Sample records for effective field model

  1. Nonlinear Fluid Model Of 3-D Field Effects In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Beidler, M. T.

    2017-10-01

    Extended MHD codes (e.g., NIMROD, M3D-C1) are beginning to explore nonlinear effects of small 3-D magnetic fields on tokamak plasmas. To facilitate development of analogous physically understandable reduced models, a fluid-based dynamic nonlinear model of these added 3-D field effects in the base axisymmetric tokamak magnetic field geometry is being developed. The model incorporates kinetic-based closures within an extended MHD framework. Key 3-D field effects models that have been developed include: 1) a comprehensive modified Rutherford equation for the growth of a magnetic island that includes the classical tearing and NTM perturbed bootstrap current drives, externally applied magnetic field and current drives, and classical and neoclassical polarization current effects, and 2) dynamic nonlinear evolution of the plasma toroidal flow (radial electric field) in response to the 3-D fields. An application of this model to RMP ELM suppression precipitated by an ELM crash will be discussed. Supported by Office of Fusion Energy Sciences, Office of Science, Dept. of Energy Grants DE-FG02-86ER53218 and DE-FG02-92ER54139.

  2. The field-space metric in spiral inflation and related models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlich, Joshua; Olsen, Jackson; Wang, Zhen

    2016-09-22

    Multi-field inflation models include a variety of scenarios for how inflation proceeds and ends. Models with the same potential but different kinetic terms are common in the literature. We compare spiral inflation and Dante’s inferno-type models, which differ only in their field-space metric. We justify a single-field effective description in these models and relate the single-field description to a mass-matrix formalism. We note the effects of the nontrivial field-space metric on inflationary observables, and consequently on the viability of these models. We also note a duality between spiral inflation and Dante’s inferno models with different potentials.

  3. Effect of external fields in Axelrod's model of social dynamics

    NASA Astrophysics Data System (ADS)

    Peres, Lucas R.; Fontanari, José F.

    2012-09-01

    The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.

  4. Enabling full-field physics-based optical proximity correction via dynamic model generation

    NASA Astrophysics Data System (ADS)

    Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas

    2017-07-01

    As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.

  5. Two-field analysis of no-scale supergravity inflation

    DOE PAGES

    Ellis, John; Garcia, Marcos A. G.; Nanopoulos, Dimitri V.; ...

    2015-01-08

    Since the building-blocks of supersymmetric models include chiral superfields containing pairs of effective scalar fields, a two-field approach is particularly appropriate for models of inflation based on supergravity. In this paper, we generalize the two-field analysis of the inflationary power spectrum to supergravity models with arbitrary Kähler potential. We show how two-field effects in the context of no-scale supergravity can alter the model predictions for the scalar spectral index n s and the tensor-to-scalar ratio r, yielding results that interpolate between the Planck-friendly Starobinsky model and BICEP2-friendly predictions. In particular, we show that two-field effects in a chaotic no-scale inflationmore » model with a quadratic potential are capable of reducing r to very small values << 0.1. Here, we also calculate the non-Gaussianity measure f NL, finding that is well below the current experimental sensitivity.« less

  6. Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Tung; Réthoré, Julien; Yvonnet, Julien; Baietto, Marie-Christine

    2017-08-01

    A new multi-phase-field method is developed for modeling the fracture of polycrystals at the microstructural level. Inter and transgranular cracking, as well as anisotropic effects of both elasticity and preferential cleavage directions within each randomly oriented crystal are taken into account. For this purpose, the proposed phase field formulation includes: (a) a smeared description of grain boundaries as cohesive zones avoiding defining an additional phase for grains; (b) an anisotropic phase field model; (c) a multi-phase field formulation where each preferential cleavage direction is associated with a damage (phase field) variable. The obtained framework allows modeling interactions and competition between grains and grain boundary cracks, as well as their effects on the effective response of the material. The proposed model is illustrated through several numerical examples involving a full description of complex crack initiation and propagation within 2D and 3D models of polycrystals.

  7. A Field-Effect Transistor (FET) model for ASAP

    NASA Technical Reports Server (NTRS)

    Ming, L.

    1965-01-01

    The derivation of the circuitry of a field effect transistor (FET) model, the procedure for adapting the model to automated statistical analysis program (ASAP), and the results of applying ASAP on this model are described.

  8. Order Effects of Learning with Modeling and Simulation Software on Field-Dependent and Field-Independent Children's Cognitive Performance: An Interaction Effect

    ERIC Educational Resources Information Center

    Angeli, Charoula; Valanides, Nicos; Polemitou, Eirini; Fraggoulidou, Elena

    2014-01-01

    The study examined the interaction between field dependence-independence (FD/I) and learning with modeling software and simulations, and their effect on children's performance. Participants were randomly assigned into two groups. Group A first learned with a modeling tool and then with simulations. Group B learned first with simulations and then…

  9. Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania.

    PubMed

    Mauya, Ernest William; Hansen, Endre Hofstad; Gobakken, Terje; Bollandsås, Ole Martin; Malimbwi, Rogers Ernest; Næsset, Erik

    2015-12-01

    Airborne laser scanning (ALS) has recently emerged as a promising tool to acquire auxiliary information for improving aboveground biomass (AGB) estimation in sample-based forest inventories. Under design-based and model-assisted inferential frameworks, the estimation relies on a model that relates the auxiliary ALS metrics to AGB estimated on ground plots. The size of the field plots has been identified as one source of model uncertainty because of the so-called boundary effects which increases with decreasing plot size. Recent research in tropical forests has aimed to quantify the boundary effects on model prediction accuracy, but evidence of the consequences for the final AGB estimates is lacking. In this study we analyzed the effect of field plot size on model prediction accuracy and its implication when used in a model-assisted inferential framework. The results showed that the prediction accuracy of the model improved as the plot size increased. The adjusted R 2 increased from 0.35 to 0.74 while the relative root mean square error decreased from 63.6 to 29.2%. Indicators of boundary effects were identified and confirmed to have significant effects on the model residuals. Variance estimates of model-assisted mean AGB relative to corresponding variance estimates of pure field-based AGB, decreased with increasing plot size in the range from 200 to 3000 m 2 . The variance ratio of field-based estimates relative to model-assisted variance ranged from 1.7 to 7.7. This study showed that the relative improvement in precision of AGB estimation when increasing field-plot size, was greater for an ALS-assisted inventory compared to that of a pure field-based inventory.

  10. Partially composite particle physics with and without supersymmetry

    NASA Astrophysics Data System (ADS)

    Kramer, Thomas A.

    Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.

  11. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.

  12. Performance evaluation of parallel electric field tunnel field-effect transistor by a distributed-element circuit model

    NASA Astrophysics Data System (ADS)

    Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki

    2014-12-01

    The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.

  13. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  14. Electroweak baryogenesis and the standard model effective field theory

    NASA Astrophysics Data System (ADS)

    de Vries, Jordy; Postma, Marieke; van de Vis, Jorinde; White, Graham

    2018-01-01

    We investigate electroweak baryogenesis within the framework of the Standard Model Effective Field Theory. The Standard Model Lagrangian is supplemented by dimension-six operators that facilitate a strong first-order electroweak phase transition and provide sufficient CP violation. Two explicit scenarios are studied that are related via the classical equations of motion and are therefore identical at leading order in the effective field theory expansion. We demonstrate that formally higher-order dimension-eight corrections lead to large modifications of the matter-antimatter asymmetry. The effective field theory expansion breaks down in the modified Higgs sector due to the requirement of a first-order phase transition. We investigate the source of the breakdown in detail and show how it is transferred to the CP-violating sector. We briefly discuss possible modifications of the effective field theory framework.

  15. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  16. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.

    PubMed

    Aspart, Florian; Ladenbauer, Josef; Obermayer, Klaus

    2016-11-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial "ball-and-stick" (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields.

  17. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite

    PubMed Central

    Obermayer, Klaus

    2016-01-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial “ball-and-stick” (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with (and without) the influence of weak external electric fields. PMID:27893786

  18. Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy.

    PubMed

    Kattnig, Daniel R; Rosspeintner, Arnulf; Grampp, Günter

    2011-02-28

    This study addresses magnetic field effects in exciplex forming donor-acceptor systems. For moderately exergonic systems, the exciplex and the locally excited fluorophore emission are found to be magneto-sensitive. A previously introduced model attributing this finding to excited state reversibility is confirmed. Systems characterised by a free energy of charge separation up to approximately -0.35 eV are found to exhibit a magnetic field effect on the fluorophore. A simple three-state model of the exciplex is introduced, which uses the reaction distance and the asymmetric electron transfer reaction coordinate as pertinent variables. Comparing the experimental emission band shapes with those predicted by the model, a semi-quantitative picture of the formation of the magnetic field effect is developed based on energy hypersurfaces. The model can also be applied to estimate the indirect contribution of the exchange interaction, even if the perturbative approach fails. The energetic parameters that are essential for the formation of large magnetic field effects on the exciplex are discussed.

  19. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  20. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    USGS Publications Warehouse

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  1. The Rotational and Gravitational Effect of Earthquakes

    NASA Technical Reports Server (NTRS)

    Gross, Richard

    2000-01-01

    The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.

  2. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  3. Tri-critical behavior of the Blume-Emery-Griffiths model on a Kagomé lattice: Effective-field theory and Rigorous bounds

    NASA Astrophysics Data System (ADS)

    Santos, Jander P.; Sá Barreto, F. C.

    2016-01-01

    Spin correlation identities for the Blume-Emery-Griffiths model on Kagomé lattice are derived and combined with rigorous correlation inequalities lead to upper bounds on the critical temperature. From the spin correlation identities the mean field approximation and the effective field approximation results for the magnetization, the critical frontiers and the tricritical points are obtained. The rigorous upper bounds on the critical temperature improve over those effective-field type theories results.

  4. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  5. Development of Macroscale Models of UO 2 Fuel Sintering and Densification using Multiscale Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenquist, Ian; Tonks, Michael

    2016-10-01

    Light water reactor fuel pellets are fabricated using sintering to final densities of 95% or greater. During reactor operation, the porosity remaining in the fuel after fabrication decreases further due to irradiation-assisted densification. While empirical models have been developed to describe this densification process, a mechanistic model is needed as part of the ongoing work by the NEAMS program to develop a more predictive fuel performance code. In this work we will develop a phase field model of sintering of UO 2 in the MARMOT code, and validate it by comparing to published sintering data. We will then add themore » capability to capture irradiation effects into the model, and use it to develop a mechanistic model of densification that will go into the BISON code and add another essential piece to the microstructure-based materials models. The final step will be to add the effects of applied fields, to model field-assisted sintering of UO 2. The results of the phase field model will be validated by comparing to data from field-assisted sintering. Tasks over three years: 1. Develop a sintering model for UO 2 in MARMOT 2. Expand model to account for irradiation effects 3. Develop a mechanistic macroscale model of densification for BISON« less

  6. A NEW SIMPLE DYNAMO MODEL FOR STELLAR ACTIVITY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoi, N.; Hamba, F.; Schmitt, D.

    2016-06-20

    A new simple dynamo model for stellar activity cycle is proposed. By considering an inhomogeneous flow effect on turbulence, it is shown that turbulent cross helicity (velocity–magnetic-field correlation) enters the expression of turbulent electromotive force as the coupling coefficient for the mean absolute vorticity. This makes the present model different from the current α –Ω-type models in two main ways. First, in addition to the usual helicity ( α ) and turbulent magnetic diffusivity ( β ) effects, we consider the cross-helicity effect as a key ingredient of the dynamo process. Second, the spatiotemporal evolution of cross helicity is solvedmore » simultaneously with the mean magnetic fields. The basic scenario is as follows. In the presence of turbulent cross helicity, the toroidal field is induced by the toroidal rotation. Then, as in usual models, the α effect generates the poloidal field from the toroidal one. This induced poloidal field produces a turbulent cross helicity whose sign is opposite to the original one (negative production). With this cross helicity of the reversed sign, a reversal in field configuration starts. Eigenvalue analyses of the simplest possible model give a butterfly diagram, which confirms the above scenario and the equatorward migrations, the phase relationship between the cross helicity and magnetic fields. These results suggest that the oscillation of the turbulent cross helicity is a key for the activity cycle. The reversal of the cross helicity is not the result of the magnetic-field reversal, but the cause of the latter. This new model is expected to open up the possibility of the mean-field or turbulence closure dynamo approaches.« less

  7. 2PI effective action for the SYK model and tensor field theories

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Gurau, Razvan

    2018-05-01

    We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.

  8. A new surface-potential-based compact model for the MoS2 field effect transistors in active matrix display applications

    NASA Astrophysics Data System (ADS)

    Cao, Jingchen; Peng, Songang; Liu, Wei; Wu, Quantan; Li, Ling; Geng, Di; Yang, Guanhua; Ji, Zhouyu; Lu, Nianduan; Liu, Ming

    2018-02-01

    We present a continuous surface-potential-based compact model for molybdenum disulfide (MoS2) field effect transistors based on the multiple trapping release theory and the variable-range hopping theory. We also built contact resistance and velocity saturation models based on the analytical surface potential. This model is verified with experimental data and is able to accurately predict the temperature dependent behavior of the MoS2 field effect transistor. Our compact model is coded in Verilog-A, which can be implemented in a computer-aided design environment. Finally, we carried out an active matrix display simulation, which suggested that the proposed model can be successfully applied to circuit design.

  9. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NASA Astrophysics Data System (ADS)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron’s local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract’s position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  10. The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2015-03-01

    The effects of vortex translation and radial vortex structure in the distribution of boundary layer winds in the inner core of mature tropical cyclones are examined using a high-resolution slab model and a multilevel model. It is shown that the structure and magnitude of the wind field (and the corresponding secondary circulation) depends sensitively on the radial gradient of the gradient wind field above the boundary layer. Furthermore, it is shown that vortex translation creates low wave number asymmetries in the wind field that rotate anticyclonically with height. A budget analysis of the steady state wind field for both models was also performed in this study. Although the agradient force drives the evolution of the boundary layer wind field for both models, it is shown that the manner in which the boundary layer flow responds to this force differs between the two model representations. In particular, the inner core boundary layer flow in the slab model is dominated by the effects of horizontal advection and horizontal diffusion, leading to the development of shock structures in the model. Conversely, the inner core boundary layer flow in the multilevel model is primarily influenced by the effects of vertical advection and vertical diffusion, which eliminates shock structures in this model. These results further indicate that special care is required to ensure that qualitative applications from slab models are not unduly affected by the neglect of vertical advection. This article was corrected on 31 MAR 2015. See the end of the full text for details.

  11. Mean-field velocity difference model considering the average effect of multi-vehicle interaction

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di

    2018-06-01

    In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.

  12. Estimating thermal performance curves from repeated field observations

    USGS Publications Warehouse

    Childress, Evan; Letcher, Benjamin H.

    2017-01-01

    Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.

  13. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter ofmore » anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.« less

  14. 2-3D nonlocal transport model in magnetized laser plasmas.

    NASA Astrophysics Data System (ADS)

    Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy

    2004-11-01

    We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.

  15. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  16. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  17. The effect of longitudinal conductance variations on the ionospheric prompt penetration electric fields

    NASA Astrophysics Data System (ADS)

    Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.

    Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.

  18. Very Large Array H I Zeeman Observations of the Cygnus X Region: DR 22 and ON 2

    NASA Astrophysics Data System (ADS)

    Mayo, E. A.; Troland, T. H.

    2012-02-01

    We have used the Very Large Array to study the Zeeman effect in 21 cm H I absorption lines from two star-forming regions in the Cygnus X complex, DR 22 and ON 2. We measure the line-of-sight magnetic field toward these regions, finding B los = -84 ± 11 μG toward the DR 22 H II region and B los < 50 μG toward each of the two H II regions in ON 2. We interpret these results in terms of two different models. In one model, we assume that the H I Zeeman effect is a measure of magnetic fields in the associated molecular clouds. If so, then the DR 22 molecular cloud is magnetically subcritical, that is, magnetically dominated. The ON 2 molecular clouds are magnetically supercritical. In a second model, we assume that the H I Zeeman effect is a measure of magnetic fields in photon-dominated regions where the gas has been compressed (and the field amplified) by absorption of stellar radiation. We find that this second model, where the measured field strength has been affected by star formation, accounts well for the DR 22 H I Zeeman effect. This same model, however, overpredicts the magnetic field in ON 2. ON 2 may be a region where the magnetic field is energetically insignificant or where the field happens to lie nearly in the plane of the sky.

  19. Developments in deep brain stimulation using time dependent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  20. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  1. Holomorphy without supersymmetry in the Standard Model Effective Field Theory

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2014-12-12

    The anomalous dimensions of dimension-six operators in the Standard Model Effective Field Theory (SMEFT) respect holomorphy to a large extent. Holomorphy conditions are reminiscent of supersymmetry, even though the SMEFT is not a supersymmetric theory.

  2. Gradient effects in a new class of electro-elastic bodies

    NASA Astrophysics Data System (ADS)

    Arvanitakis, Antonios

    2018-06-01

    Continuum theories for electro-elastic solids suggest the development of electric field or polarization-based models. Advanced versions of these models are the so-called gradient models, i.e., polarization gradient and electric field gradient models, which prove to be more than capable of explaining the behavior of a continuum in a wider range of length scales. In this work, implicit constitutive relations for electro-elastic bodies are considered with the introduction of polarization and electric field gradient effects. In this sense, the new class of electro-elastic bodies extends even further to account for nonlocality in constitutive equations, besides strain-limiting behavior and polarization saturation for large values of stresses and electric field, respectively. Nonlocality in constitutive equations is essential in modeling various phenomena.

  3. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  4. RF plasma modeling of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.

    2013-02-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  5. Field Model: An Object-Oriented Data Model for Fields

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  6. Generalized two-temperature model for coupled phonon-magnon diffusion.

    PubMed

    Liao, Bolin; Zhou, Jiawei; Chen, Gang

    2014-07-11

    We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.

  7. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  8. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Wang, X. J.; Wang, J.

    2016-02-01

    The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic-electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model.

  9. Evolution of spherical over-densities in tachyon scalar field model

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Felegary, F.; Darabi, F.

    2017-09-01

    We study the tachyon scalar field model in flat FRW cosmology with the particular potential ϕ-2 and the scale factor behavior a (t) =tn. We consider the spherical collapse model and investigate the effects of the tachyon scalar field on the structure formation in flat FRW universe. We calculate δc (zc), λ (zc), ξ (zc), ΔV (zc), log ⁡ [ νf (ν) ] and log ⁡ [ n (k) ] for the tachyon scalar field model and compare the results with the results of EdS model and ΛCDM model. It is shown that in the tachyon scalar field model the structure formation may occur earlier, in comparison to the other models.

  10. Analysis and modeling of photomask edge effects for 3D geometries and the effect on process window

    NASA Astrophysics Data System (ADS)

    Miller, Marshal A.; Neureuther, Andrew R.

    2009-03-01

    Simulation was used to explore boundary layer models for 1D and 2D patterns that would be appropriate for fast CAD modeling of physical effects during design. FDTD simulation was used to compare rigorous thick mask modeling to a thin mask approximation (TMA). When features are large, edges can be viewed as independent and modeled as separate from one another, but for small mask features, edges experience cross-talk. For attenuating phase-shift masks, interaction distances as large as 150nm were observed. Polarization effects are important for accurate EMF models. Due to polarization effects, the edge perturbations in line ends become different compared to a perpendicular edge. For a mask designed to be real, the 90o transmission created at edges produces an asymmetry through focus, which is also polarization dependent. Thick mask fields are calculated using TEMPEST and Panoramic Technologies software. Fields are then analyzed in the near field and on wafer CDs to examine deviations from TMA.

  11. Calculations of the Electric Fields in Liquid Solutions

    PubMed Central

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  12. The Role of Diffusivity Quenching in Flux-transport Dynamo Models

    NASA Astrophysics Data System (ADS)

    Guerrero, Gustavo; Dikpati, Mausumi; de Gouveia Dal Pino, Elisabete M.

    2009-08-01

    In the nonlinear phase of a dynamo process, the back-reaction of the magnetic field upon the turbulent motion results in a decrease of the turbulence level and therefore in a suppression of both the magnetic field amplification (the α-quenching effect) and the turbulent magnetic diffusivity (the η-quenching effect). While the former has been widely explored, the effects of η-quenching in the magnetic field evolution have rarely been considered. In this work, we investigate the role of the suppression of diffusivity in a flux-transport solar dynamo model that also includes a nonlinear α-quenching term. Our results indicate that, although for α-quenching the dependence of the magnetic field amplification with the quenching factor is nearly linear, the magnetic field response to η-quenching is nonlinear and spatially nonuniform. We have found that the magnetic field can be locally amplified in this case, forming long-lived structures whose maximum amplitude can be up to ~2.5 times larger at the tachocline and up to ~2 times larger at the center of the convection zone than in models without quenching. However, this amplification leads to unobservable effects and to a worse distribution of the magnetic field in the butterfly diagram. Since the dynamo cycle period increases when the efficiency of the quenching increases, we have also explored whether the η-quenching can cause a diffusion-dominated model to drift into an advection-dominated regime. We have found that models undergoing a large suppression in η produce a strong segregation of magnetic fields that may lead to unsteady dynamo-oscillations. On the other hand, an initially diffusion-dominated model undergoing a small suppression in η remains in the diffusion-dominated regime.

  13. Analysis of charging and sudden-discharging characteristics of no-insulation REBCO coil using an electromagnetic coupling model

    NASA Astrophysics Data System (ADS)

    Liu, Donghui; Yong, Huadong; Zhou, Youhe

    2017-11-01

    No-insulation (NI) high-temperature superconducting (HTS) REBCO coil has been a promising candidate for manufacturing high-field superconducting magnets with high thermal stability and self-protecting features. When NI coil is operated at the external field, it is necessary to analyze charging and sudden-discharging characteristics of NI coil by considering the effect of magnetic field. In addition, the self-field effect has an obvious influence on the critical current for large-scale coil. Thus, an electromagnetic coupling model in which an equivalent circuit axisymmetric model considers the effect of magnetic field is proposed. The results show that when the radial current exists, the coil voltage and central field will tend to be stable faster. In a high field, the decrease of the critical current leads to the increase of radial current and this effect is more obvious for a larger field. And the charging time with the increase of the external field reduces significantly, while the sudden-discharging time is almost unchanged. For NI coils composed of many double-pancake coils, the charging time and sudden-discharging time proportionally increase with the increase of the number of double-pancake coil and turn number of single-pancake coil.

  14. The effects of Peltier marking on semiconductor growth in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sellers, Cheryl Casper

    This research represents a model for three dimensional semiconductor growth in a vertical Bridgman process within an externally applied magnetic field with the additional effects of Peltier marking. The magnetic field is strong enough that inertial effects can be neglected and that viscous effects are confined to boundary layers. The objective of this research is a first step in the development of a method to accurately predict the distribution of dopants and species in the melt after a current pulse with a given duration and strength, with a given magnetic field and with a given crystal-melt interface shape. The first model involves an asymptotic solution to provide physical clarification of the flow. In both models the crystal/melt interface is modeled as fr=3r2 where 3≪1 . The first model incorporates a variable, a which ranges from 0.25 to 1.0. The second model involves an analytical solution with an arbitrary Ha and a≪1 . These models show the how the azimuthal velocity varies with increasing Ha and how the stream function varies in the meridional problem. This gives insight into how the dopant is mixed during the crystal growth process. The results demonstrate that current pulses with relatively weak magnetic fields and modest interface curvature can lead to very strong mixing in the melt.

  15. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2017-03-01

    Magnetospheric currents play an important role in the electrodynamics of near-Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterising the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  16. Near-Earth Magnetic Field Effects of Large-Scale Magnetospheric Currents

    NASA Technical Reports Server (NTRS)

    Luehr, Hermann; Xiong, Chao; Olsen, Nils; Le, Guan

    2016-01-01

    Magnetospheric currents play an important role in the electrodynamics of near- Earth space. This has been the topic of many space science studies. Here we focus on the magnetic fields they cause close to Earth. Their contribution to the geomagnetic field is the second largest after the core field. Significant progress in interpreting the magnetic fields from the different sources has been achieved thanks to magnetic satellite missions like Ørsted, CHAMP and now Swarm. Of particular interest for this article is a proper representation of the magnetospheric ring current effect. Uncertainties in modelling its effect still produce the largest residuals between observations and present-day geomagnetic field models. A lot of progress has been achieved so far, but there are still open issues like the characteristics of the partial ring current. Other currents discussed are those flowing in the magnetospheric tail. Also their magnetic contribution at LEO orbits is non-negligible. Treating them as an independent source is a more recent development, which has cured some of the problems in geomagnetic field modelling. Unfortunately there is no index available for characterizing the tail current intensity. Here we propose an approach that may help to properly quantify the magnetic contribution from the tail current for geomagnetic field modelling. Some open questions that require further investigation are mentioned at the end.

  17. [Modeling and analysis of volume conduction based on field-circuit coupling].

    PubMed

    Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming

    2012-08-01

    Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.

  18. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment

    NASA Astrophysics Data System (ADS)

    Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.

    2017-10-01

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  19. Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.

    PubMed

    Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M

    2017-09-21

    In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.

  20. Effects of wildland fire smoke on a tree-roosting bat: integrating a plume model, field measurements, and mammalian dose-response relationships

    Treesearch

    M.B. Dickinson; J.C. Norris; A.S. Bova; R.L. Kremens; V. Young; M.J. Lacki

    2010-01-01

    Faunal injury and mortality in wildland fires is a concern for wildlife and fire management although little work has been done on the mechanisms by which exposures cause their effects. In this paper, we use an integral plume model, field measurements, and models of carbon monoxide and heat effects to explore risk to tree-roosting bats during prescribed fires in mixed-...

  1. Interactive Tooth Separation from Dental Model Using Segmentation Field

    PubMed Central

    2016-01-01

    Tooth segmentation on dental model is an essential step of computer-aided-design systems for orthodontic virtual treatment planning. However, fast and accurate identifying cutting boundary to separate teeth from dental model still remains a challenge, due to various geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, and varying degrees of crowding problems. Most segmentation approaches presented before are not able to achieve a balance between fine segmentation results and simple operating procedures with less time consumption. In this article, we present a novel, effective and efficient framework that achieves tooth segmentation based on a segmentation field, which is solved by a linear system defined by a discrete Laplace-Beltrami operator with Dirichlet boundary conditions. A set of contour lines are sampled from the smooth scalar field, and candidate cutting boundaries can be detected from concave regions with large variations of field data. The sensitivity to concave seams of the segmentation field facilitates effective tooth partition, as well as avoids obtaining appropriate curvature threshold value, which is unreliable in some case. Our tooth segmentation algorithm is robust to dental models with low quality, as well as is effective to dental models with different levels of crowding problems. The experiments, including segmentation tests of varying dental models with different complexity, experiments on dental meshes with different modeling resolutions and surface noises and comparison between our method and the morphologic skeleton segmentation method are conducted, thus demonstrating the effectiveness of our method. PMID:27532266

  2. Note on the initial conditions within the effective field theory approach of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Hu, Bin; Zhang, Yi

    2017-12-01

    By using the effective field theory approach, we investigate the role of initial conditions for the dark energy or modified gravity models. In detail, we consider the constant and linear parametrization of the effective Newton constant models. First, under the adiabatic assumption, the correction from the extra scalar degree of freedom in the beyond Λ CDM model is found to be negligible. The dominant ingredient in this setup is the primordial curvature perturbation originated from the inflation mechanism, and the energy budget of the matter components is not very crucial. Second, the isocurvature perturbation sourced by the extra scalar field is studied. For the constant and linear models of the effective Newton constant, no such kind of scalar mode exists. For the quadratic model, there is a nontrivial one. However, the amplitude of the scalar field is damped away very fast on all scales. Consequently, it could not support a reasonable structure formation. Finally, we study the importance of the setup of the scalar field starting time. By setting different turn-on times, namely, a =10-2 and a =10-7, we compare the cosmic microwave background radiation temperature, lensing deflection angle autocorrelation function, and the matter power spectrum in the constant and linear models. We find there is an order of O (1 %) difference in the observable spectra for constant model, while for the linear model, it is smaller than O (0.1 %).

  3. Modifying the electronic and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kinder, Jesse M.

    The intrinsic electronic and optical properties of carbon nanotubes make them promising candidates for circuit elements and LEDs in nanoscale devices. However, applied fields and interactions with the environment can modify these intrinsic properties. This dissertation is a theoretical study of perturbations to an ideal carbon nanotube. It illustrates how transport and optical properties of carbon nanotubes can be adversely affected or intentionally modified by the local environment. The dissertation is divided into three parts. Part I analyzes the effect of a transverse electric field on the single-electron energy spectrum of semiconducting carbon nanotubes. Part II analyzes the effect of the local environment on selection rules and decay pathways relevant to dark excitons. Part III is a series of 26 appendices. Two different models for a transverse electric field are introduced in Part I. The first is a uniform field perpendicular to the nanotube axis. This model suggests the field has little effect on the band gap until it exceeds a critical value that can be tuned with strain or a magnetic field. The second model is a transverse field localized to a small region along the nanotube axis. The field creates a pair of exponentially localized bound states but has no effect on the band gap for particle transport. Part II explores the physics of dark excitons in carbon nanotubes. Two model calculations illustrate the effect of the local environment on allowed optical transitions and nonradiative recombination pathways. The first model illustrates the role of inversion symmetry in the optical spectrum. Broken inversion symmetry may explain low-lying peaks in the exciton spectrum of boron nitride nanotubes and localized photoemission around impurities and interfaces in carbon nanotubes. The second model in Part II suggests that free charge carriers can mediate an efficient nonradiative decay process for dark excitons in carbon nanotubes. The appendices in Part III provide background material and details of calculations relevant to the main text. These appendices may be useful to researchers new to the study of carbon nanotubes.

