Sample records for effective feature selection

  1. Enhancing the Discrimination Ability of a Gas Sensor Array Based on a Novel Feature Selection and Fusion Framework.

    PubMed

    Deng, Changjian; Lv, Kun; Shi, Debo; Yang, Bo; Yu, Song; He, Zhiyi; Yan, Jia

    2018-06-12

    In this paper, a novel feature selection and fusion framework is proposed to enhance the discrimination ability of gas sensor arrays for odor identification. Firstly, we put forward an efficient feature selection method based on the separability and the dissimilarity to determine the feature selection order for each type of feature when increasing the dimension of selected feature subsets. Secondly, the K-nearest neighbor (KNN) classifier is applied to determine the dimensions of the optimal feature subsets for different types of features. Finally, in the process of establishing features fusion, we come up with a classification dominance feature fusion strategy which conducts an effective basic feature. Experimental results on two datasets show that the recognition rates of Database I and Database II achieve 97.5% and 80.11%, respectively, when k = 1 for KNN classifier and the distance metric is correlation distance (COR), which demonstrates the superiority of the proposed feature selection and fusion framework in representing signal features. The novel feature selection method proposed in this paper can effectively select feature subsets that are conducive to the classification, while the feature fusion framework can fuse various features which describe the different characteristics of sensor signals, for enhancing the discrimination ability of gas sensors and, to a certain extent, suppressing drift effect.

  2. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.

  3. Effective traffic features selection algorithm for cyber-attacks samples

    NASA Astrophysics Data System (ADS)

    Li, Yihong; Liu, Fangzheng; Du, Zhenyu

    2018-05-01

    By studying the defense scheme of Network attacks, this paper propose an effective traffic features selection algorithm based on k-means++ clustering to deal with the problem of high dimensionality of traffic features which extracted from cyber-attacks samples. Firstly, this algorithm divide the original feature set into attack traffic feature set and background traffic feature set by the clustering. Then, we calculates the variation of clustering performance after removing a certain feature. Finally, evaluating the degree of distinctiveness of the feature vector according to the result. Among them, the effective feature vector is whose degree of distinctiveness exceeds the set threshold. The purpose of this paper is to select out the effective features from the extracted original feature set. In this way, it can reduce the dimensionality of the features so as to reduce the space-time overhead of subsequent detection. The experimental results show that the proposed algorithm is feasible and it has some advantages over other selection algorithms.

  4. The effect of feature selection methods on computer-aided detection of masses in mammograms

    NASA Astrophysics Data System (ADS)

    Hupse, Rianne; Karssemeijer, Nico

    2010-05-01

    In computer-aided diagnosis (CAD) research, feature selection methods are often used to improve generalization performance of classifiers and shorten computation times. In an application that detects malignant masses in mammograms, we investigated the effect of using a selection criterion that is similar to the final performance measure we are optimizing, namely the mean sensitivity of the system in a predefined range of the free-response receiver operating characteristics (FROC). To obtain the generalization performance of the selected feature subsets, a cross validation procedure was performed on a dataset containing 351 abnormal and 7879 normal regions, each region providing a set of 71 mass features. The same number of noise features, not containing any information, were added to investigate the ability of the feature selection algorithms to distinguish between useful and non-useful features. It was found that significantly higher performances were obtained using feature sets selected by the general test statistic Wilks' lambda than using feature sets selected by the more specific FROC measure. Feature selection leads to better performance when compared to a system in which all features were used.

  5. AVC: Selecting discriminative features on basis of AUC by maximizing variable complementarity.

    PubMed

    Sun, Lei; Wang, Jun; Wei, Jinmao

    2017-03-14

    The Receiver Operator Characteristic (ROC) curve is well-known in evaluating classification performance in biomedical field. Owing to its superiority in dealing with imbalanced and cost-sensitive data, the ROC curve has been exploited as a popular metric to evaluate and find out disease-related genes (features). The existing ROC-based feature selection approaches are simple and effective in evaluating individual features. However, these approaches may fail to find real target feature subset due to their lack of effective means to reduce the redundancy between features, which is essential in machine learning. In this paper, we propose to assess feature complementarity by a trick of measuring the distances between the misclassified instances and their nearest misses on the dimensions of pairwise features. If a misclassified instance and its nearest miss on one feature dimension are far apart on another feature dimension, the two features are regarded as complementary to each other. Subsequently, we propose a novel filter feature selection approach on the basis of the ROC analysis. The new approach employs an efficient heuristic search strategy to select optimal features with highest complementarities. The experimental results on a broad range of microarray data sets validate that the classifiers built on the feature subset selected by our approach can get the minimal balanced error rate with a small amount of significant features. Compared with other ROC-based feature selection approaches, our new approach can select fewer features and effectively improve the classification performance.

  6. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    PubMed

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. Copyright © 2017 the authors 0270-6474/17/375378-15$15.00/0.

  7. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex

    PubMed Central

    2017-01-01

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations (rnoise) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on rnoise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in rnoise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations (rnoise) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on rnoise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning to the distractor feature as well. We suggest that these effects represent an efficient process by which sensory cortex simultaneously enhances relevant information and suppresses irrelevant information. PMID:28432139

  8. A combinatorial feature selection approach to describe the QSAR of dual site inhibitors of acetylcholinesterase.

    PubMed

    Asadabadi, Ebrahim Barzegari; Abdolmaleki, Parviz; Barkooie, Seyyed Mohsen Hosseini; Jahandideh, Samad; Rezaei, Mohammad Ali

    2009-12-01

    Regarding the great potential of dual binding site inhibitors of acetylcholinesterase as the future potent drugs of Alzheimer's disease, this study was devoted to extraction of the most effective structural features of these inhibitors from among a large number of quantitative descriptors. To do this, we adopted a unique approach in quantitative structure-activity relationships. An efficient feature selection method was emphasized in such an approach, using the confirmative results of different routine and novel feature selection methods. The proposed methods generated quite consistent results ensuring the effectiveness of the selected structural features.

  9. Effect of feature-selective attention on neuronal responses in macaque area MT

    PubMed Central

    Chen, X.; Hoffmann, K.-P.; Albright, T. D.

    2012-01-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961

  10. Effect of feature-selective attention on neuronal responses in macaque area MT.

    PubMed

    Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A

    2012-03-01

    Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).

  11. Enhancing the Performance of LibSVM Classifier by Kernel F-Score Feature Selection

    NASA Astrophysics Data System (ADS)

    Sarojini, Balakrishnan; Ramaraj, Narayanasamy; Nickolas, Savarimuthu

    Medical Data mining is the search for relationships and patterns within the medical datasets that could provide useful knowledge for effective clinical decisions. The inclusion of irrelevant, redundant and noisy features in the process model results in poor predictive accuracy. Much research work in data mining has gone into improving the predictive accuracy of the classifiers by applying the techniques of feature selection. Feature selection in medical data mining is appreciable as the diagnosis of the disease could be done in this patient-care activity with minimum number of significant features. The objective of this work is to show that selecting the more significant features would improve the performance of the classifier. We empirically evaluate the classification effectiveness of LibSVM classifier on the reduced feature subset of diabetes dataset. The evaluations suggest that the feature subset selected improves the predictive accuracy of the classifier and reduce false negatives and false positives.

  12. Neural evidence reveals the rapid effects of reward history on selective attention.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rough sets and Laplacian score based cost-sensitive feature selection

    PubMed Central

    Yu, Shenglong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of “good” features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms. PMID:29912884

  14. Rough sets and Laplacian score based cost-sensitive feature selection.

    PubMed

    Yu, Shenglong; Zhao, Hong

    2018-01-01

    Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of "good" features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.

  15. Speech Emotion Feature Selection Method Based on Contribution Analysis Algorithm of Neural Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaojia; Mao Qirong; Zhan Yongzhao

    There are many emotion features. If all these features are employed to recognize emotions, redundant features may be existed. Furthermore, recognition result is unsatisfying and the cost of feature extraction is high. In this paper, a method to select speech emotion features based on contribution analysis algorithm of NN is presented. The emotion features are selected by using contribution analysis algorithm of NN from the 95 extracted features. Cluster analysis is applied to analyze the effectiveness for the features selected, and the time of feature extraction is evaluated. Finally, 24 emotion features selected are used to recognize six speech emotions.more » The experiments show that this method can improve the recognition rate and the time of feature extraction.« less

  16. Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System

    NASA Technical Reports Server (NTRS)

    Penaloza, Mauel A.; Welch, Ronald M.

    1996-01-01

    Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.

  17. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  18. Selective processing of multiple features in the human brain: effects of feature type and salience.

    PubMed

    McGinnis, E Menton; Keil, Andreas

    2011-02-09

    Identifying targets in a stream of items at a given constant spatial location relies on selection of aspects such as color, shape, or texture. Such attended (target) features of a stimulus elicit a negative-going event-related brain potential (ERP), termed Selection Negativity (SN), which has been used as an index of selective feature processing. In two experiments, participants viewed a series of Gabor patches in which targets were defined as a specific combination of color, orientation, and shape. Distracters were composed of different combinations of color, orientation, and shape of the target stimulus. This design allows comparisons of items with and without specific target features. Consistent with previous ERP research, SN deflections extended between 160-300 ms. Data from the subsequent P3 component (300-450 ms post-stimulus) were also examined, and were regarded as an index of target processing. In Experiment A, predominant effects of target color on SN and P3 amplitudes were found, along with smaller ERP differences in response to variations of orientation and shape. Manipulating color to be less salient while enhancing the saliency of the orientation of the Gabor patch (Experiment B) led to delayed color selection and enhanced orientation selection. Topographical analyses suggested that the location of SN on the scalp reliably varies with the nature of the to-be-attended feature. No interference of non-target features on the SN was observed. These results suggest that target feature selection operates by means of electrocortical facilitation of feature-specific sensory processes, and that selective electrocortical facilitation is more effective when stimulus saliency is heightened.

  19. Joint L2,1 Norm and Fisher Discrimination Constrained Feature Selection for Rational Synthesis of Microporous Aluminophosphates.

    PubMed

    Qi, Miao; Wang, Ting; Yi, Yugen; Gao, Na; Kong, Jun; Wang, Jianzhong

    2017-04-01

    Feature selection has been regarded as an effective tool to help researchers understand the generating process of data. For mining the synthesis mechanism of microporous AlPOs, this paper proposes a novel feature selection method by joint l 2,1 norm and Fisher discrimination constraints (JNFDC). In order to obtain more effective feature subset, the proposed method can be achieved in two steps. The first step is to rank the features according to sparse and discriminative constraints. The second step is to establish predictive model with the ranked features, and select the most significant features in the light of the contribution of improving the predictive accuracy. To the best of our knowledge, JNFDC is the first work which employs the sparse representation theory to explore the synthesis mechanism of six kinds of pore rings. Numerical simulations demonstrate that our proposed method can select significant features affecting the specified structural property and improve the predictive accuracy. Moreover, comparison results show that JNFDC can obtain better predictive performances than some other state-of-the-art feature selection methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex

    PubMed Central

    Gomez-Ramirez, Manuel; Trzcinski, Natalie K.; Mihalas, Stefan; Niebur, Ernst

    2014-01-01

    Studies in vision show that attention enhances the firing rates of cells when it is directed towards their preferred stimulus feature. However, it is unknown whether other sensory systems employ this mechanism to mediate feature selection within their modalities. Moreover, whether feature-based attention modulates the correlated activity of a population is unclear. Indeed, temporal correlation codes such as spike-synchrony and spike-count correlations (rsc) are believed to play a role in stimulus selection by increasing the signal and reducing the noise in a population, respectively. Here, we investigate (1) whether feature-based attention biases the correlated activity between neurons when attention is directed towards their common preferred feature, (2) the interplay between spike-synchrony and rsc during feature selection, and (3) whether feature attention effects are common across the visual and tactile systems. Single-unit recordings were made in secondary somatosensory cortex of three non-human primates while animals engaged in tactile feature (orientation and frequency) and visual discrimination tasks. We found that both firing rate and spike-synchrony between neurons with similar feature selectivity were enhanced when attention was directed towards their preferred feature. However, attention effects on spike-synchrony were twice as large as those on firing rate, and had a tighter relationship with behavioral performance. Further, we observed increased rsc when attention was directed towards the visual modality (i.e., away from touch). These data suggest that similar feature selection mechanisms are employed in vision and touch, and that temporal correlation codes such as spike-synchrony play a role in mediating feature selection. We posit that feature-based selection operates by implementing multiple mechanisms that reduce the overall noise levels in the neural population and synchronize activity across subpopulations that encode the relevant features of sensory stimuli. PMID:25423284

  1. [Combining speech sample and feature bilateral selection algorithm for classification of Parkinson's disease].

    PubMed

    Zhang, Xiaoheng; Wang, Lirui; Cao, Yao; Wang, Pin; Zhang, Cheng; Yang, Liuyang; Li, Yongming; Zhang, Yanling; Cheng, Oumei

    2018-02-01

    Diagnosis of Parkinson's disease (PD) based on speech data has been proved to be an effective way in recent years. However, current researches just care about the feature extraction and classifier design, and do not consider the instance selection. Former research by authors showed that the instance selection can lead to improvement on classification accuracy. However, no attention is paid on the relationship between speech sample and feature until now. Therefore, a new diagnosis algorithm of PD is proposed in this paper by simultaneously selecting speech sample and feature based on relevant feature weighting algorithm and multiple kernel method, so as to find their synergy effects, thereby improving classification accuracy. Experimental results showed that this proposed algorithm obtained apparent improvement on classification accuracy. It can obtain mean classification accuracy of 82.5%, which was 30.5% higher than the relevant algorithm. Besides, the proposed algorithm detected the synergy effects of speech sample and feature, which is valuable for speech marker extraction.

  2. Mutual information criterion for feature selection with application to classification of breast microcalcifications

    NASA Astrophysics Data System (ADS)

    Diamant, Idit; Shalhon, Moran; Goldberger, Jacob; Greenspan, Hayit

    2016-03-01

    Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection based on mutual information (MI) criterion for automatic classification of microcalcifications. We explored the MI based feature selection for various texture features. The proposed method was evaluated on a standardized digital database for screening mammography (DDSM). Experimental results demonstrate the effectiveness and the advantage of using the MI-based feature selection to obtain the most relevant features for the task and thus to provide for improved performance as compared to using all features.

  3. Adaptive feature selection using v-shaped binary particle swarm optimization.

    PubMed

    Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.

  4. Adaptive feature selection using v-shaped binary particle swarm optimization

    PubMed Central

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  5. Multiclass feature selection for improved pediatric brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaheen; Iftekharuddin, Khan M.

    2012-03-01

    In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.

  6. HIV-1 protease cleavage site prediction based on two-stage feature selection method.

    PubMed

    Niu, Bing; Yuan, Xiao-Cheng; Roeper, Preston; Su, Qiang; Peng, Chun-Rong; Yin, Jing-Yuan; Ding, Juan; Li, HaiPeng; Lu, Wen-Cong

    2013-03-01

    Knowledge of the mechanism of HIV protease cleavage specificity is critical to the design of specific and effective HIV inhibitors. Searching for an accurate, robust, and rapid method to correctly predict the cleavage sites in proteins is crucial when searching for possible HIV inhibitors. In this article, HIV-1 protease specificity was studied using the correlation-based feature subset (CfsSubset) selection method combined with Genetic Algorithms method. Thirty important biochemical features were found based on a jackknife test from the original data set containing 4,248 features. By using the AdaBoost method with the thirty selected features the prediction model yields an accuracy of 96.7% for the jackknife test and 92.1% for an independent set test, with increased accuracy over the original dataset by 6.7% and 77.4%, respectively. Our feature selection scheme could be a useful technique for finding effective competitive inhibitors of HIV protease.

  7. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter

    NASA Astrophysics Data System (ADS)

    Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin

    2018-02-01

    This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.

  8. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification

    PubMed Central

    Wen, Tingxi; Zhang, Zhongnan

    2017-01-01

    Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789

  9. Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.

    PubMed

    Wen, Tingxi; Zhang, Zhongnan

    2017-05-01

    In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.

  10. Selection-for-action in visual search.

    PubMed

    Hannus, Aave; Cornelissen, Frans W; Lindemann, Oliver; Bekkering, Harold

    2005-01-01

    Grasping an object rather than pointing to it enhances processing of its orientation but not its color. Apparently, visual discrimination is selectively enhanced for a behaviorally relevant feature. In two experiments we investigated the limitations and targets of this bias. Specifically, in Experiment 1 we were interested to find out whether the effect is capacity demanding, therefore we manipulated the set-size of the display. The results indicated a clear cognitive processing capacity requirement, i.e. the magnitude of the effect decreased for a larger set size. Consequently, in Experiment 2, we investigated if the enhancement effect occurs only at the level of behaviorally relevant feature or at a level common to different features. Therefore we manipulated the discriminability of the behaviorally neutral feature (color). Again, results showed that this manipulation influenced the action enhancement of the behaviorally relevant feature. Particularly, the effect of the color manipulation on the action enhancement suggests that the action effect is more likely to bias the competition between different visual features rather than to enhance the processing of the relevant feature. We offer a theoretical account that integrates the action-intention effect within the biased competition model of visual selective attention.

  11. Object-based selection from spatially-invariant representations: evidence from a feature-report task.

    PubMed

    Matsukura, Michi; Vecera, Shaun P

    2011-02-01

    Attention selects objects as well as locations. When attention selects an object's features, observers identify two features from a single object more accurately than two features from two different objects (object-based effect of attention; e.g., Duncan, Journal of Experimental Psychology: General, 113, 501-517, 1984). Several studies have demonstrated that object-based attention can operate at a late visual processing stage that is independent of objects' spatial information (Awh, Dhaliwal, Christensen, & Matsukura, Psychological Science, 12, 329-334, 2001; Matsukura & Vecera, Psychonomic Bulletin & Review, 16, 529-536, 2009; Vecera, Journal of Experimental Psychology: General, 126, 14-18, 1997; Vecera & Farah, Journal of Experimental Psychology: General, 123, 146-160, 1994). In the present study, we asked two questions regarding this late object-based selection mechanism. In Part I, we investigated how observers' foreknowledge of to-be-reported features allows attention to select objects, as opposed to individual features. Using a feature-report task, a significant object-based effect was observed when to-be-reported features were known in advance but not when this advance knowledge was absent. In Part II, we examined what drives attention to select objects rather than individual features in the absence of observers' foreknowledge of to-be-reported features. Results suggested that, when there was no opportunity for observers to direct their attention to objects that possess to-be-reported features at the time of stimulus presentation, these stimuli must retain strong perceptual cues to establish themselves as separate objects.

  12. Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex

    PubMed Central

    Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.

    2014-01-01

    An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974

  13. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation

    PubMed Central

    Patterson, Brent R.; Anderson, Morgan L.; Rodgers, Arthur R.; Vander Vennen, Lucas M.; Fryxell, John M.

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism–a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors–has negative consequences for the viability of woodland caribou. PMID:29117234

  14. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    PubMed

    Newton, Erica J; Patterson, Brent R; Anderson, Morgan L; Rodgers, Arthur R; Vander Vennen, Lucas M; Fryxell, John M

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.

  15. Feature engineering for drug name recognition in biomedical texts: feature conjunction and feature selection.

    PubMed

    Liu, Shengyu; Tang, Buzhou; Chen, Qingcai; Wang, Xiaolong; Fan, Xiaoming

    2015-01-01

    Drug name recognition (DNR) is a critical step for drug information extraction. Machine learning-based methods have been widely used for DNR with various types of features such as part-of-speech, word shape, and dictionary feature. Features used in current machine learning-based methods are usually singleton features which may be due to explosive features and a large number of noisy features when singleton features are combined into conjunction features. However, singleton features that can only capture one linguistic characteristic of a word are not sufficient to describe the information for DNR when multiple characteristics should be considered. In this study, we explore feature conjunction and feature selection for DNR, which have never been reported. We intuitively select 8 types of singleton features and combine them into conjunction features in two ways. Then, Chi-square, mutual information, and information gain are used to mine effective features. Experimental results show that feature conjunction and feature selection can improve the performance of the DNR system with a moderate number of features and our DNR system significantly outperforms the best system in the DDIExtraction 2013 challenge.

  16. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  17. Multiband tangent space mapping and feature selection for classification of EEG during motor imagery.

    PubMed

    Islam, Md Rabiul; Tanaka, Toshihisa; Molla, Md Khademul Islam

    2018-05-08

    When designing multiclass motor imagery-based brain-computer interface (MI-BCI), a so-called tangent space mapping (TSM) method utilizing the geometric structure of covariance matrices is an effective technique. This paper aims to introduce a method using TSM for finding accurate operational frequency bands related brain activities associated with MI tasks. A multichannel electroencephalogram (EEG) signal is decomposed into multiple subbands, and tangent features are then estimated on each subband. A mutual information analysis-based effective algorithm is implemented to select subbands containing features capable of improving motor imagery classification accuracy. Thus obtained features of selected subbands are combined to get feature space. A principal component analysis-based approach is employed to reduce the features dimension and then the classification is accomplished by a support vector machine (SVM). Offline analysis demonstrates the proposed multiband tangent space mapping with subband selection (MTSMS) approach outperforms state-of-the-art methods. It acheives the highest average classification accuracy for all datasets (BCI competition dataset 2a, IIIa, IIIb, and dataset JK-HH1). The increased classification accuracy of MI tasks with the proposed MTSMS approach can yield effective implementation of BCI. The mutual information-based subband selection method is implemented to tune operation frequency bands to represent actual motor imagery tasks.

  18. The stage of priming: are intertrial repetition effects attentional or decisional?

    PubMed

    Becker, Stefanie I

    2008-02-01

    In a visual search task, reaction times to a target are shorter when its features are repeated than when they switch. The present study investigated whether these priming effects affect the attentional stage of target selection, as proposed by the priming of pop-out account, or whether they modulate performance at a later, post-selectional stage, as claimed by the episodic retrieval view. Secondly, to test whether priming affects only the target-defining feature, or whether priming can apply to all target-features in a holistic fashion, two presentation conditions were invoked, that either promoted encoding of only the target-defining feature or holistic encoding of all target features. Results from four eye tracking experiments involving a size and colour singleton target showed that, first, priming modulates selectional processes concerned with guiding attention. Second, there were traces of holistic priming effects, which however were not modulated by the displays, but by expectation and task difficulty.

  19. The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.

    PubMed

    Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli

    2009-11-18

    We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.

  20. Features of effective medical knowledge resources to support point of care learning: a focus group study.

    PubMed

    Cook, David A; Sorensen, Kristi J; Hersh, William; Berger, Richard A; Wilkinson, John M

    2013-01-01

    Health care professionals access various information sources to quickly answer questions that arise in clinical practice. The features that favorably influence the selection and use of knowledge resources remain unclear. We sought to better understand how clinicians select among the various knowledge resources available to them, and from this to derive a model for an effective knowledge resource. We conducted 11 focus groups at an academic medical center and outlying community sites. We included a purposive sample of 50 primary care and subspecialist internal medicine and family medicine physicians. We transcribed focus group discussions and analyzed these using a constant comparative approach to inductively identify features that influence the selection of knowledge resources. We identified nine features that influence users' selection of knowledge resources, namely efficiency (with sub-features of comprehensiveness, searchability, and brevity), integration with clinical workflow, credibility, user familiarity, capacity to identify a human expert, reflection of local care processes, optimization for the clinical question (e.g., diagnosis, treatment options, drug side effect), currency, and ability to support patient education. No single existing resource exemplifies all of these features. The influential features identified in this study will inform the development of knowledge resources, and could serve as a framework for future research in this field.

  1. Features of Effective Medical Knowledge Resources to Support Point of Care Learning: A Focus Group Study

    PubMed Central

    Cook, David A.; Sorensen, Kristi J.; Hersh, William; Berger, Richard A.; Wilkinson, John M.

    2013-01-01

    Objective Health care professionals access various information sources to quickly answer questions that arise in clinical practice. The features that favorably influence the selection and use of knowledge resources remain unclear. We sought to better understand how clinicians select among the various knowledge resources available to them, and from this to derive a model for an effective knowledge resource. Methods We conducted 11 focus groups at an academic medical center and outlying community sites. We included a purposive sample of 50 primary care and subspecialist internal medicine and family medicine physicians. We transcribed focus group discussions and analyzed these using a constant comparative approach to inductively identify features that influence the selection of knowledge resources. Results We identified nine features that influence users' selection of knowledge resources, namely efficiency (with sub-features of comprehensiveness, searchability, and brevity), integration with clinical workflow, credibility, user familiarity, capacity to identify a human expert, reflection of local care processes, optimization for the clinical question (e.g., diagnosis, treatment options, drug side effect), currency, and ability to support patient education. No single existing resource exemplifies all of these features. Conclusion The influential features identified in this study will inform the development of knowledge resources, and could serve as a framework for future research in this field. PMID:24282535

  2. Genetic Programming and Frequent Itemset Mining to Identify Feature Selection Patterns of iEEG and fMRI Epilepsy Data

    PubMed Central

    Smart, Otis; Burrell, Lauren

    2014-01-01

    Pattern classification for intracranial electroencephalogram (iEEG) and functional magnetic resonance imaging (fMRI) signals has furthered epilepsy research toward understanding the origin of epileptic seizures and localizing dysfunctional brain tissue for treatment. Prior research has demonstrated that implicitly selecting features with a genetic programming (GP) algorithm more effectively determined the proper features to discern biomarker and non-biomarker interictal iEEG and fMRI activity than conventional feature selection approaches. However for each the iEEG and fMRI modalities, it is still uncertain whether the stochastic properties of indirect feature selection with a GP yield (a) consistent results within a patient data set and (b) features that are specific or universal across multiple patient data sets. We examined the reproducibility of implicitly selecting features to classify interictal activity using a GP algorithm by performing several selection trials and subsequent frequent itemset mining (FIM) for separate iEEG and fMRI epilepsy patient data. We observed within-subject consistency and across-subject variability with some small similarity for selected features, indicating a clear need for patient-specific features and possible need for patient-specific feature selection or/and classification. For the fMRI, using nearest-neighbor classification and 30 GP generations, we obtained over 60% median sensitivity and over 60% median selectivity. For the iEEG, using nearest-neighbor classification and 30 GP generations, we obtained over 65% median sensitivity and over 65% median selectivity except one patient. PMID:25580059

  3. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  4. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  5. Toward optimal feature and time segment selection by divergence method for EEG signals classification.

    PubMed

    Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing

    2018-06-01

    Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Natural image statistics and low-complexity feature selection.

    PubMed

    Vasconcelos, Manuela; Vasconcelos, Nuno

    2009-02-01

    Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

  7. Reducing Sweeping Frequencies in Microwave NDT Employing Machine Learning Feature Selection

    PubMed Central

    Moomen, Abdelniser; Ali, Abdulbaset; Ramahi, Omar M.

    2016-01-01

    Nondestructive Testing (NDT) assessment of materials’ health condition is useful for classifying healthy from unhealthy structures or detecting flaws in metallic or dielectric structures. Performing structural health testing for coated/uncoated metallic or dielectric materials with the same testing equipment requires a testing method that can work on metallics and dielectrics such as microwave testing. Reducing complexity and expenses associated with current diagnostic practices of microwave NDT of structural health requires an effective and intelligent approach based on feature selection and classification techniques of machine learning. Current microwave NDT methods in general based on measuring variation in the S-matrix over the entire operating frequency ranges of the sensors. For instance, assessing the health of metallic structures using a microwave sensor depends on the reflection or/and transmission coefficient measurements as a function of the sweeping frequencies of the operating band. The aim of this work is reducing sweeping frequencies using machine learning feature selection techniques. By treating sweeping frequencies as features, the number of top important features can be identified, then only the most influential features (frequencies) are considered when building the microwave NDT equipment. The proposed method of reducing sweeping frequencies was validated experimentally using a waveguide sensor and a metallic plate with different cracks. Among the investigated feature selection techniques are information gain, gain ratio, relief, chi-squared. The effectiveness of the selected features were validated through performance evaluations of various classification models; namely, Nearest Neighbor, Neural Networks, Random Forest, and Support Vector Machine. Results showed good crack classification accuracy rates after employing feature selection algorithms. PMID:27104533

  8. Feature Grouping and Selection Over an Undirected Graph.

    PubMed

    Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping

    2012-01-01

    High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.

  9. Improving Classification of Protein Interaction Articles Using Context Similarity-Based Feature Selection.

    PubMed

    Chen, Yifei; Sun, Yuxing; Han, Bing-Qing

    2015-01-01

    Protein interaction article classification is a text classification task in the biological domain to determine which articles describe protein-protein interactions. Since the feature space in text classification is high-dimensional, feature selection is widely used for reducing the dimensionality of features to speed up computation without sacrificing classification performance. Many existing feature selection methods are based on the statistical measure of document frequency and term frequency. One potential drawback of these methods is that they treat features separately. Hence, first we design a similarity measure between the context information to take word cooccurrences and phrase chunks around the features into account. Then we introduce the similarity of context information to the importance measure of the features to substitute the document and term frequency. Hence we propose new context similarity-based feature selection methods. Their performance is evaluated on two protein interaction article collections and compared against the frequency-based methods. The experimental results reveal that the context similarity-based methods perform better in terms of the F1 measure and the dimension reduction rate. Benefiting from the context information surrounding the features, the proposed methods can select distinctive features effectively for protein interaction article classification.

  10. News video story segmentation method using fusion of audio-visual features

    NASA Astrophysics Data System (ADS)

    Wen, Jun; Wu, Ling-da; Zeng, Pu; Luan, Xi-dao; Xie, Yu-xiang

    2007-11-01

    News story segmentation is an important aspect for news video analysis. This paper presents a method for news video story segmentation. Different form prior works, which base on visual features transform, the proposed technique uses audio features as baseline and fuses visual features with it to refine the results. At first, it selects silence clips as audio features candidate points, and selects shot boundaries and anchor shots as two kinds of visual features candidate points. Then this paper selects audio feature candidates as cues and develops different fusion method, which effectively using diverse type visual candidates to refine audio candidates, to get story boundaries. Experiment results show that this method has high efficiency and adaptability to different kinds of news video.

  11. Ordinal feature selection for iris and palmprint recognition.

    PubMed

    Sun, Zhenan; Wang, Libin; Tan, Tieniu

    2014-09-01

    Ordinal measures have been demonstrated as an effective feature representation model for iris and palmprint recognition. However, ordinal measures are a general concept of image analysis and numerous variants with different parameter settings, such as location, scale, orientation, and so on, can be derived to construct a huge feature space. This paper proposes a novel optimization formulation for ordinal feature selection with successful applications to both iris and palmprint recognition. The objective function of the proposed feature selection method has two parts, i.e., misclassification error of intra and interclass matching samples and weighted sparsity of ordinal feature descriptors. Therefore, the feature selection aims to achieve an accurate and sparse representation of ordinal measures. And, the optimization subjects to a number of linear inequality constraints, which require that all intra and interclass matching pairs are well separated with a large margin. Ordinal feature selection is formulated as a linear programming (LP) problem so that a solution can be efficiently obtained even on a large-scale feature pool and training database. Extensive experimental results demonstrate that the proposed LP formulation is advantageous over existing feature selection methods, such as mRMR, ReliefF, Boosting, and Lasso for biometric recognition, reporting state-of-the-art accuracy on CASIA and PolyU databases.

  12. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  13. Selecting multiple features delays perception, but only when targets are horizontally arranged.

    PubMed

    Lo, Shih-Yu

    2017-01-01

    Based on the finding that perception is lagged by attention split on multiple features (Lo et al., 2012), this study investigated how the feature-based lag effect interacts with the target spatial arrangement. Participants were presented with gratings the spatial frequencies of which constantly changed. The task was to monitor two gratings of the same or different colors and report their spatial frequencies right before the stimulus offset. The results showed a perceptual lag wherein the reported value was closer to the physical value some time prior to the stimulus offset. This lag effect was larger when the two gratings were of different colors than when they were the same color. Furthermore, the feature-based lag effect was statistically significant when the two gratings were horizontally arranged but not when they were vertically or diagonally arranged. A model is proposed to explain the effect of target arrangement: When targets are horizontally arranged, selecting an additional feature delays perception. When targets are vertically or diagonally arranged, target selection for the lower field is prioritized. This prioritization on the lower target might prompt observers to only select the lower target and ignore the upper one, and this causes more perceptual errors without delaying perception. © 2017 Elsevier B.V. All rights reserved.

  14. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    An, Le; Adeli, Ehsan; Liu, Mingxia; Zhang, Jun; Lee, Seong-Whan; Shen, Dinggang

    2017-03-01

    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals.

  15. Fuzzy feature selection based on interval type-2 fuzzy sets

    NASA Astrophysics Data System (ADS)

    Cherif, Sahar; Baklouti, Nesrine; Alimi, Adel; Snasel, Vaclav

    2017-03-01

    When dealing with real world data; noise, complexity, dimensionality, uncertainty and irrelevance can lead to low performance and insignificant judgment. Fuzzy logic is a powerful tool for controlling conflicting attributes which can have similar effects and close meanings. In this paper, an interval type-2 fuzzy feature selection is presented as a new approach for removing irrelevant features and reducing complexity. We demonstrate how can Feature Selection be joined with Interval Type-2 Fuzzy Logic for keeping significant features and hence reducing time complexity. The proposed method is compared with some other approaches. The results show that the number of attributes is proportionally small.

  16. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  17. Mapping feature-sensitivity and attentional modulation in human auditory cortex with functional magnetic resonance imaging

    PubMed Central

    Paltoglou, Aspasia E; Sumner, Christian J; Hall, Deborah A

    2011-01-01

    Feature-specific enhancement refers to the process by which selectively attending to a particular stimulus feature specifically increases the response in the same region of the brain that codes that stimulus property. Whereas there are many demonstrations of this mechanism in the visual system, the evidence is less clear in the auditory system. The present functional magnetic resonance imaging (fMRI) study examined this process for two complex sound features, namely frequency modulation (FM) and spatial motion. The experimental design enabled us to investigate whether selectively attending to FM and spatial motion enhanced activity in those auditory cortical areas that were sensitive to the two features. To control for attentional effort, the difficulty of the target-detection tasks was matched as closely as possible within listeners. Locations of FM-related and motion-related activation were broadly compatible with previous research. The results also confirmed a general enhancement across the auditory cortex when either feature was being attended to, as compared with passive listening. The feature-specific effects of selective attention revealed the novel finding of enhancement for the nonspatial (FM) feature, but not for the spatial (motion) feature. However, attention to spatial features also recruited several areas outside the auditory cortex. Further analyses led us to conclude that feature-specific effects of selective attention are not statistically robust, and appear to be sensitive to the choice of fMRI experimental design and localizer contrast. PMID:21447093

  18. Feature selection using probabilistic prediction of support vector regression.

    PubMed

    Yang, Jian-Bo; Ong, Chong-Jin

    2011-06-01

    This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.

  19. FSMRank: feature selection algorithm for learning to rank.

    PubMed

    Lai, Han-Jiang; Pan, Yan; Tang, Yong; Yu, Rong

    2013-06-01

    In recent years, there has been growing interest in learning to rank. The introduction of feature selection into different learning problems has been proven effective. These facts motivate us to investigate the problem of feature selection for learning to rank. We propose a joint convex optimization formulation which minimizes ranking errors while simultaneously conducting feature selection. This optimization formulation provides a flexible framework in which we can easily incorporate various importance measures and similarity measures of the features. To solve this optimization problem, we use the Nesterov's approach to derive an accelerated gradient algorithm with a fast convergence rate O(1/T(2)). We further develop a generalization bound for the proposed optimization problem using the Rademacher complexities. Extensive experimental evaluations are conducted on the public LETOR benchmark datasets. The results demonstrate that the proposed method shows: 1) significant ranking performance gain compared to several feature selection baselines for ranking, and 2) very competitive performance compared to several state-of-the-art learning-to-rank algorithms.

  20. The Effects of Selective Attention to Television Forms on Children's Comprehension of Content.

    ERIC Educational Resources Information Center

    Calvert, Sandra L.; And Others

    The purposes of this study were to provide information about how formal features of television are related to children's selective attention and to determine how selective attention is related, in turn, to comprehension of content. Formal features are defined as attributes of television productions that are relatively content-free and that result…

  1. Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.

    PubMed

    Somasundaram, K; Rajendran, P Alli

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time.

  2. Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach

    PubMed Central

    Somasundaram, K.; Alli Rajendran, P.

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time. PMID:25945362

  3. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    NASA Astrophysics Data System (ADS)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  4. A New Direction of Cancer Classification: Positive Effect of Low-Ranking MicroRNAs.

    PubMed

    Li, Feifei; Piao, Minghao; Piao, Yongjun; Li, Meijing; Ryu, Keun Ho

    2014-10-01

    Many studies based on microRNA (miRNA) expression profiles showed a new aspect of cancer classification. Because one characteristic of miRNA expression data is the high dimensionality, feature selection methods have been used to facilitate dimensionality reduction. The feature selection methods have one shortcoming thus far: they just consider the problem of where feature to class is 1:1 or n:1. However, because one miRNA may influence more than one type of cancer, human miRNA is considered to be ranked low in traditional feature selection methods and are removed most of the time. In view of the limitation of the miRNA number, low-ranking miRNAs are also important to cancer classification. We considered both high- and low-ranking features to cover all problems (1:1, n:1, 1:n, and m:n) in cancer classification. First, we used the correlation-based feature selection method to select the high-ranking miRNAs, and chose the support vector machine, Bayes network, decision tree, k-nearest-neighbor, and logistic classifier to construct cancer classification. Then, we chose Chi-square test, information gain, gain ratio, and Pearson's correlation feature selection methods to build the m:n feature subset, and used the selected miRNAs to determine cancer classification. The low-ranking miRNA expression profiles achieved higher classification accuracy compared with just using high-ranking miRNAs in traditional feature selection methods. Our results demonstrate that the m:n feature subset made a positive impression of low-ranking miRNAs in cancer classification.

  5. A feature-based approach to modeling protein–protein interaction hot spots

    PubMed Central

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  6. Effect of finite sample size on feature selection and classification: a simulation study.

    PubMed

    Way, Ted W; Sahiner, Berkman; Hadjiiski, Lubomir M; Chan, Heang-Ping

    2010-02-01

    The small number of samples available for training and testing is often the limiting factor in finding the most effective features and designing an optimal computer-aided diagnosis (CAD) system. Training on a limited set of samples introduces bias and variance in the performance of a CAD system relative to that trained with an infinite sample size. In this work, the authors conducted a simulation study to evaluate the performances of various combinations of classifiers and feature selection techniques and their dependence on the class distribution, dimensionality, and the training sample size. The understanding of these relationships will facilitate development of effective CAD systems under the constraint of limited available samples. Three feature selection techniques, the stepwise feature selection (SFS), sequential floating forward search (SFFS), and principal component analysis (PCA), and two commonly used classifiers, Fisher's linear discriminant analysis (LDA) and support vector machine (SVM), were investigated. Samples were drawn from multidimensional feature spaces of multivariate Gaussian distributions with equal or unequal covariance matrices and unequal means, and with equal covariance matrices and unequal means estimated from a clinical data set. Classifier performance was quantified by the area under the receiver operating characteristic curve Az. The mean Az values obtained by resubstitution and hold-out methods were evaluated for training sample sizes ranging from 15 to 100 per class. The number of simulated features available for selection was chosen to be 50, 100, and 200. It was found that the relative performance of the different combinations of classifier and feature selection method depends on the feature space distributions, the dimensionality, and the available training sample sizes. The LDA and SVM with radial kernel performed similarly for most of the conditions evaluated in this study, although the SVM classifier showed a slightly higher hold-out performance than LDA for some conditions and vice versa for other conditions. PCA was comparable to or better than SFS and SFFS for LDA at small samples sizes, but inferior for SVM with polynomial kernel. For the class distributions simulated from clinical data, PCA did not show advantages over the other two feature selection methods. Under this condition, the SVM with radial kernel performed better than the LDA when few training samples were available, while LDA performed better when a large number of training samples were available. None of the investigated feature selection-classifier combinations provided consistently superior performance under the studied conditions for different sample sizes and feature space distributions. In general, the SFFS method was comparable to the SFS method while PCA may have an advantage for Gaussian feature spaces with unequal covariance matrices. The performance of the SVM with radial kernel was better than, or comparable to, that of the SVM with polynomial kernel under most conditions studied.

  7. Wavelet-based energy features for glaucomatous image classification.

    PubMed

    Dua, Sumeet; Acharya, U Rajendra; Chowriappa, Pradeep; Sree, S Vinitha

    2012-01-01

    Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naïve Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.

  8. EEG-based mild depressive detection using feature selection methods and classifiers.

    PubMed

    Li, Xiaowei; Hu, Bin; Sun, Shuting; Cai, Hanshu

    2016-11-01

    Depression has become a major health burden worldwide, and effectively detection of such disorder is a great challenge which requires latest technological tool, such as Electroencephalography (EEG). This EEG-based research seeks to find prominent frequency band and brain regions that are most related to mild depression, as well as an optimal combination of classification algorithms and feature selection methods which can be used in future mild depression detection. An experiment based on facial expression viewing task (Emo_block and Neu_block) was conducted, and EEG data of 37 university students were collected using a 128 channel HydroCel Geodesic Sensor Net (HCGSN). For discriminating mild depressive patients and normal controls, BayesNet (BN), Support Vector Machine (SVM), Logistic Regression (LR), k-nearest neighbor (KNN) and RandomForest (RF) classifiers were used. And BestFirst (BF), GreedyStepwise (GSW), GeneticSearch (GS), LinearForwordSelection (LFS) and RankSearch (RS) based on Correlation Features Selection (CFS) were applied for linear and non-linear EEG features selection. Independent Samples T-test with Bonferroni correction was used to find the significantly discriminant electrodes and features. Data mining results indicate that optimal performance is achieved using a combination of feature selection method GSW based on CFS and classifier KNN for beta frequency band. Accuracies achieved 92.00% and 98.00%, and AUC achieved 0.957 and 0.997, for Emo_block and Neu_block beta band data respectively. T-test results validate the effectiveness of selected features by search method GSW. Simplified EEG system with only FP1, FP2, F3, O2, T3 electrodes was also explored with linear features, which yielded accuracies of 91.70% and 96.00%, AUC of 0.952 and 0.972, for Emo_block and Neu_block respectively. Classification results obtained by GSW + KNN are encouraging and better than previously published results. In the spatial distribution of features, we find that left parietotemporal lobe in beta EEG frequency band has greater effect on mild depression detection. And fewer EEG channels (FP1, FP2, F3, O2 and T3) combined with linear features may be good candidates for usage in portable systems for mild depression detection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE.

    PubMed

    Chen, Qi; Meng, Zhaopeng; Liu, Xinyi; Jin, Qianguo; Su, Ran

    2018-06-15

    Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.

  10. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities.

