy (70.4%) in vegetation-rich urban areas compared to traditional methods.
NASA Astrophysics Data System (ADS)
Wu, Yu; Zheng, Lijuan; Xie, Donghai; Zhong, Ruofei
2017-07-01
In this study, the extended morphological attribute profiles (EAPs) and independent component analysis (ICA) were combined for feature extraction of high-resolution multispectral satellite remote sensing images and the regularized least squares (RLS) approach with the radial basis function (RBF) kernel was further applied for the classification. Based on the major two independent components, the geometrical features were extracted using the EAPs method. In this study, three morphological attributes were calculated and extracted for each independent component, including area, standard deviation, and moment of inertia. The extracted geometrical features classified results using RLS approach and the commonly used LIB-SVM library of support vector machines method. The Worldview-3 and Chinese GF-2 multispectral images were tested, and the results showed that the features extracted by EAPs and ICA can effectively improve the accuracy of the high-resolution multispectral image classification, 2% larger than EAPs and principal component analysis (PCA) method, and 6% larger than APs and original high-resolution multispectral data. Moreover, it is also suggested that both the GURLS and LIB-SVM libraries are well suited for the multispectral remote sensing image classification. The GURLS library is easy to be used with automatic parameter selection but its computation time may be larger than the LIB-SVM library. This study would be helpful for the classification application of high-resolution multispectral satellite remote sensing images.
Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.
Phinyomark, Angkoon; N Khushaba, Rami; Scheme, Erik
2018-05-18
Specialized myoelectric sensors have been used in prosthetics for decades, but, with recent advancements in wearable sensors, wireless communication and embedded technologies, wearable electromyographic (EMG) armbands are now commercially available for the general public. Due to physical, processing, and cost constraints, however, these armbands typically sample EMG signals at a lower frequency (e.g., 200 Hz for the Myo armband) than their clinical counterparts. It remains unclear whether existing EMG feature extraction methods, which largely evolved based on EMG signals sampled at 1000 Hz or above, are still effective for use with these emerging lower-bandwidth systems. In this study, the effects of sampling rate (low: 200 Hz vs. high: 1000 Hz) on the classification of hand and finger movements were evaluated for twenty-six different individual features and eight sets of multiple features using a variety of datasets comprised of both able-bodied and amputee subjects. The results show that, on average, classification accuracies drop significantly ( p.
Boland, Mary Regina; Miotto, Riccardo; Gao, Junfeng; Weng, Chunhua
2013-01-01
Summary Background When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. Objectives This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. Methods We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. Results We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. Conclusions It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency. PMID:23666475
Boland, M R; Miotto, R; Gao, J; Weng, C
2013-01-01
When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency.
Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer
2013-10-01
The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PyEEG: an open source Python module for EEG/MEG feature extraction.
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.
PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction
Bao, Forrest Sheng; Liu, Xin; Zhang, Christina
2011-01-01
Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction. PMID:21512582
NASA Astrophysics Data System (ADS)
Liu, Chang; Wu, Xing; Mao, Jianlin; Liu, Xiaoqin
2017-07-01
In the signal processing domain, there has been growing interest in using acoustic emission (AE) signals for the fault diagnosis and condition assessment instead of vibration signals, which has been advocated as an effective technique for identifying fracture, crack or damage. The AE signal has high frequencies up to several MHz which can avoid some signals interference, such as the parts of bearing (i.e. rolling elements, ring and so on) and other rotating parts of machine. However, acoustic emission signal necessitates advanced signal sampling capabilities and requests ability to deal with large amounts of sampling data. In this paper, compressive sensing (CS) is introduced as a processing framework, and then a compressive features extraction method is proposed. We use it for extracting the compressive features from compressively-sensed data directly, and also prove the energy preservation properties. First, we study the AE signals under the CS framework. The sparsity of AE signal of the rolling bearing is checked. The observation and reconstruction of signal is also studied. Second, we present a method of extraction AE compressive feature (AECF) from compressively-sensed data directly. We demonstrate the energy preservation properties and the processing of the extracted AECF feature. We assess the running state of the bearing using the AECF trend. The AECF trend of the running state of rolling bearings is consistent with the trend of traditional features. Thus, the method is an effective way to evaluate the running trend of rolling bearings. The results of the experiments have verified that the signal processing and the condition assessment based on AECF is simpler, the amount of data required is smaller, and the amount of computation is greatly reduced.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael
2017-05-01
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Ghosh, Tonmoy; Fattah, Shaikh Anowarul; Wahid, Khan A
2018-01-01
Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data.
NASA Astrophysics Data System (ADS)
Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.
2018-05-01
In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.
Georgoulas, George; Georgopoulos, Voula C; Stylios, Chrysostomos D
2006-01-01
This paper proposes a novel integrated methodology to extract features and classify speech sounds with intent to detect the possible existence of a speech articulation disorder in a speaker. Articulation, in effect, is the specific and characteristic way that an individual produces the speech sounds. A methodology to process the speech signal, extract features and finally classify the signal and detect articulation problems in a speaker is presented. The use of support vector machines (SVMs), for the classification of speech sounds and detection of articulation disorders is introduced. The proposed method is implemented on a data set where different sets of features and different schemes of SVMs are tested leading to satisfactory performance.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
New feature extraction method for classification of agricultural products from x-ray images
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, Ha-Woon; Keagy, Pamela M.; Schatzki, Thomas F.
1999-01-01
Classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discrimination between damaged and clean items. This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work the MRDF is applied to standard features. The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC data.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Sentiment Analysis Using Common-Sense and Context Information
Mittal, Namita; Bansal, Pooja; Garg, Sonal
2015-01-01
Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods. PMID:25866505
Sentiment analysis using common-sense and context information.
Agarwal, Basant; Mittal, Namita; Bansal, Pooja; Garg, Sonal
2015-01-01
Sentiment analysis research has been increasing tremendously in recent times due to the wide range of business and social applications. Sentiment analysis from unstructured natural language text has recently received considerable attention from the research community. In this paper, we propose a novel sentiment analysis model based on common-sense knowledge extracted from ConceptNet based ontology and context information. ConceptNet based ontology is used to determine the domain specific concepts which in turn produced the domain specific important features. Further, the polarities of the extracted concepts are determined using the contextual polarity lexicon which we developed by considering the context information of a word. Finally, semantic orientations of domain specific features of the review document are aggregated based on the importance of a feature with respect to the domain. The importance of the feature is determined by the depth of the feature in the ontology. Experimental results show the effectiveness of the proposed methods.
Intelligence, Surveillance, and Reconnaissance Fusion for Coalition Operations
2008-07-01
classification of the targets of interest. The MMI features extracted in this manner have two properties that provide a sound justification for...are generalizations of well- known feature extraction methods such as Principal Components Analysis (PCA) and Independent Component Analysis (ICA...augment (without degrading performance) a large class of generic fusion processes. Ontologies Classifications Feature extraction Feature analysis
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
Dependency-based long short term memory network for drug-drug interaction extraction.
Wang, Wei; Yang, Xi; Yang, Canqun; Guo, Xiaowei; Zhang, Xiang; Wu, Chengkun
2017-12-28
Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification. We propose a dependency-based deep neural network model for DDI extraction. By introducing the dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels, namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers, including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it to the softmax layer for relation identification. To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the existing methods. The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and Recall values.
Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation
Chauhan, Arun; Chauhan, Devesh; Rout, Chittaranjan
2014-01-01
Purpose Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification. Methods Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features. Results Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation. Conclusion Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency. PMID:25390291
USDA-ARS?s Scientific Manuscript database
To better understand the functional and physicochemical properties of cottonseed protein, we investigated the intrinsic fluorescence excitation-emission matrix (EEM) spectral features of cottonseed protein isolate (CSPI) and sequentially extracted water (CSPw) and alkali (CSPa) protein fractions, an...
DBSCAN-based ROI extracted from SAR images and the discrimination of multi-feature ROI
NASA Astrophysics Data System (ADS)
He, Xin Yi; Zhao, Bo; Tan, Shu Run; Zhou, Xiao Yang; Jiang, Zhong Jin; Cui, Tie Jun
2009-10-01
The purpose of the paper is to extract the region of interest (ROI) from the coarse detected synthetic aperture radar (SAR) images and discriminate if the ROI contains a target or not, so as to eliminate the false alarm, and prepare for the target recognition. The automatic target clustering is one of the most difficult tasks in the SAR-image automatic target recognition system. The density-based spatial clustering of applications with noise (DBSCAN) relies on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN was first used in the SAR image processing, which has many excellent features: only two insensitivity parameters (radius of neighborhood and minimum number of points) are needed; clusters of arbitrary shapes which fit in with the coarse detected SAR images can be discovered; and the calculation time and memory can be reduced. In the multi-feature ROI discrimination scheme, we extract several target features which contain the geometry features such as the area discriminator and Radon-transform based target profile discriminator, the distribution characteristics such as the EFF discriminator, and the EM scattering property such as the PPR discriminator. The synthesized judgment effectively eliminates the false alarms.
a Landmark Extraction Method Associated with Geometric Features and Location Distribution
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, J.; Wang, Y.; Xiao, Y.; Liu, P.; Zhang, S.
2018-04-01
Landmark plays an important role in spatial cognition and spatial knowledge organization. Significance measuring model is the main method of landmark extraction. It is difficult to take account of the spatial distribution pattern of landmarks because that the significance of landmark is built in one-dimensional space. In this paper, we start with the geometric features of the ground object, an extraction method based on the target height, target gap and field of view is proposed. According to the influence region of Voronoi Diagram, the description of target gap is established to the geometric representation of the distribution of adjacent targets. Then, segmentation process of the visual domain of Voronoi K order adjacent is given to set up target view under the multi view; finally, through three kinds of weighted geometric features, the landmarks are identified. Comparative experiments show that this method has a certain coincidence degree with the results of traditional significance measuring model, which verifies the effectiveness and reliability of the method and reduces the complexity of landmark extraction process without losing the reference value of landmark.
Deep SOMs for automated feature extraction and classification from big data streaming
NASA Astrophysics Data System (ADS)
Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad
2017-03-01
In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.
Face recognition using slow feature analysis and contourlet transform
NASA Astrophysics Data System (ADS)
Wang, Yuehao; Peng, Lingling; Zhe, Fuchuan
2018-04-01
In this paper we propose a novel face recognition approach based on slow feature analysis (SFA) in contourlet transform domain. This method firstly use contourlet transform to decompose the face image into low frequency and high frequency part, and then takes technological advantages of slow feature analysis for facial feature extraction. We named the new method combining the slow feature analysis and contourlet transform as CT-SFA. The experimental results on international standard face database demonstrate that the new face recognition method is effective and competitive.
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Wong, Raymond
2013-01-01
Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this uniqueness, voice classification has found useful applications in classifying speakers' gender, mother tongue or ethnicity (accent), emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method named Statistical Feature Extraction (SFX) for extracting important features in training a classification model, based on piecewise transformation treating an audio waveform as a time-series. Using SFX we can faithfully remodel statistical characteristics of the time-series; together with spectral analysis, a substantial amount of features are extracted in combination. An ensemble is utilized in selecting only the influential features to be used in classification model induction. We focus on the comparison of effects of various popular data mining algorithms on multiple datasets. Our experiment consists of classification tests over four typical categories of human voice data, namely, Female and Male, Emotional Speech, Speaker Identification, and Language Recognition. The experiments yield encouraging results supporting the fact that heuristically choosing significant features from both time and frequency domains indeed produces better performance in voice classification than traditional signal processing techniques alone, like wavelets and LPC-to-CC. PMID:24288684
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
NASA Astrophysics Data System (ADS)
Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.
2017-11-01
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Bio-Inspired Sensing and Display of Polarization Imagery
2005-07-17
and weighting coefficients in this example. Panel 4D clearly shows a better visibility, feature extraction , and lesser effect from the background...of linear polarization. Panel E represents the segmentation of the degree of linear polarization, and then Panel F shows the extracted segment with...polarization, and Panel F shows the segment extraction with the finger print selected. Panel G illustrates the application of Canny edge detection to
NASA Astrophysics Data System (ADS)
Emaminejad, Nastaran; Wahi-Anwar, Muhammad; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael
2018-02-01
Translation of radiomics into clinical practice requires confidence in its interpretations. This may be obtained via understanding and overcoming the limitations in current radiomic approaches. Currently there is a lack of standardization in radiomic feature extraction. In this study we examined a few factors that are potential sources of inconsistency in characterizing lung nodules, such as 1)different choices of parameters and algorithms in feature calculation, 2)two CT image dose levels, 3)different CT reconstruction algorithms (WFBP, denoised WFBP, and Iterative). We investigated the effect of variation of these factors on entropy textural feature of lung nodules. CT images of 19 lung nodules identified from our lung cancer screening program were identified by a CAD tool and contours provided. The radiomics features were extracted by calculating 36 GLCM based and 4 histogram based entropy features in addition to 2 intensity based features. A robustness index was calculated across different image acquisition parameters to illustrate the reproducibility of features. Most GLCM based and all histogram based entropy features were robust across two CT image dose levels. Denoising of images slightly improved robustness of some entropy features at WFBP. Iterative reconstruction resulted in improvement of robustness in a fewer times and caused more variation in entropy feature values and their robustness. Within different choices of parameters and algorithms texture features showed a wide range of variation, as much as 75% for individual nodules. Results indicate the need for harmonization of feature calculations and identification of optimum parameters and algorithms in a radiomics study.
NASA Astrophysics Data System (ADS)
Pradana, Dimas Adhi; Pondawinata, Marizki; Widyarini, Sitarina
2017-03-01
This study aimed to determine the potential activity of standardized ethanolic extract of red spinach as prevention against atherosclerosis based on the level of Low-Density Lipoprotein (LDL) and histopathological feature of aorta in male Sprague-Dawley rats induced by high-fat, high-cholesterol diet. A total of 42 animals was divided into 6 groups: normal control group, negative control group, positive control group (0.9 mg/kgBW of simvastatin), first intervention group (200 mg/kgBW of red spinach extract), second intervention group (400 mg/kgBW of red spinach extract), and third intervention group (800 mg/kgBW of red spinach extract). From the first day up to the 66th day, all the groups, except the normal control group and negative control group, were administered simvastatin (positive control) and extract of amaranth (intervention). Then, from the eighth day until Day 66, induction of high-fat and high-cholesterol diet was given in two hours after the simvastatin and red spinach extract administration. The determination of LDL parameters was conducted on Day 0, Day 35, and Day 67. On the 67th day, the animals were dissected to examine the aortic histopathological parameters. The results showed that the ethanolic extract of red spinach with a dose of 200 mg/kgBW, 400 mg/kgBW, and 800 mg/kgBW statistically demonstrated a significant difference (p<0.05). The histopathological feature of the aorta in the treatment indicated the absence of fat in the blood vessel walls or even of foam cells supporting thereby the result of LDL level. This means there was a significant effect of ethanolic extract of red spinach on the prevention against atherosclerosis based on the level of Low-Density Lipoprotein and the histopathological feature of aorta in male Sprague-Dawley rats.
Efficient and robust model-to-image alignment using 3D scale-invariant features.
Toews, Matthew; Wells, William M
2013-04-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.
Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features
Toews, Matthew; Wells, William M.
2013-01-01
This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
Huynh, Benjamin Q; Li, Hui; Giger, Maryellen L
2016-07-01
Convolutional neural networks (CNNs) show potential for computer-aided diagnosis (CADx) by learning features directly from the image data instead of using analytically extracted features. However, CNNs are difficult to train from scratch for medical images due to small sample sizes and variations in tumor presentations. Instead, transfer learning can be used to extract tumor information from medical images via CNNs originally pretrained for nonmedical tasks, alleviating the need for large datasets. Our database includes 219 breast lesions (607 full-field digital mammographic images). We compared support vector machine classifiers based on the CNN-extracted image features and our prior computer-extracted tumor features in the task of distinguishing between benign and malignant breast lesions. Five-fold cross validation (by lesion) was conducted with the area under the receiver operating characteristic (ROC) curve as the performance metric. Results show that classifiers based on CNN-extracted features (with transfer learning) perform comparably to those using analytically extracted features [area under the ROC curve [Formula: see text
Diagnosis of combined faults in Rotary Machinery by Non-Naive Bayesian approach
NASA Astrophysics Data System (ADS)
Asr, Mahsa Yazdanian; Ettefagh, Mir Mohammad; Hassannejad, Reza; Razavi, Seyed Naser
2017-02-01
When combined faults happen in different parts of the rotating machines, their features are profoundly dependent. Experts are completely familiar with individuals faults characteristics and enough data are available from single faults but the problem arises, when the faults combined and the separation of characteristics becomes complex. Therefore, the experts cannot declare exact information about the symptoms of combined fault and its quality. In this paper to overcome this drawback, a novel method is proposed. The core idea of the method is about declaring combined fault without using combined fault features as training data set and just individual fault features are applied in training step. For this purpose, after data acquisition and resampling the obtained vibration signals, Empirical Mode Decomposition (EMD) is utilized to decompose multi component signals to Intrinsic Mode Functions (IMFs). With the use of correlation coefficient, proper IMFs for feature extraction are selected. In feature extraction step, Shannon energy entropy of IMFs was extracted as well as statistical features. It is obvious that most of extracted features are strongly dependent. To consider this matter, Non-Naive Bayesian Classifier (NNBC) is appointed, which release the fundamental assumption of Naive Bayesian, i.e., the independence among features. To demonstrate the superiority of NNBC, other counterpart methods, include Normal Naive Bayesian classifier, Kernel Naive Bayesian classifier and Back Propagation Neural Networks were applied and the classification results are compared. An experimental vibration signals, collected from automobile gearbox, were used to verify the effectiveness of the proposed method. During the classification process, only the features, related individually to healthy state, bearing failure and gear failures, were assigned for training the classifier. But, combined fault features (combined gear and bearing failures) were examined as test data. The achieved probabilities for the test data show that the combined fault can be identified with high success rate.
Face recognition algorithm using extended vector quantization histogram features.
Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu
2018-01-01
In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.
Swartz, R. Andrew
2013-01-01
This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136
Features extraction algorithm about typical railway perimeter intrusion event
NASA Astrophysics Data System (ADS)
Zhou, Jieyun; Wang, Chaodong; Liu, Lihai
2017-10-01
Research purposes: Optical fiber vibration sensing system has been widely used in the oil, gas, frontier defence, prison and power industries. But, there are few reports about the application in railway defence. That is because the surrounding environment is complicated and there are many challenges to be overcomed in the optical fiber vibration sensing system application. For example, how to eliminate the effects of vibration caused by train, the natural environments such as wind and rain and how to identify and classify the intrusion events. In order to solve these problems, the feature signals of these events should be extracted firstly. Research conclusions: (1) In optical fiber vibration sensing system based on Sagnac interferometer, the peak-to-peak value, peak-to-average ratio, standard deviation, zero-crossing rate, short-term energy and kurtosis may serve as feature signals. (2) The feature signals of resting state, climbing concrete fence, breaking barbed wire, knocking concrete fence and rainstorm have been extracted, which shows significant difference among each other. (3) The research conclusions can be used in the identification and classification of intrusion events.
[Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].
Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing
2015-10-01
Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.
Alexnet Feature Extraction and Multi-Kernel Learning for Objectoriented Classification
NASA Astrophysics Data System (ADS)
Ding, L.; Li, H.; Hu, C.; Zhang, W.; Wang, S.
2018-04-01
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression, an exploratory research is done on feature extraction and classification for high resolution remote sensing images. Taking the Google image with 0.3 meter spatial resolution in Ludian area of Yunnan Province as an example, the image segmentation object was taken as the basic unit, and the pre-trained AlexNet deep convolution neural network model was used for feature extraction. And the spectral features, AlexNet features and GLCM texture features are combined with multi-kernel learning and SVM classifier, finally the classification results were compared and analyzed. The results show that the deep convolution neural network can extract more accurate remote sensing image features, and significantly improve the overall accuracy of classification, and provide a reference value for earthquake disaster investigation and remote sensing disaster evaluation.
Biometric recognition via texture features of eye movement trajectories in a visual searching task.
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.