  4. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulatingmore » hardedge nonlinear fringe effects in quadrupoles.« less

  5. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    NASA Astrophysics Data System (ADS)

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-12-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  6. Validation of Finite-Element Models of Persistent-Current Effects in Nb 3Sn Accelerator Magnets

    DOE PAGES

    Wang, X.; Ambrosio, G.; Chlachidze, G.; ...

    2015-01-06

    Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnetmore » designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed.« less

  7. Building analytical three-field cosmological models

    NASA Astrophysics Data System (ADS)

    Santos, J. R. L.; Moraes, P. H. R. S.; Ferreira, D. A.; Neta, D. C. Vilar

    2018-02-01

    A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called "extension method". The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters.

  8. Models of second-order effects in metal-oxide-semiconductor field-effect transistors for computer applications

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John; Coss, James

    1988-01-01

    Second-order effects in metal-oxide-semiconductor field-effect transistors (MOSFETs) are important for devices with dimensions of 2 microns or less. The short and narrow channel effects and drain-induced barrier lowering primarily affect threshold voltage, but formulas for drain current must also take these effects into account. In addition, the drain current is sensitive to channel length modulation due to pinch-off or velocity saturation and is diminished by electron mobility degradation due to normal and lateral electric fields in the channel. A model of a MOSFET including these considerations and emphasizing charge conservation is discussed.

  9. Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Crocker, N. A.; Carter, T. A.

    The evolution of electromagnetic wave polarization is modeled for propagation in the major radial direction in the National Spherical Torus Experiment with retroreflection from the center stack of the vacuum vessel. This modeling illustrates that the Cotton-Mouton effect-elliptization due to the magnetic field perpendicular to the propagation direction-is shown to be strongly weighted to the high-field region of the plasma. An interaction between the Faraday rotation and Cotton-Mouton effects is also clearly identified. Elliptization occurs when the wave polarization direction is neither parallel nor perpendicular to the local transverse magnetic field. Since Faraday rotation modifies the polarization direction during propagation,more » it must also affect the resultant elliptization. The Cotton-Mouton effect also intrinsically results in rotation of the polarization direction, but this effect is less significant in the plasma conditions modeled. The interaction increases at longer wavelength and complicates interpretation of polarimetry measurements.« less

  10. Effects of Convection Electric Fields on Modeled Plasmaspheric Densities and ccc Temperatures

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Richards, Phil G.; Liao, Jin-Hua; Craven, Paul D.

    1998-01-01

    This paper examines the effects of convection electric fields on plasmaspheric H+, O+, He+, and N+ densities and electron and ion temperatures. These effects are studied with the aid of the Field Line Interhemispheric Plasma (FLIP) model, which has recently been extended to include the effects of ExB drifts. The FLIP model solves the continuity and momentum equations for the major ion species as well as the energy equations for ions and electrons along entire drifting flux tubes from 100 km altitude in the northern hemisphere to 100 km altitude in the southern hemisphere. Electron heating in the ionosphere and plasmasphere is provided by the solution of two-stream equations for photoelectrons. The dawn-dusk electric field imposed by the solar wind causes changes in plasmaspheric density and temperature as the plasma drifts onto flux tubes having different volumes. In an idealized convection model, outward drifts in the afternoon cause decreases in the plasmasphere density and temperature while inward drifts in the evening cause increases in plasmasphere density and temperature. In this paper we examine the effects of convection electric fields on the rate of refilling of flux tubes and investigate the hypothesis that convection electric fields are responsible for the unusually high evening electron temperatures and the post-midnight density maxima often observed in the winter ionosphere above Millstone Hill.

  11. Domain wall dynamics driven by spin transfer torque and the spin-orbit field.

    PubMed

    Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo

    2012-01-18

    We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

  12. Geometric properties-dependent neural synchrony modulated by extracellular subthreshold electric field

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Si, Kaili; Yi, Guosheng; Wang, Jiang; Lu, Meili

    2016-07-01

    In this paper, we use a reduced two-compartment neuron model to investigate the interaction between extracellular subthreshold electric field and synchrony in small world networks. It is observed that network synchronization is closely related to the strength of electric field and geometric properties of the two-compartment model. Specifically, increasing the electric field induces a gradual improvement in network synchrony, while increasing the geometric factor results in an abrupt decrease in synchronization of network. In addition, increasing electric field can make the network become synchronous from asynchronous when the geometric parameter is set to a given value. Furthermore, it is demonstrated that network synchrony can also be affected by the firing frequency and dynamical bifurcation feature of single neuron. These results highlight the effect of weak field on network synchrony from the view of biophysical model, which may contribute to further understanding the effect of electric field on network activity.

  13. Geomagnetic field model for the last 5 My: time-averaged field and secular variation

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Tadahiro; Kono, Masaru

    2002-11-01

    Structure of the geomagnetic field has bee studied by using the paleomagetic direction data of the last 5 million years obtained from lava flows. The method we used is the nonlinear version, similar to the works of Gubbins and Kelly [Nature 365 (1993) 829], Johnson and Constable [Geophys. J. Int. 122 (1995) 488; Geophys. J. Int. 131 (1997) 643], and Kelly and Gubbins [Geophys. J. Int. 128 (1997) 315], but we determined the time-averaged field (TAF) and the paleosecular variation (PSV) simultaneously. As pointed out in our previous work [Earth Planet. Space 53 (2001) 31], the observed mean field directions are affected by the fluctuation of the field, as described by the PSV model. This effect is not excessively large, but cannot be neglected while considering the mean field. We propose that the new TAF+PSV model is a better representation of the ancient magnetic field, since both the average and fluctuation of the field are consistently explained. In the inversion procedure, we used direction cosines instead of inclinations and declinations, as the latter quantities show singularity or unstable behavior at the high latitudes. The obtained model gives reasonably good fit to the observed means and variances of direction cosines. In the TAF model, the geocentric axial dipole term ( g10) is the dominant component; it is much more pronounced than that in the present magnetic field. The equatorial dipole component is quite small, after averaging over time. The model shows a very smooth spatial variation; the nondipole components also seem to be averaged out quite effectively over time. Among the other coefficients, the geocentric axial quadrupole term ( g20) is significantly larger than the other components. On the other hand, the axial octupole term ( g30) is much smaller than that in a TAF model excluding the PSV effect. It is likely that the effect of PSV is most clearly seen in this term, which is consistent with the conclusion reached in our previous work. The PSV model shows large variance of the (2,1) component, which is in good agreement with the previous PSV models obtained by forward approaches. It is also indicated that the variance of the axial dipole term is very small. This is in conflict with the studies based on paleointensity data, but we show that this conclusion is not inconsistent with the paleointensity data because a substantial part of the apparent scatter in paleointensities may be attributable to effects other than the fluctuations in g10 itself.

  14. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  15. Scalar field propagation in the ϕ 4 κ-Minkowski model

    NASA Astrophysics Data System (ADS)

    Meljanac, S.; Samsarov, A.; Trampetić, J.; Wohlgenannt, M.

    2011-12-01

    In this article we use the noncommutative (NC) κ-Minkowski ϕ 4 model based on the κ-deformed star product, (★ h ). The action is modified by expanding up to linear order in the κ-deformation parameter a, producing an effective model on commutative spacetime. For the computation of the tadpole diagram contributions to the scalar field propagation/self-energy, we anticipate that statistics on the κ-Minkowski is specifically κ-deformed. Thus our prescription in fact represents hybrid approach between standard quantum field theory (QFT) and NCQFT on the κ-deformed Minkowski spacetime, resulting in a κ-effective model. The propagation is analyzed in the framework of the two-point Green's function for low, intermediate, and for the Planckian propagation energies, respectively. Semiclassical/hybrid behavior of the first order quantum correction do show up due to the κ-deformed momentum conservation law. For low energies, the dependence of the tadpole contribution on the deformation parameter a drops out completely, while for Planckian energies, it tends to a fixed finite value. The mass term of the scalar field is shifted and these shifts are very different at different propagation energies. At the Planck-ian energies we obtain the direction dependent κ-modified dispersion relations. Thus our κ-effective model for the massive scalar field shows a birefringence effect.

  16. 3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method

    NASA Astrophysics Data System (ADS)

    Salinas, F. S.; Lancaster, J. L.; Fox, P. T.

    2009-06-01

    Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

  17. Dependence of Attenuation of Common Mode Radiation from Indoor Power Line Communication System on Structure of Reinforced Concrete Wall

    NASA Astrophysics Data System (ADS)

    Wu, Ifong; Ishigami, Shinobu; Gotoh, Kaoru; Matsumoto, Yasushi

    The attenuation effect of the walls of a building on the electromagnetic (EM) field generated by an indoor power line communication (PLC) system is numerically investigated using the finite integration (FI) method. In particular, we focus on the frequency range 2-6MHz, for which the attenuation effect has not yet been sufficiently analyzed. We model a single, finite-sized wall instead of an entire house, to focus on the dependence of the EM field on the wall structure and also reduce the computational resources required. The EM field strength is evaluated at many points on a view plane 10m from the wall model, and the results are statistically processed to determine the attenuation effect of the wall. We show that the leakage of an EM field at 2-6MHz is suppressed by about 30dB by a reinforced concrete wall. We also show that the main contributor to the attenuation effect is the rebar in the wall. We then investigate the relation between the attenuation effect of a single-wall model and that of a house model. The results show that the attenuation effect of a house model is almost the same as that of a 15-m-wall model. We conclude that the use of a single-wall model instead of a house model is effective in determining the attenuation of the EM leakage. This simple structure reduces analytic space, time, and memory in the evaluation of the dependence on the wall structure of the EM leakage from indoor PLC systems.

  18. Lefschetz thimbles in fermionic effective models with repulsive vector-field

    NASA Astrophysics Data System (ADS)

    Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira

    2018-06-01

    We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.

  19. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  20. Flow effects in a vertical CVD reactor

    NASA Technical Reports Server (NTRS)

    Young, G. W.; Hariharan, S. I.; Carnahan, R.

    1992-01-01

    A model is presented to simulate the non-Boussinesq flow in a vertical, two-dimensional, chemical vapor deposition reactor under atmospheric pressure. Temperature-dependent conductivity, mass diffusivity, viscosity models, and reactive species mass transfer to the substrate are incorporated. In the limits of small Mach number and small aspect ratio, asymptotic expressions for the flow, temperature, and species fields are developed. Soret diffusion effects are also investigated. Analytical solutions predict an inverse relationship between temperature field and concentration field due to Soret effects. This finding is consistent with numerical simulations, assisting in the understanding of the complex interactions amongst the flow, thermal, and species fields in a chemically reacting system.

  1. Dimensional reduction of the Standard Model coupled to a new singlet scalar field

    NASA Astrophysics Data System (ADS)

    Brauner, Tomáš; Tenkanen, Tuomas V. I.; Tranberg, Anders; Vuorinen, Aleksi; Weir, David J.

    2017-03-01

    We derive an effective dimensionally reduced theory for the Standard Model augmented by a real singlet scalar. We treat the singlet as a superheavy field and integrate it out, leaving an effective theory involving only the Higgs and SU(2) L × U(1) Y gauge fields, identical to the one studied previously for the Standard Model. This opens up the possibility of efficiently computing the order and strength of the electroweak phase transition, numerically and nonperturbatively, in this extension of the Standard Model. Understanding the phase diagram is crucial for models of electroweak baryogenesis and for studying the production of gravitational waves at thermal phase transitions.

  2. Modeling the Effects of Conservation Tillage on Water Quality at the Field Scale

    USDA-ARS?s Scientific Manuscript database

    The development and application of predictive tools to quantitatively assess the effects of tillage and related management activities should be carefully tested against high quality field data. This study reports on: 1) the calibration and validation of the Root Zone Water Quality Model (RZWQM) to a...

  3. Estimating effective soil properties of heterogeneous areas for modeling infiltration and redistribution

    USDA-ARS?s Scientific Manuscript database

    Field scale water infiltration and soil-water and solute transport models require spatially-averaged “effective” soil hydraulic parameters to represent the average flux and storage. The values of these effective parameters vary for different conditions, processes, and component soils in a field. For...

  4. Facilitative Orthographic Neighborhood Effects: The SERIOL Model Account

    ERIC Educational Resources Information Center

    Whitney, Carol; Lavidor, Michal

    2005-01-01

    A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the…

  5. High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Gliebe, P. R.; Mani, R.; Mungur, P.

    1989-01-01

    A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.

  6. Effect of Delta Tabs on Free Jets from Complex Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2001-01-01

    Effects of 'delta-tabs' on the mixing and noise characteristics of two model-scale nozzles have been investigated experimentally. The two models are (1) an eight-lobed nozzle simulating the primary flow of a mixer-ejector configuration considered for the HSCT program, (2) an axisymmetric nozzle with a centerbody simulating the 'ACE' configuration also considered for the HSCT program. Details of the flow-field for model (1) are explored, while primarily the noise-field is explored for model (2). Effects of different tab configurations are documented.

  7. 3D modeling of dual-gate FinFET.

    PubMed

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  8. 3D modeling of dual-gate FinFET

    NASA Astrophysics Data System (ADS)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-01

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at V g1 > V g2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  9. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    NASA Astrophysics Data System (ADS)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  10. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  11. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive magnetic dipole and low oceanic shell conductivity).

  12. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    PubMed

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  14. Regional models of the gravity field from terrestrial gravity data of heterogeneous quality and density

    NASA Astrophysics Data System (ADS)

    Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli

    2014-05-01

    Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.

  15. Simulation of nonlinear superconducting rf losses derived from characteristic topography of etched and electropolished niobium surfaces

    DOE PAGES

    Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2016-03-22

    A simplified numerical model has been developed to simulate nonlinear superconducting radiofrequency (SRF) losses on Nb surfaces. This study focuses exclusively on excessive surface resistance (R s) losses due to the microscopic topographical magnetic field enhancements. When the enhanced local surface magnetic field exceeds the superconducting critical transition magnetic field H c, small volumes of surface material may become normal conducting and increase the effective surface resistance without inducing a quench. We seek to build an improved quantitative characterization of this qualitative model. Using topographic data from typical buffered chemical polish (BCP)- and electropolish (EP)-treated fine grain niobium, we havemore » estimated the resulting field-dependent losses and extrapolated this model to the implications for cavity performance. The model predictions correspond well to the characteristic BCP versus EP high field Q 0 performance differences for fine grain niobium. Lastly, we describe the algorithm of the model, its limitations, and the effects of this nonlinear loss contribution on SRF cavity performance.« less

  16. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    NASA Astrophysics Data System (ADS)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  17. A three-dimensional finite element model of near-field scanning microwave microscopy

    NASA Astrophysics Data System (ADS)

    Balusek, Curtis; Friedman, Barry; Luna, Darwin; Oetiker, Brian; Babajanyan, Arsen; Lee, Kiejin

    2012-10-01

    A three-dimensional finite element model of an experimental near-field scanning microwave microscope (NSMM) has been developed and compared to experiment on non conducting samples. The microwave reflection coefficient S11 is calculated as a function of frequency with no adjustable parameters. There is qualitative agreement with experiment in that the resonant frequency can show a sizable increase with sample dielectric constant; a result that is not obtained with a two-dimensional model. The most realistic model shows a semi-quantitative agreement with experiment. The effect of different sample thicknesses and varying tip sample distances is investigated numerically and shown to effect NSMM performance in a way consistent with experiment. Visualization of the electric field indicates that the field is primarily determined by the shape of the coupling hooks.

  18. Scattering effects on the performance of carbon nanotube field effect transistor in a compact model

    NASA Astrophysics Data System (ADS)

    Hamieh, S. D.; Desgreys, P.; Naviner, J. F.

    2010-01-01

    Carbon nanotube field-effect transistors (CNTFET) are being extensively studied as possible successors to CMOS. Device simulators have been developed to estimate their performance in sub-10-nm and device structures have been fabricated. In this work, a new compact model of single-walled semiconducting CNTFET is proposed implementing the calculation of energy conduction sub-band minima and the treatment of scattering effects through energy shift in CNTFET. The developed model has been used to simulate I-V characteristics using VHDL-AMS simulator.

  19. Einstein’s gravity from a polynomial affine model

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Skirzewski, Aureliano

    2018-03-01

    We show that the effective field equations for a recently formulated polynomial affine model of gravity, in the sector of a torsion-free connection, accept general Einstein manifolds—with or without cosmological constant—as solutions. Moreover, the effective field equations are partially those obtained from a gravitational Yang–Mills theory known as Stephenson–Kilmister–Yang theory. Additionally, we find a generalization of a minimally coupled massless scalar field in General Relativity within a ‘minimally’ coupled scalar field in this affine model. Finally, we present a brief (perturbative) analysis of the propagators of the gravitational theory, and count the degrees of freedom. For completeness, we prove that a Birkhoff-like theorem is valid for the analyzed sector.

  20. MatchingTools: A Python library for symbolic effective field theory calculations

    NASA Astrophysics Data System (ADS)

    Criado, Juan C.

    2018-06-01

    MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.

  1. Magnetic braking in young late-type stars. The effect of polar spots

    NASA Astrophysics Data System (ADS)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  2. Investigation of the effects of external current systems on the MAGSAT data utilizing grid cell modeling techniques

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M. (Principal Investigator)

    1982-01-01

    Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.

  3. Finding Resolution for the Responsible Transparency of Economic Models in Health and Medicine.

    PubMed

    Padula, William V; McQueen, Robert Brett; Pronovost, Peter J

    2017-11-01

    The Second Panel on Cost-Effectiveness in Health and Medicine recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses has a number of questions unanswered with respect to the implementation of transparent, open source code interface for economic models. The possibility of making economic model source code could be positive and progressive for the field; however, several unintended consequences of this system should be first considered before complete implementation of this model. First, there is the concern regarding intellectual property rights that modelers have to their analyses. Second, the open source code could make analyses more accessible to inexperienced modelers, leading to inaccurate or misinterpreted results. We propose several resolutions to these concerns. The field should establish a licensing system of open source code such that the model originators maintain control of the code use and grant permissions to other investigators who wish to use it. The field should also be more forthcoming towards the teaching of cost-effectiveness analysis in medical and health services education so that providers and other professionals are familiar with economic modeling and able to conduct analyses with open source code. These types of unintended consequences need to be fully considered before the field's preparedness to move forward into an era of model transparency with open source code.

  4. Effects of topography on the interpretation of the deformation field of prominent volcanoes - Application to Etna

    USGS Publications Warehouse

    Cayol, V.; Cornet, F.H.

    1998-01-01

    We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.

  5. Discrete space charge affected field emission: Flat and hemisphere emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less

  6. Radiative corrections in the (varying power)-law modified gravity

    NASA Astrophysics Data System (ADS)

    Hammad, Fayçal

    2015-06-01

    Although the (varying power)-law modified gravity toy model has the attractive feature of unifying the early- and late-time expansions of the Universe, thanks to the peculiar dependence of the scalar field's potential on the scalar curvature, the model still suffers from the fine-tuning problem when used to explain the actually observed Hubble parameter. Indeed, a more correct estimate of the mass of the scalar field needed to comply with actual observations gives an unnaturally small value. On the other hand, for a massless scalar field the potential would have no minimum and hence the field would always remain massless. What solves these issues are the radiative corrections that modify the field's effective potential. These corrections raise the field's effective mass, rendering the model free from fine-tuning, immune against positive fifth-force tests, and better suited to tackle the dark matter sector.

  7. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin

    2015-09-01

    A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.

  8. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  9. Some effects of quiet geomagnetic field changes upon values used for main field modeling

    USGS Publications Warehouse

    Campbell, W.H.

    1987-01-01

    The effects of three methods of data selection upon the assumed main field levels for geomagnetic observatory records used in main field modeling were investigated for a year of very low solar-terrestrial activity. The first method concerned the differences between the year's average of quiet day field values and the average of all values during the year. For H these differences were 2-3 gammas, for D they were -0.04 to -0.12???, for Z the differences were negligible. The second method of selection concerned the effects of the daytime internal Sq variations upon the daily mean values of field. The midnight field levels when the Sq currents were a minimum deviated from the daily mean levels by as much as 4-7 gammas in H and Z but were negligible for D. The third method of selection was designed to avoid the annual and semi-annual quiet level changes of field caused by the seasonal changes in the magnetosphere. Contributions from these changes were found to be as much as 4-7 gammas in quiet years and expected to be greater than 10 gammas in active years. Suggestions for improved methods of improved data selection in main field modeling are given. ?? 1987.

  10. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  11. Effects of inhomogeneities on MCG due to a single current dipole

    NASA Astrophysics Data System (ADS)

    Chen, Jiange; Niki, Noboru; Nakaya, Yutaka; Nishitani, Hiroshi; Kang, Yoongming

    1999-05-01

    The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: (1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; (2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Generally lungs, subcutaneous fat, skeletal muscle play a larger role than other tissues. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.

  12. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  13. A unified analytical drain current model for Double-Gate Junctionless Field-Effect Transistors including short channel effects

    NASA Astrophysics Data System (ADS)

    Raksharam; Dutta, Aloke K.

    2017-04-01

    In this paper, a unified analytical model for the drain current of a symmetric Double-Gate Junctionless Field-Effect Transistor (DG-JLFET) is presented. The operation of the device has been classified into four modes: subthreshold, semi-depleted, accumulation, and hybrid; with the main focus of this work being on the accumulation mode, which has not been dealt with in detail so far in the literature. A physics-based model, using a simplified one-dimensional approach, has been developed for this mode, and it has been successfully integrated with the model for the hybrid mode. It also includes the effect of carrier mobility degradation due to the transverse electric field, which was hitherto missing in the earlier models reported in the literature. The piece-wise models have been unified using suitable interpolation functions. In addition, the model includes two most important short-channel effects pertaining to DG-JLFETs, namely the Drain Induced Barrier Lowering (DIBL) and the Subthreshold Swing (SS) degradation. The model is completely analytical, and is thus computationally highly efficient. The results of our model have shown an excellent match with those obtained from TCAD simulations for both long- and short-channel devices, as well as with the experimental data reported in the literature.

  14. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    PubMed

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.

  15. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  16. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which alsomore » implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.« less

  17. Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers.

    PubMed

    Nore, C; Léorat, J; Guermond, J-L; Giesecke, A

    2015-01-01

    It has been observed that dynamo action occurs in the von-Kármán-Sodium (VKS) experiment only when the rotating disks and the blades are made of soft iron. The purpose of this paper is to numerically investigate the role of soft iron in the VKS dynamo scenario. This is done by using a mean-field model based on an axisymmetric mean flow, a localized permeability distribution, and a localized α effect modeling the action of the small velocity scales between the blades. The action of the rotating blades is modeled by an axisymmetric effective permeability field. Key properties of the flow giving to the numerical magnetic field a geometric structure similar to that observed experimentally are identified. Depending on the permeability of the disks and the effective permeability of the blades, the dynamo that is obtained is either oscillatory or stationary. Our numerical results confirm the leading role played by the ferromagnetic impellers. A scenario for the VKS dynamo is proposed.

  18. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    PubMed

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that predictions of stronger effects in linear membrane models with a fixed activation threshold are inaccurate. Thus, the conventional cable equation works well for most neuroengineering applications, and the presented modeling approach is well suited to address the exceptions.

  19. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C Christopher; Martin, Elijah H; Isler, Ralph C

    2014-01-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (> 1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma,more » in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  20. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, C. C., E-mail: kleppercc@ornl.gov; Isler, R. C.; Biewer, T. M.

    2014-11-15

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, inmore » front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.« less

  1. Probing the plasma near high power wave launchers in fusion devices for static and dynamic electric fields (invited).

    PubMed

    Klepper, C C; Martin, E H; Isler, R C; Colas, L; Goniche, M; Hillairet, J; Panayotis, S; Pegourié, B; Jacquot, J; Lotte, Ph; Colledani, G; Biewer, T M; Caughman, J B; Ekedahl, A; Green, D L; Harris, J H; Hillis, D L; Shannon, S C; Litaudon, X

    2014-11-01

    An exploratory study was carried out in the long-pulse tokamak Tore Supra, to determine if electric fields in the plasma around high-power, RF wave launchers could be measured with non-intrusive, passive, optical emission spectroscopy. The focus was in particular on the use of the external electric field Stark effect. The feasibility was found to be strongly dependent on the spatial extent of the electric fields and overlap between regions of strong (>∼1 kV/cm) electric fields and regions of plasma particle recycling and plasma-induced, spectral line emission. Most amenable to the measurement was the RF electric field in edge plasma, in front of a lower hybrid heating and current drive launcher. Electric field strengths and direction, derived from fitting the acquired spectra to a model including time-dependent Stark effect and the tokamak-range magnetic field Zeeman-effect, were found to be in good agreement with full-wave modeling of the observed launcher.

  2. Ionosphere-magnetosphere coupling and convection

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Spiro, R. W.

    1984-01-01

    The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.

  3. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    NASA Astrophysics Data System (ADS)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  4. Micromagnetic recording model of writer geometry effects at skew

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Bozeman, S.; van Ek, J.; Michel, R. P.

    2006-04-01

    The effects of the pole-tip geometry at the air-bearing surface on perpendicular recording at a skew angle are examined through modeling and spin-stand test data. Head fields generated by the finite element method were used to record transitions within our previously described micromagnetic recording model. Write-field contours for a variety of square, rectangular, and trapezoidal pole shapes were evaluated to determine the impact of geometry on field contours. Comparing results for recorded track width, transition width, and media signal to noise ratio at 0° and 15° skew demonstrate the benefits of trapezoidal and reduced aspect-ratio pole shapes. Consistency between these modeled results and test data is demonstrated.

  5. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  6. Macroscopic quantum tunneling escape of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Zhao, Xinxin; Alcala, Diego A.; McLain, Marie A.; Maeda, Kenji; Potnis, Shreyas; Ramos, Ramon; Steinberg, Aephraim M.; Carr, Lincoln D.

    2017-12-01

    Recent experiments on macroscopic quantum tunneling reveal a nonexponential decay of the number of atoms trapped in a quasibound state behind a potential barrier. Through both experiment and theory, we demonstrate this nonexponential decay results from interactions between atoms. Quantum tunneling of tens of thousands of 87Rb atoms in a Bose-Einstein condensate is modeled by a modified Jeffreys-Wentzel-Kramers-Brillouin model, taking into account the effective time-dependent barrier induced by the mean field. Three-dimensional Gross-Pitaevskii simulations corroborate a mean-field result when compared with experiments. However, with one-dimensional modeling using time-evolving block decimation, we present an effective renormalized mean-field theory that suggests many-body dynamics for which a bare mean-field theory may not apply.

  7. Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-01-01

    A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.

  8. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.

  9. Time-dependent MHD modeling of the global structure of the heliosphere

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Brackbill, J. U.; Karmesin, S. Roy

    1995-01-01

    We present results from time-dependent modeling of the global structure of the heliosphere with neutral and magnetic field effects included. The magnetic field is assumed parallel to the interstellar flow in this two-dimensional axisymmetric model; the neutrals are treated as a fluid. The effects of interstellar neutrals and the interplanetary magnetic field on the location of the termination shock are studied using the most recent estimate of the interstellar medium parameters, results will be compared to those of Baranov and Zaitsev. The effect of the solar wind - VLISM interaction on the density and velocity of interstellar neutrals within the heliosphere will also be presented and related to observations. The response of the termination shock to the solar cycle variation in the solar wind will be compared to the response found previously using an axisymmetric hydrodynamic model without neutrals.

  10. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  11. A model for microwave emission from vegetation-covered fields

    NASA Technical Reports Server (NTRS)

    Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.

    1982-01-01

    The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.

  12. Ab initio folding of mixed-fold FSD-EY protein using formula-based polarizable hydrogen bond (PHB) charge model

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Lazim, Raudah; Mun Yip, Yew

    2017-09-01

    We conducted an all-atom ab initio folding of FSD-EY, a protein with a ββα configuration using non-polarizable (AMBER) and polarizable force fields (PHB designed by Gao et al.) in implicit solvent. The effect of reducing the polarization effect integrated into the force field by the PHB model, termed the PHB0.7 was also examined in the folding of FSD-EY. This model incorporates into the force field 70% of the original polarization effect to minimize the likelihood of over-stabilizing the backbone hydrogen bonds. Precise folding of the β-sheet of FSD-EY was further achieved by relaxing the REMD structure obtained in explicit water.

  13. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stefan; Heitzinger, Clemens; Vacic, Aleksandar; Reed, Mark A.

    2013-06-01

    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor.

  14. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  15. Drag reduction in homogeneous turbulence by scale-dependent effective viscosity.

    PubMed

    Benzi, Roberto; Ching, Emily S C; Procaccia, Itamar

    2004-08-01

    We demonstrate, by using suitable shell models, that drag reduction in homogeneous turbulence is usefully discussed in terms of a scale-dependent effective viscosity. The essence of the phenomenon of drag reduction found in models that couple the velocity field to the polymers can be recaptured by an "equivalent" equation of motion for the velocity field alone, with a judiciously chosen scale-dependent effective viscosity that succinctly summarizes the important aspects of the interaction between the velocity and the polymer fields. Finally, we clarify the differences between drag reduction in homogeneous and in wall bounded flows.