    PubMed

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  11. A combined Fisher and Laplacian score for feature selection in QSAR based drug design using compounds with known and unknown activities

    NASA Astrophysics Data System (ADS)

    Valizade Hasanloei, Mohammad Amin; Sheikhpour, Razieh; Sarram, Mehdi Agha; Sheikhpour, Elnaz; Sharifi, Hamdollah

    2018-02-01

    Quantitative structure-activity relationship (QSAR) is an effective computational technique for drug design that relates the chemical structures of compounds to their biological activities. Feature selection is an important step in QSAR based drug design to select the most relevant descriptors. One of the most popular feature selection methods for classification problems is Fisher score which aim is to minimize the within-class distance and maximize the between-class distance. In this study, the properties of Fisher criterion were extended for QSAR models to define the new distance metrics based on the continuous activity values of compounds with known activities. Then, a semi-supervised feature selection method was proposed based on the combination of Fisher and Laplacian criteria which exploits both compounds with known and unknown activities to select the relevant descriptors. To demonstrate the efficiency of the proposed semi-supervised feature selection method in selecting the relevant descriptors, we applied the method and other feature selection methods on three QSAR data sets such as serine/threonine-protein kinase PLK3 inhibitors, ROCK inhibitors and phenol compounds. The results demonstrated that the QSAR models built on the selected descriptors by the proposed semi-supervised method have better performance than other models. This indicates the efficiency of the proposed method in selecting the relevant descriptors using the compounds with known and unknown activities. The results of this study showed that the compounds with known and unknown activities can be helpful to improve the performance of the combined Fisher and Laplacian based feature selection methods.

  12. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  13. Feature Selection and Effective Classifiers.

    ERIC Educational Resources Information Center

    Deogun, Jitender S.; Choubey, Suresh K.; Raghavan, Vijay V.; Sever, Hayri

    1998-01-01

    Develops and analyzes four algorithms for feature selection in the context of rough set methodology. Experimental results confirm the expected relationship between the time complexity of these algorithms and the classification accuracy of the resulting upper classifiers. When compared, results of upper classifiers perform better than lower…

  14. Effects of feature-selective and spatial attention at different stages of visual processing.

    PubMed

    Andersen, Søren K; Fuchs, Sandra; Müller, Matthias M

    2011-01-01

    We investigated mechanisms of concurrent attentional selection of location and color using electrophysiological measures in human subjects. Two completely overlapping random dot kinematograms (RDKs) of two different colors were presented on either side of a central fixation cross. On each trial, participants attended one of these four RDKs, defined by its specific combination of color and location, in order to detect coherent motion targets. Sustained attentional selection while monitoring for targets was measured by means of steady-state visual evoked potentials (SSVEPs) elicited by the frequency-tagged RDKs. Attentional selection of transient targets and distractors was assessed by behavioral responses and by recording event-related potentials to these stimuli. Spatial attention and attention to color had independent and largely additive effects on the amplitudes of SSVEPs elicited in early visual areas. In contrast, behavioral false alarms and feature-selective modulation of P3 amplitudes to targets and distractors were limited to the attended location. These results suggest that feature-selective attention produces an early, global facilitation of stimuli having the attended feature throughout the visual field, whereas the discrimination of target events takes place at a later stage of processing that is only applied to stimuli at the attended position.

  15. An effective biometric discretization approach to extract highly discriminative, informative, and privacy-protective binary representation

    NASA Astrophysics Data System (ADS)

    Lim, Meng-Hui; Teoh, Andrew Beng Jin

    2011-12-01

    Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously is not feasible, and a tradeoff between them is always definite. In this article, we propose an effective fixed bit allocation-based discretization approach which involves discriminative feature extraction, discriminative feature selection, unsupervised quantization (quantization that does not utilize class information), and linearly separable subcode (LSSC)-based encoding to fulfill all the ideal properties of a binary representation extracted for cryptographic applications. In addition, we examine a number of discriminative feature-selection measures for discretization and identify the proper way of setting an important feature-selection parameter. Encouraging experimental results vindicate the feasibility of our approach.

  16. Prediction of lysine ubiquitylation with ensemble classifier and feature selection.

    PubMed

    Zhao, Xiaowei; Li, Xiangtao; Ma, Zhiqiang; Yin, Minghao

    2011-01-01

    Ubiquitylation is an important process of post-translational modification. Correct identification of protein lysine ubiquitylation sites is of fundamental importance to understand the molecular mechanism of lysine ubiquitylation in biological systems. This paper develops a novel computational method to effectively identify the lysine ubiquitylation sites based on the ensemble approach. In the proposed method, 468 ubiquitylation sites from 323 proteins retrieved from the Swiss-Prot database were encoded into feature vectors by using four kinds of protein sequences information. An effective feature selection method was then applied to extract informative feature subsets. After different feature subsets were obtained by setting different starting points in the search procedure, they were used to train multiple random forests classifiers and then aggregated into a consensus classifier by majority voting. Evaluated by jackknife tests and independent tests respectively, the accuracy of the proposed predictor reached 76.82% for the training dataset and 79.16% for the test dataset, indicating that this predictor is a useful tool to predict lysine ubiquitylation sites. Furthermore, site-specific feature analysis was performed and it was shown that ubiquitylation is intimately correlated with the features of its surrounding sites in addition to features derived from the lysine site itself. The feature selection method is available upon request.

  17. Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate

    PubMed Central

    Padmanaban, Subash; Baker, Justin; Greger, Bradley

    2018-01-01

    Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding algorithm can be made robust by using optimal features and feature selection algorithms. We believe that even a few percent increase in performance is important and improves the decoding accuracy of the machine learning algorithm potentially increasing the ease of use of a brain machine interface. PMID:29467602

  18. Feature-based attentional modulations in the absence of direct visual stimulation.

    PubMed

    Serences, John T; Boynton, Geoffrey M

    2007-07-19

    When faced with a crowded visual scene, observers must selectively attend to behaviorally relevant objects to avoid sensory overload. Often this selection process is guided by prior knowledge of a target-defining feature (e.g., the color red when looking for an apple), which enhances the firing rate of visual neurons that are selective for the attended feature. Here, we used functional magnetic resonance imaging and a pattern classification algorithm to predict the attentional state of human observers as they monitored a visual feature (one of two directions of motion). We find that feature-specific attention effects spread across the visual field-even to regions of the scene that do not contain a stimulus. This spread of feature-based attention to empty regions of space may facilitate the perception of behaviorally relevant stimuli by increasing sensitivity to attended features at all locations in the visual field.

  19. Computational Prediction of Protein Epsilon Lysine Acetylation Sites Based on a Feature Selection Method.

    PubMed

    Gao, JianZhao; Tao, Xue-Wen; Zhao, Jia; Feng, Yuan-Ming; Cai, Yu-Dong; Zhang, Ning

    2017-01-01

    Lysine acetylation, as one type of post-translational modifications (PTM), plays key roles in cellular regulations and can be involved in a variety of human diseases. However, it is often high-cost and time-consuming to use traditional experimental approaches to identify the lysine acetylation sites. Therefore, effective computational methods should be developed to predict the acetylation sites. In this study, we developed a position-specific method for epsilon lysine acetylation site prediction. Sequences of acetylated proteins were retrieved from the UniProt database. Various kinds of features such as position specific scoring matrix (PSSM), amino acid factors (AAF), and disorders were incorporated. A feature selection method based on mRMR (Maximum Relevance Minimum Redundancy) and IFS (Incremental Feature Selection) was employed. Finally, 319 optimal features were selected from total 541 features. Using the 319 optimal features to encode peptides, a predictor was constructed based on dagging. As a result, an accuracy of 69.56% with MCC of 0.2792 was achieved. We analyzed the optimal features, which suggested some important factors determining the lysine acetylation sites. We developed a position-specific method for epsilon lysine acetylation site prediction. A set of optimal features was selected. Analysis of the optimal features provided insights into the mechanism of lysine acetylation sites, providing guidance of experimental validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Image feature extraction based on the camouflage effectiveness evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Lv, Xuliang; Li, Ling; Wang, Xinzhu; Zhang, Zhi

    2018-04-01

    The key step of camouflage effectiveness evaluation is how to combine the human visual physiological features, psychological features to select effectively evaluation indexes. Based on the predecessors' camo comprehensive evaluation method, this paper chooses the suitable indexes combining with the image quality awareness, and optimizes those indexes combining with human subjective perception. Thus, it perfects the theory of index extraction.

  1. Oculomotor selection underlies feature retention in visual working memory.

    PubMed

    Hanning, Nina M; Jonikaitis, Donatas; Deubel, Heiner; Szinte, Martin

    2016-02-01

    Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations. Copyright © 2016 the American Physiological Society.

  2. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection.

    PubMed

    Hollingworth, Andrew; Hwang, Seongmin

    2013-10-19

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection.

  3. A new approach to modeling the influence of image features on fixation selection in scenes

    PubMed Central

    Nuthmann, Antje; Einhäuser, Wolfgang

    2015-01-01

    Which image characteristics predict where people fixate when memorizing natural images? To answer this question, we introduce a new analysis approach that combines a novel scene-patch analysis with generalized linear mixed models (GLMMs). Our method allows for (1) directly describing the relationship between continuous feature value and fixation probability, and (2) assessing each feature's unique contribution to fixation selection. To demonstrate this method, we estimated the relative contribution of various image features to fixation selection: luminance and luminance contrast (low-level features); edge density (a mid-level feature); visual clutter and image segmentation to approximate local object density in the scene (higher-level features). An additional predictor captured the central bias of fixation. The GLMM results revealed that edge density, clutter, and the number of homogenous segments in a patch can independently predict whether image patches are fixated or not. Importantly, neither luminance nor contrast had an independent effect above and beyond what could be accounted for by the other predictors. Since the parcellation of the scene and the selection of features can be tailored to the specific research question, our approach allows for assessing the interplay of various factors relevant for fixation selection in scenes in a powerful and flexible manner. PMID:25752239

  4. Selection and response bias as determinants of priming of pop-out search: Revelations from diffusion modeling.

    PubMed

    Burnham, Bryan R

    2018-05-03

    During visual search, both top-down factors and bottom-up properties contribute to the guidance of visual attention, but selection history can influence attention independent of bottom-up and top-down factors. For example, priming of pop-out (PoP) is the finding that search for a singleton target is faster when the target and distractor features repeat than when those features trade roles between trials. Studies have suggested that such priming (selection history) effects on pop-out search manifest either early, by biasing the selection of the preceding target feature, or later in processing, by facilitating response and target retrieval processes. The present study was designed to examine the influence of selection history on pop-out search by introducing a speed-accuracy trade-off manipulation in a pop-out search task. Ratcliff diffusion modeling (RDM) was used to examine how selection history influenced both attentional bias and response execution processes. The results support the hypothesis that selection history biases attention toward the preceding target's features on the current trial and also influences selection of the response to the target.

  5. Feature-selective attention in healthy old age: a selective decline in selective attention?

    PubMed

    Quigley, Cliodhna; Müller, Matthias M

    2014-02-12

    Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.

  6. Focusing, Sustaining, and Switching Attention

    DTIC Science & Technology

    2013-09-12

    selective attention . Aim 2. Effects on non-spatial features. We measured whether selective attention to an ongoing target improves with time when...talk]. Shinn-Cunningham BG (2013). "Spatial hearing in rooms: Effects on selective auditory attention and sound localization," Neuroscience for...hypothesis that room reverberation interferes with selective attention , 2) whether selective attention to an ongoing target improves with time when

  7. Vessel Classification in Cosmo-Skymed SAR Data Using Hierarchical Feature Selection

    NASA Astrophysics Data System (ADS)

    Makedonas, A.; Theoharatos, C.; Tsagaris, V.; Anastasopoulos, V.; Costicoglou, S.

    2015-04-01

    SAR based ship detection and classification are important elements of maritime monitoring applications. Recently, high-resolution SAR data have opened new possibilities to researchers for achieving improved classification results. In this work, a hierarchical vessel classification procedure is presented based on a robust feature extraction and selection scheme that utilizes scale, shape and texture features in a hierarchical way. Initially, different types of feature extraction algorithms are implemented in order to form the utilized feature pool, able to represent the structure, material, orientation and other vessel type characteristics. A two-stage hierarchical feature selection algorithm is utilized next in order to be able to discriminate effectively civilian vessels into three distinct types, in COSMO-SkyMed SAR images: cargos, small ships and tankers. In our analysis, scale and shape features are utilized in order to discriminate smaller types of vessels present in the available SAR data, or shape specific vessels. Then, the most informative texture and intensity features are incorporated in order to be able to better distinguish the civilian types with high accuracy. A feature selection procedure that utilizes heuristic measures based on features' statistical characteristics, followed by an exhaustive research with feature sets formed by the most qualified features is carried out, in order to discriminate the most appropriate combination of features for the final classification. In our analysis, five COSMO-SkyMed SAR data with 2.2m x 2.2m resolution were used to analyse the detailed characteristics of these types of ships. A total of 111 ships with available AIS data were used in the classification process. The experimental results show that this method has good performance in ship classification, with an overall accuracy reaching 83%. Further investigation of additional features and proper feature selection is currently in progress.

  8. Decorrelation of the true and estimated classifier errors in high-dimensional settings.

    PubMed

    Hanczar, Blaise; Hua, Jianping; Dougherty, Edward R

    2007-01-01

    The aim of many microarray experiments is to build discriminatory diagnosis and prognosis models. Given the huge number of features and the small number of examples, model validity which refers to the precision of error estimation is a critical issue. Previous studies have addressed this issue via the deviation distribution (estimated error minus true error), in particular, the deterioration of cross-validation precision in high-dimensional settings where feature selection is used to mitigate the peaking phenomenon (overfitting). Because classifier design is based upon random samples, both the true and estimated errors are sample-dependent random variables, and one would expect a loss of precision if the estimated and true errors are not well correlated, so that natural questions arise as to the degree of correlation and the manner in which lack of correlation impacts error estimation. We demonstrate the effect of correlation on error precision via a decomposition of the variance of the deviation distribution, observe that the correlation is often severely decreased in high-dimensional settings, and show that the effect of high dimensionality on error estimation tends to result more from its decorrelating effects than from its impact on the variance of the estimated error. We consider the correlation between the true and estimated errors under different experimental conditions using both synthetic and real data, several feature-selection methods, different classification rules, and three error estimators commonly used (leave-one-out cross-validation, k-fold cross-validation, and .632 bootstrap). Moreover, three scenarios are considered: (1) feature selection, (2) known-feature set, and (3) all features. Only the first is of practical interest; however, the other two are needed for comparison purposes. We will observe that the true and estimated errors tend to be much more correlated in the case of a known feature set than with either feature selection or using all features, with the better correlation between the latter two showing no general trend, but differing for different models.

  9. Gene features selection for three-class disease classification via multiple orthogonal partial least square discriminant analysis and S-plot using microarray data.

    PubMed

    Yang, Mingxing; Li, Xiumin; Li, Zhibin; Ou, Zhimin; Liu, Ming; Liu, Suhuan; Li, Xuejun; Yang, Shuyu

    2013-01-01

    DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes. Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub's leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.

  10. Efficacy of texture, shape, and intensity feature fusion for posterior-fossa tumor segmentation in MRI.

    PubMed

    Ahmed, Shaheen; Iftekharuddin, Khan M; Vossough, Arastoo

    2011-03-01

    Our previous works suggest that fractal texture feature is useful to detect pediatric brain tumor in multimodal MRI. In this study, we systematically investigate efficacy of using several different image features such as intensity, fractal texture, and level-set shape in segmentation of posterior-fossa (PF) tumor for pediatric patients. We explore effectiveness of using four different feature selection and three different segmentation techniques, respectively, to discriminate tumor regions from normal tissue in multimodal brain MRI. We further study the selective fusion of these features for improved PF tumor segmentation. Our result suggests that Kullback-Leibler divergence measure for feature ranking and selection and the expectation maximization algorithm for feature fusion and tumor segmentation offer the best results for the patient data in this study. We show that for T1 and fluid attenuation inversion recovery (FLAIR) MRI modalities, the best PF tumor segmentation is obtained using the texture feature such as multifractional Brownian motion (mBm) while that for T2 MRI is obtained by fusing level-set shape with intensity features. In multimodality fused MRI (T1, T2, and FLAIR), mBm feature offers the best PF tumor segmentation performance. We use different similarity metrics to evaluate quality and robustness of these selected features for PF tumor segmentation in MRI for ten pediatric patients.

  11. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods.

    PubMed

    Polat, Huseyin; Danaei Mehr, Homay; Cetin, Aydin

    2017-04-01

    As Chronic Kidney Disease progresses slowly, early detection and effective treatment are the only cure to reduce the mortality rate. Machine learning techniques are gaining significance in medical diagnosis because of their classification ability with high accuracy rates. The accuracy of classification algorithms depend on the use of correct feature selection algorithms to reduce the dimension of datasets. In this study, Support Vector Machine classification algorithm was used to diagnose Chronic Kidney Disease. To diagnose the Chronic Kidney Disease, two essential types of feature selection methods namely, wrapper and filter approaches were chosen to reduce the dimension of Chronic Kidney Disease dataset. In wrapper approach, classifier subset evaluator with greedy stepwise search engine and wrapper subset evaluator with the Best First search engine were used. In filter approach, correlation feature selection subset evaluator with greedy stepwise search engine and filtered subset evaluator with the Best First search engine were used. The results showed that the Support Vector Machine classifier by using filtered subset evaluator with the Best First search engine feature selection method has higher accuracy rate (98.5%) in the diagnosis of Chronic Kidney Disease compared to other selected methods.

  12. Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography.

    PubMed

    Wu, Haifeng; Sun, Tao; Wang, Jingjing; Li, Xia; Wang, Wei; Huo, Da; Lv, Pingxin; He, Wen; Wang, Keyang; Guo, Xiuhua

    2013-08-01

    The objective of this study was to investigate the method of the combination of radiological and textural features for the differentiation of malignant from benign solitary pulmonary nodules by computed tomography. Features including 13 gray level co-occurrence matrix textural features and 12 radiological features were extracted from 2,117 CT slices, which came from 202 (116 malignant and 86 benign) patients. Lasso-type regularization to a nonlinear regression model was applied to select predictive features and a BP artificial neural network was used to build the diagnostic model. Eight radiological and two textural features were obtained after the Lasso-type regularization procedure. Twelve radiological features alone could reach an area under the ROC curve (AUC) of 0.84 in differentiating between malignant and benign lesions. The 10 selected characters improved the AUC to 0.91. The evaluation results showed that the method of selecting radiological and textural features appears to yield more effective in the distinction of malignant from benign solitary pulmonary nodules by computed tomography.

  13. An Ensemble Method with Integration of Feature Selection and Classifier Selection to Detect the Landslides

    NASA Astrophysics Data System (ADS)

    Zhongqin, G.; Chen, Y.

    2017-12-01

    Abstract Quickly identify the spatial distribution of landslides automatically is essential for the prevention, mitigation and assessment of the landslide hazard. It's still a challenging job owing to the complicated characteristics and vague boundary of the landslide areas on the image. The high resolution remote sensing image has multi-scales, complex spatial distribution and abundant features, the object-oriented image classification methods can make full use of the above information and thus effectively detect the landslides after the hazard happened. In this research we present a new semi-supervised workflow, taking advantages of recent object-oriented image analysis and machine learning algorithms to quick locate the different origins of landslides of some areas on the southwest part of China. Besides a sequence of image segmentation, feature selection, object classification and error test, this workflow ensemble the feature selection and classifier selection. The feature this study utilized were normalized difference vegetation index (NDVI) change, textural feature derived from the gray level co-occurrence matrices (GLCM), spectral feature and etc. The improvement of this study shows this algorithm significantly removes some redundant feature and the classifiers get fully used. All these improvements lead to a higher accuracy on the determination of the shape of landslides on the high resolution remote sensing image, in particular the flexibility aimed at different kinds of landslides.

  14. Group sparse multiview patch alignment framework with view consistency for image classification.

    PubMed

    Gui, Jie; Tao, Dacheng; Sun, Zhenan; Luo, Yong; You, Xinge; Tang, Yuan Yan

    2014-07-01

    No single feature can satisfactorily characterize the semantic concepts of an image. Multiview learning aims to unify different kinds of features to produce a consensual and efficient representation. This paper redefines part optimization in the patch alignment framework (PAF) and develops a group sparse multiview patch alignment framework (GSM-PAF). The new part optimization considers not only the complementary properties of different views, but also view consistency. In particular, view consistency models the correlations between all possible combinations of any two kinds of view. In contrast to conventional dimensionality reduction algorithms that perform feature extraction and feature selection independently, GSM-PAF enjoys joint feature extraction and feature selection by exploiting l(2,1)-norm on the projection matrix to achieve row sparsity, which leads to the simultaneous selection of relevant features and learning transformation, and thus makes the algorithm more discriminative. Experiments on two real-world image data sets demonstrate the effectiveness of GSM-PAF for image classification.

  15. Classification of Medical Datasets Using SVMs with Hybrid Evolutionary Algorithms Based on Endocrine-Based Particle Swarm Optimization and Artificial Bee Colony Algorithms.

    PubMed

    Lin, Kuan-Cheng; Hsieh, Yi-Hsiu

    2015-10-01

    The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.

  16. The relationship between visual working memory and attention: retention of precise colour information in the absence of effects on perceptual selection

    PubMed Central

    Hollingworth, Andrew; Hwang, Seongmin

    2013-01-01

    We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection. PMID:24018723

  17. Assessment of metal ion concentration in water with structured feature selection.

    PubMed

    Naula, Pekka; Airola, Antti; Pihlasalo, Sari; Montoya Perez, Ileana; Salakoski, Tapio; Pahikkala, Tapio

    2017-10-01

    We propose a cost-effective system for the determination of metal ion concentration in water, addressing a central issue in water resources management. The system combines novel luminometric label array technology with a machine learning algorithm that selects a minimal number of array reagents (modulators) and liquid sample dilutions, such that enable accurate quantification. The algorithm is able to identify the optimal modulators and sample dilutions leading to cost reductions since less manual labour and resources are needed. Inferring the ion detector involves a unique type of a structured feature selection problem, which we formalize in this paper. We propose a novel Cartesian greedy forward feature selection algorithm for solving the problem. The novel algorithm was evaluated in the concentration assessment of five metal ions and the performance was compared to two known feature selection approaches. The results demonstrate that the proposed system can assist in lowering the costs with minimal loss in accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Target selection biases from recent experience transfer across effectors.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  19. Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image

    NASA Astrophysics Data System (ADS)

    Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI

    2017-01-01

    This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.

  20. Effects of task-irrelevant grouping on visual selection in partial report.

    PubMed

    Lunau, Rasmus; Habekost, Thomas

    2017-07-01

    Perceptual grouping modulates performance in attention tasks such as partial report and change detection. Specifically, grouping of search items according to a task-relevant feature improves the efficiency of visual selection. However, the role of task-irrelevant feature grouping is not clearly understood. In the present study, we investigated whether grouping of targets by a task-irrelevant feature influences performance in a partial-report task. In this task, participants must report as many target letters as possible from a briefly presented circular display. The crucial manipulation concerned the color of the elements in these trials. In the sorted-color condition, the color of the display elements was arranged according to the selection criterion, and in the unsorted-color condition, colors were randomly assigned. The distractor cost was inferred by subtracting performance in partial-report trials from performance in a control condition that had no distractors in the display. Across five experiments, we manipulated trial order, selection criterion, and exposure duration, and found that attentional selectivity was improved in sorted-color trials when the exposure duration was 200 ms and the selection criterion was luminance. This effect was accompanied by impaired selectivity in unsorted-color trials. Overall, the results suggest that the benefit of task-irrelevant color grouping of targets is contingent on the processing locus of the selection criterion.

  1. Untuned Suppression Makes a Major Contribution to the Enhancement of Orientation Selectivity in Macaque V1

    PubMed Central

    Ringach, Dario L.; Hawken, Michael J.; Shapley, Robert M.

    2011-01-01

    One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity. The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly selective cells (O/P < 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:22049440

  2. Automatic parameter selection for feature-based multi-sensor image registration

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan

    2006-05-01

    Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.

  3. Dimensionality Reduction Through Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)

    1999-01-01

    In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.

  4. Verbal predicates foster conscious recollection but not familiarity of a task-irrelevant perceptual feature--an ERP study.

    PubMed

    Ecker, Ullrich K H; Arend, Anna M; Bergström, Kirstin; Zimmer, Hubert D

    2009-09-01

    Research on the effects of perceptual manipulations on recognition memory has suggested that (a) recollection is selectively influenced by task-relevant information and (b) familiarity can be considered perceptually specific. The present experiment tested divergent assumptions that (a) perceptual features can influence conscious object recollection via verbal code despite being task-irrelevant and that (b) perceptual features do not influence object familiarity if study is verbal-conceptual. At study, subjects named objects and their presentation colour; this was followed by an old/new object recognition test. Event-related potentials (ERP) showed that a study-test manipulation of colour impacted selectively on the ERP effect associated with recollection, while a size manipulation showed no effect. It is concluded that (a) verbal predicates generated at study are potent episodic memory agents that modulate recollection even if the recovered feature information is task-irrelevant and (b) commonly found perceptual match effects on familiarity critically depend on perceptual processing at study.

  5. Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease.

    PubMed

    Vivekanandan, T; Sriman Narayana Iyengar, N Ch

    2017-11-01

    Enormous data growth in multiple domains has posed a great challenge for data processing and analysis techniques. In particular, the traditional record maintenance strategy has been replaced in the healthcare system. It is vital to develop a model that is able to handle the huge amount of e-healthcare data efficiently. In this paper, the challenging tasks of selecting critical features from the enormous set of available features and diagnosing heart disease are carried out. Feature selection is one of the most widely used pre-processing steps in classification problems. A modified differential evolution (DE) algorithm is used to perform feature selection for cardiovascular disease and optimization of selected features. Of the 10 available strategies for the traditional DE algorithm, the seventh strategy, which is represented by DE/rand/2/exp, is considered for comparative study. The performance analysis of the developed modified DE strategy is given in this paper. With the selected critical features, prediction of heart disease is carried out using fuzzy AHP and a feed-forward neural network. Various performance measures of integrating the modified differential evolution algorithm with fuzzy AHP and a feed-forward neural network in the prediction of heart disease are evaluated in this paper. The accuracy of the proposed hybrid model is 83%, which is higher than that of some other existing models. In addition, the prediction time of the proposed hybrid model is also evaluated and has shown promising results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. On the use of feature selection to improve the detection of sea oil spills in SAR images

    NASA Astrophysics Data System (ADS)

    Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo

    2017-03-01

    Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.

  7. Visual attention: The past 25 years

    PubMed Central

    Carrasco, Marisa

    2012-01-01

    This review focuses on covert attention and how it alters early vision. I explain why attention is considered a selective process, the constructs of covert attention, spatial endogenous and exogenous attention, and feature-based attention. I explain how in the last 25 years research on attention has characterized the effects of covert attention on spatial filters and how attention influences the selection of stimuli of interest. This review includes the effects of spatial attention on discriminability and appearance in tasks mediated by contrast sensitivity and spatial resolution; the effects of feature-based attention on basic visual processes, and a comparison of the effects of spatial and feature-based attention. The emphasis of this review is on psychophysical studies, but relevant electrophysiological and neuroimaging studies and models regarding how and where neuronal responses are modulated are also discussed. PMID:21549742

  8. Visual attention: the past 25 years.

    PubMed

    Carrasco, Marisa

    2011-07-01

    This review focuses on covert attention and how it alters early vision. I explain why attention is considered a selective process, the constructs of covert attention, spatial endogenous and exogenous attention, and feature-based attention. I explain how in the last 25 years research on attention has characterized the effects of covert attention on spatial filters and how attention influences the selection of stimuli of interest. This review includes the effects of spatial attention on discriminability and appearance in tasks mediated by contrast sensitivity and spatial resolution; the effects of feature-based attention on basic visual processes, and a comparison of the effects of spatial and feature-based attention. The emphasis of this review is on psychophysical studies, but relevant electrophysiological and neuroimaging studies and models regarding how and where neuronal responses are modulated are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Quantum-enhanced feature selection with forward selection and backward elimination

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Li, Lvzhou; Huang, Zhiming; Situ, Haozhen

    2018-07-01

    Feature selection is a well-known preprocessing technique in machine learning, which can remove irrelevant features to improve the generalization capability of a classifier and reduce training and inference time. However, feature selection is time-consuming, particularly for the applications those have thousands of features, such as image retrieval, text mining and microarray data analysis. It is crucial to accelerate the feature selection process. We propose a quantum version of wrapper-based feature selection, which converts a classical feature selection to its quantum counterpart. It is valuable for machine learning on quantum computer. In this paper, we focus on two popular kinds of feature selection methods, i.e., wrapper-based forward selection and backward elimination. The proposed feature selection algorithm can quadratically accelerate the classical one.

  10. A Novel Feature Selection Technique for Text Classification Using Naïve Bayes.

    PubMed

    Dey Sarkar, Subhajit; Goswami, Saptarsi; Agarwal, Aman; Aktar, Javed

    2014-01-01

    With the proliferation of unstructured data, text classification or text categorization has found many applications in topic classification, sentiment analysis, authorship identification, spam detection, and so on. There are many classification algorithms available. Naïve Bayes remains one of the oldest and most popular classifiers. On one hand, implementation of naïve Bayes is simple and, on the other hand, this also requires fewer amounts of training data. From the literature review, it is found that naïve Bayes performs poorly compared to other classifiers in text classification. As a result, this makes the naïve Bayes classifier unusable in spite of the simplicity and intuitiveness of the model. In this paper, we propose a two-step feature selection method based on firstly a univariate feature selection and then feature clustering, where we use the univariate feature selection method to reduce the search space and then apply clustering to select relatively independent feature sets. We demonstrate the effectiveness of our method by a thorough evaluation and comparison over 13 datasets. The performance improvement thus achieved makes naïve Bayes comparable or superior to other classifiers. The proposed algorithm is shown to outperform other traditional methods like greedy search based wrapper or CFS.

  11. “Addition” and “Subtraction”: Selectivity Design for Type II Maternal Embryonic Leucine Zipper Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Giraldes, John; Sprague, Elizabeth R.

    2017-02-17

    While adding the structural features that are more favored by on-target activity is the more common strategy in selectivity optimization, the opposite strategy of subtracting the structural features that contribute more to off-target activity can also be very effective. Reported here is our successful effort of improving the kinase selectivity of type II maternal embryonic leucine zipper kinase inhibitors by applying these two complementary approaches together, which clearly demonstrates the powerful synergy between them.

  12. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  13. Feature-based attentional modulation increases with stimulus separation in divided-attention tasks.

    PubMed

    Sally, Sharon L; Vidnyánsky, Zoltán; Papathomas, Thomas V

    2009-01-01

    Attention modifies our visual experience by selecting certain aspects of a scene for further processing. It is therefore important to understand factors that govern the deployment of selective attention over the visual field. Both location and feature-specific mechanisms of attention have been identified and their modulatory effects can interact at a neural level (Treue and Martinez-Trujillo, 1999). The effects of spatial parameters on feature-based attentional modulation were examined for the feature dimensions of orientation, motion and color using three divided-attention tasks. Subjects performed concurrent discriminations of two briefly presented targets (Gabor patches) to the left and right of a central fixation point at eccentricities of +/-2.5 degrees , 5 degrees , 10 degrees and 15 degrees in the horizontal plane. Gabors were size-scaled to maintain consistent single-task performance across eccentricities. For all feature dimensions, the data show a linear increase in the attentional effects with target separation. In a control experiment, Gabors were presented on an isoeccentric viewing arc at 10 degrees and 15 degrees at the closest spatial separation (+/-2.5 degrees ) of the main experiment. Under these conditions, the effects of feature-based attentional effects were largely eliminated. Our results are consistent with the hypothesis that feature-based attention prioritizes the processing of attended features. Feature-based attentional mechanisms may have helped direct the attentional focus to the appropriate target locations at greater separations, whereas similar assistance may not have been necessary at closer target spacings. The results of the present study specify conditions under which dual-task performance benefits from sharing similar target features and may therefore help elucidate the processes by which feature-based attention operates.

  14. Image search engine with selective filtering and feature-element-based classification

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhang, Yujin; Dai, Shengyang

    2001-12-01

    With the growth of Internet and storage capability in recent years, image has become a widespread information format in World Wide Web. However, it has become increasingly harder to search for images of interest, and effective image search engine for the WWW needs to be developed. We propose in this paper a selective filtering process and a novel approach for image classification based on feature element in the image search engine we developed for the WWW. First a selective filtering process is embedded in a general web crawler to filter out the meaningless images with GIF format. Two parameters that can be obtained easily are used in the filtering process. Our classification approach first extract feature elements from images instead of feature vectors. Compared with feature vectors, feature elements can better capture visual meanings of the image according to subjective perception of human beings. Different from traditional image classification method, our classification approach based on feature element doesn't calculate the distance between two vectors in the feature space, while trying to find associations between feature element and class attribute of the image. Experiments are presented to show the efficiency of the proposed approach.

  15. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell Classification in Cervical Cancer Detection.

    PubMed

    Iliyasu, Abdullah M; Fatichah, Chastine

    2017-12-19

    A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality of traditional fuzzy k -nearest neighbours (Fuzzy k -NN) algorithm (known simply as the Q-Fuzzy approach) is proposed for efficient feature selection and classification of cells in cervical smeared (CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection) and another hybrid technique combining the standard PSO algorithm with the Fuzzy k -NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k -NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.

  16. Feature Selection for Chemical Sensor Arrays Using Mutual Information

    PubMed Central

    Wang, X. Rosalind; Lizier, Joseph T.; Nowotny, Thomas; Berna, Amalia Z.; Prokopenko, Mikhail; Trowell, Stephen C.

    2014-01-01

    We address the problem of feature selection for classifying a diverse set of chemicals using an array of metal oxide sensors. Our aim is to evaluate a filter approach to feature selection with reference to previous work, which used a wrapper approach on the same data set, and established best features and upper bounds on classification performance. We selected feature sets that exhibit the maximal mutual information with the identity of the chemicals. The selected features closely match those found to perform well in the previous study using a wrapper approach to conduct an exhaustive search of all permitted feature combinations. By comparing the classification performance of support vector machines (using features selected by mutual information) with the performance observed in the previous study, we found that while our approach does not always give the maximum possible classification performance, it always selects features that achieve classification performance approaching the optimum obtained by exhaustive search. We performed further classification using the selected feature set with some common classifiers and found that, for the selected features, Bayesian Networks gave the best performance. Finally, we compared the observed classification performances with the performance of classifiers using randomly selected features. We found that the selected features consistently outperformed randomly selected features for all tested classifiers. The mutual information filter approach is therefore a computationally efficient method for selecting near optimal features for chemical sensor arrays. PMID:24595058

  17. EEG-based recognition of video-induced emotions: selecting subject-independent feature set.

    PubMed

    Kortelainen, Jukka; Seppänen, Tapio

    2013-01-01

    Emotions are fundamental for everyday life affecting our communication, learning, perception, and decision making. Including emotions into the human-computer interaction (HCI) could be seen as a significant step forward offering a great potential for developing advanced future technologies. While the electrical activity of the brain is affected by emotions, offers electroencephalogram (EEG) an interesting channel to improve the HCI. In this paper, the selection of subject-independent feature set for EEG-based emotion recognition is studied. We investigate the effect of different feature sets in classifying person's arousal and valence while watching videos with emotional content. The classification performance is optimized by applying a sequential forward floating search algorithm for feature selection. The best classification rate (65.1% for arousal and 63.0% for valence) is obtained with a feature set containing power spectral features from the frequency band of 1-32 Hz. The proposed approach substantially improves the classification rate reported in the literature. In future, further analysis of the video-induced EEG changes including the topographical differences in the spectral features is needed.

  18. Kruskal-Wallis-based computationally efficient feature selection for face recognition.

    PubMed

    Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz

    2014-01-01

    Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.

  19. Familiarity effects in the construction of facial-composite images using modern software systems.

    PubMed

    Frowd, Charlie D; Skelton, Faye C; Butt, Neelam; Hassan, Amal; Fields, Stephen; Hancock, Peter J B

    2011-12-01

    We investigate the effect of target familiarity on the construction of facial composites, as used by law enforcement to locate criminal suspects. Two popular software construction methods were investigated. Participants were shown a target face that was either familiar or unfamiliar to them and constructed a composite of it from memory using a typical 'feature' system, involving selection of individual facial features, or one of the newer 'holistic' types, involving repeated selection and breeding from arrays of whole faces. This study found that composites constructed of a familiar face were named more successfully than composites of an unfamiliar face; also, naming of composites of internal and external features was equivalent for construction of unfamiliar targets, but internal features were better named than the external features for familiar targets. These findings applied to both systems, although benefit emerged for the holistic type due to more accurate construction of internal features and evidence for a whole-face advantage. STATEMENT OF RELEVANCE: This work is of relevance to practitioners who construct facial composites with witnesses to and victims of crime, as well as for software designers to help them improve the effectiveness of their composite systems.

  20. Effects of band selection on endmember extraction for forestry applications

    NASA Astrophysics Data System (ADS)

    Karathanassi, Vassilia; Andreou, Charoula; Andronis, Vassilis; Kolokoussis, Polychronis

    2014-10-01

    In spectral unmixing theory, data reduction techniques play an important role as hyperspectral imagery contains an immense amount of data, posing many challenging problems such as data storage, computational efficiency, and the so called "curse of dimensionality". Feature extraction and feature selection are the two main approaches for dimensionality reduction. Feature extraction techniques are used for reducing the dimensionality of the hyperspectral data by applying transforms on hyperspectral data. Feature selection techniques retain the physical meaning of the data by selecting a set of bands from the input hyperspectral dataset, which mainly contain the information needed for spectral unmixing. Although feature selection techniques are well-known for their dimensionality reduction potentials they are rarely used in the unmixing process. The majority of the existing state-of-the-art dimensionality reduction methods set criteria to the spectral information, which is derived by the whole wavelength, in order to define the optimum spectral subspace. These criteria are not associated with any particular application but with the data statistics, such as correlation and entropy values. However, each application is associated with specific land c over materials, whose spectral characteristics present variations in specific wavelengths. In forestry for example, many applications focus on tree leaves, in which specific pigments such as chlorophyll, xanthophyll, etc. determine the wavelengths where tree species, diseases, etc., can be detected. For such applications, when the unmixing process is applied, the tree species, diseases, etc., are considered as the endmembers of interest. This paper focuses on investigating the effects of band selection on the endmember extraction by exploiting the information of the vegetation absorbance spectral zones. More precisely, it is explored whether endmember extraction can be optimized when specific sets of initial bands related to leaf spectral characteristics are selected. Experiments comprise application of well-known signal subspace estimation and endmember extraction methods on a hyperspectral imagery that presents a forest area. Evaluation of the extracted endmembers showed that more forest species can be extracted as endmembers using selected bands.

  1. A Novel Image Recuperation Approach for Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image

    PubMed Central

    2015-01-01

    Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time. PMID:25974230

  2. A global optimization approach to multi-polarity sentiment analysis.

    PubMed

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From the results of this comparison, we found that PSOGO-Senti is more suitable for improving a difficult multi-polarity sentiment analysis problem.

  3. Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification

    PubMed Central

    Wu, Lin

    2017-01-01

    With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534

  4. Detecting Image Splicing Using Merged Features in Chroma Space

    PubMed Central

    Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature. PMID:24574877

  5. Detecting image splicing using merged features in chroma space.

    PubMed

    Xu, Bo; Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature.

  6. Rapid and selective updating of the target template in visual search.

    PubMed

    Sha, Li Z; Remington, Roger W; Jiang, Yuhong V

    2017-01-01

    Frequent target stimuli are detected more rapidly than infrequent ones. Here, we examined whether the frequency effect reflected durable attentional biases toward frequent target features, and whether the effect was confined to featural properties that defined the target. Participants searched for two specific target colors among distractors of heterogeneous colors and reported the line orientation of the target. The target was more often in one specific feature (e.g., a specific color or a specific orientation) than another in a training phase. This frequency difference was removed or reversed in a testing phase. Experiments 1 and 2 showed that when frequency differences were introduced to the target's defining feature, participants more rapidly found the high-frequency target than the low-frequency target. However, changes in attention were not durable-the search advantage vanished immediately when the frequency differences were removed. Experiments 3-5 showed that only featural properties that defined the target facilitated search of the more frequent feature. Features that did not define the target, such as the target feature that participants reported, sped up response but did not facilitate search. These data showed that when searching for multiple targets in a feature search task, people selectively and rapidly adapt to the frequency in the target's defining feature.

  7. The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: a search for boundary conditions.

    PubMed

    Miller, J

    1991-03-01

    When subjects must respond to a relevant center letter and ignore irrelevant flanking letters, the identities of the flankers produce a response compatibility effect, indicating that they are processed semantically at least to some extent. Because this effect decreases as the separation between target and flankers increases, the effect appears to result from imperfect early selection (attenuation). In the present experiments, several features of the focused attention paradigm were examined, in order to determine whether they might produce the flanker compatibility effect by interfering with the operation of an early selective mechanism. Specifically, the effect might be produced because the paradigm requires subjects to (1) attend exclusively to stimuli within a very small visual angle, (2) maintain a long-term attentional focus on a constant display location, (3) focus attention on an empty display location, (4) exclude onset-transient flankers from semantic processing, or (5) ignore some of the few stimuli in an impoverished visual field. The results indicate that none of these task features is required for semantic processing of unattended stimuli to occur. In fact, visual angle is the only one of the task features that clearly has a strong influence on the size of the flanker compatibility effect. The invariance of the flanker compatibility effect across these conditions suggests that the mechanism for early selection rarely, if ever, completely excludes unattended stimuli from semantic analysis. In addition, it shows that selective mechanisms are relatively insensitive to several factors that might be expected to influence them, thereby supporting the view that spatial separation has a special status for visual selective attention.

  8. Time course of spatial and feature selective attention for partly-occluded objects.

    PubMed

    Kasai, Tetsuko; Takeya, Ryuji

    2012-07-01

    Attention selects objects/groups as the most fundamental units, and this may be achieved by an attention-spreading mechanism. Previous event-related potential (ERP) studies have found that attention-spreading is reflected by a decrease in the N1 spatial attention effect. The present study tested whether the electrophysiological attention effect is associated with the perception of object unity or amodal completion through the use of partly-occluded objects. ERPs were recorded in 14 participants who were required to pay attention to their left or right visual field and to press a button for a target shape in the attended field. Bilateral stimuli were presented rapidly, and were separated, connected, or connected behind an occluder. Behavioral performance in the connected and occluded conditions was worse than that in the separated condition, indicating that attention spread over perceptual object representations after amodal completion. Consistently, the late N1 spatial attention effect (180-220 ms post-stimulus) and the early phase (230-280 ms) of feature selection effects (target N2) at contralateral sites decreased, equally for the occluded and connected conditions, while the attention effect in the early N1 latency (140-180 ms) shifted most positively for the occluded condition. These results suggest that perceptual organization processes for object recognition transiently modulate spatial and feature selection processes in the visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Intentional attention switching in dichotic listening: exploring the efficiency of nonspatial and spatial selection.

    PubMed

    Lawo, Vera; Fels, Janina; Oberem, Josefa; Koch, Iring

    2014-10-01

    Using an auditory variant of task switching, we examined the ability to intentionally switch attention in a dichotic-listening task. In our study, participants responded selectively to one of two simultaneously presented auditory number words (spoken by a female and a male, one for each ear) by categorizing its numerical magnitude. The mapping of gender (female vs. male) and ear (left vs. right) was unpredictable. The to-be-attended feature for gender or ear, respectively, was indicated by a visual selection cue prior to auditory stimulus onset. In Experiment 1, explicitly cued switches of the relevant feature dimension (e.g., from gender to ear) and switches of the relevant feature within a dimension (e.g., from male to female) occurred in an unpredictable manner. We found large performance costs when the relevant feature switched, but switches of the relevant feature dimension incurred only small additional costs. The feature-switch costs were larger in ear-relevant than in gender-relevant trials. In Experiment 2, we replicated these findings using a simplified design (i.e., only within-dimension switches with blocked dimensions). In Experiment 3, we examined preparation effects by manipulating the cueing interval and found a preparation benefit only when ear was cued. Together, our data suggest that the large part of attentional switch costs arises from reconfiguration at the level of relevant auditory features (e.g., left vs. right) rather than feature dimensions (ear vs. gender). Additionally, our findings suggest that ear-based target selection benefits more from preparation time (i.e., time to direct attention to one ear) than gender-based target selection.