Biometric recognition via texture features of eye movement trajectories in a visual searching task
Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei
2018-01-01
Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383
Gstruct: a system for extracting schemas from GML documents
NASA Astrophysics Data System (ADS)
Chen, Hui; Zhu, Fubao; Guan, Jihong; Zhou, Shuigeng
2008-10-01
Geography Markup Language (GML) becomes the de facto standard for geographic information representation on the internet. GML schema provides a way to define the structure, content, and semantic of GML documents. It contains useful structural information of GML documents and plays an important role in storing, querying and analyzing GML data. However, GML schema is not mandatory, and it is common that a GML document contains no schema. In this paper, we present Gstruct, a tool for GML schema extraction. Gstruct finds the features in the input GML documents, identifies geometry datatypes as well as simple datatypes, then integrates all these features and eliminates improper components to output the optimal schema. Experiments demonstrate that Gstruct is effective in extracting semantically meaningful schemas from GML documents.
[A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].
Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong
2011-10-01
Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.
Classification and pose estimation of objects using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-03-01
A new nonlinear feature extraction method called the maximum representation and discrimination feature (MRDF) method is presented for extraction of features from input image data. It implements transformations similar to the Sigma-Pi neural network. However, the weights of the MRDF are obtained in closed form, and offer advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We show its use in estimating the class and pose of images of real objects and rendered solid CAD models of machine parts from single views using a feature-space trajectory (FST) neural network classifier. We show more accurate classification and pose estimation results than are achieved by standard principal component analysis (PCA) and Fukunaga-Koontz (FK) feature extraction methods.
A biometric identification system based on eigenpalm and eigenfinger features.
Ribaric, Slobodan; Fratric, Ivan
2005-11-01
This paper presents a multimodal biometric identification system based on the features of the human hand. We describe a new biometric approach to personal identification using eigenfinger and eigenpalm features, with fusion applied at the matching-score level. The identification process can be divided into the following phases: capturing the image; preprocessing; extracting and normalizing the palm and strip-like finger subimages; extracting the eigenpalm and eigenfinger features based on the K-L transform; matching and fusion; and, finally, a decision based on the (k, l)-NN classifier and thresholding. The system was tested on a database of 237 people (1,820 hand images). The experimental results showed the effectiveness of the system in terms of the recognition rate (100 percent), the equal error rate (EER = 0.58 percent), and the total error rate (TER = 0.72 percent).
Singanamalli, Asha; Rusu, Mirabela; Sparks, Rachel E; Shih, Natalie N C; Ziober, Amy; Wang, Li-Ping; Tomaszewski, John; Rosen, Mark; Feldman, Michael; Madabhushi, Anant
2016-01-01
To identify computer extracted in vivo dynamic contrast enhanced (DCE) MRI markers associated with quantitative histomorphometric (QH) characteristics of microvessels and Gleason scores (GS) in prostate cancer. This study considered retrospective data from 23 biopsy confirmed prostate cancer patients who underwent 3 Tesla multiparametric MRI before radical prostatectomy (RP). Representative slices from RP specimens were stained with vascular marker CD31. Tumor extent was mapped from RP sections onto DCE MRI using nonlinear registration methods. Seventy-seven microvessel QH features and 18 DCE MRI kinetic features were extracted and evaluated for their ability to distinguish low from intermediate and high GS. The effect of temporal sampling on kinetic features was assessed and correlations between those robust to temporal resolution and microvessel features discriminative of GS were examined. A total of 12 microvessel architectural features were discriminative of low and intermediate/high grade tumors with area under the receiver operating characteristic curve (AUC) > 0.7. These features were most highly correlated with mean washout gradient (WG) (max rho = -0.62). Independent analysis revealed WG to be moderately robust to temporal resolution (intraclass correlation coefficient [ICC] = 0.63) and WG variance, which was poorly correlated with microvessel features, to be predictive of low grade tumors (AUC = 0.77). Enhancement ratio was the most robust (ICC = 0.96) and discriminative (AUC = 0.78) kinetic feature but was moderately correlated with microvessel features (max rho = -0.52). Computer extracted features of prostate DCE MRI appear to be correlated with microvessel architecture and may be discriminative of low versus intermediate and high GS. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, P; Wang, J; Zhong, H
Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less
Finger vein recognition based on the hyperinformation feature
NASA Astrophysics Data System (ADS)
Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Yang, Lu
2014-01-01
The finger vein is a promising biometric pattern for personal identification due to its advantages over other existing biometrics. In finger vein recognition, feature extraction is a critical step, and many feature extraction methods have been proposed to extract the gray, texture, or shape of the finger vein. We treat them as low-level features and present a high-level feature extraction framework. Under this framework, base attribute is first defined to represent the characteristics of a certain subcategory of a subject. Then, for an image, the correlation coefficient is used for constructing the high-level feature, which reflects the correlation between this image and all base attributes. Since the high-level feature can reveal characteristics of more subcategories and contain more discriminative information, we call it hyperinformation feature (HIF). Compared with low-level features, which only represent the characteristics of one subcategory, HIF is more powerful and robust. In order to demonstrate the potential of the proposed framework, we provide a case study to extract HIF. We conduct comprehensive experiments to show the generality of the proposed framework and the efficiency of HIF on our databases, respectively. Experimental results show that HIF significantly outperforms the low-level features.
The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method
Zhang, Yanyan; Wang, Jue
2014-01-01
Many attempts have been made to effectively improve a prosthetic system controlled by the classification of surface electromyographic (SEMG) signals. Recently, the development of methodologies to extract the effective features still remains a primary challenge. Previous studies have demonstrated that the SEMG signals have nonlinear characteristics. In this study, by combining the nonlinear time series analysis and the time-frequency domain methods, we proposed the wavelet-based correlation dimension method to extract the effective features of SEMG signals. The SEMG signals were firstly analyzed by the wavelet transform and the correlation dimension was calculated to obtain the features of the SEMG signals. Then, these features were used as the input vectors of a Gustafson-Kessel clustering classifier to discriminate four types of forearm movements. Our results showed that there are four separate clusters corresponding to different forearm movements at the third resolution level and the resulting classification accuracy was 100%, when two channels of SEMG signals were used. This indicates that the proposed approach can provide important insight into the nonlinear characteristics and the time-frequency domain features of SEMG signals and is suitable for classifying different types of forearm movements. By comparing with other existing methods, the proposed method exhibited more robustness and higher classification accuracy. PMID:24868240
Accelerating Biomedical Signal Processing Using GPU: A Case Study of Snore Sound Feature Extraction.
Guo, Jian; Qian, Kun; Zhang, Gongxuan; Xu, Huijie; Schuller, Björn
2017-12-01
The advent of 'Big Data' and 'Deep Learning' offers both, a great challenge and a huge opportunity for personalised health-care. In machine learning-based biomedical data analysis, feature extraction is a key step for 'feeding' the subsequent classifiers. With increasing numbers of biomedical data, extracting features from these 'big' data is an intensive and time-consuming task. In this case study, we employ a Graphics Processing Unit (GPU) via Python to extract features from a large corpus of snore sound data. Those features can subsequently be imported into many well-known deep learning training frameworks without any format processing. The snore sound data were collected from several hospitals (20 subjects, with 770-990 MB per subject - in total 17.20 GB). Experimental results show that our GPU-based processing significantly speeds up the feature extraction phase, by up to seven times, as compared to the previous CPU system.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
Low-power coprocessor for Haar-like feature extraction with pixel-based pipelined architecture
NASA Astrophysics Data System (ADS)
Luo, Aiwen; An, Fengwei; Fujita, Yuki; Zhang, Xiangyu; Chen, Lei; Jürgen Mattausch, Hans
2017-04-01
Intelligent analysis of image and video data requires image-feature extraction as an important processing capability for machine-vision realization. A coprocessor with pixel-based pipeline (CFEPP) architecture is developed for real-time Haar-like cell-based feature extraction. Synchronization with the image sensor’s pixel frequency and immediate usage of each input pixel for the feature-construction process avoids the dependence on memory-intensive conventional strategies like integral-image construction or frame buffers. One 180 nm CMOS prototype can extract the 1680-dimensional Haar-like feature vectors, applied in the speeded up robust features (SURF) scheme, using an on-chip memory of only 96 kb (kilobit). Additionally, a low power dissipation of only 43.45 mW at 1.8 V supply voltage is achieved during VGA video procession at 120 MHz frequency with more than 325 fps. The Haar-like feature-extraction coprocessor is further evaluated by the practical application of vehicle recognition, achieving the expected high accuracy which is comparable to previous work.
Acousto-Optic Technology for Topographic Feature Extraction and Image Analysis.
1981-03-01
This report contains all findings of the acousto - optic technology study for feature extraction conducted by Deft Laboratories Inc. for the U.S. Army...topographic feature extraction and image analysis using acousto - optic (A-O) technology. A conclusion of this study was that A-O devices are potentially
NASA Astrophysics Data System (ADS)
Shi, Bibo; Grimm, Lars J.; Mazurowski, Maciej A.; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.
2017-03-01
Predicting the risk of occult invasive disease in ductal carcinoma in situ (DCIS) is an important task to help address the overdiagnosis and overtreatment problems associated with breast cancer. In this work, we investigated the feasibility of using computer-extracted mammographic features to predict occult invasive disease in patients with biopsy proven DCIS. We proposed a computer-vision algorithm based approach to extract mammographic features from magnification views of full field digital mammography (FFDM) for patients with DCIS. After an expert breast radiologist provided a region of interest (ROI) mask for the DCIS lesion, the proposed approach is able to segment individual microcalcifications (MCs), detect the boundary of the MC cluster (MCC), and extract 113 mammographic features from MCs and MCC within the ROI. In this study, we extracted mammographic features from 99 patients with DCIS (74 pure DCIS; 25 DCIS plus invasive disease). The predictive power of the mammographic features was demonstrated through binary classifications between pure DCIS and DCIS with invasive disease using linear discriminant analysis (LDA). Before classification, the minimum redundancy Maximum Relevance (mRMR) feature selection method was first applied to choose subsets of useful features. The generalization performance was assessed using Leave-One-Out Cross-Validation and Receiver Operating Characteristic (ROC) curve analysis. Using the computer-extracted mammographic features, the proposed model was able to distinguish DCIS with invasive disease from pure DCIS, with an average classification performance of AUC = 0.61 +/- 0.05. Overall, the proposed computer-extracted mammographic features are promising for predicting occult invasive disease in DCIS.
a Novel Deep Convolutional Neural Network for Spectral-Spatial Classification of Hyperspectral Data
NASA Astrophysics Data System (ADS)
Li, N.; Wang, C.; Zhao, H.; Gong, X.; Wang, D.
2018-04-01
Spatial and spectral information are obtained simultaneously by hyperspectral remote sensing. Joint extraction of these information of hyperspectral image is one of most import methods for hyperspectral image classification. In this paper, a novel deep convolutional neural network (CNN) is proposed, which extracts spectral-spatial information of hyperspectral images correctly. The proposed model not only learns sufficient knowledge from the limited number of samples, but also has powerful generalization ability. The proposed framework based on three-dimensional convolution can extract spectral-spatial features of labeled samples effectively. Though CNN has shown its robustness to distortion, it cannot extract features of different scales through the traditional pooling layer that only have one size of pooling window. Hence, spatial pyramid pooling (SPP) is introduced into three-dimensional local convolutional filters for hyperspectral classification. Experimental results with a widely used hyperspectral remote sensing dataset show that the proposed model provides competitive performance.
Han, Wenfang; Li, Jiangtao; Ding, Yuqin; Xiong, Shanbai; Zhao, Siming
2017-10-01
In this study, rice bran polysaccharides (RBP) were extracted using the hydrothermal method (RBP-H), microwave-assisted extraction (RBP-M) and enzyme-assisted extraction (RBP-E). The prepared RBP samples exhibited the typical spectral patterns of polysaccharides, but differed in chemical composition, molecular features, antitumor and antioxidant activities. The molecular weights (Mw) of RBP-H, RBP-M, and RBP-E were 1.03 × 10 5 , 2.62 × 10 5 , and 0.46 × 10 5 g/mol, respectively. In vitro, all RBP samples significantly inhibited mouse sarcoma S180 cells viability in a dose-dependent manner. In vivo, RBP-M or RBP-E could not only inhibit the growth of the tumor, but also enhance the spleen index. In addition, RBP-E could induce an enhancement of superoxide dismutase (SOD) and glutathione peroxidase activities and a scavenging effect on malondialdehyde. This study demonstrated that the effective antitumor activity of RBP may be owed to its enhancement of antioxidant activity function. The present work suggested that RBP, especially RBP-E could be a safe and effective antitumor, bioactive agent or functional food. Polysaccharides is extracted from rice bran (RBP) using hydrothermal, microwave-assisted and enzyme-assisted extraction methods. The results suggested that the antitumor activity of RBP was associated with enhancement of immunization and antioxidant. RBP could be explored as a natural antitumor and antioxidant agent applied in medicines and functional foods. © 2017 Institute of Food Technologists®.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network
NASA Astrophysics Data System (ADS)
Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke
2018-06-01
Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.
Research and implementation of finger-vein recognition algorithm
NASA Astrophysics Data System (ADS)
Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin
2017-06-01
In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.
Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.
Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei
2015-01-01
Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.
Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A
2016-05-01
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
Engagement Assessment Using EEG Signals
NASA Technical Reports Server (NTRS)
Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean
2012-01-01
In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.
The optional selection of micro-motion feature based on Support Vector Machine
NASA Astrophysics Data System (ADS)
Li, Bo; Ren, Hongmei; Xiao, Zhi-he; Sheng, Jing
2017-11-01
Micro-motion form of target is multiple, different micro-motion forms are apt to be modulated, which makes it difficult for feature extraction and recognition. Aiming at feature extraction of cone-shaped objects with different micro-motion forms, this paper proposes the best selection method of micro-motion feature based on support vector machine. After the time-frequency distribution of radar echoes, comparing the time-frequency spectrum of objects with different micro-motion forms, features are extracted based on the differences between the instantaneous frequency variations of different micro-motions. According to the methods based on SVM (Support Vector Machine) features are extracted, then the best features are acquired. Finally, the result shows the method proposed in this paper is feasible under the test condition of certain signal-to-noise ratio(SNR).
A Review of Feature Extraction Software for Microarray Gene Expression Data
Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini
2014-01-01
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, W; Wang, J; Lu, W
Purpose: To identify the effective quantitative image features (radiomics features) for prediction of response, survival, recurrence and metastasis of hepatocellular carcinoma (HCC) in radiotherapy. Methods: Multiphase contrast enhanced liver CT images were acquired in 16 patients with HCC on pre and post radiation therapy (RT). In this study, arterial phase CT images were selected to analyze the effectiveness of image features for the prediction of treatment outcome of HCC to RT. Response evaluated by RECIST criteria, survival, local recurrence (LR), distant metastasis (DM) and liver metastasis (LM) were examined. A radiation oncologist manually delineated the tumor and normal liver onmore » pre and post CT scans, respectively. Quantitative image features were extracted to characterize the intensity distribution (n=8), spatial patterns (texture, n=36), and shape (n=16) of the tumor and liver, respectively. Moreover, differences between pre and post image features were calculated (n=120). A total of 360 features were extracted and then analyzed by unpaired student’s t-test to rank the effectiveness of features for the prediction of response. Results: The five most effective features were selected for prediction of each outcome. Significant predictors for tumor response and survival are changes in tumor shape (Second Major Axes Length, p= 0.002; Eccentricity, p=0.0002), for LR, liver texture (Standard Deviation (SD) of High Grey Level Run Emphasis and SD of Entropy, both p=0.005) on pre and post CT images, for DM, tumor texture (SD of Entropy, p=0.01) on pre CT image and for LM, liver (Mean of Cluster Shade, p=0.004) and tumor texture (SD of Entropy, p=0.006) on pre CT image. Intensity distribution features were not significant (p>0.09). Conclusion: Quantitative CT image features were found to be potential predictors of the five endpoints of HCC in RT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less
Fang, Chunying; Li, Haifeng; Ma, Lin; Zhang, Mancai
2017-01-01
Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A novel method of generating feature set based on S -transform and chaotic analysis is proposed. There are BAFS (430, basic acoustics feature), local spectral characteristics MSCC (84, Mel S -transform cepstrum coefficients), and chaotic features (12). Finally, radar chart and F -score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from 526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus. The experimental results denote that new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galavis, P; Friedman, K; Chandarana, H
Purpose: Radiomics involves the extraction of texture features from different imaging modalities with the purpose of developing models to predict patient treatment outcomes. The purpose of this study is to investigate texture feature reproducibility across [18F]FDG PET/CT and [18F]FDG PET/MR imaging in patients with primary malignancies. Methods: Twenty five prospective patients with solid tumors underwent clinical [18F]FDG PET/CT scan followed by [18F]FDG PET/MR scans. In all patients the lesions were identified using nuclear medicine reports. The images were co-registered and segmented using an in-house auto-segmentation method. Fifty features, based on the intensity histogram, second and high order matrices, were extractedmore » from the segmented regions from both image data sets. One-way random-effects ANOVA model of the intra-class correlation coefficient (ICC) was used to establish texture feature correlations between both data sets. Results: Fifty features were classified based on their ICC values, which were found in the range from 0.1 to 0.86, in three categories: high, intermediate, and low. Ten features extracted from second and high-order matrices showed large ICC ≥ 0.70. Seventeen features presented intermediate 0.5 ≤ ICC ≤ 0.65 and the remaining twenty three presented low ICC ≤ 0.45. Conclusion: Features with large ICC values could be reliable candidates for quantification as they lead to similar results from both imaging modalities. Features with small ICC indicates a lack of correlation. Therefore, the use of these features as a quantitative measure will lead to different assessments of the same lesion depending on the imaging modality from where they are extracted. This study shows the importance of the need for further investigation and standardization of features across multiple imaging modalities.« less
A judicious multiple hypothesis tracker with interacting feature extraction
NASA Astrophysics Data System (ADS)
McAnanama, James G.; Kirubarajan, T.
2009-05-01
The multiple hypotheses tracker (mht) is recognized as an optimal tracking method due to the enumeration of all possible measurement-to-track associations, which does not involve any approximation in its original formulation. However, its practical implementation is limited by the NP-hard nature of this enumeration. As a result, a number of maintenance techniques such as pruning and merging have been proposed to bound the computational complexity. It is possible to improve the performance of a tracker, mht or not, using feature information (e.g., signal strength, size, type) in addition to kinematic data. However, in most tracking systems, the extraction of features from the raw sensor data is typically independent of the subsequent association and filtering stages. In this paper, a new approach, called the Judicious Multi Hypotheses Tracker (jmht), whereby there is an interaction between feature extraction and the mht, is presented. The measure of the quality of feature extraction is input into measurement-to-track association while the prediction step feeds back the parameters to be used in the next round of feature extraction. The motivation for this forward and backward interaction between feature extraction and tracking is to improve the performance in both steps. This approach allows for a more rational partitioning of the feature space and removes unlikely features from the assignment problem. Simulation results demonstrate the benefits of the proposed approach.
Statistical Approach To Extraction Of Texture In SAR
NASA Technical Reports Server (NTRS)
Rignot, Eric J.; Kwok, Ronald
1992-01-01
Improved statistical method of extraction of textural features in synthetic-aperture-radar (SAR) images takes account of effects of scheme used to sample raw SAR data, system noise, resolution of radar equipment, and speckle. Treatment of speckle incorporated into overall statistical treatment of speckle, system noise, and natural variations in texture. One computes speckle auto-correlation function from system transfer function that expresses effect of radar aperature and incorporates range and azimuth resolutions.
Singular value decomposition based feature extraction technique for physiological signal analysis.
Chang, Cheng-Ding; Wang, Chien-Chih; Jiang, Bernard C
2012-06-01
Multiscale entropy (MSE) is one of the popular techniques to calculate and describe the complexity of the physiological signal. Many studies use this approach to detect changes in the physiological conditions in the human body. However, MSE results are easily affected by noise and trends, leading to incorrect estimation of MSE values. In this paper, singular value decomposition (SVD) is adopted to replace MSE to extract the features of physiological signals, and adopt the support vector machine (SVM) to classify the different physiological states. A test data set based on the PhysioNet website was used, and the classification results showed that using SVD to extract features of the physiological signal could attain a classification accuracy rate of 89.157%, which is higher than that using the MSE value (71.084%). The results show the proposed analysis procedure is effective and appropriate for distinguishing different physiological states. This promising result could be used as a reference for doctors in diagnosis of congestive heart failure (CHF) disease.
Drunk driving detection based on classification of multivariate time series.
