Chris A. Childers; Douglas D. Piirto
1989-01-01
Fire management has always meant fire suppression to the managers of the chaparral covered southern California National Forests. Today, Forest Service fire management programs must be cost effective, while wilderness fire management objectives are aimed at recreating natural fire regimes. A cost-effectiveness analysis has been developed to compare fire management...
Dunham, J.B.; Young, M.; Gresswell, Robert E.; Rieman, B.
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests vulnerability of fish to fire is contingent upon the quality of affected habitats, the amount and distribution of habitat (habitat fragmentation), and habitat specificity of the species in question. Species with narrow habitat requirements in highly degraded and fragmented systems are likely to be most vulnerable to fire and fire-related disturbance. In addition to effects of fire on native fish, there are growing concerns about the effects of fire on nonnative fish invasions. The role of fire in facilitating invasions by nonnative fishes is unknown, but experience with other species suggests some forms of disturbance associated with fire may facilitate invasion. Management efforts to promote persistence of fishes in fire-prone landscapes can take the form of four basic alternatives: (1) pre-fire management; (2) post-fire management; (3) managing fire itself (e.g. fire fighting); and (4) monitoring and adaptive management. Among these alternatives, pre-fire management is likely to be most effective. Effective pre-fire management activities will address factors that may render fish populations more vulnerable to the effects of fire (e.g. habitat degradation, fragmentation, and nonnative species). Post-fire management is also potentially important, but suffers from being a reactive approach that may not address threats in time to avert them. Managing fire itself can be important in some contexts, but negative consequences for fish populations are possible (e.g. toxicity of fire fighting chemicals to fish). Monitoring and adaptive management can provide important new information for evaluating alternatives, but proper implementation is often hampered by inadequate study designs and inconsistent financial and institutional support. The challenge for providing better management guidelines will be to add solid empirical data and models to assess the relevance of emerging concepts and theories, and provide a sense of where and when fires pose significant risks and/or benefits to fishes.
Probability model for analyzing fire management alternatives: theory and structure
Frederick W. Bratten
1982-01-01
A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...
Wildland fire in ecosystems: effects of fire on flora
James K. Brown; Jane Kapler Smith
2000-01-01
VOLUME 2: This state-of-knowledge review about the effects of fire on flora and fuels can assist land managers with ecosystem and fire management planning and in their efforts to inform others about the ecological role of fire. Chapter topics include fire regime classification, autecological effects of fire, fire regime characteristics and postfire plant community...
Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.
Wildland fire in ecosystems: effects of fire on soils and water
Daniel G. Neary; Kevin C. Ryan; Leonard F. DeBano
2005-01-01
This state-of-knowledge review about the effects of fire on soils and water can assist land and fire managers with information on the physical, chemical, and biological effects of fire needed to successfully conduct ecosystem management, and effectively inform others about the role and impacts of wildland fire. Chapter topics include the soil resource, soil physical...
Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...
Rhonda. Mazza
2007-01-01
Fire is a part of the forest ecosystem, and its effects have been well documented in the scientific literature. But controversy remains about the effects of management options in a burned forest, and the scientific basis for decisionmaking about postfire management is uncertain and has not been effectively articulated. Management concerns after a fire...
A national cohesive wildland fire management strategy
Forest Service U.S. Department of Agriculture; Office of Wildland Fire Coordination Department of the Interior
2011-01-01
Addressing wildfire is not simply a fire management, fire operations, or wildland-urban interface problem - it is a larger, more complex land management and societal issue. The vision for the next century is to: Safely and effectively extinguish fire, when needed; use fire where allowable; manage our natural resources; and as a Nation, live with wildland fire. Three...
Communication and implementation of GIS data in fire management: a case study
Kenneth G. Boykin; Douglas I. Boykin; Rusty Stovall; Ryan Whitaker
2008-01-01
Remotely sensed data and Geographical Information Systems (GIS) can be an effective tool in fire management. For the inclusion of these tools, fire management and research personnel must be effective in communication regarding needs and limitations of the data and implementing that data at various scales. A number of personnel can be involved within fire management...
Wildland fire in ecosystems: effects of fire on cultural resources and archaeology
Kevin C. Ryan; Ann Trinkle Jones; Cassandra L. Koerner; Kristine M. Lee
2012-01-01
This state-of-knowledge review provides a synthesis of the effects of fire on cultural resources, which can be used by fire managers, cultural resource (CR) specialists, and archaeologists to more effectively manage wildland vegetation, fuels, and fire. The goal of the volume is twofold: (1) to provide cultural resource/archaeological professionals and policy makers...
2013-10-24
advance fire science: (1) fire behavior, (2) ecological effects of fire, (3) carbon accounting , (4) emissions characterization, and (5) fire plume...relates to smoke management. 3) Carbon accounting in forest management and prescribed fire programs (including tradeoffs such as prescribed burning...carbon accounting , 4) emissions characterization and 5) fire plume dispersion. 1) Fire behavior. Better characterization of wildland fire behavior is
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Daniel L. Schmoldt; David L. Peterson; Robert E. Keane; James M. Lenihan; Donald McKenzie; David R. Weise; David V. Sandberg
1999-01-01
A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial...
Haiganoush Preisler; Alan Ager
2013-01-01
For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...
Effect of suppression strategies on federal wildland fire expenditures
Krista M. Gebert; Anne E. Black
2012-01-01
Policymakers and decisionmakers alike have suggested that the use of less aggressive suppression strategies for wildland fires might help stem the tide of rising emergency wildland fire expenditures. However, the interplay of wildland fire management decisions and expenditures is not well understood. In this study, we assess the effect of different fire management...
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
John D. Alexander; C. John Ralph; Bill Hogoboom; Nathaniel E. Seavy; Stewart Janes
2004-01-01
Although fire management is increasingly recognized as an important component of conservation in Klamath-Siskiyou ecosystems, empirical evidence on the ecological effects of fire in this region is limited. Here we describe a conceptual model as a framework for understanding the effects of fire and fire management on bird abundance. This model identifies three major...
Nesmith, C.B.; Caprio, Anthony C.; Pfaff, Anne H.; McGinnis, Thomas W.; Keeley, Jon E.
2011-01-01
Current goals for prescription burning are focused on measures of fuel consumption and changes in forest density. These benchmarks, however, do not address the extent to which prescription burning meets perceived ecosystem needs of heterogeneity in burning, both for overstory trees and understory herbs and shrubs. There are still questions about how closely prescribed fires mimic these patterns compared to natural wildfires. This study compared burn patterns of prescribed fires and managed unplanned wildfires to understand how the differing burning regimes affect ecosystem properties. Measures of forest structure and fire severity were sampled in three recent prescribed fires and three wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Fine scale patterns of fire severity and heterogeneity were compared between fire types using ground-based measures of fire effects on fuels and overstory and understory vegetation. Prescribed fires and wildfires managed for resource objectives displayed similar patterns of overstory and understory fire severity, heterogeneity, and seedling and sapling survival. Variation among plots within the same fire was always greater than between fire types. Prescribed fires can provide burned landscapes that approximate natural fires in many ways. It is recognized that constraints placed on when wildfires managed for resource objectives are allowed to burn freely may bias the range of conditions that might have been experienced under more natural conditions. Therefore they may not exactly mimic natural wildfires. Overall, the similarity in fire effects that we observed between prescribed fires and managed wildfires indicate that despite the restrictions that are often placed on prescribed fires, they appear to be creating post-fire conditions that approximate natural fires when assessed on a fine spatial scale.
BehavePlus fire modeling system: Past, present, and future
Patricia L. Andrews
2007-01-01
Use of mathematical fire models to predict fire behavior and fire effects plays an important supporting role in wildland fire management. When used in conjunction with personal fire experience and a basic understanding of the fire models, predictions can be successfully applied to a range of fire management activities including wildfire behavior prediction, prescribed...
The Fire Effects Information System - serving managers since before the Yellowstone fires
Jane Kapler Smith; Janet L. Fryer; Kristin Zouhar
2009-01-01
This presentation will describe the current status of the Fire Effects Information System (FEIS) and explore lessons learned from this 23-yearold project about the application of science to fire management issues. FEIS contains literature reviews covering biology and fire ecology for approximately 1,100 species in North America: plants and animals, native and nonnative...
Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Scheller, R.; Kretchun, A.
2017-12-01
Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.
Application of economic techniques to fire management - A status review and evaluation
Julie K. Gorte; Ross W. Gorte
1979-01-01
Discusses both the historic and contemporary influences of economic in formulating USDA, Forest Service fire management policy in allocating money for fire management and in appraising fire effects. Includes a partial listing of publications that deal with resource valuation.
Use of expert knowledge to develop fuel maps for wildland fire management [chapter 11
Robert E. Keane; Matt Reeves
2012-01-01
Fuel maps are becoming an essential tool in fire management because they describe, in a spatial context, the one factor that fire managers can control over many scales  surface and canopy fuel characteristics. Coarse-resolution fuel maps are useful in global, national, and regional fire danger assessments because they help fire managers effectively plan, allocate, and...
Wildland fire management futures: insights from a foresight panel
Robert L. Olson; David N. Bengston; Leif A. DeVaney; Trevor A.C. Thompson
2015-01-01
Wildland fire management faces unprecedented challenges in the 21st century: the increasingly apparent effects of climate change, more people and structures in the wildland-urban interface, growing costs associated with wildfire management, and the rise of high-impact fires, to name a few. Given these significant and growing challenges, conventional fire management...
Fire effects in southwestern forests: Proceedings of the Second La Mesa Fire symposium
Allen, Craig D.
1996-01-01
In 1977, the La Mesa Fire burned across 15,444 acres of ponderosa pine forests on the adjoining lands of Bandelier National Monument, the Santa Fe National Forest, and Los Alamos National Laboratory. Following this event, several fire effects studies were initiated. The 16 papers herein document longer-term knowledge gained about the ecological effects of the fire and about Southwestern fire ecology in general. The presentations are also designed to give resource managers practical information for managing fire in local landscapes. Studies presented range from fire histories and avifauna to geomorphology and arthropods.
Tom Zimmerman; Laurie Kurth; Mitchell Burgard
2011-01-01
Wildland fire management policy and practices have long been driven by the occurrence of significant events. The Howling Prescribed Natural Fire in Glacier National Park in 1994 is a prime example of a significant historical fire event that provided the impetus for program changes and modifications that modernized wildland fire management at the local, regional, and...
Fire in Ghana's dry forest: Causes, frequency, effects and management interventions
Sandra Opoku Agyemang; Michael Muller; Victor Rex Barnes
2015-01-01
This paper describes the number of fires, area burned, causes and seasonality of fires over a ten year period from 2002-2012 and investigates different fire management strategies and their effectiveness in the Afram headwaters forest reserve in Ghana. Data were collected from interviews of stakeholders in two communities adjacent to the reserve, and from 2002-2012 fire...
Fire and aquatic ecosystems of the Western USA: current knowledge and key questions.
P.A. Bisson; B.E. Rieman; C. Luce; P.F. Hessburg; D.C. Lee; J.L. Kershner; G.H. Reeves; R.E. Gresswell
2003-01-01
Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem...
Using climate information for fuels management
Kolden, Crystal A.; Brown, Timothy J.
2008-01-01
Climate has come to the forefront of wildfire discussions in recent years as research contributes to the general understanding of how climate influences fuels availability to burn, the occurrence of severe fire weather conditions and other wildfire parameters. This understanding has crossed over into wildfire management applications through the creation of tools like climate forecasts for wildfire and drought indices, which are now widely used in wildfire suppression and mitigation planning. The overall question is how can climate information help fire managers meet management objectives? Climate underlies weather. For example, a number of days could be generally wet, but that may occur in the context of a two-year overall drought. Knowing the baseline climate is not only critical to preventing escaped prescribed fires, but also how it may affect fire behavior, fire effects and whether or not fire managers will meet their fuels management objectives. Thus, for fire managers to use prescribed and WFU fire safely and effectively, and to minimize the number of escaped fires and conversions to suppression, they need to understand how current climate conditions will impact the use of fire. One example is the need to use prescribed fire under set “burn windows”. Since meteorological conditions vary considerably from year to year for a given day, fire managers will be more successful in utilizing burn windows effectively if they understand those climate thresholds conducive to an increased number of safe burn windows, and are able to predict and take advantage of those burn windows. While climate and wildfire has been studied extensively, climate and fire use has not. The initial goal of this project was to assess how climate impacts prescribed fire use in a more general sense. After a preliminary informal survey in the spring of 2003, we determined that 1) there is insufficient data (less than 10 years) to conduct empirical correlative studies similar to those of the relationships between climate and wildfire (e.g., Swetnam and Betancourt 1990), and 2) prescribed fire policy has many regulations that potentially inhibited the use of climate information for decision-making. It was also determined that because fire use is a human decision, it would be more informative to ask fire managers themselves how climate impacts fire use through their decision-making processes, and whether or not they use climate information for prescribed fire. The first task for this project was to complete a regional survey of prescribed fire managers in California and Nevada. During the second phase of the project, additional prescribed fire managers were surveyed across the country. During the third year a second survey of WFU managers was completed. The goals of these inquiries were to determine: 1) If fire managers use climate information for fuels management; 2) The perspective fire managers have towards climate affecting fuels management; 3) Determine any obstacles that make it difficult to use climate information for fuels management; and 4) Determine climate information managers need to help them make better decisions for fire use.
Principles of effective USA federal fire management plans
Meyer, Marc D.; Roberts, Susan L.; Wills, Robin; Brooks, Matthew L.; Winford, Eric M.
2015-01-01
Federal fire management plans are essential implementation guides for the management of wildland fire on federal lands. Recent changes in federal fire policy implementation guidance and fire science information suggest the need for substantial changes in federal fire management plans of the United States. Federal land management agencies are also undergoing land management planning efforts that will initiate revision of fire management plans across the country. Using the southern Sierra Nevada as a case study, we briefly describe the underlying framework of fire management plans, assess their consistency with guiding principles based on current science information and federal policy guidance, and provide recommendations for the development of future fire management plans. Based on our review, we recommend that future fire management plans be: (1) consistent and compatible, (2) collaborative, (3) clear and comprehensive, (4) spatially and temporally scalable, (5) informed by the best available science, and (6) flexible and adaptive. In addition, we identify and describe several strategic guides or “tools” that can enhance these core principles and benefit future fire management plans in the following areas: planning and prioritization, science integration, climate change adaptation, partnerships, monitoring, education and communication, and applied fire management. These principles and tools are essential to successfully realize fire management goals and objectives in a rapidly changing world.
Demography: a tool for understanding the wildland-urban interface fire problems
James B. Davis
1989-01-01
Fire managers across the nation are confronting the rapidly developing problem created by movement of people into wildland areas, increasing what has been termed the wildland-urban interface. The problem is very complex from the standpoint of fire planning and management. To plan and manage more effectively, fire managers should identify three types of interface areas...
First-order fire effects models for land Management: Overview and issues
Elizabeth D. Reinhardt; Matthew B. Dickinson
2010-01-01
We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of software systems designed for application to landscapes over time scales from days to centuries. Fire effects may be modeled using empirical, rule based, or process...
Research and management issues in large-scale fire modeling
David L. Peterson; Daniel L. Schmoldt
2000-01-01
In 1996, a team of North American fire scientists and resource managers convened to assess the effects of fire disturbance on ecosystems and to develop scientific recommendations for future fire research and management activities. These recommendations - elicited with the Analytic Hierarchy Process - include numerically ranked scientific and managerial questions and...
Kenneth A. Baerenklau; Armando González-Cabán; Catrina I. Páez; Edgard Chávez
2009-01-01
The U.S. Forest Service is responsible for developing tools to facilitate effective and efficient fire management on wildlands and urban-wildland interfaces. Existing GIS-based fire modeling software only permits estimation of the costs of fire prevention and mitigation efforts as well as the effects of those efforts on fire behavior. This research demonstrates how the...
Szendro - type Integrated Vegetation Fire Management--Wildfire Management Program from Hungary
Ágoston Restás
2006-01-01
Szendrő Fire Department is located in the northeastern part of Hungary. The main task is to fight against wildfire and mitigate the impact of fire at the Aggtelek National Park -- which belongs to the UNESCO World Heritage list. Because of greater effectiveness, in 2004 the Fire Department started a project named Integrated Vegetation Fire Management (IVFM)....
The Fire Effects Information System
William C. Fischer
1987-01-01
Lack of information regarding fire effects is perceived by many fire and resource managers as a barrier to the effective application of prescribed fire. This lack of information, in many instances, is the result of poor diffusion of existing knowledge rather than lack of knowledge. A computerized Fire Effects Information System can make existing fire effects knowledge...
Nolte, Christoph; Agrawal, Arun
2013-02-01
Management-effectiveness scores are used widely by donors and implementers of conservation projects to prioritize, track, and evaluate investments in protected areas. However, there is little evidence that these scores actually reflect the capacity of protected areas to deliver conservation outcomes. We examined the relation between indicators of management effectiveness in protected areas and the effectiveness of protected areas in reducing fire occurrence in the Amazon rainforest. We used data collected with the Management Effectiveness Tracking Tool (METT) scorecard, adopted by some of the world's largest conservation organizations to track management characteristics believed to be crucial for protected-area effectiveness. We used the occurrence of forest fires from 2000 through 2010 as a measure of the effect of protected areas on undesired land-cover change in the Amazon basin. We used matching to compare the estimated effect of protected areas with low versus high METT scores on fire occurrence. We also estimated effects of individual protected areas on fire occurrence and explored the relation between these effects and METT scores. The relations between METT scores and effects of protected areas on fire occurrence were weak. Protected areas with higher METT scores in 2005 did not seem to have performed better than protected areas with lower METT scores at reducing fire occurrence over the last 10 years. Further research into the relations between management-effectiveness indicators and conservation outcomes in protected areas seems necessary, and our results show that the careful application of matching methods can be a suitable method for that purpose. ©2012 Society for Conservation Biology.
Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P
2013-11-30
Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fire and birds in maritime Pacific Northwest
Mark H. Huff; Nathaniel E. Seavy; John D. Alexander; C. John Ralph
2005-01-01
Resource managers face the challenge of understanding how numerous factors, including fire and fire suppression, influence habitat composition and animal communities. We summarize information on fire effects on major vegetation types and bird/fire relations within the maritime Pacific Northwest, and pose management related questions and research considerations....
Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
Russell A. Parsons; William E. Mell; Peter McCauley
2011-01-01
Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...
Molly E. Hunter; Jose M. Iniguez; Calvin A. Farris
2014-01-01
Fire suppression has been the dominant fire management strategy in the West over the last century. However, managers of the Gila and Aldo Leopold Wilderness Complex in New Mexico and the Saguaro Wilderness Area in Arizona have allowed fire to play a more natural role for decades. This report summarizes the effects of these fire management practices on key resources,...
Christopher D. O' Connor; David E. Calkin; Matthew P. Thompson
2017-01-01
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions,...
NASA Astrophysics Data System (ADS)
Kennedy, R. S.
2010-12-01
Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.
Assessing the Role and Impact of Geospatial Data for Wildland Fire Management Decisions
NASA Astrophysics Data System (ADS)
Klein, E. A.; Lev, S. M.
2016-12-01
The 2015 Wildland and Fire Science and Technology Task Force Final Report, produced by the National Science and Technology Council, Committee on Environment, Natural Resources, and Sustainability, Subcommittee on Disaster Reduction, highlighted the increasing frequency of large wildfires and the growing demand for science to inform critical resource decisions to manage, mitigate, respond to, and recover from wildland fires. Federal spending on fire suppression from 2005-2015 has more than doubled despite policy changes that prioritize the mitigation of fire risks through the use of fuel treatments, prescribed fire, and management of naturally occurring wildfires to protect life and property. Fire suppression policies over the last century have created forests primed for severe fire, and in the face of a changing climate, the benefits of re-introducing fire into once fire-resilient ecosystems are clear. There are a range of complex factors and regional variation associated with wildland fire risk that complicate our understanding and effective management of this hazard. Data derived from Earth-observing (EO) systems and networks are a crucial input for managers when making decisions about fire suppression and fuel management. EO data can also be used to develop pre- and post-fire metrics that can aid in the evaluating the effectiveness of wildland fire management decisions. A value-tree method for mapping the role of EO systems and networks in delivering societal benefit through key Federal objectives related to wildland fire management will be presented. The value-tree methodology utilizes input from subject matter experts to assess the availability and usability of data and data products and to evaluate the impact of individual EO data inputs for achieving wildland fire management objectives. The results provide a qualitative assessment of the value of the data for the objectives described and identify critical gaps and continuity issues associated with improvements to and continuous delivery of societal benefit.
Effects of prescribed fire on wintering, bark-foraging birds in northern Arizona
Theresa L. Pope
2006-01-01
Forest management practices of the past century have led to an increase in unnatural and destructive crown fires in ponderosa pine (Pinus ponderosa) forests of the southwest. To combat large fires, forest managers are attempting to simulate past fire regimes of low-intensity surface fires using prescribed fire. While there have been many studies...
Matthew P. Thompson
2015-01-01
The management of wildfire is a dynamic, complex, and fundamentally uncertain enterprise. Fire managers face uncertainties regarding fire weather and subsequent influence on fire behavior, the effects of fire on socioeconomic and ecological resources, and the efficacy of alternative suppression actions on fire outcomes. In these types of difficult decision environments...
Matthew P. Thompson; Phil Bowden; April Brough; Joe H. Scott; Julie Gilbertson-Day; Alan Taylor; Jennifer Anderson; Jessica Haas
2016-01-01
How wildfires are managed is a key determinant of long-term socioecological resiliency and the ability to live with fire. Safe and effective response to fire requires effective pre-fire planning, which is the main focus of this paper. We review general principles of effective federal fire management planning in the U.S., and introduce a framework for incident...
Chapter 14: Effects of fire suppression and postfire management activities on plant invasions
Matthew L. Brooks
2008-01-01
This chapter explains how various fire suppression and postfire management activities can increase or decrease the potential for plant invasions following fire. A conceptual model is used to summarize the basic processes associated with plant invasions and show how specific fire management activities can be designed to minimize the potential for invasion. The...
Near-Real-Time Earth Observation Data Supporting Wildfire Management
NASA Astrophysics Data System (ADS)
Ambrosia, V. G.; Zajkowski, T.; Quayle, B.