  10. Recurrence predictive models for patients with hepatocellular carcinoma after radiofrequency ablation using support vector machines with feature selection methods.

    PubMed

    Liang, Ja-Der; Ping, Xiao-Ou; Tseng, Yi-Ju; Huang, Guan-Tarn; Lai, Feipei; Yang, Pei-Ming

    2014-12-01

    Recurrence of hepatocellular carcinoma (HCC) is an important issue despite effective treatments with tumor eradication. Identification of patients who are at high risk for recurrence may provide more efficacious screening and detection of tumor recurrence. The aim of this study was to develop recurrence predictive models for HCC patients who received radiofrequency ablation (RFA) treatment. From January 2007 to December 2009, 83 newly diagnosed HCC patients receiving RFA as their first treatment were enrolled. Five feature selection methods including genetic algorithm (GA), simulated annealing (SA) algorithm, random forests (RF) and hybrid methods (GA+RF and SA+RF) were utilized for selecting an important subset of features from a total of 16 clinical features. These feature selection methods were combined with support vector machine (SVM) for developing predictive models with better performance. Five-fold cross-validation was used to train and test SVM models. The developed SVM-based predictive models with hybrid feature selection methods and 5-fold cross-validation had averages of the sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and area under the ROC curve as 67%, 86%, 82%, 69%, 90%, and 0.69, respectively. The SVM derived predictive model can provide suggestive high-risk recurrent patients, who should be closely followed up after complete RFA treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. A novel feature extraction approach for microarray data based on multi-algorithm fusion

    PubMed Central

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277

  12. A novel feature extraction approach for microarray data based on multi-algorithm fusion.

    PubMed

    Jiang, Zhu; Xu, Rong

    2015-01-01

    Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.

  13. Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

    PubMed

    Zhang, Lefei; Zhang, Qian; Du, Bo; Huang, Xin; Tang, Yuan Yan; Tao, Dacheng

    2018-01-01

    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

  14. Feature-based attention to unconscious shapes and colors.

    PubMed

    Schmidt, Filipp; Schmidt, Thomas

    2010-08-01

    Two experiments employed feature-based attention to modulate the impact of completely masked primes on subsequent pointing responses. Participants processed a color cue to select a pair of possible pointing targets out of multiple targets on the basis of their color, and then pointed to the one of those two targets with a prespecified shape. All target pairs were preceded by prime pairs triggering either the correct or the opposite response. The time interval between cue and primes was varied to modulate the time course of feature-based attentional selection. In a second experiment, the roles of color and shape were switched. Pointing trajectories showed large priming effects that were amplified by feature-based attention, indicating that attention modulated the earliest phases of motor output. Priming effects as well as their attentional modulation occurred even though participants remained unable to identify the primes, indicating distinct processes underlying visual awareness, attention, and response control.

  15. 78 FR 16828 - Endangered and Threatened Wildlife and Plants; Status Review of the West Coast Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ...; biology and ecology; and habitat selection. (2) Information on the effects of potential threat factors... particular physical or biological features that are essential to the conservation of the species and where such physical or biological features are found; (c) Whether any of these features may require special...

  16. Early melanoma diagnosis with mobile imaging.

    PubMed

    Do, Thanh-Toan; Zhou, Yiren; Zheng, Haitian; Cheung, Ngai-Man; Koh, Dawn

    2014-01-01

    We research a mobile imaging system for early diagnosis of melanoma. Different from previous work, we focus on smartphone-captured images, and propose a detection system that runs entirely on the smartphone. Smartphone-captured images taken under loosely-controlled conditions introduce new challenges for melanoma detection, while processing performed on the smartphone is subject to computation and memory constraints. To address these challenges, we propose to localize the skin lesion by combining fast skin detection and fusion of two fast segmentation results. We propose new features to capture color variation and border irregularity which are useful for smartphone-captured images. We also propose a new feature selection criterion to select a small set of good features used in the final lightweight system. Our evaluation confirms the effectiveness of proposed algorithms and features. In addition, we present our system prototype which computes selected visual features from a user-captured skin lesion image, and analyzes them to estimate the likelihood of malignance, all on an off-the-shelf smartphone.

  17. Neural mechanisms of selective attention in the somatosensory system.

    PubMed

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  18. Neural mechanisms of selective attention in the somatosensory system

    PubMed Central

    Hysaj, Kristjana; Niebur, Ernst

    2016-01-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  19. The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data.

    PubMed

    Cheng, Qiang; Zhou, Hongbo; Cheng, Jie

    2011-06-01

    Selecting features for multiclass classification is a critically important task for pattern recognition and machine learning applications. Especially challenging is selecting an optimal subset of features from high-dimensional data, which typically have many more variables than observations and contain significant noise, missing components, or outliers. Existing methods either cannot handle high-dimensional data efficiently or scalably, or can only obtain local optimum instead of global optimum. Toward the selection of the globally optimal subset of features efficiently, we introduce a new selector--which we call the Fisher-Markov selector--to identify those features that are the most useful in describing essential differences among the possible groups. In particular, in this paper we present a way to represent essential discriminating characteristics together with the sparsity as an optimization objective. With properly identified measures for the sparseness and discriminativeness in possibly high-dimensional settings, we take a systematic approach for optimizing the measures to choose the best feature subset. We use Markov random field optimization techniques to solve the formulated objective functions for simultaneous feature selection. Our results are noncombinatorial, and they can achieve the exact global optimum of the objective function for some special kernels. The method is fast; in particular, it can be linear in the number of features and quadratic in the number of observations. We apply our procedure to a variety of real-world data, including mid--dimensional optical handwritten digit data set and high-dimensional microarray gene expression data sets. The effectiveness of our method is confirmed by experimental results. In pattern recognition and from a model selection viewpoint, our procedure says that it is possible to select the most discriminating subset of variables by solving a very simple unconstrained objective function which in fact can be obtained with an explicit expression.

  20. Selective attention to a facial feature with and without facial context: an ERP-study.

    PubMed

    Wijers, A A; Van Besouw, N J P; Mulder, G

    2002-04-01

    The present experiment addressed the question whether selectively attending to a facial feature (mouth shape) would benefit from the presence of a correct facial context. Subjects attended selectively to one of two possible mouth shapes belonging to photographs of a face with a happy or sad expression, respectively. These mouths were presented randomly either in isolation, embedded in the original photos, or in an exchanged facial context. The ERP effect of attending mouth shape was a lateral posterior negativity, anterior positivity with an onset latency of 160-200 ms; this effect was completely unaffected by the type of facial context. When the mouth shape and the facial context conflicted, this resulted in a medial parieto-occipital positivity with an onset latency of 180 ms, independent of the relevance of the mouth shape. Finally, there was a late (onset at approx. 400 ms) expression (happy vs. sad) effect, which was strongly lateralized to the right posterior hemisphere and was most prominent for attended stimuli in the correct facial context. For the isolated mouth stimuli, a similarly distributed expression effect was observed at an earlier latency range (180-240 ms). These data suggest the existence of separate, independent and neuroanatomically segregated processors engaged in the selective processing of facial features and the detection of contextual congruence and emotional expression of face stimuli. The data do not support that early selective attention processes benefit from top-down constraints provided by the correct facial context.

  1. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification

    PubMed Central

    Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC2), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible. PMID:29666661

  2. Feature Genes Selection Using Supervised Locally Linear Embedding and Correlation Coefficient for Microarray Classification.

    PubMed

    Xu, Jiucheng; Mu, Huiyu; Wang, Yun; Huang, Fangzhou

    2018-01-01

    The selection of feature genes with high recognition ability from the gene expression profiles has gained great significance in biology. However, most of the existing methods have a high time complexity and poor classification performance. Motivated by this, an effective feature selection method, called supervised locally linear embedding and Spearman's rank correlation coefficient (SLLE-SC 2 ), is proposed which is based on the concept of locally linear embedding and correlation coefficient algorithms. Supervised locally linear embedding takes into account class label information and improves the classification performance. Furthermore, Spearman's rank correlation coefficient is used to remove the coexpression genes. The experiment results obtained on four public tumor microarray datasets illustrate that our method is valid and feasible.

  3. Online feature selection with streaming features.

    PubMed

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  4. A Comparative Study on Selective PPAR Modulators through Quantitative Structure-activity Relationship, Pharmacophore and Docking Analyses.

    PubMed

    Nandy, Ashis; Roy, Kunal; Saha, Achintya

    2018-01-01

    Metabolic syndrome is a matrix of different metabolic disorders which are the leading cause of death in human beings. Peroxysome proliferated activated receptor (PPAR) is a nuclear receptor involved in metabolism of fats and glucose. In order to explore structural requirements for selective PPAR modulators to control lipid and carbohydrate metabolism, the multi-cheminformatics studies have been performed. In silico modeling studies have been performed on a diverse set of PPAR modulators through quantitative structure-activity relationship (QSAR), pharmacophore mapping and docking studies. It is observed that the presence of an amide fragment (-CONHRPh) has a detrimental effect while an aliphatic ether linkage has a beneficial effect on PPARα modulation. On the other hand, the presence of an amide fragment has a positive effect on PPARδ modulation, but the aliphatic ether linkage and substituted aromatic ring in the molecular scaffold are very much essential for imparting potent and selective PPARγ modulation. Negative ionizable features (i.e. polar fragments) must be present in PPARδ and α modulators, but a hydrophobic feature is the prime requirement for PPARγ modulation. Here, the essential structural features have been explored for selective modulation of each subtype of PPAR in order to design new modulators with improved activity/selectivity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm

    PubMed Central

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request. PMID:26955638

  6. Analysis and Identification of Aptamer-Compound Interactions with a Maximum Relevance Minimum Redundancy and Nearest Neighbor Algorithm.

    PubMed

    Wang, ShaoPeng; Zhang, Yu-Hang; Lu, Jing; Cui, Weiren; Hu, Jerry; Cai, Yu-Dong

    2016-01-01

    The development of biochemistry and molecular biology has revealed an increasingly important role of compounds in several biological processes. Like the aptamer-protein interaction, aptamer-compound interaction attracts increasing attention. However, it is time-consuming to select proper aptamers against compounds using traditional methods, such as exponential enrichment. Thus, there is an urgent need to design effective computational methods for searching effective aptamers against compounds. This study attempted to extract important features for aptamer-compound interactions using feature selection methods, such as Maximum Relevance Minimum Redundancy, as well as incremental feature selection. Each aptamer-compound pair was represented by properties derived from the aptamer and compound, including frequencies of single nucleotides and dinucleotides for the aptamer, as well as the constitutional, electrostatic, quantum-chemical, and space conformational descriptors of the compounds. As a result, some important features were obtained. To confirm the importance of the obtained features, we further discussed the associations between them and aptamer-compound interactions. Simultaneously, an optimal prediction model based on the nearest neighbor algorithm was built to identify aptamer-compound interactions, which has the potential to be a useful tool for the identification of novel aptamer-compound interactions. The program is available upon the request.

  7. YamiPred: A Novel Evolutionary Method for Predicting Pre-miRNAs and Selecting Relevant Features.

    PubMed

    Kleftogiannis, Dimitrios; Theofilatos, Konstantinos; Likothanassis, Spiros; Mavroudi, Seferina

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization. YamiPred was tested in a new and realistic human dataset and was compared with state-of-the-art computational intelligence approaches and the prevalent SVM-based tools for miRNA prediction. Experimental results indicate that YamiPred outperforms existing approaches in terms of accuracy and of geometric mean of sensitivity and specificity. The embedded feature selection component selects a compact feature subset that contributes to the performance optimization. Further experimentation with this minimal feature subset has achieved very high classification performance and revealed the minimum number of samples required for developing a robust predictor. YamiPred also confirmed the important role of commonly used features such as entropy and enthalpy, and uncovered the significance of newly introduced features, such as %A-U aggregate nucleotide frequency and positional entropy. The best model trained on human data has successfully predicted pre-miRNAs to other organisms including the category of viruses.

  8. Perimeter intrusion detection and assessment system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, M.J.; Jacobs, J.; McGovern, D.E.

    1977-11-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed.

  9. Tabu search and binary particle swarm optimization for feature selection using microarray data.

    PubMed

    Chuang, Li-Yeh; Yang, Cheng-Huei; Yang, Cheng-Hong

    2009-12-01

    Gene expression profiles have great potential as a medical diagnosis tool because they represent the state of a cell at the molecular level. In the classification of cancer type research, available training datasets generally have a fairly small sample size compared to the number of genes involved. This fact poses an unprecedented challenge to some classification methodologies due to training data limitations. Therefore, a good selection method for genes relevant for sample classification is needed to improve the predictive accuracy, and to avoid incomprehensibility due to the large number of genes investigated. In this article, we propose to combine tabu search (TS) and binary particle swarm optimization (BPSO) for feature selection. BPSO acts as a local optimizer each time the TS has been run for a single generation. The K-nearest neighbor method with leave-one-out cross-validation and support vector machine with one-versus-rest serve as evaluators of the TS and BPSO. The proposed method is applied and compared to the 11 classification problems taken from the literature. Experimental results show that our method simplifies features effectively and either obtains higher classification accuracy or uses fewer features compared to other feature selection methods.

  10. Elitist Binary Wolf Search Algorithm for Heuristic Feature Selection in High-Dimensional Bioinformatics Datasets.

    PubMed

    Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L

    2017-06-28

    Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.

  11. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.

  12. Classification of radiolarian images with hand-crafted and deep features

    NASA Astrophysics Data System (ADS)

    Keçeli, Ali Seydi; Kaya, Aydın; Keçeli, Seda Uzunçimen

    2017-12-01

    Radiolarians are planktonic protozoa and are important biostratigraphic and paleoenvironmental indicators for paleogeographic reconstructions. Radiolarian paleontology still remains as a low cost and the one of the most convenient way to obtain dating of deep ocean sediments. Traditional methods for identifying radiolarians are time-consuming and cannot scale to the granularity or scope necessary for large-scale studies. Automated image classification will allow making these analyses promptly. In this study, a method for automatic radiolarian image classification is proposed on Scanning Electron Microscope (SEM) images of radiolarians to ease species identification of fossilized radiolarians. The proposed method uses both hand-crafted features like invariant moments, wavelet moments, Gabor features, basic morphological features and deep features obtained from a pre-trained Convolutional Neural Network (CNN). Feature selection is applied over deep features to reduce high dimensionality. Classification outcomes are analyzed to compare hand-crafted features, deep features, and their combinations. Results show that the deep features obtained from a pre-trained CNN are more discriminative comparing to hand-crafted ones. Additionally, feature selection utilizes to the computational cost of classification algorithms and have no negative effect on classification accuracy.

  13. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  14. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  15. Ensemble Feature Learning of Genomic Data Using Support Vector Machine

    PubMed Central

    Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R.; Braytee, Ali; Kennedy, Paul J.

    2016-01-01

    The identification of a subset of genes having the ability to capture the necessary information to distinguish classes of patients is crucial in bioinformatics applications. Ensemble and bagging methods have been shown to work effectively in the process of gene selection and classification. Testament to that is random forest which combines random decision trees with bagging to improve overall feature selection and classification accuracy. Surprisingly, the adoption of these methods in support vector machines has only recently received attention but mostly on classification not gene selection. This paper introduces an ensemble SVM-Recursive Feature Elimination (ESVM-RFE) for gene selection that follows the concepts of ensemble and bagging used in random forest but adopts the backward elimination strategy which is the rationale of RFE algorithm. The rationale behind this is, building ensemble SVM models using randomly drawn bootstrap samples from the training set, will produce different feature rankings which will be subsequently aggregated as one feature ranking. As a result, the decision for elimination of features is based upon the ranking of multiple SVM models instead of choosing one particular model. Moreover, this approach will address the problem of imbalanced datasets by constructing a nearly balanced bootstrap sample. Our experiments show that ESVM-RFE for gene selection substantially increased the classification performance on five microarray datasets compared to state-of-the-art methods. Experiments on the childhood leukaemia dataset show that an average 9% better accuracy is achieved by ESVM-RFE over SVM-RFE, and 5% over random forest based approach. The selected genes by the ESVM-RFE algorithm were further explored with Singular Value Decomposition (SVD) which reveals significant clusters with the selected data. PMID:27304923

  16. A neural theory of visual attention and short-term memory (NTVA).

    PubMed

    Bundesen, Claus; Habekost, Thomas; Kyllingsbæk, Søren

    2011-05-01

    The neural theory of visual attention and short-term memory (NTVA) proposed by Bundesen, Habekost, and Kyllingsbæk (2005) is reviewed. In NTVA, filtering (selection of objects) changes the number of cortical neurons in which an object is represented so that this number increases with the behavioural importance of the object. Another mechanism of selection, pigeonholing (selection of features), scales the level of activation in neurons coding for a particular feature. By these mechanisms, behaviourally important objects and features are likely to win the competition to become encoded into visual short-term memory (VSTM). The VSTM system is conceived as a feedback mechanism that sustains activity in the neurons that have won the attentional competition. NTVA accounts both for a wide range of attentional effects in human performance (reaction times and error rates) and a wide range of effects observed in firing rates of single cells in the primate visual system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Feature Selection in Order to Extract Multiple Sclerosis Lesions Automatically in 3D Brain Magnetic Resonance Images Using Combination of Support Vector Machine and Genetic Algorithm.

    PubMed

    Khotanlou, Hassan; Afrasiabi, Mahlagha

    2012-10-01

    This paper presents a new feature selection approach for automatically extracting multiple sclerosis (MS) lesions in three-dimensional (3D) magnetic resonance (MR) images. Presented method is applicable to different types of MS lesions. In this method, T1, T2, and fluid attenuated inversion recovery (FLAIR) images are firstly preprocessed. In the next phase, effective features to extract MS lesions are selected by using a genetic algorithm (GA). The fitness function of the GA is the Similarity Index (SI) of a support vector machine (SVM) classifier. The results obtained on different types of lesions have been evaluated by comparison with manual segmentations. This algorithm is evaluated on 15 real 3D MR images using several measures. As a result, the SI between MS regions determined by the proposed method and radiologists was 87% on average. Experiments and comparisons with other methods show the effectiveness and the efficiency of the proposed approach.

  18. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  19. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  20. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  1. Feature weight estimation for gene selection: a local hyperlinear learning approach

    PubMed Central

    2014-01-01

    Background Modeling high-dimensional data involving thousands of variables is particularly important for gene expression profiling experiments, nevertheless,it remains a challenging task. One of the challenges is to implement an effective method for selecting a small set of relevant genes, buried in high-dimensional irrelevant noises. RELIEF is a popular and widely used approach for feature selection owing to its low computational cost and high accuracy. However, RELIEF based methods suffer from instability, especially in the presence of noisy and/or high-dimensional outliers. Results We propose an innovative feature weighting algorithm, called LHR, to select informative genes from highly noisy data. LHR is based on RELIEF for feature weighting using classical margin maximization. The key idea of LHR is to estimate the feature weights through local approximation rather than global measurement, which is typically used in existing methods. The weights obtained by our method are very robust in terms of degradation of noisy features, even those with vast dimensions. To demonstrate the performance of our method, extensive experiments involving classification tests have been carried out on both synthetic and real microarray benchmark datasets by combining the proposed technique with standard classifiers, including the support vector machine (SVM), k-nearest neighbor (KNN), hyperplane k-nearest neighbor (HKNN), linear discriminant analysis (LDA) and naive Bayes (NB). Conclusion Experiments on both synthetic and real-world datasets demonstrate the superior performance of the proposed feature selection method combined with supervised learning in three aspects: 1) high classification accuracy, 2) excellent robustness to noise and 3) good stability using to various classification algorithms. PMID:24625071

  2. Feature-based and spatial attentional selection in visual working memory.

    PubMed

    Heuer, Anna; Schubö, Anna

    2016-05-01

    The contents of visual working memory (VWM) can be modulated by spatial cues presented during the maintenance interval ("retrocues"). Here, we examined whether attentional selection of representations in VWM can also be based on features. In addition, we investigated whether the mechanisms of feature-based and spatial attention in VWM differ with respect to parallel access to noncontiguous locations. In two experiments, we tested the efficacy of valid retrocues relying on different kinds of information. Specifically, participants were presented with a typical spatial retrocue pointing to two locations, a symbolic spatial retrocue (numbers mapping onto two locations), and two feature-based retrocues: a color retrocue (a blob of the same color as two of the items) and a shape retrocue (an outline of the shape of two of the items). The two cued items were presented at either contiguous or noncontiguous locations. Overall retrocueing benefits, as compared to a neutral condition, were observed for all retrocue types. Whereas feature-based retrocues yielded benefits for cued items presented at both contiguous and noncontiguous locations, spatial retrocues were only effective when the cued items had been presented at contiguous locations. These findings demonstrate that attentional selection and updating in VWM can operate on different kinds of information, allowing for a flexible and efficient use of this limited system. The observation that the representations of items presented at noncontiguous locations could only be reliably selected with feature-based retrocues suggests that feature-based and spatial attentional selection in VWM rely on different mechanisms, as has been shown for attentional orienting in the external world.

  3. Non-specific filtering of beta-distributed data.

    PubMed

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered.

  4. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.

    PubMed

    Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo

    2016-02-01

    Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.

  5. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.

    PubMed

    Tsai, Richard Tzong-Han; Sung, Cheng-Lung; Dai, Hong-Jie; Hung, Hsieh-Chuan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-18

    Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. To develop our ML-based Bio-NER system, we employ conditional random fields, which have performed effectively in several well-known tasks, as our underlying ML model. Adding selected conjunction features, applying numerical normalization, and employing pattern-based post-processing improve the F-scores by 1.67%, 1.04%, and 0.57%, respectively. The combined increase of 3.28% yields a total score of 72.98%, which is better than the baseline system that only uses singleton features. We demonstrate the benefits of using the sequential forward search algorithm to select effective conjunction feature groups. In addition, we show that numerical normalization can effectively reduce the number of redundant and unseen features. Furthermore, the Smith-Waterman local alignment algorithm can help ML-based Bio-NER deal with difficult cases that need longer context windows.

  6. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach.

    PubMed

    Albadr, Musatafa Abbas Abbood; Tiun, Sabrina; Al-Dhief, Fahad Taha; Sammour, Mahmoud A M

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%.

  7. Spoken language identification based on the enhanced self-adjusting extreme learning machine approach

    PubMed Central

    Tiun, Sabrina; AL-Dhief, Fahad Taha; Sammour, Mahmoud A. M.

    2018-01-01

    Spoken Language Identification (LID) is the process of determining and classifying natural language from a given content and dataset. Typically, data must be processed to extract useful features to perform LID. The extracting features for LID, based on literature, is a mature process where the standard features for LID have already been developed using Mel-Frequency Cepstral Coefficients (MFCC), Shifted Delta Cepstral (SDC), the Gaussian Mixture Model (GMM) and ending with the i-vector based framework. However, the process of learning based on extract features remains to be improved (i.e. optimised) to capture all embedded knowledge on the extracted features. The Extreme Learning Machine (ELM) is an effective learning model used to perform classification and regression analysis and is extremely useful to train a single hidden layer neural network. Nevertheless, the learning process of this model is not entirely effective (i.e. optimised) due to the random selection of weights within the input hidden layer. In this study, the ELM is selected as a learning model for LID based on standard feature extraction. One of the optimisation approaches of ELM, the Self-Adjusting Extreme Learning Machine (SA-ELM) is selected as the benchmark and improved by altering the selection phase of the optimisation process. The selection process is performed incorporating both the Split-Ratio and K-Tournament methods, the improved SA-ELM is named Enhanced Self-Adjusting Extreme Learning Machine (ESA-ELM). The results are generated based on LID with the datasets created from eight different languages. The results of the study showed excellent superiority relating to the performance of the Enhanced Self-Adjusting Extreme Learning Machine LID (ESA-ELM LID) compared with the SA-ELM LID, with ESA-ELM LID achieving an accuracy of 96.25%, as compared to the accuracy of SA-ELM LID of only 95.00%. PMID:29672546

  8. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  9. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  10. Effective Feature Selection for Classification of Promoter Sequences.

    PubMed

    K, Kouser; P G, Lavanya; Rangarajan, Lalitha; K, Acharya Kshitish

    2016-01-01

    Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  11. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  12. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  13. EFS: an ensemble feature selection tool implemented as R-package and web-application.

    PubMed

    Neumann, Ursula; Genze, Nikita; Heider, Dominik

    2017-01-01

    Feature selection methods aim at identifying a subset of features that improve the prediction performance of subsequent classification models and thereby also simplify their interpretability. Preceding studies demonstrated that single feature selection methods can have specific biases, whereas an ensemble feature selection has the advantage to alleviate and compensate for these biases. The software EFS (Ensemble Feature Selection) makes use of multiple feature selection methods and combines their normalized outputs to a quantitative ensemble importance. Currently, eight different feature selection methods have been integrated in EFS, which can be used separately or combined in an ensemble. EFS identifies relevant features while compensating specific biases of single methods due to an ensemble approach. Thereby, EFS can improve the prediction accuracy and interpretability in subsequent binary classification models. EFS can be downloaded as an R-package from CRAN or used via a web application at http://EFS.heiderlab.de.

  14. Spatial variation in breeding habitat selection by Cerulean Warblers (Setophaga cerulea) throughout the Appalachian Mountains

    USGS Publications Warehouse

    Boves, Than J.; Buehler, David A.; Sheehan, James; Wood, Petra Bohall; Rodewald, Amanda D.; Larkin, Jeffrey L.; Keyser, Patrick D.; Newell, Felicity L.; Evans, Andrea; George, Gregory A.; Wigley, T.B.

    2013-01-01

    Studies of habitat selection are often of limited utility because they focus on small geographic areas, fail to examine behavior at multiple scales, or lack an assessment of the fitness consequences of habitat decisions. These limitations can hamper the identification of successful site-specific management strategies, which are urgently needed for severely declining species like Cerulean Warblers (Setophaga cerulea). We assessed how breeding habitat decisions made by Cerulean Warblers at multiple scales, and the subsequent effects of these decisions on nest survival, varied across the Appalachian Mountains. Selection for structural habitat features varied substantially among areas, particularly at the territory scale. Males within the least-forested landscapes selected microhabitat features that reflected more closed-canopy forest conditions, whereas males in highly forested landscapes favored features associated with canopy disturbance. Selection of nest-patch and nest-site attributes by females was more consistent across areas, with females selecting for increased tree size and understory cover and decreased basal area and midstory cover. Floristic preferences were similar across study areas: White Oak (Quercus alba), Cucumber-tree (Magnolia acuminata), and Sugar Maple (Acer saccharum) were preferred as nest trees, whereas red oak species (subgenus Erythrobalanus) and Red Maple (A. rubrum) were avoided. The habitat features that were related to nest survival also varied among study areas, and preferred features were negatively associated with nest survival at one area. Thus, our results indicate that large-scale spatial heterogeneity may influence local habitat-selection behavior and that it may be necessary to articulate site-specific management strategies for Cerulean Warblers.

  15. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2000-12-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  16. Texture-based approach to palmprint retrieval for personal identification

    NASA Astrophysics Data System (ADS)

    Li, Wenxin; Zhang, David; Xu, Z.; You, J.

    2001-01-01

    This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.

  17. Relevance feedback for CBIR: a new approach based on probabilistic feature weighting with positive and negative examples.

    PubMed

    Kherfi, Mohammed Lamine; Ziou, Djemel

    2006-04-01

    In content-based image retrieval, understanding the user's needs is a challenging task that requires integrating him in the process of retrieval. Relevance feedback (RF) has proven to be an effective tool for taking the user's judgement into account. In this paper, we present a new RF framework based on a feature selection algorithm that nicely combines the advantages of a probabilistic formulation with those of using both the positive example (PE) and the negative example (NE). Through interaction with the user, our algorithm learns the importance he assigns to image features, and then applies the results obtained to define similarity measures that correspond better to his judgement. The use of the NE allows images undesired by the user to be discarded, thereby improving retrieval accuracy. As for the probabilistic formulation of the problem, it presents a multitude of advantages and opens the door to more modeling possibilities that achieve a good feature selection. It makes it possible to cluster the query data into classes, choose the probability law that best models each class, model missing data, and support queries with multiple PE and/or NE classes. The basic principle of our algorithm is to assign more importance to features with a high likelihood and those which distinguish well between PE classes and NE classes. The proposed algorithm was validated separately and in image retrieval context, and the experiments show that it performs a good feature selection and contributes to improving retrieval effectiveness.

  18. Flexible Feature-Based Inhibition in Visual Search Mediates Magnified Impairments of Selection: Evidence from Carry-Over Effects under Dynamic Preview-Search Conditions

    ERIC Educational Resources Information Center

    Andrews, Lucy S.; Watson, Derrick G.; Humphreys, Glyn W.; Braithwaite, Jason J.

    2011-01-01

    Evidence for inhibitory processes in visual search comes from studies using preview conditions, where responses to new targets are delayed if they carry a featural attribute belonging to the old distractor items that are currently being ignored--the negative carry-over effect (Braithwaite, Humphreys, & Hodsoll, 2003). We examined whether…

  19. Feature selection methods for big data bioinformatics: A survey from the search perspective.

    PubMed

    Wang, Lipo; Wang, Yaoli; Chang, Qing

    2016-12-01

    This paper surveys main principles of feature selection and their recent applications in big data bioinformatics. Instead of the commonly used categorization into filter, wrapper, and embedded approaches to feature selection, we formulate feature selection as a combinatorial optimization or search problem and categorize feature selection methods into exhaustive search, heuristic search, and hybrid methods, where heuristic search methods may further be categorized into those with or without data-distilled feature ranking measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Feature selection method based on multi-fractal dimension and harmony search algorithm and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na

    2016-10-01

    Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.

  1. Temporal Limitations in the Effective Binding of Attended Target Attributes in the Mutual Masking of Visual Objects

    ERIC Educational Resources Information Center

    Hommuk, Karita; Bachmann, Talis

    2009-01-01

    The problem of feature binding has been examined under conditions of distributed attention or with spatially dispersed stimuli. We studied binding by asking whether selective attention to a feature of a masked object enables perceptual access to the other features of that object using conditions in which spatial attention was directed at a single…

  2. Efficient Iris Recognition Based on Optimal Subfeature Selection and Weighted Subregion Fusion

    PubMed Central

    Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, andMMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity. PMID:24683317

  3. A Feature Selection Method Based on Fisher's Discriminant Ratio for Text Sentiment Classification

    NASA Astrophysics Data System (ADS)

    Wang, Suge; Li, Deyu; Wei, Yingjie; Li, Hongxia

    With the rapid growth of e-commerce, product reviews on the Web have become an important information source for customers' decision making when they intend to buy some product. As the reviews are often too many for customers to go through, how to automatically classify them into different sentiment orientation categories (i.e. positive/negative) has become a research problem. In this paper, based on Fisher's discriminant ratio, an effective feature selection method is proposed for product review text sentiment classification. In order to validate the validity of the proposed method, we compared it with other methods respectively based on information gain and mutual information while support vector machine is adopted as the classifier. In this paper, 6 subexperiments are conducted by combining different feature selection methods with 2 kinds of candidate feature sets. Under 1006 review documents of cars, the experimental results indicate that the Fisher's discriminant ratio based on word frequency estimation has the best performance with F value 83.3% while the candidate features are the words which appear in both positive and negative texts.

  4. Efficient iris recognition based on optimal subfeature selection and weighted subregion fusion.

    PubMed

    Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; He, Fei; Wang, Hongye; Deng, Ning

    2014-01-01

    In this paper, we propose three discriminative feature selection strategies and weighted subregion matching method to improve the performance of iris recognition system. Firstly, we introduce the process of feature extraction and representation based on scale invariant feature transformation (SIFT) in detail. Secondly, three strategies are described, which are orientation probability distribution function (OPDF) based strategy to delete some redundant feature keypoints, magnitude probability distribution function (MPDF) based strategy to reduce dimensionality of feature element, and compounded strategy combined OPDF and MPDF to further select optimal subfeature. Thirdly, to make matching more effective, this paper proposes a novel matching method based on weighted sub-region matching fusion. Particle swarm optimization is utilized to accelerate achieve different sub-region's weights and then weighted different subregions' matching scores to generate the final decision. The experimental results, on three public and renowned iris databases (CASIA-V3 Interval, Lamp, and MMU-V1), demonstrate that our proposed methods outperform some of the existing methods in terms of correct recognition rate, equal error rate, and computation complexity.

  5. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    NASA Astrophysics Data System (ADS)

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.

  6. Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    PubMed Central

    Adeli, Ehsan; Wu, Guorong; Saghafi, Behrouz; An, Le; Shi, Feng; Shen, Dinggang

    2017-01-01

    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods. PMID:28120883

  7. Ant-cuckoo colony optimization for feature selection in digital mammogram.

    PubMed

    Jona, J B; Nagaveni, N

    2014-01-15

    Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.

  8. Determinants of Global Color-Based Selection in Human Visual Cortex.

    PubMed

    Bartsch, Mandy V; Boehler, Carsten N; Stoppel, Christian M; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max

    2015-09-01

    Feature attention operates in a spatially global way, with attended feature values being prioritized for selection outside the focus of attention. Accounts of global feature attention have emphasized feature competition as a determining factor. Here, we use magnetoencephalographic recordings in humans to test whether competition is critical for global feature selection to arise. Subjects performed a color/shape discrimination task in one visual field (VF), while irrelevant color probes were presented in the other unattended VF. Global effects of color attention were assessed by analyzing the response to the probe as a function of whether or not the probe's color was a target-defining color. We find that global color selection involves a sequence of modulations in extrastriate cortex, with an initial phase in higher tier areas (lateral occipital complex) followed by a later phase in lower tier retinotopic areas (V3/V4). Importantly, these modulations appeared with and without color competition in the focus of attention. Moreover, early parts of the modulation emerged for a task-relevant color not even present in the focus of attention. All modulations, however, were eliminated during simple onset-detection of the colored target. These results indicate that global color-based attention depends on target discrimination independent of feature competition in the focus of attention. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  10. Ischemia episode detection in ECG using kernel density estimation, support vector machine and feature selection

    PubMed Central

    2012-01-01

    Background Myocardial ischemia can be developed into more serious diseases. Early Detection of the ischemic syndrome in electrocardiogram (ECG) more accurately and automatically can prevent it from developing into a catastrophic disease. To this end, we propose a new method, which employs wavelets and simple feature selection. Methods For training and testing, the European ST-T database is used, which is comprised of 367 ischemic ST episodes in 90 records. We first remove baseline wandering, and detect time positions of QRS complexes by a method based on the discrete wavelet transform. Next, for each heart beat, we extract three features which can be used for differentiating ST episodes from normal: 1) the area between QRS offset and T-peak points, 2) the normalized and signed sum from QRS offset to effective zero voltage point, and 3) the slope from QRS onset to offset point. We average the feature values for successive five beats to reduce effects of outliers. Finally we apply classifiers to those features. Results We evaluated the algorithm by kernel density estimation (KDE) and support vector machine (SVM) methods. Sensitivity and specificity for KDE were 0.939 and 0.912, respectively. The KDE classifier detects 349 ischemic ST episodes out of total 367 ST episodes. Sensitivity and specificity of SVM were 0.941 and 0.923, respectively. The SVM classifier detects 355 ischemic ST episodes. Conclusions We proposed a new method for detecting ischemia in ECG. It contains signal processing techniques of removing baseline wandering and detecting time positions of QRS complexes by discrete wavelet transform, and feature extraction from morphology of ECG waveforms explicitly. It was shown that the number of selected features were sufficient to discriminate ischemic ST episodes from the normal ones. We also showed how the proposed KDE classifier can automatically select kernel bandwidths, meaning that the algorithm does not require any numerical values of the parameters to be supplied in advance. In the case of the SVM classifier, one has to select a single parameter. PMID:22703641

  11. An efficient ensemble learning method for gene microarray classification.

    PubMed

    Osareh, Alireza; Shadgar, Bita

    2013-01-01

    The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  12. Synthesis, activity and pharmacophore development for isatin-β-thiosemicarbazones with selective activity towards multidrug resistant cellsa

    PubMed Central

    Hall, Matthew D.; Salam, Noeris K.; Hellawell, Jennifer L.; Fales, Henry M.; Kensler, Caroline B.; Ludwig, Joseph A.; Szakacs, Gergely; Hibbs, David E.; Gottesman, Michael M.

    2009-01-01

    We have recently identified a new class of compounds that selectively kill cells that express P-glycoprotein (P-gp, MDR1), the ATPase efflux pump that confers multidrug resistance on cancer cells. Several isatin-β-thiosemicarbazones from our initial study have been validated, and a range of analogs synthesized and tested. A number demonstrated improved MDR1-selective activity over the lead, NSC73306 (1). Pharmacophores for cytotoxicity and MDR1-selectivity were generated to delineate the structural features required for activity. The MDR1-selective pharmacophore highlights the importance of aromatic/hydrophobic features at the N4 position of the thiosemicarbazone, and the reliance on the isatin moiety as key bioisosteric contributors. Additionally, a quantitative structure-activity relationship (QSAR) model that yielded a cross-validated correlation coefficient of 0.85 effectively predicts the cytotoxicty of untested thiosemicarbazones. Together, the models serve as effective approaches for predicting structures with MDR1-selective activity, and aid in directing the search for the mechanism of action of 1. PMID:19397322

  13. SU-E-J-260: Quantitative Image Feature Analysis of Multiphase Liver CT for Hepatocellular Carcinoma (HCC) in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, W; Wang, J; Lu, W

    Purpose: To identify the effective quantitative image features (radiomics features) for prediction of response, survival, recurrence and metastasis of hepatocellular carcinoma (HCC) in radiotherapy. Methods: Multiphase contrast enhanced liver CT images were acquired in 16 patients with HCC on pre and post radiation therapy (RT). In this study, arterial phase CT images were selected to analyze the effectiveness of image features for the prediction of treatment outcome of HCC to RT. Response evaluated by RECIST criteria, survival, local recurrence (LR), distant metastasis (DM) and liver metastasis (LM) were examined. A radiation oncologist manually delineated the tumor and normal liver onmore » pre and post CT scans, respectively. Quantitative image features were extracted to characterize the intensity distribution (n=8), spatial patterns (texture, n=36), and shape (n=16) of the tumor and liver, respectively. Moreover, differences between pre and post image features were calculated (n=120). A total of 360 features were extracted and then analyzed by unpaired student’s t-test to rank the effectiveness of features for the prediction of response. Results: The five most effective features were selected for prediction of each outcome. Significant predictors for tumor response and survival are changes in tumor shape (Second Major Axes Length, p= 0.002; Eccentricity, p=0.0002), for LR, liver texture (Standard Deviation (SD) of High Grey Level Run Emphasis and SD of Entropy, both p=0.005) on pre and post CT images, for DM, tumor texture (SD of Entropy, p=0.01) on pre CT image and for LM, liver (Mean of Cluster Shade, p=0.004) and tumor texture (SD of Entropy, p=0.006) on pre CT image. Intensity distribution features were not significant (p>0.09). Conclusion: Quantitative CT image features were found to be potential predictors of the five endpoints of HCC in RT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  14. Integrated feature extraction and selection for neuroimage classification

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Shen, Dinggang

    2009-02-01

    Feature extraction and selection are of great importance in neuroimage classification for identifying informative features and reducing feature dimensionality, which are generally implemented as two separate steps. This paper presents an integrated feature extraction and selection algorithm with two iterative steps: constrained subspace learning based feature extraction and support vector machine (SVM) based feature selection. The subspace learning based feature extraction focuses on the brain regions with higher possibility of being affected by the disease under study, while the possibility of brain regions being affected by disease is estimated by the SVM based feature selection, in conjunction with SVM classification. This algorithm can not only take into account the inter-correlation among different brain regions, but also overcome the limitation of traditional subspace learning based feature extraction methods. To achieve robust performance and optimal selection of parameters involved in feature extraction, selection, and classification, a bootstrapping strategy is used to generate multiple versions of training and testing sets for parameter optimization, according to the classification performance measured by the area under the ROC (receiver operating characteristic) curve. The integrated feature extraction and selection method is applied to a structural MR image based Alzheimer's disease (AD) study with 98 non-demented and 100 demented subjects. Cross-validation results indicate that the proposed algorithm can improve performance of the traditional subspace learning based classification.

  15. Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm.

    PubMed

    Martinez, Emmanuel; Alvarez, Mario Moises; Trevino, Victor

    2010-08-01

    Biomarker discovery is a typical application from functional genomics. Due to the large number of genes studied simultaneously in microarray data, feature selection is a key step. Swarm intelligence has emerged as a solution for the feature selection problem. However, swarm intelligence settings for feature selection fail to select small features subsets. We have proposed a swarm intelligence feature selection algorithm based on the initialization and update of only a subset of particles in the swarm. In this study, we tested our algorithm in 11 microarray datasets for brain, leukemia, lung, prostate, and others. We show that the proposed swarm intelligence algorithm successfully increase the classification accuracy and decrease the number of selected features compared to other swarm intelligence methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Multi-task feature selection in microarray data by binary integer programming.

    PubMed

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  17. Text feature extraction based on deep learning: a review.

    PubMed

    Liang, Hong; Sun, Xiao; Sun, Yunlei; Gao, Yuan

    2017-01-01

    Selection of text feature item is a basic and important matter for text mining and information retrieval. Traditional methods of feature extraction require handcrafted features. To hand-design, an effective feature is a lengthy process, but aiming at new applications, deep learning enables to acquire new effective feature representation from training data. As a new feature extraction method, deep learning has made achievements in text mining. The major difference between deep learning and conventional methods is that deep learning automatically learns features from big data, instead of adopting handcrafted features, which mainly depends on priori knowledge of designers and is highly impossible to take the advantage of big data. Deep learning can automatically learn feature representation from big data, including millions of parameters. This thesis outlines the common methods used in text feature extraction first, and then expands frequently used deep learning methods in text feature extraction and its applications, and forecasts the application of deep learning in feature extraction.

  18. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2015-07-08

    Experiments that study feature-based attention have often examined situations in which selection is based on a single feature (e.g., the color red). However, in more complex situations relevant stimuli may not be set apart from other stimuli by a single defining property but by a specific combination of features. Here, we examined sustained attentional selection of stimuli defined by conjunctions of color and orientation. Human observers attended to one out of four concurrently presented superimposed fields of randomly moving horizontal or vertical bars of red or blue color to detect brief intervals of coherent motion. Selective stimulus processing in early visual cortex was assessed by recordings of steady-state visual evoked potentials (SSVEPs) elicited by each of the flickering fields of stimuli. We directly contrasted attentional selection of single features and feature conjunctions and found that SSVEP amplitudes on conditions in which selection was based on a single feature only (color or orientation) exactly predicted the magnitude of attentional enhancement of SSVEPs when attending to a conjunction of both features. Furthermore, enhanced SSVEP amplitudes elicited by attended stimuli were accompanied by equivalent reductions of SSVEP amplitudes elicited by unattended stimuli in all cases. We conclude that attentional selection of a feature-conjunction stimulus is accomplished by the parallel and independent facilitation of its constituent feature dimensions in early visual cortex. The ability to perceive the world is limited by the brain's processing capacity. Attention affords adaptive behavior by selectively prioritizing processing of relevant stimuli based on their features (location, color, orientation, etc.). We found that attentional mechanisms for selection of different features belonging to the same object operate independently and in parallel: concurrent attentional selection of two stimulus features is simply the sum of attending to each of those features separately. This result is key to understanding attentional selection in complex (natural) scenes, where relevant stimuli are likely to be defined by a combination of stimulus features. Copyright © 2015 the authors 0270-6474/15/359912-08$15.00/0.