  16. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less

  17. Semiempirical Two-Dimensional Magnetohydrodynamic Model of the Solar Corona and Interplanetary Medium

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Guhathakurta, Madhulika

    1999-01-01

    We have developed a two-dimensional semiempirical MHD model of the solar corona and solar wind. The model uses empirically derived electron density profiles from white-light coronagraph data measured during the Skylub period and an empirically derived model of the magnetic field which is fitted to observed streamer topologies, which also come from the white-light coronagraph data The electron density model comes from that developed by Guhathakurta and coworkers. The electron density model is extended into interplanetary space by using electron densities derived from the Ulysses plasma instrument. The model also requires an estimate of the solar wind velocity as a function of heliographic latitude and radial component of the magnetic field at 1 AU, both of which can be provided by the Ulysses spacecraft. The model makes estimates as a function of radial distance and latitude of various fluid parameters of the plasma such as flow velocity V, effective temperature T(sub eff), and effective heat flux q(sub eff), which are derived from the equations of conservation of mass, momentum, and energy, respectively. The term effective indicates that wave contributions could be present. The model naturally provides the spiral pattern of the magnetic field far from the Sun and an estimate of the large-scale surface magnetic field at the Sun, which we estimate to be approx. 12 - 15 G. The magnetic field model shows that the large-scale surface magnetic field is dominated by an octupole term. The model is a steady state calculation which makes the assumption of azimuthal symmetry and solves the various conservation equations in the rotating frame of the Sun. The conservation equations are integrated along the magnetic field direction in the rotating frame of the Sun, thus providing a nearly self-consistent calculation of the fluid parameters. The model makes a minimum number of assumptions about the physics of the solar corona and solar wind and should provide a very accurate empirical description of the solar corona and solar wind Once estimates of mass density rho, flow velocity V, effective temperature T(sub eff), effective heat flux q(sub eff), and magnetic field B are computed from the model and waves are assumed unimportant, all other plasma parameters such as Mach number, Alfven speed, gyrofrequency, etc. can be derived as a function of radial distance and latitude from the Sun. The model can be used as a planning tool for such missions as Slar Probe and provide an empirical framework for theoretical models of the solar corona and solar wind The model will be used to construct a semiempirical MHD description of the steady state solar corona and solar wind using the SOHO Large Angle Spectrometric Coronagraph (LASCO) polarized brightness white-light coronagraph data, SOHO Extreme Ultraviolet Imaging Telescope data, and Ulysses plasma data.

  18. A two-dimensional kinematic dynamo model of the ionospheric magnetic field at Venus

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.; Wu, D.; Shinagawa, H.

    1990-01-01

    The results of a high-resolution, two-dimensional, time dependent, kinematic dynamo model of the ionospheric magnetic field of Venus are presented. Various one-dimensional models are considered and the two-dimensional model is then detailed. In this model, the two-dimensional magnetic induction equation, the magnetic diffusion-convection equation, is numerically solved using specified plasma velocities. Origins of the vertical velocity profile and of the horizontal velocities are discussed. It is argued that the basic features of the vertical magnetic field profile remain unaltered by horizontal flow effects and also that horizontal plasma flow can strongly affect the magnetic field for altitudes above 300 km.

  19. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE PAGES

    Qiang, Ji

    2017-01-23

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  20. Symplectic multiparticle tracking model for self-consistent space-charge simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiang, Ji

    Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.

  1. Scale models: A proven cost-effective tool for outage planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.; Segroves, R.

    1995-03-01

    As generation costs for operating nuclear stations have risen, more nuclear utilities have initiated efforts to improve cost effectiveness. Nuclear plant owners are also being challenged with lower radiation exposure limits and new revised radiation protection related regulations (10 CFR 20), which places further stress on their budgets. As source term reduction activities continue to lower radiation fields, reducing the amount of time spent in radiation fields becomes one of the most cost-effective ways of reducing radiation exposure. An effective approach for minimizing time spent in radiation areas is to use a physical scale model for worker orientation planning andmore » monitoring maintenance, modifications, and outage activities. To meet the challenge of continued reduction in the annual cumulative radiation exposures, new cost-effective tools are required. One field-tested and proven tool is the physical scale model.« less

  2. A simple statistical model for geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  3. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  4. Extracting the field-effect mobilities of random semiconducting single-walled carbon nanotube networks: A critical comparison of methods

    NASA Astrophysics Data System (ADS)

    Schießl, Stefan P.; Rother, Marcel; Lüttgens, Jan; Zaumseil, Jana

    2017-11-01

    The field-effect mobility is an important figure of merit for semiconductors such as random networks of single-walled carbon nanotubes (SWNTs). However, owing to their network properties and quantum capacitance, the standard models for field-effect transistors cannot be applied without modifications. Several different methods are used to determine the mobility with often very different results. We fabricated and characterized field-effect transistors with different polymer-sorted, semiconducting SWNT network densities ranging from low (≈6 μm-1) to densely packed quasi-monolayers (≈26 μm-1) with a maximum on-conductance of 0.24 μS μm-1 and compared four different techniques to evaluate the field-effect mobility. We demonstrate the limits and requirements for each method with regard to device layout and carrier accumulation. We find that techniques that take into account the measured capacitance on the active device give the most reliable mobility values. Finally, we compare our experimental results to a random-resistor-network model.

  5. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    NASA Astrophysics Data System (ADS)

    Yu, Li-Li; Shou, Wen-De; Hui, Chun

    2012-02-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  6. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. 1: Dipole fields

    NASA Technical Reports Server (NTRS)

    Page, Dany

    1995-01-01

    We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new tool to constrain the size of neutron stars. The pulsed fractions obtained in all our models increase with photon energy: the strong decrease observed in Geminga at energies 0.3-0.5 keV is definitely a genuine effect of the magnetic field on the spectrum in contradistinction to the magnetic effects on the surface temperature considered her. Thus, a detailed analysis of thermal emission from the four pulsars we consider will require both complex surface field configurations and the inclusion of magnetic effects in the atmosphere (i.e., on the emitted spectrum).

  7. Simplified continuous simulation model for investigating effects of controlled drainage on long-term soil moisture dynamics with a shallow groundwater table.

    PubMed

    Sun, Huaiwei; Tong, Juxiu; Luo, Wenbing; Wang, Xiugui; Yang, Jinzhong

    2016-08-01

    Accurate modeling of soil water content is required for a reasonable prediction of crop yield and of agrochemical leaching in the field. However, complex mathematical models faced the difficult-to-calibrate parameters and the distinct knowledge between the developers and users. In this study, a deterministic model is presented and is used to investigate the effects of controlled drainage on soil moisture dynamics in a shallow groundwater area. This simplified one-dimensional model is formulated to simulate soil moisture in the field on a daily basis and takes into account only the vertical hydrological processes. A linear assumption is proposed and is used to calculate the capillary rise from the groundwater. The pipe drainage volume is calculated by using a steady-state approximation method and the leakage rate is calculated as a function of soil moisture. The model is successfully calibrated by using field experiment data from four different pipe drainage treatments with several field observations. The model was validated by comparing the simulations with observed soil water content during the experimental seasons. The comparison results demonstrated the robustness and effectiveness of the model in the prediction of average soil moisture values. The input data required to run the model are widely available and can be measured easily in the field. It is observed that controlled drainage results in lower groundwater contribution to the root zone and lower depth of percolation to the groundwater, thus helping in the maintenance of a low level of soil salinity in the root zone.

  8. Modelling the core magnetic field of the earth

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Carle, H. M.

    1982-01-01

    It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.

  9. Effective-mass model and magneto-optical properties in hybrid perovskites

    PubMed Central

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole. PMID:27338834

  10. Effective-mass model and magneto-optical properties in hybrid perovskites.

    PubMed

    Yu, Z G

    2016-06-24

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  11. Effective-mass model and magneto-optical properties in hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  12. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  13. Flow field measurements around a Mars lander model using hot film anemometers under simulated Mars surface conditions

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.

    1972-01-01

    Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.

  14. Kinetic modeling of Nernst effect in magnetized hohlraums.

    PubMed

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  15. A Classroom-Field Model of Inter-Ethnic Communication.

    ERIC Educational Resources Information Center

    Nielsen, Keith E.

    The BLBC (bilingual-bicultural) model of inter-ethnic communication is an effective method for bridging the instructional "gap" between classroom education and field experiences. These two learning experiences are distinct; yet each should complement the other. The BLBC model of inter-ethnic communication attempts to interface the student's…

  16. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equationsmore » derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.« less

  17. Effects of self-absorption on simultaneous estimation of temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames using a spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Guannan; Liu, Dong

    2018-06-01

    An improved inverse reconstruction model with consideration of self-absorption effect for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in nanofluid fuel flames was proposed based on the flame emission spectrometry. The effects of self-absorption on the temperature profile and concentration fields were investigated for various measurement errors, flame optical thicknesses and detecting lines numbers. The model neglecting the self-absorption caused serious reconstruction errors especially in the nanofluid fuel flames with large optical thicknesses, while the improved model was used to successfully recover the temperature distribution and concentration fields of soot and metal-oxide nanoparticles for the flames regardless of the optical thickness. Through increasing detecting lines number, the reconstruction accuracy can be greatly improved due to more flame emission information received by the spectrometer. With the adequate detecting lines number, the estimations for the temperature distribution and concentration fields of soot and metal-oxide nanoparticles in flames with large optical thicknesses were still satisfying even from the noisy radiation intensities with signal to noise ratio (SNR) as low as 46 dB. The results showed that the improved reconstruction model was effective and robust to concurrently retrieve the temperature distribution and volume fraction fields of soot and metal-oxide nanoparticles for the exact and noisy data in nanofluid fuel sooting flames with different optical thicknesses.

  18. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    NASA Astrophysics Data System (ADS)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  19. Model for large magnetoresistance effect in p–n junctions

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Yang, Dezheng; Si, Mingsu; Shi, Huigang; Xue, Desheng

    2018-06-01

    We present a simple model based on the classic Shockley model to explain the magnetotransport in nonmagnetic p–n junctions. Under a magnetic field, the evaluation of the carrier to compensate Lorentz force establishes the necessary space-charge region distribution. The calculated current–voltage (I–V) characteristics under various magnetic fields demonstrate that the conventional nonmagnetic p–n junction can exhibit an extremely large magnetoresistance effect, which is even larger than that in magnetic materials. Because the large magnetoresistance effect that we discussed is based on the conventional p–n junction device, our model provides new insight into the development of semiconductor magnetoelectronics.

  20. Eolian Modeling System: Predicting Windblown Dust Hazards in Battlefield Environments

    DTIC Science & Technology

    2011-05-03

    journals (N/A for none) Pelletier, J.D., H. Mitasova, R.S. Harmon, and M. Overton, The effects of interdune vegetation changes on eolian dune field...J.D., Controls on the height and spacing of eolian ripples and transverse dunes : A numerical modeling investigation, Geomorphology, 105, 322-333, 2009...R.S. Harmon, and M. Overton, The effects of interdune vegetation changes on eolian dune field evolution: A numerical-modeling case study at Jockey’s

  1. VFMA: Topographic Analysis of Sensitivity Data From Full-Field Static Perimetry

    PubMed Central

    Weleber, Richard G.; Smith, Travis B.; Peters, Dawn; Chegarnov, Elvira N.; Gillespie, Scott P.; Francis, Peter J.; Gardiner, Stuart K.; Paetzold, Jens; Dietzsch, Janko; Schiefer, Ulrich; Johnson, Chris A.

    2015-01-01

    Purpose: To analyze static visual field sensitivity with topographic models of the hill of vision (HOV), and to characterize several visual function indices derived from the HOV volume. Methods: A software application, Visual Field Modeling and Analysis (VFMA), was developed for static perimetry data visualization and analysis. Three-dimensional HOV models were generated for 16 healthy subjects and 82 retinitis pigmentosa patients. Volumetric visual function indices, which are measures of quantity and comparable regardless of perimeter test pattern, were investigated. Cross-validation, reliability, and cross-sectional analyses were performed to assess this methodology and compare the volumetric indices to conventional mean sensitivity and mean deviation. Floor effects were evaluated by computer simulation. Results: Cross-validation yielded an overall R2 of 0.68 and index of agreement of 0.89, which were consistent among subject groups, indicating good accuracy. Volumetric and conventional indices were comparable in terms of test–retest variability and discriminability among subject groups. Simulated floor effects did not negatively impact the repeatability of any index, but large floor changes altered the discriminability for regional volumetric indices. Conclusions: VFMA is an effective tool for clinical and research analyses of static perimetry data. Topographic models of the HOV aid the visualization of field defects, and topographically derived indices quantify the magnitude and extent of visual field sensitivity. Translational Relevance: VFMA assists with the interpretation of visual field data from any perimetric device and any test location pattern. Topographic models and volumetric indices are suitable for diagnosis, monitoring of field loss, patient counseling, and endpoints in therapeutic trials. PMID:25938002

  2. A new simple dynamo model for solar activity cycle

    NASA Astrophysics Data System (ADS)

    Yokoi, Nobumitsu; Schmitt, Dieter

    2015-04-01

    The solar magnetic activity cycle has been investigated in an elaborated manner with several types of dynamo models [1]. In most of the current mean-field approaches, the inhomogeneity of the large-scale flow is treated as an essential ingredient in the mean magnetic field equation whereas it is completely neglected in the turbulence equation. In this work, a new simple model for the solar activity cycle is proposed. The present model differs from the previous ones mainly in two points. First, in addition to the helicity coefficient α, we consider a term related to the cross helicity, which represents the effect of the inhomogeneous mean flow, in the turbulent electromotive force [2, 3]. Second, this transport coefficient (γ) is not treated as an adjustable parameter, but the evolution equation for γ is simultaneously solved. The basic scenario for the solar activity cycle in this approach is as follows: The toroidal field is induced by the toroidal rotation in mediation by the turbulent cross helicity. Then due to the α or helicity effect, the poloidal field is generated from the toroidal field. The poloidal field induced by the α effect produces a turbulent cross helicity whose sign is opposite to the original one (negative cross-helicity production). The cross helicity with this opposite sign induces a reversed toroidal field. Results of the eigenvalue analysis of the model equations are shown, which confirm the above scenario. References [1] Charbonneau, Living Rev. Solar Phys. 7, 3 (2010). [2] Yoshizawa, A. Phys. Fluids B 2, 1589 (1990). [3] Yokoi, N. Geophys. Astrophys. Fluid Dyn. 107, 114 (2013).

  3. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Treesearch

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  4. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip

    NASA Astrophysics Data System (ADS)

    Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  5. Modeling of In-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.

    Understanding and providing proactive information on the potential for tidal energy projects to cause changes to the physical system and to key water quality constituents in tidal waters is a necessary and cost-effective means to avoid costly regulatory involvement and late stage surprises in the permitting process. This paper presents a modeling study for evaluating the tidal energy extraction and its potential impacts on the marine environment in a real world site - Tacoma Narrows of Puget Sound, Washington State, USA. An unstructured-grid coastal ocean model, fitted with a module that simulates tidal energy devices, was applied to simulate themore » tidal energy extracted by different turbine array configurations and the potential effects of the extraction at local and system-wide scales in Tacoma Narrows and South Puget Sound. Model results demonstrated the advantage of an unstructured-grid model for simulating the far-field effects of tidal energy extraction in a large model domain, as well as assessing the near-field effect using a fine grid resolution near the tidal turbines. The outcome shows that a realistic near-term deployment scenario extracts a very small fraction of the total tidal energy in the system and that system wide environmental effects are not likely; however, near-field effects on the flow field and bed shear stress in the area of tidal turbine farm are more likely. Model results also indicate that from a practical standpoint, hydrodynamic or water quality effects are not likely to be the limiting factor for development of large commercial-scale tidal farms. Results indicate that very high numbers of turbines are required to significantly alter the tidal system; limitations on marine space or other environmental concerns are likely to be reached before reaching these deployment levels. These findings show that important information obtained from numerical modeling can be used to inform regulatory and policy processes for tidal energy development.« less

  6. Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow

    NASA Technical Reports Server (NTRS)

    Pan, Bo; Li, Ben Q.; deGroh, Henry C., III

    1997-01-01

    This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.

  7. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasadas, Francisco, E-mail: Francisco.Pasadas@uab.cat; Jiménez, David

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been includedmore » considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.« less

  8. Fibre inflation and α-attractors

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei; Roest, Diederik; Westphal, Alexander; Yamada, Yusuke

    2018-02-01

    Fibre inflation is a specific string theory construction based on the Large Volume Scenario that produces an inflationary plateau. We outline its relation to α-attractor models for inflation, with the cosmological sector originating from certain string theory corrections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of higher-order corrections leads first to the breakdown of single-field slow-roll and after that to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to participate in the effective dynamics. Finally, we propose effective supergravity models of fibre inflation based on an \\overline{D3} uplift term with a nilpotent superfield. Specific moduli dependent \\overline{D3} induced geometries lead to cosmological fibre models but have in addition a de Sitter minimum exit. These supergravity models motivated by fibre inflation are relatively simple, stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.

  9. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  10. Nonthermal gravitino production in tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Dutta, Koushik

    2015-10-01

    We investigate nonthermal gravitino production after tribrid inflation in supergravity, which is a variant of supersymmetric hybrid inflation where three fields are involved in the inflationary model and where the inflaton field resides in the matter sector of the theory. In contrast to conventional supersymmetric hybrid inflation, where nonthermal gravitino production imposes severe constraints on the inflationary model, we find that the "nonthermal gravitino problem" is generically absent in models of tribrid inflation, mainly due to two effects: (i) With the inflaton in tribrid inflation (after inflation) being lighter than the waterfall field, the latter has a second decay channel with a much larger rate than for the decay into gravitinos. This reduces the branching ratio for the decay of the waterfall field into gravitinos. (ii) The inflaton generically decays later than the waterfall field, and it does not produce gravitinos when it decays. This leads to a dilution of the gravitino population from the decays of the waterfall field. The combination of both effects generically leads to a strongly reduced gravitino production in tribrid inflation.

  11. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  12. A 2D mechanical-magneto-thermal model for direction-dependent magnetoelectric effect in laminates

    NASA Astrophysics Data System (ADS)

    Zhang, Shunzu; Yao, Hong; Gao, Yuanwen

    2017-04-01

    A two dimensional (2D) mechanical-magneto-thermal model of direction-dependent magnetoelectric (ME) effect in Terfenol-D/PZT/Terfenol-D laminated composites is established. The expressions of ME coefficient at low and resonance frequencies are derived by the average field method, respectively. The prediction of theoretical model presents a good agreement with the experimental data. The combined effect of orientation-dependent stress and magnetic fields, as well as operating temperature on ME coefficient is discussed. It is shown that ME effect presents a significantly nonlinear change with the increasing pre-stress under different loading angles. There exists an optimal angle and value of pre-stress corresponding to the best ME effect, improving the angle of pre-stress can get more prominent ME coupling than in x axis state. Note that an optimal angle of magnetic field gradually increases with the rise of pre-stress, which can further lead to the enhancement of ME coefficient. Meanwhile, reducing the operating temperature can enhance ME coefficient. Furthermore, resonance frequency, affected by pre-stress, magnetic field and temperature via " ΔE effect", can enhance ME coefficient about 100 times than that at low frequency.

  13. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    NASA Astrophysics Data System (ADS)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  14. Finite hedging in field theory models of interest rates

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Srikant, Marakani

    2004-03-01

    We use path integrals to calculate hedge parameters and efficacy of hedging in a quantum field theory generalization of the Heath, Jarrow, and Morton [Robert Jarrow, David Heath, and Andrew Morton, Econometrica 60, 77 (1992)] term structure model, which parsimoniously describes the evolution of imperfectly correlated forward rates. We calculate, within the model specification, the effectiveness of hedging over finite periods of time, and obtain the limiting case of instantaneous hedging. We use empirical estimates for the parameters of the model to show that a low-dimensional hedge portfolio is quite effective.

  15. The mechanism of plasma-assisted penetration of NO2- in model tissues

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2017-11-01

    Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.

  16. Simple analytical model of a thermal diode

    NASA Astrophysics Data System (ADS)

    Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul

    2018-05-01

    Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.

  17. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  18. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    NASA Astrophysics Data System (ADS)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  19. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  20. A new constraint on mean-field galactic dynamo theory

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke; Singh, Nishant K.

    2017-07-01

    Appealing to an analytical result from mean-field theory, we show, using a generic galaxy model, that galactic dynamo action can be suppressed by small-scale magnetic fluctuations. This is caused by the magnetic analogue of the Rädler or Ω × J effect, where rotation-induced corrections to the mean-field turbulent transport result in what we interpret to be an effective reduction of the standard α effect in the presence of small-scale magnetic fields.

  1. A geometric formulation of Higgs Effective Field Theory. Measuring the curvature of scalar field space

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. Here we show how the curvature can be measured experimentally via Higgs cross-sections, WLscattering, and the Sparameter. The one-loop action of HEFT is given in terms of geometric invariants of M. Moreover, the distinction between the Standard Model (SM) and HEFT is whether Mis flat or curved, and the curvature is a signal of the scale of new physics.

  2. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.

    PubMed

    Setayandeh, S S; Lohrasebi, A

    2016-11-01

    Microtubule (MT) rigidity and response to 2450MHz electric fields were investigated, via multi scale modeling approach. For this purpose, six systems were designed and simulated to consider all types of feasible interactions between α and β monomers in MT, by using all atom molecular dynamics method. Subsequently, coarse grain modeling was used to design different lengths of MT. Investigation of effects of external 2450MHz electric field on MT showed MT less rigidity in the presence of such field, which may perturb its functions. Moreover, an additional computational setup was designed to study effects of 2450MHz field on MT response to AFM tip. It was found, more tip velocity led to MT faster transformation and less time was required to change MT elastic response to plastic one, applying constant radius. Moreover it was observed smaller tip caused to increase required time to change MT elastic response to plastic one, considering constant velocity. Furthermore, exposing MT to 2450MHz field led to no significant changes in MT response to AFM tip, but quick change in MT elastic response to plastic one. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  4. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).

  5. Entanglement of a quantum field with a dispersive medium.

    PubMed

    Klich, Israel

    2012-08-10

    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  6. Local versus global interactions in nonequilibrium transitions: A model of social dynamics

    NASA Astrophysics Data System (ADS)

    González-Avella, J. C.; Eguíluz, V. M.; Cosenza, M. G.; Klemm, K.; Herrera, J. L.; San Miguel, M.

    2006-04-01

    A nonequilibrium system of locally interacting elements in a lattice with an absorbing order-disorder phase transition is studied under the effect of additional interacting fields. These fields are shown to produce interesting effects in the collective behavior of this system. Both for autonomous and external fields, disorder grows in the system when the probability of the elements to interact with the field is increased. There exists a threshold value of this probability beyond which the system is always disordered. The domain of parameters of the ordered regime is larger for nonuniform local fields than for spatially uniform fields. However, the zero field limit is discontinous. In the limit of vanishingly small probability of interaction with the field, autonomous or external fields are able to order a system that would fall in a disordered phase under local interactions of the elements alone. We consider different types of fields which are interpreted as forms of mass media acting on a social system in the context of Axelrod’s model for cultural dissemination.

  7. Local versus global interactions in nonequilibrium transitions: A model of social dynamics.

    PubMed

    González-Avella, J C; Eguíluz, V M; Cosenza, M G; Klemm, K; Herrera, J L; San Miguel, M

    2006-04-01

    A nonequilibrium system of locally interacting elements in a lattice with an absorbing order-disorder phase transition is studied under the effect of additional interacting fields. These fields are shown to produce interesting effects in the collective behavior of this system. Both for autonomous and external fields, disorder grows in the system when the probability of the elements to interact with the field is increased. There exists a threshold value of this probability beyond which the system is always disordered. The domain of parameters of the ordered regime is larger for nonuniform local fields than for spatially uniform fields. However, the zero field limit is discontinous. In the limit of vanishingly small probability of interaction with the field, autonomous or external fields are able to order a system that would fall in a disordered phase under local interactions of the elements alone. We consider different types of fields which are interpreted as forms of mass media acting on a social system in the context of Axelrod's model for cultural dissemination.

  8. Screening effect in matrix graphene / SiC planar field emmiters

    NASA Astrophysics Data System (ADS)

    Jityaev, I. L.; Svetlichnyi, A. M.; Kolomiytsev, A. S.; Ageev, O. A.

    2017-11-01

    The paper describes simulation of matrix field emission nanostructures on the basis of graphene on a semi-insulating silicon carbide. The planar spike-type field emission cathodes were measured. The electric field distribution in an interelectrode gap of the emission structure was obtained. The models take into account the distance between cathode tops. Screening effect condition was detected in planar field emission structure and a way of eliminating was proposed.

  9. Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Winyard, Thomas; Babaev, Egor

    2018-05-01

    The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.

  10. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Kuzyk, Mark G.

    2014-03-01

    All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013), 10.1039/c3py00263b]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain.

  11. Origin and structures of solar eruptions II: Magnetic modeling

    NASA Astrophysics Data System (ADS)

    Guo, Yang; Cheng, Xin; Ding, MingDe

    2017-07-01

    The topology and dynamics of the three-dimensional magnetic field in the solar atmosphere govern various solar eruptive phenomena and activities, such as flares, coronal mass ejections, and filaments/prominences. We have to observe and model the vector magnetic field to understand the structures and physical mechanisms of these solar activities. Vector magnetic fields on the photosphere are routinely observed via the polarized light, and inferred with the inversion of Stokes profiles. To analyze these vector magnetic fields, we need first to remove the 180° ambiguity of the transverse components and correct the projection effect. Then, the vector magnetic field can be served as the boundary conditions for a force-free field modeling after a proper preprocessing. The photospheric velocity field can also be derived from a time sequence of vector magnetic fields. Three-dimensional magnetic field could be derived and studied with theoretical force-free field models, numerical nonlinear force-free field models, magnetohydrostatic models, and magnetohydrodynamic models. Magnetic energy can be computed with three-dimensional magnetic field models or a time series of vector magnetic field. The magnetic topology is analyzed by pinpointing the positions of magnetic null points, bald patches, and quasi-separatrix layers. As a well conserved physical quantity, magnetic helicity can be computed with various methods, such as the finite volume method, discrete flux tube method, and helicity flux integration method. This quantity serves as a promising parameter characterizing the activity level of solar active regions.

  12. Evaluation of the Geomagnetic Field Models based on Magnetometer Measurements for Satellite's Attitude Determination System

    NASA Astrophysics Data System (ADS)

    Cilden, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2016-07-01

    Magnetometers are common attitude determination sensors for small satellites at low Earth orbit; therefore, magnetic field model of the Earth is necessary to estimate the satellite's attitude angles. Difference in the components of the magnetic field vectors -mostly used as unit vector. Therefore the angle between them (model and measurement data) affects the estimation accuracy of the satellite's attitude. In this study, geomagnetic field models are compared with satellite magnetic field observations in order to evaluate the models using the magnetometer results with high accuracy. For attitude determination system, IGRF model is used in most of the cases but the difference between the sensor and model increases when the geomagnetic activity occurs. Hence, several models including the empirical ones using the external variations in the Earth's geomagnetic field resulting from the solar wind and interplanetary magnetic field are of great importance in determination of the satellite's attitude correctly. IGRF model describes the internal-part of the geomagnetic field, on the other hand candidate models to IGRF, such as recently developed POMME-6 model based on Champ data, CHAOS-5 (CHAmp, Oersted, Swarm), T89 (Tsyganenko's model), include simple parameterizations of external fields of magnetospheric sources in addition to the internal field especially for low Earth orbiting satellites. Those models can be evaluated to see noticeable difference on extraterrestrial field effects on satellite's attitude determination system changing with its height. The comparisons are made between the models and observations and between the models under various magnetospheric activities. In this study, we will present our preliminary results from the comparisons and discuss their implications from the satellite attitude perspective.

  13. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE PAGES

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; ...

    2016-07-28

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  14. A case study of the Weather Research and Forecasting model applied to the Joint Urban 2003 tracer field experiment. Part 2: Gas tracer dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.

    Here, the Quick Urban & Industrial Complex (QUIC) atmospheric transport, and dispersion modelling, system was evaluated against the Joint Urban 2003 tracer-gas measurements. This was done using the wind and turbulence fields computed by the Weather Research and Forecasting (WRF) model. We compare the simulated and observed plume transport when using WRF-model-simulated wind fields, and local on-site wind measurements. Degradation of the WRF-model-based plume simulations was cased by errors in the simulated wind direction, and limitations in reproducing the small-scale wind-field variability. We explore two methods for importing turbulence from the WRF model simulations into the QUIC system. The firstmore » method uses parametrized turbulence profiles computed from WRF-model-computed boundary-layer similarity parameters; and the second method directly imports turbulent kinetic energy from the WRF model. Using the WRF model’s Mellor-Yamada-Janjic boundary-layer scheme, the parametrized turbulence profiles and the direct import of turbulent kinetic energy were found to overpredict and underpredict the observed turbulence quantities, respectively. Near-source building effects were found to propagate several km downwind. These building effects and the temporal/spatial variations in the observed wind field were often found to have a stronger influence over the lateral and vertical plume spread than the intensity of turbulence. Correcting the WRF model wind directions using a single observational location improved the performance of the WRF-model-based simulations, but using the spatially-varying flow fields generated from multiple observation profiles generally provided the best performance.« less

  15. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  16. Forward modeling magnetic fields of induced and remanent magnetization in the lithosphere using tesseroids

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2016-11-01

    A newly developed software package to calculate the magnetic field in a spherical coordinate system near the Earth's surface and on satellite height is shown to produce reliable modeling results for global and regional applications. The discretization cells of the model are uniformly magnetized spherical prisms, so called tesseroids. The presented algorithm extends an existing code for gravity calculations by applying Poisson's relation to identify the magnetic potential with the sum over pseudogravity fields of tesseroids. By testing different lithosphere discretization grids it is possible to determine the optimal size of tesseroids for field calculations on satellite altitude within realistic measurement error bounds. Also the influence of the Earth's ellipticity upon the modeling result is estimated and global examples are studied. The new software calculates induced and remanent magnetic fields for models at global and regional scale. For regional models far-field effects are evaluated and discussed. This provides bounds for the minimal size of a regional model that is necessary to predict meaningful satellite total field anomalies over the corresponding area.

  17. Ferroelectric Material Application: Modeling Ferroelectric Field Effect Transistor Characteristics from Micro to Nano

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd, C.; Ho, Fat Duen

    2006-01-01

    All present ferroelectric transistors have been made on the micrometer scale. Existing models of these devices do not take into account effects of nanoscale ferroelectric transistors. Understanding the characteristics of these nanoscale devices is important in developing a strategy for building and using future devices. This paper takes an existing microscale ferroelectric field effect transistor (FFET) model and adds effects that become important at a nanoscale level, including electron velocity saturation and direct tunneling. The new model analyzed FFETs ranging in length from 40,000 nanometers to 4 nanometers and ferroelectric thickness form 200 nanometers to 1 nanometer. The results show that FFETs can operate on the nanoscale but have some undesirable characteristics at very small dimensions.