2013-12-01
During disaster events, the most critical element needed by responding personnel and management teams is situational intelligence / awareness. During rapidly-evolving events such as wildfires, the need for timely information is critical to save lives, property and resources. The wildfire management agencies in the US rely heavily on remote sensing information both from airborne platforms as well as from orbital assets. The ability to readily have information from those systems, not just data, is critical to effective control and damage mitigation. NASA has been collaborating with the USFS to mature and operationalize various asset-information capabilities to effect improved knowledge of fire-prone areas, monitor wildfire events in real-time, assess effectiveness of fire management strategies, and provide rapid, post-fire assessment for recovery operations. Specific examples of near-real-time remote sensing asset utility include daily MODIS data employed to assess fire potential / wildfire hazard areas, and national-scale hot-spot detection, airborne thermal sensor collected during wildfire events to effect management strategies, EO-1 ALI 'pointable' satellite sensor data to assess fire-retardant application effectiveness, and Landsat 8 and other sensor data to derive burn severity indices for post-fire remediation work. These cases of where near-real-time data is used operationally during the previous few fire seasons will be presented.
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
The integrated rangeland fire management strategy actionable science plan
Aldridge, Cameron L.; Berg, Ken; Boyd, Chad S.; Boyte, Stephen P.; Bradford, John B.; Brunson, Ed; Cissel, John H.; Conway, Courtney J.; Chalfoun, Anna D.; Chambers, Jeanne C.; Clark, Patrick; Coates, Peter S.; Crist, Michele R.; Davis, Dawn M.; DeCrappeo, Nicole; Deibert, Patricia A.; Doherty, Kevin E.; Evers, Louisa B.; Finch, Deborah M.; Finn, Sean P.; Germino, Matthew J.; Glenn, Nancy F.; Gucker, Corey; Hall, John A.; Hanser, Steven E.; Havlina, Douglas W.; Heinrichs, Julie; Heller, Matt; Homer, Collin G.; Hunter, Molly E.; Jacobs, Ruth W.; Karl, Jason W.; Kearney, Richard; Kemp, Susan K; Kilkenny, Francis F.; Knick, Steven T.; Launchbaugh, Karen; Manier, Daniel J.; Mayer, Kenneth E.; Meyer, Susan E.; Monroe, Adrian; MontBlanc, Eugénie; Newingham, Beth A.; Pellant, Michael L.; Phillips, Susan L.; Pilliod, David S.; Ricca, Mark A.; Richardson, Bryce A.; Rose, Jeffrey A.; Shaw, Nancy; Sheley, Roger L.; Shinneman, Douglas J.; Wiechman , Lief A.; Wylie, Bruce K.
2016-01-01
The Integrated Rangeland Fire Management Strategy (hereafter Strategy, DOI 2015) outlined the need for coordinated, science-based adaptive management to achieve long-term protection, conservation, and restoration of the sagebrush (Artemisia spp.) ecosystem. A key component of this management approach is the identification of knowledge gaps that limit implementation of effective strategies to meet current management challenges. The tasks and actions identified in the Strategy address several broad topics related to management of the sagebrush ecosystem. This science plan is organized around these topics and specifically focuses on fire, invasive plant species and their effects on altering fire regimes, restoration, sagebrush and greater sage-grouse (Centrocercus urophasianus), and climate and weather.
Value and challenges of conducting rapid response research on wildland fires
L. Lentile; P. Morgan; C. Hardy; A. Hudak; R. Means; R. Ottmar; P. Robichaud; E. Kennedy Sutherland; J. Szymoniak; F. Way; J. Fites-Kaufman; S. Lewis; E. Mathews; H. Shovik; K. Ryan
2007-01-01
Rapid Response Research is conducted during and immediately after wildland fires, in coordination with fire management teams, in order to collect information that can best be garnered in situ and in real-time. This information often includes fire behavior and fire effects data, which can be used to generate practical tools such as predictive fire models for managers....
Sharon Hood; Duncan Lutes
2017-01-01
Accurate prediction of fire-caused tree mortality is critical for making sound land management decisions such as developing burning prescriptions and post-fire management guidelines. To improve efforts to predict post-fire tree mortality, we developed 3-year post-fire mortality models for 12 Western conifer species - white fir (Abies concolor [Gord. &...
Defining fire environment zones in the boreal forests of northeastern China.
Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu
2015-06-15
Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.
Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.
2013-01-01
Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917
Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B
2013-01-01
Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
Bulent Saglam; Ertugrul Bilgili; Omer Kucuk; Bahar Dinc Durmaz; Ismail Baysal
2007-01-01
The prediction of fire behavior is of vital importance to all fire management planning and decisionmaking processes including fire prevention, presuppression planning, and fire use. The effect of slope on fire behavior is well acknowledged, yet its effect on fire behavior is not well accounted for. Determining the effects of slope on fire behavior under field...
Scientific and social challenges for the management of fire-prone wildland-urban interfaces
NASA Astrophysics Data System (ADS)
Gill, A. Malcolm; Stephens, Scott L.
2009-09-01
At their worst, fires at the rural-urban or wildland-urban interface cause tragic loss of human lives and homes, but mitigating these fire effects through management elicits many social and scientific challenges. This paper addresses four interconnected management challenges posed by socially disastrous landscape fires. The issues concern various assets (particularly houses, human life and biodiversity), fuel treatments, and fire and human behaviours. The topics considered are: 'asset protection zones'; 'defensible space' and urban fire spread in relation to house ignition and loss; 'stay-or-go' policy and the prediction of time available for safe egress and the possible conflict between the creation of defensible space and wildland management objectives. The first scientific challenge is to model the effective width of an asset protection zone of an urban area. The second is to consider the effect of vegetation around a house, potentially defensible space, on fire arrival at the structure. The third scientific challenge is to present stakeholders with accurate information on rates of spread, and where the fire front is located, so as to allow them to plan safe egress or preparation time in their particular circumstances. The fourth scientific challenge is to be able to predict the effects of fires on wildland species composition. Associated with each scientific challenge is a social challenge: for the first two scientific challenges the social challenge is to co-ordinate fuel management within and between the urban and rural or wildland sides of the interface. For the third scientific challenge, the social challenge is to be aware of, and appropriately use, fire danger information so that the potential for safe egress from a home can be estimated most accurately. Finally, the fourth social challenge is to for local residents of wildland-urban interfaces with an interest in biodiversity conservation to understand the effects of fire regimes on biodiversity, thereby assisting hard-pressed wildland managers to make informed choices.
Sandra L. Haire; Carol Miller; Kevin McGarigal
2015-01-01
Management activities, applied over broad scales, can potentially affect attributes of fire regimes including fire severity. Wilderness landscapes provide a natural laboratory for exploring effects of management because in some federally designated wilderness areas the burning of naturally ignited fires is promoted. In order to better understand the contribution of...
Effects of fire management of southwestern natural resources
J. S. Krammes
1990-01-01
The proceedings is a collection of papers and posters presented at the Symposium on Effects of Fire Management of Southwestern Natural Resources held in Tucson, Arizona, November 15-17, 1988. Included are papers, poster papers and a comprehensive list of references on the effects of fire on: plant succession, cultural resources, hydrology, range and wildlife resources...
Matthew B. Dickinson; Kevin C. Ryan
2010-01-01
As prescribed fire use increases and the options for responding to wildfires continue to expand beyond suppression, the need for improving fire effects prediction capabilities be¬comes increasingly apparent. The papers in this Fire Ecology special issue describe recent advances in fire effects prediction for key classes of direct (first-order) fire effects. Important...
Fire management of California shrubland landscapes
Keeley, Jon E.
2002-01-01
Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.
Fire management of California shrubland landscapes.
Keeley, Jon E
2002-03-01
Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.
Rachel Benton; James Reardon
2006-01-01
National Park Service policies stipulate that each park with vegetation capable of burning will prepare a fire management plan. Badlands National Park completed its fire management plan in 2004. Fossils are a principle resource of the park and the fire sensitivity of fossils is the focus of this study. The surface temperatures of fossil specimens and fire behavior...
Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Coppoletta, Michelle; Merriam, Kyle E; Collins, Brandon M
2016-04-01
In areas where fire regimes and forest structure have been dramatically altered, there is increasing concern that contemporary fires have the potential to set forests on a positive feedback trajectory with successive reburns, one in which extensive stand-replacing fire could promote more stand-replacing fire. Our study utilized an extensive set of field plots established following four fires that occurred between 2000 and 2010 in the northern Sierra Nevada, California, USA that were subsequently reburned in 2012. The information obtained from these field plots allowed for a unique set of analyses investigating the effect of vegetation, fuels, topography, fire weather, and forest management on reburn severity. We also examined the influence of initial fire severity and time since initial fire on influential predictors of reburn severity. Our results suggest that high- to moderate-severity fire in the initial fires led to an increase in standing snags and shrub vegetation, which in combination with severe fire weather promoted high-severity fire effects in the subsequent reburn. Although fire behavior is largely driven by weather, our study demonstrates that post-fire vegetation composition and structure are also important drivers of reburn severity. In the face of changing climatic regimes and increases in extreme fire weather, these results may provide managers with options to create more fire-resilient ecosystems. In areas where frequent high-severity fire is undesirable, management activities such as thinning, prescribed fire, or managed wildland fire can be used to moderate fire behavior not only prior to initial fires, but also before subsequent reburns.
Sletto, Bjørn; Rodriguez, Iokiñe
2013-01-30
Wildland fire management in savanna landscapes increasingly incorporates indigenous knowledge to pursue strategies of controlled, prescriptive burning to control fuel loads. However, such participatory approaches are fraught with challenges because of contrasting views on the role of fire and the practices of prescribed burning between indigenous and state fire managers. Also, indigenous and state systems of knowledge and meanings associated with fire are not monolithic but instead characterized by conflicts and inconsistencies, which require new, communicative strategies in order to develop successful, intercultural approaches to fire management. This paper is based on long-term research on indigenous Pemon social constructs, rules and regulations regarding fire use, and traditional system of prescribed burning in the Gran Sabana, Venezuela. The authors review factors that act as constraints against successful intercultural fire management in the Gran Sabana, including conflicting perspectives on fire use within state agencies and in indigenous communities, and propose strategies for research and communicative planning to guide future efforts for more participatory and effective fire management. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alvarado, Swanni T; Silva, Thiago Sanna Freire; Archibald, Sally
2018-07-15
Humans can alter fire dynamics in grassland systems by changing fire frequency, fire seasonality and fuel conditions. These changes have effects on vegetation structure and recovery, species composition, and ecosystem function. Understanding how human management can affect fire regimes is vital to detect potential changes in the resilience of plant communities, and to predict vegetation responses to human interventions. We evaluated the fire regimes of two recently protected areas in Madagascar (Ibity and Itremo NPA) and one in Brazil (Serra do Cipó NP) before and after livestock exclusion and fire suppression policies. We compare the pre- and post-management fire history in these areas and analyze differences in terms of total annual burned area, density of ignitions, burn scar size distribution, fire return period and seasonal fire distribution. More than 90% of total park areas were burned at least once during the studied period, for all parks. We observed a significant reduction in the number of ignitions for Ibity NPA and Serra do Cipó NP after livestock exclusion and active fire suppression, but no significant change in total burned area for each protected area. We also observed a seasonal shift in burning, with fires happening later in the fire season (October-November) after management intervention. However, the protected areas in Madagascar had shorter fire return intervals (3.23 and 1.82 years) than those in Brazil (7.91 years). Our results demonstrate that fire exclusion is unattainable, and probably unwarranted in tropical grassland conservation areas, but show how human intervention in fire and vegetation patterns can alter various aspects of the fire regimes. This information can help with formulating realistic and effective fire management policies in these valuable conservation areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Evaluating the ecological benefits of wildfire by integrating fire and ecosystem simulation models
Robert E. Keane; Eva Karau
2010-01-01
Fire managers are now realizing that wildfires can be beneficial because they can reduce hazardous fuels and restore fire-dominated ecosystems. A software tool that assesses potential beneficial and detrimental ecological effects from wildfire would be helpful to fire management. This paper presents a simulation platform called FLEAT (Fire and Landscape Ecology...
Fire and aquatic ecosystems of the western USA: Current knowledge and key questions
Bisson, P.A.; Rieman, B.; Luce, C.; Hessburg, Paul F.; Lee, D.; Kershner, J.; Reeves, G.H.; Gresswell, Robert E.
2003-01-01
Understanding of the effects of wildland fire and fire management on aquatic and riparian ecosystems is an evolving field, with many questions still to be resolved. Limitations of current knowledge, and the certainty that fire management will continue, underscore the need to summarize available information. Integrating fire and fuels management with aquatic ecosystem conservation begins with recognizing that terrestrial and aquatic ecosystems are linked and dynamic, and that fire can play a critical role in maintaining aquatic ecological diversity. To protect aquatic ecosystems we argue that it will be important to: (1) accommodate fire-related and other ecological processes that maintain aquatic habitats and biodiversity, and not simply control fires or fuels; (2) prioritize projects according to risks and opportunities for fire control and the protection of aquatic ecosystems; and (3) develop new consistency in the management and regulatory process. Ultimately, all natural resource management is uncertain; the role of science is to apply experimental design and hypothesis testing to management applications that affect fire and aquatic ecosystems. Policy-makers and the public will benefit from an expanded appreciation of fire ecology that enables them to implement watershed management projects as experiments with hypothesized outcomes, adequate controls, and replication.
Fire effects on Gambel oak in southwestern ponderosa pine-oak forests
Scott R. Abella; Peter Z. Fulé
2008-01-01
Gambel oak (Quercus gambelii) is ecologically and aesthetically valuable in southwestern ponderosa pine (Pinus ponderosa) forests. Fire effects on Gambel oak are important because fire may be used in pine-oak forests to manage oak directly or to accomplish other management objectives. We used published literature to: (1) ascertain...
Wildland fire in ecosystems: effects of fire on air
David V. Sandberg; Roger D. Ottmar; Janice L. Peterson
2002-01-01
This state-of-knowledge review about the effects of fire on air quality can assist land, fire, and air resource managers with fire and smoke planning, and their efforts to explain to others the science behind fire-related program policies and practices to improve air quality. Chapter topics include air quality regulations and fire; characterization of emissions from...
Soils under fire: soils research and the Joint Fire Science Program.
Heather E. Erickson; Rachel White
2008-01-01
Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and...
Frank K. Lake
2013-01-01
Indigenous peopleâs detailed traditional knowledge about fire, although superficially referenced in various writings, has not for the most part been analyzed in detail or simulated by resource managers, wildlife biologists, and ecologists. . . . Instead, scientists have developed the principles and theories of fire ecology, fire behavior and effects models, and...
Managing Fire in the Northern Chihuahuan Desert: A Review and Analysis of the Literature
Gebow, Brooke S.; Halvorson, William L.
2005-01-01
Executive Summary This report began as a literature review (Gebow and Halvorson 2001) conducted for fire planners at Carlsbad Caverns National Park who were seeking information about (1) the natural state of park vegetation, (2) northern Chihuahuan Desert natural fire regimes, and (3) fire effects on park plant species. It is the goal of managers there to continue to refine the wildland and prescribed fire program as they learn more about the ecosystems at the park.The park has a history of grazing and then fire suppression in the 20th century. The current effort revisits questions asked by earlier workers at the park, Walter Kittams and Gary Ahlstrand, who began fire studies in the 1970s. This document addresses ecosystems and historical change to those systems in Chihuahuan Desert areas of southeast Arizona, southern New Mexico, west Texas, or in neighboring regions that share the same plant species. It examines fire literature for situations possibly analogous to those at Carlsbad Caverns. It also includes papers that offer advice on extrapolating future ecological trends from past ones (Swetnam et al. 1999) and on resource management decision-making (Grumbine 1997), and other pieces that address broader aspects of fire or landscape change (Goldman 1994; Marston 1996; Mutch 1994, 1995). These more philosophical works were included in the original review at the park's request and have been retained here because they discuss other issues relevant to fire management. Individual reviews of 35 papers, as requested originally by Carlsbad Caverns, appear in Appendix 1. The results section-summary of key findings-discusses historical changes to plant communities then focuses on burn intervals observed or recommended by workers for particular plant communities. Results from a search of the USDA Forest Service's Fire Effects Information System (www.fs.fed.us/database/feis) are also included in this report, supplemented with information from a review conducted by Ahlstrand (1981b) that included much of his own work. This database contains comprehensive plant species accounts and fire effects data. Entries are available for a number of the dominant species at Carlsbad Caverns, though the information frequently applies to the plants in other parts of their ranges. The literature presents highly variable fire effects and observed/recommended burn intervals for similar plant communities in the northern Chihuahuan Desert region. While local and longer-term fire-effects studies are still needed to guide resource managers, the variability seen in the literature itself translates into a fire management goal. Preserving the irregularity in time and space of fires would likely best replicate 'natural' fire regimes.
Moritz, Max A.; Keeley, Jon E.; Johnson, Edward A.; Schaffner, Andrew A.
2004-01-01
This year's catastrophic wildfires in southern California highlight the need for effective planning and management for fire-prone landscapes. Fire frequency analysis of several hundred wildfires over a broad expanse of California shrublands reveals that there is generally not, as is commonly assumed, a strong relationship between fuel age and fire probabilities. Instead, the hazard of burning in most locations increases only moderately with time since the last fire, and a marked age effect of fuels is observed only in limited areas. Results indicate a serious need for a re-evaluation of current fire management and policy, which is based largely on eliminating older stands of shrubland vegetation. In many shrubland ecosystems exposed to extreme fire weather, large and intense wildfires may need to be factored in as inevitable events.
Molly E. Hunter; Jose M. Iniguez; Leigh B. Lentile
2011-01-01
Prescribed and resource benefit fires are used to manage fuels in fire-prone landscapes in the Southwest. These practices, however, typically occur under different conditions, potentially leading to differences in fire behavior and effects. The objectives of this study were to investigate the effects of recent prescribed fires, resource benefit fires, and repeated...
Anne E. Black; Peter Landres
2012-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...
Effects of prescribed fire in the coastal prairies of Texas
Grace, James B.; Allain, Larry K.; Baldwin, Heather Q.; Billock, Arlene G.; Eddleman, William R.; Given, Aaron M.; Jeske, Clint W.; Moss, Rebecca
2005-01-01
Prescribed fire is widely applied for habitat management in coastal ecosystems. Fire management plans typically list a variety of objectives for prescribed burning, including succession management, promotion of native flora and fauna, providing habitat for species of importance, wildfire risk reduction (fuels management), as well as reduction and/or prevention of invasive species. In most cases, the information needed to determine the degree to which management objectives are met is not available. This study sought to provide an assessment of key objectives of fire management at the U.S. Fish and Wildlife Service (USFWS) Texas Mid-coast National Wildlife Refuge Complex. The main purpose of this work was to provide information and recommendations that will support Region 2 of the USFWS in the conduct of their fire and habitat management activities in the Western Gulf coast region. There were four main components of this project: (1) a historical analysis of the role of fire in this ecosystem, (2) the development of standard methodology for assessing and monitoring fire effects in this system, (3) an evaluation of the effects of prescribed burning on the habitat being managed, and (4) an evaluation of the effects of burning on select fauna of special concern. A team of researchers, including some from the U.S. Geological Survey (USGS), Southeast Missouri State University, and Louisiana State University were involved in the various components of this project. Extensive support by USFWS personnel, both at the Texas Mid-coast National Wildlife Refuge Complex and in the Regional Office (Region 2, USFWS), was a key component in this work. Data from the three years of this study were combined with the results of previous USGS studies performed at the site to strengthen our conclusions.
Remote sensing techniques to assess active fire characteristics and post-fire effects
Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson
2006-01-01
Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...
Consequences of prescribed fire and grazing on grassland ant communities.
Underwood, Emma C; Christian, Caroline E
2009-04-01
Prescribed fire and livestock grazing are used for the management and restoration of native grasslands the world over; however, the effects of these management techniques on ant communities are unclear. We examined the response of ants to these disturbances in grasslands in northern California. Twenty-four 30 by 30 m plots were established across two sites that received one of four treatments: grazing, fire, grazing and fire, or no treatment. Ants were censused using 240 pitfall traps with one preburn and two postburn samples (14 d and 1 yr after burning). We analyzed ant abundance using broadly defined groups based on feeding habit and/or habitat use and detected no grazing effect but a significant fire effect that differed by group. Immediate postfire sampling showed an increase in cryptic species (particularly Brachymyrmex depilis). One year after the fire, no response was detected for cryptic species, but burned plots had greater abundance of seed harvesters. Analysis of vegetation showed burned plots had significantly greater forb cover, which might have provided greater food resources, and also lower biomass, which might have facilitated foraging. Understanding the effects of these management tools on ant abundance complements our understanding of their effect on vegetation and assists conservation practitioners effectively manage grassland ecosystems both in California and beyond.
Paulette L. Ford; Carleton S. White
2008-01-01
Prior to proceeding with large-scale fire reintroduction as a grassland management option, appropriate fire frequencies need to be determined. This research experimentally tested the effects of dormant-season fire on ground cover and on plant and soil nutrient cycling in shortgrass steppe at three different fire frequencies. The objective was to determine if fire...
Fire and amphibians in North America
Pilliod, D.S.; Bury, R.B.; Hyde, E.J.; Pearl, C.A.; Corn, P.S.
2003-01-01
Information on amphibian responses to fire and fuel reduction practices is critically needed due to potential declines of species and the prevalence of new, more intensive fire management practices in North American forests. The goals of this review are to summarize the known and potential effects of fire and fuels management on amphibians and their aquatic habitats, and to identify information gaps to help direct future scientific research. Amphibians as a group are taxonomically and ecologically diverse; in turn, responses to fire and associated habitat alteration are expected to vary widely among species and among geographic regions. Available data suggest that amphibian responses to fire are spatially and temporally variable and incompletely understood. Much of the limited research has addressed short-term (1–3 years) effects of prescribed fire on terrestrial life stages of amphibians in the southeastern United States. Information on the long-term negative effects of fire on amphibians and the importance of fire for maintaining amphibian communities is sparse for the majority of taxa in North America. Given the size and severity of recent wildland fires and the national effort to reduce fuels on federal lands, future studies are needed to examine the effects of these landscape disturbances on amphibians. We encourage studies to address population-level responses of amphibians to fire by examining how different life stages are affected by changes in aquatic, riparian, and upland habitats. Research designs need to be credible and provide information that is relevant for fire managers and those responsible for assessing the potential effects of various fuel reduction alternatives on rare, sensitive, and endangered amphibian species.