  19. A proposed configurable approach for recommendation systems via data mining techniques

    NASA Astrophysics Data System (ADS)

    Khedr, Ayman E.; Idrees, Amira M.; Hegazy, Abd El-Fatah; El-Shewy, Samir

    2018-02-01

    This study presents a configurable approach for recommendations which determines the suitable recommendation method for each field based on the characteristics of its data, the method includes determining the suitable technique for selecting a representative sample of the provided data. Then selecting the suitable feature weighting measure to provide a correct weight for each feature based on its effect on the recommendations. Finally, selecting the suitable algorithm to provide the required recommendations. The proposed configurable approach could be applied on different domains. The experiments have revealed that the approach is able to provide recommendations with only 0.89 error rate percentage.

  20. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.

    PubMed

    Ni, Qianwu; Chen, Lei

    2017-01-01

    Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Relationship between neural response and adaptation selectivity to form and color: an ERP study.

    PubMed

    Rentzeperis, Ilias; Nikolaev, Andrey R; Kiper, Daniel C; van Leeuwen, Cees

    2012-01-01

    Adaptation is widely used as a tool for studying selectivity to visual features. In these studies it is usually assumed that the loci of feature selective neural responses and adaptation coincide. We used an adaptation paradigm to investigate the relationship between response and adaptation selectivity in event-related potentials (ERPs). ERPs were evoked by the presentation of colored Glass patterns in a form discrimination task. Response selectivities to form and, to some extent, color of the patterns were reflected in the C1 and N1 ERP components. Adaptation selectivity to color was reflected in N1 and was followed by a late (300-500 ms after stimulus onset) effect of form adaptation. Thus for form, response and adaptation selectivity were manifested in non-overlapping intervals. These results indicate that adaptation and response selectivity can be associated with different processes. Therefore, inferring selectivity from an adaptation paradigm requires analysis of both adaptation and neural response data.

  2. A Spacecraft Electrical Characteristics Multi-Label Classification Method Based on Off-Line FCM Clustering and On-Line WPSVM

    PubMed Central

    Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi

    2015-01-01

    This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549

  3. The limb movement analysis of rehabilitation exercises using wearable inertial sensors.

    PubMed

    Bingquan Huang; Giggins, Oonagh; Kechadi, Tahar; Caulfield, Brian

    2016-08-01

    Due to no supervision of a therapist in home based exercise programs, inertial sensor based feedback systems which can accurately assess movement repetitions are urgently required. The synchronicity and the degrees of freedom both show that one movement might resemble another movement signal which is mixed in with another not precisely defined movement. Therefore, the data and feature selections are important for movement analysis. This paper explores the data and feature selection for the limb movement analysis of rehabilitation exercises. The results highlight that the classification accuracy is very sensitive to the mount location of the sensors. The results show that the use of 2 or 3 sensor units, the combination of acceleration and gyroscope data, and the feature sets combined by the statistical feature set with another type of feature, can significantly improve the classification accuracy rates. The results illustrate that acceleration data is more effective than gyroscope data for most of the movement analysis.

  4. Non-negative matrix factorization in texture feature for classification of dementia with MRI data

    NASA Astrophysics Data System (ADS)

    Sarwinda, D.; Bustamam, A.; Ardaneswari, G.

    2017-07-01

    This paper investigates applications of non-negative matrix factorization as feature selection method to select the features from gray level co-occurrence matrix. The proposed approach is used to classify dementia using MRI data. In this study, texture analysis using gray level co-occurrence matrix is done to feature extraction. In the feature extraction process of MRI data, we found seven features from gray level co-occurrence matrix. Non-negative matrix factorization selected three features that influence of all features produced by feature extractions. A Naïve Bayes classifier is adapted to classify dementia, i.e. Alzheimer's disease, Mild Cognitive Impairment (MCI) and normal control. The experimental results show that non-negative factorization as feature selection method able to achieve an accuracy of 96.4% for classification of Alzheimer's and normal control. The proposed method also compared with other features selection methods i.e. Principal Component Analysis (PCA).

  5. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    NASA Astrophysics Data System (ADS)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2017-04-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  6. Differential privacy-based evaporative cooling feature selection and classification with relief-F and random forests.

    PubMed

    Le, Trang T; Simmons, W Kyle; Misaki, Masaya; Bodurka, Jerzy; White, Bill C; Savitz, Jonathan; McKinney, Brett A

    2017-09-15

    Classification of individuals into disease or clinical categories from high-dimensional biological data with low prediction error is an important challenge of statistical learning in bioinformatics. Feature selection can improve classification accuracy but must be incorporated carefully into cross-validation to avoid overfitting. Recently, feature selection methods based on differential privacy, such as differentially private random forests and reusable holdout sets, have been proposed. However, for domains such as bioinformatics, where the number of features is much larger than the number of observations p≫n , these differential privacy methods are susceptible to overfitting. We introduce private Evaporative Cooling, a stochastic privacy-preserving machine learning algorithm that uses Relief-F for feature selection and random forest for privacy preserving classification that also prevents overfitting. We relate the privacy-preserving threshold mechanism to a thermodynamic Maxwell-Boltzmann distribution, where the temperature represents the privacy threshold. We use the thermal statistical physics concept of Evaporative Cooling of atomic gases to perform backward stepwise privacy-preserving feature selection. On simulated data with main effects and statistical interactions, we compare accuracies on holdout and validation sets for three privacy-preserving methods: the reusable holdout, reusable holdout with random forest, and private Evaporative Cooling, which uses Relief-F feature selection and random forest classification. In simulations where interactions exist between attributes, private Evaporative Cooling provides higher classification accuracy without overfitting based on an independent validation set. In simulations without interactions, thresholdout with random forest and private Evaporative Cooling give comparable accuracies. We also apply these privacy methods to human brain resting-state fMRI data from a study of major depressive disorder. Code available at http://insilico.utulsa.edu/software/privateEC . brett-mckinney@utulsa.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. Path selection system simulation and evaluation for a Martian roving vehicle

    NASA Technical Reports Server (NTRS)

    Boheim, S. L.; Prudon, W. C.

    1972-01-01

    The simulation and evaluation of proposed path selection systems for an autonomous Martian roving vehicle was developed. The package incorporates a number of realistic features, such as the simulation of random effects due to vehicle bounce and sensor-reading uncertainty, to increase the reliability of the results. Qualitative and quantitative evaluation criteria were established. The performance of three different path selection systems was evaluated to determine the effectiveness of the simulation package, and to form some preliminary conclusions regarding the tradeoffs involved in a path selection system design.

  8. Unbiased feature selection in learning random forests for high-dimensional data.

    PubMed

    Nguyen, Thanh-Tung; Huang, Joshua Zhexue; Nguyen, Thuy Thi

    2015-01-01

    Random forests (RFs) have been widely used as a powerful classification method. However, with the randomization in both bagging samples and feature selection, the trees in the forest tend to select uninformative features for node splitting. This makes RFs have poor accuracy when working with high-dimensional data. Besides that, RFs have bias in the feature selection process where multivalued features are favored. Aiming at debiasing feature selection in RFs, we propose a new RF algorithm, called xRF, to select good features in learning RFs for high-dimensional data. We first remove the uninformative features using p-value assessment, and the subset of unbiased features is then selected based on some statistical measures. This feature subset is then partitioned into two subsets. A feature weighting sampling technique is used to sample features from these two subsets for building trees. This approach enables one to generate more accurate trees, while allowing one to reduce dimensionality and the amount of data needed for learning RFs. An extensive set of experiments has been conducted on 47 high-dimensional real-world datasets including image datasets. The experimental results have shown that RFs with the proposed approach outperformed the existing random forests in increasing the accuracy and the AUC measures.

  9. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    PubMed

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2, respectively. In both experiments, the d' analysis revealed that response selection did not affect target detection. Overall, Experiments 1-4 indicated that neither the response selection difficulty in the auditory Task 1 (i.e., two-choice vs. four-choice) nor the type of presentation of the search display in Task 2 (i.e., not masked vs. masked) impaired parallel processing of response selection and conjunction search. We concluded that in general, response selection and visual attention (i.e., feature binding) rely on distinct capacity limitations.

  10. Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation

    PubMed Central

    Grantham, Hedley S.; Pressey, Robert L.; Wells, Jessie A.; Beattie, Andrew J.

    2010-01-01

    Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2) differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation, two forms of species accumulation index and irreplaceability correlation, to assess the performance of ‘forest ecosystems’ and ‘environmental units’ as surrogates for six groups of threatened species—the test features—mammals, birds, reptiles, frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for conservation of the surrogates then estimating how effective those areas were at representing test features. One method measured the spatial match between conservation priorities for surrogates and test features. For methods that selected conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in relation to different groups of test features. There were differences between study areas in terms of the effectiveness of surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This indicates the need for caution in generalizing surrogacy tests. PMID:20644726

  11. Selection of features within and without objects: effects of gestalt appearance and object-based instruction on behavior and event-related brain potentials.

    PubMed

    Verleger, Rolf; Groen, Margriet; Heide, Wolfgang; Sobieralska, Kinga; Jaśkowski, Piotr

    2008-05-01

    We studied how physical and instructed embedding of features in gestalts affects perceptual selection. Four ovals on the horizontal midline were either unconnected or pairwise connected by circles, forming ears of left and right heads (gestalts). Relevant to responding was the position of one colored oval, either within its pair or relative to fixation ("object-based" or "fixation-based" instruction). Responses were faster under fixation- than object-based instruction, less so with gestalts. Previously reported increases of N1 when evoked by features within objects were replicated for fixation-based instruction only. There was no effect of instruction on N2pc. However P1 increased under the adequate instruction, object-based for gestalts, fixation-based for unconnected items, which presumably indicated how foci of attention were set by expecting specific stimuli under instructions that specified how to bind these stimuli to objects.

  12. Memory Meets Control in Hippocampal and Striatal Binding of Stimuli, Responses, and Attentional Control States

    PubMed Central

    Brashier, Nadia M.

    2015-01-01

    The human brain encodes experience in an integrative fashion by binding together the various features of an event (i.e., stimuli and responses) into memory “event files.” A subsequent reoccurrence of an event feature can then cue the retrieval of the memory file to “prime” cognition and action. Intriguingly, recent behavioral studies indicate that, in addition to linking concrete stimulus and response features, event coding may also incorporate more abstract, “internal” event features such as attentional control states. In the present study, we used fMRI in healthy human volunteers to determine the neural mechanisms supporting this type of holistic event binding. Specifically, we combined fMRI with a task protocol that dissociated the expression of event feature-binding effects pertaining to concrete stimulus and response features, stimulus categories, and attentional control demands. Using multivariate neural pattern classification, we show that the hippocampus and putamen integrate event attributes across all of these levels in conjunction with other regions representing concrete-feature-selective (primarily visual cortex), category-selective (posterior frontal cortex), and control demand-selective (insula, caudate, anterior cingulate, and parietal cortex) event information. Together, these results suggest that the hippocampus and putamen are involved in binding together holistic event memories that link physical stimulus and response characteristics with internal representations of stimulus categories and attentional control states. These bindings then presumably afford shortcuts to adaptive information processing and response selection in the face of recurring events. SIGNIFICANCE STATEMENT Memory binds together the different features of our experience, such as an observed stimulus and concurrent motor responses, into so-called event files. Recent behavioral studies suggest that the observer's internal attentional state might also become integrated into the event memory. Here, we used fMRI to determine the brain areas responsible for binding together event information pertaining to concrete stimulus and response features, stimulus categories, and internal attentional control states. We found that neural signals in the hippocampus and putamen contained information about all of these event attributes and could predict behavioral priming effects stemming from these features. Therefore, medial temporal lobe and dorsal striatum structures appear to be involved in binding internal control states to event memories. PMID:26538657

  13. A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder.

    PubMed

    Khodayari-Rostamabad, Ahmad; Reilly, James P; Hasey, Gary M; de Bruin, Hubert; Maccrimmon, Duncan J

    2013-10-01

    The problem of identifying, in advance, the most effective treatment agent for various psychiatric conditions remains an elusive goal. To address this challenge, we investigate the performance of the proposed machine learning (ML) methodology (based on the pre-treatment electroencephalogram (EEG)) for prediction of response to treatment with a selective serotonin reuptake inhibitor (SSRI) medication in subjects suffering from major depressive disorder (MDD). A relatively small number of most discriminating features are selected from a large group of candidate features extracted from the subject's pre-treatment EEG, using a machine learning procedure for feature selection. The selected features are fed into a classifier, which was realized as a mixture of factor analysis (MFA) model, whose output is the predicted response in the form of a likelihood value. This likelihood indicates the extent to which the subject belongs to the responder vs. non-responder classes. The overall method was evaluated using a "leave-n-out" randomized permutation cross-validation procedure. A list of discriminating EEG biomarkers (features) was found. The specificity of the proposed method is 80.9% while sensitivity is 94.9%, for an overall prediction accuracy of 87.9%. There is a 98.76% confidence that the estimated prediction rate is within the interval [75%, 100%]. These results indicate that the proposed ML method holds considerable promise in predicting the efficacy of SSRI antidepressant therapy for MDD, based on a simple and cost-effective pre-treatment EEG. The proposed approach offers the potential to improve the treatment of major depression and to reduce health care costs. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Dynamic interactions between visual working memory and saccade target selection

    PubMed Central

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  15. A feature-weighting account of priming in conjunction search.

    PubMed

    Becker, Stefanie I; Horstmann, Gernot

    2009-02-01

    Previous research on the priming effect in conjunction search has shown that repeating the target and distractor features across displays speeds mean response times but does not improve search efficiency: Repetitions do not reduce the set size effect-that is, the effect of the number of distractor items-but only modulate the intercept of the search function. In the present study, we investigated whether priming modulates search efficiency when a conjunctively defined target randomly changes between red and green. The results from an eyetracking experiment show that repeating the target across trials reduced the set size effect and, thus, did enhance search efficiency. Moreover, the probability of selecting the target as the first item in the display was higher when the target-distractor displays were repeated across trials than when they changed. Finally, red distractors were selected more frequently than green distractors when the previous target had been red (and vice versa). Taken together, these results indicate that priming in conjunction search modulates processes concerned with guiding attention to the target, by assigning more attentional weight to features sharing the previous target's color.

  16. Method of generating features optimal to a dataset and classifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul J.; Gosink, Luke J.; Jarman, Kenneth D.

    A method of generating features optimal to a particular dataset and classifier is disclosed. A dataset of messages is inputted and a classifier is selected. An algebra of features is encoded. Computable features that are capable of describing the dataset from the algebra of features are selected. Irredundant features that are optimal for the classifier and the dataset are selected.

  17. Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes

    PubMed Central

    Dzialak, Matthew R.; Olson, Chad V.; Harju, Seth M.; Webb, Stephen L.; Mudd, James P.; Winstead, Jeffrey B.; Hayden-Wing, L.D.

    2011-01-01

    Background Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. Methodology/Principal Findings We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. Conclusions/Significance Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments. PMID:22022587

  18. ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data

    PubMed Central

    McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943

  19. Feature Selection Methods for Zero-Shot Learning of Neural Activity.

    PubMed

    Caceres, Carlos A; Roos, Matthew J; Rupp, Kyle M; Milsap, Griffin; Crone, Nathan E; Wolmetz, Michael E; Ratto, Christopher R

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy.

  20. Predictive analysis effectiveness in determining the epidemic disease infected area

    NASA Astrophysics Data System (ADS)

    Ibrahim, Najihah; Akhir, Nur Shazwani Md.; Hassan, Fadratul Hafinaz

    2017-10-01

    Epidemic disease outbreak had caused nowadays community to raise their great concern over the infectious disease controlling, preventing and handling methods to diminish the disease dissemination percentage and infected area. Backpropagation method was used for the counter measure and prediction analysis of the epidemic disease. The predictive analysis based on the backpropagation method can be determine via machine learning process that promotes the artificial intelligent in pattern recognition, statistics and features selection. This computational learning process will be integrated with data mining by measuring the score output as the classifier to the given set of input features through classification technique. The classification technique is the features selection of the disease dissemination factors that likely have strong interconnection between each other in causing infectious disease outbreaks. The predictive analysis of epidemic disease in determining the infected area was introduced in this preliminary study by using the backpropagation method in observation of other's findings. This study will classify the epidemic disease dissemination factors as the features for weight adjustment on the prediction of epidemic disease outbreaks. Through this preliminary study, the predictive analysis is proven to be effective method in determining the epidemic disease infected area by minimizing the error value through the features classification.

  1. Support Vector Machine-Based Prediction of Local Tumor Control After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klement, Rainer J., E-mail: rainer_klement@gmx.de; Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital, Schweinfurt; Allgäuer, Michael

    2014-03-01

    Background: Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. Methods and Materials: We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performancemore » by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Results: Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED{sub ISO}) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED{sub ISO} and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED{sub ISO}, age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. Conclusions: These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning.« less

  2. Support vector machine-based prediction of local tumor control after stereotactic body radiation therapy for early-stage non-small cell lung cancer.

    PubMed

    Klement, Rainer J; Allgäuer, Michael; Appold, Steffen; Dieckmann, Karin; Ernst, Iris; Ganswindt, Ute; Holy, Richard; Nestle, Ursula; Nevinny-Stickel, Meinhard; Semrau, Sabine; Sterzing, Florian; Wittig, Andrea; Andratschke, Nicolaus; Guckenberger, Matthias

    2014-03-01

    Several prognostic factors for local tumor control probability (TCP) after stereotactic body radiation therapy (SBRT) for early stage non-small cell lung cancer (NSCLC) have been described, but no attempts have been undertaken to explore whether a nonlinear combination of potential factors might synergistically improve the prediction of local control. We investigated a support vector machine (SVM) for predicting TCP in a cohort of 399 patients treated at 13 German and Austrian institutions. Among 7 potential input features for the SVM we selected those most important on the basis of forward feature selection, thereby evaluating classifier performance by using 10-fold cross-validation and computing the area under the ROC curve (AUC). The final SVM classifier was built by repeating the feature selection 10 times with different splitting of the data for cross-validation and finally choosing only those features that were selected at least 5 out of 10 times. It was compared with a multivariate logistic model that was built by forward feature selection. Local failure occurred in 12% of patients. Biologically effective dose (BED) at the isocenter (BED(ISO)) was the strongest predictor of TCP in the logistic model and also the most frequently selected input feature for the SVM. A bivariate logistic function of BED(ISO) and the pulmonary function indicator forced expiratory volume in 1 second (FEV1) yielded the best description of the data but resulted in a significantly smaller AUC than the final SVM classifier with the input features BED(ISO), age, baseline Karnofsky index, and FEV1 (0.696 ± 0.040 vs 0.789 ± 0.001, P<.03). The final SVM resulted in sensitivity and specificity of 67.0% ± 0.5% and 78.7% ± 0.3%, respectively. These results confirm that machine learning techniques like SVMs can be successfully applied to predict treatment outcome after SBRT. Improvements over traditional TCP modeling are expected through a nonlinear combination of multiple features, eventually helping in the task of personalized treatment planning. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. An ensemble method for extracting adverse drug events from social media.

    PubMed

    Liu, Jing; Zhao, Songzheng; Zhang, Xiaodi

    2016-06-01

    Because adverse drug events (ADEs) are a serious health problem and a leading cause of death, it is of vital importance to identify them correctly and in a timely manner. With the development of Web 2.0, social media has become a large data source for information on ADEs. The objective of this study is to develop a relation extraction system that uses natural language processing techniques to effectively distinguish between ADEs and non-ADEs in informal text on social media. We develop a feature-based approach that utilizes various lexical, syntactic, and semantic features. Information-gain-based feature selection is performed to address high-dimensional features. Then, we evaluate the effectiveness of four well-known kernel-based approaches (i.e., subset tree kernel, tree kernel, shortest dependency path kernel, and all-paths graph kernel) and several ensembles that are generated by adopting different combination methods (i.e., majority voting, weighted averaging, and stacked generalization). All of the approaches are tested using three data sets: two health-related discussion forums and one general social networking site (i.e., Twitter). When investigating the contribution of each feature subset, the feature-based approach attains the best area under the receiver operating characteristics curve (AUC) values, which are 78.6%, 72.2%, and 79.2% on the three data sets. When individual methods are used, we attain the best AUC values of 82.1%, 73.2%, and 77.0% using the subset tree kernel, shortest dependency path kernel, and feature-based approach on the three data sets, respectively. When using classifier ensembles, we achieve the best AUC values of 84.5%, 77.3%, and 84.5% on the three data sets, outperforming the baselines. Our experimental results indicate that ADE extraction from social media can benefit from feature selection. With respect to the effectiveness of different feature subsets, lexical features and semantic features can enhance the ADE extraction capability. Kernel-based approaches, which can stay away from the feature sparsity issue, are qualified to address the ADE extraction problem. Combining different individual classifiers using suitable combination methods can further enhance the ADE extraction effectiveness. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A face and palmprint recognition approach based on discriminant DCT feature extraction.

    PubMed

    Jing, Xiao-Yuan; Zhang, David

    2004-12-01

    In the field of image processing and recognition, discrete cosine transform (DCT) and linear discrimination are two widely used techniques. Based on them, we present a new face and palmprint recognition approach in this paper. It first uses a two-dimensional separability judgment to select the DCT frequency bands with favorable linear separability. Then from the selected bands, it extracts the linear discriminative features by an improved Fisherface method and performs the classification by the nearest neighbor classifier. We detailedly analyze theoretical advantages of our approach in feature extraction. The experiments on face databases and palmprint database demonstrate that compared to the state-of-the-art linear discrimination methods, our approach obtains better classification performance. It can significantly improve the recognition rates for face and palmprint data and effectively reduce the dimension of feature space.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honorio, J.; Goldstein, R.; Honorio, J.

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statisticalmore » theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.« less

  6. Expectations Do Not Alter Early Sensory Processing during Perceptual Decision-Making.

    PubMed

    Rungratsameetaweemana, Nuttida; Itthipuripat, Sirawaj; Salazar, Annalisa; Serences, John T

    2018-06-13

    Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well documented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electroencephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations primarily influence decisions by modulating post-perceptual stages of information processing. SIGNIFICANCE STATEMENT Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict. Copyright © 2018 the authors 0270-6474/18/385632-17$15.00/0.

  7. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE PAGES

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.; ...

    2017-05-12

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  8. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  9. Max-AUC Feature Selection in Computer-Aided Detection of Polyps in CT Colonography

    PubMed Central

    Xu, Jian-Wu; Suzuki, Kenji

    2014-01-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level. PMID:24608058

  10. Max-AUC feature selection in computer-aided detection of polyps in CT colonography.

    PubMed

    Xu, Jian-Wu; Suzuki, Kenji

    2014-03-01

    We propose a feature selection method based on a sequential forward floating selection (SFFS) procedure to improve the performance of a classifier in computerized detection of polyps in CT colonography (CTC). The feature selection method is coupled with a nonlinear support vector machine (SVM) classifier. Unlike the conventional linear method based on Wilks' lambda, the proposed method selected the most relevant features that would maximize the area under the receiver operating characteristic curve (AUC), which directly maximizes classification performance, evaluated based on AUC value, in the computer-aided detection (CADe) scheme. We presented two variants of the proposed method with different stopping criteria used in the SFFS procedure. The first variant searched all feature combinations allowed in the SFFS procedure and selected the subsets that maximize the AUC values. The second variant performed a statistical test at each step during the SFFS procedure, and it was terminated if the increase in the AUC value was not statistically significant. The advantage of the second variant is its lower computational cost. To test the performance of the proposed method, we compared it against the popular stepwise feature selection method based on Wilks' lambda for a colonic-polyp database (25 polyps and 2624 nonpolyps). We extracted 75 morphologic, gray-level-based, and texture features from the segmented lesion candidate regions. The two variants of the proposed feature selection method chose 29 and 7 features, respectively. Two SVM classifiers trained with these selected features yielded a 96% by-polyp sensitivity at false-positive (FP) rates of 4.1 and 6.5 per patient, respectively. Experiments showed a significant improvement in the performance of the classifier with the proposed feature selection method over that with the popular stepwise feature selection based on Wilks' lambda that yielded 18.0 FPs per patient at the same sensitivity level.

  11. Local curvature analysis for classifying breast tumors: Preliminary analysis in dedicated breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Juhun, E-mail: leej15@upmc.edu; Nishikawa, Robert M.; Reiser, Ingrid

    2015-09-15

    Purpose: The purpose of this study is to measure the effectiveness of local curvature measures as novel image features for classifying breast tumors. Methods: A total of 119 breast lesions from 104 noncontrast dedicated breast computed tomography images of women were used in this study. Volumetric segmentation was done using a seed-based segmentation algorithm and then a triangulated surface was extracted from the resulting segmentation. Total, mean, and Gaussian curvatures were then computed. Normalized curvatures were used as classification features. In addition, traditional image features were also extracted and a forward feature selection scheme was used to select the optimalmore » feature set. Logistic regression was used as a classifier and leave-one-out cross-validation was utilized to evaluate the classification performances of the features. The area under the receiver operating characteristic curve (AUC, area under curve) was used as a figure of merit. Results: Among curvature measures, the normalized total curvature (C{sub T}) showed the best classification performance (AUC of 0.74), while the others showed no classification power individually. Five traditional image features (two shape, two margin, and one texture descriptors) were selected via the feature selection scheme and its resulting classifier achieved an AUC of 0.83. Among those five features, the radial gradient index (RGI), which is a margin descriptor, showed the best classification performance (AUC of 0.73). A classifier combining RGI and C{sub T} yielded an AUC of 0.81, which showed similar performance (i.e., no statistically significant difference) to the classifier with the above five traditional image features. Additional comparisons in AUC values between classifiers using different combinations of traditional image features and C{sub T} were conducted. The results showed that C{sub T} was able to replace the other four image features for the classification task. Conclusions: The normalized curvature measure contains useful information in classifying breast tumors. Using this, one can reduce the number of features in a classifier, which may result in more robust classifiers for different datasets.« less

  12. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  13. Cavity trees, snags, and selection cutting: a northern hardwood case study

    Treesearch

    Laura S. Kenefic; Ralph D. Nyland

    2007-01-01

    Although traditional application of the selection system includes a focus on high-value trees that may reduce cavities and snags, few studies have quantified those habitat features in managed uneven-aged stands. We examined the effects of single-tree selection cutting on cavity trees and snags in a northern hardwood stand immediately prior to the second cutting....

  14. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  15. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  16. The Role of Evaluative Metadata in an Online Teacher Resource Exchange

    ERIC Educational Resources Information Center

    Abramovich, Samuel; Schunn, Christian D.; Correnti, Richard J.

    2013-01-01

    A large-scale online teacher resource exchange is studied to examine the ways in which metadata influence teachers' selection of resources. A hierarchical linear modeling approach was used to tease apart the simultaneous effects of resource features and author features. From a decision heuristics theoretical perspective, teachers appear to…

  17. Ocular tracking responses to background motion gated by feature-based attention.

    PubMed

    Souto, David; Kerzel, Dirk

    2014-09-01

    Involuntary ocular tracking responses to background motion offer a window on the dynamics of motion computations. In contrast to spatial attention, we know little about the role of feature-based attention in determining this ocular response. To probe feature-based effects of background motion on involuntary eye movements, we presented human observers with a balanced background perturbation. Two clouds of dots moved in opposite vertical directions while observers tracked a target moving in horizontal direction. Additionally, they had to discriminate a change in the direction of motion (±10° from vertical) of one of the clouds. A vertical ocular following response occurred in response to the motion of the attended cloud. When motion selection was based on motion direction and color of the dots, the peak velocity of the tracking response was 30% of the tracking response elicited in a single task with only one direction of background motion. In two other experiments, we tested the effect of the perturbation when motion selection was based on color, by having motion direction vary unpredictably, or on motion direction alone. Although the gain of pursuit in the horizontal direction was significantly reduced in all experiments, indicating a trade-off between perceptual and oculomotor tasks, ocular responses to perturbations were only observed when selection was based on both motion direction and color. It appears that selection by motion direction can only be effective for driving ocular tracking when the relevant elements can be segregated before motion onset. Copyright © 2014 the American Physiological Society.

  18. A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.

    PubMed

    Baur, Brittany; Bozdag, Serdar

    2016-01-01

    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.

  19. Feature Selection Methods for Zero-Shot Learning of Neural Activity

    PubMed Central

    Caceres, Carlos A.; Roos, Matthew J.; Rupp, Kyle M.; Milsap, Griffin; Crone, Nathan E.; Wolmetz, Michael E.; Ratto, Christopher R.

    2017-01-01

    Dimensionality poses a serious challenge when making predictions from human neuroimaging data. Across imaging modalities, large pools of potential neural features (e.g., responses from particular voxels, electrodes, and temporal windows) have to be related to typically limited sets of stimuli and samples. In recent years, zero-shot prediction models have been introduced for mapping between neural signals and semantic attributes, which allows for classification of stimulus classes not explicitly included in the training set. While choices about feature selection can have a substantial impact when closed-set accuracy, open-set robustness, and runtime are competing design objectives, no systematic study of feature selection for these models has been reported. Instead, a relatively straightforward feature stability approach has been adopted and successfully applied across models and imaging modalities. To characterize the tradeoffs in feature selection for zero-shot learning, we compared correlation-based stability to several other feature selection techniques on comparable data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging and Electrocorticography. While most of the feature selection methods resulted in similar zero-shot prediction accuracies and spatial/spectral patterns of selected features, there was one exception; A novel feature/attribute correlation approach was able to achieve those accuracies with far fewer features, suggesting the potential for simpler prediction models that yield high zero-shot classification accuracy. PMID:28690513

  20. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360

  1. Unsupervised Feature Selection Based on the Morisita Index for Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhail

    2017-04-01

    Hyperspectral sensors are capable of acquiring images with hundreds of narrow and contiguous spectral bands. Compared with traditional multispectral imagery, the use of hyperspectral images allows better performance in discriminating between land-cover classes, but it also results in large redundancy and high computational data processing. To alleviate such issues, unsupervised feature selection techniques for redundancy minimization can be implemented. Their goal is to select the smallest subset of features (or bands) in such a way that all the information content of a data set is preserved as much as possible. The present research deals with the application to hyperspectral images of a recently introduced technique of unsupervised feature selection: the Morisita-Based filter for Redundancy Minimization (MBRM). MBRM is based on the (multipoint) Morisita index of clustering and on the Morisita estimator of Intrinsic Dimension (ID). The fundamental idea of the technique is to retain only the bands which contribute to increasing the ID of an image. In this way, redundant bands are disregarded, since they have no impact on the ID. Besides, MBRM has several advantages over benchmark techniques: in addition to its ability to deal with large data sets, it can capture highly-nonlinear dependences and its implementation is straightforward in any programming environment. Experimental results on freely available hyperspectral images show the good effectiveness of MBRM in remote sensing data processing. Comparisons with benchmark techniques are carried out and random forests are used to assess the performance of MBRM in reducing the data dimensionality without loss of relevant information. References [1] C. Traina Jr., A.J.M. Traina, L. Wu, C. Faloutsos, Fast feature selection using fractal dimension, in: Proceedings of the XV Brazilian Symposium on Databases, SBBD, pp. 158-171, 2000. [2] J. Golay, M. Kanevski, A new estimator of intrinsic dimension based on the multipoint Morisita index, Pattern Recognition 48(12), pp. 4070-4081, 2015. [3] J. Golay, M. Kanevski, Unsupervised feature selection based on the Morisita estimator of intrinsic dimension, arXiv:1608.05581, 2016.

  2. A universal deep learning approach for modeling the flow of patients under different severities.

    PubMed

    Jiang, Shancheng; Chin, Kwai-Sang; Tsui, Kwok L

    2018-02-01

    The Accident and Emergency Department (A&ED) is the frontline for providing emergency care in hospitals. Unfortunately, relative A&ED resources have failed to keep up with continuously increasing demand in recent years, which leads to overcrowding in A&ED. Knowing the fluctuation of patient arrival volume in advance is a significant premise to relieve this pressure. Based on this motivation, the objective of this study is to explore an integrated framework with high accuracy for predicting A&ED patient flow under different triage levels, by combining a novel feature selection process with deep neural networks. Administrative data is collected from an actual A&ED and categorized into five groups based on different triage levels. A genetic algorithm (GA)-based feature selection algorithm is improved and implemented as a pre-processing step for this time-series prediction problem, in order to explore key features affecting patient flow. In our improved GA, a fitness-based crossover is proposed to maintain the joint information of multiple features during iterative process, instead of traditional point-based crossover. Deep neural networks (DNN) is employed as the prediction model to utilize their universal adaptability and high flexibility. In the model-training process, the learning algorithm is well-configured based on a parallel stochastic gradient descent algorithm. Two effective regularization strategies are integrated in one DNN framework to avoid overfitting. All introduced hyper-parameters are optimized efficiently by grid-search in one pass. As for feature selection, our improved GA-based feature selection algorithm has outperformed a typical GA and four state-of-the-art feature selection algorithms (mRMR, SAFS, VIFR, and CFR). As for the prediction accuracy of proposed integrated framework, compared with other frequently used statistical models (GLM, seasonal-ARIMA, ARIMAX, and ANN) and modern machine models (SVM-RBF, SVM-linear, RF, and R-LASSO), the proposed integrated "DNN-I-GA" framework achieves higher prediction accuracy on both MAPE and RMSE metrics in pairwise comparisons. The contribution of our study is two-fold. Theoretically, the traditional GA-based feature selection process is improved to have less hyper-parameters and higher efficiency, and the joint information of multiple features is maintained by fitness-based crossover operator. The universal property of DNN is further enhanced by merging different regularization strategies. Practically, features selected by our improved GA can be used to acquire an underlying relationship between patient flows and input features. Predictive values are significant indicators of patients' demand and can be used by A&ED managers to make resource planning and allocation. High accuracy achieved by the present framework in different cases enhances the reliability of downstream decision makings. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Simultaneous attentional guidance by working-memory and selection history reveals two distinct sources of attention.

    PubMed

    Schwark, Jeremy D; Dolgov, Igor; Sandry, Joshua; Volkman, C Brooks

    2013-10-01

    Recent theories of attention have proposed that selection history is a separate, dissociable source of information that influences attention. The current study sought to investigate the simultaneous involvement of selection history and working-memory on attention during visual search. Experiments 1 and 2 used target feature probability to manipulate selection history and found significant effects of both working-memory and selection history, although working-memory dominated selection history when they cued different locations. Experiment 3 eliminated the contribution of voluntary refreshing of working-memory and replicated the main effects, although selection history became dominant. Using the same methodology, but with reduced probability cue validity, both effects were present in Experiment 4 and did not significantly differ in their contribution to attention. Effects of selection history and working-memory never interacted. These results suggest that selection history and working-memory are separate influences on attention and have little impact on each other. Theoretical implications for models of attention are discussed. © 2013.

  4. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  5. Prominent feature extraction for review analysis: an empirical study

    NASA Astrophysics Data System (ADS)

    Agarwal, Basant; Mittal, Namita

    2016-05-01

    Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.

  6. Classification Influence of Features on Given Emotions and Its Application in Feature Selection

    NASA Astrophysics Data System (ADS)

    Xing, Yin; Chen, Chuang; Liu, Li-Long

    2018-04-01

    In order to solve the problem that there is a large amount of redundant data in high-dimensional speech emotion features, we analyze deeply the extracted speech emotion features and select better features. Firstly, a given emotion is classified by each feature. Secondly, the recognition rate is ranked in descending order. Then, the optimal threshold of features is determined by rate criterion. Finally, the better features are obtained. When applied in Berlin and Chinese emotional data set, the experimental results show that the feature selection method outperforms the other traditional methods.

  7. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  8. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  9. Development of a fuzzy logic expert system for pile selection. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulshafer, M.L.

    1989-01-01

    This thesis documents the development of prototype expert system for pile selection for use on microcomputers. It concerns the initial selection of a pile foundation taking into account the parameters such as soil condition, pile length, loading scenario, material availability, contractor experience, and noise or vibration constraints. The prototype expert system called Pile Selection, version 1 (PS1) was developed using an expert system shell FLOPS. FLOPS is a shell based on the AI language OPS5 with many unique features. The system PS1 utilizes all of these unique features. Among the features used are approximate reasoning with fuzzy set theory, themore » blackboard architecture, and the emulated parallel processing of fuzzy production rules. A comprehensive review of the parameters used in selecting a pile was made, and the effects of the uncertainties associated with the vagueness of these parameters was examined in detail. Fuzzy set theory was utilized to deal with such uncertainties and provides the basis for developing a method for determining the best possible choice of piles for a given situation. Details of the development of PS1, including documenting and collating pile information for use in the expert knowledge data bases, are discussed.« less

  10. A real negative selection algorithm with evolutionary preference for anomaly detection

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Chen, Wen; Li, Tao

    2017-04-01

    Traditional real negative selection algorithms (RNSAs) adopt the estimated coverage (c0) as the algorithm termination threshold, and generate detectors randomly. With increasing dimensions, the data samples could reside in the low-dimensional subspace, so that the traditional detectors cannot effectively distinguish these samples. Furthermore, in high-dimensional feature space, c0 cannot exactly reflect the detectors set coverage rate for the nonself space, and it could lead the algorithm to be terminated unexpectedly when the number of detectors is insufficient. These shortcomings make the traditional RNSAs to perform poorly in high-dimensional feature space. Based upon "evolutionary preference" theory in immunology, this paper presents a real negative selection algorithm with evolutionary preference (RNSAP). RNSAP utilizes the "unknown nonself space", "low-dimensional target subspace" and "known nonself feature" as the evolutionary preference to guide the generation of detectors, thus ensuring the detectors can cover the nonself space more effectively. Besides, RNSAP uses redundancy to replace c0 as the termination threshold, in this way RNSAP can generate adequate detectors under a proper convergence rate. The theoretical analysis and experimental result demonstrate that, compared to the classical RNSA (V-detector), RNSAP can achieve a higher detection rate, but with less detectors and computing cost.

  11. Prediction and Informative Risk Factor Selection of Bone Diseases.

    PubMed

    Li, Hui; Li, Xiaoyi; Ramanathan, Murali; Zhang, Aidong

    2015-01-01

    With the booming of healthcare industry and the overwhelming amount of electronic health records (EHRs) shared by healthcare institutions and practitioners, we take advantage of EHR data to develop an effective disease risk management model that not only models the progression of the disease, but also predicts the risk of the disease for early disease control or prevention. Existing models for answering these questions usually fall into two categories: the expert knowledge based model or the handcrafted feature set based model. To fully utilize the whole EHR data, we will build a framework to construct an integrated representation of features from all available risk factors in the EHR data and use these integrated features to effectively predict osteoporosis and bone fractures. We will also develop a framework for informative risk factor selection of bone diseases. A pair of models for two contrast cohorts (e.g., diseased patients versus non-diseased patients) will be established to discriminate their characteristics and find the most informative risk factors. Several empirical results on a real bone disease data set show that the proposed framework can successfully predict bone diseases and select informative risk factors that are beneficial and useful to guide clinical decisions.

  12. Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data

    PubMed Central

    Zhang, Nannan; Wu, Lifeng; Yang, Jing; Guan, Yong

    2018-01-01

    The bearing is the key component of rotating machinery, and its performance directly determines the reliability and safety of the system. Data-based bearing fault diagnosis has become a research hotspot. Naive Bayes (NB), which is based on independent presumption, is widely used in fault diagnosis. However, the bearing data are not completely independent, which reduces the performance of NB algorithms. In order to solve this problem, we propose a NB bearing fault diagnosis method based on enhanced independence of data. The method deals with data vector from two aspects: the attribute feature and the sample dimension. After processing, the classification limitation of NB is reduced by the independence hypothesis. First, we extract the statistical characteristics of the original signal of the bearings effectively. Then, the Decision Tree algorithm is used to select the important features of the time domain signal, and the low correlation features is selected. Next, the Selective Support Vector Machine (SSVM) is used to prune the dimension data and remove redundant vectors. Finally, we use NB to diagnose the fault with the low correlation data. The experimental results show that the independent enhancement of data is effective for bearing fault diagnosis. PMID:29401730

  13. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches.

    PubMed

    Chen, Xi; Kopsaftopoulos, Fotis; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-04-29

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles.

  14. On equivalent parameter learning in simplified feature space based on Bayesian asymptotic analysis.

    PubMed

    Yamazaki, Keisuke

    2012-07-01

    Parametric models for sequential data, such as hidden Markov models, stochastic context-free grammars, and linear dynamical systems, are widely used in time-series analysis and structural data analysis. Computation of the likelihood function is one of primary considerations in many learning methods. Iterative calculation of the likelihood such as the model selection is still time-consuming though there are effective algorithms based on dynamic programming. The present paper studies parameter learning in a simplified feature space to reduce the computational cost. Simplifying data is a common technique seen in feature selection and dimension reduction though an oversimplified space causes adverse learning results. Therefore, we mathematically investigate a condition of the feature map to have an asymptotically equivalent convergence point of estimated parameters, referred to as the vicarious map. As a demonstration to find vicarious maps, we consider the feature space, which limits the length of data, and derive a necessary length for parameter learning in hidden Markov models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  16. Prediction of human disease-associated phosphorylation sites with combined feature selection approach and support vector machine.

    PubMed

    Xu, Xiaoyi; Li, Ao; Wang, Minghui

    2015-08-01

    Phosphorylation is a crucial post-translational modification, which regulates almost all cellular processes in life. It has long been recognised that protein phosphorylation has close relationship with diseases, and therefore many researches are undertaken to predict phosphorylation sites for disease treatment and drug design. However, despite the success achieved by these approaches, no method focuses on disease-associated phosphorylation sites prediction. Herein, for the first time the authors propose a novel approach that is specially designed to identify associations between phosphorylation sites and human diseases. To take full advantage of local sequence information, a combined feature selection method-based support vector machine (CFS-SVM) that incorporates minimum-redundancy-maximum-relevance filtering process and forward feature selection process is developed. Performance evaluation shows that CFS-SVM is significantly better than the widely used classifiers including Bayesian decision theory, k nearest neighbour and random forest. With the extremely high specificity of 99%, CFS-SVM can still achieve a high sensitivity. Besides, tests on extra data confirm the effectiveness and general applicability of CFS-SVM approach on a variety of diseases. Finally, the analysis of selected features and corresponding kinases also help the understanding of the potential mechanism of disease-phosphorylation relationships and guide further experimental validations.

  17. Finger vein recognition with personalized feature selection.

    PubMed

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-08-22

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG.