Li, Zhenlong; Jin, Xue; Zhao, Xiaohua
2015-09-01
This paper addresses the problem of detecting drunk driving based on classification of multivariate time series. First, driving performance measures were collected from a test in a driving simulator located in the Traffic Research Center, Beijing University of Technology. Lateral position and steering angle were used to detect drunk driving. Second, multivariate time series analysis was performed to extract the features. A piecewise linear representation was used to represent multivariate time series. A bottom-up algorithm was then employed to separate multivariate time series. The slope and time interval of each segment were extracted as the features for classification. Third, a support vector machine classifier was used to classify driver's state into two classes (normal or drunk) according to the extracted features. The proposed approach achieved an accuracy of 80.0%. Drunk driving detection based on the analysis of multivariate time series is feasible and effective. The approach has implications for drunk driving detection. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Honggang; Lin, Huibin; Ding, Kang
2018-05-01
The performance of sparse features extraction by commonly used K-Singular Value Decomposition (K-SVD) method depends largely on the signal segment selected in rolling bearing diagnosis, furthermore, the calculating speed is relatively slow and the dictionary becomes so redundant when the fault signal is relatively long. A new sliding window denoising K-SVD (SWD-KSVD) method is proposed, which uses only one small segment of time domain signal containing impacts to perform sliding window dictionary learning and select an optimal pattern with oscillating information of the rolling bearing fault according to a maximum variance principle. An inner product operation between the optimal pattern and the whole fault signal is performed to enhance the characteristic of the impacts' occurrence moments. Lastly, the signal is reconstructed at peak points of the inner product to realize the extraction of the rolling bearing fault features. Both simulation and experiments verify that the method could extract the fault features effectively.
NASA Astrophysics Data System (ADS)
Setiyoko, A.; Dharma, I. G. W. S.; Haryanto, T.
2017-01-01
Multispectral data and hyperspectral data acquired from satellite sensor have the ability in detecting various objects on the earth ranging from low scale to high scale modeling. These data are increasingly being used to produce geospatial information for rapid analysis by running feature extraction or classification process. Applying the most suited model for this data mining is still challenging because there are issues regarding accuracy and computational cost. This research aim is to develop a better understanding regarding object feature extraction and classification applied for satellite image by systematically reviewing related recent research projects. A method used in this research is based on PRISMA statement. After deriving important points from trusted sources, pixel based and texture-based feature extraction techniques are promising technique to be analyzed more in recent development of feature extraction and classification.
Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne
2012-01-01
We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for mapping large spatial extents. The SPOT imagery produced map products that were far more accurate than Landsat and did so at a far lower cost than QuickBird imagery. Consideration of degree of map accuracy required, costs associated with image acquisition, software, operator and computation time, and tradeoffs in the form of spatial extent versus resolution should all be considered when evaluating which combination of imagery and information-extraction method might best serve any given land use mapping project. When resources permit, attaining imagery that supports the highest classification and measurement accuracy possible is recommended.
Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection
NASA Astrophysics Data System (ADS)
Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav
2014-03-01
Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.
Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning
2018-03-08
Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Wang, Anran; Wang, Jian; Lin, Hongfei; Zhang, Jianhai; Yang, Zhihao; Xu, Kan
2017-12-20
Biomedical event extraction is one of the most frontier domains in biomedical research. The two main subtasks of biomedical event extraction are trigger identification and arguments detection which can both be considered as classification problems. However, traditional state-of-the-art methods are based on support vector machine (SVM) with massive manually designed one-hot represented features, which require enormous work but lack semantic relation among words. In this paper, we propose a multiple distributed representation method for biomedical event extraction. The method combines context consisting of dependency-based word embedding, and task-based features represented in a distributed way as the input of deep learning models to train deep learning models. Finally, we used softmax classifier to label the example candidates. The experimental results on Multi-Level Event Extraction (MLEE) corpus show higher F-scores of 77.97% in trigger identification and 58.31% in overall compared to the state-of-the-art SVM method. Our distributed representation method for biomedical event extraction avoids the problems of semantic gap and dimension disaster from traditional one-hot representation methods. The promising results demonstrate that our proposed method is effective for biomedical event extraction.
Robust digital image watermarking using distortion-compensated dither modulation
NASA Astrophysics Data System (ADS)
Li, Mianjie; Yuan, Xiaochen
2018-04-01
In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.
Semi-Supervised Geographical Feature Detection
NASA Astrophysics Data System (ADS)
Yu, H.; Yu, L.; Kuo, K. S.
2016-12-01
Extraction and tracking geographical features is a fundamental requirement in many geoscience fields. However, this operation has become an increasingly challenging task for domain scientists when tackling a large amount of geoscience data. Although domain scientists may have a relatively clear definition of features, it is difficult to capture the presence of features in an accurate and efficient fashion. We propose a semi-supervised approach to address large geographical feature detection. Our approach has two main components. First, we represent a heterogeneous geoscience data in a unified high-dimensional space, which can facilitate us to evaluate the similarity of data points with respect to geolocation, time, and variable values. We characterize the data from these measures, and use a set of hash functions to parameterize the initial knowledge of the data. Second, for any user query, our approach can automatically extract the initial results based on the hash functions. To improve the accuracy of querying, our approach provides a visualization interface to display the querying results and allow users to interactively explore and refine them. The user feedback will be used to enhance our knowledge base in an iterative manner. In our implementation, we use high-performance computing techniques to accelerate the construction of hash functions. Our design facilitates a parallelization scheme for feature detection and extraction, which is a traditionally challenging problem for large-scale data. We evaluate our approach and demonstrate the effectiveness using both synthetic and real world datasets.
Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images
NASA Astrophysics Data System (ADS)
Eken, S.; Aydın, E.; Sayar, A.
2017-11-01
In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.
Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.
Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei
2016-03-09
Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.
Local kernel nonparametric discriminant analysis for adaptive extraction of complex structures
NASA Astrophysics Data System (ADS)
Li, Quanbao; Wei, Fajie; Zhou, Shenghan
2017-05-01
The linear discriminant analysis (LDA) is one of popular means for linear feature extraction. It usually performs well when the global data structure is consistent with the local data structure. Other frequently-used approaches of feature extraction usually require linear, independence, or large sample condition. However, in real world applications, these assumptions are not always satisfied or cannot be tested. In this paper, we introduce an adaptive method, local kernel nonparametric discriminant analysis (LKNDA), which integrates conventional discriminant analysis with nonparametric statistics. LKNDA is adept in identifying both complex nonlinear structures and the ad hoc rule. Six simulation cases demonstrate that LKNDA have both parametric and nonparametric algorithm advantages and higher classification accuracy. Quartic unilateral kernel function may provide better robustness of prediction than other functions. LKNDA gives an alternative solution for discriminant cases of complex nonlinear feature extraction or unknown feature extraction. At last, the application of LKNDA in the complex feature extraction of financial market activities is proposed.
NASA Astrophysics Data System (ADS)
Liu, Jie; Hu, Youmin; Wang, Yan; Wu, Bo; Fan, Jikai; Hu, Zhongxu
2018-05-01
The diagnosis of complicated fault severity problems in rotating machinery systems is an important issue that affects the productivity and quality of manufacturing processes and industrial applications. However, it usually suffers from several deficiencies. (1) A considerable degree of prior knowledge and expertise is required to not only extract and select specific features from raw sensor signals, and but also choose a suitable fusion for sensor information. (2) Traditional artificial neural networks with shallow architectures are usually adopted and they have a limited ability to learn the complex and variable operating conditions. In multi-sensor-based diagnosis applications in particular, massive high-dimensional and high-volume raw sensor signals need to be processed. In this paper, an integrated multi-sensor fusion-based deep feature learning (IMSFDFL) approach is developed to identify the fault severity in rotating machinery processes. First, traditional statistics and energy spectrum features are extracted from multiple sensors with multiple channels and combined. Then, a fused feature vector is constructed from all of the acquisition channels. Further, deep feature learning with stacked auto-encoders is used to obtain the deep features. Finally, the traditional softmax model is applied to identify the fault severity. The effectiveness of the proposed IMSFDFL approach is primarily verified by a one-stage gearbox experimental platform that uses several accelerometers under different operating conditions. This approach can identify fault severity more effectively than the traditional approaches.
Diabetic Rethinopathy Screening by Bright Lesions Extraction from Fundus Images
NASA Astrophysics Data System (ADS)
Hanđsková, Veronika; Pavlovičova, Jarmila; Oravec, Miloš; Blaško, Radoslav
2013-09-01
Retinal images are nowadays widely used to diagnose many diseases, for example diabetic retinopathy. In our work, we propose the algorithm for the screening application, which identifies the patients with such severe diabetic complication as diabetic retinopathy is, in early phase. In the application we use the patient's fundus photography without any additional examination by an ophtalmologist. After this screening identification, other examination methods should be considered and the patient's follow-up by a doctor is necessary. Our application is composed of three principal modules including fundus image preprocessing, feature extraction and feature classification. Image preprocessing module has the role of luminance normalization, contrast enhancement and optical disk masking. Feature extraction module includes two stages: bright lesions candidates localization and candidates feature extraction. We selected 16 statistical and structural features. For feature classification, we use multilayer perceptron (MLP) with one hidden layer. We classify images into two classes. Feature classification efficiency is about 93 percent.
NASA Technical Reports Server (NTRS)
Abrams, M.
1982-01-01
Studies of the effects of spatial resolution on extraction of geologic information are woefully lacking but spatial resolution effects can be examined as they influence two general categories: detection of spatial features per se; and the effects of IFOV on the definition of spectral signatures and on general mapping abilities.
Fast and effective characterization of 3D region of interest in medical image data
NASA Astrophysics Data System (ADS)
Kontos, Despina; Megalooikonomou, Vasileios
2004-05-01
We propose a framework for detecting, characterizing and classifying spatial Regions of Interest (ROIs) in medical images, such as tumors and lesions in MRI or activation regions in fMRI. A necessary step prior to classification is efficient extraction of discriminative features. For this purpose, we apply a characterization technique especially designed for spatial ROIs. The main idea of this technique is to extract a k-dimensional feature vector using concentric spheres in 3D (or circles in 2D) radiating out of the ROI's center of mass. These vectors form characterization signatures that can be used to represent the initial ROIs. We focus on classifying fMRI ROIs obtained from a study that explores neuroanatomical correlates of semantic processing in Alzheimer's disease (AD). We detect a ROI highly associated with AD and apply the feature extraction technique with different experimental settings. We seek to distinguish control from patient samples. We study how classification can be performed using the extracted signatures as well as how different experimental parameters affect classification accuracy. The obtained classification accuracy ranged from 82% to 87% (based on the selected ROI) suggesting that the proposed classification framework can be potentially useful in supporting medical decision-making.
Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu
2018-05-01
Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.
Morris, Jeffrey S
2012-01-01
In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational aspects of comparative proteomic studies, and summarizes contributions I along with numerous collaborators have made. First, there is an overview of comparative proteomics technologies, followed by a discussion of important experimental design and preprocessing issues that must be considered before statistical analysis can be done. Next, the two key approaches to analyzing proteomics data, feature extraction and functional modeling, are described. Feature extraction involves detection and quantification of discrete features like peaks or spots that theoretically correspond to different proteins in the sample. After an overview of the feature extraction approach, specific methods for mass spectrometry ( Cromwell ) and 2D gel electrophoresis ( Pinnacle ) are described. The functional modeling approach involves modeling the proteomic data in their entirety as functions or images. A general discussion of the approach is followed by the presentation of a specific method that can be applied, wavelet-based functional mixed models, and its extensions. All methods are illustrated by application to two example proteomic data sets, one from mass spectrometry and one from 2D gel electrophoresis. While the specific methods presented are applied to two specific proteomic technologies, MALDI-TOF and 2D gel electrophoresis, these methods and the other principles discussed in the paper apply much more broadly to other expression proteomics technologies.
Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp
2013-01-01
Background Extracts and products (roots and/or aerial parts) from Echinacea ssp. represent a profitable market sector for herbal medicines thanks to different functional features. Alkamides and polyacetylenes, phenols like caffeic acid and its derivatives, polysaccharides and glycoproteins are the main bioactive compounds of Echinacea spp. This study aimed at investigating the capacity of selected lactic acid bacteria to enhance the antimicrobial, antioxidant and immune-modulatory features of E. purpurea with the prospect of its application as functional food, dietary supplement or pharmaceutical preparation. Results Echinacea purpurea suspension (5%, wt/vol) in distilled water, containing 0.4% (wt/vol) yeast extract, was fermented with Lactobacillus plantarum POM1, 1MR20 or C2, previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum, was used as the control to investigate functional features. Echinacea suspension fermented with Lb. plantarum C2 exhibited a marked antimicrobial activity towards Gram-positive and -negative bacteria. Compared to control, the water-soluble extract from Echinacea suspension fermented with Lactobacillus plantarum 1MR20 showed twice time higher radical scavenging activity on DPPH. Almost the same was found for the inhibition of oleic acid peroxidation. The methanol extract from Echinacea suspension had inherent antioxidant features but the activity of extract from the sample fermented with strain 1MR20 was the highest. The antioxidant activities were confirmed on Balb 3T3 mouse fibroblasts. Lactobacillus plantarum C2 and 1MR20 were used in association to ferment Echinacea suspension, and the water-soluble extract was subjected to ultra-filtration and purification through RP-FPLC. The antioxidant activity was distributed in a large number of fractions and proportional to the peptide concentration. The antimicrobial activity was detected only in one fraction, further subjected to nano-LC-ESI-MS/MS. A mixture of eight peptides was identified, corresponding to fragments of plantaricins PlnH or PlnG. Treatments with fermented Echinacea suspension exerted immune-modulatory effects on Caco-2 cells. The fermentation with Lb. plantarum 1MR20 or with the association between strains C2 and 1MR20 had the highest effect on the expression of TNF-α gene. Conclusions E. purpurea subjected to lactic acid fermentation could be suitable for novel applications as functional food dietary supplements or pharmaceutical preparations. PMID:23642310
Extraction and LOD control of colored interval volumes
NASA Astrophysics Data System (ADS)
Miyamura, Hiroko N.; Takeshima, Yuriko; Fujishiro, Issei; Saito, Takafumi
2005-03-01
Interval volume serves as a generalized isosurface and represents a three-dimensional subvolume for which the associated scalar filed values lie within a user-specified closed interval. In general, it is not an easy task for novices to specify the scalar field interval corresponding to their ROIs. In order to extract interval volumes from which desirable geometric features can be mined effectively, we propose a suggestive technique which extracts interval volumes automatically based on the global examination of the field contrast structure. Also proposed here is a simplification scheme for decimating resultant triangle patches to realize efficient transmission and rendition of large-scale interval volumes. Color distributions as well as geometric features are taken into account to select best edges to be collapsed. In addition, when a user wants to selectively display and analyze the original dataset, the simplified dataset is restructured to the original quality. Several simulated and acquired datasets are used to demonstrate the effectiveness of the present methods.
Lakhin, A V; Efremova, A S; Makarova, I V; Grishina, E E; Shram, S I; Tarantul, V Z; Gening, L V
2013-01-01
The DNA polymerase iota (Pol iota), which has some peculiar features and is characterized by an extremely error-prone DNA synthesis, belongs to the group of enzymes preferentially activated by Mn2+ instead of Mg2+. In this work, the effect of Mn2+ on DNA synthesis in cell extracts from a) normal human and murine tissues, b) human tumor (uveal melanoma), and c) cultured human tumor cell lines SKOV-3 and HL-60 was tested. Each group displayed characteristic features of Mn-dependent DNA synthesis. The changes in the Mn-dependent DNA synthesis caused by malignant transformation of normal tissues are described. It was also shown that the error-prone DNA synthesis catalyzed by Pol iota in extracts of all cell types was efficiently suppressed by an RNA aptamer (IKL5) against Pol iota obtained in our work earlier. The obtained results suggest that IKL5 might be used to suppress the enhanced activity of Pol iota in tumor cells.
An effective hand vein feature extraction method.
Li, Haigang; Zhang, Qian; Li, Chengdong
2015-01-01
As a new authentication method developed years ago, vein recognition technology features the unique advantage of bioassay. This paper studies the specific procedure for the extraction of hand back vein characteristics. There are different positions used in the collecting process, so that a suitable intravenous regional orientation method is put forward, allowing the positioning area to be the same for all hand positions. In addition, to eliminate the pseudo vein area, the valley regional shape extraction operator can be improved and combined with multiple segmentation algorithms. The images should be segmented step by step, making the vein texture to appear clear and accurate. Lastly, the segmented images should be filtered, eroded, and refined. This process helps to filter the most of the pseudo vein information. Finally, a clear vein skeleton diagram is obtained, demonstrating the effectiveness of the algorithm. This paper presents a hand back vein region location method. This makes it possible to rotate and correct the image by working out the inclination degree of contour at the side of hand back.
Extraction of ECG signal with adaptive filter for hearth abnormalities detection
NASA Astrophysics Data System (ADS)
Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti
2018-04-01
This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.
Recursive Feature Extraction in Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-08-14
ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.
Improved classification accuracy by feature extraction using genetic algorithms
NASA Astrophysics Data System (ADS)
Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.
2003-05-01
A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.
Robust image features: concentric contrasting circles and their image extraction
NASA Astrophysics Data System (ADS)
Gatrell, Lance B.; Hoff, William A.; Sklair, Cheryl W.
1992-03-01
Many computer vision tasks can be simplified if special image features are placed on the objects to be recognized. A review of special image features that have been used in the past is given and then a new image feature, the concentric contrasting circle, is presented. The concentric contrasting circle image feature has the advantages of being easily manufactured, easily extracted from the image, robust extraction (true targets are found, while few false targets are found), it is a passive feature, and its centroid is completely invariant to the three translational and one rotational degrees of freedom and nearly invariant to the remaining two rotational degrees of freedom. There are several examples of existing parallel implementations which perform most of the extraction work. Extraction robustness was measured by recording the probability of correct detection and the false alarm rate in a set of images of scenes containing mockups of satellites, fluid couplings, and electrical components. A typical application of concentric contrasting circle features is to place them on modeled objects for monocular pose estimation or object identification. This feature is demonstrated on a visually challenging background of a specular but wrinkled surface similar to a multilayered insulation spacecraft thermal blanket.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Superpixel-Augmented Endmember Detection for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Gilmore, Martha
2011-01-01
Superpixels are homogeneous image regions comprised of several contiguous pixels. They are produced by shattering the image into contiguous, homogeneous regions that each cover between 20 and 100 image pixels. The segmentation aims for a many-to-one mapping from superpixels to image features; each image feature could contain several superpixels, but each superpixel occupies no more than one image feature. This conservative segmentation is relatively easy to automate in a robust fashion. Superpixel processing is related to the more general idea of improving hyperspectral analysis through spatial constraints, which can recognize subtle features at or below the level of noise by exploiting the fact that their spectral signatures are found in neighboring pixels. Recent work has explored spatial constraints for endmember extraction, showing significant advantages over techniques that ignore pixels relative positions. Methods such as AMEE (automated morphological endmember extraction) express spatial influence using fixed isometric relationships a local square window or Euclidean distance in pixel coordinates. In other words, two pixels covariances are based on their spatial proximity, but are independent of their absolute location in the scene. These isometric spatial constraints are most appropriate when spectral variation is smooth and constant over the image. Superpixels are simple to implement, efficient to compute, and are empirically effective. They can be used as a preprocessing step with any desired endmember extraction technique. Superpixels also have a solid theoretical basis in the hyperspectral linear mixing model, making them a principled approach for improving endmember extraction. Unlike existing approaches, superpixels can accommodate non-isometric covariance between image pixels (characteristic of discrete image features separated by step discontinuities). These kinds of image features are common in natural scenes. Analysts can substitute superpixels for image pixels during endmember analysis that leverages the spatial contiguity of scene features to enhance subtle spectral features. Superpixels define populations of image pixels that are independent samples from each image feature, permitting robust estimation of spectral properties, and reducing measurement noise in proportion to the area of the superpixel. This permits improved endmember extraction, and enables automated search for novel and constituent minerals in very noisy, hyperspatial images. This innovation begins with a graph-based segmentation based on the work of Felzenszwalb et al., but then expands their approach to the hyperspectral image domain with a Euclidean distance metric. Then, the mean spectrum of each segment is computed, and the resulting data cloud is used as input into sequential maximum angle convex cone (SMACC) endmember extraction.
Ghosh, Tonmoy; Wahid, Khan A.
2018-01-01
Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data. PMID:29468094
A method for real-time implementation of HOG feature extraction
NASA Astrophysics Data System (ADS)
Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai
2011-08-01
Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.