Susan G. Conard; David R. Weise
1998-01-01
Chaparral is an intermediate fire-return interval (FRI) system, which typically bums with high-intensity crown fires. Although it covers only perhaps 10% of the state of California, and smaller areas in neighboring states, its importance in terms of fire management is disproportionately large, primarily because it occurs in the wildland-urban interface through much of...
New and revised fire effects tools for fire management
Robert E. Keane; Greg Dillon; Stacy Drury; Robin Innes; Penny Morgan; Duncan Lutes; Susan J. Prichard; Jane Smith; Eva Strand
2014-01-01
Announcing the release of new software packages for application in wildland fire science and management, two fields that are already fully saturated with computer technology, may seem a bit too much to many managers. However, there have been some recent releases of new computer programs and revisions of existing software and information tools that deserve mention...
Biological and Management Implications of Fire-Pathogen Interactions in the Giant Sequoia Ecosystem
Douglas D. Piirto; John R. Parmeter; Fields W. Cobb; Kevin L. Piper; Amy C. Workinger; William J. Otrosina
1998-01-01
An overriding management goal for national parks is the maintenance or, where necessary, the restoration of natural ecological processes. In Sequoia-Kings Canyon and Yosemite National Parks, there is concern about the effects of fire suppression on the giant sequoia-mixed conifer forest ecosystem. The National Park Service is currently using prescribed fire management...
Prescribed fire: What influences public approval?
Sarah M. McCaffrey
2006-01-01
Except in remote areas, most prescribed fires will have some effect on members of the public. It is therefore important for land managers to work with the public before, during, and after a prescribed burn. To do this effectively, managers need to have an accurate idea of what people do and do not think about prescribed fire and they need to understand what shapes...
Slope stability effects of fuel management strategies – inferences from Monte Carlo simulations
R. M. Rice; R. R. Ziemer; S. C. Hankin
1982-01-01
A simple Monte Carlo simulation evaluated the effect of several fire management strategies on soil slip erosion and wildfires. The current condition was compared to (1) a very intensive fuelbreak system without prescribed fires, and (2) prescribed fire at four time intervals with (a) current fuelbreaks and (b) intensive fuel-breaks. The intensive fuelbreak system...
Richy J. Harrod; Nicholas A. Povak; David W. Peterson
2007-01-01
Forest thinning and prescribed fires are the main practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests of the Western United States. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. This study assesses the...
Robin E. Russell; J. Andrew Royle; Victoria A. Saab; John F. Lehmkuhl; William M. Block; John R. Sauer
2009-01-01
Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened,...
Information needs for natural fire management planning
Parsons, David; Bancroft, Larry; Nichols, Thomas; Stohlgren, Thomas
1985-01-01
The development and implementation of an effective natural fire management program require a clear definition of goals and objectives, an ever-expanding information base, and effective program evaluation. Examples are given from Sequoia and Kings Canyon National Parks.
Catchment-scale Validation of a Physically-based, Post-fire Runoff and Erosion Model
NASA Astrophysics Data System (ADS)
Quinn, D.; Brooks, E. S.; Robichaud, P. R.; Dobre, M.; Brown, R. E.; Wagenbrenner, J.
2017-12-01
The cascading consequences of fire-induced ecological changes have profound impacts on both natural and managed forest ecosystems. Forest managers tasked with implementing post-fire mitigation strategies need robust tools to evaluate the effectiveness of their decisions, particularly those affecting hydrological recovery. Various hillslope-scale interfaces of the physically-based Water Erosion Prediction Project (WEPP) model have been successfully validated for this purpose using fire-effected plot experiments, however these interfaces are explicitly designed to simulate single hillslopes. Spatially-distributed, catchment-scale WEPP interfaces have been developed over the past decade, however none have been validated for post-fire simulations, posing a barrier to adoption for forest managers. In this validation study, we compare WEPP simulations with pre- and post-fire hydrological records for three forested catchments (W. Willow, N. Thomas, and S. Thomas) that burned in the 2011 Wallow Fire in Northeastern Arizona, USA. Simulations were conducted using two approaches; the first using automatically created inputs from an online, spatial, post-fire WEPP interface, and the second using manually created inputs which incorporate the spatial variability of fire effects observed in the field. Both approaches were compared to five years of observed post-fire sediment and flow data to assess goodness of fit.
Wildland fire and fuel management: principles for effective communication
Eric Toman; Bruce Shindler
2006-01-01
In this paper we discuss four principles identified through recent research for effective citizen-agency communication and examine their use in accomplishing fire management objectives. Principles include the following: (1) effective communication is a product of effective planning; (2) both unidirectional (one-way) and interactive approaches are part of successful...
Marco A. Contreras; Russell A. Parsons; Woodam Chung
2012-01-01
Land managers have been using fire behavior and simulation models to assist in several fire management tasks. These widely-used models use average attributes to make stand-level predictions without considering spatial variability of fuels within a stand. Consequently, as the existing models have limitations in adequately modeling crown fire initiation and propagation,...
A statistical model for forecasting hourly ozone levels during fire season
Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Leland Tarnay; Julide Kahyaoglu-Koracin
2009-01-01
Concerns about smoke from large high-intensity and managed low intensity fires have been increasing during the past decade. Because smoke from large high-intensity fires are known to contain and generate secondary fine particles (PM2.5) and ozone precursors, the effect of fires on air quality in the southern Sierra Nevada is a serious management...
Fire history, effects and management in southern Nevada [Chapter 5
Mathew L. Brooks; Jeanne C. Chambers; Randy A. McKinley
2013-01-01
Fire can be both an ecosystem stressor (Chapter 2) and a critical ecosystem process, depending on when, where, and under what conditions it occurs on the southern Nevada landscape. Fire can also pose hazards to human life and property, particularly in the wildland/urban interface (WUI). The challenge faced by land managers is to prevent fires from occurring where they...
A framework for developing safe and effective large-fire response in a new fire management paradigm
Christopher J. Dunn; Matthew P. Thompson; David E. Calkin
2017-01-01
The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid...
Mary Anne Sword Sayer
2007-01-01
Repeated prescribed fire is a valuable tool for the management of longleaf and loblolly pine. When applied every two to ten years, for example, prescribed fire perpetuates existing longleaf pine ecosystems (Outcalt 1997). Furthermore, the acceptance of fire as a management tool, together with recent improvements in longleaf pine...
Anne E. Black; Peter Landres
2011-01-01
Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...
Krawchuk, Meg A; Cumming, Steve G
2011-01-01
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
Sally M. Haase; Stephen S. Sackett
1998-01-01
Many national parks have incorporated the use of management-ignited prescribed fire in their management plans. Soil and cambium heating, forest floor fuel reduction, and soil nutrient increases have been measured on eight independent, planned management fires over a 9-year period in Sequoia and Kings Canyon National Parks. Findings show that instantaneous lethal...
Richy J. Harrod; David W. Peterson; Nicholas A. Povak; Erich Kyle Dodson
2009-01-01
Forest thinning and prescribed fires are practices used by managers to address concerns over ecosystem degradation and severe wildland fire potential in dry forests. There is some debate, however, about treatment effectiveness in meeting management objectives as well as their ecological consequences. The purpose of this study was to assess changes to forest stand...
Considerations in the use of models available for fuel treatment analysis
Charles W. McHugh
2006-01-01
Fire managers are required to evaluate and justify the effectiveness of planned fuel treatments in modifying fire growth, behavior and effects on resources and assets. With the number of models currently available, todayâs fire manager can become overwhelmed when deciding which model to use. Each model has a required level of expertise in order to develop the necessary...
Sapkota, Lok Mani; Shrestha, Rajendra Prasad; Jourdain, Damien; Shivakoti, Ganesh P
2015-01-01
The attributes of social ecological systems affect the management of commons. Strengthening and enhancing social capital and the enforcement of rules and sanctions aid in the collective action of communities in forest fire management. Using a set of variables drawn from previous studies on the management of commons, we conducted a study across 20 community forest user groups in Central Siwalik, Nepal, by dividing the groups into two categories based on the type and level of their forest fire management response. Our study shows that the collective action in forest fire management is consistent with the collective actions in other community development activities. However, the effectiveness of collective action is primarily dependent on the complex interaction of various variables. We found that strong social capital, strong enforcement of rules and sanctions, and users' participation in crafting the rules were the major variables that strengthen collective action in forest fire management. Conversely, users' dependency on a daily wage and a lack of transparency were the variables that weaken collective action. In fire-prone forests such as the Siwalik, our results indicate that strengthening social capital and forming and enforcing forest fire management rules are important variables that encourage people to engage in collective action in fire management.
Targeting Audiences and Content for Forest Fire Information Programs.
ERIC Educational Resources Information Center
Carpenter, Edwin H.; And Others
1986-01-01
Discusses opinion survey results for the purpose of improving the capabilities of forest managers to effectively communicate new fire management objectives and plans. Includes recommendations based on the analysis concerning the appropriate audiences and content to target in the design of fire information programs. (ML)
Kevin Hyde; Matthew B. Dickinson; Gil Bohrer; David Calkin; Louisa Evers; Julie Gilbertson-Day; Tessa Nicolet; Kevin Ryan; Christina Tague
2013-01-01
Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on...
Measuring the rate of spread of chaparral prescribed fires in northern California
S. L. Stephens; D. R. Weise; D. L. Fry; R. J. Keiffer; J. Dawson; E. Koo; J. Potts; P. J. Pagni
2008-01-01
Prescribed fire is a common method used to produce desired ecological effects in chaparral by mimicking the natural role of fire. Since prescribed fires are usually conducted in moderate fuel and weather conditions, models that accurately predict fire behavior and effects under these scenarios are important for management. In this study, explosive audio devices and...
Robert W. Gray; Susan J. Prichard
2015-01-01
The incidence of large, costly landscape-scale fires in western North America is increasing. To combat these fires, researchers and managers have expressed increased interest in investigating the effectiveness of past, stand-replacing wildfires as bottom-up controls on fire spread and severity. Specifically, how effective are past wildfires in mitigating the behavior...
2016-01-01
Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216507
Mistry, Jayalaxshmi; Bilbao, Bibiana A; Berardi, Andrea
2016-06-05
Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Nicole M. Vaillant; Erin K. Noonan-Wright; Alicia L. Reiner; Carol M. Ewell; Benjamin M. Rau; Josephine A. Fites-Kaufman; Scott N. Dailey
2015-01-01
Altered fuel conditions coupled with changing climate have disrupted fire regimes of forests historically characterised by high-frequency and low-to-moderate-severity fire. Managers use fuel treatments to abate undesirable fire behaviour and effects. Short-term effectiveness of fuel treatments to alter fire behaviour and effects is well documented; however, long-term...
W. J. Massman; J. M. Frank
2006-01-01
Throughout the world fire plays an important role in the management and maintenance of ecosystems. However, if a fire is sufficiently intense, soil can be irreversibly altered and the ability of vegetation, particularly forests, to recover after a fire can be seriously compromised. Because fire is frequently used by land managers to reduce surface fuels, it is...
Eric J. Gustafson; Patrick A. Zollner; Brian R. Sturtevant; S. He Hong; David J. Mladenoff
2004-01-01
We used the LANDIS disturbance and succession model to study the effects of six alternative vegetation management scenarios on forest succession and the subsequent risk of canopy fire on a 2791 km2 landscape in northern Wisconsin, USA. The study area is a mix of fire-prone and fire-resistant land types. The alternatives vary the spatial...
Fire history, effects, and management in southern Nevada [Chapter 5] (Executive Summary)
Matthew L. Brooks; Jeanne C. Chambers; Randy A. McKinley
2013-01-01
Fire can be both an ecosystem stressor and a critical ecosystem process, depending on when, where, and under what conditions it occurs on the southern Nevada landscape. Fire can also pose hazards to human life and property, particularly in the wildland/ urban interface (WUI). The challenge faced by land managers is to prevent fires from occurring where they are likely...
Kristen L. Shive; Carolyn H. Sieg; Peter Z. Fule
2013-01-01
Land managers are routinely applying fuel reduction treatments to mitigate the risk of severe, stand-replacing fire in ponderosa pine communities of the southwestern US. When these treatments are burned by wildfire they generally reduce fire severity, but less is known about how they influence post-wildfire vegetation recovery, as compared to pre-fire untreated areas....
Prescribed fire effects on activity and movement of cattle in mesic sagebrush steppe
USDA-ARS?s Scientific Manuscript database
Prescribed fire has long been used worldwide for livestock and wildlife management. The efficacy of prescribed fire for manipulating grazing animal distribution and diet quality has been well studied in many ecosystems but prescribed-fire effects on activity budgets and movement path characteristic...
Contrasting fire responses to climate and management: insights from two Australian ecosystems.
King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B
2013-04-01
This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Vieira, D. C. S.; Malvar, M. C.; Fernández, C.; Serpa, D.; Keizer, J. J.
2016-10-01
The impacts of forest fires on runoff and soil erosion have been assessed by many studies, so the effects of fires on the hydrological and geomorphological processes of burnt forest areas, globally and in the Mediterranean region, are well established. Few studies, however, have assessed post-fire runoff and erosion on large time scales. In addition, a limited number of studies are available that consider the effect of pre-fire land management practices on post-fire runoff and erosion. This study evaluated annual runoff and sediment losses, at micro plot scale, for 4 years after a wildfire in three eucalypt plantations with different pre-fire land management practices (i.e., plowed and unplowed). During the four years following the fire, runoff amounts and coefficients at the downslope plowed (1257 mm, 26%) and contour plowed eucalypt sites (1915 mm, 40%) were higher than at the unplowed site (865 mm, 14%). Sediment losses over the 4 years of study were also consistently higher at the two plowed sites (respectively, 0.47 and 0.83 Mg ha- 1 y- 1 at the downslope and contour plowed eucalypt site) than at the unplowed site (0.11 Mg ha- 1 y- 1). Aside from pre-fire land management, time-since-fire also seemed to significantly affect post-fire annual runoff and erosion. In general, annual runoff amounts and erosion rates followed the rainfall pattern. Runoff amounts presented a peak during the third year of monitoring while erosion rates reached their maximum one year earlier, in the second year. Runoff coefficients increased over the 4 years of monitoring, in disagreement to the window of disturbance post-fire recovery model, but sediment concentrations decreased over the study period. When compared with other long-term post-fire studies and with studies evaluating the effects of pre- and post-fire management practices, the results of the present work suggest that an ecosystem's recovery after fire is highly dependent on the background of disturbances of each site, as runoff and erosion values were higher at the plowed sites than at the unplowed site.
Climate change and vulnerability of bull trout (Salvelinus confluentus) in a fire-prone landscape.
Falke, Jeffrey A.; Flitcroft, Rebecca L; Dunham, Jason B.; McNyset, Kristina M.; Hessburg, Paul F.; Reeves, Gordon H.
2015-01-01
Linked atmospheric and wildfire changes will complicate future management of native coldwater fishes in fire-prone landscapes, and new approaches to management that incorporate uncertainty are needed to address this challenge. We used a Bayesian network (BN) approach to evaluate population vulnerability of bull trout (Salvelinus confluentus) in the Wenatchee River basin, Washington, USA, under current and future climate and fire scenarios. The BN was based on modeled estimates of wildfire, water temperature, and physical habitat prior to, and following, simulated fires throughout the basin. We found that bull trout population vulnerability depended on the extent to which climate effects can be at least partially offset by managing factors such as habitat connectivity and fire size. Moreover, our analysis showed that local management can significantly reduce the vulnerability of bull trout to climate change given appropriate management actions. Tools such as our BN that explicitly integrate the linked nature of climate and wildfire, and incorporate uncertainty in both input data and vulnerability estimates, will be vital in effective future management to conserve native coldwater fishes.
Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H
2010-10-01
Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.
David N. Bengston; Robert L. Olson; Leif A. DeVaney
2012-01-01
Past efforts to examine the future of wildland fire management have relied heavily on expertise from within the wildfire community. But changes in seemingly unrelated external factors - outside of the world of wildfire and fire management - can have unexpected and profound effects. This paper describes an ongoing sh1dy of the...
Short- and long-term effects of fire on carbon in US dry temperate forest systems
Hurteau, Matthew D.; Brooks, Matthew L.
2011-01-01
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires, resulting in greater tree mortality, have caused a decrease in forest carbon stability. Fire management actions can mitigate the risk of high-severity fires, but these actions often require a trade-off between maximizing carbon stocks and carbon stability. We discuss the effects of fire on forest carbon stocks and recommend that managing forests on the basis of their specific ecologies should be the foremost goal, with carbon sequestration being an ancillary benefit. ?? 2011 by American Institute of Biological Sciences. All rights reserved.
Fire management and carbon sequestration in Pine Barren Forests
Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher
2015-01-01
Prescribed burning is the major viable option that land managers have for reducing hazardous fuels and ensuring the regeneration of fire-dependent species in a cost-effective manner in Pine Barren ecosystems. Fuels management activities are directly linked to carbon (C) storage and rates of C sequestration by forests. To evaluate the effects of prescribed burning on...
Brian Schwind; Brad Quayle; Jeffery C. Eidenshink
2010-01-01
There is a need to provide agency leaders, elected officials, and the general public with summary information regarding the effects of large wildfires. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates National Fire Plan (NFP) and Federal Wildland Fire Management Policies adopted a strategy to monitor the effectiveness and effects...
NASA Astrophysics Data System (ADS)
Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.; Henderson, S. B.; Johnston, F. H.
2016-12-01
Prescribed burning is used to reduce the occurrence, extent and severity of uncontrolled fires in many flammable landscapes. However, epidemiologic evidence of the human health impacts of landscape fire smoke emissions is shaping fire management practice through increasingly stringent environmental regulation and public health policy. An unresolved question, critical for sustainable fire management, concerns the comparative human health effects of smoke from wild and prescribed fires. Here we review current knowledge of the health effects of landscape fire emissions and consider the similarities and differences in smoke from wild and prescribed fires with respect to the typical combustion conditions and fuel properties, the quality and magnitude of air pollution emissions, and the potential for dispersion to large populations. We further examine the interactions between these considerations, and how they may shape the longer term smoke regimes to which populations are exposed. We identify numerous knowledge gaps and propose a conceptual framework that describes pathways to better understanding of the health trade-offs of prescribed and wildfire smoke regimes.
Moya, D; González-De Vega, S; García-Orenes, F; Morugán-Coronado, A; Arcenegui, V; Mataix-Solera, J; Lucas-Borja, M E; De Las Heras, J
2018-05-28
Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15-21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario. Copyright © 2018 Elsevier B.V. All rights reserved.
Wetland fire scar monitoring and analysis using archival Landsat data for the Everglades
Jones, John W.; Hall, Annette E.; Foster, Ann M.; Smith, Thomas J.
2013-01-01
The ability to document the frequency, extent, and severity of fires in wetlands, as well as the dynamics of post-fire wetland land cover, informs fire and wetland science, resource management, and ecosystem protection. Available information on Everglades burn history has been based on field data collection methods that evolved through time and differ by land management unit. Our objectives were to (1) design and test broadly applicable and repeatable metrics of not only fire scar delineation but also post-fire land cover dynamics through exhaustive use of the Landsat satellite data archives, and then (2) explore how those metrics relate to various hydrologic and anthropogenic factors that may influence post-fire land cover dynamics. Visual interpretation of every Landsat scene collected over the study region during the study time frame produced a new, detailed database of burn scars greater than 1.6 ha in size in the Water Conservation Areas and post-fire land cover dynamics for Everglades National Park fires greater than 1.6 ha in area. Median burn areas were compared across several landscape units of the Greater Everglades and found to differ as a function of administrative unit and fire history. Some burned areas transitioned to open water, exhibiting water depths and dynamics that support transition mechanisms proposed in the literature. Classification tree techniques showed that time to green-up and return to pre-burn character were largely explained by fire management practices and hydrology. Broadly applicable as they use data from the global, nearly 30-year-old Landsat archive, these methods for documenting wetland burn extent and post-fire land cover change enable cost-effective collection of new data on wetland fire ecology and independent assessment of fire management practice effectiveness.
Brooks, Matthew L.; Matchett, John R.; Shinneman, Douglas J.; Coates, Peter S.
2015-09-10
The results indicate that fire threats are higher in the four western than in the three eastern management zones. Among the four western management zones, the Snake River Plain and the Columbia Basin ranked somewhat higher than the Southern Great Basin and Northern Great Basin in terms of fire effects on sage-grouse habitat. These results support the previous high ranking of fire as a threat to the greater sage-grouse in the western region. In contrast, considering the low rankings for fire threats in the eastern region, it may be useful to reconsider the relative importance of wildfire as a threat to greater sage-grouse in those three management zones.
Alena K. Oliver; Mac A. Callaham; Ari Jumpponen
2015-01-01
Prescribed fire is an important management tool to reduce fuel loads, to remove non-fire adapted species and to sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-term effects of recurring prescribed fires on soil fungi and their communities in these ecosystems remain unclear. We Illumina MiSeq sequenced and analyzed fungal...
James B. Cronan; Clinton S. Wright; Maria Petrova
2015-01-01
Prescribed fire is widely used to manage fuels in high-frequency, low-severity fire regimes including pine flatwoods of the southeastern USA where prescribed burning during the growing season (the frost-free period during the calendar year) has become more common in recent decades. Growing season prescribed fires address ecological management objectives that focus on...
Fire management ramifications of Hurricane Hugo
J. M. Saveland; D. D. Wade
1991-01-01
Hurricane Hugo passed over the Francis Marion National Forest on September 22, 1989, removing almost 75 percent of the overstory. The radically altered fuel bed presented new and formidable challenges to fire managers. Tractor-plows, the mainstay of fire suppression, were rendered ineffective. The specter of wind-driven escaped burns with no effective means of ground...