  18. Finger Vein Recognition with Personalized Feature Selection

    PubMed Central

    Xi, Xiaoming; Yang, Gongping; Yin, Yilong; Meng, Xianjing

    2013-01-01

    Finger veins are a promising biometric pattern for personalized identification in terms of their advantages over existing biometrics. Based on the spatial pyramid representation and the combination of more effective information such as gray, texture and shape, this paper proposes a simple but powerful feature, called Pyramid Histograms of Gray, Texture and Orientation Gradients (PHGTOG). For a finger vein image, PHGTOG can reflect the global spatial layout and local details of gray, texture and shape. To further improve the recognition performance and reduce the computational complexity, we select a personalized subset of features from PHGTOG for each subject by using the sparse weight vector, which is trained by using LASSO and called PFS-PHGTOG. We conduct extensive experiments to demonstrate the promise of the PHGTOG and PFS-PHGTOG, experimental results on our databases show that PHGTOG outperforms the other existing features. Moreover, PFS-PHGTOG can further boost the performance in comparison with PHGTOG. PMID:23974154

  19. Using multiscale texture and density features for near-term breast cancer risk analysis

    PubMed Central

    Sun, Wenqing; Tseng, Tzu-Liang (Bill); Qian, Wei; Zhang, Jianying; Saltzstein, Edward C.; Zheng, Bin; Lure, Fleming; Yu, Hui; Zhou, Shi

    2015-01-01

    Purpose: To help improve efficacy of screening mammography by eventually establishing a new optimal personalized screening paradigm, the authors investigated the potential of using the quantitative multiscale texture and density feature analysis of digital mammograms to predict near-term breast cancer risk. Methods: The authors’ dataset includes digital mammograms acquired from 340 women. Among them, 141 were positive and 199 were negative/benign cases. The negative digital mammograms acquired from the “prior” screening examinations were used in the study. Based on the intensity value distributions, five subregions at different scales were extracted from each mammogram. Five groups of features, including density and texture features, were developed and calculated on every one of the subregions. Sequential forward floating selection was used to search for the effective combinations. Using the selected features, a support vector machine (SVM) was optimized using a tenfold validation method to predict the risk of each woman having image-detectable cancer in the next sequential mammography screening. The area under the receiver operating characteristic curve (AUC) was used as the performance assessment index. Results: From a total number of 765 features computed from multiscale subregions, an optimal feature set of 12 features was selected. Applying this feature set, a SVM classifier yielded performance of AUC = 0.729 ± 0.021. The positive predictive value was 0.657 (92 of 140) and the negative predictive value was 0.755 (151 of 200). Conclusions: The study results demonstrated a moderately high positive association between risk prediction scores generated by the quantitative multiscale mammographic image feature analysis and the actual risk of a woman having an image-detectable breast cancer in the next subsequent examinations. PMID:26127038

  20. IETS and quantum interference: Propensity rules in the presence of an interference feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykkebo, Jacob; Solomon, Gemma C., E-mail: gsolomon@nano.ku.dk; Gagliardi, Alessio

    2014-09-28

    Destructive quantum interference in single molecule electronics is an intriguing phenomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference effects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Second, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are selectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electronmore » tunneling spectroscopy to molecules with destructive quantum interference.« less

  1. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  2. Gene/protein name recognition based on support vector machine using dictionary as features.

    PubMed

    Mitsumori, Tomohiro; Fation, Sevrani; Murata, Masaki; Doi, Kouichi; Doi, Hirohumi

    2005-01-01

    Automated information extraction from biomedical literature is important because a vast amount of biomedical literature has been published. Recognition of the biomedical named entities is the first step in information extraction. We developed an automated recognition system based on the SVM algorithm and evaluated it in Task 1.A of BioCreAtIvE, a competition for automated gene/protein name recognition. In the work presented here, our recognition system uses the feature set of the word, the part-of-speech (POS), the orthography, the prefix, the suffix, and the preceding class. We call these features "internal resource features", i.e., features that can be found in the training data. Additionally, we consider the features of matching against dictionaries to be external resource features. We investigated and evaluated the effect of these features as well as the effect of tuning the parameters of the SVM algorithm. We found that the dictionary matching features contributed slightly to the improvement in the performance of the f-score. We attribute this to the possibility that the dictionary matching features might overlap with other features in the current multiple feature setting. During SVM learning, each feature alone had a marginally positive effect on system performance. This supports the fact that the SVM algorithm is robust on the high dimensionality of the feature vector space and means that feature selection is not required.

  3. Relevance popularity: A term event model based feature selection scheme for text classification.

    PubMed

    Feng, Guozhong; An, Baiguo; Yang, Fengqin; Wang, Han; Zhang, Libiao

    2017-01-01

    Feature selection is a practical approach for improving the performance of text classification methods by optimizing the feature subsets input to classifiers. In traditional feature selection methods such as information gain and chi-square, the number of documents that contain a particular term (i.e. the document frequency) is often used. However, the frequency of a given term appearing in each document has not been fully investigated, even though it is a promising feature to produce accurate classifications. In this paper, we propose a new feature selection scheme based on a term event Multinomial naive Bayes probabilistic model. According to the model assumptions, the matching score function, which is based on the prediction probability ratio, can be factorized. Finally, we derive a feature selection measurement for each term after replacing inner parameters by their estimators. On a benchmark English text datasets (20 Newsgroups) and a Chinese text dataset (MPH-20), our numerical experiment results obtained from using two widely used text classifiers (naive Bayes and support vector machine) demonstrate that our method outperformed the representative feature selection methods.

  4. Hybrid feature selection for supporting lightweight intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Song, Jianglong; Zhao, Wentao; Liu, Qiang; Wang, Xin

    2017-08-01

    Redundant and irrelevant features not only cause high resource consumption but also degrade the performance of Intrusion Detection Systems (IDS), especially when coping with big data. These features slow down the process of training and testing in network traffic classification. Therefore, a hybrid feature selection approach in combination with wrapper and filter selection is designed in this paper to build a lightweight intrusion detection system. Two main phases are involved in this method. The first phase conducts a preliminary search for an optimal subset of features, in which the chi-square feature selection is utilized. The selected set of features from the previous phase is further refined in the second phase in a wrapper manner, in which the Random Forest(RF) is used to guide the selection process and retain an optimized set of features. After that, we build an RF-based detection model and make a fair comparison with other approaches. The experimental results on NSL-KDD datasets show that our approach results are in higher detection accuracy as well as faster training and testing processes.

  5. Classification of epileptic EEG signals based on simple random sampling and sequential feature selection.

    PubMed

    Ghayab, Hadi Ratham Al; Li, Yan; Abdulla, Shahab; Diykh, Mohammed; Wan, Xiangkui

    2016-06-01

    Electroencephalogram (EEG) signals are used broadly in the medical fields. The main applications of EEG signals are the diagnosis and treatment of diseases such as epilepsy, Alzheimer, sleep problems and so on. This paper presents a new method which extracts and selects features from multi-channel EEG signals. This research focuses on three main points. Firstly, simple random sampling (SRS) technique is used to extract features from the time domain of EEG signals. Secondly, the sequential feature selection (SFS) algorithm is applied to select the key features and to reduce the dimensionality of the data. Finally, the selected features are forwarded to a least square support vector machine (LS_SVM) classifier to classify the EEG signals. The LS_SVM classifier classified the features which are extracted and selected from the SRS and the SFS. The experimental results show that the method achieves 99.90, 99.80 and 100 % for classification accuracy, sensitivity and specificity, respectively.

  6. Detrended fluctuation analysis for major depressive disorder.

    PubMed

    Mumtaz, Wajid; Malik, Aamir Saeed; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Amin, Hafeezullah

    2015-01-01

    Clinical utility of Electroencephalography (EEG) based diagnostic studies is less clear for major depressive disorder (MDD). In this paper, a novel machine learning (ML) scheme was presented to discriminate the MDD patients and healthy controls. The proposed method inherently involved feature extraction, selection, classification and validation. The EEG data acquisition involved eyes closed (EC) and eyes open (EO) conditions. At feature extraction stage, the de-trended fluctuation analysis (DFA) was performed, based on the EEG data, to achieve scaling exponents. The DFA was performed to analyzes the presence or absence of long-range temporal correlations (LRTC) in the recorded EEG data. The scaling exponents were used as input features to our proposed system. At feature selection stage, 3 different techniques were used for comparison purposes. Logistic regression (LR) classifier was employed. The method was validated by a 10-fold cross-validation. As results, we have observed that the effect of 3 different reference montages on the computed features. The proposed method employed 3 different types of feature selection techniques for comparison purposes as well. The results show that the DFA analysis performed better in LE data compared with the IR and AR data. In addition, during Wilcoxon ranking, the AR performed better than LE and IR. Based on the results, it was concluded that the DFA provided useful information to discriminate the MDD patients and with further validation can be employed in clinics for diagnosis of MDD.

  7. Automated method for measuring the extent of selective logging damage with airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Melendy, L.; Hagen, S. C.; Sullivan, F. B.; Pearson, T. R. H.; Walker, S. M.; Ellis, P.; Kustiyo; Sambodo, Ari Katmoko; Roswintiarti, O.; Hanson, M. A.; Klassen, A. W.; Palace, M. W.; Braswell, B. H.; Delgado, G. M.

    2018-05-01

    Selective logging has an impact on the global carbon cycle, as well as on the forest micro-climate, and longer-term changes in erosion, soil and nutrient cycling, and fire susceptibility. Our ability to quantify these impacts is dependent on methods and tools that accurately identify the extent and features of logging activity. LiDAR-based measurements of these features offers significant promise. Here, we present a set of algorithms for automated detection and mapping of critical features associated with logging - roads/decks, skid trails, and gaps - using commercial airborne LiDAR data as input. The automated algorithm was applied to commercial LiDAR data collected over two logging concessions in Kalimantan, Indonesia in 2014. The algorithm results were compared to measurements of the logging features collected in the field soon after logging was complete. The automated algorithm-mapped road/deck and skid trail features match closely with features measured in the field, with agreement levels ranging from 69% to 99% when adjusting for GPS location error. The algorithm performed most poorly with gaps, which, by their nature, are variable due to the unpredictable impact of tree fall versus the linear and regular features directly created by mechanical means. Overall, the automated algorithm performs well and offers significant promise as a generalizable tool useful to efficiently and accurately capture the effects of selective logging, including the potential to distinguish reduced impact logging from conventional logging.

  8. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata

    PubMed Central

    Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-01-01

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100

  9. Feature Selection for Motor Imagery EEG Classification Based on Firefly Algorithm and Learning Automata.

    PubMed

    Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi

    2017-11-08

    Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.

  10. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    PubMed

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  11. A Discriminant Distance Based Composite Vector Selection Method for Odor Classification

    PubMed Central

    Choi, Sang-Il; Jeong, Gu-Min

    2014-01-01

    We present a composite vector selection method for an effective electronic nose system that performs well even in noisy environments. Each composite vector generated from a electronic nose data sample is evaluated by computing the discriminant distance. By quantitatively measuring the amount of discriminative information in each composite vector, composite vectors containing informative variables can be distinguished and the final composite features for odor classification are extracted using the selected composite vectors. Using the only informative composite vectors can be also helpful to extract better composite features instead of using all the generated composite vectors. Experimental results with different volatile organic compound data show that the proposed system has good classification performance even in a noisy environment compared to other methods. PMID:24747735

  12. Investigating a memory-based account of negative priming: support for selection-feature mismatch.

    PubMed

    MacDonald, P A; Joordens, S

    2000-08-01

    Using typical and modified negative priming tasks, the selection-feature mismatch account of negative priming was tested. In the modified task, participants performed selections on the basis of a semantic feature (e.g., referent size). This procedure has been shown to enhance negative priming (P. A. MacDonald, S. Joordens, & K. N. Seergobin, 1999). Across 3 experiments, negative priming occurred only when the repeated item mismatched in terms of the feature used as the basis for selections. When the repeated item was congruent on the selection feature across the prime and probe displays, positive priming arose. This pattern of results appeared in both the ignored- and the attended-repetition conditions. Negative priming does not result from previously ignoring an item. These findings strongly support the selection-feature mismatch account of negative priming and refute both the distractor inhibition and the episodic-retrieval explanations.

  13. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    PubMed

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among conventional methods, some of them slightly performed better than others, although the choice of a suitable technique is dependent on the computational complexity and accuracy requirements of the user.

  14. Using environmental heterogeneity to plan for sea-level rise.

    PubMed

    Hunter, Elizabeth A; Nibbelink, Nathan P

    2017-12-01

    Environmental heterogeneity is increasingly being used to select conservation areas that will provide for future biodiversity under a variety of climate scenarios. This approach, termed conserving nature's stage (CNS), assumes environmental features respond to climate change more slowly than biological communities, but will CNS be effective if the stage were to change as rapidly as the climate? We tested the effectiveness of using CNS to select sites in salt marshes for conservation in coastal Georgia (U.S.A.), where environmental features will change rapidly as sea level rises. We calculated species diversity based on distributions of 7 bird species with a variety of niches in Georgia salt marshes. Environmental heterogeneity was assessed across six landscape gradients (e.g., elevation, salinity, and patch area). We used 2 approaches to select sites with high environmental heterogeneity: site complementarity (environmental diversity [ED]) and local environmental heterogeneity (environmental richness [ER]). Sites selected based on ER predicted present-day species diversity better than randomly selected sites (up to an 8.1% improvement), were resilient to areal loss from SLR (1.0% average areal loss by 2050 compared with 0.9% loss of randomly selected sites), and provided habitat to a threatened species (0.63 average occupancy compared with 0.6 average occupancy of randomly selected sites). Sites selected based on ED predicted species diversity no better or worse than random and were not resilient to SLR (2.9% average areal loss by 2050). Despite the discrepancy between the 2 approaches, CNS is a viable strategy for conservation site selection in salt marshes because the ER approach was successful. It has potential for application in other coastal areas where SLR will affect environmental features, but its performance may depend on the magnitude of geological changes caused by SLR. Our results indicate that conservation planners that had heretofore excluded low-lying coasts from CNS planning could include coastal ecosystems in regional conservation strategies. © 2017 Society for Conservation Biology.

  15. Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm.

    PubMed

    Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu

    2016-08-26

    DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.

  16. Economic indicators selection for crime rates forecasting using cooperative feature selection

    NASA Astrophysics Data System (ADS)

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Salleh Sallehuddin, Roselina

    2013-04-01

    Features selection in multivariate forecasting model is very important to ensure that the model is accurate. The purpose of this study is to apply the Cooperative Feature Selection method for features selection. The features are economic indicators that will be used in crime rate forecasting model. The Cooperative Feature Selection combines grey relational analysis and artificial neural network to establish a cooperative model that can rank and select the significant economic indicators. Grey relational analysis is used to select the best data series to represent each economic indicator and is also used to rank the economic indicators according to its importance to the crime rate. After that, the artificial neural network is used to select the significant economic indicators for forecasting the crime rates. In this study, we used economic indicators of unemployment rate, consumer price index, gross domestic product and consumer sentiment index, as well as data rates of property crime and violent crime for the United States. Levenberg-Marquardt neural network is used in this study. From our experiments, we found that consumer price index is an important economic indicator that has a significant influence on the violent crime rate. While for property crime rate, the gross domestic product, unemployment rate and consumer price index are the influential economic indicators. The Cooperative Feature Selection is also found to produce smaller errors as compared to Multiple Linear Regression in forecasting property and violent crime rates.

  17. Feature Selection for Ridge Regression with Provable Guarantees.

    PubMed

    Paul, Saurabh; Drineas, Petros

    2016-04-01

    We introduce single-set spectral sparsification as a deterministic sampling-based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world data sets; a subset of TechTC-300 data sets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.

  18. Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation

    PubMed Central

    Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin

    2016-01-01

    Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The‏ second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821

  19. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    NASA Astrophysics Data System (ADS)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  20. Subliminal Priming of Actions Influences Sense of Control over Effects of Action

    ERIC Educational Resources Information Center

    Wenke, Dorit; Fleming, Stephen M.; Haggard, Patrick

    2010-01-01

    The experience of controlling one's own actions, and through them events in the outside world, is a pervasive feature of human mental life. Two experiments investigated the relation between this sense of control and the internal processes involved in action selection and cognitive control. Action selection was manipulated by subliminally priming…

  1. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    PubMed

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  2. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    PubMed

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  3. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  4. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  5. Using Multi-Objective Genetic Programming to Synthesize Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Ross, Brian; Imada, Janine

    Genetic programming is used to automatically construct stochastic processes written in the stochastic π-calculus. Grammar-guided genetic programming constrains search to useful process algebra structures. The time-series behaviour of a target process is denoted with a suitable selection of statistical feature tests. Feature tests can permit complex process behaviours to be effectively evaluated. However, they must be selected with care, in order to accurately characterize the desired process behaviour. Multi-objective evaluation is shown to be appropriate for this application, since it permits heterogeneous statistical feature tests to reside as independent objectives. Multiple undominated solutions can be saved and evaluated after a run, for determination of those that are most appropriate. Since there can be a vast number of candidate solutions, however, strategies for filtering and analyzing this set are required.

  6. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data.

    PubMed

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos

    2017-04-13

    Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.

  8. Joint Feature Selection and Classification for Multilabel Learning.

    PubMed

    Huang, Jun; Li, Guorong; Huang, Qingming; Wu, Xindong

    2018-03-01

    Multilabel learning deals with examples having multiple class labels simultaneously. It has been applied to a variety of applications, such as text categorization and image annotation. A large number of algorithms have been proposed for multilabel learning, most of which concentrate on multilabel classification problems and only a few of them are feature selection algorithms. Current multilabel classification models are mainly built on a single data representation composed of all the features which are shared by all the class labels. Since each class label might be decided by some specific features of its own, and the problems of classification and feature selection are often addressed independently, in this paper, we propose a novel method which can perform joint feature selection and classification for multilabel learning, named JFSC. Different from many existing methods, JFSC learns both shared features and label-specific features by considering pairwise label correlations, and builds the multilabel classifier on the learned low-dimensional data representations simultaneously. A comparative study with state-of-the-art approaches manifests a competitive performance of our proposed method both in classification and feature selection for multilabel learning.

  9. A hybrid feature selection method using multiclass SVM for diagnosis of erythemato-squamous disease

    NASA Astrophysics Data System (ADS)

    Maryam, Setiawan, Noor Akhmad; Wahyunggoro, Oyas

    2017-08-01

    The diagnosis of erythemato-squamous disease is a complex problem and difficult to detect in dermatology. Besides that, it is a major cause of skin cancer. Data mining implementation in the medical field helps expert to diagnose precisely, accurately, and inexpensively. In this research, we use data mining technique to developed a diagnosis model based on multiclass SVM with a novel hybrid feature selection method to diagnose erythemato-squamous disease. Our hybrid feature selection method, named ChiGA (Chi Square and Genetic Algorithm), uses the advantages from filter and wrapper methods to select the optimal feature subset from original feature. Chi square used as filter method to remove redundant features and GA as wrapper method to select the ideal feature subset with SVM used as classifier. Experiment performed with 10 fold cross validation on erythemato-squamous diseases dataset taken from University of California Irvine (UCI) machine learning database. The experimental result shows that the proposed model based multiclass SVM with Chi Square and GA can give an optimum feature subset. There are 18 optimum features with 99.18% accuracy.

  10. Selective attention to temporal features on nested time scales.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2015-02-01

    Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Qualitative and Quantitative Features of Music Reported to Support Peak Mystical Experiences during Psychedelic Therapy Sessions

    PubMed Central

    Barrett, Frederick S.; Robbins, Hollis; Smooke, David; Brown, Jenine L.; Griffiths, Roland R.

    2017-01-01

    Psilocybin is a classic (serotonergic) hallucinogen (“psychedelic” drug) that may occasion mystical experiences (characterized by a profound feeling of oneness or unity) during acute effects. Such experiences may have therapeutic value. Research and clinical applications of psychedelics usually include music listening during acute drug effects, based on the expectation that music will provide psychological support during the acute effects of psychedelic drugs, and may even facilitate the occurrence of mystical experiences. However, the features of music chosen to support the different phases of drug effects are not well-specified. As a result, there is currently neither real guidance for the selection of music nor standardization of the music used to support clinical trials with psychedelic drugs across various research groups or therapists. A description of the features of music found to be supportive of mystical experience will allow for the standardization and optimization of the delivery of psychedelic drugs in both research trials and therapeutic contexts. To this end, we conducted an anonymous survey of individuals with extensive experience administering psilocybin or psilocybin-containing mushrooms under research or therapeutic conditions, in order to identify the features of commonly used musical selections that have been found by therapists and research staff to be supportive of mystical experiences within a psilocybin session. Ten respondents yielded 24 unique recommendations of musical stimuli supportive of peak effects with psilocybin, and 24 unique recommendations of musical stimuli supportive of the period leading up to a peak experience. Qualitative analysis (expert rating of musical and music-theoretic features of the recommended stimuli) and quantitative analysis (using signal processing and music-information retrieval methods) of 22 of these stimuli yielded a description of peak period music that was characterized by regular, predictable, formulaic phrase structure and orchestration, a feeling of continuous movement and forward motion that slowly builds over time, and lower perceptual brightness when compared to pre peak music. These results provide a description of music that may be optimally supportive of peak psychedelic experiences. This description can be used to guide the selection and composition of music for future psychedelic research and therapy sessions. PMID:28790944

  12. Qualitative and Quantitative Features of Music Reported to Support Peak Mystical Experiences during Psychedelic Therapy Sessions.

    PubMed

    Barrett, Frederick S; Robbins, Hollis; Smooke, David; Brown, Jenine L; Griffiths, Roland R

    2017-01-01

    Psilocybin is a classic (serotonergic) hallucinogen ("psychedelic" drug) that may occasion mystical experiences (characterized by a profound feeling of oneness or unity) during acute effects. Such experiences may have therapeutic value. Research and clinical applications of psychedelics usually include music listening during acute drug effects, based on the expectation that music will provide psychological support during the acute effects of psychedelic drugs, and may even facilitate the occurrence of mystical experiences. However, the features of music chosen to support the different phases of drug effects are not well-specified. As a result, there is currently neither real guidance for the selection of music nor standardization of the music used to support clinical trials with psychedelic drugs across various research groups or therapists. A description of the features of music found to be supportive of mystical experience will allow for the standardization and optimization of the delivery of psychedelic drugs in both research trials and therapeutic contexts. To this end, we conducted an anonymous survey of individuals with extensive experience administering psilocybin or psilocybin-containing mushrooms under research or therapeutic conditions, in order to identify the features of commonly used musical selections that have been found by therapists and research staff to be supportive of mystical experiences within a psilocybin session. Ten respondents yielded 24 unique recommendations of musical stimuli supportive of peak effects with psilocybin, and 24 unique recommendations of musical stimuli supportive of the period leading up to a peak experience. Qualitative analysis (expert rating of musical and music-theoretic features of the recommended stimuli) and quantitative analysis (using signal processing and music-information retrieval methods) of 22 of these stimuli yielded a description of peak period music that was characterized by regular, predictable, formulaic phrase structure and orchestration, a feeling of continuous movement and forward motion that slowly builds over time, and lower perceptual brightness when compared to pre peak music. These results provide a description of music that may be optimally supportive of peak psychedelic experiences. This description can be used to guide the selection and composition of music for future psychedelic research and therapy sessions.

  13. Infrastructure features outperform environmental variables explaining rabbit abundance around motorways.

    PubMed

    Planillo, Aimara; Malo, Juan E

    2018-01-01

    Human disturbance is widespread across landscapes in the form of roads that alter wildlife populations. Knowing which road features are responsible for the species response and their relevance in comparison with environmental variables will provide useful information for effective conservation measures. We sampled relative abundance of European rabbits, a very widespread species, in motorway verges at regional scale, in an area with large variability in environmental and infrastructure conditions. Environmental variables included vegetation structure, plant productivity, distance to water sources, and altitude. Infrastructure characteristics were the type of vegetation in verges, verge width, traffic volume, and the presence of embankments. We performed a variance partitioning analysis to determine the relative importance of two sets of variables on rabbit abundance. Additionally, we identified the most important variables and their effects model averaging after model selection by AICc on hypothesis-based models. As a group, infrastructure features explained four times more variability in rabbit abundance than environmental variables, being the effects of the former critical in motorway stretches located in altered landscapes with no available habitat for rabbits, such as agricultural fields. Model selection and Akaike weights showed that verge width and traffic volume are the most important variables explaining rabbit abundance index, with positive and negative effects, respectively. In the light of these results, the response of species to the infrastructure can be modulated through the modification of motorway features, being some of them manageable in the design phase. The identification of such features leads to suggestions for improvement through low-cost corrective measures and conservation plans. As a general indication, keeping motorway verges less than 10 m wide will prevent high densities of rabbits and avoid the unwanted effects that rabbit populations can generate in some areas.

  14. Multi-level gene/MiRNA feature selection using deep belief nets and active learning.

    PubMed

    Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M

    2014-01-01

    Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].

  15. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum

    NASA Astrophysics Data System (ADS)

    Kong, Yun; Wang, Tianyang; Li, Zheng; Chu, Fulei

    2017-09-01

    Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

  16. Machine Learning Feature Selection for Tuning Memory Page Swapping

    DTIC Science & Technology

    2013-09-01

    environments we set up. 13 Figure 4.1 Updated Feature Vector List. Features we added to the kernel are anno - tated with “(MLVM...Feb. 1966. [2] P. J . Denning, “The working set model for program behavior,” Communications of the ACM, vol. 11, no. 5, pp. 323–333, May 1968. [3] L. A...8] R. W. Cart and J . L. Hennessy, “WSClock — A simple and effective algorithm for virtual memory management,” M.S. thesis, Dept. Computer Science

  17. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  18. An improved wrapper-based feature selection method for machinery fault diagnosis

    PubMed Central

    2017-01-01

    A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks. PMID:29261689

  19. Asymmetric bagging and feature selection for activities prediction of drug molecules.

    PubMed

    Li, Guo-Zheng; Meng, Hao-Hua; Lu, Wen-Cong; Yang, Jack Y; Yang, Mary Qu

    2008-05-28

    Activities of drug molecules can be predicted by QSAR (quantitative structure activity relationship) models, which overcomes the disadvantages of high cost and long cycle by employing the traditional experimental method. With the fact that the number of drug molecules with positive activity is rather fewer than that of negatives, it is important to predict molecular activities considering such an unbalanced situation. Here, asymmetric bagging and feature selection are introduced into the problem and asymmetric bagging of support vector machines (asBagging) is proposed on predicting drug activities to treat the unbalanced problem. At the same time, the features extracted from the structures of drug molecules affect prediction accuracy of QSAR models. Therefore, a novel algorithm named PRIFEAB is proposed, which applies an embedded feature selection method to remove redundant and irrelevant features for asBagging. Numerical experimental results on a data set of molecular activities show that asBagging improve the AUC and sensitivity values of molecular activities and PRIFEAB with feature selection further helps to improve the prediction ability. Asymmetric bagging can help to improve prediction accuracy of activities of drug molecules, which can be furthermore improved by performing feature selection to select relevant features from the drug molecules data sets.

  20. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features

    PubMed Central

    Xia, Junfeng; Yue, Zhenyu; Di, Yunqiang; Zhu, Xiaolei; Zheng, Chun-Hou

    2016-01-01

    The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming more important for the research of drug design and cancer development. Based on our previous methods (APIS and KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, we firstly constructed a wide variety of 108 sequence, structural, and neighborhood features to characterize potential hot spot residues, including conventional ones and new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-ranking features that contribute the most in the classification by a two-step feature selection process consisting of minimal-redundancy-maximal-relevance algorithm and an exhaustive search method. We used support vector machines to build our final prediction model. When testing our model on an independent test set, our method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the existing state-of-the-art hot spot prediction methods. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spots in protein interfaces. PMID:26934646

  1. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography.

    PubMed

    Yilmaz, E; Kayikcioglu, T; Kayipmaz, S

    2017-07-01

    In this article, we propose a decision support system for effective classification of dental periapical cyst and keratocystic odontogenic tumor (KCOT) lesions obtained via cone beam computed tomography (CBCT). CBCT has been effectively used in recent years for diagnosing dental pathologies and determining their boundaries and content. Unlike other imaging techniques, CBCT provides detailed and distinctive information about the pathologies by enabling a three-dimensional (3D) image of the region to be displayed. We employed 50 CBCT 3D image dataset files as the full dataset of our study. These datasets were identified by experts as periapical cyst and KCOT lesions according to the clinical, radiographic and histopathologic features. Segmentation operations were performed on the CBCT images using viewer software that we developed. Using the tools of this software, we marked the lesional volume of interest and calculated and applied the order statistics and 3D gray-level co-occurrence matrix for each CBCT dataset. A feature vector of the lesional region, including 636 different feature items, was created from those statistics. Six classifiers were used for the classification experiments. The Support Vector Machine (SVM) classifier achieved the best classification performance with 100% accuracy, and 100% F-score (F1) scores as a result of the experiments in which a ten-fold cross validation method was used with a forward feature selection algorithm. SVM achieved the best classification performance with 96.00% accuracy, and 96.00% F1 scores in the experiments in which a split sample validation method was used with a forward feature selection algorithm. SVM additionally achieved the best performance of 94.00% accuracy, and 93.88% F1 in which a leave-one-out (LOOCV) method was used with a forward feature selection algorithm. Based on the results, we determined that periapical cyst and KCOT lesions can be classified with a high accuracy with the models that we built using the new dataset selected for this study. The studies mentioned in this article, along with the selected 3D dataset, 3D statistics calculated from the dataset, and performance results of the different classifiers, comprise an important contribution to the field of computer-aided diagnosis of dental apical lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. System Complexity Reduction via Feature Selection

    ERIC Educational Resources Information Center

    Deng, Houtao

    2011-01-01

    This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree…

  3. Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection.

    PubMed

    Ortega, Julio; Asensio-Cubero, Javier; Gan, John Q; Ortiz, Andrés

    2016-07-15

    Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI. This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection. The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal-Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.

  4. Feature Selection for Speech Emotion Recognition in Spanish and Basque: On the Use of Machine Learning to Improve Human-Computer Interaction

    PubMed Central

    Arruti, Andoni; Cearreta, Idoia; Álvarez, Aitor; Lazkano, Elena; Sierra, Basilio

    2014-01-01

    Study of emotions in human–computer interaction is a growing research area. This paper shows an attempt to select the most significant features for emotion recognition in spoken Basque and Spanish Languages using different methods for feature selection. RekEmozio database was used as the experimental data set. Several Machine Learning paradigms were used for the emotion classification task. Experiments were executed in three phases, using different sets of features as classification variables in each phase. Moreover, feature subset selection was applied at each phase in order to seek for the most relevant feature subset. The three phases approach was selected to check the validity of the proposed approach. Achieved results show that an instance-based learning algorithm using feature subset selection techniques based on evolutionary algorithms is the best Machine Learning paradigm in automatic emotion recognition, with all different feature sets, obtaining a mean of 80,05% emotion recognition rate in Basque and a 74,82% in Spanish. In order to check the goodness of the proposed process, a greedy searching approach (FSS-Forward) has been applied and a comparison between them is provided. Based on achieved results, a set of most relevant non-speaker dependent features is proposed for both languages and new perspectives are suggested. PMID:25279686

  5. The spread of attention across features of a surface

    PubMed Central

    Ernst, Zachary Raymond; Jazayeri, Mehrdad

    2013-01-01

    Contrasting theories of visual attention have emphasized selection by spatial location, individual features, and whole objects. We used functional magnetic resonance imaging to ask whether and how attention to one feature of an object spreads to other features of the same object. Subjects viewed two spatially superimposed surfaces of random dots that were segregated by distinct color-motion conjunctions. The color and direction of motion of each surface changed smoothly and in a cyclical fashion. Subjects were required to track one feature (e.g., color) of one of the two surfaces and detect brief moments when the attended feature diverged from its smooth trajectory. To tease apart the effect of attention to individual features on the hemodynamic response, we used a frequency-tagging scheme. In this scheme, the stimulus features (color and direction of motion) are modulated periodically at distinct frequencies so that the contribution of each feature to the hemodynamics can be inferred from the harmonic response at the corresponding frequency. We found that attention to one feature (e.g., color) of one surface increased the response modulation not only to the attended feature but also to the other feature (e.g., motion) of the same surface. This attentional modulation was evident in multiple visual areas and was present as early as V1. The spread of attention to the behaviorally irrelevant features of a surface suggests that attention may automatically select all features of a single object. Thus object-based attention may be supported by an enhancement of feature-specific sensory signals in the visual cortex. PMID:23883860

  6. Spatial and Feature-Based Attention in a Layered Cortical Microcircuit Model

    PubMed Central

    Wagatsuma, Nobuhiko; Potjans, Tobias C.; Diesmann, Markus; Sakai, Ko; Fukai, Tomoki

    2013-01-01

    Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception. PMID:24324628

  7. The impact of feature selection on one and two-class classification performance for plant microRNAs.

    PubMed

    Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  8. Object-based attention: strength of object representation and attentional guidance.

    PubMed

    Shomstein, Sarah; Behrmann, Marlene

    2008-01-01

    Two or more features belonging to a single object are identified more quickly and more accurately than are features belonging to different objects--a finding attributed to sensory enhancement of all features belonging to an attended or selected object. However, several recent studies have suggested that this "single-object advantage" may be a product of probabilistic and configural strategic prioritizations rather than of object-based perceptual enhancement per se, challenging the underlying mechanism that is thought to give rise to object-based attention. In the present article, we further explore constraints on the mechanisms of object-based selection by examining the contribution of the strength of object representations to the single-object advantage. We manipulated factors such as exposure duration (i.e., preview time) and salience of configuration (i.e., objects). Varying preview time changes the magnitude of the object-based effect, so that if there is ample time to establish an object representation (i.e., preview time of 1,000 msec), then both probability and configuration (i.e., objects) guide attentional selection. If, however, insufficient time is provided to establish a robust object-based representation, then only probabilities guide attentional selection. Interestingly, at a short preview time of 200 msec, when the two objects were sufficiently different from each other (i.e., different colors), both configuration and probability guided attention selection. These results suggest that object-based effects can be explained both in terms of strength of object representations (established at longer exposure durations and by pictorial cues) and probabilistic contingencies in the visual environment.

  9. Phylogenetic divergence of cell biological features

    PubMed Central

    2018-01-01

    Most cellular features have a range of states, but understanding the mechanisms responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are developed for the distribution of mean phenotypes likely to evolve under the joint forces of mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will deviate from optimal states to a degree depending on the effective population size, potentially leading to substantial divergence in the absence of diversifying selection. The steady-state distribution for the mean can even be bimodal, with one domain being largely driven by selection and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by movement among alternative adaptive domains. These results raise questions as to whether lineage-specific selective pressures are necessary to account for interspecific divergence, providing a possible platform for the establishment of null models for the evolution of cell-biological traits. PMID:29927740

  10. FSR: feature set reduction for scalable and accurate multi-class cancer subtype classification based on copy number.

    PubMed

    Wong, Gerard; Leckie, Christopher; Kowalczyk, Adam

    2012-01-15

    Feature selection is a key concept in machine learning for microarray datasets, where features represented by probesets are typically several orders of magnitude larger than the available sample size. Computational tractability is a key challenge for feature selection algorithms in handling very high-dimensional datasets beyond a hundred thousand features, such as in datasets produced on single nucleotide polymorphism microarrays. In this article, we present a novel feature set reduction approach that enables scalable feature selection on datasets with hundreds of thousands of features and beyond. Our approach enables more efficient handling of higher resolution datasets to achieve better disease subtype classification of samples for potentially more accurate diagnosis and prognosis, which allows clinicians to make more informed decisions in regards to patient treatment options. We applied our feature set reduction approach to several publicly available cancer single nucleotide polymorphism (SNP) array datasets and evaluated its performance in terms of its multiclass predictive classification accuracy over different cancer subtypes, its speedup in execution as well as its scalability with respect to sample size and array resolution. Feature Set Reduction (FSR) was able to reduce the dimensions of an SNP array dataset by more than two orders of magnitude while achieving at least equal, and in most cases superior predictive classification performance over that achieved on features selected by existing feature selection methods alone. An examination of the biological relevance of frequently selected features from FSR-reduced feature sets revealed strong enrichment in association with cancer. FSR was implemented in MATLAB R2010b and is available at http://ww2.cs.mu.oz.au/~gwong/FSR.

  11. Feature selection for the classification of traced neurons.

    PubMed

    López-Cabrera, José D; Lorenzo-Ginori, Juan V

    2018-06-01

    The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  13. RESIDENTIAL RADON RESISTANT CONSTRUCTION FEATURE SELECTION SYSTEM

    EPA Science Inventory

    The report describes a proposed residential radon resistant construction feature selection system. The features consist of engineered barriers to reduce radon entry and accumulation indoors. The proposed Florida standards require radon resistant features in proportion to regional...

  14. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  15. Evaluating the efficacy of fully automated approaches for the selection of eye blink ICA components

    PubMed Central

    Pontifex, Matthew B.; Miskovic, Vladimir; Laszlo, Sarah

    2017-01-01

    Independent component analysis (ICA) offers a powerful approach for the isolation and removal of eye blink artifacts from EEG signals. Manual identification of the eye blink ICA component by inspection of scalp map projections, however, is prone to error, particularly when non-artifactual components exhibit topographic distributions similar to the blink. The aim of the present investigation was to determine the extent to which automated approaches for selecting eye blink related ICA components could be utilized to replace manual selection. We evaluated popular blink selection methods relying on spatial features [EyeCatch()], combined stereotypical spatial and temporal features [ADJUST()], and a novel method relying on time-series features alone [icablinkmetrics()] using both simulated and real EEG data. The results of this investigation suggest that all three methods of automatic component selection are able to accurately identify eye blink related ICA components at or above the level of trained human observers. However, icablinkmetrics(), in particular, appears to provide an effective means of automating ICA artifact rejection while at the same time eliminating human errors inevitable during manual component selection and false positive component identifications common in other automated approaches. Based upon these findings, best practices for 1) identifying artifactual components via automated means and 2) reducing the accidental removal of signal-related ICA components are discussed. PMID:28191627

  16. Constraint programming based biomarker optimization.

    PubMed

    Zhou, Manli; Luo, Youxi; Sun, Guoquan; Mai, Guoqin; Zhou, Fengfeng

    2015-01-01

    Efficient and intuitive characterization of biological big data is becoming a major challenge for modern bio-OMIC based scientists. Interactive visualization and exploration of big data is proven to be one of the successful solutions. Most of the existing feature selection algorithms do not allow the interactive inputs from users in the optimizing process of feature selection. This study investigates this question as fixing a few user-input features in the finally selected feature subset and formulates these user-input features as constraints for a programming model. The proposed algorithm, fsCoP (feature selection based on constrained programming), performs well similar to or much better than the existing feature selection algorithms, even with the constraints from both literature and the existing algorithms. An fsCoP biomarker may be intriguing for further wet lab validation, since it satisfies both the classification optimization function and the biomedical knowledge. fsCoP may also be used for the interactive exploration of bio-OMIC big data by interactively adding user-defined constraints for modeling.

  17. Predication of different stages of Alzheimer's disease using neighborhood component analysis and ensemble decision tree.

    PubMed

    Jin, Mingwu; Deng, Weishu

    2018-05-15

    There is a spectrum of the progression from healthy control (HC) to mild cognitive impairment (MCI) without conversion to Alzheimer's disease (AD), to MCI with conversion to AD (cMCI), and to AD. This study aims to predict the different disease stages using brain structural information provided by magnetic resonance imaging (MRI) data. The neighborhood component analysis (NCA) is applied to select most powerful features for prediction. The ensemble decision tree classifier is built to predict which group the subject belongs to. The best features and model parameters are determined by cross validation of the training data. Our results show that 16 out of a total of 429 features were selected by NCA using 240 training subjects, including MMSE score and structural measures in memory-related regions. The boosting tree model with NCA features can achieve prediction accuracy of 56.25% on 160 test subjects. Principal component analysis (PCA) and sequential feature selection (SFS) are used for feature selection, while support vector machine (SVM) is used for classification. The boosting tree model with NCA features outperforms all other combinations of feature selection and classification methods. The results suggest that NCA be a better feature selection strategy than PCA and SFS for the data used in this study. Ensemble tree classifier with boosting is more powerful than SVM to predict the subject group. However, more advanced feature selection and classification methods or additional measures besides structural MRI may be needed to improve the prediction performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Feature extraction for breast cancer data based on geometric algebra theory and feature selection using differential evolution].

    PubMed

    Li, Jing; Hong, Wenxue

    2014-12-01

    The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.

  19. Application of machine learning on brain cancer multiclass classification

    NASA Astrophysics Data System (ADS)

    Panca, V.; Rustam, Z.

    2017-07-01

    Classification of brain cancer is a problem of multiclass classification. One approach to solve this problem is by first transforming it into several binary problems. The microarray gene expression dataset has the two main characteristics of medical data: extremely many features (genes) and only a few number of samples. The application of machine learning on microarray gene expression dataset mainly consists of two steps: feature selection and classification. In this paper, the features are selected using a method based on support vector machine recursive feature elimination (SVM-RFE) principle which is improved to solve multiclass classification, called multiple multiclass SVM-RFE. Instead of using only the selected features on a single classifier, this method combines the result of multiple classifiers. The features are divided into subsets and SVM-RFE is used on each subset. Then, the selected features on each subset are put on separate classifiers. This method enhances the feature selection ability of each single SVM-RFE. Twin support vector machine (TWSVM) is used as the method of the classifier to reduce computational complexity. While ordinary SVM finds single optimum hyperplane, the main objective Twin SVM is to find two non-parallel optimum hyperplanes. The experiment on the brain cancer microarray gene expression dataset shows this method could classify 71,4% of the overall test data correctly, using 100 and 1000 genes selected from multiple multiclass SVM-RFE feature selection method. Furthermore, the per class results show that this method could classify data of normal and MD class with 100% accuracy.

  20. Information Theory for Gabor Feature Selection for Face Recognition

    NASA Astrophysics Data System (ADS)

    Shen, Linlin; Bai, Li

    2006-12-01

    A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004), our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  1. Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches

    PubMed Central

    Chen, Xi; Wu, Qi; Ren, He; Chang, Fu-Kuo

    2018-01-01

    In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying angles of attack and airspeeds. A large feature pool is created by extracting potential features from the signals covering the time domain, the frequency domain as well as the information domain. Special emphasis is given to feature selection in which a novel filter method is developed based on the combination of a modified distance evaluation algorithm and a variance inflation factor. Machine learning algorithms are then employed to establish the mapping relationship from the feature space to the practical state space. Results from two case studies demonstrate the high identification accuracy and the effectiveness of the model complexity reduction via the proposed method, thus providing new perspectives of self-awareness towards the next generation of intelligent air vehicles. PMID:29710832

  2. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  3. Land mine detection using multispectral image fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Aimonetti, W.D.

    1995-03-29

    Our system fuses information contained in registered images from multiple sensors to reduce the effects of clutter and improve the ability to detect surface and buried land mines. The sensor suite currently consists of a camera that acquires images in six bands (400nm, 500nm, 600nm, 700nm, 800nm and 900nm). Past research has shown that it is extremely difficult to distinguish land mines from background clutter in images obtained from a single sensor. It is hypothesized, however, that information fused from a suite of various sensors is likely to provide better detection reliability, because the suite of sensors detects a varietymore » of physical properties that are more separable in feature space. The materials surrounding the mines can include natural materials (soil, rocks, foliage, water, etc.) and some artifacts. We use a supervised learning pattern recognition approach to detecting the metal and plastic land mines. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in a two step process to classify a subimage. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the spectral bands add value to the detection system. The most important features from the various sensors are fused using a supervised learning pattern classifier (the probabilistic neural network). We present results of experiments to detect land mines from real data collected from an airborne platform, and evaluate the usefulness of fusing feature information from multiple spectral bands.« less

  4. Male partner selectivity, romantic confidence, and media depictions of partner scarcity.

    PubMed

    Taylor, Laramie D

    2013-01-18

    An experiment was conducted to explore the effects of exposure to partner scarcity or abundance messages on men's partner selectivity, romantic confidence, and self-assessed attractiveness. Undergraduate male participants watched a soap opera narrative featuring either two men competing over one potential female partner (partner scarcity) or two women competing over one potential male partner (partner abundance). Relative to control subjects, watching either narrative reduced romantic confidence. Experimental condition also affected partner selectivity and self-assessed attractiveness, though both effects were moderated by endorsement of traditional masculine ideology. Viewing the abundance narrative resulted in greater selectivity and self-assessed attractiveness for men high in endorsement of traditional masculinity but diminished selectivity and self-assessed attractiveness for men low in endorsement of traditional masculine identity.