  18. Effects of large vessel on temperature distribution based on photothermal coupling interaction model

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Zhang, Xiyang; Li, Zuoran; Li, Hui

    2016-10-01

    This paper is based on the finite element analysis method for studying effects of large blood vessel on temperature based on photothermal coupling interaction model, and it couples the physical field of optical transmission with the physical field of heat transfer in biological tissue by using COMSOL Multiphysics 4.4 software. The results demonstrate the cooling effect of large blood vessel, which can be potential application for the treatment of liver tumors.

  19. A joined model for solar dynamo and differential rotation

    NASA Astrophysics Data System (ADS)

    Kitchatinov, L. L.; Nepomnyashchikh, A. A.

    2017-05-01

    A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone.

  20. Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM

    NASA Astrophysics Data System (ADS)

    Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing

    2018-05-01

    We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.

  1. Magnetic field effects in hybrid perovskite devices

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  2. Electric field computation analysis for the Electric Field Detector (EFD) on board the China Seismic-Electromagnetic Satellite (CSES)

    NASA Astrophysics Data System (ADS)

    Diego, P.; Bertello, I.; Candidi, M.; Mura, A.; Coco, I.; Vannaroni, G.; Ubertini, P.; Badoni, D.

    2017-11-01

    The floating potential variability of the Electric Field Detector (EFD) probes, on board the Chinese Seismo-Electromagnetic Satellite (CSES), has been modeled, and the effects of several structural and environmental elements have been determined. The expected floating potentials of the probes are computed considering the ambient ionospheric plasma parameter variations. In addition, the ion collection variability, due to the different probe attitudes along the orbit, and its effect on each floating potential, are considered. Particular attention is given to the analysis of the shadow produced by the stubs, in order to determine the artificial electric field introduced by instrumental effects which has to be subtracted from the real measurements. The modulation of the altered electric field, due to the effect on shadowing of the ion drift, as measured by the ESA satellite Swarm A in a similar orbit, is also modeled. Such simulations are made in preparation of real EFD data analysis performed during the upcoming flight of CSES.

  3. Hydrodynamic effects of kinetic power extraction by in-stream tidal turbines

    NASA Astrophysics Data System (ADS)

    Polagye, Brian L.

    The hydrodynamic effects of extracting kinetic power from tidal streams presents unique challenges to the development of in-stream tidal power. In-stream tidal turbines superficially resemble wind turbines and extract kinetic power from the ebb and flood of strong tidal currents. Extraction increases the resistance to flow, leading to changes in tidal range, transport, mixing, and the kinetic resource itself. These far-field changes have environmental, social, and economic implications that must be understood to develop the in-stream resource. This dissertation describes the development of a one-dimensional numerical channel model and its application to the study of these effects. The model is applied to determine the roles played by site geometry, network topology, tidal regime, and device dynamics. A comparison is also made between theoretical and modeled predictions for the maximum amount of power which could be extracted from a tidal energy site. The model is extended to a simulation of kinetic power extraction from Puget Sound, Washington. In general, extracting tidal energy will have a number of far-field effects, in proportion to the level of power extraction. At the theoretical limit, these effects can be very significant (e.g., 50% reduction in transport), but are predicted to be immeasurably small for pilot-scale projects. Depending on the specifics of the site, far-field effects may either augment or reduce the existing tidal regime. Changes to the tide, in particular, have significant spatial variability. Since tidal streams are generally subcritical, effects are felt throughout the estuary, not just at the site of extraction. The one dimensional numerical modeling is supported by a robust theory for predicting the performance characteristics of in-stream devices. The far-field effects of tidal power depend on the total power dissipated by turbines, rather than the power extracted. When the low-speed wake downstream of a turbine mixes with the free-stream, power is lost, such that the total power dissipated by the turbine is significantly greater than the power extracted. This dissertation concludes with a framework for three-dimensional numerical modeling of near-field extraction effects.

  4. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  5. The Characteristics of Electromagnetic Fields Induced by Different Type Sources

    NASA Astrophysics Data System (ADS)

    Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.

    2011-12-01

    Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation method is reliable and effective for modeling models including ionosphere, atmosphere and earth media. In order to discuss EM fields' characters for complicate earth-ionosphere media excited by long bipole, "L" shape bipole and circle current sources in the far-field and wave-guide zones, we modeled the frequency responses and decay characters of EM fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields' decay curves with given frequency show that the fields of Ex and Hy , excited by a long bipole and "L" shape bipole, can be divided into an extra wave-guide field with slower attenuation and strong amplititude than that in half space, but the EM fields of circle current source does not show the same characteristics, ionosphere makes the amplitude of the EM field weaker for the circle current source. For this reason, it is better to use long bipole source while working in the wave-guide field with a fixed large power source.

  6. Finite Element Modeling of Transient Head Field Associated with Partially Penetrating, Slug Tests in a Heterogeneous Aquifer with Low Permeability, Stratigraphic Zones and Faults

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Johnson, B.; Everett, M.

    2003-12-01

    Preliminary field work shows slug interference tests using an array of multilevel active and monitoring wells have potential of permitting enhanced aquifer characterization. Analysis of these test data, however, ultimately will rely on numerical geophysical inverse models. In order to gain insight as well as to provide synthetic data sets, we use a 3-D finite element analysis (code:FEHM-LANL) to explore the effect of idealized, low permeability, stratigraphical and structural (faults) heterogeneities on the transient head field associated with a slug test in a packer-isolated interval of an open borehole. The borehole and packers are modeled explicitly; wellbore storage is selected to match values of field tests. The homogeneous model exhibits excellent agreement with that of the semi-analytical model of Liu and Butler (1995). Models are axisymmetric with a centrally located slugged interval within a homogenous, isotropic, confined aquifer with embedded, horizontal or vertical zones of lower permeability that represent low permeability strata or faults, respectively. Either one or two horizontal layers are located opposite the borehole packers, which is a common situation at the field site; layer thickness (0.15-0.75 m), permeability contrast (up to 4 orders of magnitude contrast) and lateral continuity of layers are varied between models. The effect of a "hole" in a layer also is assessed. Fault models explore effects of thickness (0.05-0.75 m) and permeability contrast as well as additional effects associated with the offset of low permeability strata. Results of models are represented most clearly by contour maps of time of arrival and normalized amplitude of peak head perturbation, but transient head histories at selected locations provide additional insight. Synthesis of the models is on-going but a few points can be made at present. Spatial patterns are distinctive and allow easy discrimination between stratigraphic and structural impedance features. Time delays and amplitude reduction increase nonlinearly with increasing permeability contrast. The capacity to discriminate the effect of layer thickness decreases as permeability contrast increases.

  7. The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    NASA Technical Reports Server (NTRS)

    Belotserkovskii, O. M.; Mitnitskii, V. IA.; Breus, T. K.; Krymskii, A. M.; Nagy, A. F.

    1987-01-01

    A numerical gasdynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gasdynamic model that includes the effects of mass loading can be used to predict these parameters.

  8. The effect of the hot oxygen corona on the interaction of the solar wind with Venus

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, O. M.; Breus, T. K.; Krymskii, A. M.; Mitnitskii, V. Ya.; Nagey, A. F.; Gombosi, T. I.

    1987-05-01

    A numerical gas dynamic model, which includes the effects of mass loading of the shocked solar wind, was used to calculate the density and magnetic field variations in the magnetosheath of Venus. These calculations were carried out for conditions corresponding to a specific orbit of the Pioneer Venus Orbiter (PVO orbit 582). A comparison of the model predictions and the measured shock position, density and magnetic field values showed a reasonable agreement, indicating that a gas dynamic model that includes the effects of mass loading can be used to predict these parameters.

  9. Heating and Large Scale Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.

    2000-01-01

    The effort was concentrated in the areas: coronal heating mechanism, unstructured adaptive grid algorithms, numerical modeling of magnetic reconnection in the MRX experiment: effect of toroidal magnetic field and finite pressure, effect of OHMIC heating and vertical magnetic field, effect of dynamic MESH adaption.

  10. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.

    PubMed

    Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D

    2013-09-30

    Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Magnetic Field Dependence of the Critical Current in S-N Bilayer Thin Films

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Lee, Sang-Jun; Smith, Stephen James; Bandler, Simon; Chervenak, James; Kilbourne, Caroline A.; Finkbeiner, Fred M.; Porter, Frederick S.; Kelley, Richard L.; Adams, Joseph S.; hide

    2013-01-01

    Here we investigate the effects a non-uniform applied magnetic field has on superconducting transition-edge sensors (TESs) critical current. This has implications on TES optimization. It has been shown that TESs resistive transition can be altered by magnetic fields. We have observed critical current rectification effects and explained these effects in terms of a magnetic self-field arising from asymmetric current injection into the sensor. Our TES physical model shows that this magnetic self-field can result in significantly degraded or improved TES performance. In order for this magnetically tuned TES strategy to reach its full potential we are investigating the effect a non-uniform applied magnetic field has on the critical current.

  12. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    PubMed

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  13. Feasibility of employing model-based optimization of pulse amplitude and electrode distance for effective tumor electropermeabilization.

    PubMed

    Sel, Davorka; Lebar, Alenka Macek; Miklavcic, Damijan

    2007-05-01

    In electrochemotherapy (ECT) electropermeabilization, parameters (pulse amplitude, electrode setup) need to be customized in order to expose the whole tumor to electric field intensities above permeabilizing threshold to achieve effective ECT. In this paper, we present a model-based optimization approach toward determination of optimal electropermeabilization parameters for effective ECT. The optimization is carried out by minimizing the difference between the permeabilization threshold and electric field intensities computed by finite element model in selected points of tumor. We examined the feasibility of model-based optimization of electropermeabilization parameters on a model geometry generated from computer tomography images, representing brain tissue with tumor. Continuous parameter subject to optimization was pulse amplitude. The distance between electrode pairs was optimized as a discrete parameter. Optimization also considered the pulse generator constraints on voltage and current. During optimization the two constraints were reached preventing the exposure of the entire volume of the tumor to electric field intensities above permeabilizing threshold. However, despite the fact that with the particular needle array holder and pulse generator the entire volume of the tumor was not permeabilized, the maximal extent of permeabilization for the particular case (electrodes, tissue) was determined with the proposed approach. Model-based optimization approach could also be used for electro-gene transfer, where electric field intensities should be distributed between permeabilizing threshold and irreversible threshold-the latter causing tissue necrosis. This can be obtained by adding constraints on maximum electric field intensity in optimization procedure.

  14. Global electric field determination in the Earth's outer magnetosphere using energetic charged particles

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.; Sheldon, R.; Hamilton, D.

    1995-01-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental measurement (for zeroth order MHD equilibrium) has been made infrequently and with poor spatial coverage - the global electric field. This oversight is due in part to the neglect of theorists. However, there is renewed interest in the convection electric field because it is now realized to be central to many magnetospheric processes, including the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere ionosphere coupling, ring current and radiation belt transport, substorm injections, and several acceleration mechanisms. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models) and we are left with an overly simplistic theoretical field, the Volland-Stern electric field model. Single point measurements of the plasmapause were used to infer the appropriate amplitudes of this model, parameterized by K(sub p). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 20 years. The analysis of current data sets requires a great deal more accuracy than can be provided by the Volland-Stern model. The variability of electric field shielding has not been properly addressed although effects of penetrating magnetospheric electric fields has been seen in mid-and low-latitude ionospheric data sets. The growing interest in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections. Thus we proposed and developed algorithms for extracting electric fields from particle data taken in the Earth's magnetosphere. As a test of the effectiveness of these new techniques, we analyzed data taken by the AMPTE/CCE spacecraft in equatorial orbit from 1984 to 1989.

  15. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C., III

    1999-01-01

    As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.

  16. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.

  17. The random field Blume-Capel model revisited

    NASA Astrophysics Data System (ADS)

    Santos, P. V.; da Costa, F. A.; de Araújo, J. M.

    2018-04-01

    We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.

  18. Electrons in strong electromagnetic fields: spin effects and radiation reaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Wen, Meng; Keitel, Christoph H.

    2017-05-01

    Various different classical models of electrons including their spin degree of freedom are commonly applied to describe the coupled dynamics of relativistic electron motion and spin precession in strong electromagnetic fields. The spin dynamics is usually governed by the Thomas-Bargmann-Michel-Telegdi equation [1, 2] in these models, while the electron's orbital motion follows the (modified) Lorentz force and a spin-dependent Stern-Gerlach force. Various classical models can lead to different or even contradicting predictions how the spin degree of freedom modifies the electron's orbital motion when the electron moves in strong electromagnetic fields. This discrepancy is rooted in the model-specific energy dependency of the spin induced relativistic Stern-Gerlach force acting on the electron. The Frenkel model [3, 4] and the classical Foldy-Wouthuysen model 5 are compared exemplarily against each other and against the quantum mechanical Dirac equation in order to identify parameter regimes where these classical models make different predictions [6, 7]. Our theoretical results allow for experimental tests of these models. In the setup of the longitudinal Stern-Gerlach effect, the Frenkel model and classical Foldy-Wouthuysen model lead in the relativistic limit to qualitatively different spin effects on the electron trajectory. Furthermore, it is demonstrated that in tightly focused beams in the near infrared the effect of the Stern-Gerlach force of the Frenkel model becomes sufficiently large to be potentially detectable in an experiment. Among the classical spin models, the Frenkel model is certainly prominent for its long history and its wide application. Our results, however, suggest that the classical Foldy-Wouthuysen model is superior as it is qualitatively in better agreement with the quantum mechanical Dirac equation. In ultra strong laser setups at parameter regimes where effects of the Stern-Gerlach force become relevant also radiation reaction effects are expected to set in. We incorporate radiation reaction classically via the Landau-Lifshitz equation and demonstrate that although radiation reaction effects can have a significant effect on the electron trajectory, the Frenkel model and the classical Foldy-Wouthuysen model remain distinguishable also if radiation reaction effects are taken into account. Our calculations are also suitable to verify the Landau-Lifshitz equation for the radiation reaction of electrons and other spin one-half particles. 1. Thomas, L. H., "I. The kinematics of an electron with an axis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3(13), 1-22 (1927). 2. Bargmann, V., Michel, L., and Telegdi, V. L., "Precession of the polarization of particles moving in a homogeneous electromagnetic field," Phys. Rev. Lett. 2(10), 435-436 (1959). 3. Frenkel, J., "Die Elektrodynamik des rotierenden Elektrons," Z. Phys. 37(4-5), 243-262 (1926). 4. Frenkel, J., "Spinning electrons," Nature (London) 117(2949), 653-654 (1926). 5. Silenko, A. J., "Foldy-Wouthyusen transformation and semiclassical limit for relativistic particles in strong external fields," Phys. Rev. A 77(1), 012116 (2008). 6. Wen, M., Bauke, H., and Keitel, C. H., "Identifying the Stern-Gerlach force of classical electron dynamics," Sci. Rep. 6, 31624 (2016). 7. Wen, M., Keitel, C. H., and Bauke, H., "Spin one-half particles in strong electromagnetic fields: spin effects and radiation reaction," arXiv:1610.08951 (2016).

  19. Effects of convection electric field on upwelling and escape of ionospheric O(+)

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Chiu, Yam T.; Peterson, William K.

    1992-01-01

    A Monte Carlo code is used to explore the full effects of the convection electric field on distributions of upflowing O(+) ions from the cusp/cleft ionosphere. Trajectories of individual ions/neutrals are computed as they undergo multiple charge-exchange collisions. In the ion state, the trajectories are computed in realistic models of the magnetic field and the convection, corotation, and ambipolar electric fields. The effects of ion-ion collisions are included, and the trajectories are computed with and without simultaneous stochastic heating perpendicular to the magnetic field by a realistic model of broadband, low frequency waves. In the neutral state, ballistic trajectories in the gravitational field are computed. The initial conditions of the ions, in addition to ambipolar electric field and the number densities and temperatures of O(+), H(+), and electrons as a function of height in the cusp/cleft region were obtained from the results of Gombosi and Killeen (1987), who used a hydrodynamic code to simulate the time-dependent frictional-heating effects in a magnetic tube during its motion though the convection throat. The distribution of the ion fluxes as a function of height are constructed from the case histories.

  20. Two-Dimensional Magnetotelluric Modelling of Ore Deposits: Improvements in Model Constraints by Inclusion of Borehole Measurements

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri

    2017-12-01

    A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.

  1. Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Rama, S. Kalyana

    2018-06-01

    We explore whether generalised Brans-Dicke theories, which have a scalar field Φ and a function ω (Φ ), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field σ and a function f( m). We find that this is possible for isotropic cosmology. We relate the pairs (σ , f) and (Φ , ω ) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which f(m) = sin m, the corresponding field Φ → 0 and the function ω (Φ ) ∝ Φ ^2. We also find that the class of generalised Brans-Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.

  2. Numerical Simulations of Near-Field Blast Effects using Kinetic Plates

    NASA Astrophysics Data System (ADS)

    Neuscamman, Stephanie; Manner, Virginia; Brown, Geoffrey; Glascoe, Lee

    2013-06-01

    Numerical simulations using two hydrocodes were compared to near-field measurements of blast impulse associated with ideal and non-ideal explosives to gain insight into testing results and predict untested configurations. The recently developed kinetic plate test was designed to measure blast impulse in the near-field by firing spherical charges in close range from steel plates and probing plate acceleration using laser velocimetry. Plate velocities for ideal, non-ideal and aluminized explosives tests were modeled using a three dimensional hydrocode. The effects of inert additives in the explosive formulation were modeled using a 1-D hydrocode with multiphase flow capability using Lagrangian particles. The relative effect of particle impact on the plate compared to the blast wave impulse is determined and modeling is compared to free field pressure results. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is abstract LLNL-ABS-622152.

  3. A stochastically forced time delay solar dynamo model: Self-consistent recovery from a maunder-like grand minimum necessitates a mean-field alpha effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in

    Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less

  4. Gauge fields and inflation

    NASA Astrophysics Data System (ADS)

    Maleknejad, A.; Sheikh-Jabbari, M. M.; Soda, J.

    2013-07-01

    The isotropy and homogeneity of the cosmic microwave background (CMB) favors “scalar driven” early Universe inflationary models. However, gauge fields and other non-scalar fields are far more common at all energy scales, in particular at high energies seemingly relevant to inflation models. Hence, in this review we consider the role and consequences, theoretical and observational, that gauge fields can have during the inflationary era. Gauge fields may be turned on in the background during inflation, or may become relevant at the level of cosmic perturbations. There have been two main classes of models with gauge fields in the background, models which show violation of the cosmic no-hair theorem and those which lead to isotropic FLRW cosmology, respecting the cosmic no-hair theorem. Models in which gauge fields are only turned on at the cosmic perturbation level, may source primordial magnetic fields. We also review specific observational features of these models on the CMB and/or the primordial cosmic magnetic fields. Our discussions will be mainly focused on the inflation period, with only a brief discussion on the post inflationary (p)reheating era. Large field models: The initial value of the inflaton field is large, generically super-Planckian, and it rolls slowly down toward the potential minimum at smaller φ values. For instance, chaotic inflation is one of the representative models of this class. The typical potential of large-field models has a monomial form as V(φ)=V0φn. A simple analysis using the dynamical equations reveals that for number of e-folds Ne larger than 60, we require super-Planckian initial field values,5φ0>3M. For these models typically ɛ˜η˜Ne-1. Small field models: Inflaton field is initially small and slowly evolves toward the potential minimum at larger φ values. The small field models are characterized by the following potential V(φ)=V0(1-(), which corresponds to a Taylor expansion about the origin, but more realistic small field models also have a potential minimum at φ≠0 which the system falls in at the end of inflation. A typical property of small field models is that a sufficient number of e-folds, requires a sub-Planckian inflaton initial value. For this reason they are called small field models. Natural inflation is an example of this type [12]. Hybrid inflation models: These models involve more than one scalar field while inflation is mainly driven by a single inflaton field ϕ. Inflaton starts from a large value rolling down until it reaches a bifurcation point, ϕ=ϕe, after which the field becomes unstable and undergoes a waterfall transition toward its global minimum. Its prime example is the Linde’s hybrid inflation model with the following potential [13] V(ϕ,χ)={λ}/{4}(+{1}/{2}g2ϕ2χ2+{1}/{2}m2ϕ2. During the initial inflationary phase the potential of the hybrid inflation is effectively described by a single field ϕ while inflation ends by a phase transition triggered by the presence of the second scalar field, the waterfall field χ. In other words, when the effective mass squared of a waterfall field becomes negative, the tachyonic instability makes waterfall field roll down toward the true vacuum state and the inflation suddenly ends.Number of e-folds Ne is given as Ne≃{M4}/{4λm2}ln({ϕ0}/{ϕe}), where ϕe={M}/{g} is the critical value of the inflaton below which, due to tachyonic instability, χ=0 becomes unstable and mχ2 gets negative. K-inflation: This is the prime example of models with non-canonical Kinetic term we discuss here. They are described by the action [14] S=∫d4x√{-g}({R}/{2}+P(φ,X)), where φ is a scalar field and X≔-{1}/{2}(. Here, P plays the rule of the effective pressure, while the energy density is given by ρ=2XP-P. Thus, the slow-roll parameter is given as ɛ={3XP}/{2XP-P}. The characteristic feature of these models is that in general they have a non-trivial sound speed cs2 for the propagation of perturbations (cf. our discussion in Section 2.2) cs2≡{P}/{P+2XP}. Finding K-inflation actions P(φ,X) which are well-motivated and consistently embedded in high-energy theories is the main challenge of this class of models [9]. Nonetheless, DBI inflation is a special kind of K-inflation, which is well-motivated from string theory with the action [15] S=∫d4x√{-g}[{R}/{2}-{1}/{f(φ)}((√{D}-1)+V(φI))], where D=1-2f(φ)X. In the presence of another natural cutoff Λ in the model, smallness or largeness of the inflaton field should be compared to Λ; Λ could be sub-Planckian and in general Λ≲M. For a discussion on this see [10,11].

  5. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    USDA-ARS?s Scientific Manuscript database

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  6. Field experimental data for crop modeling of wheat growth response to nitrogen fertilizer, elevated CO2, water stress, and high temperature

    USDA-ARS?s Scientific Manuscript database

    Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...

  7. Carrier mobility in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Benwadih, Mohamed; Gwoziecki, Romain; Coppard, Romain; Minari, Takeo; Liu, Chuan; Tsukagoshi, Kazuhito; Chroboczek, Jan; Balestra, Francis; Ghibaudo, Gerard

    2011-11-01

    A study of carrier transport in top-gate and bottom-contact TIPS-pentacene organic field-effect transistors (OFETs) based on mobility is presented. Among three mobilities extracted by different methods, the low-field mobility obtained by the Y function exhibits the best reliability and ease for use, whereas the widely applied field-effect mobility is not reliable, particularly in short-channel transistors and at low temperatures. A detailed study of contact transport reveals its strong impact on short-channel transistors, suggesting that a more intrinsic transport analysis is better implemented in relatively longer-channel devices. The observed temperature dependences of mobility are well explained by a transport model with Gaussian-like diffusivity band tails, different from diffusion in localized states band tails. This model explicitly interprets the non-zero constant mobility at low temperatures and clearly demonstrates the effects of disorder and hopping transport on temperature and carrier density dependences of mobility in organic transistors.

  8. The interplanetary magnetic field B[sub y] effects on large-scale field-aligned currents near local noon: Contributions from cusp part and noncusp part

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, M.; Lundin, R.; Woch, J.

    1993-04-01

    latitudinals develop a model to account for the effect of the interplanetary magnetic field (IMF) B[sub y] component on the dayside field-aligned currents (FACs). As part of the model the FACs are divided into a [open quotes]cusp part[close quotes] and a [open quotes]noncusp part[close quotes]. The authors then propose that the cusp part FACs shift in the longitudinal direction while the noncusplike part FACs shift in both longitudinal and latitudinal directions in response to the y component of the IMF. If combined, it is observed that the noncusp part FAC is found poleward of the cusp part FAC system whenmore » the y component of the IMF is large. These two FAC systems flow in the same direction. They reinforce one another, creating a strong FAC, termed the DPY-FAC. The model also predicts that the polewardmost part of the DPY-FAC flows on closed field lines, even in regions conventionally occupied by the polar cap. Results of the model are successfully compared with particle and magnetic field data from Viking missions.« less

  9. Effective field model of roughness in magnetic nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepadatu, Serban, E-mail: SLepadatu@uclan.ac.uk

    2015-12-28

    An effective field model is introduced here within the micromagnetics formulation, to study roughness in magnetic structures, by considering sub-exchange length roughness levels as a perturbation on a smooth structure. This allows the roughness contribution to be separated, which is found to give rise to an effective configurational anisotropy for both edge and surface roughness, and accurately model its effects with fine control over the roughness depth without the explicit need to refine the computational cell size to accommodate the roughness profile. The model is validated by comparisons with directly roughened structures for a series of magnetization switching and domainmore » wall velocity simulations and found to be in excellent agreement for roughness levels up to the exchange length. The model is further applied to vortex domain wall velocity simulations with surface roughness, which is shown to significantly modify domain wall movement and result in dynamic pinning and stochastic creep effects.« less

  10. Fluid-gravity model for the chiral magnetic effect.

    PubMed

    Kalaydzhyan, Tigran; Kirsch, Ingo

    2011-05-27

    We consider the STU model as a gravity dual of a strongly coupled plasma with multiple anomalous U(1) currents. In the bulk we add additional background gauge fields to include the effects of external electric and magnetic fields on the plasma. Reducing the number of chemical potentials in the STU model to two and interpreting them as quark and chiral chemical potential, we obtain a holographic description of the chiral magnetic and chiral vortical effects (CME and CVE) in relativistic heavy-ion collisions. These effects formally appear as first-order transport coefficients in the electromagnetic current. We compute these coefficients from our model using fluid-gravity duality. We also find analogous effects in the axial-vector current. Finally, we briefly discuss a variant of our model, in which the CME/CVE is realized in the late-time dynamics of an expanding plasma. © 2011 American Physical Society

  11. Interaction of Low Frequency External Electric Fields and Pancreatic β-Cell: A Mathematical Modeling Approach to Identify the Influence of Excitation Parameters.

    PubMed

    Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2018-05-24

    Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.

  12. A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model

    NASA Astrophysics Data System (ADS)

    Jiang, Yongyue; Li, Li; Zhao, Zhijiang

    2017-11-01

    Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.

  13. Predicting performance of polymer-bonded Terfenol-D composites under different magnetic fields

    NASA Astrophysics Data System (ADS)

    Guan, Xinchun; Dong, Xufeng; Ou, Jinping

    2009-09-01

    Considering demagnetization effect, the model used to calculate the magnetostriction of the single particle under the applied field is first created. Based on Eshelby equivalent inclusion and Mori-Tanaka method, the approach to calculate the average magnetostriction of the composites under any applied field, as well as the saturation, is studied by treating the magnetostriction particulate as an eigenstrain. The results calculated by the approach indicate that saturation magnetostriction of magnetostrictive composites increases with an increase of particle aspect and particle volume fraction, and a decrease of Young's modulus of the matrix. The influence of an applied field on magnetostriction of the composites becomes more significant with larger particle volume fraction or particle aspect. Experiments were done to verify the effectiveness of the model, the results of which indicate that the model only can provide approximate results.

  14. Influence of channel base current and varying return stroke speed on the calculated fields of three important return stroke models

    NASA Technical Reports Server (NTRS)

    Thottappillil, Rajeev; Uman, Martin A.; Diendorfer, Gerhard

    1991-01-01

    Compared here are the calculated fields of the Traveling Current Source (TCS), Modified Transmission Line (MTL), and the Diendorfer-Uman (DU) models with a channel base current assumed in Nucci et al. on the one hand and with the channel base current assumed in Diendorfer and Uman on the other hand. The characteristics of the field wave shapes are shown to be very sensitive to the channel base current, especially the field zero crossing at 100 km for the TCS and DU models, and the magnetic hump after the initial peak at close range for the TCS models. Also, the DU model is theoretically extended to include any arbitrarily varying return stroke speed with height. A brief discussion is presented on the effects of an exponentially decreasing speed with height on the calculated fields for the TCS, MTL, and DU models.

  15. Principle of radial transport in low temperature annular plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunchao, E-mail: yunchao.zhang@anu.edu.au; Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electricmore » field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.« less

  16. Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan E.; Miller, M. Coleman; Kalapotharakos, Constantinos; Contopoulos, Ioannis

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profiles. We find that, compared to the profiles derived from symmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines, increases significantly relative to the off-peak emission, formed along leading field lines. The enhanced contrast produces improved slot gap model fits to Fermi pulsar light curves like Vela, with vacuum dipole fits being more favorable.

  17. A holographic model of the Kondo effect

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Wu, Jackson

    2013-12-01

    We propose a model of the Kondo effect based on the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, also known as holography. The Kondo effect is the screening of a magnetic impurity coupled anti-ferromagnetically to a bath of conduction electrons at low temperatures. In a (1+1)-dimensional CFT description, the Kondo effect is a renormalization group flow triggered by a marginally relevant (0+1)-dimensional operator between two fixed points with the same Kac-Moody current algebra. In the large- N limit, with spin SU( N) and charge U(1) symmetries, the Kondo effect appears as a (0+1)-dimensional second-order mean-field transition in which the U(1) charge symmetry is spontaneously broken. Our holographic model, which combines the CFT and large- N descriptions, is a Chern-Simons gauge field in (2+1)-dimensional AdS space, AdS 3, dual to the Kac-Moody current, coupled to a holographic superconductor along an AdS 2 sub-space. Our model exhibits several characteristic features of the Kondo effect, including a dynamically generated scale, a resistivity with power-law behavior in temperature at low temperatures, and a spectral flow producing a phase shift. Our holographic Kondo model may be useful for studying many open problems involving impurities, including for example the Kondo lattice problem.