Bending the carbon curve: fire management for carbon resilience under climate change
E. L. Loudermilk; R. M. Scheller; P. J. Weisberg; Alec Kretchun
2017-01-01
Forest landscapes are increasingly managed for fire resilience, particularly in the western US which has recently experienced drought and widespread, high-severity wildfires. Fuel reduction treatments have been effective where fires coincide with treated areas. Fuel treatments also have the potential to reduce drought-mortality if tree density is...
Postfire shrub-cover dynamics: a 70-year fire history in big sagebrush communities.
USDA-ARS?s Scientific Manuscript database
Land managers use prescribed fire to meet rangeland management objectives. This study was conducted to quantify, from present conditions, the effect of time since last burn (TSLB) on shrub cover over 70 yr of fire history. We sampled mountain big sagebrush communities at the USDA, ARS, U.S. Sheep ...
Russell A. Parsons; William Mell; Peter McCauley
2010-01-01
Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, F.; Meng, Q.; Li, Z.; Liu, B.; Zheng, X.
2018-04-01
This paper presents a new standardized data format named Fire Markup Language (FireML), extended by the Geography Markup Language (GML) of OGC, to elaborate upon the fire hazard model. The proposed FireML is able to standardize the input and output documents of a fire model for effectively communicating with different disaster management systems to ensure a good interoperability. To demonstrate the usage of FireML and testify its feasibility, an adopted forest fire spread model being compatible with FireML is described. And a 3DGIS disaster management system is developed to simulate the dynamic procedure of forest fire spread with the defined FireML documents. The proposed approach will enlighten ones who work on other disaster models' standardization work.
W. Keith Moser; Dale D. Wade
2005-01-01
Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...
Corridors promote fire via connectivity and edge effects.
Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I
2012-04-01
Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously unrecognized benefit during prescribed burning activities, by promoting fire intensity, which may assist in promoting plant biodiversity.
Russell, Robin E; Royle, J Andrew; Saab, Victoria A; Lehmkuhl, John F; Block, William M; Sauer, John R
2009-07-01
Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened, and migratory bird species. Recent developments in occupancy modeling have established a framework for quantifying the impacts of management practices on wildlife community dynamics. We describe a Bayesian hierarchical model of multi-species occupancy accounting for detection probability, and we demonstrate the model's usefulness for identifying effects of habitat disturbances on wildlife communities. Advantages to using the model include the ability to estimate the effects of environmental impacts on rare or elusive species, the intuitive nature of the modeling, the incorporation of detection probability, the estimation of parameter uncertainty, the flexibility of the model to suit a variety of experimental designs, and the composite estimate of the response that applies to the collection of observed species as opposed to merely a small subset of common species. Our modeling of the impacts of prescribed fire on avian communities in a ponderosa pine forest in Washington indicate that prescribed fire treatments result in increased occupancy rates for several bark-insectivore, cavity-nesting species including a management species of interest, Black-backed Woodpeckers (Picoides arcticus). Three aerial insectivore species, and the ground insectivore, American Robin (Turdus migratorius), also responded positively to prescribed fire, whereas three foliage insectivores and two seed specialists, Clark's Nutcracker (Nucifraga columbiana) and the Pine Siskin (Carduelis pinus), declined following treatments. Land management agencies interested in determining the effects of habitat manipulations on wildlife communities can use these methods to provide guidance for future management activities.
NASA Astrophysics Data System (ADS)
Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John
2015-04-01
Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.
A systematic conservation planning approach to fire risk management in Natura 2000 sites.
Foresta, Massimiliano; Carranza, Maria Laura; Garfì, Vittorio; Di Febbraro, Mirko; Marchetti, Marco; Loy, Anna
2016-10-01
A primary challenge in conservation biology is to preserve the most representative biodiversity while simultaneously optimizing the efforts associated with conservation. In Europe, the implementation of the Natura 2000 network requires protocols to recognize and map threats to biodiversity and to identify specific mitigation actions. We propose a systematic conservation planning approach to optimize management actions against specific threats based on two fundamental parameters: biodiversity values and threat pressure. We used the conservation planning software Marxan to optimize a fire management plan in a Natura 2000 coastal network in southern Italy. We address three primary questions: i) Which areas are at high fire risk? ii) Which areas are the most valuable for threatened biodiversity? iii) Which areas should receive priority risk-mitigation actions for the optimal effect?, iv) which fire-prevention actions are feasible in the management areas?. The biodiversity values for the Natura 2000 spatial units were derived from the distribution maps of 18 habitats and 89 vertebrate species of concern in Europe (Habitat Directive 92/43/EEC). The threat pressure map, defined as fire probability, was obtained from digital layers of fire risk and of fire frequency. Marxan settings were defined as follows: a) planning units of 40 × 40 m, b) conservation features defined as all habitats and vertebrate species of European concern occurring in the study area, c) conservation targets defined according with fire sensitivity and extinction risk of conservation features, and d) costs determined as the complement of fire probabilities. We identified 23 management areas in which to concentrate efforts for the optimal reduction of fire-induced effects. Because traditional fire prevention is not feasible for most of policy habitats included in the management areas, alternative prevention practices were identified that allows the conservation of the vegetation structure. The proposed approach has potential applications for multiple landscapes, threats and spatial scales and could be extended to other valuable natural areas, including protected areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wildfire Risk Management: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Thompson, M.; Calkin, D. E.; Hand, M. S.; Kreitler, J.
2014-12-01
In this presentation we address federal wildfire risk management largely through the lens of economics, targeting questions related to costs, effectiveness, efficiency, and tradeoffs. Beyond risks to resources and assets such as wildlife habitat, watersheds, and homes, wildfires present financial risk and budgetary instability for federal wildfire management agencies due to highly variable annual suppression costs. Despite its variability, the costs of wildfire management have continued to escalate and account for an ever-growing share of overall agency budgets, compromising abilities to attain other objectives related to forest health, recreation, timber management, etc. Trends associated with a changing climate and human expansion into fire-prone areas could lead to additional suppression costs in the future, only further highlighting the need for an ability to evaluate economic tradeoffs in investments across the wildfire management spectrum. Critically, these economic analyses need to accurately capture the complex spatial and stochastic aspects of wildfire, the inherent uncertainty associated with monetizing environmental impacts of wildfire, the costs and effectiveness of alternative management policies, and linkages between pre-fire investments and active incident management. Investing in hazardous fuels reduction and forest restoration in particular is a major policy lever for pre-fire risk mitigation, and will be a primary focus of our presentation. Evaluating alternative fuel management and suppression policies could provide opportunities for significant efficiency improvements in the development of risk-informed management fire management strategies. Better understanding tradeoffs of fire impacts and costs can help inform policy questions such as how much of the landscape to treat and how to balance investments in treating new areas versus maintaining previous investments. We will summarize current data needs, knowledge gaps, and other factors influencing research and development on this critically important topic. Specifically we will focus on how to embed simulation models within an economic framework, how to link fire models with models of wildfire management expenditures, how to evaluate alternative management policies, and how to measure cost-effectiveness.
Wonkka, Carissa L; Rogers, William E; Kreuter, Urs P
2015-12-01
Resistance to the use of prescribed fire is strong among many private land managers despite the advantages it offers for maintaining fire-adapted ecosystems. Even managers who are aware of the benefits of using prescribed fire as a management tool avoid using it, citing potential liability as a major reason for their aversion. Recognizing the importance of prescribed fire for ecosystem management and the constraints current statutory schemes impose on its use, several states in the United States have undertaken prescribed burn statutory reform. The stated purpose of these statutory reforms, often called "right to burn" or "prescribed burning" acts, is to encourage prescribed burning for resource protection, public safety, and land management. Our research assessed the consequences of prescribed burn statutory reform by identifying legal incentives and impediments to prescribed fire application for ecosystem restoration and management, as well as fuel reduction. Specifically, we explored the relationship between prescribed burning laws and decisions made by land managers by exploiting a geographic-based natural experiment to compare landowner-prescribed fire use in contiguous counties with different regulations and legal liability standards. Controlling for potentially confounding variables, we found that private landowners in counties with gross negligence liability standards burn significantly more hectares than those in counties with simple negligence standards (F6,72 = 4.16, P = 0.046). There was no difference in hectares burned on private land between counties with additional statutorily mandated regulatory requirements and those requiring only a permit to complete a prescribed burn (F6,72 = 1.42, P = 0.24) or between counties with burn ban exemptions for certified prescribed burn managers and those with no exemptions during burn bans (F6,72 = 1.39, P = 0.24). Lawmakers attempting to develop prescribed burning statutes to promote the safe use of prescribed fire should consider the benefits of lower legal liability standards in conjunction with regulatory requirements that promote safety for those managing forests and rangelands with fire. Moreover, ecologists and land managers might be better prepared and motivated to educate stakeholder groups who influence prescribed fire policies if they are cognizant of the manner in which policy regulations and liability concerns create legal barriers that inhibit the implementation of effective ecosystem management strategies.
NASA Astrophysics Data System (ADS)
Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed
2009-12-01
A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.
Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds
2010-01-01
This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...
Economic optimisation of wildfire intervention activities
David T. Butry; Jeffrey P. Prestemon; Karen L. Abt; Ronda Sutphen
2010-01-01
We describe how two important tools of wildfire management, wildfire prevention education and prescribed fire for fuels management, can be coordinated to minimise the combination of management costs and expected societal losses resulting from wildland fire. We present a long-run model that accounts for the dynamics of wildfire, the effects of fuels management on...
Pre-fire treatments have persistent effects on post-fire plant communities
Kristen L. Shive
2012-01-01
Wildfires characterized by large areas of high severity are increasingly occurring in ponderosa pine (Pinus ponderosa P. & C. Lawson) forests of the Southwest to extents that are out of the natural range of variability. Managers are now routinely applying thinning and/or burning treatments to reduce fire severity. To investigate the effects of pre-fire treatments...
Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests
B.W. Butler; R.D. Ottmar; T.S. Rupp; R. Jandt; E. Miller; K. Howard; R. Schmoll; S. Theisen; R.E. Vihnanek; D. Jimenez
2013-01-01
Mechanical (e.g., shearblading) and manual (e.g., thinning) fuel treatments have become the preferred strategy of many fire managers and agencies for reducing fire hazard in boreal forests. This study attempts to characterize the effectiveness of four fuel treatments through direct measurement of fire intensity and forest floor consumption during a single prescribed...
Modeling and risk assessment for soil temperatures beneath prescribed forest fires
Haiganoush K. Preisler; Sally M. Haase; Stephen S. Sackett
2000-01-01
Prescribed fire is a management tool used by wildland resource management organizations in many ecosystems to reduce hazardous fuels and to achieve a host of other objectives. To study the effects of fire in naturally accumulating fuel conditions, the ambient soil temperature is monitored beneath prescribed burns. In this study we developed a stochastic model for...
W.B. Patterson; M.A. Sword-Sayer; J.D. Haywood; S. Brooker
2004-01-01
The intensity and frequency of prescribed fire affects soil properties that control its quality. This project evaluates how six vegetation management treatments, four of which include biennial prescribed fire, affect the soil physical properties in two stands of longleaf pine (Pinus palustris Mill.) located on the Kisatchie National Forest, Rapides...
Focus on...The right tools: Managing for fire using FIA inventory data.
USDA Forest Service
2003-01-01
The relative severity of recent fire seasons has led to numerous debates about the health, associated fire hazards, and effectiveness of fuel reduction treatments in forests across the United States. Scientific analyses of forest inventories offer policy makers and other interested parties objective information with which to make crucial forest management decisions....
Change as a factor in advancing fire-management decisionmaking and program effectiveness
Thomas Zimmerman
2011-01-01
Wildland fire management—as evidenced by its nature, historical growth, and development—can be characterized as a program of constant change. To become better able to meet changing conditions and complexity, fire management must be agile, flexible, and able to embrace change. But many challenges and limitations to acceptance continue to hamper...
Characteristics of information available on fire and invasive plants in the eastern United States
Corey L. Gucker; Kris Zouhar; Jane Kapler Smith; Katharine R. Stone
2012-01-01
Wildland managers need detailed information about the responses of invasive species to fire and the conditions that increase site invasibility in order to effectively manage fire without introducing or increasing populations of invasive plants. Literature reviews and syntheses of original research are important sources of this information, but the usefulness of a...
LANDFIRE: Collaboration for National Fire Fuel Assessment
Zhu, Zhi-Liang
2006-01-01
The implementation of national fire management policies, such as the National Fire Plan and the Healthy Forest Restoration Act, requires geospatial data of vegetation types and structure, wildland fuels, fire risks, and ecosystem fire regime conditions. Presently, no such data sets are available that can meet these requirements. As a result, the U.S. Department of Agriculture (USDA) Forest Service and the Department of the Interior's land management bureaus (Bureau of Indian Affairs (BIA), Bureau of Land Management (BLM), Fish and Wildlife Service (FWS), and National Park Service (NPS)) have jointly sponsored LANDFIRE, a new research and development project. The primary objective of the project is to develop an integrated and repeatable methodology and produce vegetation, fire, and ecosystem information and predictive models for cost-effective national land management applications. The project is conducted collaboratively by the U.S. Geological Survey (USGS), the USDA Forest Service, and The Nature Conservancy.
Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?
Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos
2016-01-01
Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to other fire users, will be necessary to help ameliorate these threats. PMID:26886207
Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?
Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos
2016-01-01
Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to other fire users, will be necessary to help ameliorate these threats.
Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest
Dore, Sabina; Fry, Danny L.; Collins, Brandon M.; Vargas, Rodrigo; York, Robert A.; Stephens, Scott L.
2016-01-01
Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60–70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related stresses. PMID:26918460
Predicting Fire Severity and Hydrogeomorphic Effects for Wildland Fire Decision Support
NASA Astrophysics Data System (ADS)
Hyde, K.; Woods, S. W.; Calkin, D.; Ryan, K.; Keane, R.
2007-12-01
The Wildland Fire Decision Support System (WFDSS) uses the Fire Spread Probability (FSPro) model to predict the spatial extent of fire, and to assess values-at-risk within probable spread zones. This information is used to support Appropriate Management Response (AMR), which involves decision making regarding fire-fighter deployment, fire suppression requirements, and identification of areas where fire may be safely permitted to take its course. Current WFDSS assessments are generally limited to a binary prediction of whether or not a fire will reach a given location and an assessment of the infrastructure which may be damaged or destroyed by fire. However, an emerging challenge is to expand the capabilities of WFDSS so that it also estimates the probable fire severity, and hence the effect on soil, vegetation and on hydrologic and geomorphic processes such as runoff and soil erosion. We present a conceptual framework within which derivatives of predictive fire modelling are used to predict impacts upon vegetation and soil, from which fire severity and probable post-fire watershed response can be inferred, before a fire actually occurs. Fire severity predictions are validated using Burned Area Reflectance Classification imagery. Recent tests indicate that satellite derived BARC images are a simple and effective means to predict post-fire erosion response based on relative vegetation disturbance. A fire severity prediction which reasonably approximates a BARC image may therefore be used to assess post-fire erosion and flood potential before fire reaches an area. This information may provide a new avenue of reliable support for fire management decisions.
Is Managed Wildfire Protecting Yosemite National Park from Drought?
NASA Astrophysics Data System (ADS)
Boisrame, G. F. S.; Thompson, S. E.; Stephens, S.; Collins, B.; Kelly, M.; Tague, N.
2016-12-01
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the Western US. This project explores the potential of managed wildfire - a forest management strategy in which fires caused by lightning are allowed to burn naturally as long as certain safety parameters are met - to reverse the effects of fire suppression. The Illilouette Creek Basin in Yosemite National Park has experienced 40 years of managed wildfire, reducing forest cover and increasing meadow and shrubland areas. We have collected evidence from field measurements and remote sensing which suggest that managed wildfire increases landscape and hydrologic heterogeneity, and likely improves resilience to disturbances such as fire and drought. Vegetation maps created from aerial photos show an increase in landscape heterogeneity following the introduction of managed wildfire. Soil moisture observations during the drought years of 2013-2016 suggest that transitions from dense forest to shrublands or meadows can increase summer soil moisture. In the winter of 2015-2016, snow depth measurements showed deeper spring snowpacks in burned areas compared to dense forests. Our study provides a unique view of relatively long-term effects of managed wildfire on vegetation change, ecohydrology, and drought resistance. Understanding these effects is increasingly important as the use of managed wildfire becomes more widely accepted, and as the likelihood of both drought and wildfire increases.
Fire effects on temperate forest soil C and N storage.
Nave, Lucas E; Vance, Eric D; Swanston, Christopher W; Curtis, Peter S
2011-06-01
Temperate forest soils store globally significant amounts of carbon (C) and nitrogen (N). Understanding how soil pools of these two elements change in response to disturbance and management is critical to maintaining ecosystem services such as forest productivity, greenhouse gas mitigation, and water resource protection. Fire is one of the principal disturbances acting on forest soil C and N storage and is also the subject of enormous management efforts. In the present article, we use meta-analysis to quantify fire effects on temperate forest soil C and N storage. Across a combined total of 468 soil C and N response ratios from 57 publications (concentrations and pool sizes), fire had significant overall effects on soil C (-26%) and soil N (-22%). The impacts of fire on forest floors were significantly different from its effects on mineral soils. Fires reduced forest floor C and N storage (pool sizes only) by an average of 59% and 50%, respectively, but the concentrations of these two elements did not change. Prescribed fires caused smaller reductions in forest floor C and N storage (-46% and -35%) than wildfires (-67% and -69%), and the presence of hardwoods also mitigated fire impacts. Burned forest floors recovered their C and N pools in an average of 128 and 103 years, respectively. Among mineral soils, there were no significant changes in C or N storage, but C and N concentrations declined significantly (-11% and -12%, respectively). Mineral soil C and N concentrations were significantly affected by fire type, with no change following prescribed burns, but significant reductions in response to wildfires. Geographic variation in fire effects on mineral soil C and N storage underscores the need for region-specific fire management plans, and the role of fire type in mediating C and N shifts (especially in the forest floor) indicates that averting wildfires through prescribed burning is desirable from a soils perspective.
Jessica E. Halofsky; Stephanie K. Hart; Miles A. Hemstrom; Joshua S. Halofsky; Morris C. Johnson
2014-01-01
Information on the effects of management activities such as fuel reduction treatments and of processes such as vegetation growth and disturbance on fire hazard can help land managers prioritize treatments across a landscape to best meet management goals. State-and-transition models (STMs) allow landscape-scale simulations that incorporate effects of succession,...
Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?
Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan
2016-12-01
Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.
Fire impacts on European Boreal soils: A review
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Oliva, Marc; Cerda, Artemi
2016-04-01
Fire is an important natural disturbance in boreal ecosystems, fundamental to understand plant distribution (Ryan, 2002; Wallenius et al., 2004; Granstrom, 2001). Nevertheless, nowadays the intense and successful, fire suppression measures are changing their ecological role (Pereira et al., 2013a,b). This is consequence of the lack of understanding of stakeholders and decision makers about the role of the fire in the ecosystems (Mierasukas and Pereira, 2013; Pereira et al., 2016). This fire suppression measures are increasing the amount of fuel accumulation and the risk of severe wildfires, which can increase of frequency and severity in a context of climate change. Fire is a good tool for landscape management and restoration of degraded ecosystems (Toivanen and Kotiaho, 2007). Fire is considered a soil forming factor (Certini, 2014) and in boreal environments it has been observed that low fire severities, do not change importantly soil properties, mean fire severities induce positive impacts on soil, since add an important amounts of nutrients into soil profile and high severity fires had negative impacts due to the high consumption of organic matter (Vanha-Majamaa et al., 2007; Pereira et al., 2014). References Certini, G., 2014. Fire as a soil-forming factor. Ambio, 43, 191-195 Granstrom A. 2001. Fire management for biodiversity in the European Boreal forest. Scandinavian Journal of Forest Research 3: 62-69. Mierauskas, P., Pereira, P. (2013) Stakeholders perception about prescribed fire use in Lithuania. First results, Flamma, 4(3), 157-161. Pereira, P., Cerdà, A., Jordán, A., Bolutiene, V., Úbeda, X., Pranskevicius, M., Mataix-Solera, J. (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania, Procedia Environmental Sciences, 19:856-864 Pereira, P., Mierauskas, P., Ubeda, X., Mataix-Solera, J.,Cerda, A. (2012) Fire in protected areas - the effect of the protection and importance of fire management, Environmental Research, Engineering and Management, 1(59), 52-62. Pereira, P., Ubeda, X., Mataix-Solera, J., Oliva, M., Novara, A. (2014) Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania, Solid Earth, 5, 209-225. Ryan KC. 2002. Dynamic Interactions between forest structure and fire behavioural in boreal ecosystems. Silva Fennica 36: 13-39 Toivanen T, Kotiaho JS. 2007. Mimicking natural disturbances of boreal forests: the effects of controlled burning and creating dead wood on beetle diversity. Biodiversity Conservation 16: 3193-3211.
Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane
2009-01-01
The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...
Does prescribed fire benefit wetland vegetation?
Flores, C.; Bounds, D.L.; Ruby, D.E.
2011-01-01
The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce competition from less desirable plant species. We compared vegetative response to two fire rotations, annual burns and 3-year burns, and two control sites, Control 1 and Control 2. We tested the effects of fire within six tidal marsh wetlands at Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area in Maryland. We examined changes in total live biomass (all species), total stem density, litter, and changes in live biomass and stem density of four dominant wetland plant species (11 variables). Our results suggest that annual prescribed fires will decrease the accumulation of litter, increase the biomass and stem densities of some wetland plants generally considered less desirable for wildlife, and have little or no effect on other wetland plants previously thought to benefit from fire. ?? 2011 US Government.
Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R
2015-09-01
Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.
USDA-ARS?s Scientific Manuscript database
Prescribed fire and herbicides are commonly used tools to manage introduced grasses in the Southern Plains, but their effects on livestock production are not well documented. The objectives of this experiment were to determine the effects of prescribed fire or herbicides on the production of grazin...
Bruce E. Rieman; Paul F. Hessburg; Charles Luce; Matthew R. Dare
2010-01-01
Wildfire is a critical land management issue in the western United States. Efforts to mitigate the effects of altered fire regimes have led to debate over ecological restoration versus species conservation framed at the conjuncture of terrestrial and aquatic ecosystems and their respective management regimes. Fire-related management activities may disrupt watershed...