Intelligent Gearbox Diagnosis Methods Based on SVM, Wavelet Lifting and RBR
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis. PMID:22399894
Intelligent gearbox diagnosis methods based on SVM, wavelet lifting and RBR.
Gao, Lixin; Ren, Zhiqiang; Tang, Wenliang; Wang, Huaqing; Chen, Peng
2010-01-01
Given the problems in intelligent gearbox diagnosis methods, it is difficult to obtain the desired information and a large enough sample size to study; therefore, we propose the application of various methods for gearbox fault diagnosis, including wavelet lifting, a support vector machine (SVM) and rule-based reasoning (RBR). In a complex field environment, it is less likely for machines to have the same fault; moreover, the fault features can also vary. Therefore, a SVM could be used for the initial diagnosis. First, gearbox vibration signals were processed with wavelet packet decomposition, and the signal energy coefficients of each frequency band were extracted and used as input feature vectors in SVM for normal and faulty pattern recognition. Second, precision analysis using wavelet lifting could successfully filter out the noisy signals while maintaining the impulse characteristics of the fault; thus effectively extracting the fault frequency of the machine. Lastly, the knowledge base was built based on the field rules summarized by experts to identify the detailed fault type. Results have shown that SVM is a powerful tool to accomplish gearbox fault pattern recognition when the sample size is small, whereas the wavelet lifting scheme can effectively extract fault features, and rule-based reasoning can be used to identify the detailed fault type. Therefore, a method that combines SVM, wavelet lifting and rule-based reasoning ensures effective gearbox fault diagnosis.
Using input feature information to improve ultraviolet retrieval in neural networks
NASA Astrophysics Data System (ADS)
Sun, Zhibin; Chang, Ni-Bin; Gao, Wei; Chen, Maosi; Zempila, Melina
2017-09-01
In neural networks, the training/predicting accuracy and algorithm efficiency can be improved significantly via accurate input feature extraction. In this study, some spatial features of several important factors in retrieving surface ultraviolet (UV) are extracted. An extreme learning machine (ELM) is used to retrieve the surface UV of 2014 in the continental United States, using the extracted features. The results conclude that more input weights can improve the learning capacities of neural networks.
Wire bonding quality monitoring via refining process of electrical signal from ultrasonic generator
NASA Astrophysics Data System (ADS)
Feng, Wuwei; Meng, Qingfeng; Xie, Youbo; Fan, Hong
2011-04-01
In this paper, a technique for on-line quality detection of ultrasonic wire bonding is developed. The electrical signals from the ultrasonic generator supply, namely, voltage and current, are picked up by a measuring circuit and transformed into digital signals by a data acquisition system. A new feature extraction method is presented to characterize the transient property of the electrical signals and further evaluate the bond quality. The method includes three steps. First, the captured voltage and current are filtered by digital bandpass filter banks to obtain the corresponding subband signals such as fundamental signal, second harmonic, and third harmonic. Second, each subband envelope is obtained using the Hilbert transform for further feature extraction. Third, the subband envelopes are, respectively, separated into three phases, namely, envelope rising, stable, and damping phases, to extract the tiny waveform changes. The different waveform features are extracted from each phase of these subband envelopes. The principal components analysis (PCA) method is used for the feature selection in order to remove the relevant information and reduce the dimension of original feature variables. Using the selected features as inputs, an artificial neural network (ANN) is constructed to identify the complex bond fault pattern. By analyzing experimental data with the proposed feature extraction method and neural network, the results demonstrate the advantages of the proposed feature extraction method and the constructed artificial neural network in detecting and identifying bond quality.
Huang, Chih-Sheng; Yang, Wen-Yu; Chuang, Chun-Hsiang; Wang, Yu-Kai
2018-01-01
Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research. PMID:29599950
Bearing diagnostics: A method based on differential geometry
NASA Astrophysics Data System (ADS)
Tian, Ye; Wang, Zili; Lu, Chen; Wang, Zhipeng
2016-12-01
The structures around bearings are complex, and the working environment is variable. These conditions cause the collected vibration signals to become nonlinear, non-stationary, and chaotic characteristics that make noise reduction, feature extraction, fault diagnosis, and health assessment significantly challenging. Thus, a set of differential geometry-based methods with superiorities in nonlinear analysis is presented in this study. For noise reduction, the Local Projection method is modified by both selecting the neighborhood radius based on empirical mode decomposition and determining noise subspace constrained by neighborhood distribution information. For feature extraction, Hessian locally linear embedding is introduced to acquire manifold features from the manifold topological structures, and singular values of eigenmatrices as well as several specific frequency amplitudes in spectrograms are extracted subsequently to reduce the complexity of the manifold features. For fault diagnosis, information geometry-based support vector machine is applied to classify the fault states. For health assessment, the manifold distance is employed to represent the health information; the Gaussian mixture model is utilized to calculate the confidence values, which directly reflect the health status. Case studies on Lorenz signals and vibration datasets of bearings demonstrate the effectiveness of the proposed methods.
Filter bank common spatial patterns in mental workload estimation.
Arvaneh, Mahnaz; Umilta, Alberto; Robertson, Ian H
2015-01-01
EEG-based workload estimation technology provides a real time means of assessing mental workload. Such technology can effectively enhance the performance of the human-machine interaction and the learning process. When designing workload estimation algorithms, a crucial signal processing component is the feature extraction step. Despite several studies on this field, the spatial properties of the EEG signals were mostly neglected. Since EEG inherently has a poor spacial resolution, features extracted individually from each EEG channel may not be sufficiently efficient. This problem becomes more pronounced when we use low-cost but convenient EEG sensors with limited stability which is the case in practical scenarios. To address this issue, in this paper, we introduce a filter bank common spatial patterns algorithm combined with a feature selection method to extract spatio-spectral features discriminating different mental workload levels. To evaluate the proposed algorithm, we carry out a comparative analysis between two representative types of working memory tasks using data recorded from an Emotiv EPOC headset which is a mobile low-cost EEG recording device. The experimental results showed that the proposed spatial filtering algorithm outperformed the state-of-the algorithms in terms of the classification accuracy.
A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.
target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.
Texture Feature Extraction and Classification for Iris Diagnosis
NASA Astrophysics Data System (ADS)
Ma, Lin; Li, Naimin
Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.
Classification of product inspection items using nonlinear features
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.; Lee, H.-W.
1998-03-01
Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-05-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.
Epileptic seizure detection in EEG signal with GModPCA and support vector machine.
Jaiswal, Abeg Kumar; Banka, Haider
2017-01-01
Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.
Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan
2016-12-01
Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix (GLCM) features (SumEntropy, Entropy, DifEntropy, Homogeneity1, and Homogeneity2) and one of which was an neighborhood gray-tone different matrix (NGTDM) feature (Coarseness). Discretization generated larger effects on features than segmentation in both tracers. Features extracted from [ 11 C]choline were more robust than [ 18 F]FDG for segmentation. Discretization had very similar effects on features extracted from both tracers.
A real-time method to predict social media popularity
NASA Astrophysics Data System (ADS)
Chen, Xiao; Lu, Zhe-Ming
How to predict the future popularity of a message or video on online social media (OSM) has long been an attractive problem for researchers. Although many difficulties are still ahead, recent studies suggest that temporal and topological features of early adopters generally play a very important role. However, with the increase of the adopters, the feature space will grow explosively. How to select the most effective features is still an open issue. In this work, we investigate several feature extraction methods over the Twitter platform and find that most predictive power concentrates on the second half of the propagation period, and that not only a model trained on one platform generalizes well to others as previous works observed, but also a model trained on one dataset performs well on predicting the popularity for other datasets with different number of observed early adopters. According to these findings, at least for the best features by far, the data used to extract features can be halved without loss of evident accuracy and we provide a way to roughly predict the growth trend of a social-media item in real-time.
Wavelet-based energy features for glaucomatous image classification.
Dua, Sumeet; Acharya, U Rajendra; Chowriappa, Pradeep; Sree, S Vinitha
2012-01-01
Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naïve Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.
High-Resolution Remote Sensing Image Building Extraction Based on Markov Model
NASA Astrophysics Data System (ADS)
Zhao, W.; Yan, L.; Chang, Y.; Gong, L.
2018-04-01
With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.
Non-negative matrix factorization in texture feature for classification of dementia with MRI data
NASA Astrophysics Data System (ADS)
Sarwinda, D.; Bustamam, A.; Ardaneswari, G.
2017-07-01
This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).
Hidden discriminative features extraction for supervised high-order time series modeling.
Nguyen, Ngoc Anh Thi; Yang, Hyung-Jeong; Kim, Sunhee
2016-11-01
In this paper, an orthogonal Tucker-decomposition-based extraction of high-order discriminative subspaces from a tensor-based time series data structure is presented, named as Tensor Discriminative Feature Extraction (TDFE). TDFE relies on the employment of category information for the maximization of the between-class scatter and the minimization of the within-class scatter to extract optimal hidden discriminative feature subspaces that are simultaneously spanned by every modality for supervised tensor modeling. In this context, the proposed tensor-decomposition method provides the following benefits: i) reduces dimensionality while robustly mining the underlying discriminative features, ii) results in effective interpretable features that lead to an improved classification and visualization, and iii) reduces the processing time during the training stage and the filtering of the projection by solving the generalized eigenvalue issue at each alternation step. Two real third-order tensor-structures of time series datasets (an epilepsy electroencephalogram (EEG) that is modeled as channel×frequency bin×time frame and a microarray data that is modeled as gene×sample×time) were used for the evaluation of the TDFE. The experiment results corroborate the advantages of the proposed method with averages of 98.26% and 89.63% for the classification accuracies of the epilepsy dataset and the microarray dataset, respectively. These performance averages represent an improvement on those of the matrix-based algorithms and recent tensor-based, discriminant-decomposition approaches; this is especially the case considering the small number of samples that are used in practice. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at participating nodes. Therefore, the feature-extraction method based on the Haar DWT is presented that employs a maximum-entropy measure to determine significant wavelet coefficients. Features are formed by calculating the energy of coefficients grouped around the competing clusters. A DWT-based feature extraction algorithm used for vehicle classification in WSNs can be enhanced by an added rule for selecting the optimal number of resolution levels to improve the correct classification rate and reduce energy consumption expended in local algorithm computations. Published field trial data for vehicular ground targets, measured with multiple sensor types, are used to evaluate the wavelet-assisted algorithms. Extracted features are used in established target recognition routines, e.g., the Bayesian minimum-error-rate classifier, to compare the effects on the classification performance of the wavelet compression. Simulations of feature sets and recognition routines at different resolution levels in target scenarios indicate the impact on classification rates, while formulas are provided to estimate reduction in resource use due to distributed compression.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
NASA Astrophysics Data System (ADS)
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
Novel Features for Brain-Computer Interfaces
Woon, W. L.; Cichocki, A.
2007-01-01
While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
NASA Astrophysics Data System (ADS)
Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang
2016-09-01
Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this research is investigating which texture features extracted from FDG-PET images by gray-level co-occurrence matrix(GLCM) have a higher prognostic value than the other texture features. Methods: 21 non-small cell lung cancer(NSCLC) patients were approved in the study. Patients underwent 18F-FDG PET/CT scans with both pre-treatment and post-treatment. Firstly, the tumors were extracted by our house developed software. Secondly, the clinical features including the maximum SUV and tumor volume were extracted by MIM vista software, and texture features including angular second moment, contrast, inverse different moment, entropy and correlation were extracted using MATLAB.The differences can be calculatedmore » by using post-treatment features to subtract pre-treatment features. Finally, the SPSS software was used to get the Pearson correlation coefficients and Spearman rank correlation coefficients between the change ratios of texture features and change ratios of clinical features. Results: The Pearson and Spearman rank correlation coefficient between contrast and SUV maximum is 0.785 and 0.709. The P and S value between inverse difference moment and tumor volume is 0.953 and 0.942. Conclusion: This preliminary study showed that the relationships between different texture features and the same clinical feature are different. Finding the prognostic value of contrast and inverse difference moment were higher than the other three textures extracted by GLCM.« less
Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat
2015-06-01
Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.
Research of facial feature extraction based on MMC
NASA Astrophysics Data System (ADS)
Xue, Donglin; Zhao, Jiufen; Tang, Qinhong; Shi, Shaokun
2017-07-01
Based on the maximum margin criterion (MMC), a new algorithm of statistically uncorrelated optimal discriminant vectors and a new algorithm of orthogonal optimal discriminant vectors for feature extraction were proposed. The purpose of the maximum margin criterion is to maximize the inter-class scatter while simultaneously minimizing the intra-class scatter after the projection. Compared with original MMC method and principal component analysis (PCA) method, the proposed methods are better in terms of reducing or eliminating the statistically correlation between features and improving recognition rate. The experiment results on Olivetti Research Laboratory (ORL) face database shows that the new feature extraction method of statistically uncorrelated maximum margin criterion (SUMMC) are better in terms of recognition rate and stability. Besides, the relations between maximum margin criterion and Fisher criterion for feature extraction were revealed.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu
2010-04-01
Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.
Hur, Sang-sun; Choi, Suk-won; Lee, Dong-ryul; Park, Jong-hwan
2018-01-01
This study was conducted to determine if topical application of Moringa oleifera extracts and its bioconversion product fermented by Rhizopus oligosporus has therapeutic properties enhancement for treatment of atopic dermatitis. Rhizopus oligosporus (KCCM 11232P) was used to ferment Moringa leaves' extracts in this study. Comparison of organic acids and flavonols in Moringa simple extracts and their fermented product by HPLC analysis revealed that concentration of organic acids and flavonols of bioconversion product was lower than that of hot water extracts. The fermentation process is used as a nutrient for isolation of each component by microorganisms and growth of microorganisms. The results demonstrated that MF extracts effectively reduced clinical features based on macrography, scratching count, and severity scores, as well as model's serum IgE level, including histopathological analyses. PMID:29576799
Question analysis for Indonesian comparative question
NASA Astrophysics Data System (ADS)
Saelan, A.; Purwarianti, A.; Widyantoro, D. H.
2017-01-01
Information seeking is one of human needs today. Comparing things using search engine surely take more times than search only one thing. In this paper, we analyzed comparative questions for comparative question answering system. Comparative question is a question that comparing two or more entities. We grouped comparative questions into 5 types: selection between mentioned entities, selection between unmentioned entities, selection between any entity, comparison, and yes or no question. Then we extracted 4 types of information from comparative questions: entity, aspect, comparison, and constraint. We built classifiers for classification task and information extraction task. Features used for classification task are bag of words, whether for information extraction, we used lexical, 2 previous and following words lexical, and previous label as features. We tried 2 scenarios: classification first and extraction first. For classification first, we used classification result as a feature for extraction. Otherwise, for extraction first, we used extraction result as features for classification. We found that the result would be better if we do extraction first before classification. For the extraction task, classification using SMO gave the best result (88.78%), while for classification, it is better to use naïve bayes (82.35%).
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Information based universal feature extraction
NASA Astrophysics Data System (ADS)
Amiri, Mohammad; Brause, Rüdiger
2015-02-01
In many real world image based pattern recognition tasks, the extraction and usage of task-relevant features are the most crucial part of the diagnosis. In the standard approach, they mostly remain task-specific, although humans who perform such a task always use the same image features, trained in early childhood. It seems that universal feature sets exist, but they are not yet systematically found. In our contribution, we tried to find those universal image feature sets that are valuable for most image related tasks. In our approach, we trained a neural network by natural and non-natural images of objects and background, using a Shannon information-based algorithm and learning constraints. The goal was to extract those features that give the most valuable information for classification of visual objects hand-written digits. This will give a good start and performance increase for all other image learning tasks, implementing a transfer learning approach. As result, in our case we found that we could indeed extract features which are valid in all three kinds of tasks.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-03-10
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
Jang, Jinbeum; Yoo, Yoonjong; Kim, Jongheon; Paik, Joonki
2015-01-01
This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems. PMID:25763645
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
Houshyarifar, Vahid; Chehel Amirani, Mehdi
2016-08-12
In this paper we present a method to predict Sudden Cardiac Arrest (SCA) with higher order spectral (HOS) and linear (Time) features extracted from heart rate variability (HRV) signal. Predicting the occurrence of SCA is important in order to avoid the probability of Sudden Cardiac Death (SCD). This work is a challenge to predict five minutes before SCA onset. The method consists of four steps: pre-processing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In second step, bispectrum features of HRV signal and time-domain features are obtained. Six features are extracted from bispectrum and two features from time-domain. In the next step, these features are reduced to one feature by the linear discriminant analysis (LDA) technique. Finally, KNN and support vector machine-based classifiers are used to classify the HRV signals. We used two database named, MIT/BIH Sudden Cardiac Death (SCD) Database and Physiobank Normal Sinus Rhythm (NSR). In this work we achieved prediction of SCD occurrence for six minutes before the SCA with the accuracy over 91%.
Single-image-based Rain Detection and Removal via CNN
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Fu, Chengzhou
2018-04-01
The quality of the image is degraded by rain streaks, which have negative impact when we extract image features for many visual tasks, such as feature extraction for classification and recognition, tracking, surveillance and autonomous navigation. Hence, it is necessary to detect and remove rain streaks from single images, which is a challenging problem since we have no spatial-temporal information of rain streaks compared to the dynamic video stream. Inspired by the priori that the rain streaks have almost the same feature, such as the direction or the thickness, although they are in different types of real-world images. The paper aims at proposing an effective convolutional neural network (CNN) to detect and remove rain streaks from single image. Two models of synthesized rainy image, linear additive composite model (LACM model) and screen blend model (SCM model), are considered in this paper. The main idea is that it is easier for our CNN network to find the mapping between the rainy image and rain streaks than between the rainy image and clean image. The reason is that rain streaks have fixed features, but clean images have various features. The experiments show that the designed CNN network outperforms state-of-the-art approaches on both synthesized and real-world images, which indicates the effectiveness of our proposed framework.
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
NASA Astrophysics Data System (ADS)
Patil, Sandeep Baburao; Sinha, G. R.
2017-02-01
India, having less awareness towards the deaf and dumb peoples leads to increase the communication gap between deaf and hard hearing community. Sign language is commonly developed for deaf and hard hearing peoples to convey their message by generating the different sign pattern. The scale invariant feature transform was introduced by David Lowe to perform reliable matching between different images of the same object. This paper implements the various phases of scale invariant feature transform to extract the distinctive features from Indian sign language gestures. The experimental result shows the time constraint for each phase and the number of features extracted for 26 ISL gestures.
Kim, Byung-Chul; Kim, Youn-Sub; Lee, Jin-Woo; Seo, Jin-Hee; Ji, Eun-Sang; Lee, Hyejung; Park, Yong-Il
2011-01-01
Nitric oxide (NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive NO is believed to be a mediator of neurotoxicity. The medicinal plant Coriolus versicolor is known to possess anti-tumor and immune-potentiating activities. In this study, we investigated whether Coriolus versicolor possesses a protective effect against NO donor sodium nitroprusside (SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. We utilized 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-MC cells. MTT assay showed that SNP treatment significantly reduces the viability of cells, and the viabilities of cells pre-treated with the aqueous extract of Coriolus versicolor cultivated in citrus extract (CVEcitrus) was increased. However, aqueous extract of Coriolus versicolor cultivated in synthetic medium (CVEsynthetic) showed no protective effect and aqueous citrus extract (CE) had a little protective effect. The cell treated with SNP exhibited several apoptotic features, while those pre-treated for 1 h with CVEcitrus prior to SNP expose showed reduced apoptotic features. The cells pre-treated for 1 h with CVEcitrus prior to SNP expose inhibited p53 and Bax expressions and caspase-3 enzyme activity up-regulated by SNP. We showed that CVEcitrus exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells. Our study suggests that CVEcitrus has therapeutic value in the treatment of a variety of NO-induced brain diseases. PMID:22110367
Kim, Byung-Chul; Kim, Youn-Sub; Lee, Jin-Woo; Seo, Jin-Hee; Ji, Eun-Sang; Lee, Hyejung; Park, Yong-Il; Kim, Chang-Ju
2011-06-01
Nitric oxide (NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive NO is believed to be a mediator of neurotoxicity. The medicinal plant Coriolus versicolor is known to possess anti-tumor and immune-potentiating activities. In this study, we investigated whether Coriolus versicolor possesses a protective effect against NO donor sodium nitroprusside (SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. We utilized 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-MC cells. MTT assay showed that SNP treatment significantly reduces the viability of cells, and the viabilities of cells pre-treated with the aqueous extract of Coriolus versicolor cultivated in citrus extract (CVE(citrus)) was increased. However, aqueous extract of Coriolus versicolor cultivated in synthetic medium (CVE(synthetic)) showed no protective effect and aqueous citrus extract (CE) had a little protective effect. The cell treated with SNP exhibited several apoptotic features, while those pre-treated for 1 h with CVE(citrus) prior to SNP expose showed reduced apoptotic features. The cells pre-treated for 1 h with CVE(citrus) prior to SNP expose inhibited p53 and Bax expressions and caspase-3 enzyme activity up-regulated by SNP. We showed that CVE(citrus) exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells. Our study suggests that CVE(citrus) has therapeutic value in the treatment of a variety of NO-induced brain diseases.