  18. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  19. Modular invariant inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Tatsuo; Nitta, Daisuke; Urakawa, Yuko

    2016-08-08

    Modular invariance is a striking symmetry in string theory, which may keep stringy corrections under control. In this paper, we investigate a phenomenological consequence of the modular invariance, assuming that this symmetry is preserved as well as in a four dimensional (4D) low energy effective field theory. As a concrete setup, we consider a modulus field T whose contribution in the 4D effective field theory remains invariant under the modular transformation and study inflation drived by T. The modular invariance restricts a possible form of the scalar potenntial. As a result, large field models of inflation are hardly realized. Meanwhile,more » a small field model of inflation can be still accomodated in this restricted setup. The scalar potential traced during the slow-roll inflation mimics the hilltop potential V{sub ht}, but it also has a non-negligible deviation from V{sub ht}. Detecting the primordial gravitational waves predicted in this model is rather challenging. Yet, we argue that it may be still possible to falsify this model by combining the information in the reheating process which can be determined self-completely in this setup.« less

  20. Radiative corrections from heavy fast-roll fields during inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S., E-mail: jain@cp3.dias.sdu.dk, E-mail: sandora@cp3.dias.sdu.dk, E-mail: sloth@cp3.dias.sdu.dk

    2015-06-01

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messengermore » field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.« less

  1. Radiative corrections from heavy fast-roll fields during inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev Kumar; Sandora, McCullen; Sloth, Martin S.

    2015-06-09

    We investigate radiative corrections to the inflaton potential from heavy fields undergoing a fast-roll phase transition. We find that a logarithmic one-loop correction to the inflaton potential involving this field can induce a temporary running of the spectral index. The induced running can be a short burst of strong running, which may be related to the observed anomalies on large scales in the cosmic microwave spectrum, or extend over many e-folds, sustaining an effectively constant running to be searched for in the future. We implement this in a general class of models, where effects are mediated through a heavy messengermore » field sitting in its minimum. Interestingly, within the present framework it is a generic outcome that a large running implies a small field model with a vanishing tensor-to-scalar ratio, circumventing the normal expectation that small field models typically lead to an unobservably small running of the spectral index. An observable level of tensor modes can also be accommodated, but, surprisingly, this requires running to be induced by a curvaton. If upcoming observations are consistent with a small tensor-to-scalar ratio as predicted by small field models of inflation, then the present study serves as an explicit example contrary to the general expectation that the running will be unobservable.« less

  2. Effect of non-equilibrium flow chemistry on the heating distribution over the MESUR forebody during a Martian entry

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kang

    1992-01-01

    Effect of flow field properties on the heating distribution over a 140 deg blunt cone was determined for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL), and reacting boundary layer (BLIMPK) equations. The effect of gas kinetics on the flow field and the surface heating distribution were investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.

  3. The effect of Birkeland currents on magnetic field topology

    NASA Technical Reports Server (NTRS)

    Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

    1996-01-01

    A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

  4. Backus Effect on a Perpendicular Errors in Harmonic Models of Real vs. Synthetic Data

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.; Santana, J.; Sabaka, T.

    1999-01-01

    Measurements of geomagnetic scalar intensity on a thin spherical shell alone are not enough to separate internal from external source fields; moreover, such scalar data are not enough for accurate modeling of the vector field from internal sources because of unmodeled fields and small data errors. Spherical harmonic models of the geomagnetic potential fitted to scalar data alone therefore suffer from well-understood Backus effect and perpendicular errors. Curiously, errors in some models of simulated 'data' are very much less than those in models of real data. We analyze select Magsat vector and scalar measurements separately to illustrate Backus effect and perpendicular errors in models of real scalar data. By using a model to synthesize 'data' at the observation points, and by adding various types of 'noise', we illustrate such errors in models of synthetic 'data'. Perpendicular errors prove quite sensitive to the maximum degree in the spherical harmonic expansion of the potential field model fitted to the scalar data. Small errors in models of synthetic 'data' are found to be an artifact of matched truncation levels. For example, consider scalar synthetic 'data' computed from a degree 14 model. A degree 14 model fitted to such synthetic 'data' yields negligible error, but amplifies 4 nT (rmss) added noise into a 60 nT error (rmss); however, a degree 12 model fitted to the noisy 'data' suffers a 492 nT error (rmms through degree 12). Geomagnetic measurements remain unaware of model truncation, so the small errors indicated by some simulations cannot be realized in practice. Errors in models fitted to scalar data alone approach 1000 nT (rmss) and several thousand nT (maximum).

  5. Induction signals from Callisto's ionosphere and their implications on a possible subsurface ocean

    NASA Astrophysics Data System (ADS)

    Hartkorn, Oliver; Saur, Joachim

    2017-11-01

    We investigate whether induction within Callisto's electrically conductive ionosphere can explain observed magnetic fields which have previously been interpreted as evidence of induction in a saline, electrically conductive subsurface ocean. Callisto's ionosphere is subject to the flow of time-periodic magnetized plasma of Jupiter's magnetosphere, which induces electric fields and electric currents in Callisto's electrically conductive ionosphere. We develop a simple analytic model for a first quantitative understanding of the effects of induction in Callisto's ionosphere caused by the interaction with a time-variable magnetic field environment. With this model, we also investigate how the associated ionospheric currents close in the ambient magnetospheric plasma. Based on our model, we find that the anisotropic nature of Callisto's ionospheric conductivity generates an enhancement effect on ionospheric loop currents which are driven by the time-variable magnetic field. This effect is similar to the Cowling channel effect known from Earth's ionosphere. Subsequently, we numerically calculate the expected induced magnetic fields due to Jupiter's time-variable magnetic field in an anisotropic conductive ionosphere and compare our results with the Galileo C-3 and C-9 flybys. We find that induction within Callisto's ionosphere is responsible for a significant part of the observed magnetic fields. Ionospheric induction creates induced magnetic fields to some extent similar as expected from a subsurface water ocean. Depending on currently unknown properties such as Callisto's nightside ionosphere, the existence of layers of "dirty ice" and the details of the plasma interaction, a water ocean might be located much deeper than previously thought or might not exist at all.

  6. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  7. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  8. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  9. Phenomenological Modeling and Laboratory Simulation of Long-Term Aging of Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Elwardany, Michael Dawoud

    The accurate characterization of asphalt mixture properties as a function of pavement service life is becoming more important as more powerful pavement design and performance prediction methods are implemented. Oxidative aging is a major distress mechanism of asphalt pavements. Aging increases the stiffness and brittleness of the material, which leads to a high cracking potential. Thus, an improved understanding of the aging phenomenon and its effect on asphalt binder chemical and rheological properties will allow for the prediction of mixture properties as a function of pavement service life. Many researchers have conducted laboratory binder thin-film aging studies; however, this approach does not allow for studying the physicochemical effects of mineral fillers on age hardening rates in asphalt mixtures. Moreover, aging phenomenon in the field is governed by kinetics of binder oxidation, oxygen diffusion through mastic phase, and oxygen percolation throughout the air voids structure. In this study, laboratory aging trials were conducted on mixtures prepared using component materials of several field projects throughout the USA and Canada. Laboratory aged materials were compared against field cores sampled at different ages. Results suggested that oven aging of loose mixture at 95°C is the most promising laboratory long-term aging method. Additionally, an empirical model was developed in order to account for the effect of mineral fillers on age hardening rates in asphalt mixtures. Kinetics modeling was used to predict field aging levels throughout pavement thickness and to determine the required laboratory aging duration to match field aging. Kinetics model outputs are calibrated using measured data from the field to account for the effects of oxygen diffusion and percolation. Finally, the calibrated model was validated using independent set of field sections. This work is expected to provide basis for improved asphalt mixture and pavement design procedures in order to save taxpayers' money.

  10. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  11. Effect of zero magnetic field on cardiovascular system and microcirculation

    NASA Astrophysics Data System (ADS)

    Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.

    2016-02-01

    The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.

  12. Preliminary Phase Field Computational Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus ofmore » the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.« less

  13. Dynamics of Ring Current and Electric Fields in the Inner Magnetosphere During Disturbed Periods: CRCM-BATS-R-US Coupled Model

    NASA Technical Reports Server (NTRS)

    Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.

    2010-01-01

    We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.

  14. Baryon non-invariant couplings in Higgs effective field theory

    NASA Astrophysics Data System (ADS)

    Merlo, Luca; Saa, Sara; Sacristán-Barbero, Mario

    2017-03-01

    The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B-L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique.

  15. Note on the equivalence of a barotropic perfect fluid with a k-essence scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroja, Frederico; Sasaki, Misao

    In this brief report, we obtain the necessary and sufficient condition for a class of noncanonical single scalar field models to be exactly equivalent to barotropic perfect fluids, under the assumption of an irrotational fluid flow. An immediate consequence of this result is that the nonadiabatic pressure perturbation in this class of scalar field systems vanishes exactly at all orders in perturbation theory and on all scales. The Lagrangian for this general class of scalar field models depends on both the kinetic term and the value of the field. However, after a field redefinition, it can be effectively cast inmore » the form of a purely kinetic k-essence model.« less

  16. Interaction of MRI field gradients with the human body.

    PubMed

    Glover, P M

    2009-11-07

    In this review, the effects of low-frequency electromagnetic fields encountered specifically during magnetic resonance imaging (MRI) are examined. The primary biological effect at frequencies of between 100 and 5000 Hz (typical of MRI magnetic field gradient switching) is peripheral nerve stimulation, the result of which can be a mild tingling and muscle twitching to a sensation of pain. The models for nerve stimulation and how they are related to the rate of change of magnetic field are examined. The experimental measurements, and analytic and computational modelling work in this area are reviewed. The review concludes with a discussion of current regulation in this area and current practice as both are applied to MRI.

  17. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbationsmore » such as in DBI inflation.« less

  18. Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.

    2018-01-01

    The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.

  19. COMSOL based Simulation on the Effect of Electric Field changes due to Lightning on Ground

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Joby, N. E.; Sabu, S.

    2017-12-01

    The phenomenon of lightning is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to lightning in the region above ground. Through this work, we investigate into the effects of lightning electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of lightning electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were developed using Sandstone as the base model for ground. Similar works in literature have only dealt with lightning electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid lightning forecasting and preparedness by opening new doors for voltage based prediction methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during lightning.

  20. Are V1 Simple Cells Optimized for Visual Occlusions? A Comparative Study

    PubMed Central

    Bornschein, Jörg; Henniges, Marc; Lücke, Jörg

    2013-01-01

    Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. PMID:23754938

  1. Development and Field Testing of a Model to Simulate a Demonstration of Le Chatelier's Principle Using the Wheatstone Bridge Circuit.

    ERIC Educational Resources Information Center

    Vickner, Edward Henry, Jr.

    An electronic simulation model was designed, constructed, and then field tested to determine student opinion of its effectiveness as an instructional aid. The model was designated as the Equilibrium System Simulator (ESS). The model was built on the principle of electrical symmetry applied to the Wheatstone bridge and was constructed from readily…

  2. Assessment of the Aerosol Optics Component of the Coupled WRF-CMAQ Model usingCARES Field Campaign data and a Single Column Model

    EPA Science Inventory

    The Carbonaceous Aerosols and Radiative Effects Study (CARES), a field campaign held in central California in June 2010, provides a unique opportunity to assess the aerosol optics modeling component of the two-way coupled Weather Research and Forecasting (WRF) – Community Multisc...

  3. Micromechanics-based magneto-elastic constitutive modeling of particulate composites

    NASA Astrophysics Data System (ADS)

    Yin, Huiming

    Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.

  4. Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.; deGroh, H. C.

    2001-01-01

    As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.

  5. Effects of a Weak Planetary Field on a Model Venus Ionosphere

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet G.; Ma, Yingjuan; Villarreal, Michaela

    2014-05-01

    There are a number of attributes of the near-Venus space environment and upper atmosphere that remain mysterious, including occasional large polar magnetic field stuctures seen on VEX and nightside ionospheric holes seen on PVO. We have been exploring the consequences of a weak global dipole magnetic field of Venus using results of BATS-R-US MHD simulations. An advantage of these models is that they include the effects on a realistic ionosphere. We compare some of the weak magnetosphere's ionospheric properties with the typical unmagnetized ionsphere case. The results show the differences can be quite subtle for dipole fields less than ~10 nT at the equator, as might be expected. Nevertheless the dipole fields do produce distinctive details, especially in the upper regions.

  6. Magnetic domain wall creep and depinning: A scalar field model approach

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Ferrero, Ezequiel E.; Kolton, Alejandro B.; Curiale, Javier; Jeudy, Vincent; Bustingorry, Sebastian

    2018-06-01

    Magnetic domain wall motion is at the heart of new magnetoelectronic technologies and hence the need for a deeper understanding of domain wall dynamics in magnetic systems. In this context, numerical simulations using simple models can capture the main ingredients responsible for the complex observed domain wall behavior. We present a scalar field model for the magnetization dynamics of quasi-two-dimensional systems with a perpendicular easy axis of magnetization which allows a direct comparison with typical experimental protocols, used in polar magneto-optical Kerr effect microscopy experiments. We show that the thermally activated creep and depinning regimes of domain wall motion can be reached and the effect of different quenched disorder implementations can be assessed with the model. In particular, we show that the depinning field increases with the mean grain size of a Voronoi tessellation model for the disorder.

  7. Progress in turbulence modeling for complex flow fields including effects of compressibility

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Rubesin, M. W.

    1980-01-01

    Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.

  8. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  9. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.

    PubMed

    Bhaumik, Basabi; Mathur, Mona

    2003-01-01

    We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

  10. Theoretical evaluation of maximum electric field approximation of direct band-to-band tunneling Kane model for low bandgap semiconductors

    NASA Astrophysics Data System (ADS)

    Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong

    2016-06-01

    The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.

  11. Nonlinear vibration of double-walled boron nitride and carbon nanopeapods under multi-physical fields with consideration of surface stress effects

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Sabzeali, M.; BabaAkbar Zarei, H.

    2017-12-01

    In this study, the nonlinear thermo-electro vibrations of double-walled boron nitride nanopeapods (DWBNNPPs) and double-walled carbon nanopeapods (DWCNPPs) under magnetic field embedded in an elastic medium is investigated. DWBNNPPs are made of piezoelectric and smart materials therefore, electric field is effective on them; meanwhile, DWCNPPs are made of carbon thus, magnetic field can be useful to control them. The Pasternak model is used to simulate the effects of elastic medium which surrounds the system. Nanotubes are modeled with assumption of the Euler-Bernoulli beam (EBB) theory and the surface effects are considered to achieve accurate response of the system. Moreover, interaction between two layers is modeled by van der Waals (vdW) forces. The equations of motion are derived using the energy method and the Hamilton principle. Then the governing equations are solved by using Galerkin's method and incremental harmonic balance method (IHBM). The influences of various parameters such as the magnetic field, different types of DWCNPPs and DWBNNPPs, elastic medium, existence of fullerene and surface effect on the vibration behavior of the system are investigated. The results demonstrate that DWBNNPPs have more influence on the frequency of the system than DWCNPPs. In addition, the presence of fullerene in nanotubes has a negative impact on the frequency behavior of revisionthe system.

  12. Drug accumulation by means of noninvasive magnetic drug delivery system

    NASA Astrophysics Data System (ADS)

    Chuzawa, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    The medication is one of the most general treatment methods, but drugs diffuse in the normal tissues other than the target part by the blood circulation. Therefore, side effect in the medication, particularly for a drug with strong effect such as anti-cancer drug, are a serious issue. Drug Delivery System (DDS) which accumulates the drug locally in the human body is one of the techniques to solve the side-effects. Magnetic Drug Delivery System (MDDS) is one of the active DDSs, which uses the magnetic force. The objective of this study is to accumulate the ferromagnetic drugs noninvasively in the deep part of the body by using MDDS. It is necessary to generate high magnetic field and magnetic gradient at the target part to reduce the side-effects to the tissues with no diseases. The biomimetic model was composed, which consists of multiple model organs connected with diverged blood vessel model. The arrangement of magnetic field was examined to accumulate ferromagnetic drug particles in the target model organ by using a superconducting bulk magnet which can generate high magnetic fields. The arrangement of magnet was designed to generate high and stable magnetic field at the target model organ. The accumulation experiment of ferromagnetic particles has been conducted. In this study, rotating HTS bulk magnet around the axis of blood vessels by centering on the target part was suggested, and the model experiment for magnet rotation was conducted. As a result, the accumulation of the ferromagnetic particles to the target model organ in the deep part was confirmed.

  13. A unitary model of the black hole evaporation

    NASA Astrophysics Data System (ADS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2014-12-01

    A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.

  14. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  15. Field dependent magnetic anisotropy of Fe1-xZnx thin films

    NASA Astrophysics Data System (ADS)

    Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.

    2013-05-01

    Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.

  16. Effects of the Stark Shift on the Evolution of the Field Entropy and Entanglement in the Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Fang, Mao Fa

    1996-01-01

    The evolution of the field entropy in the two-photon JCM in the presence of the Stark shift is investigated, and the effects of the dynamic Stark shift on the evolution of the field entropy and entanglement between the atom and field, are examined. The results show that the dynamic Stark shift plays an important role in the evolution of the field entropy in two-photon processes.

  17. Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.

    PubMed

    Cole, A J; Hegna, C C; Callen, J D

    2007-08-10

    A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.

  18. Gravity quantized: Loop quantum gravity with a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational fieldmore » because no symmetry reduction has been performed at the classical level.« less

  19. Casting the Coronal Magnetic Field Reconstructions with Magnetic Field Constraints above the Photosphere in 3D Using MHD Bifrost Model

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.

    2017-12-01

    Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are free from this systematic error, while have other metrics either comparable or only marginally worse than those estimated for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing.

  20. Inflation in the mixed Higgs-R2 model

    NASA Astrophysics Data System (ADS)

    He, Minxi; Starobinsky, Alexei A.; Yokoyama, Jun'ichi

    2018-05-01

    We analyze a two-field inflationary model consisting of the Ricci scalar squared (R2) term and the standard Higgs field non-minimally coupled to gravity in addition to the Einstein R term. Detailed analysis of the power spectrum of this model with mass hierarchy is presented, and we find that one can describe this model as an effective single-field model in the slow-roll regime with a modified sound speed. The scalar spectral index predicted by this model coincides with those given by the R2 inflation and the Higgs inflation implying that there is a close relation between this model and the R2 inflation already in the original (Jordan) frame. For a typical value of the self-coupling of the standard Higgs field at the high energy scale of inflation, the role of the Higgs field in parameter space involved is to modify the scalaron mass, so that the original mass parameter in the R2 inflation can deviate from its standard value when non-minimal coupling between the Ricci scalar and the Higgs field is large enough.

  1. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  2. Hot spot model of MagLIF implosions: Nernst term effect on magnetic flux losses

    NASA Astrophysics Data System (ADS)

    Garcia Rubio, Fernando; Sanz Recio, Javier; Betti, Riccardo

    2016-10-01

    An analytical model of a collisional plasma being compressed by a cylindrical liner is proposed and solved in a magnetized liner inertial fusion-like context. The implosion is assumed to be isobaric, and the magnetic diffusion is confined to a thin layer near the liner. Both unmagnetized and magnetized plasma cases are considered. The model reduces to a system of two partial differential equations for temperature and magnetic field. Special attention is given to the effect of the Nernst term on the evolution of the magnetic field. Scaling laws for temperature, magnetic field, hot spot mass increase and magnetic field losses are obtained. The temperature and magnetic field spatial profiles tend to a self-similar state. It is found that when the Nernst term is taken into account, the magnetic field is advected towards the liner, and the magnetic flux losses are independent of the magnetic Lewis number. Research supported by the Spanish Ministerio de Economía y Competitividad, Project No. ENE2014-54960R. Acknowledgements to the Laboratory of Laser Energetics (Rochester) for its hospitality.

  3. Electric-field induced phase transitions of dielectric colloids: Impact of multiparticle effects

    NASA Astrophysics Data System (ADS)

    Wood, Jeffery A.; Docoslis, Aristides

    2012-05-01

    The thermodynamic framework for predicting the electric-field induced fluid like-solid like phase transition of dielectric colloids developed by Khusid and Acrivos [Phys. Rev. E. 54, 5428 (1996)] is extended to examine the impact of multiscattering/multiparticle effects on the resulting phase diagrams. This was accomplished using effective permittivity models suitable both over the entire composition region for hard spheres (0≤c

  4. Effective field theory for deformed atomic nuclei

    DOE PAGES

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  5. Polarization of photons in matter–antimatter annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskaliuk, S.S.

    2015-03-10

    In this work we demonstrate the possibility of generation of linear polarization of the electromagnetic field (EMF) due to the quantum effects in matter-antimatter annihilation process for anisotropic space of the I type according to Bianchi. We study the dynamics of this process to estimate the degree of polarisation of the EMF in the external gravitational field of the anisotropic Bianchi I model. It has been established that the quantum effects in matter-antimatter annihilation process in the external gravitational field of the anisotropic Bianchi I model provide contribution to the degree of polarisation of the EMF in quadrupole harmonics.

  6. The Effect of Rotating a Faraday Disc Perpendicular to an Applied Magnetic Field Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Grugel, Richard N.

    2003-01-01

    A magnetohydrodynamic model that examines the effect of rotating an electrically conducting cylinder with a uniform external magnetic field applied orthogonal to its axis is presented. Noting a simple geometry, it can be classified as a fundamental dynamo problem. For the case of an infinitely long cylinder, an analytical solution is obtained and analyzed in detail. A semi-analytical model was developed that considers a finite cylinder. Experimental data from a spinning brass wheel in the presence of Earth's magnetic field were compared to the proposed theory and found to fit well.

  7. Direct construction of mesoscopic models from microscopic simulations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George Em

    2010-02-01

    Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.

  8. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Harko, Tiberiu; Koivisto, Tomi S.

    2013-07-01

    Hybrid metric-Palatini gravity is a recently proposed theory, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatini. The theory predicts the existence of a long-range scalar field, which passes the Solar System observational constraints, even if the scalar field is very light, and modifies the cosmological and galactic dynamics. Thus, the theory opens new possibilities to approach, in the same theoretical framework, the problems of both dark energy and dark matter. In this work, we consider the generalized virial theorem in the scalar-tensor representation of the hybrid metric-Palatini gravity. More specifically, takingmore » into account the relativistic collisionless Boltzmann equation, we show that the supplementary geometric terms in the gravitational field equations provide an effective contribution to the gravitational potential energy. We show that the total virial mass is proportional to the effective mass associated with the new terms generated by the effective scalar field, and the baryonic mass. In addition to this, we also consider astrophysical applications of the model and show that the model predicts that the mass associated to the scalar field and its effects extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can be an efficient tool in observationally testing the viability of this class of generalized gravity models.« less

  9. Effect of lost charged particles on the breakdown characteristics of the gaseous electrical discharge in non-uniform axial electric field

    NASA Astrophysics Data System (ADS)

    Noori, H.; Ranjbar, A. H.

    2017-10-01

    The secondary emission coefficient is a valuable parameter for numerical modeling of the discharge process in gaseous insulation. A theoretical model has been developed to consider the effects of the radial electric field, non-uniformity of the axial electric field, and radial diffusion of charged particles on the secondary emission coefficient. In the model, a modified breakdown criterion is employed to determine the effective secondary electron emission, γeff. Using the geometry factor gi which is introduced based on the effect of radial diffusion of charged particles on the fraction of ions which arrive at the cathode, the geometry-independent term of γeff (Δi) was obtained as a function of the energy of the incident ions on the cathode. The results show that Δi is approximately a unique function of the ion energy for the ratios of d/R = 39, 50, 77, 115, and 200. It means that the considered mechanisms in the model are responsible for the deviation from Paschen's law.

  10. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGES

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  11. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  12. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  13. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  14. Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations

    DOE PAGES

    Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...

    2015-01-22

    In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.

  15. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array ofmore » newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.« less

  16. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    NASA Astrophysics Data System (ADS)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  17. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    PubMed

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  18. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model

    PubMed Central

    Penumatcha, Ashish V.; Salazar, Ramon B.; Appenzeller, Joerg

    2015-01-01

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses. PMID:26563458

  19. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan

    USGS Publications Warehouse

    Merriman-Hoehne, Katherine R.; Russell, Amy M.; Rachol, Cynthia M.; Daggupati, Prasad; Srinivasan, Raghavan; Hayhurst, Brett A.; Stuntebeck, Todd D.

    2018-01-01

    Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).

  20. SPECTRAL data-based estimation of soil heat flux

    USGS Publications Warehouse

    Singh, Ramesh K.; Irmak, A.; Walter-Shea, Elizabeth; Verma, S.B.; Suyker, A.E.

    2011-01-01

    Numerous existing spectral-based soil heat flux (G) models have shown wide variation in performance for maize and soybean cropping systems in Nebraska, indicating the need for localized calibration and model development. The objectives of this article are to develop a semi-empirical model to estimate G from a normalized difference vegetation index (NDVI) and net radiation (Rn) for maize (Zea mays L.) and soybean (Glycine max L.) fields in the Great Plains, and present the suitability of the developed model to estimate G under similar and different soil and management conditions. Soil heat fluxes measured in both irrigated and rainfed fields in eastern and south-central Nebraska were used for model development and validation. An exponential model that uses NDVI and Rn was found to be the best to estimate G based on r2 values. The effect of geographic location, crop, and water management practices were used to develop semi-empirical models under four case studies. Each case study has the same exponential model structure but a different set of coefficients and exponents to represent the crop, soil, and management practices. Results showed that the semi-empirical models can be used effectively for G estimation for nearby fields with similar soil properties for independent years, regardless of differences in crop type, crop rotation, and irrigation practices, provided that the crop residue from the previous year is more than 4000 kg ha-1. The coefficients calibrated from particular fields can be used at nearby fields in order to capture temporal variation in G. However, there is a need for further investigation of the models to account for the interaction effects of crop rotation and irrigation. Validation at an independent site having different soil and crop management practices showed the limitation of the semi-empirical model in estimating G under different soil and environment conditions.

  1. Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields

    NASA Astrophysics Data System (ADS)

    Gavrilov, S. P.; Gitman, D. M.

    2017-03-01

    Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.

  2. Global Simulations of Dynamo and Magnetorotational Instability in Madison Plasma Experiments and Astrophysical Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Fatima

    2014-07-31

    Large-scale magnetic fields have been observed in widely different types of astrophysical objects. These magnetic fields are believed to be caused by the so-called dynamo effect. Could a large-scale magnetic field grow out of turbulence (i.e. the alpha dynamo effect)? How could the topological properties and the complexity of magnetic field as a global quantity, the so called magnetic helicity, be important in the dynamo effect? In addition to understanding the dynamo mechanism in astrophysical accretion disks, anomalous angular momentum transport has also been a longstanding problem in accretion disks and laboratory plasmas. To investigate both dynamo and momentum transport,more » we have performed both numerical modeling of laboratory experiments that are intended to simulate nature and modeling of configurations with direct relevance to astrophysical disks. Our simulations use fluid approximations (Magnetohydrodynamics - MHD model), where plasma is treated as a single fluid, or two fluids, in the presence of electromagnetic forces. Our major physics objective is to study the possibility of magnetic field generation (so called MRI small-scale and large-scale dynamos) and its role in Magneto-rotational Instability (MRI) saturation through nonlinear simulations in both MHD and Hall regimes.« less

  3. On some nonlinear effects in ultrasonic fields

    PubMed

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  4. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  5. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Max-Planck-Institut für Physik; Nolde, David

    2015-09-22

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUTmore » and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less

  6. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antusch, Stefan; Nolde, David, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUTmore » and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.« less

  7. Angular overlap model analysis of the D 2d crystal field effect in uranium (4+) compounds

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Hubert, S.; Krupa, J. C.

    1988-12-01

    Recent interpretations of the D 2d crystal field of U 4+ in β-ThCl 4, α, β-ThBr 4, ThSiO 4 and UCl 4 are discussed in terms of the simplified one-, two- and three-parameter versions of the Angular Overlap Model which are shown to be a handy tool in a trial interpretation of the effect. The variation of the CF parameters with a small D 2 distortion of the coordination is well reproduced by the model.

  8. Solvent effects in time-dependent self-consistent field methods. II. Variational formulations and analytical gradients

    DOE PAGES

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2015-08-06

    This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less

  9. Model based estimation of image depth and displacement

    NASA Technical Reports Server (NTRS)

    Damour, Kevin T.

    1992-01-01

    Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal information into the restoration process. A summary on the conditions that indicate which type of filtering should be applied to a field is provided.

  10. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  11. Significance of the Eccentricity of the Earth's Magnetic Field for the Magnetosphere and Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Koochak, Z.; Fraser-Smith, A. C.

    2016-12-01

    This paper is an extension of an earlier study of the centered and eccentric dipole models of the Earth's magnetic field [Fraser-Smith, 1987]. We have used the 1980-2015 International Geomagnetic Reference Field (IGRF) Gauss coefficients to recalculate the magnetic dipole moments and magnetic pole positions for both the centered and eccentric dipoles for an additional 35 years, thus bringing them up to date. These magnetic field models play an important role in ionosphere modification, since they influence the properties of the ionosphere. However it is not widely known that the nominal origin of the Earth's magnetic field is offset from the center of the Earth by nearly 10% of the Earth's radius, which must similarly lead to an offset of some of the larger-scale modifying effects such as those associated with the magnetosphere. We describe this offset magnetic field here to help identify its effects in ionospheric modification experiments.

  12. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  13. The coil orientation dependency of the electric field induced by TMS for M1 and other brain areas.