Anne E. Black; Krista Gebert; Sarah McCaffrey; Toddi Steelman; Janie Canton-Thompson
2009-01-01
Wildland fire management must balance the multiple objectives of protecting life, property, and resources; reducing hazardous fuels; and restoring ecosystems. These Federal policy imperatives, varied yet connected, must be met under an increasingly constrained budget. A key to management success is effectively exercising the full range of management flexibility in...
Remote sensing information for fire management and fire effects assessment
NASA Astrophysics Data System (ADS)
Chuvieco, Emilio; Kasischke, Eric S.
2007-03-01
Over the past decade, much research has been carried out on the utilization of advanced geospatial technologies (remote sensing and geographic information systems) in the fire science and fire management disciplines. Recent advances in these technologies were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) fire implementation team. Here we summarize the framework and the key findings of papers submitted from this meeting and presented in this special section. These papers focus on the latest advances for near real-time monitoring of active fires, prediction of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and postfire assessment of the impacts from fires.
Michele L. Renschin; Hal O. Liechty; Michael G. Shelton
2002-01-01
Abstract - Although fire has long been an important forest management tool in the southern United States, little is known concerning the effects of long-term fire use on nutrient cycling and decomposition. To better understand the effects of fire on these processes, decomposition rates, and foliage litter quality were quantified in a study...
Measuring Ecological Effects of Prescribed Fire Using Birds as Indicators of Forest Conditions
Nathaniel E. Seavy; John D. Alexander
2006-01-01
To evaluate the ecological effects of prescribed fire, bird and vegetation surveys were conducted in four study areas of the Klamath National Forest where prescribed fires are being used for management. Bird and vegetation data were collected at sites treated with prescribed fire and nearby untreated control sites. Data were collected at stations from 2000 (pre-...
Experimental and modeling study of forest fire effect on soil thermal conductivity
Kathleen M. Smits; Elizabeth Kirby; William J. Massman; Scott Baggett
2016-01-01
An understanding of soil thermal conductivity after a wildfire or controlled burn is important to land management and post-fire recovery efforts. Although soil thermal conductivity has been well studied for non-fire heated soils, comprehensive data that evaluate the long-term effect of extreme heating from a fire on the soil thermal conductivity are limited....
Robert E. Keane
2013-01-01
Wildland fuelbeds are exceptionally complex, consisting of diverse particles of many sizes, types and shapes with abundances and properties that are highly variable in time and space. This complexity makes it difficult to accurately describe, classify, sample and map fuels for wildland fire research and management. As a result, many fire behaviour and effects software...
Brooke Balauf McBride; Fernando Sanchez-Trigueros; Stephen J Carver; Alan E Watson; Linda Moon Stumpff; Roian Matt; William T. Borrie
2016-01-01
Traditional knowledge about fire and its effects held by indigenous people, who are connected to specific landscapes, holds promise for informing contemporary fire and fuels management strategies and augmenting knowledge and information derived from western science. In practice, however, inadequate means to organize and communicate this traditional knowledge with...
Evaluation of a Dynamic Load Transfer Function Using Grassland Curing Data
Patricia L. Andrews; Stuart A.J. Anderson; Wendy R. Anderson
2006-01-01
Understanding and calculating fire behaviour in various fuel types is essential for effective fire management, including wildfire suppression and fuels management. Fire spread in grassland fuel is affected by the curing level, the amount of dead fuel expressed as a percentage of the total (live and dead fuel combined). The influence of live fuel is included in various...
Fire as a physical factor in wildland management
Robert E. Martin; Charles T. Cushwa; Robert L. Miller
1969-01-01
We use fire to accomplish many goals. Most of our use is based on long years of experience-experience that enables us to predict the results we should obtain from the "feel" of the situation. Research is being conducted, to assist less experienced land managers to understand fire more completely and to provide means for them to predict its effects in given...
Effects of Sudden Oak Death on the crown fire ignition potential of tanoak (Lithocarpus densiflorus)
Howard Kuljian; J. Morgan Varner
2010-01-01
In the face of the sudden oak death (SOD) epidemic, decreasing foliar moisture content (FMC) of tanoak (Lithocarpus densiflorus) has land managers, fire managers, and property owners concerned with the increased possibility of crown fire in affected areas. A need exists to link local SOD-affected foliar moisture content (FMC) values and current FMC...
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Gabrielle Boisramé; Sally Thompson; Brandon Collins; Scott Stephens
2017-01-01
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed...
Wildlife adaptations and management in eastside interior forests with mixed severity fire regimes.
John F. Lehmkuhl
2004-01-01
Little is known about the effects of mixed severity fire on wildlife, but a population viability analysis framework that considers habitat quantity and quality, species life history, and species population structure can be used to analyze management options. Landscape-scale habitat patterns under a mixed severity fire regime are a mosaic of compositional and structural...
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
NASA Technical Reports Server (NTRS)
Breininger, David R.; Foster, Tammy E.; Carter, Geoffrey M.; Duncan, Brean W.; Stolen, Eric D.; Lyon, James E.
2017-01-01
The combined effects of repeated fires, climate, and landscape features (e.g., edges) need greater focus in fire ecology studies, which usually emphasize characteristics of the most recent fire and not fire history. Florida scrub-jays are an imperiled, territorial species that prefer medium (1.2-1.7 m) shrub heights. We measured short, medium, and tall habitat quality states annually within 10 ha grid cells that represented potential territories because frequent fires and vegetative recovery cause annual variation in habitat quality. We used multistate models and model selection to test competing hypotheses about how transition probabilities between states varied annually as functions of environmental covariates. Covariates included vegetative type, edges, precipitation, openings (gaps between shrubs), mechanical cutting, and fire characteristics. Fire characteristics not only included an annual presenceabsence of fire covariate, but also fire history covariates: time since the previous fire, the maximum fire-free interval, and the number of repeated fires. Statistical models with support included many covariates for each transition probability, often including fire history, interactions and nonlinear relationships. Tall territories resulted from 28 years of fire suppression and habitat fragmentation that reduced the spread of fires across landscapes. Despite 35 years of habitat restoration and prescribed fires, half the territories remained tall suggesting a regime shift to a less desirable habitat condition. Measuring territory quality states and environmental covariates each year combined with multistate modeling provided a useful empirical approach to quantify the effects of repeated fire in combinations with environmental variables on transition probabilities that drive management strategies and ecosystem change.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.
Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example
Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453
Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)
Stanley G. Kitchen
2012-01-01
Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...
Fontaine, Joseph B; Kennedy, Patricia L
2012-07-01
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.
Effects of a large wildfire on vegetation structure in a variable fire mosaic.
Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B
2017-12-01
Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (<10 yr post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even after a large, severe wildfire, underlying fire histories can contribute substantially to variation in vegetation structure. This highlights the importance of ensuring that efforts to reinstate variation in vegetation fire age after large wildfires do not inadvertently reduce variation in vegetation structure generated by the underlying invisible mosaic. © 2017 by the Ecological Society of America.
Wilderness fire science: A state of knowledge review
James K. Agee
2000-01-01
Wilderness fire science has progressed since the last major review of the topic, but it was significantly affected by the large fire events of 1988. Strides have been made in both fire behavior and fire effects, and in the issues of scaling, yet much of the progress has not been specifically tied to wilderness areas or funding. Although the management of fire in...
BehavePlus fire modeling system, version 5.0: Design and Features
Faith Ann Heinsch; Patricia L. Andrews
2010-01-01
The BehavePlus fire modeling system is a computer program that is based on mathematical models that describe wildland fire behavior and effects and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a host of fire management applications, including projecting the behavior of an ongoing fire, planning...
Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene
2016-03-01
A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals. Copyright © 2015 Elsevier Ltd. All rights reserved.
M.B. Dickinson; J.C. Norris; A.S. Bova; R.L. Kremens; V. Young; M.J. Lacki
2010-01-01
Faunal injury and mortality in wildland fires is a concern for wildlife and fire management although little work has been done on the mechanisms by which exposures cause their effects. In this paper, we use an integral plume model, field measurements, and models of carbon monoxide and heat effects to explore risk to tree-roosting bats during prescribed fires in mixed-...
Brian Cooke; Jane Kapler Smith; Robin Innes; Janet Fryer; Kris Zouhar; Ilana Abrahamson; Shannon Murphy; Eva Masin
2015-01-01
The Rocky Mountain Research Stationâs Fire Effects Information System (FEIS) team synthesizes information about wildland fires, their history in U.S. ecosystems, and their effects on U.S. wildland plants, lichens, and animals. Found at www.feis-crs.org/feis/, FEIS publications can be used for many purposes, including land use planning, restoration and rehabilitation...
Fire Effects Information System: New engine, remodeled interior, added options
Jane Kapler Smith
2010-01-01
Some of today's firefighters weren't even born when the Fire Effects Information System (FEIS) (Web site ) "hit the streets" in 1986. Managers might remember using a dial-up connection in the early 1990s to access information on biology, ecology, and fire offered by FEIS.
Effects of fire on chaparral soils in Arizona and California and postfire management implications
Leonard F. DeBano
1989-01-01
Wildfires and prescribed burns are common throughout Arizona and California chaparral. Predicting fire effects requires understanding fire behavior, estimating soil heating, and predicting changes in soil properties. Substantial quantities of some nutrients, particularly nitrogen and phosphorus, are lost directly during combustion. Highly available nutrients released...
Short-term responses of birds to prescribed fire in fire-suppressed forests of California
Bagne Karen; Kathryn Purcell
2011-01-01
Prescribed fire is one tool for restoring fire-suppressed forests, but application of fire during spring coincides with breeding and arrival of migrant birds. We examined effects of low-severity prescribed fires on counts of birds in a managed forest in the Sierra Nevada of California immediately, 1 year, and 3â6 years after fire was applied in spring. Of 26 species...
Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden
2014-01-01
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...
Penman, T D; Collins, L; Price, O F; Bradstock, R A; Metcalf, S; Chong, D M O
2013-12-15
Large budgets are spent on both suppression and fuel treatments in order to reduce the risk of wildfires. There is little evidence regarding the relative contribution of fire weather, suppression and fuel treatments in determining the risk posed from wildfires. Here we undertake a simulation study in the Sydney Basin, Australia, to examine this question using a fire behaviour model (Phoenix Rapidfire). Results of the study indicate that fire behaviour is most strongly influenced by fire weather. Suppression has a greater influence on whether a fire reaches 5 ha in size compared to fuel treatments. In contrast, fuel treatments have a stronger effect on the fire size and maximum distance the fire travels. The study suggests that fire management agencies will receive additional benefits from fuel treatment if they are located in areas which suppression resources can respond rapidly and attempt to contain the fires. No combination of treatments contained all fires, and the proportion of uncontained fires increased under more severe fire weather when the greatest number of properties are lost. Our study highlights the importance of alternative management strategies to reduce the risk of property loss. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Modeling anthropogenic and natural fire ignitions in an inner-alpine valley
NASA Astrophysics Data System (ADS)
Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo
2018-03-01
Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.
Uncertainty and risk in wildland fire management: a review.
Thompson, Matthew P; Calkin, Dave E
2011-08-01
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. Published by Elsevier Ltd.
Kevin Barnett; Sean A. Parks; Carol Miller; Helen T. Naughton
2016-01-01
In the United States, fuel reduction treatments are a standard land management tool to restore the structure and composition of forests that have been degraded by past management. Although treatments can have multiple purposes, their principal objective is to create landscape conditions where wildland fire can be safely managed to help achieve long-term land management...
White-tailed deer distribution in response to patch burning on rangeland
M. G. Meek; S. M. Cooper; M. K. Owens; R. M. Cooper; A. L. Wappel
2008-01-01
Management of rangelands has changed substantially over the past few decades; today there is greater emphasis on wildlife management and increased interest in using natural disturbances such as fire to manage rangeland plant and animal communities. To determine the effect of prescribed fires on the distribution of white-tailed deer (Odocoileus virginianus...
Forest fuel treatments in western North America: merging silvicultural and fire management.
Morris C. Johnson; David L. Peterson
2005-01-01
For many years silviculture and fire management have mostly been separate forestry disciplines with disparate objectives and activities. However, in order to accomplish complex and multiple management objectives related to forest structure, fuels, and fxe disturbance, these two disciplines must be effectively integrated in science and practice. We have linked...
Effects of risk attitudes on extended attack fire management decisionmaking
Donald G. MacGregor; Armando González-Cabán
2009-01-01
Fire management inherently involves the assessment and management of risk, and decision making under uncertainty. Although organizational standards and guides are an important determinant of how decision problems are structured and framed, decision makers may view risk-based decisions from a perspective that is unique to their background and experience. Previous...
Jonathan Thompson; John Lehmkuhl
2008-01-01
Although prescribed fire is increasingly being used in ponderosa pine forests as a management tool to reduce the risk of future high-severity wildfire, its effects on wildlife habitat have rarely been examined. The Birds and Burns Network was created to assist managers in planning prescribed fire projects that will reduce fuels and enhance bird habitat. Researchers...
Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission
Tiago M. Oliveira; Ana M. G. Barros; Alan A. Ager; Paulo M. Fernandes
2016-01-01
Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with...
Spatial patterns in the effects of fire on savanna vegetation three-dimensional structure.
Levick, Shaun R; Asner, Gregory P; Smit, Izak P J
2012-12-01
Spatial variability in the effects of fire on savanna vegetation structure is seldom considered in ecology, despite the inherent heterogeneity of savanna landscapes. Much has been learned about the effects of fire on vegetation structure from long-term field experiments, but these are often of limited spatial extent and do not encompass different hillslope catena elements. We mapped vegetation three-dimensional (3-D) structure over 21 000 ha in nine savanna landscapes (six on granite, three on basalt), each with contrasting long-term fire histories (higher and lower fire frequency), as defined from a combination of satellite imagery and 67 years of management records. Higher fire frequency areas contained less woody canopy cover than their lower fire frequency counterparts in all landscapes, and woody cover reduction increased linearly with increasing difference in fire frequency (r2 = 0.58, P = 0.004). Vegetation height displayed a more heterogeneous response to difference in fire frequency, with taller canopies present in the higher fire frequency areas of the wetter sites. Vegetation 3-D structural differences between areas of higher and lower fire frequency differed between geological substrates and varied spatially across hillslopes. Fire had the greatest relative impact on vegetation structure on nutrient-rich basalt substrates, and it imparted different structural responses upon vegetation in upland, midslope, and lowland topographic positions. These results highlight the complexity of fire vegetation relationships in savanna systems, and they suggest that underlying landscape heterogeneity needs more explicit incorporation into fire management policies.
A basic approach to fire injury of tree stems
R. E. Martin
1963-01-01
Fire has come to be widely used as a tool in wildland management, particularly in the South. Its usefulness in fire hazard reduction, removal of undesirable trees, and changing of cover types has been demonstrated. We are continually trying to improve fire use, however, by learning more of the specific effects of fire on different species of plants.
Chapter 10: Fire and nonnative invasive plants in the Northwest Coastal bioregion
Dawn Anzinger; Steven R. Radosevich
2008-01-01
This chapter discusses the relationship between fire (natural and prescribed) and nonnative plant species within major vegetation communities of the Northwest Coastal bioregion, and specifically addresses the role of fire in promoting nonnative species invasions, the effects of nonnative species on fire regimes, and usefulness of fire as a management tool for...
Quantifying the consequences of fire suppression in two California national parks
Carol Miller; Brett Davis
2009-01-01
Excluding fire can have untold ecological effects. Decades of fire suppression in national parks and other protected areas have altered natural fire regimes, vegetation, and wildlife habitat (Chang 1996; Keane et al. 2002). Management actions to suppress lightning-ignited wildfires removes one of the most important natural processes from fire-dependent ecosystems, and...
Fire Effects Planning Framework: A user's guide
A. Black; T. Opperman
2005-01-01
Each decision to suppress fire reinforces a feedback cycle in which fuels continue to accumulate, risk escalates, and the tendency to suppress fires grows (Miller and others, 2003). Existing decision-support tools focus primarily on the negative consequences of fire. This guide outlines a framework managers can use to (1) identify key areas of fire risk and (2)...
Laura M. Ladwig; Scott L. Collins; Paulette L. Ford; Laura B. White
2014-01-01
Land managers frequently use prescribed burning to help maintain grassland communities. Semiarid grassland dynamics following fire are linked to precipitation, with increasing soil moisture accelerating the rate of recovery. Prescribed fires are typically scheduled to follow natural fire regimes, but burning outside the natural fire season could be equally effective...
Lessons learned from prescribed fire in ponderosa pine forests of the southern Sierra Nevada
Karen E. Bagne; Kathryn L. Purcell
2009-01-01
Prescribed fire is a commonly used management tool in fire-suppressed ponderosa pine (Pinus ponderosa) forests, but effects of these fires on birds are largely unstudied. We investigated both direct and indirect impacts on breeding birds in ponderosa pine forests of the southern Sierra Nevada where fires were applied in the spring. Following...
Mapping severe fire potential across the contiguous United States
Brett H. Davis
2016-01-01
The Fire Severity Mapping System (FIRESEV) project is an effort to provide critical information and tools to fire managers that enhance their ability to assess potential ecological effects of wildland fire. A major component of FIRESEV is the development of a Severe Fire Potential Map (SFPM), a geographic dataset covering the contiguous United States (CONUS) that...
Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
2014-11-01
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
Brooke Baldauf McBride; Anne E. Black
2012-01-01
This study examined the effects of organizational, environmental, group and individual characteristics on five components of safety climate in the US federal fire management community (HRO Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity). Multiple analyses of variance revealed that all types of characteristics had a significant effect on...
2015-03-01
Stressors Secondary Source/ Stressors Measures of Effect Score Summary Individual Scores Compile Results Land Management (e.g., controlled fire ...Secondary Source/ Stressors Measures of Effect Score Summary Individual Scores Compile Results Land Management (e.g., controlled fire , timber...Greenberg 2005), effects of dredged material (PIANC 2006), and ecosystem restoration (Fischenich 2008) among others. The process of developing a conceptual
Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
NASA Astrophysics Data System (ADS)
Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.
2017-09-01
Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.
Semiarid rangeland is resilient to summer fire and post-fire grazing utilization
USDA-ARS?s Scientific Manuscript database
1. Most wildfires occur during summer in the northern hemisphere, the area burned annually is increasing, and fire effects during this season are least understood. Livestock grazing is a primary use of rangelands affected by wildfire, but post-fire grazing management is not well-supported with dat...
An examination of fuel particle heating during fire spread
Jack D. Cohen; Mark A. Finney
2010-01-01
Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...
Public perspectives on the "wildfire problem."
Antony S. Cheng; Dennis R. Becker
2005-01-01
Just as wildland fire managers must have a working knowledge of fire behavior, they must also understand the social dimensions of wildland fire in order to effectively engage the public.Social scientists are therefore gathering information about public attitudes toward wildland fire and wildfire mitigation. How do people see the "wildfire problem"? What...
Climate Change and Mountain Community Fire Management in the Cordillera Blanca, Peru
NASA Astrophysics Data System (ADS)
All, J.; Medler, M.; Cole, R. J.; Arques, S.; Schmitt, C. G.
2014-12-01
In the central Andes of Peru, climate change is altering fire risk through changes in local meteorology and fuel loading. Greater moisture and favorable growing conditions are increasing vegetative productivity, which in turn increases fuel loads. This process is accentuated during El Nino events and potentially results in increased fire occurrence and frequency during relatively dry La Nina events. Park officials are concerned about the ramification of the changes on local ecology and tourist use of the resources. However, using a time-series of two different products from the MODIS Terra and Aqua platforms (Active Fire and Burned Area), TRMM 3B43 precipitation data, and Multivariate ENSO Index data we document fire occurrence and extent from 2000 to 2010 and our analysis indicates that fires are burning exclusively during winter months when there are no natural ignition sources. Globally, fire is used in conjunction with grazing to improve the regeneration and yield of grasses. During our interviews, locals claimed to only set fires in the buffer zone outside of the park, but our analysis indicates that the buffer zone rarely burns and that most fires begin within the park and only occasionally move into the buffer zones. Additionally, we determined that although this is small-scale fire activity every year, overall fire is having a very minor effect on local systems. The park service must develop programs to work with local grazing stakeholders to better limit the impacts of fire, while also address the negative perceptions from tourists in the future. In this instance, fire perception and fire reality are not the same and the challenge for resource managers is how to reconcile these two factors in order to more effectively manage the parklands.
Russell, R.E.; Royle, J. Andrew; Saab, V.A.; Lehmkuhl, J.F.; Block, W.M.; Sauer, J.R.
2009-01-01
Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened, and migratory bird species. Recent developments in occupancy modeling have established a framework for quantifying the impacts of management practices on wildlife community dynamics. We describe a Bayesian hierarchical model of multi-species occupancy accounting for detection probability, and we demonstrate the model's usefulness for identifying effects of habitat disturbances on wildlife communities. Advantages to using the model include the ability to estimate the effects of environmental impacts on rare or elusive species, the intuitive nature of the modeling, the incorporation of detection probability, the estimation of parameter uncertainty, the flexibility of the model to suit a variety of experimental designs, and the composite estimate of the response that applies to the collection of observed species as opposed to merely a small subset of common species. Our modeling of the impacts of prescribed fire on avian communities in a ponderosa pine forest in Washington indicate that prescribed fire treatments result in increased occupancy rates for several bark-insectivore, cavity-nesting species including a management species of interest, Black-backed Woodpeckers (Picoides arcticus). Three aerial insectivore species, and the ground insectivore, American Robin (Turdus migratorius), also responded positively to prescribed fire, whereas three foliage insectivores and two seed specialists, Clark's Nutcracker (Nucifraga columbiana) and the Pine Siskin (Carduelis pinus), declined following treatments. Land management agencies interested in determining the effects of habitat manipulations on wildlife communities can use these methods to provide guidance for future management activities. ?? 2009 by the Ecological Society of America.
Diane M. Gercke; Susan A. Stewart
2006-01-01
In 2005, eight U.S. Forest Service and Bureau of Land Management interdisciplinary teams participated in a test of strategic placement of treatments (SPOTS) techniques to maximize the effectiveness of fuel treatments in reducing problem fire behavior, adverse fire effects, and suppression costs. This interagency approach to standardizing the assessment of risks and...
Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective
Arkle, R.S.; Pilliod, D.S.
2010-01-01
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.