  5. Selective Laser Treatment on Cold-Sprayed Titanium Coatings: Numerical Modeling and Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola; Aprea, Paolo

    2016-12-01

    In this paper, a selective laser post-deposition on pure grade II titanium coatings, cold-sprayed on AA2024-T3 sheets, was experimentally and numerically investigated. Morphological features, microstructure, and chemical composition of the treated zone were assessed by means of optical microscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Microhardness measurements were also carried out to evaluate the mechanical properties of the coating. A numerical model of the laser treatment was implemented and solved to simulate the process and discuss the experimental outcomes. Obtained results highlighted the key role played by heat input and dimensional features on the effectiveness of the treatment.

  6. Who is talking in backward crosstalk? Disentangling response- from goal-conflict in dual-task performance.

    PubMed

    Janczyk, Markus; Pfister, Roland; Hommel, Bernhard; Kunde, Wilfried

    2014-07-01

    Responses in the second of two subsequently performed tasks can speed up compatible responses in the temporally preceding first task. Such backward crosstalk effects (BCEs) represent a challenge to the assumption of serial processing in stage models of human information processing, because they indicate that certain features of the second response have to be represented before the first response is emitted. Which of these features are actually relevant for BCEs is an open question, even though identifying these features is important for understanding the nature of parallel and serial response selection processes in dual-task performance. Motivated by effect-based models of action control, we show in three experiments that the BCE to a considerable degree reflects features of intended action effects, although features of the response proper (or response-associated kinesthetic feedback) also seem to play a role. These findings suggest that the codes of action effects (or action goals) can become activated simultaneously rather than serially, thereby creating BCEs. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    NASA Astrophysics Data System (ADS)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  8. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    PubMed

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  9. Acoustic⁻Seismic Mixed Feature Extraction Based on Wavelet Transform for Vehicle Classification in Wireless Sensor Networks.

    PubMed

    Zhang, Heng; Pan, Zhongming; Zhang, Wenna

    2018-06-07

    An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.

  10. Influence of time and length size feature selections for human activity sequences recognition.

    PubMed

    Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran

    2014-01-01

    In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.

  11. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-11-15

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  12. Adaptive runtime for a multiprocessing API

    DOEpatents

    Antao, Samuel F.; Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.

    2016-10-11

    A computer-implemented method includes selecting a runtime for executing a program. The runtime includes a first combination of feature implementations, where each feature implementation implements a feature of an application programming interface (API). Execution of the program is monitored, and the execution uses the runtime. Monitor data is generated based on the monitoring. A second combination of feature implementations are selected, by a computer processor, where the selection is based at least in part on the monitor data. The runtime is modified by activating the second combination of feature implementations to replace the first combination of feature implementations.

  13. A robust indicator based on singular value decomposition for flaw feature detection from noisy ultrasonic signals

    NASA Astrophysics Data System (ADS)

    Cui, Ximing; Wang, Zhe; Kang, Yihua; Pu, Haiming; Deng, Zhiyang

    2018-05-01

    Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.

  14. Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation

    PubMed Central

    Delorenzi, Mauro

    2014-01-01

    Background With the large amount of biological data that is currently publicly available, many investigators combine multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical differences (“batch effects”) as well as differences in sample composition between the data sets may significantly affect the ability to draw generalizable conclusions from such studies. Focus The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their performance. In particular, we investigate the impact of batch effects and differences in sample composition between batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how it relates to the presence of batch effects. Data We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., ‘control’) or group 2 (e.g., ‘treated’). We introduce batch effects and select some features to be differentially expressed between the two groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and batch effects. Methods We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN) and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-validation scheme. The estimated classification performance is then compared to what is obtained when applying the classifier to independent data. PMID:24967636

  15. Informative Feature Selection for Object Recognition via Sparse PCA

    DTIC Science & Technology

    2011-04-07

    constraint on images collected from low-power camera net- works instead of high-end photography is that establishing wide-baseline feature correspondence of...variable selection tool for selecting informative features in the object images captured from low-resolution cam- era sensor networks. Firstly, we...More examples can be found in Figure 4 later. 3. Identifying Informative Features Classical PCA is a well established tool for the analysis of high

  16. Systematic review of the information and communication technology features of web- and mobile-based psychoeducational interventions for depression.

    PubMed

    Zhao, Danyang; Lustria, Mia Liza A; Hendrickse, Joshua

    2017-06-01

    To examine the information and communication technology (ICT) features of psychoeducational interventions for depression delivered via the Internet or via mobile technology. Web- and mobile-based psychoeducational intervention studies published from 2004 to 2014 were selected and reviewed by two independent coders. A total of 55 unique studies satisfied the selection criteria. The review revealed a diverse range of ICTs used to support the psychoeducational programs. Most interventions used websites as their main mode of delivery and reported greater use of communication tools compared to effective approaches like tailoring or interactive technologies games, videos, and self-monitoring tools. Many of the studies relied on medium levels of clinician involvement and only a few were entirely self-guided. Programs that reported higher levels of clinician involvement also reported using more communication tools, and reported greater compliance to treatment. Future experimental studies may help unpack the effects of technology features and reveal new ways to automate aspects of clinician input. There is a need to further examine ways ICTs can be optimized to reduce the burden on clinicians whilst enhancing the delivery of proven effective therapeutic approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    NASA Astrophysics Data System (ADS)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  18. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues.

    PubMed

    Guo, Song; Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields.

  19. A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues

    PubMed Central

    Liu, Chunhua; Zhou, Peng; Li, Yanling

    2016-01-01

    Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper, a novel method was presented to predict protein tyrosine sulfation residues from primary sequences. By means of informative feature construction and elaborate feature selection and parameter optimization scheme, the proposed predictor achieved promising results and outperformed many other state-of-the-art predictors. Using the optimal features subset, the proposed method achieved mean MCC of 94.41% on the benchmark dataset, and a MCC of 90.09% on the independent dataset. The experimental performance indicated that our new proposed method could be effective in identifying the important protein posttranslational modifications and the feature selection scheme would be powerful in protein functional residues prediction research fields. PMID:27034949

  20. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  1. A simulation of remote sensor systems and data processing algorithms for spectral feature classification

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Aherron, R. M.; Samms, R. W.

    1984-01-01

    A computational model of the deterministic and stochastic processes involved in multispectral remote sensing was designed to evaluate the performance of sensor systems and data processing algorithms for spectral feature classification. Accuracy in distinguishing between categories of surfaces or between specific types is developed as a means to compare sensor systems and data processing algorithms. The model allows studies to be made of the effects of variability of the atmosphere and of surface reflectance, as well as the effects of channel selection and sensor noise. Examples of these effects are shown.

  2. Attention-Based Recurrent Temporal Restricted Boltzmann Machine for Radar High Resolution Range Profile Sequence Recognition.

    PubMed

    Zhang, Yifan; Gao, Xunzhang; Peng, Xuan; Ye, Jiaqi; Li, Xiang

    2018-05-16

    The High Resolution Range Profile (HRRP) recognition has attracted great concern in the field of Radar Automatic Target Recognition (RATR). However, traditional HRRP recognition methods failed to model high dimensional sequential data efficiently and have a poor anti-noise ability. To deal with these problems, a novel stochastic neural network model named Attention-based Recurrent Temporal Restricted Boltzmann Machine (ARTRBM) is proposed in this paper. RTRBM is utilized to extract discriminative features and the attention mechanism is adopted to select major features. RTRBM is efficient to model high dimensional HRRP sequences because it can extract the information of temporal and spatial correlation between adjacent HRRPs. The attention mechanism is used in sequential data recognition tasks including machine translation and relation classification, which makes the model pay more attention to the major features of recognition. Therefore, the combination of RTRBM and the attention mechanism makes our model effective for extracting more internal related features and choose the important parts of the extracted features. Additionally, the model performs well with the noise corrupted HRRP data. Experimental results on the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset show that our proposed model outperforms other traditional methods, which indicates that ARTRBM extracts, selects, and utilizes the correlation information between adjacent HRRPs effectively and is suitable for high dimensional data or noise corrupted data.

  3. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  4. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers

    NASA Astrophysics Data System (ADS)

    Weinmann, Martin; Jutzi, Boris; Hinz, Stefan; Mallet, Clément

    2015-07-01

    3D scene analysis in terms of automatically assigning 3D points a respective semantic label has become a topic of great importance in photogrammetry, remote sensing, computer vision and robotics. In this paper, we address the issue of how to increase the distinctiveness of geometric features and select the most relevant ones among these for 3D scene analysis. We present a new, fully automated and versatile framework composed of four components: (i) neighborhood selection, (ii) feature extraction, (iii) feature selection and (iv) classification. For each component, we consider a variety of approaches which allow applicability in terms of simplicity, efficiency and reproducibility, so that end-users can easily apply the different components and do not require expert knowledge in the respective domains. In a detailed evaluation involving 7 neighborhood definitions, 21 geometric features, 7 approaches for feature selection, 10 classifiers and 2 benchmark datasets, we demonstrate that the selection of optimal neighborhoods for individual 3D points significantly improves the results of 3D scene analysis. Additionally, we show that the selection of adequate feature subsets may even further increase the quality of the derived results while significantly reducing both processing time and memory consumption.

  5. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  6. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    NASA Astrophysics Data System (ADS)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  7. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data.

    PubMed

    Zhang, Chuncheng; Song, Sutao; Wen, Xiaotong; Yao, Li; Long, Zhiying

    2015-04-30

    Feature selection plays an important role in improving the classification accuracy of multivariate classification techniques in the context of fMRI-based decoding due to the "few samples and large features" nature of functional magnetic resonance imaging (fMRI) data. Recently, several sparse representation methods have been applied to the voxel selection of fMRI data. Despite the low computational efficiency of the sparse representation methods, they still displayed promise for applications that select features from fMRI data. In this study, we proposed the Laplacian smoothed L0 norm (LSL0) approach for feature selection of fMRI data. Based on the fast sparse decomposition using smoothed L0 norm (SL0) (Mohimani, 2007), the LSL0 method used the Laplacian function to approximate the L0 norm of sources. Results of the simulated and real fMRI data demonstrated the feasibility and robustness of LSL0 for the sparse source estimation and feature selection. Simulated results indicated that LSL0 produced more accurate source estimation than SL0 at high noise levels. The classification accuracy using voxels that were selected by LSL0 was higher than that by SL0 in both simulated and real fMRI experiment. Moreover, both LSL0 and SL0 showed higher classification accuracy and required less time than ICA and t-test for the fMRI decoding. LSL0 outperformed SL0 in sparse source estimation at high noise level and in feature selection. Moreover, LSL0 and SL0 showed better performance than ICA and t-test for feature selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak.

    PubMed

    Donoho, David; Jin, Jiashun

    2008-09-30

    In important application fields today-genomics and proteomics are examples-selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, ..., p, let pi(i) denote the two-sided P-value associated with the ith feature Z-score and pi((i)) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p - pi((i)))/sqrt{i/p(1-i/p)}. We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT.

  9. Higher criticism thresholding: Optimal feature selection when useful features are rare and weak

    PubMed Central

    Donoho, David; Jin, Jiashun

    2008-01-01

    In important application fields today—genomics and proteomics are examples—selecting a small subset of useful features is crucial for success of Linear Classification Analysis. We study feature selection by thresholding of feature Z-scores and introduce a principle of threshold selection, based on the notion of higher criticism (HC). For i = 1, 2, …, p, let πi denote the two-sided P-value associated with the ith feature Z-score and π(i) denote the ith order statistic of the collection of P-values. The HC threshold is the absolute Z-score corresponding to the P-value maximizing the HC objective (i/p − π(i))/i/p(1−i/p). We consider a rare/weak (RW) feature model, where the fraction of useful features is small and the useful features are each too weak to be of much use on their own. HC thresholding (HCT) has interesting behavior in this setting, with an intimate link between maximizing the HC objective and minimizing the error rate of the designed classifier, and very different behavior from popular threshold selection procedures such as false discovery rate thresholding (FDRT). In the most challenging RW settings, HCT uses an unconventionally low threshold; this keeps the missed-feature detection rate under better control than FDRT and yields a classifier with improved misclassification performance. Replacing cross-validated threshold selection in the popular Shrunken Centroid classifier with the computationally less expensive and simpler HCT reduces the variance of the selected threshold and the error rate of the constructed classifier. Results on standard real datasets and in asymptotic theory confirm the advantages of HCT. PMID:18815365

  10. Application-Dedicated Selection of Filters (ADSF) using covariance maximization and orthogonal projection.

    PubMed

    Hadoux, Xavier; Kumar, Dinesh Kant; Sarossy, Marc G; Roger, Jean-Michel; Gorretta, Nathalie

    2016-05-19

    Visible and near-infrared (Vis-NIR) spectra are generated by the combination of numerous low resolution features. Spectral variables are thus highly correlated, which can cause problems for selecting the most appropriate ones for a given application. Some decomposition bases such as Fourier or wavelet generally help highlighting spectral features that are important, but are by nature constraint to have both positive and negative components. Thus, in addition to complicating the selected features interpretability, it impedes their use for application-dedicated sensors. In this paper we have proposed a new method for feature selection: Application-Dedicated Selection of Filters (ADSF). This method relaxes the shape constraint by enabling the selection of any type of user defined custom features. By considering only relevant features, based on the underlying nature of the data, high regularization of the final model can be obtained, even in the small sample size context often encountered in spectroscopic applications. For larger scale deployment of application-dedicated sensors, these predefined feature constraints can lead to application specific optical filters, e.g., lowpass, highpass, bandpass or bandstop filters with positive only coefficients. In a similar fashion to Partial Least Squares, ADSF successively selects features using covariance maximization and deflates their influences using orthogonal projection in order to optimally tune the selection to the data with limited redundancy. ADSF is well suited for spectroscopic data as it can deal with large numbers of highly correlated variables in supervised learning, even with many correlated responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Using neuronal populations to study the mechanisms underlying spatial and feature attention

    PubMed Central

    Cohen, Marlene R.; Maunsell, John H.R.

    2012-01-01

    Summary Visual attention affects both perception and neuronal responses. Whether the same neuronal mechanisms mediate spatial attention, which improves perception of attended locations, and non-spatial forms of attention has been a subject of considerable debate. Spatial and feature attention have similar effects on individual neurons. Because visual cortex is retinotopically organized, however, spatial attention can co-modulate local neuronal populations, while feature attention generally requires more selective modulation. We compared the effects of feature and spatial attention on local and spatially separated populations by recording simultaneously from dozens of neurons in both hemispheres of V4. Feature and spatial attention affect the activity of local populations similarly, modulating both firing rates and correlations between pairs of nearby neurons. However, while spatial attention appears to act on local populations, feature attention is coordinated across hemispheres. Our results are consistent with a unified attentional mechanism that can modulate the responses of arbitrary subgroups of neurons. PMID:21689604

  12. Feasibility of feature-based indexing, clustering, and search of clinical trials: A case study of breast cancer trials from ClinicalTrials.gov

    PubMed Central

    Boland, Mary Regina; Miotto, Riccardo; Gao, Junfeng; Weng, Chunhua

    2013-01-01

    Summary Background When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. Objectives This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. Methods We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. Results We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. Conclusions It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency. PMID:23666475

  13. Feasibility of feature-based indexing, clustering, and search of clinical trials. A case study of breast cancer trials from ClinicalTrials.gov.

    PubMed

    Boland, M R; Miotto, R; Gao, J; Weng, C

    2013-01-01

    When standard therapies fail, clinical trials provide experimental treatment opportunities for patients with drug-resistant illnesses or terminal diseases. Clinical Trials can also provide free treatment and education for individuals who otherwise may not have access to such care. To find relevant clinical trials, patients often search online; however, they often encounter a significant barrier due to the large number of trials and in-effective indexing methods for reducing the trial search space. This study explores the feasibility of feature-based indexing, clustering, and search of clinical trials and informs designs to automate these processes. We decomposed 80 randomly selected stage III breast cancer clinical trials into a vector of eligibility features, which were organized into a hierarchy. We clustered trials based on their eligibility feature similarities. In a simulated search process, manually selected features were used to generate specific eligibility questions to filter trials iteratively. We extracted 1,437 distinct eligibility features and achieved an inter-rater agreement of 0.73 for feature extraction for 37 frequent features occurring in more than 20 trials. Using all the 1,437 features we stratified the 80 trials into six clusters containing trials recruiting similar patients by patient-characteristic features, five clusters by disease-characteristic features, and two clusters by mixed features. Most of the features were mapped to one or more Unified Medical Language System (UMLS) concepts, demonstrating the utility of named entity recognition prior to mapping with the UMLS for automatic feature extraction. It is feasible to develop feature-based indexing and clustering methods for clinical trials to identify trials with similar target populations and to improve trial search efficiency.

  14. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifen; Chen, Huabin; Xu, Yanling; Zhong, Jiyong; Lv, Na; Chen, Shanben

    2015-08-01

    Multisensory data fusion-based online welding quality monitoring has gained increasing attention in intelligent welding process. This paper mainly focuses on the automatic detection of typical welding defect for Al alloy in gas tungsten arc welding (GTAW) by means of analzing arc spectrum, sound and voltage signal. Based on the developed algorithms in time and frequency domain, 41 feature parameters were successively extracted from these signals to characterize the welding process and seam quality. Then, the proposed feature selection approach, i.e., hybrid fisher-based filter and wrapper was successfully utilized to evaluate the sensitivity of each feature and reduce the feature dimensions. Finally, the optimal feature subset with 19 features was selected to obtain the highest accuracy, i.e., 94.72% using established classification model. This study provides a guideline for feature extraction, selection and dynamic modeling based on heterogeneous multisensory data to achieve a reliable online defect detection system in arc welding.

  15. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.

    PubMed

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

  16. SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier

    PubMed Central

    Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru

    2014-01-01

    Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306

  17. Feature selection in feature network models: finding predictive subsets of features with the Positive Lasso.

    PubMed

    Frank, Laurence E; Heiser, Willem J

    2008-05-01

    A set of features is the basis for the network representation of proximity data achieved by feature network models (FNMs). Features are binary variables that characterize the objects in an experiment, with some measure of proximity as response variable. Sometimes features are provided by theory and play an important role in the construction of the experimental conditions. In some research settings, the features are not known a priori. This paper shows how to generate features in this situation and how to select an adequate subset of features that takes into account a good compromise between model fit and model complexity, using a new version of least angle regression that restricts coefficients to be non-negative, called the Positive Lasso. It will be shown that features can be generated efficiently with Gray codes that are naturally linked to the FNMs. The model selection strategy makes use of the fact that FNM can be considered as univariate multiple regression model. A simulation study shows that the proposed strategy leads to satisfactory results if the number of objects is less than or equal to 22. If the number of objects is larger than 22, the number of features selected by our method exceeds the true number of features in some conditions.

  18. Selected Works from the Proceedings of the Annual Communications Research Symposium (9th, Knoxville, Tennessee, April 10-11, 1986). Vol. 9.

    ERIC Educational Resources Information Center

    Singletary, Michael W., Ed.

    Featuring 11 articles of original research, this collection presents selected works from the proceedings of the ninth Annual Communications Research Symposium. Following are the titles and authors of the articles included: (1) "Issues in Inferring Media Effects from Surveys" (S. H. Chaffee); (2) "Expectancy Value Theory and…

  19. A primitive study of voxel feature generation by multiple stacked denoising autoencoders for detecting cerebral aneurysms on MRA

    NASA Astrophysics Data System (ADS)

    Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Ohtomo, Kuni

    2016-03-01

    The purpose of this study is to evaluate the feasibility of a novel feature generation, which is based on multiple deep neural networks (DNNs) with boosting, for computer-assisted detection (CADe). It is hard and time-consuming to optimize the hyperparameters for DNNs such as stacked denoising autoencoder (SdA). The proposed method allows using SdA based features without the burden of the hyperparameter setting. The proposed method was evaluated by an application for detecting cerebral aneurysms on magnetic resonance angiogram (MRA). A baseline CADe process included four components; scaling, candidate area limitation, candidate detection, and candidate classification. Proposed feature generation method was applied to extract the optimal features for candidate classification. Proposed method only required setting range of the hyperparameters for SdA. The optimal feature set was selected from a large quantity of SdA based features by multiple SdAs, each of which was trained using different hyperparameter set. The feature selection was operated through ada-boost ensemble learning method. Training of the baseline CADe process and proposed feature generation were operated with 200 MRA cases, and the evaluation was performed with 100 MRA cases. Proposed method successfully provided SdA based features just setting the range of some hyperparameters for SdA. The CADe process by using both previous voxel features and SdA based features had the best performance with 0.838 of an area under ROC curve and 0.312 of ANODE score. The results showed that proposed method was effective in the application for detecting cerebral aneurysms on MRA.

  20. A Filter Feature Selection Method Based on MFA Score and Redundancy Excluding and It's Application to Tumor Gene Expression Data Analysis.

    PubMed

    Li, Jiangeng; Su, Lei; Pang, Zenan

    2015-12-01

    Feature selection techniques have been widely applied to tumor gene expression data analysis in recent years. A filter feature selection method named marginal Fisher analysis score (MFA score) which is based on graph embedding has been proposed, and it has been widely used mainly because it is superior to Fisher score. Considering the heavy redundancy in gene expression data, we proposed a new filter feature selection technique in this paper. It is named MFA score+ and is based on MFA score and redundancy excluding. We applied it to an artificial dataset and eight tumor gene expression datasets to select important features and then used support vector machine as the classifier to classify the samples. Compared with MFA score, t test and Fisher score, it achieved higher classification accuracy.

  1. The influence of physical factors on recognizing blood cells in the computer microscopy systems of acute leukemia diagnosis

    NASA Astrophysics Data System (ADS)

    Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Dmitrieva, V. V.; Tupitsyn, N. N.; Frenkel, M. A.; Mozhenkova, A. V.

    2017-01-01

    The work investigated the effect of the choice of color space component on blood cell detection based on the calculation of texture attributes of blood cells nuclei in bone marrow. The study identified the most informative color space and texture characteristics of blood cells, designed for components of these spaces. Significance ratio was introduced to assess the quality of features. We offered features that have enabled to divide lymphocytes from lymphoblasts. The selection of the features was based on the results of the data analysis.

  2. An ant colony optimization based feature selection for web page classification.

    PubMed

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  3. Pupil size reflects the focus of feature-based attention.

    PubMed

    Binda, Paola; Pereverzeva, Maria; Murray, Scott O

    2014-12-15

    We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand. Copyright © 2014 the American Physiological Society.

  4. Features selection and classification to estimate elbow movements

    NASA Astrophysics Data System (ADS)

    Rubiano, A.; Ramírez, J. L.; El Korso, M. N.; Jouandeau, N.; Gallimard, L.; Polit, O.

    2015-11-01

    In this paper, we propose a novel method to estimate the elbow motion, through the features extracted from electromyography (EMG) signals. The features values are normalized and then compared to identify potential relationships between the EMG signal and the kinematic information as angle and angular velocity. We propose and implement a method to select the best set of features, maximizing the distance between the features that correspond to flexion and extension movements. Finally, we test the selected features as inputs to a non-linear support vector machine in the presence of non-idealistic conditions, obtaining an accuracy of 99.79% in the motion estimation results.

  5. Geology of National Parks

    USGS Publications Warehouse

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  6. Efficient feature subset selection with probabilistic distance criteria. [pattern recognition

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Recursive expressions are derived for efficiently computing the commonly used probabilistic distance measures as a change in the criteria both when a feature is added to and when a feature is deleted from the current feature subset. A combinatorial algorithm for generating all possible r feature combinations from a given set of s features in (s/r) steps with a change of a single feature at each step is presented. These expressions can also be used for both forward and backward sequential feature selection.

  7. Behavioural cues surpass habitat factors in explaining prebreeding resource selection by a migratory diving duck

    USGS Publications Warehouse

    O'Neil, Shawn T.; Warren, Jeffrey M.; Takekawa, John Y.; De La Cruz, Susan E. W.; Cutting, Kyle A.; Parker, Michael W.; Yee, Julie L.

    2014-01-01

    Prebreeding habitat selection in birds can often be explained in part by habitat characteristics. However, females may also select habitats on the basis of fidelity to areas of previous reproductive success or use by conspecifics. The relative influences of sociobehavioural attributes versus habitat characteristics in habitat selection has been primarily investigated in songbirds, while less is known about how these factors affect habitat selection processes in migratory waterfowl. Animal resource selection models often exhibit much unexplained variation; spatial patterns driven by social and behavioural characteristics may account for some of this. We radiomarked female lesser scaup, Aythya affinis, in the southwestern extent of their breeding range to explore hypotheses regarding relative roles of habitat quality, site fidelity and conspecific density in prebreeding habitat selection. We used linear mixed-effects models to relate intensity of use within female home ranges to habitat features, distance to areas of reproductive success during the previous breeding season and conspecific density. Home range habitats included shallow water (≤118 cm), moderate to high densities of flooded emergent vegetation/open water edge and open water areas with submerged aquatic vegetation. Compared with habitat features, conspecific female density and proximity to successful nesting habitats from the previous breeding season had greater influences on habitat use within home ranges. Fidelity and conspecific attraction are behavioural characteristics in some waterfowl species that may exert a greater influence than habitat features in influencing prebreeding space use and habitat selection within home ranges, particularly where quality habitat is abundant. These processes may be of critical importance to a better understanding of habitat selection in breeding birds.

  8. Skin lesion computational diagnosis of dermoscopic images: Ensemble models based on input feature manipulation.

    PubMed

    Oliveira, Roberta B; Pereira, Aledir S; Tavares, João Manuel R S

    2017-10-01

    The number of deaths worldwide due to melanoma has risen in recent times, in part because melanoma is the most aggressive type of skin cancer. Computational systems have been developed to assist dermatologists in early diagnosis of skin cancer, or even to monitor skin lesions. However, there still remains a challenge to improve classifiers for the diagnosis of such skin lesions. The main objective of this article is to evaluate different ensemble classification models based on input feature manipulation to diagnose skin lesions. Input feature manipulation processes are based on feature subset selections from shape properties, colour variation and texture analysis to generate diversity for the ensemble models. Three subset selection models are presented here: (1) a subset selection model based on specific feature groups, (2) a correlation-based subset selection model, and (3) a subset selection model based on feature selection algorithms. Each ensemble classification model is generated using an optimum-path forest classifier and integrated with a majority voting strategy. The proposed models were applied on a set of 1104 dermoscopic images using a cross-validation procedure. The best results were obtained by the first ensemble classification model that generates a feature subset ensemble based on specific feature groups. The skin lesion diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% specificity. The input feature manipulation process based on specific feature subsets generated the greatest diversity for the ensemble classification model with very promising results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. How perception guides action: Figure-ground segmentation modulates integration of context features into S-R episodes.

    PubMed

    Frings, Christian; Rothermund, Klaus

    2017-11-01

    Perception and action are closely related. Responses are assumed to be represented in terms of their perceptual effects, allowing direct links between action and perception. In this regard, the integration of features of stimuli (S) and responses (R) into S-R bindings is a key mechanism for action control. Previous research focused on the integration of object features with response features while neglecting the context in which an object is perceived. In 3 experiments, we analyzed whether contextual features can also become integrated into S-R episodes. The data showed that a fundamental principle of visual perception, figure-ground segmentation, modulates the binding of contextual features. Only features belonging to the figure region of a context but not features forming the background were integrated with responses into S-R episodes, retrieval of which later on had an impact upon behavior. Our findings suggest that perception guides the selection of context features for integration with responses into S-R episodes. Results of our study have wide-ranging implications for an understanding of context effects in learning and behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Convolutional neural network features based change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  11. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    PubMed

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  13. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    PubMed

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  14. An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox

    PubMed Central

    Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng

    2017-01-01

    A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767

  15. Automatic MeSH term assignment and quality assessment.

    PubMed Central

    Kim, W.; Aronson, A. R.; Wilbur, W. J.

    2001-01-01

    For computational purposes documents or other objects are most often represented by a collection of individual attributes that may be strings or numbers. Such attributes are often called features and success in solving a given problem can depend critically on the nature of the features selected to represent documents. Feature selection has received considerable attention in the machine learning literature. In the area of document retrieval we refer to feature selection as indexing. Indexing has not traditionally been evaluated by the same methods used in machine learning feature selection. Here we show how indexing quality may be evaluated in a machine learning setting and apply this methodology to results of the Indexing Initiative at the National Library of Medicine. PMID:11825203

  16. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model

    PubMed Central

    Tan, Maxine; Pu, Jiantao; Zheng, Bin

    2014-01-01

    Purpose: Improving radiologists’ performance in classification between malignant and benign breast lesions is important to increase cancer detection sensitivity and reduce false-positive recalls. For this purpose, developing computer-aided diagnosis (CAD) schemes has been attracting research interest in recent years. In this study, we investigated a new feature selection method for the task of breast mass classification. Methods: We initially computed 181 image features based on mass shape, spiculation, contrast, presence of fat or calcifications, texture, isodensity, and other morphological features. From this large image feature pool, we used a sequential forward floating selection (SFFS)-based feature selection method to select relevant features, and analyzed their performance using a support vector machine (SVM) model trained for the classification task. On a database of 600 benign and 600 malignant mass regions of interest (ROIs), we performed the study using a ten-fold cross-validation method. Feature selection and optimization of the SVM parameters were conducted on the training subsets only. Results: The area under the receiver operating characteristic curve (AUC) = 0.805±0.012 was obtained for the classification task. The results also showed that the most frequently-selected features by the SFFS-based algorithm in 10-fold iterations were those related to mass shape, isodensity and presence of fat, which are consistent with the image features frequently used by radiologists in the clinical environment for mass classification. The study also indicated that accurately computing mass spiculation features from the projection mammograms was difficult, and failed to perform well for the mass classification task due to tissue overlap within the benign mass regions. Conclusions: In conclusion, this comprehensive feature analysis study provided new and valuable information for optimizing computerized mass classification schemes that may have potential to be useful as a “second reader” in future clinical practice. PMID:24664267

  17. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds.

    PubMed

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Francis, Clinton D

    2017-01-01

    Birds breeding in heterogeneous landscapes select nest sites by cueing in on a variety of factors from landscape features and social information to the presence of natural enemies. We focus on determining the relative impact of anthropogenic noise on nest site occupancy, compared to amount of forest cover, which is known to strongly influence the selection process. We examine chronic, industrial noise from natural gas wells directly measured at the nest box as well as site-averaged noise, using a well-established field experimental system in northwestern New Mexico. We hypothesized that high levels of noise, both at the nest site and in the environment, would decrease nest box occupancy. We set up nest boxes using a geospatially paired control and experimental site design and analyzed four years of occupancy data from four secondary cavity-nesting birds common to the Colorado Plateau. We found different effects of noise and landscape features depending on species, with strong effects of noise observed in breeding habitat selection of Myiarchus cinerascens, the Ash-throated Flycatcher, and Sialia currucoides, the Mountain Bluebird. In contrast, the amount of forest cover less frequently explained habitat selection for those species or had a smaller standardized effect than the acoustic environment. Although forest cover characterization and management is commonly employed by natural resource managers, our results show that characterizing and managing the acoustic environment should be an important tool in protected area management. © 2016 by the Ecological Society of America.

  18. Checklist/Guide to Selecting a Small Computer.

    ERIC Educational Resources Information Center

    Bennett, Wilma E.

    This 322-point checklist was designed to help executives make an intelligent choice when selecting a small computer for a business. For ease of use the questions have been divided into ten categories: Display Features, Keyboard Features, Printer Features, Controller Features, Software, Word Processing, Service, Training, Miscellaneous, and Costs.…

  19. Feature selection methods for object-based classification of sub-decimeter resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Due to the availability of numerous spectral, spatial, and contextual features, the determination of optimal features and class separabilities can be a time consuming process in object-based image analysis (OBIA). While several feature selection methods have been developed to assist OBIA, a robust c...

  20. A comparative analysis of swarm intelligence techniques for feature selection in cancer classification.

    PubMed

    Gunavathi, Chellamuthu; Premalatha, Kandasamy

    2014-01-01

    Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative genes from thousands of genes of the microarray. The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF, the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied on 10 different benchmark datasets and examined with SI techniques. The experimental results show that the results obtained from k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.

  1. Feature selection for elderly faller classification based on wearable sensors.

    PubMed

    Howcroft, Jennifer; Kofman, Jonathan; Lemaire, Edward D

    2017-05-30

    Wearable sensors can be used to derive numerous gait pattern features for elderly fall risk and faller classification; however, an appropriate feature set is required to avoid high computational costs and the inclusion of irrelevant features. The objectives of this study were to identify and evaluate smaller feature sets for faller classification from large feature sets derived from wearable accelerometer and pressure-sensing insole gait data. A convenience sample of 100 older adults (75.5 ± 6.7 years; 76 non-fallers, 24 fallers based on 6 month retrospective fall occurrence) walked 7.62 m while wearing pressure-sensing insoles and tri-axial accelerometers at the head, pelvis, left and right shanks. Feature selection was performed using correlation-based feature selection (CFS), fast correlation based filter (FCBF), and Relief-F algorithms. Faller classification was performed using multi-layer perceptron neural network, naïve Bayesian, and support vector machine classifiers, with 75:25 single stratified holdout and repeated random sampling. The best performing model was a support vector machine with 78% accuracy, 26% sensitivity, 95% specificity, 0.36 F1 score, and 0.31 MCC and one posterior pelvis accelerometer input feature (left acceleration standard deviation). The second best model achieved better sensitivity (44%) and used a support vector machine with 74% accuracy, 83% specificity, 0.44 F1 score, and 0.29 MCC. This model had ten input features: maximum, mean and standard deviation posterior acceleration; maximum, mean and standard deviation anterior acceleration; mean superior acceleration; and three impulse features. The best multi-sensor model sensitivity (56%) was achieved using posterior pelvis and both shank accelerometers and a naïve Bayesian classifier. The best single-sensor model sensitivity (41%) was achieved using the posterior pelvis accelerometer and a naïve Bayesian classifier. Feature selection provided models with smaller feature sets and improved faller classification compared to faller classification without feature selection. CFS and FCBF provided the best feature subset (one posterior pelvis accelerometer feature) for faller classification. However, better sensitivity was achieved by the second best model based on a Relief-F feature subset with three pressure-sensing insole features and seven head accelerometer features. Feature selection should be considered as an important step in faller classification using wearable sensors.

  2. Select Features in "Finale 2011" for Music Educators

    ERIC Educational Resources Information Center

    Thompson, Douglas Earl

    2011-01-01

    A feature-laden software program such as "Finale" is an overwhelming tool to master--if one hopes to master many features in a short amount of time. Believing that working with a fewer number of features can be a helpful approach, this article looks at a select number of features in "Finale 2011" of obvious use to music educators. These features…

  3. IMMAN: free software for information theory-based chemometric analysis.

    PubMed

    Urias, Ricardo W Pino; Barigye, Stephen J; Marrero-Ponce, Yovani; García-Jacas, César R; Valdes-Martiní, José R; Perez-Gimenez, Facundo

    2015-05-01

    The features and theoretical background of a new and free computational program for chemometric analysis denominated IMMAN (acronym for Information theory-based CheMoMetrics ANalysis) are presented. This is multi-platform software developed in the Java programming language, designed with a remarkably user-friendly graphical interface for the computation of a collection of information-theoretic functions adapted for rank-based unsupervised and supervised feature selection tasks. A total of 20 feature selection parameters are presented, with the unsupervised and supervised frameworks represented by 10 approaches in each case. Several information-theoretic parameters traditionally used as molecular descriptors (MDs) are adapted for use as unsupervised rank-based feature selection methods. On the other hand, a generalization scheme for the previously defined differential Shannon's entropy is discussed, as well as the introduction of Jeffreys information measure for supervised feature selection. Moreover, well-known information-theoretic feature selection parameters, such as information gain, gain ratio, and symmetrical uncertainty are incorporated to the IMMAN software ( http://mobiosd-hub.com/imman-soft/ ), following an equal-interval discretization approach. IMMAN offers data pre-processing functionalities, such as missing values processing, dataset partitioning, and browsing. Moreover, single parameter or ensemble (multi-criteria) ranking options are provided. Consequently, this software is suitable for tasks like dimensionality reduction, feature ranking, as well as comparative diversity analysis of data matrices. Simple examples of applications performed with this program are presented. A comparative study between IMMAN and WEKA feature selection tools using the Arcene dataset was performed, demonstrating similar behavior. In addition, it is revealed that the use of IMMAN unsupervised feature selection methods improves the performance of both IMMAN and WEKA supervised algorithms. Graphic representation for Shannon's distribution of MD calculating software.

  4. Feature Selection and Parameters Optimization of SVM Using Particle Swarm Optimization for Fault Classification in Power Distribution Systems.

    PubMed

    Cho, Ming-Yuan; Hoang, Thi Thom

    2017-01-01

    Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence (PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using Simulink software and MATLAB Toolbox. The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness and high efficiency of the developed method.

  5. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    PubMed

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  6. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  7. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships.

    PubMed

    Janet, Jon Paul; Kulik, Heather J

    2017-11-22

    Machine learning (ML) of quantum mechanical properties shows promise for accelerating chemical discovery. For transition metal chemistry where accurate calculations are computationally costly and available training data sets are small, the molecular representation becomes a critical ingredient in ML model predictive accuracy. We introduce a series of revised autocorrelation functions (RACs) that encode relationships of the heuristic atomic properties (e.g., size, connectivity, and electronegativity) on a molecular graph. We alter the starting point, scope, and nature of the quantities evaluated in standard ACs to make these RACs amenable to inorganic chemistry. On an organic molecule set, we first demonstrate superior standard AC performance to other presently available topological descriptors for ML model training, with mean unsigned errors (MUEs) for atomization energies on set-aside test molecules as low as 6 kcal/mol. For inorganic chemistry, our RACs yield 1 kcal/mol ML MUEs on set-aside test molecules in spin-state splitting in comparison to 15-20× higher errors for feature sets that encode whole-molecule structural information. Systematic feature selection methods including univariate filtering, recursive feature elimination, and direct optimization (e.g., random forest and LASSO) are compared. Random-forest- or LASSO-selected subsets 4-5× smaller than the full RAC set produce sub- to 1 kcal/mol spin-splitting MUEs, with good transferability to metal-ligand bond length prediction (0.004-5 Å MUE) and redox potential on a smaller data set (0.2-0.3 eV MUE). Evaluation of feature selection results across property sets reveals the relative importance of local, electronic descriptors (e.g., electronegativity, atomic number) in spin-splitting and distal, steric effects in redox potential and bond lengths.

  8. Contingent Attentional Capture

    NASA Technical Reports Server (NTRS)

    Remington, Roger; Folk, Charles L.

    1994-01-01

    Four experiments address the degree of top-down selectivity in attention capture by feature singletons through manipulations of the spatial relationship and featural similarity of target and distractor singletons in a modified spatial cuing paradigm. Contrary to previous studies, all four experiments show that when searching for a singleton target, an irrelevant featural singleton captures attention only when defined by the same feature value as the target. Experiments 2, 3, and 4 provide a potential explanation for this empirical discrepancy by showing that irrelevant singletons can produce distraction effects that are independent of shifts of spatial attention. The results further support the notion that attentional capture is contingent on top-down attention control settings but indicates that such settings can be instantiated at the level of feature values.

  9. JCDSA: a joint covariate detection tool for survival analysis on tumor expression profiles.

    PubMed

    Wu, Yiming; Liu, Yanan; Wang, Yueming; Shi, Yan; Zhao, Xudong

    2018-05-29

    Survival analysis on tumor expression profiles has always been a key issue for subsequent biological experimental validation. It is crucial how to select features which closely correspond to survival time. Furthermore, it is important how to select features which best discriminate between low-risk and high-risk group of patients. Common features derived from the two aspects may provide variable candidates for prognosis of cancer. Based on the provided two-step feature selection strategy, we develop a joint covariate detection tool for survival analysis on tumor expression profiles. Significant features, which are not only consistent with survival time but also associated with the categories of patients with different survival risks, are chosen. Using the miRNA expression data (Level 3) of 548 patients with glioblastoma multiforme (GBM) as an example, miRNA candidates for prognosis of cancer are selected. The reliability of selected miRNAs using this tool is demonstrated by 100 simulations. Furthermore, It is discovered that significant covariates are not directly composed of individually significant variables. Joint covariate detection provides a viewpoint for selecting variables which are not individually but jointly significant. Besides, it helps to select features which are not only consistent with survival time but also associated with prognosis risk. The software is available at http://bio-nefu.com/resource/jcdsa .

  10. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  11. Comparison of Different EHG Feature Selection Methods for the Detection of Preterm Labor

    PubMed Central

    Alamedine, D.; Khalil, M.; Marque, C.

    2013-01-01

    Numerous types of linear and nonlinear features have been extracted from the electrohysterogram (EHG) in order to classify labor and pregnancy contractions. As a result, the number of available features is now very large. The goal of this study is to reduce the number of features by selecting only the relevant ones which are useful for solving the classification problem. This paper presents three methods for feature subset selection that can be applied to choose the best subsets for classifying labor and pregnancy contractions: an algorithm using the Jeffrey divergence (JD) distance, a sequential forward selection (SFS) algorithm, and a binary particle swarm optimization (BPSO) algorithm. The two last methods are based on a classifier and were tested with three types of classifiers. These methods have allowed us to identify common features which are relevant for contraction classification. PMID:24454536

  12. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer.

    PubMed

    Randhawa, Vinay; Kumar Singh, Anil; Acharya, Vishal

    2015-12-01

    Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.

  13. Comparative study of resist stabilization techniques for metal etch processing

    NASA Astrophysics Data System (ADS)

    Becker, Gerry; Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Livesay, William R.

    1999-06-01

    This study investigates resist stabilization techniques as they are applied to a metal etch application. The techniques that are compared are conventional deep-UV/thermal stabilization, or UV bake, and electron beam stabilization. The electron beam tool use din this study, an ElectronCure system from AlliedSignal Inc., ELectron Vision Group, utilizes a flood electron source and a non-thermal process. These stabilization techniques are compared with respect to a metal etch process. In this study, two types of resist are considered for stabilization and etch: a g/i-line resist, Shipley SPR-3012, and an advanced i-line, Shipley SPR 955- Cm. For each of these resist the effects of stabilization on resist features are evaluated by post-stabilization SEM analysis. Etch selectivity in all cases is evaluated by using a timed metal etch, and measuring resists remaining relative to total metal thickness etched. Etch selectivity is presented as a function of stabilization condition. Analyses of the effects of the type of stabilization on this method of selectivity measurement are also presented. SEM analysis was also performed on the features after a compete etch process, and is detailed as a function of stabilization condition. Post-etch cleaning is also an important factor impacted by pre-etch resist stabilization. Results of post- etch cleaning are presented for both stabilization methods. SEM inspection is also detailed for the metal features after resist removal processing.