NASA Astrophysics Data System (ADS)
Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi
2016-10-01
The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.
Automatic Extraction of Planetary Image Features
NASA Technical Reports Server (NTRS)
Troglio, G.; LeMoigne, J.; Moser, G.; Serpico, S. B.; Benediktsson, J. A.
2009-01-01
With the launch of several Lunar missions such as the Lunar Reconnaissance Orbiter (LRO) and Chandrayaan-1, a large amount of Lunar images will be acquired and will need to be analyzed. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to Lunar data that often present low contrast and uneven illumination characteristics. In this paper, we propose a new method for the extraction of Lunar features (that can be generalized to other planetary images), based on the combination of several image processing techniques, a watershed segmentation and the generalized Hough Transform. This feature extraction has many applications, among which image registration.
Waveform fitting and geometry analysis for full-waveform lidar feature extraction
NASA Astrophysics Data System (ADS)
Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu
2016-10-01
This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.
Martins, Natália; Barros, Lillian; Santos-Buelga, Celestino; Henriques, Mariana; Silva, Sónia; Ferreira, Isabel C F R
2014-09-01
Bioactivity of oregano methanolic extracts and essential oils is well known. Nonetheless, reports using aqueous extracts are scarce, mainly decoction or infusion preparations used for therapeutic applications. Herein, the antioxidant and antibacterial activities, and phenolic compounds of the infusion, decoction and hydroalcoholic extract of oregano were evaluated and compared. The antioxidant activity is related with phenolic compounds, mostly flavonoids, since decoction presented the highest concentration of flavonoids and total phenolic compounds, followed by infusion and hydroalcoholic extract. The samples were effective against gram-negative and gram-positive bacteria. It is important to address that the hydroalcoholic extract showed the highest efficacy against Escherichia coli. This study demonstrates that the decoction could be used for antioxidant purposes, while the hydroalcoholic extract could be incorporated in formulations for antimicrobial features. Moreover, the use of infusion/decoction can avoid the toxic effects showed by oregano essential oil, widely reported for its antioxidant and antimicrobial properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Li; Xuan, Jianping; Shi, Tielin
2013-12-01
Generally, the vibration signals of faulty machinery are non-stationary and nonlinear under complicated operating conditions. Therefore, it is a big challenge for machinery fault diagnosis to extract optimal features for improving classification accuracy. This paper proposes semi-supervised kernel Marginal Fisher analysis (SSKMFA) for feature extraction, which can discover the intrinsic manifold structure of dataset, and simultaneously consider the intra-class compactness and the inter-class separability. Based on SSKMFA, a novel approach to fault diagnosis is put forward and applied to fault recognition of rolling bearings. SSKMFA directly extracts the low-dimensional characteristics from the raw high-dimensional vibration signals, by exploiting the inherent manifold structure of both labeled and unlabeled samples. Subsequently, the optimal low-dimensional features are fed into the simplest K-nearest neighbor (KNN) classifier to recognize different fault categories and severities of bearings. The experimental results demonstrate that the proposed approach improves the fault recognition performance and outperforms the other four feature extraction methods.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao
2017-12-01
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
IMAGE 100: The interactive multispectral image processing system
NASA Technical Reports Server (NTRS)
Schaller, E. S.; Towles, R. W.
1975-01-01
The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.
What’s in a URL? Genre Classification from URLs
2012-01-01
webpages with access to the content of a document and feature extraction from URLs alone. Feature Extraction from Webpages Stylistic and structural...2010). Character n-grams (sequence of n characters) are attractive because of their simplicity and because they encapsulate both lexical and stylistic ...report might be stylistic . Feature Extraction from URLs The syntactic characteristics of URLs have been fairly sta- ble over the years. URL terms are
NASA Astrophysics Data System (ADS)
Wei, Hongqiang; Zhou, Guiyun; Zhou, Junjie
2018-04-01
The classification of leaf and wood points is an essential preprocessing step for extracting inventory measurements and canopy characterization of trees from the terrestrial laser scanning (TLS) data. The geometry-based approach is one of the widely used classification method. In the geometry-based method, it is common practice to extract salient features at one single scale before the features are used for classification. It remains unclear how different scale(s) used affect the classification accuracy and efficiency. To assess the scale effect on the classification accuracy and efficiency, we extracted the single-scale and multi-scale salient features from the point clouds of two oak trees of different sizes and conducted the classification on leaf and wood. Our experimental results show that the balanced accuracy of the multi-scale method is higher than the average balanced accuracy of the single-scale method by about 10 % for both trees. The average speed-up ratio of single scale classifiers over multi-scale classifier for each tree is higher than 30.
NASA Astrophysics Data System (ADS)
Ghoraani, Behnaz; Krishnan, Sridhar
2009-12-01
The number of people affected by speech problems is increasing as the modern world places increasing demands on the human voice via mobile telephones, voice recognition software, and interpersonal verbal communications. In this paper, we propose a novel methodology for automatic pattern classification of pathological voices. The main contribution of this paper is extraction of meaningful and unique features using Adaptive time-frequency distribution (TFD) and nonnegative matrix factorization (NMF). We construct Adaptive TFD as an effective signal analysis domain to dynamically track the nonstationarity in the speech and utilize NMF as a matrix decomposition (MD) technique to quantify the constructed TFD. The proposed method extracts meaningful and unique features from the joint TFD of the speech, and automatically identifies and measures the abnormality of the signal. Depending on the abnormality measure of each signal, we classify the signal into normal or pathological. The proposed method is applied on the Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database which consists of 161 pathological and 51 normal speakers, and an overall classification accuracy of 98.6% was achieved.
Detection of goal events in soccer videos
NASA Astrophysics Data System (ADS)
Kim, Hyoung-Gook; Roeber, Steffen; Samour, Amjad; Sikora, Thomas
2005-01-01
In this paper, we present an automatic extraction of goal events in soccer videos by using audio track features alone without relying on expensive-to-compute video track features. The extracted goal events can be used for high-level indexing and selective browsing of soccer videos. The detection of soccer video highlights using audio contents comprises three steps: 1) extraction of audio features from a video sequence, 2) event candidate detection of highlight events based on the information provided by the feature extraction Methods and the Hidden Markov Model (HMM), 3) goal event selection to finally determine the video intervals to be included in the summary. For this purpose we compared the performance of the well known Mel-scale Frequency Cepstral Coefficients (MFCC) feature extraction method vs. MPEG-7 Audio Spectrum Projection feature (ASP) extraction method based on three different decomposition methods namely Principal Component Analysis( PCA), Independent Component Analysis (ICA) and Non-Negative Matrix Factorization (NMF). To evaluate our system we collected five soccer game videos from various sources. In total we have seven hours of soccer games consisting of eight gigabytes of data. One of five soccer games is used as the training data (e.g., announcers' excited speech, audience ambient speech noise, audience clapping, environmental sounds). Our goal event detection results are encouraging.
Automated feature extraction and classification from image sources
,
1995-01-01
The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.
Line fitting based feature extraction for object recognition
NASA Astrophysics Data System (ADS)
Li, Bing
2014-06-01
Image feature extraction plays a significant role in image based pattern applications. In this paper, we propose a new approach to generate hierarchical features. This new approach applies line fitting to adaptively divide regions based upon the amount of information and creates line fitting features for each subsequent region. It overcomes the feature wasting drawback of the wavelet based approach and demonstrates high performance in real applications. For gray scale images, we propose a diffusion equation approach to map information-rich pixels (pixels near edges and ridge pixels) into high values, and pixels in homogeneous regions into small values near zero that form energy map images. After the energy map images are generated, we propose a line fitting approach to divide regions recursively and create features for each region simultaneously. This new feature extraction approach is similar to wavelet based hierarchical feature extraction in which high layer features represent global characteristics and low layer features represent local characteristics. However, the new approach uses line fitting to adaptively focus on information-rich regions so that we avoid the feature waste problems of the wavelet approach in homogeneous regions. Finally, the experiments for handwriting word recognition show that the new method provides higher performance than the regular handwriting word recognition approach.
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh
2011-01-01
This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-03-16
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body.
Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting
NASA Astrophysics Data System (ADS)
Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing
2018-02-01
Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.
Facial expression identification using 3D geometric features from Microsoft Kinect device
NASA Astrophysics Data System (ADS)
Han, Dongxu; Al Jawad, Naseer; Du, Hongbo
2016-05-01
Facial expression identification is an important part of face recognition and closely related to emotion detection from face images. Various solutions have been proposed in the past using different types of cameras and features. Microsoft Kinect device has been widely used for multimedia interactions. More recently, the device has been increasingly deployed for supporting scientific investigations. This paper explores the effectiveness of using the device in identifying emotional facial expressions such as surprise, smile, sad, etc. and evaluates the usefulness of 3D data points on a face mesh structure obtained from the Kinect device. We present a distance-based geometric feature component that is derived from the distances between points on the face mesh and selected reference points in a single frame. The feature components extracted across a sequence of frames starting and ending by neutral emotion represent a whole expression. The feature vector eliminates the need for complex face orientation correction, simplifying the feature extraction process and making it more efficient. We applied the kNN classifier that exploits a feature component based similarity measure following the principle of dynamic time warping to determine the closest neighbors. Preliminary tests on a small scale database of different facial expressions show promises of the newly developed features and the usefulness of the Kinect device in facial expression identification.
NASA Astrophysics Data System (ADS)
Paino, A.; Keller, J.; Popescu, M.; Stone, K.
2014-06-01
In this paper we present an approach that uses Genetic Programming (GP) to evolve novel feature extraction algorithms for greyscale images. Our motivation is to create an automated method of building new feature extraction algorithms for images that are competitive with commonly used human-engineered features, such as Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). The evolved feature extraction algorithms are functions defined over the image space, and each produces a real-valued feature vector of variable length. Each evolved feature extractor breaks up the given image into a set of cells centered on every pixel, performs evolved operations on each cell, and then combines the results of those operations for every cell using an evolved operator. Using this method, the algorithm is flexible enough to reproduce both LBP and HOG features. The dataset we use to train and test our approach consists of a large number of pre-segmented image "chips" taken from a Forward Looking Infrared Imagery (FLIR) camera mounted on the hood of a moving vehicle. The goal is to classify each image chip as either containing or not containing a buried object. To this end, we define the fitness of a candidate solution as the cross-fold validation accuracy of the features generated by said candidate solution when used in conjunction with a Support Vector Machine (SVM) classifier. In order to validate our approach, we compare the classification accuracy of an SVM trained using our evolved features with the accuracy of an SVM trained using mainstream feature extraction algorithms, including LBP and HOG.
Chemical-induced disease relation extraction with various linguistic features.
Gu, Jinghang; Qian, Longhua; Zhou, Guodong
2016-01-01
Understanding the relations between chemicals and diseases is crucial in various biomedical tasks such as new drug discoveries and new therapy developments. While manually mining these relations from the biomedical literature is costly and time-consuming, such a procedure is often difficult to keep up-to-date. To address these issues, the BioCreative-V community proposed a challenging task of automatic extraction of chemical-induced disease (CID) relations in order to benefit biocuration. This article describes our work on the CID relation extraction task on the BioCreative-V tasks. We built a machine learning based system that utilized simple yet effective linguistic features to extract relations with maximum entropy models. In addition to leveraging various features, the hypernym relations between entity concepts derived from the Medical Subject Headings (MeSH)-controlled vocabulary were also employed during both training and testing stages to obtain more accurate classification models and better extraction performance, respectively. We demoted relation extraction between entities in documents to relation extraction between entity mentions. In our system, pairs of chemical and disease mentions at both intra- and inter-sentence levels were first constructed as relation instances for training and testing, then two classification models at both levels were trained from the training examples and applied to the testing examples. Finally, we merged the classification results from mention level to document level to acquire final relations between chemicals and diseases. Our system achieved promisingF-scores of 60.4% on the development dataset and 58.3% on the test dataset using gold-standard entity annotations, respectively. Database URL:https://github.com/JHnlp/BC5CIDTask. © The Author(s) 2016. Published by Oxford University Press.
Assessing Footwear Effects from Principal Features of Plantar Loading during Running.
Trudeau, Matthieu B; von Tscharner, Vinzenz; Vienneau, Jordyn; Hoerzer, Stefan; Nigg, Benno M
2015-09-01
The effects of footwear on the musculoskeletal system are commonly assessed by interpreting the resultant force at the foot during the stance phase of running. However, this approach overlooks loading patterns across the entire foot. An alternative technique for assessing foot loading across different footwear conditions is possible using comprehensive analysis tools that extract different foot loading features, thus enhancing the functional interpretation of the differences across different interventions. The purpose of this article was to use pattern recognition techniques to develop and use a novel comprehensive method for assessing the effects of different footwear interventions on plantar loading. A principal component analysis was used to extract different loading features from the stance phase of running, and a support vector machine (SVM) was used to determine whether and how these loading features were different across three shoe conditions. The results revealed distinct loading features at the foot during the stance phase of running. The loading features determined from the principal component analysis allowed successful classification of all three shoe conditions using the SVM. Several differences were found in the location and timing of the loading across each pairwise shoe comparison using the output from the SVM. The analysis approach proposed can successfully be used to compare different loading patterns with a much greater resolution than has been reported previously. This study has several important applications. One such application is that it would not be relevant for a user to select a shoe or for a manufacturer to alter a shoe's construction if the classification across shoe conditions would not have been significant.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, J.; Chen, W.; Dou, A.; Li, W.; Sun, Y.
2018-04-01
A new information extraction method of damaged buildings rooted in optimal feature space is put forward on the basis of the traditional object-oriented method. In this new method, ESP (estimate of scale parameter) tool is used to optimize the segmentation of image. Then the distance matrix and minimum separation distance of all kinds of surface features are calculated through sample selection to find the optimal feature space, which is finally applied to extract the image of damaged buildings after earthquake. The overall extraction accuracy reaches 83.1 %, the kappa coefficient 0.813. The new information extraction method greatly improves the extraction accuracy and efficiency, compared with the traditional object-oriented method, and owns a good promotional value in the information extraction of damaged buildings. In addition, the new method can be used for the information extraction of different-resolution images of damaged buildings after earthquake, then to seek the optimal observation scale of damaged buildings through accuracy evaluation. It is supposed that the optimal observation scale of damaged buildings is between 1 m and 1.2 m, which provides a reference for future information extraction of damaged buildings.
An online handwriting recognition system for Turkish
NASA Astrophysics Data System (ADS)
Vural, Esra; Erdogan, Hakan; Oflazer, Kemal; Yanikoglu, Berrin A.
2004-12-01
Despite recent developments in Tablet PC technology, there has not been any applications for recognizing handwritings in Turkish. In this paper, we present an online handwritten text recognition system for Turkish, developed using the Tablet PC interface. However, even though the system is developed for Turkish, the addressed issues are common to online handwriting recognition systems in general. Several dynamic features are extracted from the handwriting data for each recorded point and Hidden Markov Models (HMM) are used to train letter and word models. We experimented with using various features and HMM model topologies, and report on the effects of these experiments. We started with first and second derivatives of the x and y coordinates and relative change in the pen pressure as initial features. We found that using two more additional features, that is, number of neighboring points and relative heights of each point with respect to the base-line improve the recognition rate. In addition, extracting features within strokes and using a skipping state topology improve the system performance as well. The improved system performance is 94% in recognizing handwritten words from a 1000-word lexicon.
An online handwriting recognition system for Turkish
NASA Astrophysics Data System (ADS)
Vural, Esra; Erdogan, Hakan; Oflazer, Kemal; Yanikoglu, Berrin A.
2005-01-01
Despite recent developments in Tablet PC technology, there has not been any applications for recognizing handwritings in Turkish. In this paper, we present an online handwritten text recognition system for Turkish, developed using the Tablet PC interface. However, even though the system is developed for Turkish, the addressed issues are common to online handwriting recognition systems in general. Several dynamic features are extracted from the handwriting data for each recorded point and Hidden Markov Models (HMM) are used to train letter and word models. We experimented with using various features and HMM model topologies, and report on the effects of these experiments. We started with first and second derivatives of the x and y coordinates and relative change in the pen pressure as initial features. We found that using two more additional features, that is, number of neighboring points and relative heights of each point with respect to the base-line improve the recognition rate. In addition, extracting features within strokes and using a skipping state topology improve the system performance as well. The improved system performance is 94% in recognizing handwritten words from a 1000-word lexicon.
[Fast discrimination of edible vegetable oil based on Raman spectroscopy].
Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng
2012-07-01
A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.
Objective grading of facial paralysis using Local Binary Patterns in video processing.
He, Shu; Soraghan, John J; O'Reilly, Brian F
2008-01-01
This paper presents a novel framework for objective measurement of facial paralysis in biomedial videos. The motion information in the horizontal and vertical directions and the appearance features on the apex frames are extracted based on the Local Binary Patterns (LBP) on the temporal-spatial domain in each facial region. These features are temporally and spatially enhanced by the application of block schemes. A multi-resolution extension of uniform LBP is proposed to efficiently combine the micro-patterns and large-scale patterns into a feature vector, which increases the algorithmic robustness and reduces noise effects while still retaining computational simplicity. The symmetry of facial movements is measured by the Resistor-Average Distance (RAD) between LBP features extracted from the two sides of the face. Support Vector Machine (SVM) is applied to provide quantitative evaluation of facial paralysis based on the House-Brackmann (H-B) Scale. The proposed method is validated by experiments with 197 subject videos, which demonstrates its accuracy and efficiency.
Transformer fault diagnosis using continuous sparse autoencoder.
Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou
2016-01-01
This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.
Robust Point Set Matching for Partial Face Recognition.
Weng, Renliang; Lu, Jiwen; Tan, Yap-Peng
2016-03-01
Over the past three decades, a number of face recognition methods have been proposed in computer vision, and most of them use holistic face images for person identification. In many real-world scenarios especially some unconstrained environments, human faces might be occluded by other objects, and it is difficult to obtain fully holistic face images for recognition. To address this, we propose a new partial face recognition approach to recognize persons of interest from their partial faces. Given a pair of gallery image and probe face patch, we first detect keypoints and extract their local textural features. Then, we propose a robust point set matching method to discriminatively match these two extracted local feature sets, where both the textural information and geometrical information of local features are explicitly used for matching simultaneously. Finally, the similarity of two faces is converted as the distance between these two aligned feature sets. Experimental results on four public face data sets show the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Thomaz, Ricardo L.; Carneiro, Pedro C.; Patrocinio, Ana C.
2017-03-01
Breast cancer is the leading cause of death for women in most countries. The high levels of mortality relate mostly to late diagnosis and to the direct proportionally relationship between breast density and breast cancer development. Therefore, the correct assessment of breast density is important to provide better screening for higher risk patients. However, in modern digital mammography the discrimination among breast densities is highly complex due to increased contrast and visual information for all densities. Thus, a computational system for classifying breast density might be a useful tool for aiding medical staff. Several machine-learning algorithms are already capable of classifying small number of classes with good accuracy. However, machinelearning algorithms main constraint relates to the set of features extracted and used for classification. Although well-known feature extraction techniques might provide a good set of features, it is a complex task to select an initial set during design of a classifier. Thus, we propose feature extraction using a Convolutional Neural Network (CNN) for classifying breast density by a usual machine-learning classifier. We used 307 mammographic images downsampled to 260x200 pixels to train a CNN and extract features from a deep layer. After training, the activation of 8 neurons from a deep fully connected layer are extracted and used as features. Then, these features are feedforward to a single hidden layer neural network that is cross-validated using 10-folds to classify among four classes of breast density. The global accuracy of this method is 98.4%, presenting only 1.6% of misclassification. However, the small set of samples and memory constraints required the reuse of data in both CNN and MLP-NN, therefore overfitting might have influenced the results even though we cross-validated the network. Thus, although we presented a promising method for extracting features and classifying breast density, a greater database is still required for evaluating the results.
Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology
2005-04-01
Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in
A Transform-Based Feature Extraction Approach for Motor Imagery Tasks Classification
Khorshidtalab, Aida; Mesbah, Mostefa; Salami, Momoh J. E.
2015-01-01
In this paper, we present a new motor imagery classification method in the context of electroencephalography (EEG)-based brain–computer interface (BCI). This method uses a signal-dependent orthogonal transform, referred to as linear prediction singular value decomposition (LP-SVD), for feature extraction. The transform defines the mapping as the left singular vectors of the LP coefficient filter impulse response matrix. Using a logistic tree-based model classifier; the extracted features are classified into one of four motor imagery movements. The proposed approach was first benchmarked against two related state-of-the-art feature extraction approaches, namely, discrete cosine transform (DCT) and adaptive autoregressive (AAR)-based methods. By achieving an accuracy of 67.35%, the LP-SVD approach outperformed the other approaches by large margins (25% compared with DCT and 6 % compared with AAR-based methods). To further improve the discriminatory capability of the extracted features and reduce the computational complexity, we enlarged the extracted feature subset by incorporating two extra features, namely, Q- and the Hotelling’s \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$T^{2}$ \\end{document} statistics of the transformed EEG and introduced a new EEG channel selection method. The performance of the EEG classification based on the expanded feature set and channel selection method was compared with that of a number of the state-of-the-art classification methods previously reported with the BCI IIIa competition data set. Our method came second with an average accuracy of 81.38%. PMID:27170898
NASA Astrophysics Data System (ADS)
Wan, Xiaoqing; Zhao, Chunhui; Gao, Bing
2017-11-01
The integration of an edge-preserving filtering technique in the classification of a hyperspectral image (HSI) has been proven effective in enhancing classification performance. This paper proposes an ensemble strategy for HSI classification using an edge-preserving filter along with a deep learning model and edge detection. First, an adaptive guided filter is applied to the original HSI to reduce the noise in degraded images and to extract powerful spectral-spatial features. Second, the extracted features are fed as input to a stacked sparse autoencoder to adaptively exploit more invariant and deep feature representations; then, a random forest classifier is applied to fine-tune the entire pretrained network and determine the classification output. Third, a Prewitt compass operator is further performed on the HSI to extract the edges of the first principal component after dimension reduction. Moreover, the regional growth rule is applied to the resulting edge logical image to determine the local region for each unlabeled pixel. Finally, the categories of the corresponding neighborhood samples are determined in the original classification map; then, the major voting mechanism is implemented to generate the final output. Extensive experiments proved that the proposed method achieves competitive performance compared with several traditional approaches.
A Foreign Object Damage Event Detector Data Fusion System for Turbofan Engines
NASA Technical Reports Server (NTRS)
Turso, James A.; Litt, Jonathan S.
2004-01-01
A Data Fusion System designed to provide a reliable assessment of the occurrence of Foreign Object Damage (FOD) in a turbofan engine is presented. The FOD-event feature level fusion scheme combines knowledge of shifts in engine gas path performance obtained using a Kalman filter, with bearing accelerometer signal features extracted via wavelet analysis, to positively identify a FOD event. A fuzzy inference system provides basic probability assignments (bpa) based on features extracted from the gas path analysis and bearing accelerometers to a fusion algorithm based on the Dempster-Shafer-Yager Theory of Evidence. Details are provided on the wavelet transforms used to extract the foreign object strike features from the noisy data and on the Kalman filter-based gas path analysis. The system is demonstrated using a turbofan engine combined-effects model (CEM), providing both gas path and rotor dynamic structural response, and is suitable for rapid-prototyping of control and diagnostic systems. The fusion of the disparate data can provide significantly more reliable detection of a FOD event than the use of either method alone. The use of fuzzy inference techniques combined with Dempster-Shafer-Yager Theory of Evidence provides a theoretical justification for drawing conclusions based on imprecise or incomplete data.
Zhao, Weixiang; Sankaran, Shankar; Ibáñez, Ana M; Dandekar, Abhaya M; Davis, Cristina E
2009-08-04
This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.
NASA Astrophysics Data System (ADS)
He, Zhi; Liu, Lin
2016-11-01
Empirical mode decomposition (EMD) and its variants have recently been applied for hyperspectral image (HSI) classification due to their ability to extract useful features from the original HSI. However, it remains a challenging task to effectively exploit the spectral-spatial information by the traditional vector or image-based methods. In this paper, a three-dimensional (3D) extension of EMD (3D-EMD) is proposed to naturally treat the HSI as a cube and decompose the HSI into varying oscillations (i.e. 3D intrinsic mode functions (3D-IMFs)). To achieve fast 3D-EMD implementation, 3D Delaunay triangulation (3D-DT) is utilized to determine the distances of extrema, while separable filters are adopted to generate the envelopes. Taking the extracted 3D-IMFs as features of different tasks, robust multitask learning (RMTL) is further proposed for HSI classification. In RMTL, pairs of low-rank and sparse structures are formulated by trace-norm and l1,2 -norm to capture task relatedness and specificity, respectively. Moreover, the optimization problems of RMTL can be efficiently solved by the inexact augmented Lagrangian method (IALM). Compared with several state-of-the-art feature extraction and classification methods, the experimental results conducted on three benchmark data sets demonstrate the superiority of the proposed methods.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
Automation of lidar-based hydrologic feature extraction workflows using GIS
NASA Astrophysics Data System (ADS)
Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.
2016-10-01
With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.
NASA Astrophysics Data System (ADS)
Liu, Qingsheng; Liang, Li; Liu, Gaohuan; Huang, Chong
2017-09-01
Vegetation often exists as patch in arid and semi-arid region throughout the world. Vegetation patch can be effectively monitored by remote sensing images. However, not all satellite platforms are suitable to study quasi-circular vegetation patch. This study compares fine (GF-1) and coarse (CBERS-04) resolution platforms, specifically focusing on the quasicircular vegetation patches in the Yellow River Delta (YRD), China. Vegetation patch features (area, shape) were extracted from GF-1 and CBERS-04 imagery using unsupervised classifier (K-Means) and object-oriented approach (Example-based feature extraction with SVM classifier) in order to analyze vegetation patterns. These features were then compared using vector overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped vegetation patches were significantly different. Regardless of K-Means or Example-based feature extraction with SVM classification, it was found that the area of quasi-circular vegetation patches from visual interpretation from QuickBird image (ground truth data) was greater than that from both of GF-1 and CBERS-04, and the number of patches detected from GF-1 data was more than that of CBERS-04 image. It was seen that without expert's experience and professional training on object-oriented approach, K-Means was better than example-based feature extraction with SVM for detecting the patch. It indicated that CBERS-04 could be used to detect the patch with area of more than 300 m2, but GF-1 data was a sufficient source for patch detection in the YRD. However, in the future, finer resolution platforms such as Worldview are needed to gain more detailed insight on patch structures and components and formation mechanism.
Drug side effect extraction from clinical narratives of psychiatry and psychology patients
Kocher, Jean-Pierre A; Chute, Christopher G; Savova, Guergana K
2011-01-01
Objective To extract physician-asserted drug side effects from electronic medical record clinical narratives. Materials and methods Pattern matching rules were manually developed through examining keywords and expression patterns of side effects to discover an individual side effect and causative drug relationship. A combination of machine learning (C4.5) using side effect keyword features and pattern matching rules was used to extract sentences that contain side effect and causative drug pairs, enabling the system to discover most side effect occurrences. Our system was implemented as a module within the clinical Text Analysis and Knowledge Extraction System. Results The system was tested in the domain of psychiatry and psychology. The rule-based system extracting side effects and causative drugs produced an F score of 0.80 (0.55 excluding allergy section). The hybrid system identifying side effect sentences had an F score of 0.75 (0.56 excluding allergy section) but covered more side effect and causative drug pairs than individual side effect extraction. Discussion The rule-based system was able to identify most side effects expressed by clear indication words. More sophisticated semantic processing is required to handle complex side effect descriptions in the narrative. We demonstrated that our system can be trained to identify sentences with complex side effect descriptions that can be submitted to a human expert for further abstraction. Conclusion Our system was able to extract most physician-asserted drug side effects. It can be used in either an automated mode for side effect extraction or semi-automated mode to identify side effect sentences that can significantly simplify abstraction by a human expert. PMID:21946242
Feature Extraction and Selection Strategies for Automated Target Recognition
NASA Technical Reports Server (NTRS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-01-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Feature extraction and selection strategies for automated target recognition
NASA Astrophysics Data System (ADS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-04-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
A method of vehicle license plate recognition based on PCANet and compressive sensing
NASA Astrophysics Data System (ADS)
Ye, Xianyi; Min, Feng
2018-03-01
The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.
Selecting relevant 3D image features of margin sharpness and texture for lung nodule retrieval.
Ferreira, José Raniery; de Azevedo-Marques, Paulo Mazzoncini; Oliveira, Marcelo Costa
2017-03-01
Lung cancer is the leading cause of cancer-related deaths in the world. Its diagnosis is a challenge task to specialists due to several aspects on the classification of lung nodules. Therefore, it is important to integrate content-based image retrieval methods on the lung nodule classification process, since they are capable of retrieving similar cases from databases that were previously diagnosed. However, this mechanism depends on extracting relevant image features in order to obtain high efficiency. The goal of this paper is to perform the selection of 3D image features of margin sharpness and texture that can be relevant on the retrieval of similar cancerous and benign lung nodules. A total of 48 3D image attributes were extracted from the nodule volume. Border sharpness features were extracted from perpendicular lines drawn over the lesion boundary. Second-order texture features were extracted from a cooccurrence matrix. Relevant features were selected by a correlation-based method and a statistical significance analysis. Retrieval performance was assessed according to the nodule's potential malignancy on the 10 most similar cases and by the parameters of precision and recall. Statistical significant features reduced retrieval performance. Correlation-based method selected 2 margin sharpness attributes and 6 texture attributes and obtained higher precision compared to all 48 extracted features on similar nodule retrieval. Feature space dimensionality reduction of 83 % obtained higher retrieval performance and presented to be a computationaly low cost method of retrieving similar nodules for the diagnosis of lung cancer.
WND-CHARM: Multi-purpose image classification using compound image transforms
Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.
2008-01-01
We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301
Human listening studies reveal insights into object features extracted by echolocating dolphins
NASA Astrophysics Data System (ADS)
Delong, Caroline M.; Au, Whitlow W. L.; Roitblat, Herbert L.
2004-05-01
Echolocating dolphins extract object feature information from the acoustic parameters of object echoes. However, little is known about which object features are salient to dolphins or how they extract those features. To gain insight into how dolphins might be extracting feature information, human listeners were presented with echoes from objects used in a dolphin echoic-visual cross-modal matching task. Human participants performed a task similar to the one the dolphin had performed; however, echoic samples consisting of 23-echo trains were presented via headphones. The participants listened to the echoic sample and then visually selected the correct object from among three alternatives. The participants performed as well as or better than the dolphin (M=88.0% correct), and reported using a combination of acoustic cues to extract object features (e.g., loudness, pitch, timbre). Participants frequently reported using the pattern of aural changes in the echoes across the echo train to identify the shape and structure of the objects (e.g., peaks in loudness or pitch). It is likely that dolphins also attend to the pattern of changes across echoes as objects are echolocated from different angles.
Feature extraction with deep neural networks by a generalized discriminant analysis.
Stuhlsatz, André; Lippel, Jens; Zielke, Thomas
2012-04-01
We present an approach to feature extraction that is a generalization of the classical linear discriminant analysis (LDA) on the basis of deep neural networks (DNNs). As for LDA, discriminative features generated from independent Gaussian class conditionals are assumed. This modeling has the advantages that the intrinsic dimensionality of the feature space is bounded by the number of classes and that the optimal discriminant function is linear. Unfortunately, linear transformations are insufficient to extract optimal discriminative features from arbitrarily distributed raw measurements. The generalized discriminant analysis (GerDA) proposed in this paper uses nonlinear transformations that are learnt by DNNs in a semisupervised fashion. We show that the feature extraction based on our approach displays excellent performance on real-world recognition and detection tasks, such as handwritten digit recognition and face detection. In a series of experiments, we evaluate GerDA features with respect to dimensionality reduction, visualization, classification, and detection. Moreover, we show that GerDA DNNs can preprocess truly high-dimensional input data to low-dimensional representations that facilitate accurate predictions even if simple linear predictors or measures of similarity are used.
An approach for automatic classification of grouper vocalizations with passive acoustic monitoring.
Ibrahim, Ali K; Chérubin, Laurent M; Zhuang, Hanqi; Schärer Umpierre, Michelle T; Dalgleish, Fraser; Erdol, Nurgun; Ouyang, B; Dalgleish, A
2018-02-01
Grouper, a family of marine fishes, produce distinct vocalizations associated with their reproductive behavior during spawning aggregation. These low frequencies sounds (50-350 Hz) consist of a series of pulses repeated at a variable rate. In this paper, an approach is presented for automatic classification of grouper vocalizations from ambient sounds recorded in situ with fixed hydrophones based on weighted features and sparse classifier. Group sounds were labeled initially by humans for training and testing various feature extraction and classification methods. In the feature extraction phase, four types of features were used to extract features of sounds produced by groupers. Once the sound features were extracted, three types of representative classifiers were applied to categorize the species that produced these sounds. Experimental results showed that the overall percentage of identification using the best combination of the selected feature extractor weighted mel frequency cepstral coefficients and sparse classifier achieved 82.7% accuracy. The proposed algorithm has been implemented in an autonomous platform (wave glider) for real-time detection and classification of group vocalizations.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Kim, Bokkyu; Park, Ji Hoon; Wang, Erik; Forsyth, Sydney; Lim, Cody; Ravi, Ragini; Karibyan, Sarkis; Sanchez, Alexander; Liu, Brent
2017-03-01
Quantitative imaging biomarkers are used widely in clinical trials for tracking and evaluation of medical interventions. Previously, we have presented a web based informatics system utilizing quantitative imaging features for predicting outcomes in stroke rehabilitation clinical trials. The system integrates imaging features extraction tools and a web-based statistical analysis tool. The tools include a generalized linear mixed model(GLMM) that can investigate potential significance and correlation based on features extracted from clinical data and quantitative biomarkers. The imaging features extraction tools allow the user to collect imaging features and the GLMM module allows the user to select clinical data and imaging features such as stroke lesion characteristics from the database as regressors and regressands. This paper discusses the application scenario and evaluation results of the system in a stroke rehabilitation clinical trial. The system was utilized to manage clinical data and extract imaging biomarkers including stroke lesion volume, location and ventricle/brain ratio. The GLMM module was validated and the efficiency of data analysis was also evaluated.
Feature extraction from multiple data sources using genetic programming
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Brumby, Steven P.; Pope, Paul A.; Eads, Damian R.; Esch-Mosher, Diana M.; Galassi, Mark C.; Harvey, Neal R.; McCulloch, Hersey D.; Perkins, Simon J.; Porter, Reid B.; Theiler, James P.; Young, Aaron C.; Bloch, Jeffrey J.; David, Nancy A.
2002-08-01
Feature extraction from imagery is an important and long-standing problem in remote sensing. In this paper, we report on work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model (DEM) data. We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing software that inherently combines spatial and spectral processing. GENIE is particularly useful in exploratory studies of imagery, such as one often does in combining data from multiple sources. The user trains the software by painting the feature of interest with a simple graphical user interface. GENIE then uses genetic programming techniques to produce an image-processing pipeline. Here, we demonstrate evolution of image processing algorithms that extract a range of land cover features including towns, wildfire burnscars, and forest. We use imagery from the DOE/NNSA Multispectral Thermal Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
NASA Astrophysics Data System (ADS)
Li, Wei; Chen, Ting; Zhang, Wenjun; Shi, Yunyu; Li, Jun
2012-04-01
In recent years, Music video data is increasing at an astonishing speed. Shot segmentation and keyframe extraction constitute a fundamental unit in organizing, indexing, retrieving video content. In this paper a unified framework is proposed to detect the shot boundaries and extract the keyframe of a shot. Music video is first segmented to shots by illumination-invariant chromaticity histogram in independent component (IC) analysis feature space .Then we presents a new metric, image complexity, to extract keyframe in a shot which is computed by ICs. Experimental results show the framework is effective and has a good performance.
Real time system design of motor imagery brain-computer interface based on multi band CSP and SVM
NASA Astrophysics Data System (ADS)
Zhao, Li; Li, Xiaoqin; Bian, Yan
2018-04-01
Motion imagery (MT) is an effective method to promote the recovery of limbs in patients after stroke. Though an online MT brain computer interface (BCT) system, which apply MT, can enhance the patient's participation and accelerate their recovery process. The traditional method deals with the electroencephalogram (EEG) induced by MT by common spatial pattern (CSP), which is used to extract information from a frequency band. Tn order to further improve the classification accuracy of the system, information of two characteristic frequency bands is extracted. The effectiveness of the proposed feature extraction method is verified by off-line analysis of competition data and the analysis of online system.
NASA Astrophysics Data System (ADS)
AlShamsi, Meera R.
2016-10-01
Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as governmental entities and municipalities.
NASA Astrophysics Data System (ADS)
Dogon-yaro, M. A.; Kumar, P.; Rahman, A. Abdul; Buyuksalih, G.
2016-10-01
Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable technology and a viable source of information for city managers to be used in urban trees management.
Supporting the Growing Needs of the GIS Industry
NASA Technical Reports Server (NTRS)
2003-01-01
Visual Learning Systems, Inc. (VLS), of Missoula, Montana, has developed a commercial software application called Feature Analyst. Feature Analyst was conceived under a Small Business Innovation Research (SBIR) contract with NASA's Stennis Space Center, and through the Montana State University TechLink Center, an organization funded by NASA and the U.S. Department of Defense to link regional companies with Federal laboratories for joint research and technology transfer. The software provides a paradigm shift to automated feature extraction, as it utilizes spectral, spatial, temporal, and ancillary information to model the feature extraction process; presents the ability to remove clutter; incorporates advanced machine learning techniques to supply unparalleled levels of accuracy; and includes an exceedingly simple interface for feature extraction.
Reliable Early Classification on Multivariate Time Series with Numerical and Categorical Attributes
2015-05-22
design a procedure of feature extraction in REACT named MEG (Mining Equivalence classes with shapelet Generators) based on the concept of...Equivalence Classes Mining [12, 15]. MEG can efficiently and effectively generate the discriminative features. In addition, several strategies are proposed...technique of parallel computing [4] to propose a process of pa- rallel MEG for substantially reducing the computational overhead of discovering shapelet
Face recognition algorithm based on Gabor wavelet and locality preserving projections
NASA Astrophysics Data System (ADS)
Liu, Xiaojie; Shen, Lin; Fan, Honghui
2017-07-01
In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.
Biological and analytical characterization of two extracts from Valeriana officinalis.
Circosta, Clara; De Pasquale, Rita; Samperi, Stefania; Pino, Annalisa; Occhiuto, Francesco
2007-06-13
The anticoronaryspastic and antibronchospastic activities of ethanolic and aqueous extracts of Valeriana officinalis L. roots were investigated in anaesthetized guinea-pigs and the results were correlated with the qualitative/quantitative chemical composition of the extracts in order to account for some of the common uses of this plant. The protective effects of orally administered ethanolic and aqueous extracts (50, 100 and 200 mg/kg) were evaluated against pitressin-induced coronary spasm and pressor response in guinea-pigs and were compared with those of nifedipine. Furthermore, the protective effects against histamine-induced and Oleaceae antigen challenge-induced bronchospasm were evaluated. Finally, the two valerian extracts were analytically characterized by qualitative and quantitative chromatographic analysis. The results showed that the two valeriana extracts possessed significant anticoronaryspastic, antihypertensive and antibronchospastic properties. These were similar to those exhibited by nifedipine and are due to the structural features of the active principles they contain. This study justifies the traditional use of this plant in the treatment of some respiratory and cardiovascular disorders.
NASA Astrophysics Data System (ADS)
Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan
2018-06-01
In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.
NASA Astrophysics Data System (ADS)
Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.
2012-04-01
The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can be immediately used in the evaluation of the Natura 2000 sites. The goal of the project is the identification of many potential habitat features that can be extracted or implied from remotely sensed data, and the development of processing chains to provide data that can be used in the everyday field work of ecological site assessment. This is a contribution of ChangeHabitats2 project financed by the European Union within the Industry Academia Partnership Pathways (IAPP), as a part of FP7 Marie Curie Actions.