Prescribed fire and timber harvesting effects on soil carbon and nitrogen in a pine forest
USDA-ARS?s Scientific Manuscript database
Thinning and prescribed fire are common management tools used to eliminate thick fuel loads that could otherwise facilitate and encourage a more severe catastrophic wildfire. The objective of this study was to quantify the lasting effects of prescribed fire on forest floor and soil nutrients approxi...
Fuel loading and fire intensity-effects on longleaf pine seedling survival
Steven B. Jack; J. Kevin Hiers; Robert J. Mitchell; Jennifer L. Gagnon
2010-01-01
Modeling silvicultural practices after natural disturbance, with a particular focus on the use of fire and small canopy openings, may be particularly appropriate in longleaf pine (Pinus palustris Mill.) woodlands managed for multiple age classes and over long time scales. However, information about the effects of litter accumulation and fire...
Fire severity and ecosytem responses following crown fires in California shrublands
Keeley, J.E.; Brennan, T.; Pfaff, A.H.
2008-01-01
Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses.Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining >50% of the variation in severity.Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly short-lived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types.Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire.A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.
Fire severity and ecosytem responses following crown fires in California shrublands.
Keeley, Jon E; Brennan, Teresa; Pfaff, Anne H
2008-09-01
Chaparral shrublands burn in large high-intensity crown fires. Managers interested in how these wildfires affect ecosystem processes generally rely on surrogate measures of fire intensity known as fire severity metrics. In shrublands burned in the autumn of 2003, a study of 250 sites investigated factors determining fire severity and ecosystem responses. Using structural equation modeling we show that stand age, prefire shrub density, and the shortest interval of the prior fire history had significant direct effects on fire severity, explaining > 50% of the variation in severity. Fire severity per se is of interest to resource managers primarily because it is presumed to be an indicator of important ecosystem processes such as vegetative regeneration, community recovery, and erosion. Fire severity contributed relatively little to explaining patterns of regeneration after fire. Two generalizations can be drawn: fire severity effects are mostly shortlived, i.e., by the second year they are greatly diminished, and fire severity may have opposite effects on different functional types. Species richness exhibited a negative relationship to fire severity in the first year, but fire severity impacts were substantially less in the second postfire year and varied by functional type. Much of this relationship was due to alien plants that are sensitive to high fire severity; at all scales from 1 to 1000 m2, the percentage of alien species in the postfire flora declined with increased fire severity. Other aspects of disturbance history are also important determinants of alien cover and richness as both increased with the number of times the site had burned and decreased with time since last fire. A substantial number of studies have shown that remote-sensing indices are correlated with field measurements of fire severity. Across our sites, absolute differenced normalized burn ratio (dNBR) was strongly correlated with field measures of fire severity and with fire history at a site but relative dNBR was not. Despite being correlated with fire severity, absolute dNBR showed little or no relationship with important ecosystem responses to wildfire such as shrub resprouting or total vegetative regeneration. These findings point to a critical need for further research on interpreting remote sensing indices as applied to postfire management of these shrublands.
NASA Astrophysics Data System (ADS)
Vlassova, Lidia; Pérez-Cabello, Fernando
2016-02-01
The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.
Elizabeth Reinhardt
2005-01-01
FFE-FVS is a model linking stand development, fuel dynamics, fire behavior and fire effects. It allows comparison of mid- to long-term effects of management alternatives including harvest, mechanical fuel treatment, prescribed fire, salvage, and no action. This fact sheet identifies the intended users and uses, required inputs, what the model does, and tells the user...
Nancy H.F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen
2008-01-01
There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes -- such as post-fire forest succession -- and land management...
Jennifer L. Gagnon; Steven B. Jack
2004-01-01
Prescribed fire may be removed as a forest management tool by regulatory agencies concerned about air quality issues. Herbicides have been proposed as substitutes for prescribed fires in southern pine forests, but we are aware of no studies that examine the effects of herbicide application in mature, fire maintained longleaf pine (Pinus palustris...
González-De Vega, S; De Las Heras, J; Moya, D
2016-12-15
In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems should be implemented. Copyright © 2016 Elsevier B.V. All rights reserved.
Forest Management Shifts in the Western US and Potential Impacts on the Carbon Balance
NASA Astrophysics Data System (ADS)
Law, B. E.; Jones, M. O.; Yang, Z.; Berner, L. T.
2015-12-01
Forest harvest regimes are changing as land managers cope with fires, drought, and insect damage. Thinning on public lands, typically focused on removal of small trees that could act as fuel ladders, is increasing to reduce risk of crown fires and reduce competition for water in crowded stands. On private lands, drought and wildfires could lead to further shortening of harvest cycles (e.g. from 80 to 45 years) or thinning. To examine the effects of potential changes in management regimes vs climate on carbon processes in forests of Oregon, California and Washington, we used data from ancillary plots, inventories, and satellites to parameterize and test the CLM4.5 model. We first examined contemporary biomass loss over the western US to determine the baseline conditions prior to implementing harvest scenarios. Annual biomass mortality from fires and insects increased significantly (1996-2011), and mortality from insects was about twice that of fires. California, Oregon and Idaho were most impacted by fire-related biomass mortality, whereas Colorado, Montana and Washington were most impacted by insects. Harvest scenarios implemented in CLM4.5 include two thinning scenarios to reduce crown fire risk and drought stress, and a salvage scenario to remove trees remaining after recent beetle or fire related mortality; taking into account our previous work showing 70 - 85 % of salvaged biomass is removed and the remainder is left on-site. We simulated the effect of treatments on current and future net ecosystem carbon balance. Challenges of regional modeling of management effects on carbon and other important considerations are addressed.
ArcFuels User Guide and Tutorial: for use with ArcGIS 9
Nicole M. Vaillant; Alan A. Ager; John Anderson; Lauren. Miller
2013-01-01
Fuel management planning can be a complex problem that is assisted by fire behavior modeling and geospatial analyses. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. Fire intensity, likelihood, and effects...
Aligning smoke management with ecological and public health goals
Jonathan W. Long; Leland W. Tarnay; Malcolm P. North
2017-01-01
Past and current forest management affects wildland fire smoke impacts on downwind human populations. However, mismatches between the scale of benefits and risks make it difficult to proactively manage wildland fires to promote both ecological and public health. Building on recent literature and advances in modeling smoke and health effects, we outline a framework to...
Effects of fire and fuels management on water quality in eastern North America
R. K. Kolka
2012-01-01
Fuels management, especially prescribed fire, can have direct impacts on aquatic resources through deposition of ash to surface waters. On the terrestrial side, fuels management leads to changes in vegetative structure and potentially soil properties that affect ecosystem cycling of water and inorganic and organic constituents. Because surface water systems (streams,...
Risk terminology primer: Basic principles and a glossary for the wildland fire management community
Matthew P. Thompson; Tom Zimmerman; Dan Mindar; Mary Taber
2016-01-01
Risk management is being increasingly promoted as an appropriate method for addressing wildland fire management challenges. However, a lack of a common understanding of risk concepts and terminology is hindering effective application. In response, this General Technical Report provides a set of clear, consistent, understandable, and usable definitions for terms...
The Fire and Fuels Extension to the Forest Vegetation Simulator
Elizabeth Reinhardt; Nicholas L. Crookston
2003-01-01
The Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) simulates fuel dynamics and potential fire behaviour over time, in the context of stand development and management. Existing models of fire behavior and fire effects were added to FVS to form this extension. New submodels representing snag and fuel dynamics were created to complete the linkages...
Fire effects in northeastern forests: jack pine.
Cary Rouse
1986-01-01
The jack pine ecosystem has evolved through fire. Jack pine, although easily killed by fire, has developed serotinous cones that depend upon high heat to open and release the seeds. Without a fire to enable the cones to open, jack pine would be replaced by another species. Prescribed fire can be an economical management tool for site preparation in either a natural...
Fire frequency effects on fuel loadings in pine-oak forests of the Madrean Province
Francisco J. Escobedo; Peter F. Ffolliott; Gerald J. Gottfried; Florentino Garza
2001-01-01
Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management...
Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Spano, D.
2015-12-01
Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current study highlighted that balanced combination of fuel management techniques could not only be a viable mean to reduce fire emissions but at the same time prevent future wildfires and the related threat to human lives and activities.
Wildland fire research: Future Search conference notes
Jim Saveland; Dave Thomas
1998-01-01
This conference provided an arena for identifying common key issues that are shaping wildland fire research. Commonly identified desired outcomes include: research, integrated across disciplines, and management form partnerships; communication between management and research is effective and continuous; responsive and proactive research balances long-term scientific...
Fire hazards at the urban-wildland interface: What the public expects
NASA Astrophysics Data System (ADS)
Cortner, Hanna J.; Gardner, Philip D.; Taylor, Jonathan G.
1990-01-01
Urban-wildland issues have become among the most contentious and problematic issues for forest managers. Using data drawn from surveys conducted by the authors and others, this article discusses how public knowledge and perceptions of fire policies and fire hazards change over time, the kinds of policy responses homeowners prefer as a way of preventing fire hazards at the urban-wildland interface, and how citizens view their own obligations as participants in interface issues. These data show that public attitudes toward fire have changed significantly over the past two decades and that educating the public about fire and the managers' use of fire can have positive effects on behavior. Yet, modifying the individual's behavior in regard to interface fire risks must also deal with important issues of individual incentives, the distribution of costs, and unanticipated policy impacts.
Fire hazards at the urban-wildland interface: what the public expects
Cortner, Hanna J.; Gardner, Philip D.; Taylor, Jonathan G.
1990-01-01
Urban-wildland issues have become among the most contentious and problematic issues for forest managers. Using data drawn from surveys conducted by the authors and others, this article discusses how public knowledge and perceptions of fire policies and fire hazards change over time, the kinds of policy responses homeowners prefer as a way of preventing fire hazards at the urban-wildland interface, and how citizens view their own obligations as participants in interface issues. These data show that public attitudes toward fire have changed significantly over the past two decades and that educating the public about fire and the managers' use of fire can have positive effects on behavior. Yet, modifying the individual's behavior in regard to interface fire risks must also deal with important issues of individual incentives, the distribution of costs, and unanticipated policy impacts.
Introduction to the effects of wildland fire on aquatic ecosystems in the Western USA
Rieman, B.; Gresswell, Robert E.; Young, M.; Luce, C.
2003-01-01
The management of wildfire has long been controversial. The role of fire and fire-related management in terrestrial and aquatic ecosystems has become an important focus in recent years, but the general debate is not new. In his recent book, Stephen Pyne (2001 )describes the political and scientific debate surrounding the creation of the U.S. Forest Service and the emergence of fire suppression as a central tenet of wildland management. Essentially, views in the first decade of the 20th century focused on fire as good or evil: a tool that might benefit other resources or interests (e.g. Indian burning) and mitigate larger more destructive fires, or a threat to the recruitment and productivity of newly designated forest reserves. The “great fires” in the Western USA in 1910 and the associated loss of human life and property largely forged the public and political will to suppress fire on a massive scale.
Jane Kapler Smith; Donald E. Zimmerman; Carol Akerelrea; Garrett O' Keefe
2008-01-01
Natural resource managers use a variety of computer-mediated presentation methods to communicate management practices to the public. We explored the effects of using the Stand Visualization System to visualize and animate predictions from the Forest Vegetation Simulator-Fire and Fuels Extension in presentations explaining forest succession (forest growth and change...
Peter R. Robichaud; Sarah A. Lewis; Robert E. Brown; Louise E. Ashmun
2009-01-01
The predicted continuation of strong drying and warming trends in the southwestern United States underlies the associated prediction of increased frequency, area, and severity of wildfires in the coming years. As a result, the management of wildfires and fire effects on public lands will continue to be a major land management priority for the foreseeable future....
Fire and logging history at Huckleberry Hallow, Shannon County, Missouri
Richard P. Guyette; Daniel C. Dey
1997-01-01
Disturbances such as windthrow, fire and timber harvest significantly effect how forest ecosystems develop. We have and continue to modify the nature of our forests through anthropogenic fire, fire suppression, and resource exploitation and management. Past disturbance histories, as well as current cultural practices and ecological processes, must be considered in...
Retrospective fire modeling: Quantifying the impacts of fire suppression
Brett H. Davis; Carol Miller; Sean A. Parks
2010-01-01
Land management agencies need to understand and monitor the consequences of their fire suppression decisions. We developed a framework for retrospective fire behavior modeling and impact assessment to determine where ignitions would have spread had they not been suppressed and to assess the cumulative effects that would have resulted. This document is a general...
Ten-year responses of oak regeneration to prescribed fire
Erik Berg; Barry Clinton; Jim Vose; Wayne Swank
2011-01-01
Prescribed fire has proven effective in controlling vegetative competition of oak regeneration across many sites in the southeastern US most fire investigations have been performed in the Piedmont and Coastal Plain. Land managers lake definitive knowledge on how to use prescribed fire to improve long-term oak regeneration success in the southern Appalachians. Several...
The hidden consequences of fire suppression
Carol Miller
2012-01-01
Wilderness managers need a way to quantify and monitor the effects of suppressing lightning-caused wildfires, which can alter natural fire regimes, vegetation, and habitat. Using computerized models of fire spread, weather, and fuels, it is now possible to quantify many of the hidden consequences of fire suppression. Case study watersheds in Yosemite and Sequoia-Kings...
Lindenmayer, David B.; Wood, Jeff; MacGregor, Christopher; Buckley, Yvonne M.; Dexter, Nicholas; Fortescue, Martin; Hobbs, Richard J.; Catford, Jane A.
2015-01-01
Invasive plant management is often justified in terms of conservation goals, yet progress is rarely assessed against these broader goals, instead focussing on short-term reductions of the invader as a measure of success. Key questions commonly remain unanswered including whether invader removal reverses invader impacts and whether management itself has negative ecosystem impacts. We addressed these knowledge gaps using a seven year experimental investigation of Bitou Bush, Chrysanthemoides monilifera subsp. rotundata. Our case study took advantage of the realities of applied management interventions for Bitou Bush to assess whether it is a driver or passenger of environmental change, and quantified conservation benefits relative to management costs of different treatment regimes. Among treatments examined, spraying with herbicide followed by burning and subsequent re-spraying (spray-fire-spray) proved the most effective for reducing the number of individuals and cover of Bitou Bush. Other treatment regimes (e.g. fire followed by spraying, or two fires in succession) were less effective or even exacerbated Bitou Bush invasion. The spray-fire-spray regime did not increase susceptibility of treated areas to re-invasion by Bitou Bush or other exotic species. This regime significantly reduced plant species richness and cover, but these effects were short-lived. The spray-fire-spray regime was the most cost-effective approach to controlling a highly invasive species and facilitating restoration of native plant species richness to levels characteristic of uninvaded sites. We provide a decision tree to guide management, where recommended actions depend on the outcome of post-treatment monitoring and performance against objectives. Critical to success is avoiding partial treatments and treatment sequences that may exacerbate invasive species impacts. We also show the value of taking advantage of unplanned events, such as wildfires, to achieve management objectives at reduced cost. PMID:26039730
Lindenmayer, David B; Wood, Jeff; MacGregor, Christopher; Buckley, Yvonne M; Dexter, Nicholas; Fortescue, Martin; Hobbs, Richard J; Catford, Jane A
2015-01-01
Invasive plant management is often justified in terms of conservation goals, yet progress is rarely assessed against these broader goals, instead focussing on short-term reductions of the invader as a measure of success. Key questions commonly remain unanswered including whether invader removal reverses invader impacts and whether management itself has negative ecosystem impacts. We addressed these knowledge gaps using a seven year experimental investigation of Bitou Bush, Chrysanthemoides monilifera subsp. rotundata. Our case study took advantage of the realities of applied management interventions for Bitou Bush to assess whether it is a driver or passenger of environmental change, and quantified conservation benefits relative to management costs of different treatment regimes. Among treatments examined, spraying with herbicide followed by burning and subsequent re-spraying (spray-fire-spray) proved the most effective for reducing the number of individuals and cover of Bitou Bush. Other treatment regimes (e.g. fire followed by spraying, or two fires in succession) were less effective or even exacerbated Bitou Bush invasion. The spray-fire-spray regime did not increase susceptibility of treated areas to re-invasion by Bitou Bush or other exotic species. This regime significantly reduced plant species richness and cover, but these effects were short-lived. The spray-fire-spray regime was the most cost-effective approach to controlling a highly invasive species and facilitating restoration of native plant species richness to levels characteristic of uninvaded sites. We provide a decision tree to guide management, where recommended actions depend on the outcome of post-treatment monitoring and performance against objectives. Critical to success is avoiding partial treatments and treatment sequences that may exacerbate invasive species impacts. We also show the value of taking advantage of unplanned events, such as wildfires, to achieve management objectives at reduced cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.
Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less
Ecological effects of prescribed fire season: a literature review and synthesis for managers
Eric E. Knapp; Becky L. Estes; Carl N. Skinner
2009-01-01
Prescribed burning may be conducted at times of the year when fires were infrequent historically, leading to concerns about potential adverse effects on vegetation and wildlife. Historical and prescribed fire regimes for different regions in the continental United States were compared and literature on season of prescribed burning synthesized. In regions and vegetation...
Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada
J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens
2010-01-01
Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...
Effects of timber harvest following wildfire in western North America
David L. Peterson; James K. Agee; Gregory H. Aplet; Dennis P. Dykstra; Russell T. Graham; John F. Lehmkuhl; David S. Pilliod; Donald F. Potts; Robert F. Powers; John D. Stuart
2009-01-01
Timber harvest following wildfire leads to different outcomes depending on the biophysical setting of the forest, pattern of burn severity, operational aspects of tree removal, and other management activities. Fire effects range from relatively minor, in which fire burns through the understory and may kill a few trees, to severe, in which fire kills most trees and...
Spatial patterns of large natural fires in Sierra Nevada wilderness areas
Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.
2007-01-01
The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.
Smokey comes of age: Unmanned aerial systems for fire management
Twidwell, Dirac; Allen, Craig R.; Detweiler, Carrick; Higgins, James; Laney, Christian; Elbaum, Sebastian
2016-01-01
During the past century, fire management has focused on techniques both to protect human communities from catastrophic wildfire and to maintain fire-dependent ecological systems. However, despite a large and increasing allocation of resources and personnel to achieve these goals, fire management objectives at regional to global scales are not being met. Current fire management techniques are clearly inadequate for the challenges faced by fire managers, and technological innovations are needed. Advances in unmanned aerial systems (UAS) technology provide opportunities for innovation in fire management and science. In many countries, fire management organizations are beginning to explore the potential of UAS for monitoring fires. We have taken the next step and developed a prototype that can precisely ignite fires as part of wildfire suppression tactics or prescribed fires (fire intentionally ignited within predetermined conditions to reduce hazardous fuels, improve habitat, or mitigate for large wildfires). We discuss the potential for these technologies to benefit fire management activities, while acknowledging the sizeable sociopolitical barriers that prevent their immediate broad application.
Cattle as ecosystem engineers: New grazing management enhances rangeland biodiversity
USDA-ARS?s Scientific Manuscript database
A confluence of factors has shaped the composition and structure of vegetation on rangelands in the American West. These factors include climate, soils, topography, history of grazing and fire (both wildfire and prescribed fire) as well as legacy effects from prior land management practices. Despite...
Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests
NASA Astrophysics Data System (ADS)
Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.
2017-12-01
The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.
Status of native fishes in the western United States and issues for fire and fuels management
Rieman, B.; Lee, D.; Burns, D.; Gresswell, Robert E.; Young, M.; Stowell, R.; Rinne, J.; Howell, P.
2003-01-01
Conservation of native fishes and changing patterns in wildfire and fuels are defining challenges for managers of forested landscapes in the western United States. Many species and populations of native fishes have declined in recorded history and some now occur as isolated remnants of what once were larger more complex systems. Land management activities have been viewed as one cause of this problem. Fires also can have substantial effects on streams and riparian systems and may threaten the persistence of some populations of fish, particularly those that are small and isolated. Despite that, major new efforts to actively manage fires and fuels in forests throughout the region may be perceived as a threat rather than a benefit to conservation of native fishes and their habitats. The management of terrestrial and aquatic resources has often been contentious, divided among a variety of agencies with different goals and mandates. Management of forests, for example, has generally been viewed as an impact on aquatic systems. Implementation of the management-regulatory process has reinforced a uniform approach to mitigate the threats to aquatic species and habitats that may be influenced by management activities. The problems and opportunities, however, are not the same across the landscapes of interest. Attempts to streamline the regulatory process often search for generalized solutions that may oversimplify the complexity of natural systems. Significant questions regarding the influence of fire on aquatic ecosystems, changing fire regimes, and the effects of fire-related management remain unresolved and contribute to the uncertainty. We argue that management of forests and fishes can be viewed as part of the same problem, that of conservation and restoration of the natural processes that create diverse and productive ecosystems. We suggest that progress toward more integrated management of forests and native fishes will require at least three steps: (1) better integration and development of a common conceptual foundation and ecological goals; (2) attention to landscape and ecological context; and (3) recognition of uncertainty.
Effects of fire on bird populations in mixed-grass prairie: Chapter 8
Johnson, Douglas H.; Knopf, F.L.; Samson, F.B.
1997-01-01
The mixed-grass prairie is one of the largest ecosystems in North America, originally covering about 69 million hectares (Bragg and Steuter 1995). Although much of the natural vegetation has been replaced by cropland and other uses (Samson and Knopf 1994, Bragg and Steuter 1995), significant areas have been preserved in national wildlife refuges, waterfowl production areas, state game management areas, and nature preserves. Mixed-grass prairie evolved with fire (Bragg 1995), and fire is frequently used as a management tool for prairie (Berkey et al. 1993). Much of the mixed-grass prairie that has been protected is managed to enhance the reproductive success of waterfowl and other gamebirds, but nongame birds now are receiving increasing emphasis. Despite the importance of the area to numerous species of birds and the aggressive management applied to many sites, relatively little is known about the effects of fire on the suitability of mixed-grass prairie for breeding birds. Several studies have examined effects of fire on breeding birds in the tallgrass prairie (e.g., Tester and Marshall 1961, Eddleman 1974, Halvorsen and Anderson 1983, Westenmeier and Buhnerkempe 1983, Zimmerman 1992, Herkert 1994), in western sagebrush grasslands (Peterson and Best 1987), and in shrubsteppe (Bock and Bock 1987). Studies of fire effects in the mixed-grass prairie are limited. Huber and Steuter (1984) examined the effects on birds during the breeding season following an early-May prescribed burn on a 122-ha site in South Dakota. They contrasted the bird populations on that site to those on a nearby 462-ha unburned site that had been lightly grazed by bison (Bison bison). Pylypec (1991) monitored breeding bird populations occurring in fescue prairies of Canada on a single 12.9-ha burned area and on an adjacent 5.6-ha unburned fescue prairie for three years after a prescribed burn. This chapter describes the effects of prescribed fire on common terrestrial birds at a mixed-grass prairie site in east-central North Dakota. Birds were censused annually during 1972-95 on seven plots subjected to various regimes of prescribed fire.