    PubMed

    Janssen, Arno M; Oostendorp, Thom F; Stegeman, Dick F

    2015-05-17

    The effectiveness of transcranial magnetic stimulation (TMS) depends highly on the coil orientation relative to the subject's head. This implies that the direction of the induced electric field has a large effect on the efficiency of TMS. To improve future protocols, knowledge about the relationship between the coil orientation and the direction of the induced electric field on the one hand, and the head and brain anatomy on the other hand, seems crucial. Therefore, the induced electric field in the cortex as a function of the coil orientation has been examined in this study. The effect of changing the coil orientation on the induced electric field was evaluated for fourteen cortical targets. We used a finite element model to calculate the induced electric fields for thirty-six coil orientations (10 degrees resolution) per target location. The effects on the electric field due to coil rotation, in combination with target site anatomy, have been quantified. The results confirm that the electric field perpendicular to the anterior sulcal wall of the central sulcus is highly susceptible to coil orientation changes and has to be maximized for an optimal stimulation effect of the motor cortex. In order to obtain maximum stimulation effect in areas other than the motor cortex, the electric field perpendicular to the cortical surface in those areas has to be maximized as well. Small orientation changes (10 degrees) do not alter the induced electric field drastically. The results suggest that for all cortical targets, maximizing the strength of the electric field perpendicular to the targeted cortical surface area (and inward directed) optimizes the effect of TMS. Orienting the TMS coil based on anatomical information (anatomical magnetic resonance imaging data) about the targeted brain area can improve future results. The standard coil orientations, used in cognitive and clinical neuroscience, induce (near) optimal electric fields in the subject-specific head model in most cases.

  14. A quasi-static model of global atmospheric electricity. II - Electrical coupling between the upper and lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Hays, P. B.

    1979-01-01

    The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.

  15. Darkflation-One scalar to rule them all?

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Nakonieczny, Łukasz

    2017-03-01

    The problem of explaining both inflationary and dark matter physics in the framework of a minimal extension of the Standard Model was investigated. To this end, the Standard Model completed by a real scalar singlet playing a role of the dark matter candidate has been considered. We assumed both the dark matter field and the Higgs doublet to be nonminimally coupled to gravity. Using quantum field theory in curved spacetime we derived an effective action for the inflationary period and analyzed its consequences. In this approach, after integrating out both dark matter and Standard Model sectors we obtained the effective action expressed purely in terms of the gravitational field. We paid special attention to determination, by explicit calculations, of the form of coefficients controlling the higher-order in curvature gravitational terms. Their connection to the Standard Model coupling constants has been discussed.

  16. Hanle effect in nonmonochromatic laser light

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; Bergeman, T. H.

    1991-06-01

    We report results of calculations on the Hanle effect in a J=0⇆J=1 atomic transition with three types of model fluctuating light fields: (a) the Brownian-motion phase-diffusion field, as produced in recent experiments by Arnett et al. [Phys. Rev. A 41, 2580 (1990)]; (b) Gaussian amplitude fluctuations; and (c) the chaotic field model, in which real and imaginary parts of the electric-field amplitude fluctuate. For the stochastic density-matrix equations, we use methods developed by Zoller and co-workers [e.g., Dixit, Zoller, and Lambropoulos, Phys. Rev. A 21, 1289 (1980)] employing the Fokker-Planck operator and leading to matrix continued-fraction expansions. The Hanle effect is of interest as a prototype for multisublevel atomic transitions. The width of the Hanle dip at zero magnetic field reflects the tendency of the light field to preserve the coherence between excited-state sublevels. For monochromatic light, the Hanle dip width increases as the square root of light intensity. When the laser bandwidth increases, power broadening of the coherence dip normally decreases. However, with the Brownian-motion phase-diffusion model, if the laser spectral profile is nearly Gaussian, broadening the laser up to several times the natural width of the atomic line does not diminish the Hanle dip width. With amplitude fluctuations, even in the limit of monochromatic light, power broadening of the Hanle dip with intensity is reduced by one-third to one-half depending on the particular model.

  17. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-11-26

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.

  18. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  19. Clustering fossil from primordial gravitational waves in anisotropic inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@ipm.ir, E-mail: firouz@ipm.ir

    2015-10-01

    Inflationary models can correlate small-scale density perturbations with the long-wavelength gravitational waves (GW) in the form of the Tensor-Scalar-Scalar (TSS) bispectrum. This correlation affects the mass-distribution in the Universe and leads to the off-diagonal correlations of the density field modes in the form of the quadrupole anisotropy. Interestingly, this effect survives even after the tensor mode decays when it re-enters the horizon, known as the fossil effect. As a result, the off-diagonal correlation function between different Fourier modes of the density fluctuations can be thought as a way to probe the large-scale GW and the mechanism of inflation behind themore » fossil effect. Models of single field slow roll inflation generically predict a very small quadrupole anisotropy in TSS while in models of multiple fields inflation this effect can be observable. Therefore this large scale quadrupole anisotropy can be thought as a spectroscopy for different inflationary models. In addition, in models of anisotropic inflation there exists quadrupole anisotropy in curvature perturbation power spectrum. Here we consider TSS in models of anisotropic inflation and show that the shape of quadrupole anisotropy is different than in single field models. In fact, in these models, quadrupole anisotropy is projected into the preferred direction and its amplitude is proportional to g{sub *} N{sub e} where N{sub e} is the number of e-folds and g{sub *} is the amplitude of quadrupole anisotropy in curvature perturbation power spectrum. We use this correlation function to estimate the large scale GW as well as the preferred direction and discuss the detectability of the signal in the galaxy surveys like Euclid and 21 cm surveys.« less

  20. Exciting gauge field and gravitons in brane-antibrane annihilation.

    PubMed

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  1. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. II. Local field effects and optical susceptibilitities.

    PubMed

    Reis, H; Papadopoulos, M G; Grzybowski, A

    2006-09-21

    This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.

  2. Numerical Study of Magnetic Damping During Unidirectional Solidification

    NASA Technical Reports Server (NTRS)

    Li, Ben Q.

    1997-01-01

    A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.

  3. Stability of the quantum Sherrington-Kirkpatrick spin glass model

    NASA Astrophysics Data System (ADS)

    Young, A. P.

    2017-09-01

    I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).

  4. Image-optimized Coronal Magnetic Field Models

    NASA Astrophysics Data System (ADS)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-08-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.

  5. Two-field axion-monodromy hybrid inflation model: Dante's Waterfall

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Sensharma, Anuraag; Wang, Zhen

    2015-02-01

    We describe a hybrid axion-monodromy inflation model motivated by the Dante's Inferno scenario. In Dante's Inferno, a two-field potential features a stable trench along which a linear combination of the two fields slowly rolls, rendering the dynamics essentially identical to that of single-field chaotic inflation. A shift symmetry allows for the Lyth bound to be effectively evaded as in other axion-monodromy models. In our proposal, the potential is concave downward near the origin and the inflaton trajectory is a gradual downward spiral, ending at a point where the trench becomes unstable. There, the fields begin falling rapidly towards the minimum of the potential and inflation terminates as in a hybrid model. We find parameter choices that reproduce observed features of the cosmic microwave background, and discuss our model in light of recent results from the BICEP2 and Planck experiments.

  6. Image-Optimized Coronal Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.

    2017-01-01

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.

  7. Effects of an electric field on interaction of aromatic systems.

    PubMed

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  8. Modeling misregistration and related effects on multispectral classification

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1981-01-01

    The effects of misregistration on the multispectral classification accuracy when the scene registration accuracy is relaxed from 0.3 to 0.5 pixel are investigated. Noise, class separability, spatial transient response, and field size are considered simultaneously with misregistration in their effects on accuracy. Any noise due to the scene, sensor, or to the analog/digital conversion, causes a finite fraction of the measurements to fall outside of the classification limits, even within nominally uniform fields. Misregistration causes field borders in a given band or set of bands to be closer than expected to a given pixel, causing additional pixels to be misclassified due to the mixture of materials in the pixel. Simplified first order models of the various effects are presented, and are used to estimate the performance to be expected.

  9. An extended approach for computing the critical properties in the two-and three-dimensional lattices within the effective-field renormalization group method

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Douglas F.; Santos-Silva, Edimilson; Moreno, N. O.

    2009-10-01

    In this letter we employing the effective-field renormalization group (EFRG) to study the Ising model with nearest neighbors to obtain the reduced critical temperature and exponents ν for bi- and three-dimensional lattices by increasing cluster scheme by extending recent works. The technique follows up the same strategy of the mean field renormalization group (MFRG) by introducing an alternative way for constructing classical effective-field equations of state takes on rigorous Ising spin identities.

  10. Examination of a Model for Field Studies in Science

    ERIC Educational Resources Information Center

    Riban, David M.

    1976-01-01

    Discusses ways to increase the effectiveness of field studies as an instructional method. Describes a study in which high school students who completed a geological field study scored higher on an earth science test than students who had not participated in the field study. (MLH)

  11. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  12. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

    PubMed Central

    Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800

  13. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.; Clark, Timothy

    2015-07-01

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  14. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Thilo; Jäger, Christof M.; Jordan, Meredith J. T.

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localizemore » charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.« less

  15. Modeling the electrostatic field localization in nanostructures based on DLC films using the tunneling microscopy methods

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Akchurin, Garif G.

    2018-04-01

    A model for calculating the electrostatic field in the system "probe of a tunnel microscope - a nanostructure based on a DLC film" was developed. A finite-element modeling of the localization of the field was carried out, taking into account the morphological and topological features of the nanostructure. The obtained results and their interpretation contribute to the development of the concepts to the model of tunnel electric transport processes. The possibility for effective usage of the tunneling microscopy methods in the development of new nanophotonic devices is shown.

  16. Modelling of three long-periodic magnetic CP-stars: HD 2453, HD 12288, and HD 200311

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yurij V.; Gerth, Ewald

    2004-12-01

    Using observational data published as phase curves of the effective magnetic field strength Be(P) and the surface field Bs(P), magnetic models of three stars with long rotational periods are calculated by the Magnetic Charge Distribution method. For two of these stars (HD 2453 and HD 12288), the structure of the magnetic field can be described well by a central dipole model. The third star (HD 200311) is better fitted by a model of a displaced dipole, being decentered by triangle r = 0.08 R along the dipole axis.

  17. Adaptive finite element modelling of three-dimensional magnetotelluric fields in general anisotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xu, Zhenhuan; Li, Yuguo

    2018-04-01

    We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.

  18. Monolayer organic field effect phototransistors: photophysical characterization and modeling

    NASA Astrophysics Data System (ADS)

    Trukhanov, Vasily A.; Anisimov, Daniil S.; Bruevich, Vladimir V.; Agina, Elena V.; Borshchev, Oleg V.; Ponomarenko, Sergei; Zhang, Jiangbin; Bakulin, Artem A.; Paraschuk, Dmitri Yu.

    2016-09-01

    Organic field-effect transistors (OFET) can combine photodetection and light amplification and, for example, work as phototransistors. Such organic phototransistors can be used in light-controlled switches and amplifiers, detection circuits, and sensors of ultrasensitive images. In this work, we present photophysical characterization of well-defined ultrathin organic field-effect devices with a semiconductive channel based on Langmuir-Blodgett monolayer film. We observe clear generation of photocurrent under illumination with a modulated laser at 405 nm. The increase of photocurrent with the optical modulation frequency indicates the presence of defect states serving as traps for photogenerated carriers and/or the saturation of charge concentration in the thin active layer. We also propose a simple one-dimensional numerical model of a photosensitive OFET. The model is based on the Poisson, current continuity and drift-diffusion equations allows future evaluation of the photocurrent generation mechanism in the studied systems.

  19. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  20. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE PAGES

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-09-21

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  1. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-10-01

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.

  2. Pseudo-magnetic fields of strongly-curved graphene nanobubbles

    NASA Astrophysics Data System (ADS)

    Liu, Li-Chi

    2018-04-01

    We use the π-orbital axis vector (POAV) analysis to deal with large curvature effect of graphene in the tight-binding model. To test the validities of pseudo-magnetic fields (PMFs) derived from the tight-binding model and the model with Dirac equation coupled to a curved surface, we propose two types of spatially constant-field topographies for strongly-curved graphene nanobubbles, which correspond to these two models, respectively. It is shown from the latter model that the PMF induced by any spherical graphene nanobubble is always equivalent to the magnetic field caused by one magnetic monopole charge distributed on a complete spherical surface with the same radius. Such a PMF might be attributed to the isometry breaking of a graphene layer attached conformably to a spherical substrate with adhesion.

  3. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-01

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  4. Determination of wind tunnel constraint effects by a unified pressure signature method. Part 2: Application to jet-in-crossflow

    NASA Technical Reports Server (NTRS)

    Hackett, J. E.; Sampath, S.; Phillips, C. G.

    1981-01-01

    The development of an improved jet-in-crossflow model for estimating wind tunnel blockage and angle-of-attack interference is described. Experiments showed that the simpler existing models fall seriously short of representing far-field flows properly. A new, vortex-source-doublet (VSD) model was therefore developed which employs curved trajectories and experimentally-based singularity strengths. The new model is consistent with existing and new experimental data and it predicts tunnel wall (i.e. far-field) pressures properly. It is implemented as a preprocessor to the wall-pressure-signature-based tunnel interference predictor. The supporting experiments and theoretical studies revealed some new results. Comparative flow field measurements with 1-inch "free-air" and 3-inch impinging jets showed that vortex penetration into the flow, in diameters, was almost unaltered until 'hard' impingement occurred. In modeling impinging cases, a 'plume redirection' term was introduced which is apparently absent in previous models. The effects of this term were found to be very significant.

  5. Magnetic field reversals in the Milky Way- "cherchez le champ magnetique".

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1996-04-01

    Radio observations of nearby spiral galaxies have tremendously enhanced our knowledge of their global magnetic field distributions. Recent theoretical developments in the area of dynamos have also helped in the interpretation of magnetic field data in spiral galaxies. When it comes to the magnetic field in the Milky Way galaxy, our position in the Milky Way's galactic disk hinders our attempts at interpreting the observational data. This makes the proposition of "cherchez le champ magnetique" a difficult one to follow. Some recent papers have attempted to fit magnetic field models to spiral galaxies, and in particular to the Milky Way galaxy. Magnetic field reversals in the Milky Way are crucial to all interpretations, be they axisymmetric spiral (ASS) or bisymmetric spiral (BSS) global magnetic field models. Magnetic field reversals can be found in both ASS and BSS magnetic field models, not just BSS ones. The axisymmetric spiral (ASS) magnetic field models produced by the dynamo theory already predict magnetic field reversals, and they are of the type observed in the Milky Way. The small number of magnetic field reversals observed in the Milky Way is compatible with the ASS magnetic field models. The bisymmetric spiral (BSS) magnetic field models as applied to the pulsar RM data and to the QSO and galaxies data have many problems, due to the many pitfalls in model fitting the magnetic field reversals observed in the Milky Way. Many pitfalls are discussed here, including the incomplete comparisons of BSS versus ASS models, the number of spiral arms to be used in modelling, and the proper distance to pulsars via the more accurate distribution of thermal electrons within spiral arms. The two magnetic field reversals in our Milky Way are clearly located in the interarm regions. Predicted magnetic field reversals are periodic, while observed ones are not periodic. Magnetic field reversals cannot be masked effectively by local interstellar magnetised shells. The strength and direction of the magnetic field with galactic radius show that the BSS magnetic field models are less suitable to explain the RM data in the Milky Way. The prediction by the BSS magnetic field models of a large number of magnetic field reversals differs from the available observations.

  6. Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya

    2017-10-01

    We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.

  7. Interaction of the sonic boom with atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Rusak, Zvi; Cole, Julian D.

    1994-01-01

    Theoretical research was carried out to study the effect of free-stream turbulence on sonic boom pressure fields. A new transonic small-disturbance model to analyze the interactions of random disturbances with a weak shock was developed. The model equation has an extended form of the classic small-disturbance equation for unsteady transonic aerodynamics. An alternative approach shows that the pressure field may be described by an equation that has an extended form of the classic nonlinear acoustics equation that describes the propagation of sound beams with narrow angular spectrum. The model shows that diffraction effects, nonlinear steepening effects, focusing and caustic effects and random induced vorticity fluctuations interact simultaneously to determine the development of the shock wave in space and time and the pressure field behind it. A finite-difference algorithm to solve the mixed type elliptic-hyperbolic flows around the shock wave was also developed. Numerical calculations of shock wave interactions with various deterministic and random fluctuations will be presented in a future report.

  8. Technology-Assisted Learning: A Longitudinal Field Study of Knowledge Category, Learning Effectiveness and Satisfaction in Language Learning

    ERIC Educational Resources Information Center

    Hui, W.; Hu, P. J.-H.; Clark, T. H. K.; Tam, K. Y.; Milton, J.

    2008-01-01

    A field experiment compares the effectiveness and satisfaction associated with technology-assisted learning with that of face-to-face learning. The empirical evidence suggests that technology-assisted learning effectiveness depends on the target knowledge category. Building on Kolb's experiential learning model, we show that technology-assisted…

  9. Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.

    1986-01-01

    An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.

  10. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Martinez-Consentino, V. L.; Amaro, J. E.; Ruiz Arriola, E.

    2018-06-01

    We use a recent scaling analysis of the quasielastic electron scattering data from C 12 to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the (e ,e') cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short-range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.

  11. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  12. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazra, Gopal; Choudhuri, Arnab Rai; Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained bymore » putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.« less

  13. Investigation of the effects of external current systems on the MAGSAT data utilizing grid cell modeling techniques

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M. (Principal Investigator)

    1982-01-01

    The feasibility of modeling magnetic fields due to certain electrical currents flowing in the Earth's ionosphere and magnetosphere was investigated. A method was devised to carry out forward modeling of the magnetic perturbations that arise from space currents. The procedure utilizes a linear current element representation of the distributed electrical currents. The finite thickness elements are combined into loops which are in turn combined into cells having their base in the ionosphere. In addition to the extensive field modeling, additional software was developed for the reduction and analysis of the MAGSAT data in terms of the external current effects. Direct comparisons between the models and the MAGSAT data are possible.

  14. Modeling the Adsorbate Coverage Distribution Over a Multi-Faceted Catalytic Grain in the Presence of an Electric Field: O/Fe from First Principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg

    The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less

  15. Modeling the Adsorbate Coverage Distribution Over a Multi-Faceted Catalytic Grain in the Presence of an Electric Field: O/Fe from First Principles

    DOE PAGES

    Bray, Jacob; Hensley, Alyssa J. R.; Collinge, Greg; ...

    2018-04-15

    The impact of an external electric field on the concerted behavior of oxygen over a multi-faceted catalytic Fe grain is determined via the interpolation of ab initio models of oxygen adsorption on Fe(100), Fe(110), and Fe(111) in the presence of an external electric field. The application of both negative and positive electric fields weaken the adsorption strength for oxygen on all three surface facets, with Fe(110) experiencing the greatest effect. Kinetic models of a multi-faceted catalytic Fe grain show that the average oxygen coverage over the grain surface is reduced under the influence of both a negative and positive electricmore » field, which are consistent with phase diagram results at comparable pressures. Furthermore, we show that there is a weak synergistic effect between a Pd promoter and a positive electric field on the oxygen adsorption energy, i.e. the Pd promoter and electric field combination weaken the oxygen adsorption energy to a greater degree than the simple addition of both components separately. In conclusion, the work shows that the application of an applied external electric field may be a useful tool in fine-tuning chemical properties of Fe-based catalysts in hydrodeoxygenation applications.« less

  16. Regional 3-D Modeling of Ground Geoelectric Field for the Northeast United States due to Realistic Geomagnetic Disturbances

    NASA Astrophysics Data System (ADS)

    Ivannikova, E.; Kruglyakov, M.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.; Ngwira, C. M.

    2017-12-01

    During extreme space weather events electric currents in the Earth's magnetosphere and ionosphere experience large variations, which leads to dramatic intensification of the fluctuating magnetic field at the surface of the Earth. According to Faraday's law of induction, the fluctuating geomagnetic field in turn induces electric field that generates harmful currents (so-called "geomagnetically induced currents"; GICs) in grounded technological systems. Understanding (via modeling) of the spatio-temporal evolution of the geoelectric field during enhanced geomagnetic activity is a key consideration in estimating the hazard to technological systems from space weather. We present the results of ground geoelectric field modeling for the Northeast United States, which is performed with the use of our novel numerical tool based on integral equation approach. The tool exploits realistic regional three-dimensional (3-D) models of the Earth's electrical conductivity and realistic global models of the spatio-temporal evolution of the magnetospheric and ionospheric current systems responsible for geomagnetic disturbances. We also explore in detail the manifestation of the coastal effect (anomalous intensification of the geoelectric field near the coasts) in this region.

  17. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection.

    PubMed

    Krol, Magdalena M; Oleniuk, Andrew J; Kocur, Chris M; Sleep, Brent E; Bennett, Peter; Xiong, Zhong; O'Carroll, Denis M

    2013-07-02

    Nanoscale zerovalent iron (nZVI) particles have significant potential to remediate contaminated source zones. However, the transport of these particles through porous media is not well understood, especially at the field scale. This paper describes the simulation of a field injection of carboxylmethyl cellulose (CMC) stabilized nZVI using a 3D compositional simulator, modified to include colloidal filtration theory (CFT). The model includes composition dependent viscosity and spatially and temporally variable velocity, appropriate for the simulation of push-pull tests (PPTs) with CMC stabilized nZVI. Using only attachment efficiency as a fitting parameter, model results were in good agreement with field observations when spatially variable viscosity effects on collision efficiency were included in the transport modeling. This implies that CFT-modified transport equations can be used to simulate stabilized nZVI field transport. Model results show that an increase in solution viscosity, resulting from injection of CMC stabilized nZVI suspension, affects nZVI mobility by decreasing attachment as well as changing the hydraulics of the system. This effect is especially noticeable with intermittent pumping during PPTs. Results from this study suggest that careful consideration of nZVI suspension formulation is important for optimal delivery of nZVI which can be facilitated with the use of a compositional simulator.

  18. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  19. Effective potential in ultraviolet completions for composite Higgs models

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Shamir, Yigal

    2018-05-01

    We consider a class of composite Higgs models based on asymptotically free S O (d ) gauge theories with d odd, with fermions in two irreducible representations, and in which the Higgs field arises as a pseudo-Nambu-Goldstone boson and the top quark is partially composite. The Nambu-Goldstone coset containing the Higgs field, or Higgs coset, is either S U (4 )/S p (4 ) or S U (5 )/S O (5 ), whereas the top partners live in two-index representations of the relevant flavor group [S U (4 ) or S U (5 )]. In both cases, there is a large number of terms in the most general four-fermion Lagrangian describing the interaction of third-generation quarks with the top partners. We derive the top-induced effective potential for the Higgs coset together with the singlet pseudo-Nambu-Goldstone boson associated with the non-anomalous axial symmetry, to leading order in the couplings between the third-generation quarks and the composite sector. We obtain expressions for the low-energy constants in terms of top-partner two-point functions. We revisit the effective potential of another composite Higgs model that we have studied previously, which is based on an S U (4 ) gauge theory and provides a different realization of the S U (5 )/S O (5 ) coset. The top partners of this model live in the fundamental representation of S U (5 ), and, as a result, the effective potential of this model is qualitatively different from the S O (d ) gauge theories. We also discuss the role of the isospin-triplet fields contained in the S U (5 )/S O (5 ) coset, and show that, without further constraints on the four-fermion couplings, an expectation value for the Higgs field will trigger the subsequent condensation of an isospin-triplet field.

  20. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.

  1. Inventory of environmental impact models related to energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Dailey, N.S.; Johnson, C.A.

    The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, othermore » data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.« less

  2. Stochastic field-line wandering in magnetic turbulence with shear. I. Quasi-linear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalchi, A.; Negrea, M.; Petrisor, I.

    2016-07-15

    We investigate the random walk of magnetic field lines in magnetic turbulence with shear. In the first part of the series, we develop a quasi-linear theory in order to compute the diffusion coefficient of magnetic field lines. We derive general formulas for the diffusion coefficients in the different directions of space. We like to emphasize that we expect that quasi-linear theory is only valid if the so-called Kubo number is small. We consider two turbulence models as examples, namely, a noisy slab model as well as a Gaussian decorrelation model. For both models we compute the field line diffusion coefficientsmore » and we show how they depend on the aforementioned Kubo number as well as a shear parameter. It is demonstrated that the shear effect reduces all field line diffusion coefficients.« less

  3. Implementation of a boundary element method to solve for the near field effects of an array of WECs

    NASA Astrophysics Data System (ADS)

    Oskamp, J. A.; Ozkan-Haller, H. T.

    2010-12-01

    When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.

  4. Effective equilibrium picture in the x y model with exponentially correlated noise

    NASA Astrophysics Data System (ADS)

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the x y model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ , indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  5. Effective equilibrium picture in the xy model with exponentially correlated noise.

    PubMed

    Paoluzzi, Matteo; Marconi, Umberto Marini Bettolo; Maggi, Claudio

    2018-02-01

    We study the effect of exponentially correlated noise on the xy model in the limit of small correlation time, discussing the order-disorder transition in the mean field and the topological transition in two dimensions. We map the steady states of the nonequilibrium dynamics into an effective equilibrium theory. In the mean field, the critical temperature increases with the noise correlation time τ, indicating that memory effects promote ordering. This finding is confirmed by numerical simulations. The topological transition temperature in two dimensions remains untouched. However, finite-size effects induce a crossover in the vortices proliferation that is confirmed by numerical simulations.

  6. Mathematical Models of the Common-Source and Common-Gate Amplifiers using a Metal-Ferroelectric-Semiconductor Field effect Transistor

    NASA Technical Reports Server (NTRS)

    Hunt, Mitchell; Sayyah, Rana; Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.

    2013-01-01

    Mathematical models of the common-source and common-gate amplifiers using metal-ferroelectric- semiconductor field effect transistors (MOSFETs) are developed in this paper. The models are compared against data collected with MOSFETs of varying channel lengths and widths, and circuit parameters such as biasing conditions are varied as well. Considerations are made for the capacitance formed by the ferroelectric layer present between the gate and substrate of the transistors. Comparisons between the modeled and measured data are presented in depth as well as differences and advantages as compared to the performance of each circuit using a MOSFET.

  7. Modeling approaches in avian conservation and the role of field biologists

    USGS Publications Warehouse

    Beissinger, Steven R.; Walters, J.R.; Catanzaro, D.G.; Smith, Kimberly G.; Dunning, J.B.; Haig, Susan M.; Noon, Barry; Stith, Bradley M.

    2006-01-01

    This review grew out of our realization that models play an increasingly important role in conservation but are rarely used in the research of most avian biologists. Modelers are creating models that are more complex and mechanistic and that can incorporate more of the knowledge acquired by field biologists. Such models require field biologists to provide more specific information, larger sample sizes, and sometimes new kinds of data, such as habitat-specific demography and dispersal information. Field biologists need to support model development by testing key model assumptions and validating models. The best conservation decisions will occur where cooperative interaction enables field biologists, modelers, statisticians, and managers to contribute effectively. We begin by discussing the general form of ecological models—heuristic or mechanistic, "scientific" or statistical—and then highlight the structure, strengths, weaknesses, and applications of six types of models commonly used in avian conservation: (1) deterministic single-population matrix models, (2) stochastic population viability analysis (PVA) models for single populations, (3) metapopulation models, (4) spatially explicit models, (5) genetic models, and (6) species distribution models. We end by considering their unique attributes, determining whether the assumptions that underlie the structure are valid, and testing the ability of the model to predict the future correctly.

  8. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  9. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xufen; Wang, Yougang; Feix, Martin

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less

  10. Large-scale properties of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Schatten, K. H.

    1972-01-01

    Early theoretical work of Parker is presented along with the observational evidence supporting his Archimedes spiral model. Variations present in the interplanetary magnetic field from the spiral angle are related to structures in the solar wind. The causes of these structures are found to be either nonuniform radial solar wind flow or the time evolution of the photospheric field. Coronal magnetic models are related to the connection between the solar magnetic field and the interplanetary magnetic field. Direct extension of the solar field-magnetic nozzle controversy is discussed along with the coronal magnetic models. Effects of active regions on the interplanetary magnetic field is discussed with particular reference to the evolution of interplanetary sectors. Interplanetary magnetic field magnitude variations are shown throughout the solar cycle. The percentage of time the field magnitude is greater than 10 gamma is shown to closely parallel sunspot number. The sun's polar field influence on the interplanetary field and alternative views of the magnetic field structure out of the ecliptic plane are presented. In addition, a variety of significantly different interplanetary field structures are discussed.

  11. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  12. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumanta@iucaa.in; SenGupta, Soumitra, E-mail: tpssg@iacs.res.in

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have beenmore » obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.« less

  13. Colloidal particle electrorotation in a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia M.; Miksis, Michael J.

    2018-01-01

    A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.

  14. Colloidal particle electrorotation in a nonuniform electric field.

    PubMed

    Hu, Yi; Vlahovska, Petia M; Miksis, Michael J

    2018-01-01

    A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.

  15. Phase-field model for isothermal phase transitions in binary alloys

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.

    1992-01-01

    A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.

  16. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  17. Fatigue effect in ferroelectric crystals: Growth of the frozen domains

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Baturin, I. S.

    2012-06-01

    The model of the fatigue effect during cyclic switching caused by growth of the frozen domain area with charged domain walls has been proposed. It was claimed on the basis of the previous experimental results that for switching in increasing field the frozen domain area started to grow at the given sub-threshold field value and stopped at the threshold field. The influence of the shape and frequency of the field pulses used for cyclic switching has been considered. The uniaxial ferroelectric stoichiometric lithium tantalate single crystals produced by vapor transport equilibration with record low value of coercive field have been chosen as a model material for experimental verification of the model. The formation of the charged domain walls as a result of cyclic switching has been revealed by analysis of the domain images obtained by optical and Raman confocal microscopy. It has been shown that the fatigue degree is equal to the fraction of the frozen domain area. The experimental dependence of the switched charge on the cycle number has been successfully fitted by modified Kolmogorov-Avrami formula. The experimentally observed frequency independence of fatigue profile for rectangular pulses and frequency dependence for triangular pulses has been explained by proposed model.

  18. Finite Element Modeling of Magnetically-Damped Convection during Solidification

    NASA Technical Reports Server (NTRS)

    deGroh, H. C.; Li, B. Q.; Lu, X.

    1998-01-01

    A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.

  19. Simulations of magnetic nanoparticle Brownian motion

    PubMed Central

    Reeves, Daniel B.; Weaver, John B.