  14. A cross-site comparison of methods used for hydrogeologic characterization of the Galena-Platteville aquifer in Illinois and Wisconsin, with examples from selected Superfund sites

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Dunning, Charles P.; Yeskis, Douglas J.; Ursic, James R.; Vendl, Mark

    2004-01-01

    The effectiveness of 28 methods used to characterize the fractured Galena-Platteville aquifer at eight sites in northern Illinois and Wisconsin is evaluated. Analysis of government databases, previous investigations, topographic maps, aerial photographs, and outcrops was essential to understanding the hydrogeology in the area to be investigated. The effectiveness of surface-geophysical methods depended on site geology. Lithologic logging provided essential information for site characterization. Cores were used for stratigraphy and geotechnical analysis. Natural-gamma logging helped identify the effect of lithology on the location of secondary- permeability features. Caliper logging identified large secondary-permeability features. Neutron logs identified trends in matrix porosity. Acoustic-televiewer logs identified numerous secondary-permeability features and their orientation. Borehole-camera logs also identified a number of secondary-permeability features. Borehole ground-penetrating radar identified lithologic and secondary-permeability features. However, the accuracy and completeness of this method is uncertain. Single-point-resistance, density, and normal resistivity logs were of limited use. Water-level and water-quality data identified flow directions and indicated the horizontal and vertical distribution of aquifer permeability and the depth of the permeable features. Temperature, spontaneous potential, and fluid-resistivity logging identified few secondary-permeability features at some sites and several features at others. Flowmeter logging was the most effective geophysical method for characterizing secondary-permeability features. Aquifer tests provided insight into the permeability distribution, identified hydraulically interconnected features, the presence of heterogeneity and anisotropy, and determined effective porosity. Aquifer heterogeneity prevented calculation of accurate hydraulic properties from some tests. Different methods, such as flowmeter logging and slug testing, occasionally produced different interpretations. Aquifer characterization improved with an increase in the number of data points, the period of data collection, and the number of methods used.

  15. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.

    PubMed

    Capela, Nicole A; Lemaire, Edward D; Baddour, Natalie

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations.

  16. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with Able bodied, Elderly, and Stroke Patients

    PubMed Central

    2015-01-01

    Human activity recognition (HAR), using wearable sensors, is a growing area with the potential to provide valuable information on patient mobility to rehabilitation specialists. Smartphones with accelerometer and gyroscope sensors are a convenient, minimally invasive, and low cost approach for mobility monitoring. HAR systems typically pre-process raw signals, segment the signals, and then extract features to be used in a classifier. Feature selection is a crucial step in the process to reduce potentially large data dimensionality and provide viable parameters to enable activity classification. Most HAR systems are customized to an individual research group, including a unique data set, classes, algorithms, and signal features. These data sets are obtained predominantly from able-bodied participants. In this paper, smartphone accelerometer and gyroscope sensor data were collected from populations that can benefit from human activity recognition: able-bodied, elderly, and stroke patients. Data from a consecutive sequence of 41 mobility tasks (18 different tasks) were collected for a total of 44 participants. Seventy-six signal features were calculated and subsets of these features were selected using three filter-based, classifier-independent, feature selection methods (Relief-F, Correlation-based Feature Selection, Fast Correlation Based Filter). The feature subsets were then evaluated using three generic classifiers (Naïve Bayes, Support Vector Machine, j48 Decision Tree). Common features were identified for all three populations, although the stroke population subset had some differences from both able-bodied and elderly sets. Evaluation with the three classifiers showed that the feature subsets produced similar or better accuracies than classification with the entire feature set. Therefore, since these feature subsets are classifier-independent, they should be useful for developing and improving HAR systems across and within populations. PMID:25885272

  17. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  18. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor

    PubMed Central

    Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R. PMID:29787591

  19. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor.

    PubMed

    Khalid, Samra; Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.

  20. A feature selection approach towards progressive vector transmission over the Internet

    NASA Astrophysics Data System (ADS)

    Miao, Ru; Song, Jia; Feng, Min

    2017-09-01

    WebGIS has been applied for visualizing and sharing geospatial information popularly over the Internet. In order to improve the efficiency of the client applications, the web-based progressive vector transmission approach is proposed. Important features should be selected and transferred firstly, and the methods for measuring the importance of features should be further considered in the progressive transmission. However, studies on progressive transmission for large-volume vector data have mostly focused on map generalization in the field of cartography, but rarely discussed on the selection of geographic features quantitatively. This paper applies information theory for measuring the feature importance of vector maps. A measurement model for the amount of information of vector features is defined based upon the amount of information for dealing with feature selection issues. The measurement model involves geometry factor, spatial distribution factor and thematic attribute factor. Moreover, a real-time transport protocol (RTP)-based progressive transmission method is then presented to improve the transmission of vector data. To clearly demonstrate the essential methodology and key techniques, a prototype for web-based progressive vector transmission is presented, and an experiment of progressive selection and transmission for vector features is conducted. The experimental results indicate that our approach clearly improves the performance and end-user experience of delivering and manipulating large vector data over the Internet.

  1. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  2. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    USGS Publications Warehouse

    Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.

  3. Habitat selection in a rocky landscape: experimentally decoupling the influence of retreat site attributes from that of landscape features.

    PubMed

    Croak, Benjamin M; Pike, David A; Webb, Jonathan K; Shine, Richard

    2012-01-01

    Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated with occupancy of experimental rocks, but different features were important for different species. For example, endangered broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.

  4. Data survey on the effect of product features on competitive advantage of selected firms in Nigeria.

    PubMed

    Olokundun, Maxwell; Iyiola, Oladele; Ibidunni, Stephen; Falola, Hezekiah; Salau, Odunayo; Amaihian, Augusta; Peter, Fred; Borishade, Taiye

    2018-06-01

    The main objective of this study was to present a data article that investigates the effect product features on firm's competitive advantage. Few studies have examined how the features of a product could help in driving the competitive advantage of a firm. Descriptive research method was used. Statistical Package for Social Sciences (SPSS 22) was engaged for analysis of one hundred and fifty (150) valid questionnaire which were completed by small business owners registered under small and medium scale enterprises development of Nigeria (SMEDAN). Stratified and simple random sampling techniques were employed; reliability and validity procedures were also confirmed. The field data set is made publicly available to enable critical or extended analysis.

  5. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery

    USDA-ARS?s Scientific Manuscript database

    The availability of numerous spectral, spatial, and contextual features with object-based image analysis (OBIA) renders the selection of optimal features a time consuming and subjective process. While several feature election methods have been used in conjunction with OBIA, a robust comparison of th...

  6. Processing Dynamic Image Sequences from a Moving Sensor.

    DTIC Science & Technology

    1984-02-01

    65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign

  7. Mammogram classification scheme using 2D-discrete wavelet and local binary pattern for detection of breast cancer

    NASA Astrophysics Data System (ADS)

    Adi Putra, Januar

    2018-04-01

    In this paper, we propose a new mammogram classification scheme to classify the breast tissues as normal or abnormal. Feature matrix is generated using Local Binary Pattern to all the detailed coefficients from 2D-DWT of the region of interest (ROI) of a mammogram. Feature selection is done by selecting the relevant features that affect the classification. Feature selection is used to reduce the dimensionality of data and features that are not relevant, in this paper the F-test and Ttest will be performed to the results of the feature extraction dataset to reduce and select the relevant feature. The best features are used in a Neural Network classifier for classification. In this research we use MIAS and DDSM database. In addition to the suggested scheme, the competent schemes are also simulated for comparative analysis. It is observed that the proposed scheme has a better say with respect to accuracy, specificity and sensitivity. Based on experiments, the performance of the proposed scheme can produce high accuracy that is 92.71%, while the lowest accuracy obtained is 77.08%.

  8. A Generalization Strategy for Discrete Area Feature by Using Stroke Grouping and Polarization Transportation Selection

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Burghardt, Dirk

    2018-05-01

    This paper presents a new strategy for the generalization of discrete area features by using stroke grouping method and polarization transportation selection. The mentioned stroke is constructed on derive of the refined proximity graph of area features, and the refinement is under the control of four constraints to meet different grouping requirements. The area features which belong to the same stroke are detected into the same group. The stroke-based strategy decomposes the generalization process into two sub-processes by judging whether the area features related to strokes or not. For the area features which belong to the same one stroke, they normally present a linear like pat-tern, and in order to preserve this kind of pattern, typification is chosen as the operator to implement the generalization work. For the remaining area features which are not related by strokes, they are still distributed randomly and discretely, and the selection is chosen to conduct the generalization operation. For the purpose of retaining their original distribution characteristic, a Polarization Transportation (PT) method is introduced to implement the selection operation. Buildings and lakes are selected as the representatives of artificial area feature and natural area feature respectively to take the experiments. The generalized results indicate that by adopting this proposed strategy, the original distribution characteristics of building and lake data can be preserved, and the visual perception is pre-served as before.

  9. A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data.

    PubMed

    Ray, Shubhra Sankar; Ganivada, Avatharam; Pal, Sankar K

    2016-09-01

    A new granular self-organizing map (GSOM) is developed by integrating the concept of a fuzzy rough set with the SOM. While training the GSOM, the weights of a winning neuron and the neighborhood neurons are updated through a modified learning procedure. The neighborhood is newly defined using the fuzzy rough sets. The clusters (granules) evolved by the GSOM are presented to a decision table as its decision classes. Based on the decision table, a method of gene selection is developed. The effectiveness of the GSOM is shown in both clustering samples and developing an unsupervised fuzzy rough feature selection (UFRFS) method for gene selection in microarray data. While the superior results of the GSOM, as compared with the related clustering methods, are provided in terms of β -index, DB-index, Dunn-index, and fuzzy rough entropy, the genes selected by the UFRFS are not only better in terms of classification accuracy and a feature evaluation index, but also statistically more significant than the related unsupervised methods. The C-codes of the GSOM and UFRFS are available online at http://avatharamg.webs.com/software-code.

  10. A Generic multi-dimensional feature extraction method using multiobjective genetic programming.

    PubMed

    Zhang, Yang; Rockett, Peter I

    2009-01-01

    In this paper, we present a generic feature extraction method for pattern classification using multiobjective genetic programming. This not only evolves the (near-)optimal set of mappings from a pattern space to a multi-dimensional decision space, but also simultaneously optimizes the dimensionality of that decision space. The presented framework evolves vector-to-vector feature extractors that maximize class separability. We demonstrate the efficacy of our approach by making statistically-founded comparisons with a wide variety of established classifier paradigms over a range of datasets and find that for most of the pairwise comparisons, our evolutionary method delivers statistically smaller misclassification errors. At very worst, our method displays no statistical difference in a few pairwise comparisons with established classifier/dataset combinations; crucially, none of the misclassification results produced by our method is worse than any comparator classifier. Although principally focused on feature extraction, feature selection is also performed as an implicit side effect; we show that both feature extraction and selection are important to the success of our technique. The presented method has the practical consequence of obviating the need to exhaustively evaluate a large family of conventional classifiers when faced with a new pattern recognition problem in order to attain a good classification accuracy.

  11. Classifying Human Voices by Using Hybrid SFX Time-Series Preprocessing and Ensemble Feature Selection

    PubMed Central

    Wong, Raymond

    2013-01-01

    Voice biometrics is one kind of physiological characteristics whose voice is different for each individual person. Due to this uniqueness, voice classification has found useful applications in classifying speakers' gender, mother tongue or ethnicity (accent), emotion states, identity verification, verbal command control, and so forth. In this paper, we adopt a new preprocessing method named Statistical Feature Extraction (SFX) for extracting important features in training a classification model, based on piecewise transformation treating an audio waveform as a time-series. Using SFX we can faithfully remodel statistical characteristics of the time-series; together with spectral analysis, a substantial amount of features are extracted in combination. An ensemble is utilized in selecting only the influential features to be used in classification model induction. We focus on the comparison of effects of various popular data mining algorithms on multiple datasets. Our experiment consists of classification tests over four typical categories of human voice data, namely, Female and Male, Emotional Speech, Speaker Identification, and Language Recognition. The experiments yield encouraging results supporting the fact that heuristically choosing significant features from both time and frequency domains indeed produces better performance in voice classification than traditional signal processing techniques alone, like wavelets and LPC-to-CC. PMID:24288684

  12. The effect of category learning on attentional modulation of visual cortex.

    PubMed

    Folstein, Jonathan R; Fuller, Kelly; Howard, Dorothy; DePatie, Thomas

    2017-09-01

    Learning about visual object categories causes changes in the way we perceive those objects. One likely mechanism by which this occurs is the application of attention to potentially relevant objects. Here we test the hypothesis that category membership influences the allocation of attention, allowing attention to be applied not only to object features, but to entire categories. Participants briefly learned to categorize a set of novel cartoon animals after which EEG was recorded while participants distinguished between a target and non-target category. A second identical EEG session was conducted after two sessions of categorization practice. The category structure and task design allowed parametric manipulation of number of target features while holding feature frequency and category membership constant. We found no evidence that category membership influenced attentional selection: a postero-lateral negative component, labeled the selection negativity/N250, increased over time and was sensitive to number of target features, not target categories. In contrast, the right hemisphere N170 was not sensitive to target features. The P300 appeared sensitive to category in the first session, but showed a graded sensitivity to number of target features in the second session, possibly suggesting a transition from rule-based to similarity based categorization. Copyright © 2017. Published by Elsevier Ltd.

  13. An Ant Colony Optimization Based Feature Selection for Web Page Classification

    PubMed Central

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods. PMID:25136678

  14. Hypergraph Based Feature Selection Technique for Medical Diagnosis.

    PubMed

    Somu, Nivethitha; Raman, M R Gauthama; Kirthivasan, Kannan; Sriram, V S Shankar

    2016-11-01

    The impact of internet and information systems across various domains have resulted in substantial generation of multidimensional datasets. The use of data mining and knowledge discovery techniques to extract the original information contained in the multidimensional datasets play a significant role in the exploitation of complete benefit provided by them. The presence of large number of features in the high dimensional datasets incurs high computational cost in terms of computing power and time. Hence, feature selection technique has been commonly used to build robust machine learning models to select a subset of relevant features which projects the maximal information content of the original dataset. In this paper, a novel Rough Set based K - Helly feature selection technique (RSKHT) which hybridize Rough Set Theory (RST) and K - Helly property of hypergraph representation had been designed to identify the optimal feature subset or reduct for medical diagnostic applications. Experiments carried out using the medical datasets from the UCI repository proves the dominance of the RSKHT over other feature selection techniques with respect to the reduct size, classification accuracy and time complexity. The performance of the RSKHT had been validated using WEKA tool, which shows that RSKHT had been computationally attractive and flexible over massive datasets.

  15. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents

    PubMed Central

    Colomer Granero, Adrián; Fuentes-Hurtado, Félix; Naranjo Ornedo, Valery; Guixeres Provinciale, Jaime; Ausín, Jose M.; Alcañiz Raya, Mariano

    2016-01-01

    This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of them the ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and Random Forest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing. PMID:27471462

  16. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents.

    PubMed

    Colomer Granero, Adrián; Fuentes-Hurtado, Félix; Naranjo Ornedo, Valery; Guixeres Provinciale, Jaime; Ausín, Jose M; Alcañiz Raya, Mariano

    2016-01-01

    This work focuses on finding the most discriminatory or representative features that allow to classify commercials according to negative, neutral and positive effectiveness based on the Ace Score index. For this purpose, an experiment involving forty-seven participants was carried out. In this experiment electroencephalography (EEG), electrocardiography (ECG), Galvanic Skin Response (GSR) and respiration data were acquired while subjects were watching a 30-min audiovisual content. This content was composed by a submarine documentary and nine commercials (one of them the ad under evaluation). After the signal pre-processing, four sets of features were extracted from the physiological signals using different state-of-the-art metrics. These features computed in time and frequency domains are the inputs to several basic and advanced classifiers. An average of 89.76% of the instances was correctly classified according to the Ace Score index. The best results were obtained by a classifier consisting of a combination between AdaBoost and Random Forest with automatic selection of features. The selected features were those extracted from GSR and HRV signals. These results are promising in the audiovisual content evaluation field by means of physiological signal processing.

  17. SD-MSAEs: Promoter recognition in human genome based on deep feature extraction.

    PubMed

    Xu, Wenxuan; Zhang, Li; Lu, Yaping

    2016-06-01

    The prediction and recognition of promoter in human genome play an important role in DNA sequence analysis. Entropy, in Shannon sense, of information theory is a multiple utility in bioinformatic details analysis. The relative entropy estimator methods based on statistical divergence (SD) are used to extract meaningful features to distinguish different regions of DNA sequences. In this paper, we choose context feature and use a set of methods of SD to select the most effective n-mers distinguishing promoter regions from other DNA regions in human genome. Extracted from the total possible combinations of n-mers, we can get four sparse distributions based on promoter and non-promoters training samples. The informative n-mers are selected by optimizing the differentiating extents of these distributions. Specially, we combine the advantage of statistical divergence and multiple sparse auto-encoders (MSAEs) in deep learning to extract deep feature for promoter recognition. And then we apply multiple SVMs and a decision model to construct a human promoter recognition method called SD-MSAEs. Framework is flexible that it can integrate new feature extraction or new classification models freely. Experimental results show that our method has high sensitivity and specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Model-Based Study of the Effectiveness of Reporting Lists of Small Feature Sets Using RNA-Seq Data.

    PubMed

    Kim, Eunji; Ivanov, Ivan; Hua, Jianping; Lampe, Johanna W; Hullar, Meredith Aj; Chapkin, Robert S; Dougherty, Edward R

    2017-01-01

    Ranking feature sets for phenotype classification based on gene expression is a challenging issue in cancer bioinformatics. When the number of samples is small, all feature selection algorithms are known to be unreliable, producing significant error, and error estimators suffer from different degrees of imprecision. The problem is compounded by the fact that the accuracy of classification depends on the manner in which the phenomena are transformed into data by the measurement technology. Because next-generation sequencing technologies amount to a nonlinear transformation of the actual gene or RNA concentrations, they can potentially produce less discriminative data relative to the actual gene expression levels. In this study, we compare the performance of ranking feature sets derived from a model of RNA-Seq data with that of a multivariate normal model of gene concentrations using 3 measures: (1) ranking power, (2) length of extensions, and (3) Bayes features. This is the model-based study to examine the effectiveness of reporting lists of small feature sets using RNA-Seq data and the effects of different model parameters and error estimators. The results demonstrate that the general trends of the parameter effects on the ranking power of the underlying gene concentrations are preserved in the RNA-Seq data, whereas the power of finding a good feature set becomes weaker when gene concentrations are transformed by the sequencing machine.

  19. Stabilizing l1-norm prediction models by supervised feature grouping.

    PubMed

    Kamkar, Iman; Gupta, Sunil Kumar; Phung, Dinh; Venkatesh, Svetha

    2016-02-01

    Emerging Electronic Medical Records (EMRs) have reformed the modern healthcare. These records have great potential to be used for building clinical prediction models. However, a problem in using them is their high dimensionality. Since a lot of information may not be relevant for prediction, the underlying complexity of the prediction models may not be high. A popular way to deal with this problem is to employ feature selection. Lasso and l1-norm based feature selection methods have shown promising results. But, in presence of correlated features, these methods select features that change considerably with small changes in data. This prevents clinicians to obtain a stable feature set, which is crucial for clinical decision making. Grouping correlated variables together can improve the stability of feature selection, however, such grouping is usually not known and needs to be estimated for optimal performance. Addressing this problem, we propose a new model that can simultaneously learn the grouping of correlated features and perform stable feature selection. We formulate the model as a constrained optimization problem and provide an efficient solution with guaranteed convergence. Our experiments with both synthetic and real-world datasets show that the proposed model is significantly more stable than Lasso and many existing state-of-the-art shrinkage and classification methods. We further show that in terms of prediction performance, the proposed method consistently outperforms Lasso and other baselines. Our model can be used for selecting stable risk factors for a variety of healthcare problems, so it can assist clinicians toward accurate decision making. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  1. Metacatalog of Planetary Surface Features for Multicriteria Evaluation of Surface Evolution: the Integrated Planetary Feature Database

    NASA Astrophysics Data System (ADS)

    Hargitai, Henrik

    2016-10-01

    We have created a metacatalog, or catalog or catalogs, of surface features of Mars that also includes the actual data in the catalogs listed. The goal is to make mesoscale surface feature databases available in one place, in a GIS-ready format. The databases can be directly imported to ArcGIS or other GIS platforms, like Google Mars. Some of the catalogs in our database are also ingested into the JMARS platform.All catalogs have been previously published in a peer-reviewed journal, but they may contain updates of the published catalogs. Many of the catalogs are "integrated", i.e. they merge databases or information from various papers on the same topic, including references to each individual features listed.Where available, we have included shapefiles with polygon or linear features, however, most of the catalogs only contain point data of their center points and morphological data.One of the unexpected results of the planetary feature metacatalog is that some features have been described by several papers, using different, i.e., conflicting designations. This shows the need for the development of an identification system suitable for mesoscale (100s m to km sized) features that tracks papers and thus prevents multiple naming of the same feature.The feature database can be used for multicriteria analysis of a terrain, thus enables easy distribution pattern analysis and the correlation of the distribution of different landforms and features on Mars. Such catalog makes a scientific evaluation of potential landing sites easier and more effective during the selection process and also supports automated landing site selections.The catalog is accessible at https://planetarydatabase.wordpress.com/.

  2. Selecting Feature Subsets Based on SVM-RFE and the Overlapping Ratio with Applications in Bioinformatics.

    PubMed

    Lin, Xiaohui; Li, Chao; Zhang, Yanhui; Su, Benzhe; Fan, Meng; Wei, Hai

    2017-12-26

    Feature selection is an important topic in bioinformatics. Defining informative features from complex high dimensional biological data is critical in disease study, drug development, etc. Support vector machine-recursive feature elimination (SVM-RFE) is an efficient feature selection technique that has shown its power in many applications. It ranks the features according to the recursive feature deletion sequence based on SVM. In this study, we propose a method, SVM-RFE-OA, which combines the classification accuracy rate and the average overlapping ratio of the samples to determine the number of features to be selected from the feature rank of SVM-RFE. Meanwhile, to measure the feature weights more accurately, we propose a modified SVM-RFE-OA (M-SVM-RFE-OA) algorithm that temporally screens out the samples lying in a heavy overlapping area in each iteration. The experiments on the eight public biological datasets show that the discriminative ability of the feature subset could be measured more accurately by combining the classification accuracy rate with the average overlapping degree of the samples compared with using the classification accuracy rate alone, and shielding the samples in the overlapping area made the calculation of the feature weights more stable and accurate. The methods proposed in this study can also be used with other RFE techniques to define potential biomarkers from big biological data.

  3. Hadoop neural network for parallel and distributed feature selection.

    PubMed

    Hodge, Victoria J; O'Keefe, Simon; Austin, Jim

    2016-06-01

    In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection.

    PubMed

    Liu, Liang; Cai, Yudong; Lu, Wencong; Feng, Kaiyan; Peng, Chunrong; Niu, Bing

    2009-03-06

    Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein-protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR-KNNs-wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.

  5. Reward- and attention-related biasing of sensory selection in visual cortex.

    PubMed

    Buschschulte, Antje; Boehler, Carsten N; Strumpf, Hendrik; Stoppel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Hopf, Jens-Max

    2014-05-01

    Attention to task-relevant features leads to a biasing of sensory selection in extrastriate cortex. Features signaling reward seem to produce a similar bias, but how modulatory effects due to reward and attention relate to each other is largely unexplored. To address this issue, it is critical to separate top-down settings defining reward relevance from those defining attention. To this end, we used a visual search paradigm in which the target's definition (attention to color) was dissociated from reward relevance by delivering monetary reward on search frames where a certain task-irrelevant color was combined with the target-defining color to form the target object. We assessed the state of neural biasing for the attended and reward-relevant color by analyzing the neuromagnetic brain response to asynchronously presented irrelevant distractor probes drawn in the target-defining color, the reward-relevant color, and a completely irrelevant color as a reference. We observed that for the prospect of moderate rewards, the target-defining color but not the reward-relevant color produced a selective enhancement of the neuromagnetic response between 180 and 280 msec in ventral extrastriate visual cortex. Increasing reward prospect caused a delayed attenuation (220-250 msec) of the response to reward probes, which followed a prior (160-180 msec) response enhancement in dorsal ACC. Notably, shorter latency responses in dorsal ACC were associated with stronger attenuation in extrastriate visual cortex. Finally, an analysis of the brain response to the search frames revealed that the presence of the reward-relevant color in search distractors elicited an enhanced response that was abolished after increasing reward size. The present data together indicate that when top-down definitions of reward relevance and attention are separated, the behavioral significance of reward-associated features is still rapidly coded in higher-level cortex areas, thereby commanding effective top-down inhibitory control to counter a selection bias for those features in extrastriate visual cortex.

  6. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    NASA Astrophysics Data System (ADS)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  7. Detection of Fundus Lesions Using Classifier Selection

    NASA Astrophysics Data System (ADS)

    Nagayoshi, Hiroto; Hiramatsu, Yoshitaka; Sako, Hiroshi; Himaga, Mitsutoshi; Kato, Satoshi

    A system for detecting fundus lesions caused by diabetic retinopathy from fundus images is being developed. The system can screen the images in advance in order to reduce the inspection workload on doctors. One of the difficulties that must be addressed in completing this system is how to remove false positives (which tend to arise near blood vessels) without decreasing the detection rate of lesions in other areas. To overcome this difficulty, we developed classifier selection according to the position of a candidate lesion, and we introduced new features that can distinguish true lesions from false positives. A system incorporating classifier selection and these new features was tested in experiments using 55 fundus images with some lesions and 223 images without lesions. The results of the experiments confirm the effectiveness of the proposed system, namely, degrees of sensitivity and specificity of 98% and 81%, respectively.

  8. A dissociation between attention and selection

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Folk, C. L.

    2001-01-01

    It is widely assumed that the allocatian of spatial attention results in the "selection" of attended objects or regions of space. That is, once a stimulus is attended, all its feature dimensions are processed irrespective of their relevance to behavioral goals. This assumption is based in part on experiments showing significant interference for attended stimuli when the response to an irrelevant dimension conflicts with the response to the relevant dimension (e.g., the Stroop effect). Here we show that such interference is not due to attending per se. In two spatial cuing experiments, we found that it was possible to restrict processing of attended stimuli to task-relevant dimensions. This new evidence supports two novel conclusions: (a) Selection involves more than the focusing of attention per se: and (b) task expectations play a key role in detertnining the depth of processing of the elementary feature dimensions of attended stimuli.

  9. Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box

    DOE PAGES

    Jia, Chuandong; Zuo, Wei; Yang, Dong; ...

    2017-10-16

    In nature, proteins have evolved sophisticated cavities tailored for capturing target guests selectively among competitors of similar size, shape, and charge. The fundamental principles guiding the molecular recognition, such as self-assembly and complementarity, have inspired the development of biomimetic receptors. In the current work, we report a self-assembled triple anion helicate (host 2) featuring a cavity resembling that of the choline-binding protein ChoX, as revealed by crystal and density functional theory (DFT)-optimized structures, which binds choline in a unique dual-site-binding mode. Here, this similarity in structure leads to a similarly high selectivity of host 2 for choline over its derivatives,more » as demonstrated by the NMR and fluorescence competition experiments. Furthermore, host 2 is able to act as a fluorescence displacement sensor for discriminating choline, acetylcholine, l-carnitine, and glycine betaine effectively.« less

  10. Hyperspectral image classification based on local binary patterns and PCANet

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  11. Anatomical constraints on attention: Hemifield independence is a signature of multifocal spatial selection

    PubMed Central

    Alvarez, George A; Gill, Jonathan; Cavanagh, Patrick

    2012-01-01

    Previous studies have shown independent attentional selection of targets in the left and right visual hemifields during attentional tracking (Alvarez & Cavanagh, 2005) but not during a visual search (Luck, Hillyard, Mangun, & Gazzaniga, 1989). Here we tested whether multifocal spatial attention is the critical process that operates independently in the two hemifields. It is explicitly required in tracking (attend to a subset of object locations, suppress the others) but not in the standard visual search task (where all items are potential targets). We used a modified visual search task in which observers searched for a target within a subset of display items, where the subset was selected based on location (Experiments 1 and 3A) or based on a salient feature difference (Experiments 2 and 3B). The results show hemifield independence in this subset visual search task with location-based selection but not with feature-based selection; this effect cannot be explained by general difficulty (Experiment 4). Combined, these findings suggest that hemifield independence is a signature of multifocal spatial attention and highlight the need for cognitive and neural theories of attention to account for anatomical constraints on selection mechanisms. PMID:22637710

  12. Systematic interrogation of diverse Omic data reveals interpretable, robust, and generalizable transcriptomic features of clinically successful therapeutic targets.

    PubMed

    Rouillard, Andrew D; Hurle, Mark R; Agarwal, Pankaj

    2018-05-01

    Target selection is the first and pivotal step in drug discovery. An incorrect choice may not manifest itself for many years after hundreds of millions of research dollars have been spent. We collected a set of 332 targets that succeeded or failed in phase III clinical trials, and explored whether Omic features describing the target genes could predict clinical success. We obtained features from the recently published comprehensive resource: Harmonizome. Nineteen features appeared to be significantly correlated with phase III clinical trial outcomes, but only 4 passed validation schemes that used bootstrapping or modified permutation tests to assess feature robustness and generalizability while accounting for target class selection bias. We also used classifiers to perform multivariate feature selection and found that classifiers with a single feature performed as well in cross-validation as classifiers with more features (AUROC = 0.57 and AUPR = 0.81). The two predominantly selected features were mean mRNA expression across tissues and standard deviation of expression across tissues, where successful targets tended to have lower mean expression and higher expression variance than failed targets. This finding supports the conventional wisdom that it is favorable for a target to be present in the tissue(s) affected by a disease and absent from other tissues. Overall, our results suggest that it is feasible to construct a model integrating interpretable target features to inform target selection. We anticipate deeper insights and better models in the future, as researchers can reuse the data we have provided to improve methods for handling sample biases and learn more informative features. Code, documentation, and data for this study have been deposited on GitHub at https://github.com/arouillard/omic-features-successful-targets.

  13. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection.

    PubMed

    Wang, Yong; Wu, Qiao-Feng; Chen, Chen; Wu, Ling-Yun; Yan, Xian-Zhong; Yu, Shu-Guang; Zhang, Xiang-Sun; Liang, Fan-Rong

    2012-01-01

    Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics.

  14. Revealing metabolite biomarkers for acupuncture treatment by linear programming based feature selection

    PubMed Central

    2012-01-01

    Background Acupuncture has been practiced in China for thousands of years as part of the Traditional Chinese Medicine (TCM) and has gradually accepted in western countries as an alternative or complementary treatment. However, the underlying mechanism of acupuncture, especially whether there exists any difference between varies acupoints, remains largely unknown, which hinders its widespread use. Results In this study, we develop a novel Linear Programming based Feature Selection method (LPFS) to understand the mechanism of acupuncture effect, at molecular level, by revealing the metabolite biomarkers for acupuncture treatment. Specifically, we generate and investigate the high-throughput metabolic profiles of acupuncture treatment at several acupoints in human. To select the subsets of metabolites that best characterize the acupuncture effect for each meridian point, an optimization model is proposed to identify biomarkers from high-dimensional metabolic data from case and control samples. Importantly, we use nearest centroid as the prototype to simultaneously minimize the number of selected features and the leave-one-out cross validation error of classifier. We compared the performance of LPFS to several state-of-the-art methods, such as SVM recursive feature elimination (SVM-RFE) and sparse multinomial logistic regression approach (SMLR). We find that our LPFS method tends to reveal a small set of metabolites with small standard deviation and large shifts, which exactly serves our requirement for good biomarker. Biologically, several metabolite biomarkers for acupuncture treatment are revealed and serve as the candidates for further mechanism investigation. Also biomakers derived from five meridian points, Zusanli (ST36), Liangmen (ST21), Juliao (ST3), Yanglingquan (GB34), and Weizhong (BL40), are compared for their similarity and difference, which provide evidence for the specificity of acupoints. Conclusions Our result demonstrates that metabolic profiling might be a promising method to investigate the molecular mechanism of acupuncture. Comparing with other existing methods, LPFS shows better performance to select a small set of key molecules. In addition, LPFS is a general methodology and can be applied to other high-dimensional data analysis, for example cancer genomics. PMID:23046877

  15. Human Occipital and Parietal GABA Selectively Influence Visual Perception of Orientation and Size.

    PubMed

    Song, Chen; Sandberg, Kristian; Andersen, Lau Møller; Blicher, Jakob Udby; Rees, Geraint

    2017-09-13

    GABA is the primary inhibitory neurotransmitter in human brain. The level of GABA varies substantially across individuals, and this variability is associated with interindividual differences in visual perception. However, it remains unclear whether the association between GABA level and visual perception reflects a general influence of visual inhibition or whether the GABA levels of different cortical regions selectively influence perception of different visual features. To address this, we studied how the GABA levels of parietal and occipital cortices related to interindividual differences in size, orientation, and brightness perception. We used visual contextual illusion as a perceptual assay since the illusion dissociates perceptual content from stimulus content and the magnitude of the illusion reflects the effect of visual inhibition. Across individuals, we observed selective correlations between the level of GABA and the magnitude of contextual illusion. Specifically, parietal GABA level correlated with size illusion magnitude but not with orientation or brightness illusion magnitude; in contrast, occipital GABA level correlated with orientation illusion magnitude but not with size or brightness illusion magnitude. Our findings reveal a region- and feature-dependent influence of GABA level on human visual perception. Parietal and occipital cortices contain, respectively, topographic maps of size and orientation preference in which neural responses to stimulus sizes and stimulus orientations are modulated by intraregional lateral connections. We propose that these lateral connections may underlie the selective influence of GABA on visual perception. SIGNIFICANCE STATEMENT GABA, the primary inhibitory neurotransmitter in human visual system, varies substantially across individuals. This interindividual variability in GABA level is linked to interindividual differences in many aspects of visual perception. However, the widespread influence of GABA raises the question of whether interindividual variability in GABA reflects an overall variability in visual inhibition and has a general influence on visual perception or whether the GABA levels of different cortical regions have selective influence on perception of different visual features. Here we report a region- and feature-dependent influence of GABA level on human visual perception. Our findings suggest that GABA level of a cortical region selectively influences perception of visual features that are topographically mapped in this region through intraregional lateral connections. Copyright © 2017 Song, Sandberg et al.

  16. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  17. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less

  19. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Shaw, Paul N; Hewavitharana, Amitha K; Hodson, Mark P

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation.

  20. Traditional Aboriginal Preparation Alters the Chemical Profile of Carica papaya Leaves and Impacts on Cytotoxicity towards Human Squamous Cell Carcinoma

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Shaw, Paul N.; Hewavitharana, Amitha K.; Hodson, Mark P.

    2016-01-01

    Carica papaya leaf decoction, an Australian Aboriginal remedy, has been used widely for its healing capabilities against cancer, with numerous anecdotal reports. In this study we investigated its in vitro cytotoxicity on human squamous cell carcinoma cells followed by metabolomic profiling of Carica papaya leaf decoction and leaf juice/brewed leaf juice to determine the effects imparted by the long heating process typical of the Aboriginal remedy preparation. MTT assay results showed that in comparison with the decoction, the leaf juice not only exhibited a stronger cytotoxic effect on SCC25 cancer cells, but also produced a significant cancer-selective effect as shown by tests on non-cancerous human keratinocyte HaCaT cells. Furthermore, evidence from testing brewed leaf juice on these two cell lines suggested that the brewing process markedly reduced the selective effect of Carica papaya leaf on SCC25 cancer cells. To tentatively identify the compounds that contribute to the distinct selective anticancer activity of leaf juice, an untargeted metabolomic approach employing Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry followed by multivariate data analysis was applied. Some 90 and 104 peaks in positive and negative mode respectively were selected as discriminatory features from the chemical profile of leaf juice and >1500 putative compound IDs were obtained via database searching. Direct comparison of chromatographic and tandem mass spectral data to available reference compounds confirmed one feature as a match with its proposed authentic standard, namely pheophorbide A. However, despite pheophorbide A exhibiting cytotoxic activity on SCC25 cancer cells, it did not prove to be the compound contributing principally to the selective activity of leaf juice. With promising results suggesting stronger and more selective anticancer effects when compared to the Aboriginal remedy, Carica papaya leaf juice warrants further study to explore its activity on other cancer cell lines, as well as investigation to confirm the identity of compounds contributing to its selective effect, particularly those compounds altered by the long heating process applied during the traditional Aboriginal remedy preparation. PMID:26829042

  1. PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm.

    PubMed

    Xu, Qian; Xiong, Yi; Dai, Hao; Kumari, Kotni Meena; Xu, Qin; Ou, Hong-Yu; Wei, Dong-Qing

    2017-03-21

    Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological, chemical and pharmacological information based on a stochastic gradient boosting algorithm. To begin with, a set of 352 golden positive samples were collected from the public drug combination database. Then, a set of 732 dimensional feature vector involving biological, chemical and pharmaceutical information was constructed for each drug combination to describe its properties. To avoid overfitting, the maximum relevance & minimum redundancy (mRMR) method was performed to extract useful ones by removing redundant subsets. Based on the selected features, the three different type of classification algorithms were employed to build the drug combination prediction models. Our results demonstrated that the model based on the stochastic gradient boosting algorithm yield out the best performance. Furthermore, it is indicated that the feature patterns of therapy had powerful ability to discriminate effective drug combinations from non-effective ones. By analyzing various features, it is shown that the enriched features occurred frequently in golden positive samples can help predict novel drug combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Learning the spherical harmonic features for 3-D face recognition.

    PubMed

    Liu, Peijiang; Wang, Yunhong; Huang, Di; Zhang, Zhaoxiang; Chen, Liming

    2013-03-01

    In this paper, a competitive method for 3-D face recognition (FR) using spherical harmonic features (SHF) is proposed. With this solution, 3-D face models are characterized by the energies contained in spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and fine surface details of a 3-D facial surface. This is in clear contrast to most 3-D FR techniques which are either holistic or feature based, using local features extracted from distinctive points. First, 3-D face models are represented in a canonical representation, namely, spherical depth map, by which SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors. Experiments have been carried out on three public 3-D face datasets, SHREC2007, FRGC v2.0, and Bosphorus, with increasing difficulties in terms of facial expression, pose, and occlusion, and which demonstrate the effectiveness of the proposed method.

  3. New bandwidth selection criterion for Kernel PCA: approach to dimensionality reduction and classification problems.

    PubMed

    Thomas, Minta; De Brabanter, Kris; De Moor, Bart

    2014-05-10

    DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.

  4. Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.

    PubMed

    Li, Baopu; Meng, Max Q-H

    2012-05-01

    Tumor in digestive tract is a common disease and wireless capsule endoscopy (WCE) is a relatively new technology to examine diseases for digestive tract especially for small intestine. This paper addresses the problem of automatic recognition of tumor for WCE images. Candidate color texture feature that integrates uniform local binary pattern and wavelet is proposed to characterize WCE images. The proposed features are invariant to illumination change and describe multiresolution characteristics of WCE images. Two feature selection approaches based on support vector machine, sequential forward floating selection and recursive feature elimination, are further employed to refine the proposed features for improving the detection accuracy. Extensive experiments validate that the proposed computer-aided diagnosis system achieves a promising tumor recognition accuracy of 92.4% in WCE images on our collected data.

  5. Discriminative least squares regression for multiclass classification and feature selection.

    PubMed

    Xiang, Shiming; Nie, Feiping; Meng, Gaofeng; Pan, Chunhong; Zhang, Changshui

    2012-11-01

    This paper presents a framework of discriminative least squares regression (LSR) for multiclass classification and feature selection. The core idea is to enlarge the distance between different classes under the conceptual framework of LSR. First, a technique called ε-dragging is introduced to force the regression targets of different classes moving along opposite directions such that the distances between classes can be enlarged. Then, the ε-draggings are integrated into the LSR model for multiclass classification. Our learning framework, referred to as discriminative LSR, has a compact model form, where there is no need to train two-class machines that are independent of each other. With its compact form, this model can be naturally extended for feature selection. This goal is achieved in terms of L2,1 norm of matrix, generating a sparse learning model for feature selection. The model for multiclass classification and its extension for feature selection are finally solved elegantly and efficiently. Experimental evaluation over a range of benchmark datasets indicates the validity of our method.

  6. The impact of personality disorder pathology on the effectiveness of Cognitive Therapy and Interpersonal Psychotherapy for Major Depressive Disorder.

    PubMed

    van Bronswijk, Suzanne C; Lemmens, Lotte H J M; Viechtbauer, Wolfgang; Huibers, Marcus J H; Arntz, Arnoud; Peeters, Frenk P M L

    2018-01-01

    Despite extensive research, there is no consensus how Personality Disorders (PD) and PD features affect outcome for Major Depressive Disorder (MDD). The present study evaluated the effects of PD (features) on treatment continuation and effectiveness in Cognitive Therapy (CT) and Interpersonal Psychotherapy (IPT) for MDD. Depressed outpatients were randomized to CT (n=72) and IPT (n=74). Primary outcome was depression severity measured repeatedly with the Beck Depression Inventory-II (BDI-II) at baseline, three months, at the start of each therapy session, at post-treatment and monthly during five months follow-up. Comorbid PD and PD features did not affect dropout. Multilevel and Cox regression models indicated no negative effect of PD on BDI-II change and remission rates during treatment and follow-up, irrespective of the treatment received. For both therapies, higher dependent PD features predicted overall lower BDI-II scores during treatment, however this effect did not sustain through follow-up. Cluster A PD features moderated treatment outcome during treatment and follow-up: individuals with high cluster A PD features had greater BDI-II reductions over time in CT as compared to IPT. Not all therapists and participants were blind to the assessment of PD (features), and assessments were performed by one rater. Further research must investigate the state and trait dependent changes of PD and MDD over time. We found no negative impact of PD on the effectiveness and treatment retention of CT and IPT for MDD during treatment and follow-up. If replicated, cluster A PD features can be used to optimize treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diagnosis of breast masses from dynamic contrast-enhanced and diffusion-weighted MR: a machine learning approach.

    PubMed

    Cai, Hongmin; Peng, Yanxia; Ou, Caiwen; Chen, Minsheng; Li, Li

    2014-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used for breast cancer diagnosis as supplementary to conventional imaging techniques. Combining of diffusion-weighted imaging (DWI) of morphology and kinetic features from DCE-MRI to improve the discrimination power of malignant from benign breast masses is rarely reported. The study comprised of 234 female patients with 85 benign and 149 malignant lesions. Four distinct groups of features, coupling with pathological tests, were estimated to comprehensively characterize the pictorial properties of each lesion, which was obtained by a semi-automated segmentation method. Classical machine learning scheme including feature subset selection and various classification schemes were employed to build prognostic model, which served as a foundation for evaluating the combined effects of the multi-sided features for predicting of the types of lesions. Various measurements including cross validation and receiver operating characteristics were used to quantify the diagnostic performances of each feature as well as their combination. Seven features were all found to be statistically different between the malignant and the benign groups and their combination has achieved the highest classification accuracy. The seven features include one pathological variable of age, one morphological variable of slope, three texture features of entropy, inverse difference and information correlation, one kinetic feature of SER and one DWI feature of apparent diffusion coefficient (ADC). Together with the selected diagnostic features, various classical classification schemes were used to test their discrimination power through cross validation scheme. The averaged measurements of sensitivity, specificity, AUC and accuracy are 0.85, 0.89, 90.9% and 0.93, respectively. Multi-sided variables which characterize the morphological, kinetic, pathological properties and DWI measurement of ADC can dramatically improve the discriminatory power of breast lesions.