George T. Cvetkovich; Patricia L. Winter
2008-01-01
This report presents results from a study of San Bernardino National Forest community residentsâ experiences with and perceptions of fire, fire management, and the Forest Service. Using self-administered surveys and focus group discussions, we found that participants had personal experiences with fire, were concerned about fire, and felt knowledgeable about effective...
A Drought Index for Forest Fire Control
John J. Keetch; George M. Byram
1968-01-01
The moisture content of the upper soil, as well as that of the covering layer of duff, has an important effect on the fire suppression effort in forest and wildland areas. In certain forested areas of the United States, fires in deep duff fuels are of particular concern to the fire control manager. When these fuels are dry, fires burn deeply, dam-age is excessive, and...
50 years of service: The Missoula Fire Sciences Lab
Jane Kapler Smith; Diane Smith; Colin Hardy
2011-01-01
In September 12, 1960, the brand new Northern Forest Fire Laboratory was dedicated in Missoula, MT. The fire labâs mission was - and is - to improve scientific understanding of wildland fire so it can be managed more safely and effectively in the field. The first scientists to work at the fire lab initiated research that continues to be used, refined, and extended....
Joseph B. Fontaine; Daniel C. Donato; W. Douglas Robinson; Beverly E. Law; J. Boone Kauffman
2009-01-01
Fire is a widespread natural disturbance agent in most conifer-dominated forests. In light of climate change and the effects of fire exclusion, single and repeated high-severity (stand-replacement) fires have become prominent land management issues. We studied bird communities using point counting in the Klamath-Siskiyou ecoregion of Oregon, USA at various points in...
Atmosphere-fire simulation of effects of low-level jets on pyro-convective plume dynamics
Colin C. Simpson; Marwan Katurji; Michael T. Kiefer; Shiyuan Zhong; Joseph J. Charney; Warren E. Heilman; Xindi Bian
2013-01-01
Blow-up fire behaviour can be broadly defined as a rapid escalation in the intensity or forward rate of spread of a wildland fire, and is often accompanied by extreme pyro-convection associated with rapid smoke release and dispersion. Blow-up fire behaviour is difficult to predict and has been linked to firefighter fatalities, making it an important fire management...
An event-based approach for examining the effects of wildland fire decisions on communities
Stephen F. McCool; James A. Burchfield; Daniel R. Williams; Matthew S. Carroll
2006-01-01
Public concern over the consequences of forest fire to wildland interface communities has led to increased resources devoted to fire suppression, fuel treatment, and management of fire events. The social consequences of the decisions involved in these and other fire-related actions are largely unknown, except in an anecdotal sense, but do occur at a variety of temporal...
Epanchin-Niell, Rebecca; Englin, Jeffrey; Nalle, Darek
2009-01-01
In large areas of the arid western United States, much of which are federally managed, fire frequencies and associated management costs are escalating as flammable, invasive cheatgrass (Bromus tectorum) increases its stronghold. Cheatgrass invasion and the subsequent increase in fire frequency result in the loss of native vegetation, less predictable forage availability for livestock and wildlife, and increased costs and risk associated with firefighting. Revegetation following fire on land that is partially invaded by cheatgrass can reduce both the dominance of cheatgrass and its associated high fire rate. Thus restoration can be viewed as an investment in fire-prevention and, if native seed is used, an investment in maintaining native vegetation on the landscape. Here we develop and employ a Markov model of vegetation dynamics for the sagebrush steppe ecosystem to predict vegetation change and management costs under different intensities and types of post-fire revegetation. We use the results to estimate the minimum total cost curves for maintaining native vegetation on the landscape and for preventing cheatgrass dominance. Our results show that across a variety of model parameter possibilities, increased investment in post-fire revegetation reduces long-term fire management costs by more than enough to offset the costs of revegetation. These results support that a policy of intensive post-fire revegetation will reduce long-term management costs for this ecosystem, in addition to providing environmental benefits. This information may help justify costs associated with revegetation and raise the priority of restoration in federal land budgets.
Erosion Risk Management Tool (ERMiT) user manual (version 2006.01.18)
Peter R. Robichaud; William J. Elliot; Fredrick B. Pierson; David E. Hall; Corey A. Moffet; Louise E. Ashmun
2007-01-01
The decision of where, when, and how to apply the most effective post-fire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. To aid in this assessment, the Erosion Risk Management Tool (ERMiT) was developed. This user manual describes the input parameters, input interface, model...
Impact of postfire management on forest regeneration in a managed hemiboreal forest, Estonia
Kristi Parro; Marek Metslaid; Getter Renel; Allan Sims; John Stanturf; Kalev Jogiste; Kajar Koster
2015-01-01
Fire is a significant agent for the development of boreal and hemiboreal forests, altering soil and light conditions, affecting seedbanks, and removing seed trees. Burned areas should be managed with care, as inappropriate techniques prolong the regeneration period and reduce the diversity and resilience of stands to disturbances. To study the effects of fire and...
Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett
2012-01-01
Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...
Fuel Management-An Integral Part of Fire Management: Trans-Tasman Perspective
Jim Gould
2006-01-01
Although Australia and New Zealand have quite different fire climates and fuels, the common understanding of fire behaviour underlies many facets of fire management in both countries. Fire management is the legal responsibility of various government land management agencies that manage public lands and individuals, local governments or corporations that manage private...
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
Management of a fire in the operating room.
Kaye, Alan David; Kolinsky, Daniel; Urman, Richard D
2014-04-01
Operating room (OR) fires remain a significant source of liability for anesthesia providers and injury for patients, despite existing practice guidelines and other improvements in operating room safety. Factors contributing to OR fires are well understood and these occurrences are generally preventable. OR personnel must be familiar with the fire triad which consists of a fuel supply, an oxidizing agent, and an ignition source. Existing evidence shows that OR-related fires can result in significant patient complications and malpractice claims. Steps to reduce fires include taking appropriate safety measures before a patient is brought to the OR, taking proper preventive measures during surgery, and effectively managing fire and patient complications when they occur. Decreasing the incidence of fires should be a team effort involving the entire OR personnel, including surgeons, anesthesia providers, nurses, scrub technologists, and administrators. Communication and coordination among members of the OR team is essential to creating a culture of safety.
75 FR 39707 - STP Nuclear Operating Company, South Texas Project, Units 1 and 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... consistent with the expected practice of fatigue management. Maintenance The NRC staff does not consider... September 21, 2009 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML092720178... understanding the effects of fire and fire suppressants on safe shutdown capability; (4) performing maintenance...
Effects of fire season on vegetation in longleaf pine (Pinus palustris) forests
Bryan T. Mudder; G. Geoff Wang; Joan L. Walker; J. Drew Lanham; Ralph Costa
2010-01-01
Forest managers in the Southeastern United States are interested in the restoration of not only longleaf pine (Pinus palustris) trees, but also the characteristic forest structure and ground-layer vegetation of the longleaf pine ecosystem. Season of burn, fire intensity, and fire frequency are critical components of a fire regime that supports...
Climate change and fire danger rating in the Northern Rockies
Faith Ann Heinsch; Charles W. McHugh
2010-01-01
Studies have indicated that changes in wildland fire activity are, at least in part, a product of climate change. Fire danger indices, driven by climatology, should reflect these changes. Energy Release Component (ERC) is considered to be an effective indicator of drought conditions and seasonal drying of forest fuels and is often used in fire management planning....
Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines
Heidi J. Renninger; Kenneth L. Clark; Nicholas Skowronski; Karina V.R. Schäfer
2013-01-01
Although wildfires are important in many forested ecosystems, increasing suburbanization necessitates management with prescribed fires. The physiological responses of overstory trees to prescribed fire has received little study and may differ from typical wildfires due to the lower intensity and timing of prescribed fire in the dormant season. Trees may be negatively...
National Fire Plan Research and Development 2002 Business Summary
USDA Forest Service
2003-01-01
This report summarizes the progress made by Forest Service NFP R&D in FY2002, the second year of NFP funding. Fire research conducted by Forest Service R&D is working to provide the scientific foundation necessary to increase firefighting safety and effectiveness, enhance restoration of fire-scarred landscapes, reduce fire risk through improved management of...
Index for characterizing post-fire soil environments in temperate coniferous forests
Theresa B. Jain; David S. Pilliod; Russell T. Graham; Leigh B. Lentile; Jonathan E. Sandquist
2012-01-01
Many scientists and managers have an interest in describing the environment following a fire to understand the effects on soil productivity, vegetation growth, and wildlife habitat, but little research has focused on the scientific rationale for classifying the post-fire environment. We developed an empirically-grounded soil post-fire index (PFI) based on available...
Physical characteristics of some northern California brush fuels
Clive M. Countryman
1982-01-01
Brush species make up much of the fuel load in forested wildlands. Basic physical and chemical characteristics of these species influence ease of ignition, rate of fire spread, burning time, and fire intensity. Quantitative knowledge of the variations in brush characteristics is essential to progress in fire control and effective use of fire in wildland management....
Fine-scale spatial climate variation and drought mediate the likelihood of reburning.
Parks, Sean A; Parisien, Marc-André; Miller, Carol; Holsinger, Lisa M; Baggett, Larry Scott
2018-03-01
In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self-limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age classes), thereby reducing the likelihood of uncharacteristically large fires in regions with active fire regimes. However, the strength and longevity of this self-limiting phenomenon is not well understood in most fire-prone ecosystems. In this study, we quantify the self-limiting effect in terms of its strength and longevity for five fire-prone study areas in western North America and investigate how each measure varies along a spatial climatic gradient and according to temporal (i.e., annual) climatic variation. Results indicate that the longevity (i.e., number of years) of the self-limiting effect ranges between 15 yr in the warm and dry study area in the southwestern United States to 33 yr in the cold, northern study areas in located in northwestern Montana and the boreal forest of Canada. We also found that spatial climatic variation has a strong influence on wildland fire's self-limiting capacity. Specifically, the self-limiting effect within each study area was stronger and lasted longer in areas with low mean moisture deficit (i.e., wetter and cooler settings) compared to areas with high mean moisture deficit (warmer and drier settings). Last, our findings show that annual climatic variation influences wildland fire's self-limiting effect: drought conditions weakened the strength and longevity of the self-limiting effect in all study areas, albeit at varying magnitudes. Overall, our study provides support for the idea that wildland fire contributes to spatial heterogeneity in fuel ages that subsequently mediate future fire sizes and effects. However, our findings show that the strength and longevity of the self-limiting effect varies considerably according to spatial and temporal climatic variation, providing land and fire managers relevant information for effective planning and management of fire and highlighting that fire itself is an important factor contributing to fire-free intervals. © 2017 by the Ecological Society of America.
Learning from wilderness: The social dimension of fire management
Anne E. Black
2009-01-01
In 2008, the U.S. Forest Service (USFS) began piloting a "new" concept in fire management: managing "fire as fire" on the landscape; no more black-and-white distinctions between "good" fire and "bad" fire. Instead, under the new direction, the USFS manages the fire based on what the land, the long-term objectives, the land...
Piqué, Míriam; Domènech, Rut
2018-03-15
Fuel treatments can mitigate present and future impacts of climate change by reducing fire intensity and severity. In recent years, Pinus nigra forests in the Mediterranean basin have been dramatically affected by the new risk of highly intense and extreme fires and its distribution area has been reduced. New tools are necessary for assessing the management of these forests so they can adapt to the challenges to come. Our main goal was to evaluate the effects of different fuel treatments on Mediterranean Pinus nigra forests. We assessed the forest response, in terms of forest structure and fire behavior, to different intensities of low thinning treatments followed by different slash prescriptions (resulting in: light thinning and lop and scatter; light thinning and burn; heavy thinning and lop and scatter; heavy thinning and burn; and, untreated control). Treatments that used fire to decrease the resulting slash were the most effective for reducing active crown fires decreasing the rate of spread and flame length more than 89%. Low thinning had an effect on torching potential, but there was no difference between intensities of thinning. Only an outcoming crown fire could spread actively if it was sustained by a high-enough constant wind speed and enough surface fuel load. Overall, treatments reduce fire intensity and treated areas have a more homogenous fire behavior response than untreated areas. This provides opportunities to extinguish the fire and reduce the probability of trees dying from the fire. It would be helpful to include ecological principles and fire behavior criteria in silvicultural treatment guidelines in order to perform more efficient management techniques in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek
2016-01-01
A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...
Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari
2013-12-01
Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Jeanne C. Chambers; E. Durant McArthur; Steven B. Monson; Susan E. Meyer; Nancy L. Shaw; Robin J. Tausch; Robert R. Blank; Steve Bunting; Richard R. Miller; Mike Pellant; Bruce A. Roundy; Scott C. Walker; Alison Whittaker
2005-01-01
Pinyon-juniper woodlands and Wyoming big sagebrush ecosystems have undergone major changes in vegetation structure and composition since settlement by European Americans. These changes are resulting in dramatic shifts in fire frequency, size and severity. Effective management of these systems has been hindered by lack of information on: (1) presettlement fire regimes...
Ralph E.J. Boerner; Jennifer a. Brinkman; Daniel A. Yaussy
2007-01-01
This study presents an analysis of the effect of ecosystem restoration treatments on soil properties in the oak forests of southern Ohio. The treatments were (1) prescribed fire, (2) mechanical thinning, (3) fire and thinning, and (4) passive management (control). Fire and thinning resulted in increased mineral soil exposure, with the effect decreasing by the fourth...
J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel
2017-01-01
The Science Framework is intended to link the Department of the Interiorâs Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...
Cascading effects of fire exclusion in the Rocky Mountain ecosystems: a literature review
Robert E. Keane; Kevin C. Ryan; Tom T. Veblen; Craig D. Allen; Jessie Logan; Brad Hawkes
2002-01-01
The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent...
Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North
2015-01-01
Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...
Scott M. Ferrenberg; Dylan W. Schwilk; Eric E. Knapp; Eric Groth; Jon E. Keeley
2006-01-01
Prior to fire suppression in the 20th century, the mixed-conifer forests of the Sierra Nevada, California, U.S.A., historically burned in frequent fires that typically occurred during the late summer and early fall. Fire managers have been attempting to restore natural ecosystem processes through prescription burning, and have often favored burning during the fall in...
NASA Astrophysics Data System (ADS)
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni
2015-09-01
The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.
Division of Forestry Fire and Aviation Program
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J
2013-10-01
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.
NASA Astrophysics Data System (ADS)
Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.
2013-10-01
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.
Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships
NASA Astrophysics Data System (ADS)
Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott
2018-02-01
Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size
Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.
2016-01-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940
The Greek National Observatory of Forest Fires (NOFFi)
NASA Astrophysics Data System (ADS)
Tompoulidou, Maria; Stefanidou, Alexandra; Grigoriadis, Dionysios; Dragozi, Eleni; Stavrakoudis, Dimitris; Gitas, Ioannis Z.
2016-08-01
Efficient forest fire management is a key element for alleviating the catastrophic impacts of wildfires. Overall, the effective response to fire events necessitates adequate planning and preparedness before the start of the fire season, as well as quantifying the environmental impacts in case of wildfires. Moreover, the estimation of fire danger provides crucial information required for the optimal allocation and distribution of the available resources. The Greek National Observatory of Forest Fires (NOFFi)—established by the Greek Forestry Service in collaboration with the Laboratory of Forest Management and Remote Sensing of the Aristotle University of Thessaloniki and the International Balkan Center—aims to develop a series of modern products and services for supporting the efficient forest fire prevention management in Greece and the Balkan region, as well as to stimulate the development of transnational fire prevention and impacts mitigation policies. More specifically, NOFFi provides three main fire-related products and services: a) a remote sensing-based fuel type mapping methodology, b) a semi-automatic burned area mapping service, and c) a dynamically updatable fire danger index providing mid- to long-term predictions. The fuel type mapping methodology was developed and applied across the country, following an object-oriented approach and using Landsat 8 OLI satellite imagery. The results showcase the effectiveness of the generated methodology in obtaining highly accurate fuel type maps on a national level. The burned area mapping methodology was developed as a semi-automatic object-based classification process, carefully crafted to minimize user interaction and, hence, be easily applicable on a near real-time operational level as well as for mapping historical events. NOFFi's products can be visualized through the interactive Fire Forest portal, which allows the involvement and awareness of the relevant stakeholders via the Public Participation GIS (PPGIS) tool.
High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.
1990-01-01
An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.
Prescribed fire and its impacts on ecosystem services in the UK.
Harper, Ashleigh R; Doerr, Stefan H; Santin, Cristina; Froyd, Cynthia A; Sinnadurai, Paul
2018-05-15
The impacts of vegetation fires on ecosystems are complex and varied affecting a range of important ecosystem services. Fire has the potential to affect the physicochemical and ecological status of water systems, alter several aspects of the carbon cycle (e.g. above- and below-ground carbon storage) and trigger changes in vegetation type and structure. Globally, fire is an essential part of land management in fire-prone regions in, e.g. Australia, the USA and some Mediterranean countries to mitigate the likelihood of catastrophic wildfires and sustain healthy ecosystems. In the less-fire prone UK, fire has a long history of usage in management for enhancing the productivity of heather, red grouse and sheep. This distinctly different socioeconomic tradition of burning underlies some of the controversy in recent decades in the UK around the use of fire. Negative public opinion and opposition from popular media have highlighted concerns around the detrimental impacts burning can have on the health and diversity of upland habitats. It is evident there are many gaps in the current knowledge around the environmental impacts of prescribed burning in less fire-prone regions (e.g. UK). Land owners and managers require a greater level of certainty on the advantages and disadvantages of prescribed burning in comparison to other techniques to better inform management practices. This paper addresses this gap by providing a critical review of published work and future research directions related to the impacts of prescribed fire on three key aspects of ecosystem services: (i) water quality, (ii) carbon dynamics and (iii) habitat composition and structure (biodiversity). Its overall aims are to provide guidance based on the current state-of-the-art for researchers, land owners, managers and policy makers on the potential effects of the use of burning and to inform the wider debate about the place of fire in modern conservation and land management in humid temperate ecosystems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Daniel Moya; Armando González-Cabán; José J. Sánchez; José de la Heras
2013-01-01
Recent advances in fire behavior are conforming strategies for forest management in nonindustrial private and public forests in the western United States. The strategy developed should include identifying the most cost-effective ways for allocating fire management budgets. In recreational areas, visitorsâ opinion should be included in forest planning decisions and...
Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.
The federal wildland policy: opportunities for wilderness fire management
G. Thomas Zimmerman; David L. Bunnell
2000-01-01
The Federal Wildland Fire Management Policy and Program Review represents the latest stage in the evolution of wildland fire management. This policy directs changes that consolidate past fire management practices into a single direction to achieve multidimensional objectives and creates increased opportunities for wilderness fire management. Objectives previously...
Wibbenmeyer, Matthew J; Hand, Michael S; Calkin, David E; Venn, Tyron J; Thompson, Matthew P
2013-06-01
Federal policy has embraced risa management as an appropriate paradigm for wildfire management. Economic theory suggests that over repeated wildfire events, potential economic costs and risas of ecological damage are optimally balanced when management decisions are free from biases, risa aversion, and risa seeking. Of primary concern in this article is how managers respond to wildfire risa, including the potential effect of wildfires (on ecological values, structures, and safety) and the likelihood of different fire outcomes. We use responses to a choice experiment questionnaire of U.S. federal wildfire managers to measure attitudes toward several components of wildfire risa and to test whether observed risa attitudes are consistent with the efficient allocation of wildfire suppression resources. Our results indicate that fire managers' decisions are consistent with nonexpected utility theories of decisions under risa. Managers may overallocate firefighting resources when the likelihood or potential magnitude of damage from fires is low, and sensitivity to changes in the probability of fire outcomes depends on whether probabilities are close to one or zero and the magnitude of the potential harm. © 2012 Society for Risk Analysis.
Saab, Victoria A.; Powell, Hugo D.W.; Kotliar, Natasha B.; Newlon, Karen R.; Saab, Victoria A.; Powell, Hugo D.W.
2005-01-01
Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fi r (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species’ responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.
Saab, V.A.; Powell, Hugo D.W.; Kotliar, N.B.; Newlon, K.R.
2005-01-01
Information about avian responses to fire in the U.S. Rocky Mountains is based solely on studies of crown fires. However, fire management in this region is based primarily on studies of low-elevation ponderosa pine (Pinus ponderosa) forests maintained largely by frequent understory fires. In contrast to both of these trends, most Rocky Mountain forests are subject to mixed severity fire regimes. As a result, our knowledge of bird responses to fire in the region is incomplete and skewed toward ponderosa pine forests. Research in recent large wildfires across the Rocky Mountains indicates that large burns support diverse avifauna. In the absence of controlled studies of bird responses to fire, we compared reproductive success for six cavity-nesting species using results from studies in burned and unburned habitats. Birds in ponderosa pine forests burned by stand-replacement fire tended to have higher nest success than individuals of the same species in unburned habitats, but unburned areas are needed to serve species dependent upon live woody vegetation, especially foliage gleaners. Over the last century, fire suppression, livestock grazing, and logging altered the structure and composition of many low-elevation forests, leading to larger and more severe burns. In higher elevation forests, changes have been less marked. Traditional low-severity prescribed fire is not likely to replicate historical conditions in these mixed or high-severity fire regimes, which include many mixed coniferous forests and all lodgepole pine (Pinus contorta) and spruce-fir (Picea-Abies) forests. We suggest four research priorities: (1) the effects of fire severity and patch size on species' responses to fire, (2) the possibility that postfire forests are ephemeral sources for some bird species, (3) the effect of salvage logging prescriptions on bird communities, and (4) experiments that illustrate bird responses to prescribed fire and other forest restoration methods. This research is urgent if we are to develop fire management strategies that reduce fire risk and maintain habitat for avifauna and other wildlife of the Rocky Mountains.