    2012-01-01

    Magnetic nanoparticles are useful in many medical applications because they interact with biology on a cellular level thus allowing microenvironmental investigation. An enhanced understanding of the dynamics of magnetic particles may lead to advances in imaging directly in magnetic particle imaging or through enhanced MRI contrast and is essential for nanoparticle sensing as in magnetic spectroscopy of Brownian motion. Moreover, therapeutic techniques like hyperthermia require information about particle dynamics for effective, safe, and reliable use in the clinic. To that end, we have developed and validated a stochastic dynamical model of rotating Brownian nanoparticles from a Langevin equation approach. With no field, the relaxation time toward equilibrium matches Einstein's model of Brownian motion. In a static field, the equilibrium magnetization agrees with the Langevin function. For high frequency or low amplitude driving fields, behavior characteristic of the linearized Debye approximation is reproduced. In a higher field regime where magnetic saturation occurs, the magnetization and its harmonics compare well with the effective field model. On another level, the model has been benchmarked against experimental results, successfully demonstrating that harmonics of the magnetization carry enough information to infer environmental parameters like viscosity and temperature. PMID:23319830

  20. A solution to the cosmic ray anisotropy problem

    NASA Astrophysics Data System (ADS)

    Mertsch, P.; Funk, S.

    2015-10-01

    Observations of the cosmic ray (CR) anisotropy are widely advertised as a means of finding nearby sources. This idea has recently gained currency after the discovery of a rise in the positron fraction and is the goal of current experimental efforts, e.g., with AMS-02 on the International Space Station. Yet, even the anisotropy observed for hadronic CRs is not understood, in the sense that isotropic diffusion models overpredict the dipole anisotropy in the TeV-PeV range by almost two orders of magnitude. Here, we consider two additional effects normally not considered in isotropic diffusion models: anisotropic diffusion due to the presence of a background magnetic field and intermittency effects of the turbulent magnetic fields. We numerically explore these effect by tracking test-particles through individual realisations of the turbulent field. We conclude that a large misalignment between the CR gradient and the background field can explain the observed low level of anisotropy.

  1. Effect of interphase permittivity on the electric field distribution of epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Pradeep, Lavanya; Nelson, Avinash; Preetha, P.

    2018-05-01

    Epoxy plays a vital role in high voltage insulation system due to its superior electrical and thermal properties. Literature reports the enhancement in these properties by the addition of nanofillers to epoxy and this enhancement is attributed to the effect of interphase. Characterization of polymer nanocomposites proves the importance of interphase formed between the polymer and nanoparticle in the composite. It was observed that the permittivity of the interphase is having a significant effect on the properties of these materials. In this work, a three dimensional Epoxy nanocomposite with 0.5 vol%, 1 vol% of alumina particles are modeled using unit cell approach in COMSOL Multiphysics. Simulation is done using several existing interphase permittivity models and field distribution is observed. Results shows the noticeable influence of interphase permittivity on the electric field distribution. A good correlation of electric field distribution with the AC breakdown strength is observed.

  2. Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.

    PubMed

    Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán

    2018-04-05

    Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

  3. Balancing anisotropic curvature with gauge fields in a class of shear-free cosmological models

    NASA Astrophysics Data System (ADS)

    Thorsrud, Mikjel

    2018-05-01

    We present a complete list of general relativistic shear-free solutions in a class of anisotropic, spatially homogeneous and orthogonal cosmological models containing a collection of n independent p-form gauge fields, where p\\in\\{0, 1, 2, 3\\} , in addition to standard ΛCDM matter fields modelled as perfect fluids. Here a (collection of) gauge field(s) balances anisotropic spatial curvature on the right-hand side of the shear propagation equation. The result is a class of solutions dynamically equivalent to standard FLRW cosmologies, with an effective curvature constant Keff that depends both on spatial curvature and the energy density of the gauge field(s). In the case of a single gauge field (n  =  1) we show that the only spacetimes that admit such solutions are the LRS Bianchi type III, Bianchi type VI0 and Kantowski–Sachs metric, which are dynamically equivalent to open (Keff<0 ), flat (Keff=0 ) and closed (Keff>0 ) FLRW models, respectively. With a collection of gauge fields (n  >  1) also Bianchi type II admits a shear-free solution (Keff>0 ). We identify the LRS Bianchi type III solution to be the unique shear-free solution with a gauge field Hamiltonian bounded from below in the entire class of models.

  4. Classification of CITES-listed and other neotropical Meliaceae wood images using convolutional neural networks.

    PubMed

    Ravindran, Prabu; Costa, Adriana; Soares, Richard; Wiedenhoeft, Alex C

    2018-01-01

    The current state-of-the-art for field wood identification to combat illegal logging relies on experienced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumulation of this expertise is time-consuming and access to training is relatively rare compared to the international demand for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. We present highly effective computer vision classification models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, including CITES-listed Swietenia macrophylla , Swietenia mahagoni , Cedrela fissilis , and Cedrela odorata . We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identification. The end-to-end trained image classifiers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and captured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for field screening timber and wood products to combat illegal logging.

  5. Propagation of finite amplitude sound through turbulence: Modeling with geometrical acoustics and the parabolic approximation

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F.; Blackstock, David T.

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.

  6. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.

    PubMed

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere.

  7. Polarized Line Formation in Arbitrary Strength Magnetic Fields Angle-averaged and Angle-dependent Partial Frequency Redistribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in, E-mail: stenflo@astro.phys.ethz.ch

    Magnetic fields in the solar atmosphere leave their fingerprints in the polarized spectrum of the Sun via the Hanle and Zeeman effects. While the Hanle and Zeeman effects dominate, respectively, in the weak and strong field regimes, both these effects jointly operate in the intermediate field strength regime. Therefore, it is necessary to solve the polarized line transfer equation, including the combined influence of Hanle and Zeeman effects. Furthermore, it is required to take into account the effects of partial frequency redistribution (PRD) in scattering when dealing with strong chromospheric lines with broad damping wings. In this paper, we presentmore » a numerical method to solve the problem of polarized PRD line formation in magnetic fields of arbitrary strength and orientation. This numerical method is based on the concept of operator perturbation. For our studies, we consider a two-level atom model without hyperfine structure and lower-level polarization. We compare the PRD idealization of angle-averaged Hanle–Zeeman redistribution matrices with the full treatment of angle-dependent PRD, to indicate when the idealized treatment is inadequate and what kind of polarization effects are specific to angle-dependent PRD. Because the angle-dependent treatment is presently computationally prohibitive when applied to realistic model atmospheres, we present the computed emergent Stokes profiles for a range of magnetic fields, with the assumption of an isothermal one-dimensional medium.« less

  8. Quench field sensitivity of two-particle correlation in a Hubbard model

    PubMed Central

    Zhang, X. Z.; Lin, S.; Song, Z.

    2016-01-01

    Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080

  9. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales

    PubMed Central

    Austin, Åsa N.; Hansen, Joakim P.; Donadi, Serena; Eklöf, Johan S.

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high vegetation cover vs. high sediment-driven turbidity may represent two self-enhancing, alternative states of shallow bay ecosystems. PMID:28854185

  10. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    PubMed

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high vegetation cover vs. high sediment-driven turbidity may represent two self-enhancing, alternative states of shallow bay ecosystems.

  11. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less

  12. Using the C3M Satellite Data Product to Evaluate and Constrain the Cloud Fields in the HadGEM3-UKCA Model with an Aim to Enhance Understanding of the Effects of Clouds on Atmospheric Composition via Photolysis

    NASA Astrophysics Data System (ADS)

    Varma, S.; Voulgarakis, A.; Liu, H.; Crawford, J. H.; Zhang, B.

    2017-12-01

    What drives the variability of trace gases in the troposphere is not well understood, as is the role of clouds in modulating this variability via radiative, transport, deposition, heterogeneous chemistry, and lightning effects that are associated with them. Accurately simulating tropospheric composition and its variability is of utmost importance as both could have a significant effect on the region's temperature and circulation, as well as on surface climate and the amount of UV radiation in the troposphere. In this presentation, we will examine how clouds can influence tropospheric and lower stratospheric composition through modifying solar radiation leading to changes in the local actinic flux and subsequently to photolysis, a key driver of chemistry. We will utilize C3M (a unique 3-D cloud data product merged from multiple A-Train satellites (CERES, CloudSat, CALIPSO, and MODIS) developed at the NASA Langley Research Center to evaluate the cloud fields and their vertical distribution in the HadGEM3-UKCA model developed by the Natural Environment Research Council (NERC, UK) and the Met Office. This evaluation will involve 1) comparing the effective cloud optical depth (ECOD) as calculated from C3M and the model using the approximate random overlap method, 2) applying 3-D scaling factors from C3M to the model's ECOD and analyzing the changes this makes to the model's cloud fields, and 3) running the scaled model and analyzing the impacts of this cloud field adjustment on the model's estimates of photolysis rates and key tropospheric oxidants such as ozone and OH.

  13. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  14. High-field magnetoconductance in Anderson insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, A.; Frydman, A.; Ovadyahu, Z.

    1996-11-01

    We report on high-field magnetoconductance measurements made on indium-oxide films as a function of temperature and static disorder. Special emphasis is given to the strong-localization regime where the magnetoconductance reveals a negative contribution associated with a spin-alignment mechanism in addition to the positive contribution associated with orbital, quantum-coherence effects. While the overall features of the theoretically expected effects are observed in our experiments, they depart in certain ways from the detailed predictions. We discuss the merits and shortcomings of current models to describe them, in particular, as they apply to the regime where the localized wave functions become larger thanmore » the Bohr radius. The main results of this paper are both quantum interference and spin effects contribute to the magnetoconductance throughout the entire range studied. In the limit of very strong disorder, the quantum interference effects are faithfully described by the Nguyen {ital et} {ital al}. model. The spin effects, on the other hand, show only qualitative agreement with current models which are unable to account for the saturation field being insensitive to changes in disorder. {copyright} {ital 1996 The American Physical Society.}« less

  15. Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin

    2011-06-15

    Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less

  16. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  17. Model of Reconnection of Weakly Stochastic Magnetic Field and its Implications

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Vishniac, E. T.

    2009-08-01

    We discuss the model of magnetic field reconnection in the presence of turbulence introduced by us ten years ago. The model does not require any plasma effects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic field stochasticity controls the reconnection. The turbulence in the model is assumed to be sub-Alfvénic, with the magnetic field only slightly perturbed. This ensures that the reconnection happens in generic astrophysical environments and the model does not appeal to any unphysical concepts, similar to the turbulent magnetic diffusivity concept, which is employed in the kinematic magnetic dynamo. The interest to that model has recently increased due to successful numerical testings of the model predictions. In view of this, we discuss implications of the model, including the first-order Fermi acceleration of cosmic rays, that the model naturally entails, bursts of reconnection, that can be associated with Solar flares, as well as, removal of magnetic flux during star-formation.

  18. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  19. Observation of the Meissner effect in a lattice Higgs model

    NASA Technical Reports Server (NTRS)

    Damgaard, Poul H.; Heller, Urs M.

    1988-01-01

    The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.

  20. Generalized reduced rank latent factor regression for high dimensional tensor fields, and neuroimaging-genetic applications

    PubMed Central

    Tao, Chenyang; Nichols, Thomas E.; Hua, Xue; Ching, Christopher R.K.; Rolls, Edmund T.; Thompson, Paul M.; Feng, Jianfeng

    2017-01-01

    We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. PMID:27666385

  1. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  2. Dynamic updating atlas for heart segmentation with a nonlinear field-based model.

    PubMed

    Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng

    2017-09-01

    Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity

    NASA Technical Reports Server (NTRS)

    Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.

    2002-01-01

    Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.

  4. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Günther, U.; Moniz, P.; Zhuk, A.

    2003-08-01

    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant, and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.

  5. Evaluation of near field atmospheric dispersion around nuclear facilities using a Lorentzian distribution methodology.

    PubMed

    Hawkley, Gavin

    2014-12-01

    Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.

  6. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  7. MEAN-FIELD MODELING OF AN α{sup 2} DYNAMO COUPLED WITH DIRECT NUMERICAL SIMULATIONS OF RIGIDLY ROTATING CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masada, Youhei; Sano, Takayoshi, E-mail: ymasada@harbor.kobe-u.ac.jp, E-mail: sano@ile.osaka-u.ac.jp

    2014-10-10

    The mechanism of large-scale dynamos in rigidly rotating stratified convection is explored by direct numerical simulations (DNS) in Cartesian geometry. A mean-field dynamo model is also constructed using turbulent velocity profiles consistently extracted from the corresponding DNS results. By quantitative comparison between the DNS and our mean-field model, it is demonstrated that the oscillatory α{sup 2} dynamo wave, excited and sustained in the convection zone, is responsible for large-scale magnetic activities such as cyclic polarity reversal and spatiotemporal migration. The results provide strong evidence that a nonuniformity of the α-effect, which is a natural outcome of rotating stratified convection, canmore » be an important prerequisite for large-scale stellar dynamos, even without the Ω-effect.« less

  8. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    NASA Astrophysics Data System (ADS)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  9. Modeling asset price processes based on mean-field framework

    NASA Astrophysics Data System (ADS)

    Ieda, Masashi; Shiino, Masatoshi

    2011-12-01

    We propose a model of the dynamics of financial assets based on the mean-field framework. This framework allows us to construct a model which includes the interaction among the financial assets reflecting the market structure. Our study is on the cutting edge in the sense of a microscopic approach to modeling the financial market. To demonstrate the effectiveness of our model concretely, we provide a case study, which is the pricing problem of the European call option with short-time memory noise.

  10. The induced electric field due to a current transient

    NASA Astrophysics Data System (ADS)

    Beck, Y.; Braunstein, A.; Frankental, S.

    2007-05-01

    Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.

  11. Conducting field studies for testing pesticide leaching models

    USGS Publications Warehouse

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  12. Direct Simulation of Extinction in a Slab of Spherical Particles

    NASA Technical Reports Server (NTRS)

    Mackowski, D.W.; Mishchenko, Michael I.

    2013-01-01

    The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.

  13. Sci—Fri PM: Dosimetry—04: Radiation out-of-field dose in the treatment of pediatric central nervous system malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddei, P J; Tannous, J; Nabha, R

    Children diagnosed with central nervous system (CNS) malignancies often receive radiotherapy, which can cause radiogenic late effects. In order to identify and reduce the risk of these late effects, we must understand the radiation doses that these children receive. Modern treatment planning systems accurately estimate the absorbed dose within the treatment fields but poorly estimate the dose outside them. The purpose of our study was to measure the out-of-field dose for children receiving localized radiotherapy for CNS cancer and apply an analytical model for estimating dose as a function of distance from the field edge. Radiation fields designed for amore » 12-year-old boy treated in our clinic were applied to an anthropomorphic phantom containing more than 200 thermoluminescent dosimeters. A double-Gaussian function of absorbed dose versus distance from the field edge (i.e., 50% isodose line) was applied, and parameters were allowed to vary and were fit to the model by minimizing the root mean square deviation, RMSD. The fitted model accurately predicted the dose from distances of 4 cm to 50 cm (RMSD = 0.54 cGy/Gy), but the model was not useful in estimating dose for distances less than 4 cm because of wide variation in measured dose, and the double-Gaussian model failed by systematically underestimating the dose beyond 50 cm. In conclusion, the double-Gaussian model may be applicable for points at distances from the field edge between 4 cm and 50 cm, where most children's radiosensitive tissues are located, but for points beyond 50 cm, an improvement should be investigated.« less

  14. Prediction of the Seizure Suppression Effect by Electrical Stimulation via a Computational Modeling Approach.

    PubMed

    Ahn, Sora; Jo, Sumin; Jun, Sang Beom; Lee, Hyang Woon; Lee, Seungjun

    2017-01-01

    In this paper, we identified factors that can affect seizure suppression via electrical stimulation by an integrative study based on experimental and computational approach. Preferentially, we analyzed the characteristics of seizure-like events (SLEs) using our previous in vitro experimental data. The results were analyzed in two groups classified according to the size of the effective region, in which the SLE was able to be completely suppressed by local stimulation. However, no significant differences were found between these two groups in terms of signal features or propagation characteristics (i.e., propagation delays, frequency spectrum, and phase synchrony). Thus, we further investigated important factors using a computational model that was capable of evaluating specific influences on effective region size. In the proposed model, signal transmission between neurons was based on two different mechanisms: synaptic transmission and the electrical field effect. We were able to induce SLEs having similar characteristics with differentially weighted adjustments for the two transmission methods in various noise environments. Although the SLEs had similar characteristics, their suppression effects differed. First of all, the suppression effect occurred only locally where directly received the stimulation effect in the high noise environment, but it occurred in the entire network in the low noise environment. Interestingly, in the same noise environment, the suppression effect was different depending on SLE propagation mechanism; only a local suppression effect was observed when the influence of the electrical field transmission was very weak, whereas a global effect was observed with a stronger electrical field effect. These results indicate that neuronal activities synchronized by a strong electrical field effect respond more sensitively to partial changes in the entire network. In addition, the proposed model was able to predict that stimulation of a seizure focus region is more effective for suppression. In conclusion, we confirmed the possibility of a computational model as a simulation tool to analyze the efficacy of deep brain stimulation (DBS) and investigated the key factors that determine the size of an effective region in seizure suppression via electrical stimulation.

  15. A stochastic approach to uncertainty in the equations of MHD kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Edward G., E-mail: egphillips@math.umd.edu; Elman, Howard C., E-mail: elman@cs.umd.edu

    2015-03-01

    The magnetohydrodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertaintymore » in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.« less

  16. Single event burnout sensitivity of embedded field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koga, R.; Crain, S.H.; Crawford, K.B.

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  17. Single event burnout sensitivity of embedded field effect transistors

    NASA Astrophysics Data System (ADS)

    Koga, R.; Crain, S. H.; Crawford, K. B.; Yu, P.; Gordon, M. J.

    1999-12-01

    Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.

  18. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models.

    PubMed

    Butler, T; Graham, L; Estep, D; Dawson, C; Westerink, J J

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  19. Definition and solution of a stochastic inverse problem for the Manning's n parameter field in hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Butler, T.; Graham, L.; Estep, D.; Dawson, C.; Westerink, J. J.

    2015-04-01

    The uncertainty in spatially heterogeneous Manning's n fields is quantified using a novel formulation and numerical solution of stochastic inverse problems for physics-based models. The uncertainty is quantified in terms of a probability measure and the physics-based model considered here is the state-of-the-art ADCIRC model although the presented methodology applies to other hydrodynamic models. An accessible overview of the formulation and solution of the stochastic inverse problem in a mathematically rigorous framework based on measure theory is presented. Technical details that arise in practice by applying the framework to determine the Manning's n parameter field in a shallow water equation model used for coastal hydrodynamics are presented and an efficient computational algorithm and open source software package are developed. A new notion of "condition" for the stochastic inverse problem is defined and analyzed as it relates to the computation of probabilities. This notion of condition is investigated to determine effective output quantities of interest of maximum water elevations to use for the inverse problem for the Manning's n parameter and the effect on model predictions is analyzed.

  20. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  1. Investigation of the effects of external current systems on the MAGSAT data utilizing grid cell modeling techniques

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M. (Principal Investigator)

    1982-01-01

    Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.

  2. Cosine problem in EPRL/FK spinfoam model

    NASA Astrophysics Data System (ADS)

    Vojinović, Marko

    2014-01-01

    We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.

  3. Nonlinear effective permittivity of field grading composite dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang

    2018-02-01

    Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.

  4. Competing phases in a model of Pr-based cobaltites

    NASA Astrophysics Data System (ADS)

    Sotnikov, A.; Kuneš, J.

    2017-12-01

    Motivated by the physics of Pr-based cobaltites, we study the effect of the external magnetic field in the hole-doped two-band Hubbard model close to instabilities toward the excitonic condensation and ferromagnetic ordering. Using the dynamical mean-field theory we observe a field-driven suppression of the excitonic condensate. The onset of a magnetically ordered phase at the fixed chemical potential is accompanied by a sizable change of the electron density. This leads us to predict that Pr3 + abundance increases on the high-field side of the transition.

  5. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  6. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    NASA Astrophysics Data System (ADS)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  7. The Effect of Using E-Learning Tools in Online and Campus-Based Classrooms on Student Performance

    ERIC Educational Resources Information Center

    Galy, Edith; Downey, Clara; Johnson, Jennie

    2011-01-01

    Creating an integrative research framework that extends a model frequently used in the Information Systems field, the Technology Acceptance Model, together with variables used in the Education field, this empirical study investigates the factors influencing student performance as reflected by their final course grade. The Technology Acceptance…

  8. Guidance for the application of a population modeling framework in coordination with field based monitoring studies for multiple species and sites

    EPA Science Inventory

    A modeling framework was developed that can be applied in conjunction with field based monitoring efforts (e.g., through effects-based monitoring programs) to link chemically-induced alterations in molecular and biochemical endpoints to adverse outcomes in whole organisms and pop...

  9. Production of sunspots and their effects on the corona and solar wind: Insights from a new 3D flux-transport dynamo model

    NASA Astrophysics Data System (ADS)

    Kumar, Rohit; Jouve, Laurène; Pinto, Rui F.; Rouillard, Alexis P.

    2018-01-01

    We present a three-dimensional numerical model for the generation and evolution of the magnetic field in the solar convection zone, in which sunspots are produced and contribute to the cyclic reversal of the large-scale magnetic field. We then assess the impact of this dynamo-generated field on the structure of the solar corona and solar wind. This model solves the induction equation in which the velocity field is prescribed. This velocity field is a combination of a solar-like differential rotation and meridional circulation. We develop an algorithm that enables the magnetic flux produced in the interior to be buoyantly transported towards the surface to produce bipolar spots. We find that those tilted bipolar magnetic regions contain a sufficient amount of flux to periodically reverse the polar magnetic field and sustain dynamo action. We then track the evolution of these magnetic features at the surface during a few consecutive magnetic cycles and analyze their effects on the topology of the corona and on properties of the solar wind (distribution of streamers and coronal holes, and of slow and fast wind streams) in connection with current observations of the Sun.

  10. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    PubMed

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  11. Initialization of soil-water content in regional-scale atmospheric prediction models

    NASA Technical Reports Server (NTRS)

    Smith, Christopher B.; Lakhtakia, Mercedes; Capehart, William J.; Carlson, Toby N.

    1994-01-01

    The purpose of this study is to demonstrate the feasibility of determining the soil-water content fields required as initial conditions for land surface components within atmospheric prediction models. This is done using a model of the hydrologic balance and conventional meteorological observations, land cover, and soils information. A discussion is presented of the subgrid-scale effects, the integration time, and the choice of vegetation type on the soil-water content patterns. Finally, comparisons are made between two The Pennsylvania State University/National Center for Atmospheric Research mesoscale model simulations, one using climatological fields and the other one using the soil-moisture fields produced by this new method.

  12. Properties of the superconductor in accelerator dipole magnets

    NASA Astrophysics Data System (ADS)

    Teravest, Derk

    Several aspects of the application of superconductors to high field dipole magnets for particle accelerators are discussed. The attention is focused on the 10 tesla (1 m model) magnet that is envisaged for the future Large Hadron Collider (LHC) accelerator. The basic motivation behind the study is the intention of employing superconductors to their utmost performance. An overview of practical supercomputers, their applications and their impact on high field dipole magnets used for particle accelerators, is presented. The LHC reference design for the dipole magnets is outlined. Several models were used to study the influence of a number of factors in the shape and in particular, the deviation from the shape that is due to the flux flow state. For the investigated extrinsic and intrinsic factors, a classification can be made with respect to the effect on the shape of the characteristic of a multifilamentary wire. The optimization of the coil structure for high field dipole magnets, with respect to the field quality is described. An analytical model for solid and hollow filaments, to calculate the effect of filament magnetization in the quality of the dipole field, is presented.

  13. Magnetization plateaus and ground-state phase diagrams of the S=1 Ising model on the Shastry Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya

    2017-02-01

    In this research, we have investigated the magnetic properties of the spin-1 Ising model on the Shastry Sutherland lattice with the crystal field interaction by using the effective-field theory with correlations. The effects of the applied field on the magnetization are examined in detail in order to obtain the magnetization plateaus, thus different types of magnetization plateaus, such as 1/4, 1/3, 1/2, 3/5, 2/3 and 7/9 of the saturation, are obtained for strong enough magnetic fields (h). Magnetization plateaus exhibit single, triple, quintuplet and sextuple forms according to the interaction parameters, hence the magnetization plateaus originate from the competition between the crystal field (D) and exchange interaction parameters (J, J‧). The ground-state phase diagrams of the system are presented in three varied planes, namely (h/J, J‧/J), (h/J, D/J) and (D/J, J‧/J) planes. These phase diagrams display the Néel (N), collinear (C) and ferromagnetic (F) phases for certain values of the model parameters. The obtained results are in good agreement with some theoretical and experimental studies.

  14. Fast propagation of electromagnetic fields through graded-index media.

    PubMed

    Zhong, Huiying; Zhang, Site; Shi, Rui; Hellmann, Christian; Wyrowski, Frank

    2018-04-01

    Graded-index (GRIN) media are widely used for modeling different situations: some components are designed considering GRIN modulation, e.g., multi-mode fibers, optical lenses, or acousto-optical modulators; on the other hand, there are other components where the refractive-index variation is undesired due to, e.g., stress or heating; and finally, some effects in nature are characterized by a GRIN variation, like turbulence in air or biological tissues. Modeling electromagnetic fields propagating in GRIN media is then of high importance for optical simulation and design. Though ray tracing can be used to evaluate some basic effects in GRIN media, the field properties are not considered and evaluated. The general physical optics techniques, like finite element method or finite difference time domain, can be used to calculate fields in GRIN media, but they need great numerical effort or may even be impractical for large-scale components. Therefore, there still exists a demand for a fast physical optics model of field propagation through GRIN media on a large scale, which will be explored in this paper.

  15. Comparison between Modelled and Measured Magnetic Field Scans of Different Planar Coil Topologies for Stress Sensor Applications.

    PubMed

    Gibbs, Robert; Moreton, Gregory; Meydan, Turgut; Williams, Paul

    2018-03-21

    The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics ® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5-10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell ® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H ( x ) and H ( z ) , is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed.

  16. Comparison between Modelled and Measured Magnetic Field Scans of Different Planar Coil Topologies for Stress Sensor Applications

    PubMed Central

    Moreton, Gregory

    2018-01-01

    The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5–10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H(x) and H(z), is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed. PMID:29561809

  17. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning.

    PubMed

    Neal, Robert E; Garcia, Paulo A; Robertson, John L; Davalos, Rafael V

    2012-04-01

    Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.

  18. Phase-field modeling of void anisotropic growth behavior in irradiated zirconium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, G. M.; Wang, H.; Lin, De-Ye

    2017-06-01

    A three-dimensional (3D) phase field model was developed to study the effects of surface energy and diffusivity anisotropy on void growth behavior in irradiated Zr. The gamma surface energy function, which is used in the phase field model, was developed with the surface energy anisotropy calculated from the molecular dynamics (MD) simulations. It is assumed that vacancies have much larger mobility in c-axis than a- and b- axes while interstitials have much larger mobility in basal plane then that in c-axis. With the model, the equilibrium void morphology and the effect of defect concentrations and defect mobility anisotropy on voidmore » growth behavior were simulated. The simulations demonstrated that 1) The developed phase-field model can correctly reproduce the faceted void morphology predicted by the Wullf construction. 2) With isotropic diffusivity the void prefers to grow on the basal plane. 3) When the vacancy has large mobility along c-axis and interstitial has a large mobility on the basal plane of hexagonal closed packed (hcp) Zr alloys a platelet void grows in c-direction and shrinks on the basal plane, which is in agreement with the experimental observation of void growth behavior in irradiated Zr.« less

  19. Numerical Simulation of Electromagnetic Field Variation in the Lithosphere-Atmosphere-Ionosphere Associated with Seismogenic Process in a Curvature Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhao, Z.; Wang, Y.; Huang, Q.

    2013-12-01

    The lithosphere-atmosphere- ionosphere (LAI) system formed an electromagnetic (EM) cavity that hosts the EM field excited by electric currents generated by lightning and other natural sources. There have also been numerous reports on variations of the EM field existing in LAI system prior to some significance earthquakes. We simulated the EM field in the lithosphere-ionosphere waveguide with a whole-earth model using a curvature coordinate by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and the EM wave in this 2D model. In the model we have observed the excitation of the Schumann Resonance (SR) as the background EM field generated by randomly placed electric-current impulses within the lowest 10 kilometers of the atmosphere. The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR reaching a steady state, an electric impulse is introduced in the shallow lithosphere to mimic the seismogenic process (pre-, co- and post-seismic) to assess the possible precursory effects on SR strength and frequency. The modeling results can explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events. The fundamental reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric signals from oceanic earthquake events into the LAI waveguide.

  20. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.

  1. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.

  2. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    NASA Astrophysics Data System (ADS)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found that anisotropic turbulent thermal diffusivity has a strong destabilising effect on magneto-convective instabilities, which may relax the tight energy budget constraining geodynamo models. The enhanced instability is not due to a reduction of the total diffusivity. The anisotropy also strengthens instabilities which break the symmetry of the underlying state, which may facilitate magnetic field reversal. Geostrophic flow appears to suppress the symmetry breaking modes and magnetic instabilities. Through symmetry breaking and the geostrophic flow the anisotropy may provide a mechanism of magnetic field reversal and its suppression in computational dynamo models.

  3. Enhanced angular overlap model for nonmetallic f -electron systems

    NASA Astrophysics Data System (ADS)

    Gajek, Z.