Automated Recognition of 3D Features in GPIR Images
NASA Technical Reports Server (NTRS)
Park, Han; Stough, Timothy; Fijany, Amir
2007-01-01
A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.
NASA Astrophysics Data System (ADS)
Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng
2018-01-01
Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.
Character feature integration of Chinese calligraphy and font
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Jia, Wenhua; Xu, Canhui
2013-01-01
A framework is proposed in this paper to effectively generate a new hybrid character type by means of integrating local contour feature of Chinese calligraphy with structural feature of font in computer system. To explore traditional art manifestation of calligraphy, multi-directional spatial filter is applied for local contour feature extraction. Then the contour of character image is divided into sub-images. The sub-images in the identical position from various characters are estimated by Gaussian distribution. According to its probability distribution, the dilation operator and erosion operator are designed to adjust the boundary of font image. And then new Chinese character images are generated which possess both contour feature of artistical calligraphy and elaborate structural feature of font. Experimental results demonstrate the new characters are visually acceptable, and the proposed framework is an effective and efficient strategy to automatically generate the new hybrid character of calligraphy and font.
Iris recognition using possibilistic fuzzy matching on local features.
Tsai, Chung-Chih; Lin, Heng-Yi; Taur, Jinshiuh; Tao, Chin-Wang
2012-02-01
In this paper, we propose a novel possibilistic fuzzy matching strategy with invariant properties, which can provide a robust and effective matching scheme for two sets of iris feature points. In addition, the nonlinear normalization model is adopted to provide more accurate position before matching. Moreover, an effective iris segmentation method is proposed to refine the detected inner and outer boundaries to smooth curves. For feature extraction, the Gabor filters are adopted to detect the local feature points from the segmented iris image in the Cartesian coordinate system and to generate a rotation-invariant descriptor for each detected point. After that, the proposed matching algorithm is used to compute a similarity score for two sets of feature points from a pair of iris images. The experimental results show that the performance of our system is better than those of the systems based on the local features and is comparable to those of the typical systems.
Nonlinear features for product inspection
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1999-03-01
Classification of real-time X-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work, the MRDF is applied to standard features (rather than iconic data). The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC (receiver operating characteristic) data.
Drug drug interaction extraction from the literature using a recursive neural network
Lim, Sangrak; Lee, Kyubum
2018-01-01
Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599
Joint classification and contour extraction of large 3D point clouds
NASA Astrophysics Data System (ADS)
Hackel, Timo; Wegner, Jan D.; Schindler, Konrad
2017-08-01
We present an effective and efficient method for point-wise semantic classification and extraction of object contours of large-scale 3D point clouds. What makes point cloud interpretation challenging is the sheer size of several millions of points per scan and the non-grid, sparse, and uneven distribution of points. Standard image processing tools like texture filters, for example, cannot handle such data efficiently, which calls for dedicated point cloud labeling methods. It turns out that one of the major drivers for efficient computation and handling of strong variations in point density, is a careful formulation of per-point neighborhoods at multiple scales. This allows, both, to define an expressive feature set and to extract topologically meaningful object contours. Semantic classification and contour extraction are interlaced problems. Point-wise semantic classification enables extracting a meaningful candidate set of contour points while contours help generating a rich feature representation that benefits point-wise classification. These methods are tailored to have fast run time and small memory footprint for processing large-scale, unstructured, and inhomogeneous point clouds, while still achieving high classification accuracy. We evaluate our methods on the semantic3d.net benchmark for terrestrial laser scans with >109 points.
Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction
NASA Astrophysics Data System (ADS)
Zang, Y.; Yang, B.
2018-04-01
3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.
Reuzé, Sylvain; Orlhac, Fanny; Chargari, Cyrus; Nioche, Christophe; Limkin, Elaine; Riet, François; Escande, Alexandre; Haie-Meder, Christine; Dercle, Laurent; Gouy, Sébastien; Buvat, Irène; Deutsch, Eric; Robert, Charlotte
2017-06-27
To identify an imaging signature predicting local recurrence for locally advanced cervical cancer (LACC) treated by chemoradiation and brachytherapy from baseline 18F-FDG PET images, and to evaluate the possibility of gathering images from two different PET scanners in a radiomic study. 118 patients were included retrospectively. Two groups (G1, G2) were defined according to the PET scanner used for image acquisition. Eleven radiomic features were extracted from delineated cervical tumors to evaluate: (i) the predictive value of features for local recurrence of LACC, (ii) their reproducibility as a function of the scanner within a hepatic reference volume, (iii) the impact of voxel size on feature values. Eight features were statistically significant predictors of local recurrence in G1 (p < 0.05). The multivariate signature trained in G2 was validated in G1 (AUC=0.76, p<0.001) and identified local recurrence more accurately than SUVmax (p=0.022). Four features were significantly different between G1 and G2 in the liver. Spatial resampling was not sufficient to explain the stratification effect. This study showed that radiomic features could predict local recurrence of LACC better than SUVmax. Further investigation is needed before applying a model designed using data from one PET scanner to another.
Enhancing facial features by using clear facial features
NASA Astrophysics Data System (ADS)
Rofoo, Fanar Fareed Hanna
2017-09-01
The similarity of features between individuals of same ethnicity motivated the idea of this project. The idea of this project is to extract features of clear facial image and impose them on blurred facial image of same ethnic origin as an approach to enhance a blurred facial image. A database of clear images containing 30 individuals equally divided to five different ethnicities which were Arab, African, Chines, European and Indian. Software was built to perform pre-processing on images in order to align the features of clear and blurred images. And the idea was to extract features of clear facial image or template built from clear facial images using wavelet transformation to impose them on blurred image by using reverse wavelet. The results of this approach did not come well as all the features did not align together as in most cases the eyes were aligned but the nose or mouth were not aligned. Then we decided in the next approach to deal with features separately but in the result in some cases a blocky effect was present on features due to not having close matching features. In general the available small database did not help to achieve the goal results, because of the number of available individuals. The color information and features similarity could be more investigated to achieve better results by having larger database as well as improving the process of enhancement by the availability of closer matches in each ethnicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Di Marco, Emanuele; Lykken, Joe
2014-10-17
In this technical note we present technical details on various aspects of the framework introduced in arXiv:1401.2077 aimed at extracting effective Higgs couplings in themore » $$h\\to 4\\ell$$ `golden channel'. Since it is the primary feature of the framework, we focus in particular on the convolution integral which takes us from `truth' level to `detector' level and the numerical and analytic techniques used to obtain it. We also briefly discuss other aspects of the framework.« less
Impact of experimental design on PET radiomics in predicting somatic mutation status.
Yip, Stephen S F; Parmar, Chintan; Kim, John; Huynh, Elizabeth; Mak, Raymond H; Aerts, Hugo J W L
2017-12-01
PET-based radiomic features have demonstrated great promises in predicting genetic data. However, various experimental parameters can influence the feature extraction pipeline, and hence, Here, we investigated how experimental settings affect the performance of radiomic features in predicting somatic mutation status in non-small cell lung cancer (NSCLC) patients. 348 NSCLC patients with somatic mutation testing and diagnostic PET images were included in our analysis. Radiomic feature extractions were analyzed for varying voxel sizes, filters and bin widths. 66 radiomic features were evaluated. The performance of features in predicting mutations status was assessed using the area under the receiver-operating-characteristic curve (AUC). The influence of experimental parameters on feature predictability was quantified as the relative difference between the minimum and maximum AUC (δ). The large majority of features (n=56, 85%) were significantly predictive for EGFR mutation status (AUC≥0.61). 29 radiomic features significantly predicted EGFR mutations and were robust to experimental settings with δ Overall <5%. The overall influence (δ Overall ) of the voxel size, filter and bin width for all features ranged from 5% to 15%, respectively. For all features, none of the experimental designs was predictive of KRAS+ from KRAS- (AUC≤0.56). The predictability of 29 radiomic features was robust to the choice of experimental settings; however, these settings need to be carefully chosen for all other features. The combined effect of the investigated processing methods could be substantial and must be considered. Optimized settings that will maximize the predictive performance of individual radiomic features should be investigated in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Combining Feature Extraction Methods to Assist the Diagnosis of Alzheimer's Disease.
Segovia, F; Górriz, J M; Ramírez, J; Phillips, C
2016-01-01
Neuroimaging data as (18)F-FDG PET is widely used to assist the diagnosis of Alzheimer's disease (AD). Looking for regions with hypoperfusion/ hypometabolism, clinicians may predict or corroborate the diagnosis of the patients. Modern computer aided diagnosis (CAD) systems based on the statistical analysis of whole neuroimages are more accurate than classical systems based on quantifying the uptake of some predefined regions of interests (ROIs). In addition, these new systems allow determining new ROIs and take advantage of the huge amount of information comprised in neuroimaging data. A major branch of modern CAD systems for AD is based on multivariate techniques, which analyse a neuroimage as a whole, considering not only the voxel intensities but also the relations among them. In order to deal with the vast dimensionality of the data, a number of feature extraction methods have been successfully applied. In this work, we propose a CAD system based on the combination of several feature extraction techniques. First, some commonly used feature extraction methods based on the analysis of the variance (as principal component analysis), on the factorization of the data (as non-negative matrix factorization) and on classical magnitudes (as Haralick features) were simultaneously applied to the original data. These feature sets were then combined by means of two different combination approaches: i) using a single classifier and a multiple kernel learning approach and ii) using an ensemble of classifier and selecting the final decision by majority voting. The proposed approach was evaluated using a labelled neuroimaging database along with a cross validation scheme. As conclusion, the proposed CAD system performed better than approaches using only one feature extraction technique. We also provide a fair comparison (using the same database) of the selected feature extraction methods.
Discovery of Predicate-Oriented Relations among Named Entities Extracted from Thai Texts
NASA Astrophysics Data System (ADS)
Tongtep, Nattapong; Theeramunkong, Thanaruk
Extracting named entities (NEs) and their relations is more difficult in Thai than in other languages due to several Thai specific characteristics, including no explicit boundaries for words, phrases and sentences; few case markers and modifier clues; high ambiguity in compound words and serial verbs; and flexible word orders. Unlike most previous works which focused on NE relations of specific actions, such as work_for, live_in, located_in, and kill, this paper proposes more general types of NE relations, called predicate-oriented relation (PoR), where an extracted action part (verb) is used as a core component to associate related named entities extracted from Thai Texts. Lacking a practical parser for the Thai language, we present three types of surface features, i.e. punctuation marks (such as token spaces), entity types and the number of entities and then apply five alternative commonly used learning schemes to investigate their performance on predicate-oriented relation extraction. The experimental results show that our approach achieves the F-measure of 97.76%, 99.19%, 95.00% and 93.50% on four different types of predicate-oriented relation (action-location, location-action, action-person and person-action) in crime-related news documents using a data set of 1,736 entity pairs. The effects of NE extraction techniques, feature sets and class unbalance on the performance of relation extraction are explored.
3D model retrieval method based on mesh segmentation
NASA Astrophysics Data System (ADS)
Gan, Yuanchao; Tang, Yan; Zhang, Qingchen
2012-04-01
In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.
DARHT Multi-intelligence Seismic and Acoustic Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.
The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less
NASA Astrophysics Data System (ADS)
Law, Yan Nei; Lieng, Monica Keiko; Li, Jingmei; Khoo, David Aik-Aun
2014-03-01
Breast cancer is the most common cancer and second leading cause of cancer death among women in the US. The relative survival rate is lower among women with a more advanced stage at diagnosis. Early detection through screening is vital. Mammography is the most widely used and only proven screening method for reliably and effectively detecting abnormal breast tissues. In particular, mammographic density is one of the strongest breast cancer risk factors, after age and gender, and can be used to assess the future risk of disease before individuals become symptomatic. A reliable method for automatic density assessment would be beneficial and could assist radiologists in the evaluation of mammograms. To address this problem, we propose a density classification method which uses statistical features from different parts of the breast. Our method is composed of three parts: breast region identification, feature extraction and building ensemble classifiers for density assessment. It explores the potential of the features extracted from second and higher order statistical information for mammographic density classification. We further investigate the registration of bilateral pairs and time-series of mammograms. The experimental results on 322 mammograms demonstrate that (1) a classifier using features from dense regions has higher discriminative power than a classifier using only features from the whole breast region; (2) these high-order features can be effectively combined to boost the classification accuracy; (3) a classifier using these statistical features from dense regions achieves 75% accuracy, which is a significant improvement from 70% accuracy obtained by the existing approaches.
Multi-layer cube sampling for liver boundary detection in PET-CT images.
Liu, Xinxin; Yang, Jian; Song, Shuang; Song, Hong; Ai, Danni; Zhu, Jianjun; Jiang, Yurong; Wang, Yongtian
2018-06-01
Liver metabolic information is considered as a crucial diagnostic marker for the diagnosis of fever of unknown origin, and liver recognition is the basis of automatic diagnosis of metabolic information extraction. However, the poor quality of PET and CT images is a challenge for information extraction and target recognition in PET-CT images. The existing detection method cannot meet the requirement of liver recognition in PET-CT images, which is the key problem in the big data analysis of PET-CT images. A novel texture feature descriptor called multi-layer cube sampling (MLCS) is developed for liver boundary detection in low-dose CT and PET images. The cube sampling feature is proposed for extracting more texture information, which uses a bi-centric voxel strategy. Neighbour voxels are divided into three regions by the centre voxel and the reference voxel in the histogram, and the voxel distribution information is statistically classified as texture feature. Multi-layer texture features are also used to improve the ability and adaptability of target recognition in volume data. The proposed feature is tested on the PET and CT images for liver boundary detection. For the liver in the volume data, mean detection rate (DR) and mean error rate (ER) reached 95.15 and 7.81% in low-quality PET images, and 83.10 and 21.08% in low-contrast CT images. The experimental results demonstrated that the proposed method is effective and robust for liver boundary detection.
Mid-Infrared Spectroscopy of Carbon Stars in the Small Magellanic Cloud
2006-07-10
nod. Before extracting spectra from fit a variety of spectral feature shapes using MgS considerably the images, we used the imclean software package...mined from neighboring pixels. In addition to the dust features , the IRS wavelength range also To extract spectra from the cleaned and differenced...Example of the extraction of the molecular bands and the SiC dust 24 jIm, and they avoid any potential problems at the joint be- feature from the spectrum
NASA Astrophysics Data System (ADS)
Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun
2012-10-01
Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.
Fast and Efficient Feature Engineering for Multi-Cohort Analysis of EHR Data.
Ozery-Flato, Michal; Yanover, Chen; Gottlieb, Assaf; Weissbrod, Omer; Parush Shear-Yashuv, Naama; Goldschmidt, Yaara
2017-01-01
We present a framework for feature engineering, tailored for longitudinal structured data, such as electronic health records (EHRs). To fast-track feature engineering and extraction, the framework combines general-use plug-in extractors, a multi-cohort management mechanism, and modular memoization. Using this framework, we rapidly extracted thousands of features from diverse and large healthcare data sources in multiple projects.
Feature generation using genetic programming with application to fault classification.
Guo, Hong; Jack, Lindsay B; Nandi, Asoke K
2005-02-01
One of the major challenges in pattern recognition problems is the feature extraction process which derives new features from existing features, or directly from raw data in order to reduce the cost of computation during the classification process, while improving classifier efficiency. Most current feature extraction techniques transform the original pattern vector into a new vector with increased discrimination capability but lower dimensionality. This is conducted within a predefined feature space, and thus, has limited searching power. Genetic programming (GP) can generate new features from the original dataset without prior knowledge of the probabilistic distribution. In this paper, a GP-based approach is developed for feature extraction from raw vibration data recorded from a rotating machine with six different conditions. The created features are then used as the inputs to a neural classifier for the identification of six bearing conditions. Experimental results demonstrate the ability of GP to discover autimatically the different bearing conditions using features expressed in the form of nonlinear functions. Furthermore, four sets of results--using GP extracted features with artificial neural networks (ANN) and support vector machines (SVM), as well as traditional features with ANN and SVM--have been obtained. This GP-based approach is used for bearing fault classification for the first time and exhibits superior searching power over other techniques. Additionaly, it significantly reduces the time for computation compared with genetic algorithm (GA), therefore, makes a more practical realization of the solution.
New nonlinear features for inspection, robotics, and face recognition
NASA Astrophysics Data System (ADS)
Casasent, David P.; Talukder, Ashit
1999-10-01
Classification of real-time X-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non- invasive detection of defective product items on a conveyor belt. We discuss the extraction of new features that allow better discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper; our new maximum representation and discriminating feature (MRDF) extraction method computes nonlinear features that are used as inputs to a new modified k nearest neighbor classifier. In this work, the MRDF is applied to standard features (rather than iconic data). The MRDF is robust to various probability distributions of the input class and is shown to provide good classification and new ROC (receiver operating characteristic) data. Other applications of these new feature spaces in robotics and face recognition are also noted.
ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm
NASA Astrophysics Data System (ADS)
Kora, Padmavathi; Sri Rama Krishna, K.
2016-12-01
Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Taranik, Dan L.; Kierein-Young, Kathryn S.
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for sites in Nevada and Colorado were evaluated to determine their utility for mineralogical mapping in support of geologic investigations. Equal energy normalization is commonly used with imaging spectrometer data to reduce albedo effects. Spectra, profiles, and stacked, color-coded spectra were extracted from the AVIRIS data using an interactive analysis program (QLook) and these derivative data were compared to Airborne Imaging Spectrometer (AIS) results, field and laboratory spectra, and geologic maps. A feature extraction algorithm was used to extract and characterize absorption features from AVIRIS and laboratory spectra, allowing direct comparison of the position and shape of absorption features. Both muscovite and carbonate spectra were identified in the Nevada AVIRIS data by comparison with laboratory and AIS spectra, and an image was made that showed the distribution of these minerals for the entire site. Additional, distinctive spectra were located for an unknown mineral. For the two Colorado sites, the signal-to-noise problem was significantly worse and attempts to extract meaningful spectra were unsuccessful. Problems with the Colorado AVIRIS data were accentuated by the IAR reflectance technique because of moderate vegetation cover. Improved signal-to-noise and alternative calibration procedures will be required to produce satisfactory reflectance spectra from these data. Although the AVIRIS data were useful for mapping strong mineral absorption features and producing mineral maps at the Nevada site, it is clear that significant improvements to the instrument performance are required before AVIRIS will be an operational instrument.
Zhu, Bohui; Ding, Yongsheng; Hao, Kuangrong
2013-01-01
This paper presents a novel maximum margin clustering method with immune evolution (IEMMC) for automatic diagnosis of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias. PMID:23690875
Lipase-mediated lipid removal from propolis extract and its antiradical and antimicrobial activity.
Park, Hyein; Bae, Song Hwan; Park, Yooheon; Choi, Hyeon-Son; Suh, Hyung Joo
2015-06-01
Propolis contains many antioxidants such as polyphenols and flavonoids. However, propolis-derived lipid components interrupt an efficient isolation of antioxidants from propolis extract. We examined the effectiveness of various lipase treatments for the removal of lipids from propolis extract and evaluated the biological features of the extract. Lipase OF and Novozyme 435 treatments did not reduce fatty acid level in propolis extract. However, Lipozyme TL IM-treated propolis extract showed a significant decrease in fatty acid level, suggesting the removal of lipids. Lipozyme RM IM also significantly decreased the fatty acid level of the extract, but was accompanied by the reduction of polyphenols and flavonoids, which are antioxidants. In Lipozyme TL IM treatment, an increase in active flavonoids, such as Artepillin C and kaempferide, was observed, with a slight increase of ferric reducing/antioxidant power (FRAP) radical-scavenging activity. In addition, antimicrobial activity towards skin health-related bacteria such as Staphylococcus epidermidis and Propionibacterium acnes was enhanced by Lipozyme TL IM treatment. Lipozyme TL IM treatment effectively removes lipids from propolis extract and enhances antibacterial activity. Therefore, we suggest that Lipozyme TL IM is a useful lipase for lipid removal of propolis extract. © 2014 Society of Chemical Industry.
Towards an intelligent framework for multimodal affective data analysis.