  8. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  9. Minimizing the semantic gap in biomedical content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Guan, Haiying; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2010-03-01

    A major challenge in biomedical Content-Based Image Retrieval (CBIR) is to achieve meaningful mappings that minimize the semantic gap between the high-level biomedical semantic concepts and the low-level visual features in images. This paper presents a comprehensive learning-based scheme toward meeting this challenge and improving retrieval quality. The article presents two algorithms: a learning-based feature selection and fusion algorithm and the Ranking Support Vector Machine (Ranking SVM) algorithm. The feature selection algorithm aims to select 'good' features and fuse them using different similarity measurements to provide a better representation of the high-level concepts with the low-level image features. Ranking SVM is applied to learn the retrieval rank function and associate the selected low-level features with query concepts, given the ground-truth ranking of the training samples. The proposed scheme addresses four major issues in CBIR to improve the retrieval accuracy: image feature extraction, selection and fusion, similarity measurements, the association of the low-level features with high-level concepts, and the generation of the rank function to support high-level semantic image retrieval. It models the relationship between semantic concepts and image features, and enables retrieval at the semantic level. We apply it to the problem of vertebra shape retrieval from a digitized spine x-ray image set collected by the second National Health and Nutrition Examination Survey (NHANES II). The experimental results show an improvement of up to 41.92% in the mean average precision (MAP) over conventional image similarity computation methods.

  10. What Top-Down Task Sets Do for Us: An ERP Study on the Benefits of Advance Preparation in Visual Search

    ERIC Educational Resources Information Center

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-01-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features.…

  11. Attention improves encoding of task-relevant features in the human visual cortex

    PubMed Central

    Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank

    2011-01-01

    When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942

  12. Attention improves encoding of task-relevant features in the human visual cortex.

    PubMed

    Jehee, Janneke F M; Brady, Devin K; Tong, Frank

    2011-06-01

    When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.

  13. Age-related changes in neural oscillations supporting context memory retrieval

    PubMed Central

    Strunk, Jonathan; James, Taylor; Arndt, Jason; Duarte, Audrey

    2018-01-01

    Recent evidence suggests that directing attention toward single item-context associations during encoding improves young and older adults’ context memory performance and reduces demands on executive functions during retrieval. In everyday situations, there are many event features competing for our attention, and our ability to successfully recover those details may depend on our ability to ignore others. Failures of selective attention may contribute to older adults’ context memory impairments. In the current electroencephalogram (EEG) study, we assessed the effects of age on processes supporting successful context memory retrieval of selectively attended features as indexed by neural oscillations. During encoding, young and older adults were directed to attend to a picture of an object and its relationship to one of two concurrently presented contextual details: a color or scene. At retrieval, we tested their memory for the object, its attended and unattended context features, and their confidence for both the attended and unattended features. Both groups showed greater memory for attended than unattended contextual features. However, older adults showed evidence of hyper-binding between attended and unattended context features while the young adults did not. EEG results in the theta band suggest that young and older adults recollect similar amounts of information but brain-behavior correlations suggest that this information was supportive of contextual memory performance, particularly for young adults. By contrast, sustained beta desynchronization, indicative of sensory reactivation and episodic reconstruction, was correlated with contextual memory performance for older adults only. We conclude that older adults’ inhibition deficits during encoding reduced the selectivity of their contextual memories, which led to reliance on executive functions like episodic reconstruction to support successful memory retrieval. PMID:28237686

  14. Age-related changes in neural oscillations supporting context memory retrieval.

    PubMed

    Strunk, Jonathan; James, Taylor; Arndt, Jason; Duarte, Audrey

    2017-06-01

    Recent evidence suggests that directing attention toward single item-context associations during encoding improves young and older adults' context memory performance and reduces demands on executive functions during retrieval. In everyday situations, there are many event features competing for our attention, and our ability to successfully recover those details may depend on our ability to ignore others. Failures of selective attention may contribute to older adults' context memory impairments. In the current electroencephalogram (EEG) study, we assessed the effects of age on processes supporting successful context memory retrieval of selectively attended features as indexed by neural oscillations. During encoding, young and older adults were directed to attend to a picture of an object and its relationship to one of two concurrently presented contextual details: a color or scene. At retrieval, we tested their memory for the object, its attended and unattended context features, and their confidence for both the attended and unattended features. Both groups showed greater memory for attended than unattended contextual features. However, older adults showed evidence of hyper-binding between attended and unattended context features while the young adults did not. EEG results in the theta band suggest that young and older adults recollect similar amounts of information but brain-behavior correlations suggest that this information was supportive of contextual memory performance, particularly for young adults. By contrast, sustained beta desynchronization, indicative of sensory reactivation and episodic reconstruction, was correlated with contextual memory performance for older adults only. We conclude that older adults' inhibition deficits during encoding reduced the selectivity of their contextual memories, which led to reliance on executive functions like episodic reconstruction to support successful memory retrieval. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effects of aging on the interaction between reinforcement learning and attention.

    PubMed

    Radulescu, Angela; Daniel, Reka; Niv, Yael

    2016-11-01

    Reinforcement learning (RL) in complex environments relies on selective attention to uncover those aspects of the environment that are most predictive of reward. Whereas previous work has focused on age-related changes in RL, it is not known whether older adults learn differently from younger adults when selective attention is required. In 2 experiments, we examined how aging affects the interaction between RL and selective attention. Younger and older adults performed a learning task in which only 1 stimulus dimension was relevant to predicting reward, and within it, 1 "target" feature was the most rewarding. Participants had to discover this target feature through trial and error. In Experiment 1, stimuli varied on 1 or 3 dimensions and participants received hints that revealed the target feature, the relevant dimension, or gave no information. Group-related differences in accuracy and RTs differed systematically as a function of the number of dimensions and the type of hint available. In Experiment 2 we used trial-by-trial computational modeling of the learning process to test for age-related differences in learning strategies. Behavior of both young and older adults was explained well by a reinforcement-learning model that uses selective attention to constrain learning. However, the model suggested that older adults restricted their learning to fewer features, employing more focused attention than younger adults. Furthermore, this difference in strategy predicted age-related deficits in accuracy. We discuss these results suggesting that a narrower filter of attention may reflect an adaptation to the reduced capabilities of the reinforcement learning system. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.

    PubMed

    Attallah, Omneya; Karthikesalingam, Alan; Holt, Peter Je; Thompson, Matthew M; Sayers, Rob; Bown, Matthew J; Choke, Eddie C; Ma, Xianghong

    2017-11-01

    Feature selection is essential in medical area; however, its process becomes complicated with the presence of censoring which is the unique character of survival analysis. Most survival feature selection methods are based on Cox's proportional hazard model, though machine learning classifiers are preferred. They are less employed in survival analysis due to censoring which prevents them from directly being used to survival data. Among the few work that employed machine learning classifiers, partial logistic artificial neural network with auto-relevance determination is a well-known method that deals with censoring and perform feature selection for survival data. However, it depends on data replication to handle censoring which leads to unbalanced and biased prediction results especially in highly censored data. Other methods cannot deal with high censoring. Therefore, in this article, a new hybrid feature selection method is proposed which presents a solution to high level censoring. It combines support vector machine, neural network, and K-nearest neighbor classifiers using simple majority voting and a new weighted majority voting method based on survival metric to construct a multiple classifier system. The new hybrid feature selection process uses multiple classifier system as a wrapper method and merges it with iterated feature ranking filter method to further reduce features. Two endovascular aortic repair datasets containing 91% censored patients collected from two centers were used to construct a multicenter study to evaluate the performance of the proposed approach. The results showed the proposed technique outperformed individual classifiers and variable selection methods based on Cox's model such as Akaike and Bayesian information criterions and least absolute shrinkage and selector operator in p values of the log-rank test, sensitivity, and concordance index. This indicates that the proposed classifier is more powerful in correctly predicting the risk of re-intervention enabling doctor in selecting patients' future follow-up plan.

  17. Effects of changing canopy directional reflectance on feature selection

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Oliver, R. E.; Kilpela, O. E.

    1973-01-01

    The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.

  18. Landmarks selection in street map design

    NASA Astrophysics Data System (ADS)

    Kao, C. J.

    2014-02-01

    In Taiwan many electrical maps present their landmarks according to the category of the feature, a designer short of knowledge about mental representation of space, can cause the map to lose its communication effects. To resolve this map design problem, in this research through long-term memory recall, navigation and observation, and short-term memory processing 111 participants were asked to select the proper landmark from study area. The results reveal that in Taiwan convenience stores are the most popular local landmark in rural and urban areas. Their commercial signs have a unique design and bright color. Contrasted to their background, this makes the convenience store a salient feature. This study also developed a rule to assess the priority of the landmarks to design them in different scale maps.

  19. Entropy-based gene ranking without selection bias for the predictive classification of microarray data.

    PubMed

    Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe

    2003-11-06

    We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.

  20. Robust Feature Selection Technique using Rank Aggregation.

    PubMed

    Sarkar, Chandrima; Cooley, Sarah; Srivastava, Jaideep

    2014-01-01

    Although feature selection is a well-developed research area, there is an ongoing need to develop methods to make classifiers more efficient. One important challenge is the lack of a universal feature selection technique which produces similar outcomes with all types of classifiers. This is because all feature selection techniques have individual statistical biases while classifiers exploit different statistical properties of data for evaluation. In numerous situations this can put researchers into dilemma as to which feature selection method and a classifiers to choose from a vast range of choices. In this paper, we propose a technique that aggregates the consensus properties of various feature selection methods to develop a more optimal solution. The ensemble nature of our technique makes it more robust across various classifiers. In other words, it is stable towards achieving similar and ideally higher classification accuracy across a wide variety of classifiers. We quantify this concept of robustness with a measure known as the Robustness Index (RI). We perform an extensive empirical evaluation of our technique on eight data sets with different dimensions including Arrythmia, Lung Cancer, Madelon, mfeat-fourier, internet-ads, Leukemia-3c and Embryonal Tumor and a real world data set namely Acute Myeloid Leukemia (AML). We demonstrate not only that our algorithm is more robust, but also that compared to other techniques our algorithm improves the classification accuracy by approximately 3-4% (in data set with less than 500 features) and by more than 5% (in data set with more than 500 features), across a wide range of classifiers.

  1. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data

    PubMed Central

    2015-01-01

    Background Investigations into novel biomarkers using omics techniques generate large amounts of data. Due to their size and numbers of attributes, these data are suitable for analysis with machine learning methods. A key component of typical machine learning pipelines for omics data is feature selection, which is used to reduce the raw high-dimensional data into a tractable number of features. Feature selection needs to balance the objective of using as few features as possible, while maintaining high predictive power. This balance is crucial when the goal of data analysis is the identification of highly accurate but small panels of biomarkers with potential clinical utility. In this paper we propose a heuristic for the selection of very small feature subsets, via an iterative feature elimination process that is guided by rule-based machine learning, called RGIFE (Rule-guided Iterative Feature Elimination). We use this heuristic to identify putative biomarkers of osteoarthritis (OA), articular cartilage degradation and synovial inflammation, using both proteomic and transcriptomic datasets. Results and discussion Our RGIFE heuristic increased the classification accuracies achieved for all datasets when no feature selection is used, and performed well in a comparison with other feature selection methods. Using this method the datasets were reduced to a smaller number of genes or proteins, including those known to be relevant to OA, cartilage degradation and joint inflammation. The results have shown the RGIFE feature reduction method to be suitable for analysing both proteomic and transcriptomics data. Methods that generate large ‘omics’ datasets are increasingly being used in the area of rheumatology. Conclusions Feature reduction methods are advantageous for the analysis of omics data in the field of rheumatology, as the applications of such techniques are likely to result in improvements in diagnosis, treatment and drug discovery. PMID:25923811

  2. Insulin resistance in clomiphene responders and non-responders with polycystic ovarian disease and therapeutic effects of metformin.

    PubMed

    Parsanezhad, M E; Alborzi, S; Zarei, A; Dehbashi, S; Omrani, G

    2001-10-01

    To evaluate the clinical features, endocrine and metabolic profiles in clomiphene (CC) responders and non-responders with polycystic ovarian disease (PCOD), and to examine the effects of metformin (MTF) on the above parameters of CC resistance. A prospective clinical trial was undertaken at the infertility division of a university teaching hospital. Forty-one CC responders were selected and their hormonal and clinical features were determined. Forty-one CC-resistant PCOD women were also selected and clinical features; metabolic and hormonal profiles before and after treatment with MTF 1500 mg/day for 6-8 weeks were evaluated. Women who failed to conceive were treated by CC while continuing to take MTF. CC responders had higher insulin levels while non-responders were hyperinsulinemic. Menstrual irregularities improved in 30%. Mean+/-S.D. area under curve of insulin decreased from 297.58+/-191.33 to 206+/-0.1 mIU/ml per min (P=0.005). Only 39.39% ovulated and 24.24% conceived. PCOD is associated with insulin resistance (IR) particularly in CC-resistant women. Insulin resistance and androgen levels are significantly higher in obese patients. MTF therapy improved hyperandrogenemia, IR, and pregnancy rate.

  3. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    PubMed

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  4. [A systematic review of the effectiveness of workplace safety interventions].

    PubMed

    Baldasseroni, A; Olimpi, Nadia; Bonaccorsi, G

    2009-01-01

    The authors carried out a systematic review of the effectiveness of workplace safety interventions, as a part of a wider project funded by CCM, Centre for Disease Control. Several electronic bibliographic databases were checked, using a standardized string selection. The string contained the following four items: the intervention; job features; type of injury; efficacy/effectiveness. Of the various databases consulted, Web of Science was the most efficient. Overall 5531 articles were selected. After reading the title and abstract, 4695 were excluded and eventually 35 systematic reviews were selected, which synthesized 769 original articles. The main topics of the selected systematic reviews were: certain sectors (building industry, agriculture, health care); personal protective equipment; work organization and prevention management at plant level; evaluation of prevention policies by national and regional authorities. A clear need for multiple bibliographical data-base search emerged at the end of this study.

  5. Deconstructing continuous flash suppression

    PubMed Central

    Yang, Eunice; Blake, Randolph

    2012-01-01

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular “Mondrian” CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS. PMID:22408039

  6. Deconstructing continuous flash suppression.

    PubMed

    Yang, Eunice; Blake, Randolph

    2012-03-08

    In this paper, we asked to what extent the depth of interocular suppression engendered by continuous flash suppression (CFS) varies depending on spatiotemporal properties of the suppressed stimulus and CFS suppressor. An answer to this question could have implications for interpreting the results in which CFS influences the processing of different categories of stimuli to different extents. In a series of experiments, we measured the selectivity and depth of suppression (i.e., elevation in contrast detection thresholds) as a function of the visual features of the stimulus being suppressed and the stimulus evoking suppression, namely, the popular "Mondrian" CFS stimulus (N. Tsuchiya & C. Koch, 2005). First, we found that CFS differentially suppresses the spatial components of the suppressed stimulus: Observers' sensitivity for stimuli of relatively low spatial frequency or cardinally oriented features was more strongly impaired in comparison to high spatial frequency or obliquely oriented stimuli. Second, we discovered that this feature-selective bias primarily arises from the spatiotemporal structure of the CFS stimulus, particularly within information residing in the low spatial frequency range and within the smooth rather than abrupt luminance changes over time. These results imply that this CFS stimulus operates by selectively attenuating certain classes of low-level signals while leaving others to be potentially encoded during suppression. These findings underscore the importance of considering the contribution of low-level features in stimulus-driven effects that are reported under CFS.

  7. Analysis and prediction of presynaptic and postsynaptic neurotoxins by Chou's general pseudo amino acid composition and motif features.

    PubMed

    Mei, Juan; Zhao, Ji

    2018-06-14

    Presynaptic neurotoxins and postsynaptic neurotoxins are two important neurotoxins isolated from venoms of venomous animals and have been proven to be potential effective in neurosciences and pharmacology. With the number of toxin sequences appeared in the public databases, there was a need for developing a computational method for fast and accurate identification and classification of the novel presynaptic neurotoxins and postsynaptic neurotoxins in the large databases. In this study, the Multinomial Naive Bayes Classifier (MNBC) had been developed to discriminate the presynaptic neurotoxins and postsynaptic neurotoxins based on the different kinds of features. The Minimum Redundancy Maximum Relevance (MRMR) feature selection method was used for ranking 400 pseudo amino acid (PseAA) compositions and 50 top ranked PseAA compositions were selected for improving the prediction results. The motif features, 400 PseAA compositions and 50 PseAA compositions were combined together, and selected as the input parameters of MNBC. The best correlation coefficient (CC) value of 0.8213 was obtained when the prediction quality was evaluated by the jackknife test. It was anticipated that the algorithm presented in this study may become a useful tool for identification of presynaptic neurotoxin and postsynaptic neurotoxin sequences and may provide some useful help for in-depth investigation into the biological mechanism of presynaptic neurotoxins and postsynaptic neurotoxins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Type of featural attention differentially modulates hMT+ responses to illusory motion aftereffects.

    PubMed

    Castelo-Branco, Miguel; Kozak, Lajos R; Formisano, Elia; Teixeira, João; Xavier, João; Goebel, Rainer

    2009-11-01

    Activity in the human motion complex (hMT(+)/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT(+) represent the motion itself or attention to it. We have asked whether hMT(+) responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT(+) activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT(+). We conclude that MAE-related changes in the global activity of hMT(+) are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT(+) that is neither explained by shifts in arousal nor by selective attention.

  9. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    PubMed

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Feature extraction for ultrasonic sensor based defect detection in ceramic components

    NASA Astrophysics Data System (ADS)

    Kesharaju, Manasa; Nagarajah, Romesh

    2014-02-01

    High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.

  11. Flux-transport Dynamos Driven by a Tachocline α -effect; a Solution to Magnetic Parity Selection in the Sun

    NASA Astrophysics Data System (ADS)

    Dikpati, M.; Gilman, P. A.

    2001-05-01

    We propose here an α Ω flux-transport dynamo driven by a tachocline α -effect, produced by the global hydrodynamic instability of tachocline differential rotation as calculated using a shallow-water model (Dikpati & Gilman, 2001, ApJ, Mar.20 issue). Growing, unstable shallow-water modes propagating longitudinally in the tachocline create alternate vortices which correlate with upward/downward radial motion of top boundary, associated with convergence/divergence of the disturbance flow to produce a longitude-averaged net kinetic helicity, and hence an α -effect. We show that a flux-transport dynamo driven by a tachocline α -effect is equally successful as a Babcock-Leighton flux-transport dynamo (Dikpati & Charbonneau 1999, ApJ, 518, 508) in reproducing many large-scale solar cycle features, including the most difficult feature of phase relationship between the subsurface toroidal field and surface radial field. In view of the success of flux-transport dynamos, whether the α -effect is at the surface or in the tachocline, we argue that the solar dynamo should be considered to involve three basic processes, rather than two (α -effect and Ω -effect only). The third important process is the advective transport of flux by meridional circulation. In reality, both α -effects (Babcock-Leighton type and tachocline α -effect) are likely to exist, but it is hard to estimate their relative magnitudes. We show, by extending the simulation in a full spherical shell model that a flux-transport dynamo driven by a tachocline α -effect selects toroidal field that is antisymmetric about the equator, while a Babcock-Leighton flux-transport dynamo selects symmetric toroidal field. Since our present Sun selects antisymmetric toroidal fields, we argue that the flux-transport solar dynamo is primarily driven by a tachocline α -effect. Acknowledgements: This work is supported by NASA grants W-19752 and S-10145-X. National Center for Atmospheric Research is sponsored by National Science Foundation.

  12. Hybridization between multi-objective genetic algorithm and support vector machine for feature selection in walker-assisted gait.

    PubMed

    Martins, Maria; Costa, Lino; Frizera, Anselmo; Ceres, Ramón; Santos, Cristina

    2014-03-01

    Walker devices are often prescribed incorrectly to patients, leading to the increase of dissatisfaction and occurrence of several problems, such as, discomfort and pain. Thus, it is necessary to objectively evaluate the effects that assisted gait can have on the gait patterns of walker users, comparatively to a non-assisted gait. A gait analysis, focusing on spatiotemporal and kinematics parameters, will be issued for this purpose. However, gait analysis yields redundant information that often is difficult to interpret. This study addresses the problem of selecting the most relevant gait features required to differentiate between assisted and non-assisted gait. For that purpose, it is presented an efficient approach that combines evolutionary techniques, based on genetic algorithms, and support vector machine algorithms, to discriminate differences between assisted and non-assisted gait with a walker with forearm supports. For comparison purposes, other classification algorithms are verified. Results with healthy subjects show that the main differences are characterized by balance and joints excursion in the sagittal plane. These results, confirmed by clinical evidence, allow concluding that this technique is an efficient feature selection approach. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. A SVM framework for fault detection of the braking system in a high speed train

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Li, Yan-Fu; Zio, Enrico

    2017-03-01

    In April 2015, the number of operating High Speed Trains (HSTs) in the world has reached 3603. An efficient, effective and very reliable braking system is evidently very critical for trains running at a speed around 300 km/h. Failure of a highly reliable braking system is a rare event and, consequently, informative recorded data on fault conditions are scarce. This renders the fault detection problem a classification problem with highly unbalanced data. In this paper, a Support Vector Machine (SVM) framework, including feature selection, feature vector selection, model construction and decision boundary optimization, is proposed for tackling this problem. Feature vector selection can largely reduce the data size and, thus, the computational burden. The constructed model is a modified version of the least square SVM, in which a higher cost is assigned to the error of classification of faulty conditions than the error of classification of normal conditions. The proposed framework is successfully validated on a number of public unbalanced datasets. Then, it is applied for the fault detection of braking systems in HST: in comparison with several SVM approaches for unbalanced datasets, the proposed framework gives better results.

  14. An unsupervised technique for optimal feature selection in attribute profiles for spectral-spatial classification of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Kaushal; Patra, Swarnajyoti

    2018-04-01

    Inclusion of spatial information along with spectral features play a significant role in classification of remote sensing images. Attribute profiles have already proved their ability to represent spatial information. In order to incorporate proper spatial information, multiple attributes are required and for each attribute large profiles need to be constructed by varying the filter parameter values within a wide range. Thus, the constructed profiles that represent spectral-spatial information of an hyperspectral image have huge dimension which leads to Hughes phenomenon and increases computational burden. To mitigate these problems, this work presents an unsupervised feature selection technique that selects a subset of filtered image from the constructed high dimensional multi-attribute profile which are sufficiently informative to discriminate well among classes. In this regard the proposed technique exploits genetic algorithms (GAs). The fitness function of GAs are defined in an unsupervised way with the help of mutual information. The effectiveness of the proposed technique is assessed using one-against-all support vector machine classifier. The experiments conducted on three hyperspectral data sets show the robustness of the proposed method in terms of computation time and classification accuracy.

  15. Feature-based attention and conflict monitoring in criminal offenders: interactive relations of psychopathy with anxiety and externalizing.

    PubMed

    Zeier, Joshua D; Newman, Joseph P

    2013-08-01

    As predicted by the response modulation model, psychopathic offenders are insensitive to potentially important inhibitory information when it is peripheral to their primary focus of attention. To date, the clearest tests of this hypothesis have manipulated spatial attention to cue the location of goal-relevant versus inhibitory information. However, the theory predicts a more general abnormality in selective attention. In the current study, male prisoners performed a conflict-monitoring task, which included a feature-based manipulation (i.e., color) that biased selective attention toward goal-relevant stimuli and away from inhibitory distracters on some trials but not others. Paralleling results for spatial cuing, feature-based cuing resulted in less distracter interference, particularly for participants with primary psychopathy (i.e., low anxiety). This study also investigated the moderating effect of externalizing on psychopathy. Participants high in psychopathy but low in externalizing performed similarly to primary psychopathic individuals. These results demonstrate that the abnormal selective attention associated with primary psychopathy is not limited to spatial attention but, instead, applies to diverse methods for establishing attentional focus. Furthermore, they demonstrate a novel method of investigating psychopathic subtypes using continuous analyses. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Sparse Zero-Sum Games as Stable Functional Feature Selection

    PubMed Central

    Sokolovska, Nataliya; Teytaud, Olivier; Rizkalla, Salwa; Clément, Karine; Zucker, Jean-Daniel

    2015-01-01

    In large-scale systems biology applications, features are structured in hidden functional categories whose predictive power is identical. Feature selection, therefore, can lead not only to a problem with a reduced dimensionality, but also reveal some knowledge on functional classes of variables. In this contribution, we propose a framework based on a sparse zero-sum game which performs a stable functional feature selection. In particular, the approach is based on feature subsets ranking by a thresholding stochastic bandit. We provide a theoretical analysis of the introduced algorithm. We illustrate by experiments on both synthetic and real complex data that the proposed method is competitive from the predictive and stability viewpoints. PMID:26325268

  17. Machine learning approach for automated screening of malaria parasite using light microscopic images.

    PubMed

    Das, Dev Kumar; Ghosh, Madhumala; Pal, Mallika; Maiti, Asok K; Chakraborty, Chandan

    2013-02-01

    The aim of this paper is to address the development of computer assisted malaria parasite characterization and classification using machine learning approach based on light microscopic images of peripheral blood smears. In doing this, microscopic image acquisition from stained slides, illumination correction and noise reduction, erythrocyte segmentation, feature extraction, feature selection and finally classification of different stages of malaria (Plasmodium vivax and Plasmodium falciparum) have been investigated. The erythrocytes are segmented using marker controlled watershed transformation and subsequently total ninety six features describing shape-size and texture of erythrocytes are extracted in respect to the parasitemia infected versus non-infected cells. Ninety four features are found to be statistically significant in discriminating six classes. Here a feature selection-cum-classification scheme has been devised by combining F-statistic, statistical learning techniques i.e., Bayesian learning and support vector machine (SVM) in order to provide the higher classification accuracy using best set of discriminating features. Results show that Bayesian approach provides the highest accuracy i.e., 84% for malaria classification by selecting 19 most significant features while SVM provides highest accuracy i.e., 83.5% with 9 most significant features. Finally, the performance of these two classifiers under feature selection framework has been compared toward malaria parasite classification. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Five features of value-based insurance design plans were associated with higher rates of medication adherence.

    PubMed

    Choudhry, Niteesh K; Fischer, Michael A; Smith, Benjamin F; Brill, Gregory; Girdish, Charmaine; Matlin, Olga S; Brennan, Troyen A; Avorn, Jerry; Shrank, William H

    2014-03-01

    Value-based insurance design (VBID) plans selectively lower cost sharing to increase medication adherence. Existing plans have been structured in a variety of ways, and these variations could influence the effectiveness of VBID plans. We evaluated seventy-six plans introduced by a large pharmacy benefit manager during 2007-10. We found that after we adjusted for the other features and baseline trends, VBID plans that were more generous, targeted high-risk patients, offered wellness programs, did not offer disease management programs, and made the benefit available only for medication ordered by mail had a significantly greater impact on adherence than plans without these features. The effects were as large as 4-5 percentage points. These findings can provide guidance for the structure of future VBID plans.

  19. What top-down task sets do for us: an ERP study on the benefits of advance preparation in visual search.

    PubMed

    Eimer, Martin; Kiss, Monika; Nicholas, Susan

    2011-12-01

    When target-defining features are specified in advance, attentional target selection in visual search is controlled by preparatory top-down task sets. We used ERP measures to study voluntary target selection in the absence of such feature-specific task sets, and to compare it to selection that is guided by advance knowledge about target features. Visual search arrays contained two different color singleton digits, and participants had to select one of these as target and report its parity. Target color was either known in advance (fixed color task) or had to be selected anew on each trial (free color-choice task). ERP correlates of spatially selective attentional target selection (N2pc) and working memory processing (SPCN) demonstrated rapid target selection and efficient exclusion of color singleton distractors from focal attention and working memory in the fixed color task. In the free color-choice task, spatially selective processing also emerged rapidly, but selection efficiency was reduced, with nontarget singleton digits capturing attention and gaining access to working memory. Results demonstrate the benefits of top-down task sets: Feature-specific advance preparation accelerates target selection, rapidly resolves attentional competition, and prevents irrelevant events from attracting attention and entering working memory.

  20. Greedy feature selection for glycan chromatography data with the generalized Dirichlet distribution

    PubMed Central

    2013-01-01

    Background Glycoproteins are involved in a diverse range of biochemical and biological processes. Changes in protein glycosylation are believed to occur in many diseases, particularly during cancer initiation and progression. The identification of biomarkers for human disease states is becoming increasingly important, as early detection is key to improving survival and recovery rates. To this end, the serum glycome has been proposed as a potential source of biomarkers for different types of cancers. High-throughput hydrophilic interaction liquid chromatography (HILIC) technology for glycan analysis allows for the detailed quantification of the glycan content in human serum. However, the experimental data from this analysis is compositional by nature. Compositional data are subject to a constant-sum constraint, which restricts the sample space to a simplex. Statistical analysis of glycan chromatography datasets should account for their unusual mathematical properties. As the volume of glycan HILIC data being produced increases, there is a considerable need for a framework to support appropriate statistical analysis. Proposed here is a methodology for feature selection in compositional data. The principal objective is to provide a template for the analysis of glycan chromatography data that may be used to identify potential glycan biomarkers. Results A greedy search algorithm, based on the generalized Dirichlet distribution, is carried out over the feature space to search for the set of “grouping variables” that best discriminate between known group structures in the data, modelling the compositional variables using beta distributions. The algorithm is applied to two glycan chromatography datasets. Statistical classification methods are used to test the ability of the selected features to differentiate between known groups in the data. Two well-known methods are used for comparison: correlation-based feature selection (CFS) and recursive partitioning (rpart). CFS is a feature selection method, while recursive partitioning is a learning tree algorithm that has been used for feature selection in the past. Conclusions The proposed feature selection method performs well for both glycan chromatography datasets. It is computationally slower, but results in a lower misclassification rate and a higher sensitivity rate than both correlation-based feature selection and the classification tree method. PMID:23651459

  1. Discriminative spatial-frequency-temporal feature extraction and classification of motor imagery EEG: An sparse regression and Weighted Naïve Bayesian Classifier-based approach.

    PubMed

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Changsen; Liu, Feixiang

    2017-02-15

    Common spatial pattern (CSP) is most widely used in motor imagery based brain-computer interface (BCI) systems. In conventional CSP algorithm, pairs of the eigenvectors corresponding to both extreme eigenvalues are selected to construct the optimal spatial filter. In addition, an appropriate selection of subject-specific time segments and frequency bands plays an important role in its successful application. This study proposes to optimize spatial-frequency-temporal patterns for discriminative feature extraction. Spatial optimization is implemented by channel selection and finding discriminative spatial filters adaptively on each time-frequency segment. A novel Discernibility of Feature Sets (DFS) criteria is designed for spatial filter optimization. Besides, discriminative features located in multiple time-frequency segments are selected automatically by the proposed sparse time-frequency segment common spatial pattern (STFSCSP) method which exploits sparse regression for significant features selection. Finally, a weight determined by the sparse coefficient is assigned for each selected CSP feature and we propose a Weighted Naïve Bayesian Classifier (WNBC) for classification. Experimental results on two public EEG datasets demonstrate that optimizing spatial-frequency-temporal patterns in a data-driven manner for discriminative feature extraction greatly improves the classification performance. The proposed method gives significantly better classification accuracies in comparison with several competing methods in the literature. The proposed approach is a promising candidate for future BCI systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Automatic variable selection method and a comparison for quantitative analysis in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Fu, Xiao; Jiang, Jiajia; Huang, Tingting; Ma, Ling; Zhang, Cong

    2018-05-01

    In this work, an automatic variable selection method for quantitative analysis of soil samples using laser-induced breakdown spectroscopy (LIBS) is proposed, which is based on full spectrum correction (FSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS). The method features automatic selection without artificial processes. To illustrate the feasibility and effectiveness of the method, a comparison with genetic algorithm (GA) and successive projections algorithm (SPA) for different elements (copper, barium and chromium) detection in soil was implemented. The experimental results showed that all the three methods could accomplish variable selection effectively, among which FSC-mIPW-PLS required significantly shorter computation time (12 s approximately for 40,000 initial variables) than the others. Moreover, improved quantification models were got with variable selection approaches. The root mean square errors of prediction (RMSEP) of models utilizing the new method were 27.47 (copper), 37.15 (barium) and 39.70 (chromium) mg/kg, which showed comparable prediction effect with GA and SPA.

  3. MRM-Lasso: A Sparse Multiview Feature Selection Method via Low-Rank Analysis.

    PubMed

    Yang, Wanqi; Gao, Yang; Shi, Yinghuan; Cao, Longbing

    2015-11-01

    Learning about multiview data involves many applications, such as video understanding, image classification, and social media. However, when the data dimension increases dramatically, it is important but very challenging to remove redundant features in multiview feature selection. In this paper, we propose a novel feature selection algorithm, multiview rank minimization-based Lasso (MRM-Lasso), which jointly utilizes Lasso for sparse feature selection and rank minimization for learning relevant patterns across views. Instead of simply integrating multiple Lasso from view level, we focus on the performance of sample-level (sample significance) and introduce pattern-specific weights into MRM-Lasso. The weights are utilized to measure the contribution of each sample to the labels in the current view. In addition, the latent correlation across different views is successfully captured by learning a low-rank matrix consisting of pattern-specific weights. The alternating direction method of multipliers is applied to optimize the proposed MRM-Lasso. Experiments on four real-life data sets show that features selected by MRM-Lasso have better multiview classification performance than the baselines. Moreover, pattern-specific weights are demonstrated to be significant for learning about multiview data, compared with view-specific weights.

  4. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  5. A proposed framework on hybrid feature selection techniques for handling high dimensional educational data

    NASA Astrophysics Data System (ADS)

    Shahiri, Amirah Mohamed; Husain, Wahidah; Rashid, Nur'Aini Abd

    2017-10-01

    Huge amounts of data in educational datasets may cause the problem in producing quality data. Recently, data mining approach are increasingly used by educational data mining researchers for analyzing the data patterns. However, many research studies have concentrated on selecting suitable learning algorithms instead of performing feature selection process. As a result, these data has problem with computational complexity and spend longer computational time for classification. The main objective of this research is to provide an overview of feature selection techniques that have been used to analyze the most significant features. Then, this research will propose a framework to improve the quality of students' dataset. The proposed framework uses filter and wrapper based technique to support prediction process in future study.

  6. Random forest feature selection approach for image segmentation

    NASA Astrophysics Data System (ADS)

    Lefkovits, László; Lefkovits, Szidónia; Emerich, Simina; Vaida, Mircea Florin

    2017-03-01

    In the field of image segmentation, discriminative models have shown promising performance. Generally, every such model begins with the extraction of numerous features from annotated images. Most authors create their discriminative model by using many features without using any selection criteria. A more reliable model can be built by using a framework that selects the important variables, from the point of view of the classification, and eliminates the unimportant once. In this article we present a framework for feature selection and data dimensionality reduction. The methodology is built around the random forest (RF) algorithm and its variable importance evaluation. In order to deal with datasets so large as to be practically unmanageable, we propose an algorithm based on RF that reduces the dimension of the database by eliminating irrelevant features. Furthermore, this framework is applied to optimize our discriminative model for brain tumor segmentation.

  7. Temporal resolution for the perception of features and conjunctions.

    PubMed

    Bodelón, Clara; Fallah, Mazyar; Reynolds, John H

    2007-01-24

    The visual system decomposes stimuli into their constituent features, represented by neurons with different feature selectivities. How the signals carried by these feature-selective neurons are integrated into coherent object representations is unknown. To constrain the set of possible integrative mechanisms, we quantified the temporal resolution of perception for color, orientation, and conjunctions of these two features. We find that temporal resolution is measurably higher for each feature than for their conjunction, indicating that time is required to integrate features into a perceptual whole. This finding places temporal limits on the mechanisms that could mediate this form of perceptual integration.

  8. Peer-Based Social Media Features in Behavior Change Interventions: Systematic Review

    PubMed Central

    Weal, Mark; Morrison, Leanne; Yardley, Lucy

    2018-01-01

    Background Incorporating social media features into digital behavior change interventions (DBCIs) has the potential to contribute positively to their success. However, the lack of clear design principles to describe and guide the use of these features in behavioral interventions limits cross-study comparisons of their uses and effects. Objective The aim of this study was to provide a systematic review of DBCIs targeting modifiable behavioral risk factors that have included social media features as part of their intervention infrastructure. A taxonomy of social media features is presented to inform the development, description, and evaluation of behavioral interventions. Methods Search terms were used in 8 databases to identify DBCIs that incorporated social media features and targeted tobacco smoking, diet and nutrition, physical activities, or alcohol consumption. The screening and review process was performed by 2 independent researchers. Results A total of 5264 articles were screened, and 143 articles describing a total of 134 studies were retained for full review. The majority of studies (70%) reported positive outcomes, followed by 28% finding no effects with regard to their respective objectives and hypothesis, and 2% of the studies found that their interventions had negative outcomes. Few studies reported on the association between the inclusion of social media features and intervention effect. A taxonomy of social media features used in behavioral interventions has been presented with 36 social media features organized under 7 high-level categories. The taxonomy has been used to guide the analysis of this review. Conclusions Although social media features are commonly included in DBCIs, there is an acute lack of information with respect to their effect on outcomes and a lack of clear guidance to inform the selection process based on the features’ suitability for the different behaviors. The proposed taxonomy along with the set of recommendations included in this review will support future research aimed at isolating and reporting the effects of social media features on DBCIs, cross-study comparisons, and evaluations. PMID:29472174

  9. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integration trumps selection in object recognition

    PubMed Central

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  11. Coding of spatial attention priorities and object features in the macaque lateral intraparietal cortex.

    PubMed

    Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R

    2017-03-01

    Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Correlative feature analysis of FFDM images

    NASA Astrophysics Data System (ADS)

    Yuan, Yading; Giger, Maryellen L.; Li, Hui; Sennett, Charlene

    2008-03-01

    Identifying the corresponding image pair of a lesion is an essential step for combining information from different views of the lesion to improve the diagnostic ability of both radiologists and CAD systems. Because of the non-rigidity of the breasts and the 2D projective property of mammograms, this task is not trivial. In this study, we present a computerized framework that differentiates the corresponding images from different views of a lesion from non-corresponding ones. A dual-stage segmentation method, which employs an initial radial gradient index(RGI) based segmentation and an active contour model, was initially applied to extract mass lesions from the surrounding tissues. Then various lesion features were automatically extracted from each of the two views of each lesion to quantify the characteristics of margin, shape, size, texture and context of the lesion, as well as its distance to nipple. We employed a two-step method to select an effective subset of features, and combined it with a BANN to obtain a discriminant score, which yielded an estimate of the probability that the two images are of the same physical lesion. ROC analysis was used to evaluate the performance of the individual features and the selected feature subset in the task of distinguishing between corresponding and non-corresponding pairs. By using a FFDM database with 124 corresponding image pairs and 35 non-corresponding pairs, the distance feature yielded an AUC (area under the ROC curve) of 0.8 with leave-one-out evaluation by lesion, and the feature subset, which includes distance feature, lesion size and lesion contrast, yielded an AUC of 0.86. The improvement by using multiple features was statistically significant as compared to single feature performance. (p<0.001)

  13. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF

    PubMed Central

    Ali, Nouman; Bajwa, Khalid Bashir; Sablatnig, Robert; Chatzichristofis, Savvas A.; Iqbal, Zeshan; Rashid, Muhammad; Habib, Hafiz Adnan

    2016-01-01

    With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR), high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration. PMID:27315101

  14. Value-Driven Attentional Capture is Modulated by Spatial Context

    PubMed Central

    Anderson, Brian A.

    2014-01-01

    When stimuli are associated with reward outcome, their visual features acquire high attentional priority such that stimuli possessing those features involuntarily capture attention. Whether a particular feature is predictive of reward, however, will vary with a number of contextual factors. One such factor is spatial location: for example, red berries are likely to be found in low-lying bushes, whereas yellow bananas are likely to be found on treetops. In the present study, I explore whether the attentional priority afforded to reward-associated features is modulated by such location-based contingencies. The results demonstrate that when a stimulus feature is associated with a reward outcome in one spatial location but not another, attentional capture by that feature is selective to when it appears in the rewarded location. This finding provides insight into how reward learning effectively modulates attention in an environment with complex stimulus–reward contingencies, thereby supporting efficient foraging. PMID:26069450

  15. Systematic individualized narrative language intervention on the personal narratives of children with autism.

    PubMed

    Petersen, Douglas B; Brown, Catherine L; Ukrainetz, Teresa A; Wise, Christine; Spencer, Trina D; Zebre, Jennifer

    2014-01-01

    The purpose of this study was to investigate the effect of an individualized, systematic language intervention on the personal narratives of children with autism. A single-subject, multiple-baseline design across participants and behaviors was used to examine the effect of the intervention on language features of personal narratives. Three 6- to 8-year-old boys with autism participated in 12 individual intervention sessions that targeted 2-3 story grammar elements (e.g., problem, plan) and 3-4 linguistic complexity elements (e.g., causal subordination, adverbs) selected from each participant's baseline performance. Intervention involved repeated retellings of customized model narratives and the generation of personal narratives with a systematic reduction of visual and verbal scaffolding. Independent personal narratives generated at the end of each baseline, intervention, and maintenance session were analyzed for presence and sophistication of targeted features. Graphical and statistical results showed immediate improvement in targeted language features as a function of intervention. There was mixed evidence of maintenance 2 and 7 weeks after intervention. Children with autism can benefit from an individualized, systematic intervention targeting specific narrative language features. Greater intensity of intervention may be needed to gain enduring effects for some language features.

  16. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.

    PubMed

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-04-15

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.

  17. Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    PubMed Central

    Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong

    2016-01-01

    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505

  18. Feature learning and change feature classification based on deep learning for ternary change detection in SAR images

    NASA Astrophysics Data System (ADS)

    Gong, Maoguo; Yang, Hailun; Zhang, Puzhao

    2017-07-01

    Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.

  19. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    PubMed

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the responses of less-selective cells in lower-level brain areas. These data emphasize that color perception involves multiple areas across a hierarchy of regions, interacting with each other in a complex, recursive manner. Copyright © 2017 the authors 0270-6474/17/3710346-12$15.00/0.

  20. Vibration Sensor-Based Bearing Fault Diagnosis Using Ellipsoid-ARTMAP and Differential Evolution Algorithms

    PubMed Central

    Liu, Chang; Wang, Guofeng; Xie, Qinglu; Zhang, Yanchao

    2014-01-01

    Effective fault classification of rolling element bearings provides an important basis for ensuring safe operation of rotating machinery. In this paper, a novel vibration sensor-based fault diagnosis method using an Ellipsoid-ARTMAP network (EAM) and a differential evolution (DE) algorithm is proposed. The original features are firstly extracted from vibration signals based on wavelet packet decomposition. Then, a minimum-redundancy maximum-relevancy algorithm is introduced to select the most prominent features so as to decrease feature dimensions. Finally, a DE-based EAM (DE-EAM) classifier is constructed to realize the fault diagnosis. The major characteristic of EAM is that the sample distribution of each category is realized by using a hyper-ellipsoid node and smoothing operation algorithm. Therefore, it can depict the decision boundary of disperse samples accurately and effectively avoid over-fitting phenomena. To optimize EAM network parameters, the DE algorithm is presented and two objectives, including both classification accuracy and nodes number, are simultaneously introduced as the fitness functions. Meanwhile, an exponential criterion is proposed to realize final selection of the optimal parameters. To prove the effectiveness of the proposed method, the vibration signals of four types of rolling element bearings under different loads were collected. Moreover, to improve the robustness of the classifier evaluation, a two-fold cross validation scheme is adopted and the order of feature samples is randomly arranged ten times within each fold. The results show that DE-EAM classifier can recognize the fault categories of the rolling element bearings reliably and accurately. PMID:24936949

Top