    2005-07-01

    An efficient method of interpretation of the crystal field effect in nonmetallic f -electron systems, the enhanced angular overlap model (EAOM), is presented. The method is established on the ground of perturbation expansion of the effective Hamiltonian for localized electrons and first-principles calculations related to available experimental data. The series of actinide compounds AO2 , oxychalcogenides AOX , and dichalcogenides UX2 where X=S ,Se,Te and A=U ,Np serve as probes of the effectiveness of the proposed method. An idea is to enhance the usual angular overlap model with ab initio calculations of those contributions to the crystal field potential, which cannot be represented by the usual angular overlap model (AOM). The enhancement leads to an improved fitting and makes the approach intrinsically coherent. In addition, the ab initio calculations of the main, AOM-consistent part of the crystal field potential allows one to fix the material-specific relations for the EAOM parameters in the effective Hamiltonian. Consequently, the electronic structure interpretation based on EAOM can be extended to systems of the lowest point symmetries or/and deficient experimental data. Several examples illustrating the promising capabilities of EAOM are given.

  4. Field-theoretic approach to fluctuation effects in neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buice, Michael A.; Cowan, Jack D.; Mathematics Department, University of Chicago, Chicago, Illinois 60637

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governedmore » by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.« less

  5. A power-law coupled three-form dark energy model

    NASA Astrophysics Data System (ADS)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  6. Towards the Early Detection of Breast Cancer in Young Women

    DTIC Science & Technology

    2006-10-01

    approach. 4. Poroelastic model for tissue deformation: We have implemented the model of Netti et al. in a finite element program in order to simulate...changes would not be expected. 44Interstitial Fluid Flow 5. Conclusions A poroelastic model that includes the effects of fluid flow and the possibility of...images to produce a displacement field. Using this displacement field, and an assumed linear elastic model for the tissue, an inverse problem is solved

  7. Low-Frequency Oscillations and Transport Processes Induced by Multiscale Transverse Structures in the Polar Wind Outflow: A Three-Dimensional Simulation

    NASA Technical Reports Server (NTRS)

    Ganguli, Supriya B.; Gavrishchaka, Valeriy V.

    1999-01-01

    Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.

  8. FINAL REPORT: Mechanistically-Base Field Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Brian D.

    2013-11-04

    Biogeochemical reactive transport processes in the subsurface environment are important to many contemporary environmental issues of significance to DOE. Quantification of risks and impacts associated with environmental management options, and design of remediation systems where needed, require that we have at our disposal reliable predictive tools (usually in the form of numerical simulation models). However, it is well known that even the most sophisticated reactive transport models available today have poor predictive power, particularly when applied at the field scale. Although the lack of predictive ability is associated in part with our inability to characterize the subsurface and limitations inmore » computational power, significant advances have been made in both of these areas in recent decades and can be expected to continue. In this research, we examined the upscaling (pore to Darcy and Darcy to field) the problem of bioremediation via biofilms in porous media. The principle idea was to start with a conceptual description of the bioremediation process at the pore scale, and apply upscaling methods to formally develop the appropriate upscaled model at the so-called Darcy scale. The purpose was to determine (1) what forms the upscaled models would take, and (2) how one might parameterize such upscaled models for applications to bioremediation in the field. We were able to effectively upscale the bioremediation process to explain how the pore-scale phenomena were linked to the field scale. The end product of this research was to produce a set of upscaled models that could be used to help predict field-scale bioremediation. These models were mechanistic, in the sense that they directly incorporated pore-scale information, but upscaled so that only the essential features of the process were needed to predict the effective parameters that appear in the model. In this way, a direct link between the microscale and the field scale was made, but the upscaling process helped inform potential users of the model what kinds of information would be needed to accurately characterize the system.« less

  9. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  10. The ITSG-Grace2014 Gravity Field Model

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate

    2015-04-01

    The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.

  11. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows.

    PubMed

    Liang, H; Shi, B C; Guo, Z L; Chai, Z H

    2014-05-01

    In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.

  12. Wave-Particle Interactions As a Driving Mechanism for the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wagner, William J.

    2004-01-01

    Our research has been focusing on a highly experimentally relevant issue: intermittency of the fluctuating fields in outflowing plasmas. We have contributed to both the theoretical and experimental research of the topic. In particular, we have developed a theoretical model and data analyzing programs to examine the issue of intermittency in space plasma outflows, including the solar wind. As fluctuating electric fields in the solar wind are likely to provide a heating and acceleration mechanism for the ions, our studies of the intermittency in turbulence in space plasma outflows help us toward achieving the goal of comparing major physical mechanisms that contribute to the driving of the fast solar wind. Our new theoretical model extends the utilities of our global hybrid model, which has allowed us to follow the kinetic evolution of the particle distributions along an inhomogeneous field line while the particles are subjected to various physical mechanisms. The physical effects that were considered in the global hybrid model included wave-particle interactions, an ambipolar electric field that was consistent with the particle distributions themselves, and Coulomb collisions. With an earlier version of the global hybrid model, we examined the overall impact on the solar wind flow due to the combination of these physical effects. In particular, we studied the combined effects of two major mechanisms that had been proposed as the drivers of the fast solar wind: (1) velocity filtration effect due to suprathermal electrons; (2) ion cyclotron resonance. Since the approval of this research grant, we have updated the model such that the effects due to these two driving mechanisms can be examined separately, thereby allowing us to compare their contributions to the acceleration of the solar wind. In the next section, we shall demonstrate that the velocity filtration effect is rather insignificant in comparison with that due to ion cyclotron resonance.

  13. Field theoretic approach to roughness corrections

    NASA Astrophysics Data System (ADS)

    Wu, Hua Yao; Schaden, Martin

    2012-02-01

    We develop a systematic field theoretic description of roughness corrections to the Casimir free energy of a massless scalar field in the presence of parallel plates with mean separation a. Roughness is modeled by specifying a generating functional for correlation functions of the height profile. The two-point correlation function being characterized by its variance, σ2, and correlation length, ℓ. We obtain the partition function of a massless scalar quantum field interacting with the height profile of the surface via a δ-function potential. The partition function is given by a holographic reduction of this model to three coupled scalar fields on a two-dimensional plane. The original three-dimensional space with a flat parallel plate at a distance a from the rough plate is encoded in the nonlocal propagators of the surface fields on its boundary. Feynman rules for this equivalent 2+1-dimensional model are derived and its counterterms constructed. The two-loop contribution to the free energy of this model gives the leading roughness correction. The effective separation, aeff, to a rough plate is measured to a plane that is displaced a distance ρ∝σ2/ℓ from the mean of its profile. This definition of the separation eliminates corrections to the free energy of order 1/a4 and results in unitary scattering matrices. We obtain an effective low-energy model in the limit ℓ≪a. It determines the scattering matrix and equivalent planar scattering surface of a very rough plate in terms of the single length scale ρ. The Casimir force on a rough plate is found to always weaken with decreasing correlation length ℓ. The two-loop approximation to the free energy interpolates between the free energy of the effective low-energy model and that of the proximity force approximation - the force on a very rough plate with σ≳0.5ℓ being weaker than on a planar Dirichlet surface at any separation.

  14. Summer School Effects in a Randomized Field Trial

    ERIC Educational Resources Information Center

    Zvoch, Keith; Stevens, Joseph J.

    2013-01-01

    This field-based randomized trial examined the effect of assignment to and participation in summer school for two moderately at-risk samples of struggling readers. Application of multiple regression models to difference scores capturing the change in summer reading fluency revealed that kindergarten students randomly assigned to summer school…

  15. Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Sugiyama, Yukiya; Laakso, Ilkka; Tanaka, Satoshi; Koyama, Soichiro; Sadato, Norihiro; Hirata, Akimasa

    2016-12-01

    Transcranial direct current stimulation (tDCS) is a neuromodulation scheme where a small current is delivered to the brain via two electrodes attached to the scalp. The electrode design is an important topic, not only as regards efficacy, but also from a safety perspective, as tDCS may be related to skin lesions that are sometimes observed after stimulation. Previous computational models of tDCS have omitted the effects of microscopic structures in the skin, and the different soak conditions of the electrodes, and model validation has been limited. In this study, multiphysics and multiscale analysis are proposed to demonstrate the importance of microscopic modeling of the skin, in order to clarify the effects of the internal electric field, and to examine temperature elevation around the electrodes. This novel microscopic model of the skin layer took into consideration the effect of saline/water penetration in hair follicles and sweat ducts on the field distribution around the electrodes. The temperature elevation in the skin was then computed by solving the bioheat equation. Also, a multiscale model was introduced to account for macroscopic and microscopic tissues of the head and skin, which was validated by measurement of the head resistance during tDCS. As a result, the electric field in the microscopic model of the skin was less localized when the follicles/ducts were filled with saline instead of hair or tap water. Temperature elevation was also lessened with saline, in comparison with other substances. Saline, which may penetrate the hair follicles and sweat ducts, suppressed the field concentration around the electrodes. For conventional magnitudes of current injection, and a head resistance of less than 10 kΩ, the temperature elevation in the skin when using saline-soaked electrodes was low, less than 0.1 °C, and unlikely to cause adverse thermal effects.

  16. Pajarito Aerosol Couplings to Ecosystems (PACE) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, M

    Laboratory (LANL) worked on the Pajarito Aerosol Couplings to Ecosystems (PACE) intensive operational period (IOP). PACE’s primary goal was to demonstrate routine Mobile Aerosol Observing System (MAOS) field operations and improve instrumental and operational performance. LANL operated the instruments efficiently and effectively with remote guidance by the instrument mentors. This was the first time a complex suite of instruments had been operated under the ARM model and it proved to be a very successful and cost-effective model to build upon.

  17. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  18. The spiral field inhibition of thermal conduction in two-fluid solar wind models

    NASA Technical Reports Server (NTRS)

    Nerney, S.; Barnes, A.

    1978-01-01

    The paper reports on two-field models which include the inhibition of thermal conduction by the spiraling interplanetary field to determine whether any of the major conclusions obtained by Nerney and Barnes (1977) needs to be modified. Comparisons with straight field line models reveal that for most base conditions, the primary effect of the inhibition of thermal conduction is the bottling-up of heat in the electrons as well as the quite different temperature profiles at a large heliocentric radius. The spiral field solutions show that coronal hole boundary conditions do not correspond to states of high-speed streams as observed at 1 AU. The two-fluid models suggest that the spiral field inhibition of thermal conduction in the equatorial plane will generate higher gas pressures in comparison with flows along the solar rotation axis (between 1 and 10 AU). In particular, massive outflows of stellar winds, such as outflow from T Tauri stars, cannot be driven by thermal conduction. The conclusions of Nerney and Barnes remain essentially unchanged.

  19. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  20. Modelling the Auroral Magnetosphere-Ionosphere Coupling System at Jupiter

    NASA Astrophysics Data System (ADS)

    Bunce, E. J.; Cowley, S.; Provan, G.

    2016-12-01

    The magnetosphere-ionosphere coupling system at Jupiter is a topic of central significance in understanding the fundamental properties of its large-scale plasma environment. Theoretical discussion of this topic typically considers the properties of the field-aligned current systems that form part of a large-scale magnetosphere-ionosphere coupling current system associated with momentum exchange between the ionosphere and the magnetosphere, communicated via the magnetic field. The current system associated with the main oval is believed to be related to centrifugally-driven outward radial transport of iogenic plasma that leads to sub-corotation in the middle magnetosphere. In addition to the magnetosphere-ionosphere coupling current system, upward-directed field-aligned currents may flow at the open-closed field line boundary due to the shear between outer closed field lines and open field lines, which may relate to emission poleward of the main oval. An axi-symmetric model of the plasma flow in the jovian system, the related coupling currents, and the consequent auroral precipitation based on these combined ideas was initially devised to represent typical steady-state conditions for the system and later extended to consider auroral effects resulting from sudden compressions of the magnetosphere. More recently, the model has been extended along model magnetic field lines into the magnetosphere in order to relate them to in situ observations from the NASA Juno spacecraft at Jupiter. The field-aligned coupling currents associated with the modelled current systems produce a readily-observable azimuthal field signature that bends the field lines out of magnetic meridians. Here we show the computed azimuthal fields produced by our model auroral current system throughout the region between the ionosphere and the magnetic equator, and illustrate the results by evaluation of various model parameters (e.g. field-aligned current density, accelerating voltages, accelerated energy flux) along the Juno orbits.

  1. Vectorlike fermions and Higgs effective field theory revisited

    DOE PAGES

    Chen, Chien-Yi; Dawson, S.; Furlan, Elisabetta

    2017-07-10

    Heavy vectorlike quarks (VLQs) appear in many models of beyond the Standard Model physics. Direct experimental searches require these new quarks to be heavy, ≳ 800 – 1000 GeV . Here, we perform a global fit of the parameters of simple VLQ models in minimal representations of S U ( 2 ) L to precision data and Higgs rates. One interesting connection between anomalous Z bmore » $$\\bar{b}$$ interactions and Higgs physics in VLQ models is discussed. Finally, we present our analysis in an effective field theory (EFT) framework and show that the parameters of VLQ models are already highly constrained. Exact and approximate analytical formulas for the S and T parameters in the VLQ models we consider are available in the Supplemental Material as Mathematica files.« less

  2. Effects of primordial magnetic field on the formation rate of dark matter halos

    NASA Astrophysics Data System (ADS)

    Cheera, Varalakshmi; Nigam, Rahul

    2018-05-01

    We construct and demonstrate a method for computing the formation rate of the dark matter halo in the hierarchical model set up. This method uses the Press-Schecter distribution for the halos and hence applies only to the spherical halos. But this can be generalized to ellipsoidal structures also if one uses the Sheth-Torman distribution. After obtaining the formation rate, we study the effect of primordial magnetic field on the dynamics of these halos. We investigate the effect for different field strengths and conclude that a magnetic field stronger than 10 nG would impact the halos larger than 108 solar masses while a weaker field affects the formation rate of smaller halos.

  3. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlightsmore » a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.« less

  4. On the effect of the degeneracy among dark energy parameters

    NASA Astrophysics Data System (ADS)

    Gong, Yungui; Gao, Qing

    2014-01-01

    The dynamics of scalar fields as dark energy is well approximated by some general relations between the equation of state parameter and the fractional energy density . Based on the approximation, for slowly rolling scalar fields, we derived the analytical expressions of which reduce to the popular Chevallier-Polarski-Linder parametrization with an explicit degeneracy relation between and . The models approximate the dynamics of scalar fields well and help eliminate the degeneracies among , , and . With the explicit degeneracy relations, we test their effects on the constraints of the cosmological parameters. We find that: (1) The analytical relations between and for the two models are consistent with observational data. (2) The degeneracies have little effect on . (3) The error of was reduced about 30 % with the degeneracy relations.

  5. Image-optimized Coronal Magnetic Field Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov

    We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outsidemore » of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.« less

  6. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    NASA Astrophysics Data System (ADS)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  7. APEX model simulation of edge-of-field water quality benefits from upland buffers

    USDA-ARS?s Scientific Manuscript database

    For maximum usefulness, simulation models must be able to estimate the effectiveness of management practices not represented in the dataset used for model calibration. This study focuses on the ability of the Agricultural Policy Environmental eXtender (APEX) to simulate upland buffer effectiveness f...

  8. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides

    PubMed Central

    Johnston, A.S.A.; Hodson, M.E.; Thorbek, P.; Alvarez, T.; Sibly, R.M.

    2014-01-01

    Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species. PMID:25844009

  9. An analytical model for bio-electronic organic field-effect transistor sensors

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Giordano, Francesco; Magliulo, Maria; Palazzo, Gerardo; Torsi, Luisa

    2013-09-01

    A model for the electrical characteristics of Functional-Bio-Interlayer Organic Field-Effect Transistors (FBI-OFETs) electronic sensors is here proposed. Specifically, the output current-voltage characteristics of a streptavidin (SA) embedding FBI-OFET are modeled by means of the analytical equations of an enhancement mode p-channel OFET modified according to an ad hoc designed equivalent circuit that is also independently simulated with pspice. An excellent agreement between the model and the experimental current-voltage output characteristics has been found upon exposure to 5 nM of biotin. A good agreement is also found with the SA OFET parameters graphically extracted from the device transfer I-V curves.

  10. Effect of External Economic-Field Cycle and Market Temperature on Stock-Price Hysteresis: Monte Carlo Simulation on the Ising Spin Model

    NASA Astrophysics Data System (ADS)

    Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut

    2017-09-01

    In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.

  11. Magnetic field effects on the crust structure of neutron stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  12. Simulation of the effects of sub-breakdown electric fields on the chemical kinetics in nonpremixed counterflow methane/air flames

    NASA Astrophysics Data System (ADS)

    Belhi, Memdouh; Im, Hong; Computational Reacting Flows Laboratory, Clean Combustion Research Center Team

    2017-11-01

    The effects of an electric field on the combustion kinetics in nonpremixed counterflow methane/air flames were investigated via one-dimensional numerical simulations. A classical fluid model coupling Poison's equation with transport equations for combustion species and electric field-induced particles was used. A methane-air reaction mechanism accounting for the natural ionization in flames was combined with a set of reactions that describe the formation of active particles induced by the electric field. Kinetic parameters for electron-impact reactions and transport coefficients of electrons were modeled as functions of reduced electric field via solutions to the Boltzmann kinetic equation using the BOLSIG code. Mobility of ions was computed based on the (n,6,4) and coulomb interaction potentials, while the diffusion coefficient was approximated from the mobility using Einstein relation. Contributions of electron dissociation, excitation and ionization processes were characterized quantitatively. An analysis to identify the plasma regime where the electric field can alter the combustion kinetic was proposed.

  13. Attraction of position preference by spatial attention throughout human visual cortex.

    PubMed

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electron acceleration by inertial Alfven waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, B.J.; Lysak, R.L.

    1996-03-01

    Alfven waves reflected by the ionosphere and by inhomogeneities in the Alfven speed can develop an oscillating parallel electric field when electron inertial effects are included. These waves, which have wavelengths of the order of an Earth radius, can develop a coherent structure spanning distances of several Earth radii along geomagnetic field lines. This system has characteristic frequencies in the range of 1 Hz and can exhibit electric fields capable of accelerating electrons in several senses: via Landua resonance, bounce or transit time resonance as discussed by Andre and Eliasson or through the effective potential drop which appears when themore » transit time of the electrons is much smaller than the wave period, so that the electric fields appear effectively static. A time-dependent model of wave propagation is developed which represents inertial Alfven wave propagation along auroral field lines. The disturbance is modeled as it travels earthward, experiences partial reflections in regions of rapid variation, and finally reflects off a conducting ionosphere to continue propagating antiearthward. The wave experiences partial trapping by the ionospheric and the Alfven speed peaks discussed earlier by Polyakov and Rapoport and Trakhtengerts and Feldstein and later by Lysak. Results of the wave simulation and an accompanying test particle simulation are presented, which indicate that inertial Alfven waves are a possible mechanism for generating electron conic distributions and field-aligned particle precipitation. The model incorporates conservation of energy by allowing electrons to affect the wave via Landau damping, which appears to enhance the effect of the interactions which heat electron populations. 22 refs., 14 figs.« less

  15. Observational constraints on varying neutrino-mass cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  16. Influence of periodic external fields in multiagent models with language dynamics

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Ferriani, Stefano; Toti, Simona

    2017-12-01

    We investigate large-scale effects induced by external fields, phenomenologically interpreted as mass media, in multiagent models evolving with the microscopic dynamics of the binary naming game. In particular, we show that a single external field, broadcasting information at regular time intervals, can reverse the majority opinion of the population, provided the frequency and the effectiveness of the sent messages lie above well-defined thresholds. We study the phase structure of the model in the mean field approximation and in numerical simulations with several network topologies. We also investigate the influence on the agent dynamics of two competing external fields, periodically broadcasting different messages. In finite regions of the parameter space we observe periodic equilibrium states in which the average opinion densities are reversed with respect to naive expectations. Such equilibria occur in two cases: (i) when the frequencies of the competing messages are different but close to each other; (ii) when the frequencies are equal and the relative time shift of the messages does not exceed half a period. We interpret the observed phenomena as a result of the interplay between the external fields and the internal dynamics of the agents and conclude that, depending on the model parameters, the naming game is consistent with scenarios of first- or second-mover advantage (to borrow an expression from the jargon of business strategy).

  17. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Li, Xiao-Li

    2015-12-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. Project supported by the National Natural Science Foundation of China (Grant Nos. 61273063 and 61503321), the China Postdoctoral Science Foundation (Grant No. 2013M540215), the Natural Science Foundation of Hebei Province, China (Grant No. F2014203161), and the Youth Research Program of Yanshan University, China (Grant No. 02000134).

  18. Statistical characteristics of trajectories of diamagnetic unicellular organisms in a magnetic field.

    PubMed

    Gorobets, Yu I; Gorobets, O Yu

    2015-01-01

    The statistical model is proposed in this paper for description of orientation of trajectories of unicellular diamagnetic organisms in a magnetic field. The statistical parameter such as the effective energy is calculated on basis of this model. The resulting effective energy is the statistical characteristics of trajectories of diamagnetic microorganisms in a magnetic field connected with their metabolism. The statistical model is applicable for the case when the energy of the thermal motion of bacteria is negligible in comparison with their energy in a magnetic field and the bacteria manifest the significant "active random movement", i.e. there is the randomizing motion of the bacteria of non thermal nature, for example, movement of bacteria by means of flagellum. The energy of the randomizing active self-motion of bacteria is characterized by the new statistical parameter for biological objects. The parameter replaces the energy of the randomizing thermal motion in calculation of the statistical distribution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The Magnetic Binary GJ 65: A Test of Magnetic Diffusivity Effects

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Mullan, D. J.; Dieterich, Sergio

    2018-06-01

    GJ 65 is an M dwarf binary system consisting of the two flare stars BL Cet (GJ 65A) and UV Cet (GJ 65B). Two teams of investigators have recently reported total magnetic fluxes corresponding to fields of 4.5 and 5.2 kG for GJ 65A and 5.8 and 6.7 kG for GJ 65B: for each component, the magnetic results obtained by the two teams agree with each other to within 1σ. For the first time, we can directly compare the predictions of our magneto-convective models, based on fitting observed stellar parameters, with measured field strengths. We find that our models agree with the observed field strengths, provided the effects of finite conductivity are accounted for. Thus, GJ 65 provides us with an opportunity to use observations of field strengths to distinguish between the predictions of our models that assume perfect electrical conductivity and those that allow for finite conductivity.

  20. Gate voltage dependent 1/f noise variance model based on physical noise generation mechanisms in n-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo

    2015-04-01

    1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.

  1. Improving Tumor Treating Fields Treatment Efficacy in Patients With Glioblastoma Using Personalized Array Layouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenger, Cornelia, E-mail: cwenger@fc.ul.pt; Salvador, Ricardo; Basser, Peter J.

    Purpose: To investigate tumors of different size, shape, and location and the effect of varying transducer layouts on Tumor Treating Fields (TTFields) distribution in an anisotropic model. Methods and Materials: A realistic human head model was generated from MR images of 1 healthy subject. Four different virtual tumors were placed at separate locations. The transducer arrays were modeled to mimic the TTFields-delivering commercial device. For each tumor location, varying array layouts were tested. The finite element method was used to calculate the electric field distribution, taking into account tissue heterogeneity and anisotropy. Results: In all tumors, the average electric field inducedmore » by either of the 2 perpendicular array layouts exceeded the 1-V/cm therapeutic threshold value for TTFields effectiveness. Field strength within a tumor did not correlate with its size and shape but was higher in more superficial tumors. Additionally, it always increased when the array was adapted to the tumor's location. Compared with a default layout, the largest increase in field strength was 184%, and the highest average field strength induced in a tumor was 2.21 V/cm. Conclusions: These results suggest that adapting array layouts to specific tumor locations can significantly increase field strength within the tumor. Our findings support the idea of personalized treatment planning to increase TTFields efficacy for patients with GBM.« less

  2. Modeling and simulation of deformation of hydrogels responding to electric stimulus.

    PubMed

    Li, Hua; Luo, Rongmo; Lam, K Y

    2007-01-01

    A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.

  3. Spatial variation of permittivity of an electrolyte solution in contact with a charged metal surface: a mini review

    PubMed Central

    Gongadze, E.; van Rienen, U.; Kralj-Iglič, V.; Iglič, A.

    2012-01-01

    Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface, i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken into account. The Langevin-Poisson-Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like ions is described and compared to a more general Langevin-Bikerman (LB) model of spatial variation of permittivity for finite-sized ions. The Bikerman model and the Poisson-Boltzmann model are derived as limiting cases. It is shown that near the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking into account the cavity field. PMID:22263808

  4. Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Xie, Shang-Ping

    2003-12-01

    Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.

  5. Verification of Fowler-Nordheim electron tunneling mechanism in Ni/SiO2/n-4H SiC and n+ poly-Si/SiO2/n-4H SiC MOS devices by different models

    NASA Astrophysics Data System (ADS)

    Kodigala, Subba Ramaiah

    2016-11-01

    This article emphasizes verification of Fowler-Nordheim electron tunneling mechanism in the Ni/SiO2/n-4H SiC MOS devices by developing three different kinds of models. The standard semiconductor equations are categorically solved to obtain the change in Fermi energy level of semiconductor with effect of temperature and field that extend support to determine sustainable and accurate tunneling current through the oxide layer. The forward and reverse bias currents with variation of electric field are simulated with help of different models developed by us for MOS devices by applying adequate conditions. The latter is quite different from former in terms of tunneling mechanism in the MOS devices. The variation of barrier height with effect of quantum mechanical, temperature, and fields is considered as effective barrier height for the generation of current-field (J-F) curves under forward and reverse biases but quantum mechanical effect is void in the latter. In addition, the J-F curves are also simulated with variation of carrier concentration in the n-type 4H SiC semiconductor of MOS devices and the relation between them is established.

  6. Refraction error correction for deformation measurement by digital image correlation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji

    2017-03-01

    An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.

  7. Style consistent classification of isogenous patterns.

    PubMed

    Sarkar, Prateek; Nagy, George

    2005-01-01

    In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same, albeit unknown, style. Style constrained classifiers achieve higher classification accuracy by modeling such dependence among patterns in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by hierarchical mixtures. Each field derives from a mixture of styles, while, within a field, a pattern derives from a class-style conditional mixture of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.

  8. Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles

    NASA Astrophysics Data System (ADS)

    Yin, H. M.; Sun, L. Z.; Chen, J. S.

    2006-05-01

    Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.

  9. Thermomechanical Fractional Model of TEMHD Rotational Flow

    PubMed Central

    Hamza, F.; Abd El-Latief, A.; Khatan, W.

    2017-01-01

    In this work, the fractional mathematical model of an unsteady rotational flow of Xanthan gum (XG) between two cylinders in the presence of a transverse magnetic field has been studied. This model consists of two fractional parameters α and β representing thermomechanical effects. The Laplace transform is used to obtain the numerical solutions. The fractional parameter influence has been discussed graphically for the functions field distribution (temperature, velocity, stress and electric current distributions). The relationship between the rotation of both cylinders and the fractional parameters has been discussed on the functions field distribution for small and large values of time. PMID:28045941

  10. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu; Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time ofmore » Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.« less

  11. An electrodynamic model of electric currents and magnetic fields in the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Tascione, T. F.; Danieli, R. E., Jr.

    1981-01-01

    The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, 1973; Daniell and Cloutier, 1977; Cloutier and Daniell, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (1) plasma depletion and magnetic field enhancement near the ionopause, (2) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (3) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the Pioneer-Venus Orbiter. The formation of flux-ropes by the Kelving-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.

  12. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    NASA Astrophysics Data System (ADS)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  13. Device and circuit-level performance of carbon nanotube field-effect transistor with benchmarking against a nano-MOSFET.

    PubMed

    Tan, Michael Loong Peng; Lentaris, Georgios; Amaratunga Aj, Gehan

    2012-08-19

    The performance of a semiconducting carbon nanotube (CNT) is assessed and tabulated for parameters against those of a metal-oxide-semiconductor field-effect transistor (MOSFET). Both CNT and MOSFET models considered agree well with the trends in the available experimental data. The results obtained show that nanotubes can significantly reduce the drain-induced barrier lowering effect and subthreshold swing in silicon channel replacement while sustaining smaller channel area at higher current density. Performance metrics of both devices such as current drive strength, current on-off ratio (Ion/Ioff), energy-delay product, and power-delay product for logic gates, namely NAND and NOR, are presented. Design rules used for carbon nanotube field-effect transistors (CNTFETs) are compatible with the 45-nm MOSFET technology. The parasitics associated with interconnects are also incorporated in the model. Interconnects can affect the propagation delay in a CNTFET. Smaller length interconnects result in higher cutoff frequency.

  14. Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage

    NASA Astrophysics Data System (ADS)

    Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.

    2013-12-01

    A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.

  15. The influence of social variables and moral disengagement on prosocial and antisocial behaviours in field hockey and netball.

    PubMed

    Boardley, Ian D; Kavussanu, Maria

    2009-06-01

    In this study, we examined: (a) the effects of perceived motivational climate and coaching character-building competency on prosocial and antisocial behaviours towards team-mates and opponents in field hockey and netball; (b) whether the effects of perceived character-building competency on sport behaviours are mediated by moral disengagement; and (c) whether these relationships are invariant across sport. Field hockey (n = 200) and netball (n = 179) players completed questionnaires assessing the aforementioned variables. Structural equation modelling indicated that mastery climate had positive effects on prosocial and negative effects on antisocial behaviour towards team-mates, while performance climate had a positive effect on antisocial behaviour towards team-mates. Perceived character-building competency had a positive effect on prosocial behaviour towards opponents and negative effects on the two antisocial behaviours; all of these effects were mediated by moral disengagement. No effect was found for prosocial behaviour towards team-mates. The model was largely invariant across sport. The findings aid our understanding of social influences on prosocial and antisocial behaviours in sport.

  16. Global hybrid simulation of the solar wind interaction with the dayside of Venus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K.R.; Thomas, V.A.; McComas, D.J.

    1991-05-01

    The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less

  17. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

    NASA Astrophysics Data System (ADS)

    Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas

    2017-10-01

    In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.

  18. Probing-models for interdigitated electrode systems with ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul

    2018-05-01

    In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.

  19. Photoelectrons in the Quiet Polar Wind

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Khazanov, G.; Liemohn, M.

    2017-01-01

    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.

  20. Space-based Doppler lidar sampling strategies: Algorithm development and simulated observation experiments

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.

Top