Poria, Soujanya; Cambria, Erik; Hussain, Amir; Huang, Guang-Bin
2015-03-01
An increasingly large amount of multimodal content is posted on social media websites such as YouTube and Facebook everyday. In order to cope with the growth of such so much multimodal data, there is an urgent need to develop an intelligent multi-modal analysis framework that can effectively extract information from multiple modalities. In this paper, we propose a novel multimodal information extraction agent, which infers and aggregates the semantic and affective information associated with user-generated multimodal data in contexts such as e-learning, e-health, automatic video content tagging and human-computer interaction. In particular, the developed intelligent agent adopts an ensemble feature extraction approach by exploiting the joint use of tri-modal (text, audio and video) features to enhance the multimodal information extraction process. In preliminary experiments using the eNTERFACE dataset, our proposed multi-modal system is shown to achieve an accuracy of 87.95%, outperforming the best state-of-the-art system by more than 10%, or in relative terms, a 56% reduction in error rate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel
2008-07-01
The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.
Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking
NASA Astrophysics Data System (ADS)
He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.
2018-04-01
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.
Samoilova, Zoya; Smirnova, Galina; Muzyka, Nadezda; Oktyabrsky, Oleg
2014-04-01
Antioxidant activity of green and black tea and extracts of medicinal plants and their ability to modulate antibiotic susceptibility in Escherichia coli were studied. Among a number of extracts tested the maximal capacity to scavenge DPPH radicals and chelate iron in chemical tests was found in green and black tea, Arctostaphylos uva-ursi and Vaccinium vitis-idaea. These extracts contained high level of polyphenols and in aerobic conditions exhibited prooxidant features, producing H2O2 and inducing expression of the katG gene encoding catalase HPI in E. coli cells. A good correlation between the polyphenol content and the ability of extracts to protect bacteria against peroxide stress was observed (r = 0.88). Polyphenol-rich extracts and iron chelators demonstrated the highest modulating effect on the antibiotic susceptibility by changing the time period before lysis started and by influencing the colony-forming ability of bacteria. The direction of the modulating effect was dependent on nature of antibiotic applied: under treatment with ciprofloxacin and ampicillin the extracts predominantly provided protective effects, while under treatment with kanamycin a bactericidal action was enhanced. Mechanism of modulating action of extracts on bacterial antibiotic susceptibility probably involves antioxidant, preferentially iron-chelating, or prooxidant properties of polyphenols. Copyright © 2013 Elsevier GmbH. All rights reserved.
Effect of Andrographis paniculata leaf extract on wound healing in rats.
Al-Bayaty, Fouad Hussain; Abdulla, Mahmood Ameen; Abu Hassan, Mohamed Ibrahim; Ali, Hapipah Mohd
2012-01-01
This work was carried out to study the effect of topical application of Andrographis paniculata on the rate of wound enclosure and its histological features. A wound was created in four groups of rat in posterior neck region. Blank placebo was applied topically to the wounds of Group 1. Groups 2 and 3 were dressed with placebo containing 5% and 10% extracts of A. paniculata, respectively. Intrasite gel was applied topically to the wounds of Group 4. Macroscopical examination revealed that the rate of wound healing was significantly accelerated in the wound dressed with A. paniculata extract compared to the blank placebo. The wounds dressed with 10% extract or Intrasite gel healed earlier compared to the wounds dressed with placebo containing 5% A. paniculata extract. Histologically, wounds dressed with A. paniculata extracts showed markedly less scar width and contained large amounts of fibroblast proliferation. More collagen and less angiogenesis with absence of inflammatory cells were seen for wounds dressed with 10% A. paniculata compared to the blank placebo. Conclusion, A. paniculata extracts significantly enhanced rate of wound healing in rats.
A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.
Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
New Finger Biometric Method Using Near Infrared Imaging
Lee, Eui Chul; Jung, Hyunwoo; Kim, Daeyeoul
2011-01-01
In this paper, we propose a new finger biometric method. Infrared finger images are first captured, and then feature extraction is performed using a modified Gaussian high-pass filter through binarization, local binary pattern (LBP), and local derivative pattern (LDP) methods. Infrared finger images include the multimodal features of finger veins and finger geometries. Instead of extracting each feature using different methods, the modified Gaussian high-pass filter is fully convolved. Therefore, the extracted binary patterns of finger images include the multimodal features of veins and finger geometries. Experimental results show that the proposed method has an error rate of 0.13%. PMID:22163741
Multi Texture Analysis of Colorectal Cancer Continuum Using Multispectral Imagery
Chaddad, Ahmad; Desrosiers, Christian; Bouridane, Ahmed; Toews, Matthew; Hassan, Lama; Tanougast, Camel
2016-01-01
Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images. PMID:26901134
Signal recognition and parameter estimation of BPSK-LFM combined modulation
NASA Astrophysics Data System (ADS)
Long, Chao; Zhang, Lin; Liu, Yu
2015-07-01
Intra-pulse analysis plays an important role in electronic warfare. Intra-pulse feature abstraction focuses on primary parameters such as instantaneous frequency, modulation, and symbol rate. In this paper, automatic modulation recognition and feature extraction for combined BPSK-LFM modulation signals based on decision theoretic approach is studied. The simulation results show good recognition effect and high estimation precision, and the system is easy to be realized.
D Modeling of Components of a Garden by Using Point Cloud Data
NASA Astrophysics Data System (ADS)
Kumazakia, R.; Kunii, Y.
2016-06-01
Laser measurement is currently applied to several tasks such as plumbing management, road investigation through mobile mapping systems, and elevation model utilization through airborne LiDAR. Effective laser measurement methods have been well-documented in civil engineering, but few attempts have been made to establish equally effective methods in landscape engineering. By using point cloud data acquired through laser measurement, the aesthetic landscaping of Japanese gardens can be enhanced. This study focuses on simple landscape simulations for pruning and rearranging trees as well as rearranging rocks, lanterns, and other garden features by using point cloud data. However, such simulations lack concreteness. Therefore, this study considers the construction of a library of garden features extracted from point cloud data. The library would serve as a resource for creating new gardens and simulating gardens prior to conducting repairs. Extracted garden features are imported as 3ds Max objects, and realistic 3D models are generated by using a material editor system. As further work toward the publication of a 3D model library, file formats for tree crowns and trunks should be adjusted. Moreover, reducing the size of created models is necessary. Models created using point cloud data are informative because simply shaped garden features such as trees are often seen in the 3D industry.
Nguyen, Dat Tien; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
The human body contains identity information that can be used for the person recognition (verification/recognition) problem. In this paper, we propose a person recognition method using the information extracted from body images. Our research is novel in the following three ways compared to previous studies. First, we use the images of human body for recognizing individuals. To overcome the limitations of previous studies on body-based person recognition that use only visible light images for recognition, we use human body images captured by two different kinds of camera, including a visible light camera and a thermal camera. The use of two different kinds of body image helps us to reduce the effects of noise, background, and variation in the appearance of a human body. Second, we apply a state-of-the art method, called convolutional neural network (CNN) among various available methods, for image features extraction in order to overcome the limitations of traditional hand-designed image feature extraction methods. Finally, with the extracted image features from body images, the recognition task is performed by measuring the distance between the input and enrolled samples. The experimental results show that the proposed method is efficient for enhancing recognition accuracy compared to systems that use only visible light or thermal images of the human body. PMID:28300783
DOT National Transportation Integrated Search
2011-06-01
This report describes an accuracy assessment of extracted features derived from three : subsets of Quickbird pan-sharpened high resolution satellite image for the area of the : Port of Los Angeles, CA. Visual Learning Systems Feature Analyst and D...
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm.
Khushaba, Rami N; Kodagoda, Sarath; Lal, Sara; Dissanayake, Gamini
2011-01-01
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-- 97% on an average across all subjects.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Wang, Jie; Ming, Dongping; Lv, Guonian
2017-01-01
In this paper, we first propose several novel concepts for object-based image analysis, which include line-based shape regularity, line density, and scale-based best feature value (SBV), based on the region-line primitive association framework (RLPAF). We then propose a raft cultivation area (RCA) extraction method for high spatial resolution (HSR) remote sensing imagery based on multi-scale feature fusion and spatial rule induction. The proposed method includes the following steps: (1) Multi-scale region primitives (segments) are obtained by image segmentation method HBC-SEG, and line primitives (straight lines) are obtained by phase-based line detection method. (2) Association relationships between regions and lines are built based on RLPAF, and then multi-scale RLPAF features are extracted and SBVs are selected. (3) Several spatial rules are designed to extract RCAs within sea waters after land and water separation. Experiments show that the proposed method can successfully extract different-shaped RCAs from HR images with good performance.
NASA Astrophysics Data System (ADS)
Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang
2014-11-01
The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.
Multi-focus image fusion using a guided-filter-based difference image.
Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu
2016-03-20
The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.
Zheng, Wenming; Lin, Zhouchen; Wang, Haixian
2014-04-01
A novel discriminant analysis criterion is derived in this paper under the theoretical framework of Bayes optimality. In contrast to the conventional Fisher's discriminant criterion, the major novelty of the proposed one is the use of L1 norm rather than L2 norm, which makes it less sensitive to the outliers. With the L1-norm discriminant criterion, we propose a new linear discriminant analysis (L1-LDA) method for linear feature extraction problem. To solve the L1-LDA optimization problem, we propose an efficient iterative algorithm, in which a novel surrogate convex function is introduced such that the optimization problem in each iteration is to simply solve a convex programming problem and a close-form solution is guaranteed to this problem. Moreover, we also generalize the L1-LDA method to deal with the nonlinear robust feature extraction problems via the use of kernel trick, and hereafter proposed the L1-norm kernel discriminant analysis (L1-KDA) method. Extensive experiments on simulated and real data sets are conducted to evaluate the effectiveness of the proposed method in comparing with the state-of-the-art methods.
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
Epileptic Seizures Prediction Using Machine Learning Methods
Usman, Syed Muhammad
2017-01-01
Epileptic seizures occur due to disorder in brain functionality which can affect patient's health. Prediction of epileptic seizures before the beginning of the onset is quite useful for preventing the seizure by medication. Machine learning techniques and computational methods are used for predicting epileptic seizures from Electroencephalograms (EEG) signals. However, preprocessing of EEG signals for noise removal and features extraction are two major issues that have an adverse effect on both anticipation time and true positive prediction rate. Therefore, we propose a model that provides reliable methods of both preprocessing and feature extraction. Our model predicts epileptic seizures' sufficient time before the onset of seizure starts and provides a better true positive rate. We have applied empirical mode decomposition (EMD) for preprocessing and have extracted time and frequency domain features for training a prediction model. The proposed model detects the start of the preictal state, which is the state that starts few minutes before the onset of the seizure, with a higher true positive rate compared to traditional methods, 92.23%, and maximum anticipation time of 33 minutes and average prediction time of 23.6 minutes on scalp EEG CHB-MIT dataset of 22 subjects. PMID:29410700
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2008-08-01
This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.
NASA Astrophysics Data System (ADS)
Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile
2015-01-01
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Wang, Ruofan; Wang, Jiang; Li, Shunan; Yu, Haitao; Deng, Bin; Wei, Xile
2015-01-01
In this paper, we have combined experimental neurophysiologic recording and statistical analysis to investigate the nonlinear characteristic and the cognitive function of the brain. Spectrum and bispectrum analyses are proposed to extract multiple effective features of electroencephalograph (EEG) signals from Alzheimer's disease (AD) patients and further applied to distinguish AD patients from the normal controls. Spectral analysis based on autoregressive Burg method is first used to quantify the power distribution of EEG series in the frequency domain. Compared to the control group, the relative power spectral density of AD group is significantly higher in the theta frequency band, while lower in the alpha frequency bands. In addition, median frequency of spectrum is decreased, and spectral entropy ratio of these two frequency bands undergoes drastic changes at the P3 electrode in the central-parietal brain region, implying that the electrophysiological behavior in AD brain is much slower and less irregular. In order to explore the nonlinear high order information, bispectral analysis which measures the complexity of phase-coupling is further applied to P3 electrode in the whole frequency band. It is demonstrated that less bispectral peaks appear and the amplitudes of peaks fall, suggesting a decrease of non-Gaussianity and nonlinearity of EEG in ADs. Notably, the application of this method to five brain regions shows higher concentration of the weighted center of bispectrum and lower complexity reflecting phase-coupling by bispectral entropy. Based on spectrum and bispectrum analyses, six efficient features are extracted and then applied to discriminate AD from the normal in the five brain regions. The classification results indicate that all these features could differentiate AD patients from the normal controls with a maximum accuracy of 90.2%. Particularly, different brain regions are sensitive to different features. Moreover, the optimal combination of features obtained by discriminant analysis may improve the classification accuracy. These results demonstrate the great promise for scape EEG spectral and bispectral features as a potential effective method for detection of AD, which may facilitate our understanding of the pathological mechanism of the disease.
Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.
Ayinde, Babajide O; Zurada, Jacek M
2017-09-01
This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. Copyright © 2017 Elsevier Ltd. All rights reserved.
The algorithm of fast image stitching based on multi-feature extraction
NASA Astrophysics Data System (ADS)
Yang, Chunde; Wu, Ge; Shi, Jing
2018-05-01
This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.
Combined rule extraction and feature elimination in supervised classification.
Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E
2012-09-01
There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.
Study on identifying deciduous forest by the method of feature space transformation
NASA Astrophysics Data System (ADS)
Zhang, Xuexia; Wu, Pengfei
2009-10-01
The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.
Hepatic CT image query using Gabor features
NASA Astrophysics Data System (ADS)
Zhao, Chenguang; Cheng, Hongyan; Zhuang, Tiange
2004-07-01
A retrieval scheme for liver computerize tomography (CT) images based on Gabor texture is presented. For each hepatic CT image, we manually delineate abnormal regions within liver area. Then, a continuous Gabor transform is utilized to analyze the texture of the pathology bearing region and extract the corresponding feature vectors. For a given sample image, we compare its feature vector with those of other images. Similar images with the highest rank are retrieved. In experiments, 45 liver CT images are collected, and the effectiveness of Gabor texture for content based retrieval is verified.
NASA Astrophysics Data System (ADS)
Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben
2015-08-01
Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.
Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na
2014-04-22
With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.
A Discriminant Distance Based Composite Vector Selection Method for Odor Classification
Choi, Sang-Il; Jeong, Gu-Min
2014-01-01
We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735
A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors
Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José
2009-01-01
In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160
NASA Astrophysics Data System (ADS)
Cong, Chao; Liu, Dingsheng; Zhao, Lingjun
2008-12-01
This paper discusses a new method for the automatic matching of ground control points (GCPs) between satellite remote sensing Image and digital raster graphic (DRG) in urban areas. The key of this method is to automatically extract tie point pairs according to geographic characters from such heterogeneous images. Since there are big differences between such heterogeneous images respect to texture and corner features, more detail analyzations are performed to find similarities and differences between high resolution remote sensing Image and (DRG). Furthermore a new algorithms based on the fuzzy-c means (FCM) method is proposed to extract linear feature in remote sensing Image. Based on linear feature, crossings and corners extracted from these features are chosen as GCPs. On the other hand, similar method was used to find same features from DRGs. Finally, Hausdorff Distance was adopted to pick matching GCPs from above two GCP groups. Experiences shown the method can extract GCPs from such images with a reasonable RMS error.
Zhao, Yong; Hong, Wen-Xue
2011-11-01
Fast, nondestructive and accurate identification of special quality eggs is an urgent problem. The present paper proposed a new feature extraction method based on symbol entropy to identify near infrared spectroscopy of special quality eggs. The authors selected normal eggs, free range eggs, selenium-enriched eggs and zinc-enriched eggs as research objects and measured the near-infrared diffuse reflectance spectra in the range of 12 000-4 000 cm(-1). Raw spectra were symbolically represented with aggregation approximation algorithm and symbolic entropy was extracted as feature vector. An error-correcting output codes multiclass support vector machine classifier was designed to identify the spectrum. Symbolic entropy feature is robust when parameter changed and the highest recognition rate reaches up to 100%. The results show that the identification method of special quality eggs using near-infrared is feasible and the symbol entropy can be used as a new feature extraction method of near-infrared spectra.
Automatically measuring the effect of strategy drawing features on pupils' handwriting and gender
NASA Astrophysics Data System (ADS)
Tabatabaey-Mashadi, Narges; Sudirman, Rubita; Guest, Richard M.; Khalid, Puspa Inayat
2013-12-01
Children's dynamic drawing strategies have been recently recognized as indicators of handwriting ability. However the influence of each feature in predicting handwriting is unknown due to lack of a measuring system. An automated measuring algorithm suitable for psychological assessment and non-subjective scoring is presented here. Using the weight vector and classification rate of a machine learning algorithm, an overall feature's effect is calculated which is comparable in different groupings. In this study thirteen previously detected drawing strategy features are measured for their influence on handwriting and gender. Features are extracted from drawing a triangle, Beery VMI and Bender Gestalt tangent patterns. Samples are related to 203 pupils (77 below average writers, and 101 female). The results show that the number of strokes in drawing the triangle pattern plays a major role in both groupings; however Left Tendency flag feature is affected by children's handwriting about 2.5 times greater than their gender. Experiments indicate that different forms of a feature sometimes show different influences.
Road Damage Extraction from Post-Earthquake Uav Images Assisted by Vector Data
NASA Astrophysics Data System (ADS)
Chen, Z.; Dou, A.
2018-04-01
Extraction of road damage information after earthquake has been regarded as urgent mission. To collect information about stricken areas, Unmanned Aerial Vehicle can be used to obtain images rapidly. This paper put forward a novel method to detect road damage and bring forward a coefficient to assess road accessibility. With the assistance of vector road data, image data of the Jiuzhaigou Ms7.0 Earthquake is tested. In the first, the image is clipped according to vector buffer. Then a large-scale segmentation is applied to remove irrelevant objects. Thirdly, statistics of road features are analysed, and damage information is extracted. Combining with the on-filed investigation, the extraction result is effective.
Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection
NASA Astrophysics Data System (ADS)
Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.
2015-04-01
SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.
Surface EMG signals based motion intent recognition using multi-layer ELM
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Qi, Lin; Wang, Xiao
2017-11-01
The upper-limb rehabilitation robot is regard as a useful tool to help patients with hemiplegic to do repetitive exercise. The surface electromyography (sEMG) contains motion information as the electric signals are generated and related to nerve-muscle motion. These sEMG signals, representing human's intentions of active motions, are introduced into the rehabilitation robot system to recognize upper-limb movements. Traditionally, the feature extraction is an indispensable part of drawing significant information from original signals, which is a tedious task requiring rich and related experience. This paper employs a deep learning scheme to extract the internal features of the sEMG signals using an advanced Extreme Learning Machine based auto-encoder (ELMAE). The mathematical information contained in the multi-layer structure of the ELM-AE is used as the high-level representation of the internal features of the sEMG signals, and thus a simple ELM can post-process the extracted features, formulating the entire multi-layer ELM (ML-ELM) algorithm. The method is employed for the sEMG based neural intentions recognition afterwards. The case studies show the adopted deep learning algorithm (ELM-AE) is capable of yielding higher classification accuracy compared to the Principle Component Analysis (PCA) scheme in 5 different types of upper-limb motions. This indicates the effectiveness and the learning capability of the ML-ELM in such motion intent recognition applications.
NASA Astrophysics Data System (ADS)
Bahadirlar, Yildirim; Kaplan, Gulay B.
2004-09-01
A new preprocessing and feature extracting approach for classification of non-metallic buried objects are aimed using GPR B-scan data. A frequency-domain adaptive filter without a reference channel effectively removes the background signal resulting mostly from the discontinuity on the air-to-ground path of the electromagnetic waves. The filter only needs average of the first five A-scans as the reference signal for this elimination, and also serves for masking of the B-scan in the frequency-domain. A preprocessed GPR data with significantly suppressed clutter is then obtained by precisely positioning the Hanning window in the frequency-domain. A directional correlation function defined over a B-scan frame gives distinctive curves of buried objects. The main axis of directional correlation, on which the pivotal correlating pixels and short lines of pixels being correlated are considered, makes an angle to the scanning direction of the B-scan. This form of correlation is applied to the frame from the left-hand and the right-hand side and two over-plotted curves are obtained. Nine measures as features emphasizing directional signatures are extracted from these curves. Nine-element feature vectors are applied to the two-layer Artificial Neural Network and preliminary results over test set are promising to continue to comprehensive training and testing processes.
Epileptic seizure detection in EEG signal using machine learning techniques.
Jaiswal, Abeg Kumar; Banka, Haider
2018-03-01
Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.
The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation
NASA Astrophysics Data System (ADS)
Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.
2018-04-01
The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.