Consuming fire ants reduces northern bobwhite survival and weight gain
Myers, P.E.; Allen, Craig R.; Birge, Hannah E.
2014-01-01
Northern bobwhite quail, Colinus virginianus (L.) (Galliformes: Odontophoridae), population declines are well documented, but pinpointing the reasons for these decreases has proven elusive. Bobwhite population declines are attributed primarily to loss of habitat and land use changes. This, however, does not entirely explain population declines in areas intensively managed for bobwhites. Although previous research demonstrates the negative impact of red imported fire ant (Solenopsis invicta Buren) (Hymenoptera: Formicidae) on northern bobwhites, the mechanisms underlying this effect are largely unknown. To meet the protein demands of early growth and development, bobwhite chicks predominantly consume small insects, of which ants are a substantial proportion. Fire ants alter ant community dynamics by often reducing native ant diversity and abundance while concurrently increasing the abundance of individuals. Fire ants have negative effects on chicks, but they are also a large potential protein source, making it difficult to disentangle their net effect on bobwhite chicks. To help investigate these effects, we conducted a laboratory experiment to understand (1) whether or not bobwhites consume fire ants, and (2) how the benefits of this consumption compare to the deleterious impacts of bobwhite chick exposure to fire ants. Sixty bobwhite chicks were separated into two groups of 30; one group was provided with starter feed only and the second group was provided with feed and fire ants. Bobwhite chicks were observed feeding on fire ants. Chicks that fed on fire ants had reduced survival and weight gain. Our results show that, while fire ants increase potential food sources for northern bobwhite, their net effect on bobwhite chicks is deleterious. This information will help inform land managers and commercial bobwhite rearing operations.
Effects of periodic fire on composition and long-term dynamics of Arkansas upland hardwood forests
Martin A. Spetich
2005-01-01
Prescribed fire (at historic periodic fire frequencies) is seen as an important but little understood tool in the assortment of management techniques that could help restore oak to Arkansas upland hardwood forests and facilitate the maintenance of these keystone species.
Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467
Historic fire regimes of eastern Great Basin (USA) mountains reconstructed from tree rings
Stanley G. Kitchen
2010-01-01
Management of natural landscapes requires knowledge of key disturbance processes and their effects. Fire and forest histories provide valuable insight into how fire and vegetation varied and interacted in the past. I constructed multi-century fire chronologies for 10 sites on six mountain ranges representative of the eastern Great Basin (USA), a region in which...
Christina M. Andruk; Norma L. Fowler
2015-01-01
Decades of fire suppression have significantly altered the vegetation structure and composition of savannas, woodlands, and forests. The presence of endangered species and other species of conservation concern in these fire-suppressed systems makes re-introducing fire more challenging. In oak-juniper woodlands of central Texas, we are presented with the challenge of re...
Joseph B. Fontaine; Daniel C. Donato; John L. Campbell; Jonathan G. Martin; Beverley E. Law
2010-01-01
Following stand-replacing wildfire, post-fire (salvage) logging of fire-killed trees is a widely implemented management practice in many forest types. A common hypothesis is that removal of fire-killed trees increases surface temperatures due to loss of shade and increased solar radiation, thereby influencing vegetation establishment and possibly stand development. Six...
Jesse K. Kreye; J. Morgan Varner; Jeffrey M. Kane; Eric E. Knapp; Warren P. Reed
2016-01-01
Mastication of shrubs and small trees to reduce fire hazard has become a widespread management practice, yet many aspects of the fire behaviour of these unique woody fuelbeds remain poorly understood. To examine the effects of fuelbed aging on fire behaviour, we conducted laboratory burns with masticated Arctostaphylos spp. and Ceanothus...
Alicia L. Reiner; Nicole M. Vaillant; Scott N. Dailey
2012-01-01
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree...
J. R. Miesel; R. E. J. Boerner; C. N. Skinner
2011-01-01
Forest thinning and prescribed fire are management strategies used to reduce hazardous fuel loads and catastrophic wildfires in western mixed-conifer forests. We evaluated effects of thinning (Thin) and prescribed fire (Burn), alone and in combination (Thin+Burn), on N transformations and microbial enzyme activities relative to an untreated control (Control) at 1 and 3...
Fire effects on wildlife in Central Hardwoods and Appalachian regions
Harper, Craig A.; Ford, W. Mark; Lashley, Marcus A.; Moorman, Christopher; Stambaugh, Michael C.
2016-01-01
Fire is being prescribed and used increasingly to promote ecosystem restoration (e.g., oak woodlands and savannas) and to manage wildlife habitat in the Central Hardwoods and Appalachian regions, USA. However, questions persist as to how fire affects hardwood forest communities and associated wildlife, and how fire should be used to achieve management goals. We provide an up-to-date review of fire effects on various wildlife species and their habitat in the Central Hardwoods and Appalachians. Documented direct effects (i.e., mortality) on wildlife are rare. Indirect effects (i.e., changes in habitat quality) are influenced greatly by light availability, fire frequency, and fire intensity. Unless fire intensity is great enough to kill a portion of the overstory, burning in closed-canopy forests has provided little benefit for most wildlife species in the region because it doesn’t result in enough sunlight penetration to elicit understory response. Canopy reduction through silvicultural treatment has enabled managers to use fire more effectively. Fire intensity must be kept low in hardwoods to limit damage to many species of overstory trees. However, wounding or killing trees with fire benefits many wildlife species by allowing increased sunlight to stimulate understory response, snag and subsequent cavity creation, and additions of large coarse woody debris. In general, a fire-return interval of 2 yr to 7 yr benefits a wide variety of wildlife species by providing a diverse structure in the understory; increasing browse, forage, and soft mast; and creating snags and cavities. Historically, dormant-season fire was most prevalent in these regions, and it still is when most prescribed fire is implemented in hardwood systems as burn-days are relatively few in the growing season of May through August because of shading from leaf cover and high fuel moisture. Late growing-season burning increases the window for burning, and better control on woody composition is possible. Early growing-season fire may pose increased risk for some species, especially herpetofauna recently emerged from winter hibernacula (April) or forest songbirds that nest in the understory (May to June). However, negative population-level effects are unlikely unless the burned area is relatively large and early growing-season fire is used continually. We did not find evidence that fire is leading to population declines for any species, including Endangered Species Act (ESA)-listed species (e.g., Indiana bat [Myotis sodalis Mill. Allen] or northern long-eared bat [M. septentrionalis Trouess.]). Instead, data indicate that fire can enhance habitat for bats by increasing suitability of foraging and day-roost sites. Similarly, concern over burning and displacement of woodland salamanders (Plethodontidae), another taxa of heightened conservation concern, is alleviated when fire is prescribed along ecologically appropriate aspect and slope gradients and not forced into mesic, high site index environments where salamanders are most common. Because topography across the Central Hardwoods and Appalachians is diverse, we contend that applying fire on positions best suited for burning is an effective approach to increase regional landscape heterogeneity and biological diversity. Herein, we offer prescriptive concepts for burning for various wildlife species and guilds in the Central Hardwoods and Appalachians.
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Jim Boynton
1995-01-01
Although recognized as an important tool for ecosystem maintenance, fuels management, and a variety of other purposes, the prescribed fire program in the Pacific Southwest Region of the USDA Forest Service has been constrained by several factors. These range from funding availability, to debates on the effect of fire on the habitat of sensitive species, to competition...
Effects of fire on small mammal communities in frequent-fire forests in California
Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.
2015-01-01
Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.
Resistance to invasion and resilience to fire in desert shrublands of North America
Brooks, Matthew L.; Chambers, Jeanne C.
2011-01-01
Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.
NASA Astrophysics Data System (ADS)
Keesstra, Saskia; Wittenberg, Lea; Maroulis, Jerry; Malkinson, Dan; Cerdà, Artemi; Pereira, Paulo
2016-04-01
Fire is a key factor impacting soil hydrology in many Mediterranean catchments. Soil water repellency (SWR) can stimulate land degradation processes by reducing the affinity of soil and water thereby triggering a reduction in soil fertility and increasing soil and water losses (. The effects of two consequent fires (1989 and 2005) on SWR were assessed in the Carmel Mountains, Israel. Fire history, plant recovery and post-fire management were investigated as determining factors in a time dependent system. SWR was highest in the >50 years unburnt plots, where soil under Pinus halepensis is most hydrophobic. In the most disturbed soils (twice burnt), many sites have a low to absent SWR even if the soil is very dry. The dynamics and fluctuations in SWR differ in magnitude under different plant species. The areas treated with CC (chipping of charred trees) showed a much higher SWR than areas left untreated. From these insights, a conceptual model of the reaction of SWR on multiple fires was developed. KEYWORDS: Soil water repellency, WDPT, Wildfires, Vegetation recovery, post-fire management, Mediterranean.
Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C Z; Astheimer, Lee
2015-01-01
Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species--one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)--from two large areas (> 2,830 km2) with initial contrasting fire regimes ('extreme': frequent, extensive, intense fire; versus 'benign': less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the 'benign' fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species.
Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M
2014-08-01
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.
John V. Arena
2005-01-01
Over 60,000 acres of ponderosa pine (Pinus ponderosa P. and C. Lawson) forest on the Warm Springs Indian Reservation (WSIR) in Oregon are managed using an uneven-age system. Three on-going studies on WSIR address current issues in the management of pine forests: determining levels of growing stock for uneven-age management, fire effects on wood...
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Fire frequency in the Interior Columbia River Basin: Building regional models from fire history data
McKenzie, D.; Peterson, D.L.; Agee, James K.
2000-01-01
Fire frequency affects vegetation composition and successional pathways; thus it is essential to understand fire regimes in order to manage natural resources at broad spatial scales. Fire history data are lacking for many regions for which fire management decisions are being made, so models are needed to estimate past fire frequency where local data are not yet available. We developed multiple regression models and tree-based (classification and regression tree, or CART) models to predict fire return intervals across the interior Columbia River basin at 1-km resolution, using georeferenced fire history, potential vegetation, cover type, and precipitation databases. The models combined semiqualitative methods and rigorous statistics. The fire history data are of uneven quality; some estimates are based on only one tree, and many are not cross-dated. Therefore, we weighted the models based on data quality and performed a sensitivity analysis of the effects on the models of estimation errors that are due to lack of cross-dating. The regression models predict fire return intervals from 1 to 375 yr for forested areas, whereas the tree-based models predict a range of 8 to 150 yr. Both types of models predict latitudinal and elevational gradients of increasing fire return intervals. Examination of regional-scale output suggests that, although the tree-based models explain more of the variation in the original data, the regression models are less likely to produce extrapolation errors. Thus, the models serve complementary purposes in elucidating the relationships among fire frequency, the predictor variables, and spatial scale. The models can provide local managers with quantitative information and provide data to initialize coarse-scale fire-effects models, although predictions for individual sites should be treated with caution because of the varying quality and uneven spatial coverage of the fire history database. The models also demonstrate the integration of qualitative and quantitative methods when requisite data for fully quantitative models are unavailable. They can be tested by comparing new, independent fire history reconstructions against their predictions and can be continually updated, as better fire history data become available.
Michael A. Jenkins; Robert N. Klein; Virginia L. McDaniel
2011-01-01
We used pre- and post-burn fire effects data from six prescribed burns to examine post-burn threshold effects of stand structure (understory density, overstory density, shrub cover, duff depth, and total fuel load) on the regeneration of yellow pine (Pinus subgenus Diploxylon) seedlings and cover of herbaceous vegetation in six prescribed-fire management units located...
Tongue-tied: Confused meanings for common fire terminology can lead to fuels mismanagement
Theresa B. Jain; Russell T. Graham; David S. Pilliod
2004-01-01
The ineffective and inconsistent use of terminology among fire managers, scientists, resource managers and the public is a constant problem in resource management. In fire management and fire science, the terms fire severity, burn severity and fire intensity are defined in a variety of ways, used inconsistently and, in some cases, interchangeably.
NASA Astrophysics Data System (ADS)
Westerling, A. L.; Fites, J. A.; Keyser, A.
2015-12-01
Annual wildfire burned area in federally managed Sierra Nevada forests has increased by more than 10,000 ha per decade since the early 1970s. At the same time, recent years have seen some extremely large fires compared to the historical record, with significant areas of moderate to high severity fire (e.g., McNally 2002, Rim 2013, King 2014 fires). Changes to fuels and fire regimes due to fire suppression and land use, as well as warming temperatures and the occurrence of drought, are thought to be significant factors contributing to increased risks of large, severe fires in Sierra Nevada forests. Over 70% of the vegetated area in federally managed forests in the Sierra Nevada is classified as having altered fuels and fire regimes, while average annual temperature in the Sierra Nevada has been above the long term mean for all but four years in the past two decades. As climate is expected to continue warming for decades to come, we explored fuels management scenarios as the primary tools available to modify risks of large, severe wildfires. We developed experimental statistical models of fire occurrence, fire size, and high severity burned area, to explore the interaction between climate and altered fuels conditions. These models were applied to historical climate conditions, a sample of future climate projections, and to both current fuels conditions and a range of scenarios for fuels treatments. Emissions from wildfires were estimated using the Fire Inventory from the National Center for Atmospheric Research. Our models project that average annual burned area in the Sierra Nevada will more than double by mid-century. Similarly, particulate and other pollution emissions from Sierra Nevada wildfires are projected to more than double, even if future fire severity does not change. Fuels treatment scenarios significantly reduced simulated future burned area and emissions below untreated projections. High severity burned area responded to both climate and fuels treatments. A sensitivity analysis indicated that in areas where the fraction of highly altered fuels is high, successfully restoring fuels to prehistoric conditions could more than compensate for expected climate change effects on fire severity by mid-century.
Crisis management of fire in the OR.
Seifert, Patricia C; Peterson, Erik; Graham, Karen
2015-02-01
Fire in the OR is a life-threatening emergency that demands prompt, coordinated, and effective interventions. Specific applications of fire protocols and guidelines for perioperative nurses and their interprofessional colleagues may take several approaches. The perioperative nurse’s role is one that can frequently prevent or ameliorate the damaging thermal effects of a fire. For example, to some degree, the nurse can control all three components of the fire triangle: the ignition sources used during surgery (eg, fiberoptic lights, ESU devices), the oxidizers (eg, room air, supplemental oxygen administered during procedures under straight local anesthesia), and the fuel sources (eg, alcohol-based prep solutions). Although all members of the surgical team play an important role, the ability of and the opportunity for the nurse to minimize the risks of fire are important patient safety attributes of the nurse. Team training, rehearsing appropriate actions, and reacting effectively are essential to preparing health care providers to respond in emergent situations and be able to deliver optimal care. In most jurisdictions, any fired--regardless of size--must be reported to the local fire department. Personnel, managers, and administrators should be prepared also for the possibility of participating in postcrisis evaluations by the fire marshal, The Joint Commission, the Occupational Safety and Health Administration, Centers for Medicare & Medicaid Services, and possibly other fire safety-related organizations. Additionally, supplemental information related to investigating a fire is available through the ECRI Institute.28 The ECRI Institute serves as a third-party investigator and can facilitate root-cause analyses, identify whether the crisis ought to be reported and to whom, and assist in restoring clinical operations.
Fall and spring grazing influence fire ignitability and initial spread in shrub steppe communities
USDA-ARS?s Scientific Manuscript database
The interaction between grazing and fire influences ecosystems around the world. However, relatively little is known about the influence of grazing on fire, in particular ignition and initial spread and how it varies by grazing management differences. We investigated effects of fall grazing, spring...
Prescribed fire in upland harwood forests
T.L. Keyser; C.H. Greenberg; H. McNab
2014-01-01
In upland hardwood forests of the Southeastern U.S.,prescribed fire is increasingly used by land managers citing objectives that include hazardous fuels reduction, wildlife habitat improvement, promoting oak regeneration, or restoring forest composition or structure to an historic condition. Research suggests that prescribed fire effects on hardwood forests and...
Impacts of fire on sage-grouse habitat and diet resources
USDA-ARS?s Scientific Manuscript database
Small (<40.5-ha) patch fires or mechanical manipulations to reduce big sagebrush (Artemisia tridentata) cover has been suggested as a management option to improve sage-grouse prenesting and brood rearing habitat and provide a diverse habitat mosaic. We evaluated the effects of prescribed fire and wi...
FIRESCOPE: a new concept in multiagency fire suppression coordination
Richard A. Chase
1980-01-01
FIRESCOPE is a system developed to improve the capability of firefighting agencies in southern California in allocating and managing fire suppression resources. The system provides an effective and efficient solution to operational coordination requirements and problems of the major fire protection agencies serving the southern California urban-wildland complex. Major...
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less
Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) ecosystems.
Yildiz, Oktay; Esen, Derya; Sarginci, Murat; Toprak, Bulent
2010-01-01
Fire is a long-standing and poorly understood component of the Mediterranean forestlands in Turkey. Fire can alter plant composition, destroy biomass, alter soil physical and chemical properties and reduce soil nutrient pools. However fire can also promote productivity of certain ecosystems by mineralizing soil nutrients and promoting fast growing nitrogen fixing plant species. Fire effects on soils and ecosystems in Turkey and Mediterranean regions are not well understood. This study uses a retrospective space-for-time substitution to study soil macro-nutrient changes on sites which were burned at different times during the last 8 years. The study sites are in the Fethiye Forest Management Directorate in the western Mediterranean Sea region of Turkey. Our samples show 40% less Soil C, and cation exchange capacity (CEC) at 0-20 cm soil depth two weeks after the fire. Soil C and CEC appear to recover to pre-fire level in one year. Concentrations of Mg were significantly lower on new-burn sites, but returned to pre-fire levels in one year. Total soil N concentrations one and two years after fire were 90% higher than other sites, and total P was 9 times higher on new-burn site than averages from other sites. Some implications of these results for forest managers are discussed.
Tanana Valley State Forest Citizens' Advisory Committee
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green,T.
This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policymore » for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.« less
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.
Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R
2016-07-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Avifaunal responses to fire in southwestern montane forests along a burn severity gradient
Natasha B. Kotliar; Patricia L. Kennedy; Kimberly Ferree
2007-01-01
The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986- 1988, 1990) created a...
Science You Can Use Bulletin: Seeing red: New tools for mapping and understanding fire severity
Sue Miller; Robert Keane; Penny Morgan; Pamela Sikkink; Eva Karau; Greg Dillon
2013-01-01
Large, severe fires are ecologically and socially important because they have lasting effects on vegetation and soils, can potentially threaten people and property, and can be costly to manage. The goals of the Fire Severity Mapping Project (FIRESEV), which covers lands in the continental western United States, are to understand where and why fires burn severely, and...
Robert L. Ryan; Elisabeth M. Hamin
2006-01-01
Our research provides advice to managers in their work in post-fire forest rehabilitation based on focus groups and interviews in the Los Alamos, New Mexico, community after the Cerro Grande fire of 2000. We address two key issues: how different restoration efforts compare to natural revegetation from the public?s perspective, and how to effectively communicate with...
A project for monitoring trends in burn severity
Eidenshink, Jeffery C.; Schwind, Brian; Brewer, Ken; Zhu, Zhu-Liang; Quayle, Brad; Howard, Stephen M.
2007-01-01
Jeff Eidenshink, Brian Schwind, Ken Brewer, Zhi-Liang Zhu, Brad Quayle, and Elected officials and leaders of environmental agencies need information about the effects of large wildfires in order to set policy and make management decisions. Recently, the Wildland Fire Leadership Council (WFLC), which implements and coordinates the National Fire Plan (NFP) and Federal Wildland Fire Management Policies (National Fire Plan 2004), adopted a strategy to monitor the effectiveness of the National Fire Plan and the Healthy Forests Restoration Act (HFRA). One component of this strategy is to assess the environmental impacts of large wildland fires and identify the trends of burn severity on all lands across the United States. To that end, WFLC has sponsored a six-year project, Monitoring Trends in Burn Severity (MTBS), which requires the U.S. Department of Agriculture Forest Service (USDA-FS) and the U.S. Geological Survey (USGS) to map and assess the burn severity for all large current and historical fires. Using Landsat data and the differenced Normalized Burn Ratio (dNBR) algorithm, the USGS Center for Earth Resources Observation and Science (EROS) and USDA-FS Remote Sensing Applications Center will map burn severity of all fires since 1984 greater than 202 ha (500ac) in the east, and 404 ha (1,000 ac) in the west. The number of historical fires from this period combined with current fires occurring during the course of the project will exceed 9,000. The MTBS project will generate burn severity data, maps, and reports, which will be available for use at local, state, and national levels to evaluate trends in burn severity and help develop and assess the effectiveness of land management decisions. Additionally, the information developed will provide a baseline from which to monitor the recovery and health of fire-affected landscapes over time. Spatial and tabular data quantifying burn severity will augment existing information used to estimate risk associated with a range of current and future resource threats. The annual report of 2004 fires has been completed. All data and results will be distributed to the public on a Web site. A Project for Monitoring Trends in Burn Severity
Mixed-severity fire history at a forest-grassland ecotone in west central British Columbia, Canada.
Harvey, Jill E; Smith, Dan J; Veblen, Thomas T
2017-09-01
This study examines spatially variable stand structure and fire-climate relationships at a low elevation forest-grassland ecotone in west central British Columbia, Canada. Fire history reconstructions were based on samples from 92 fire-scarred trees and stand demography from 27 plots collected over an area of about 7 km 2 . We documented historical chronologies of widespread fires and localized grassland fires between AD 1600 and 1900. Relationships between fire events, reconstructed values of the Palmer Drought Severity Index, and annual precipitation were examined using superposed epoch and bivariate event analyses. Widespread fires occurred during warm, dry years and were preceded by multiple anomalously dry, warm years. Localized fires that affected only grassland-proximal forests were more frequent than widespread fires. These localized fires showed a lagged, positive relationship with wetter conditions. The landscape pattern of forest structure provided further evidence of complex fire activity with multiple plots shown to have experienced low-, mixed-, and/or high-severity fires over the last four centuries. We concluded that this forest-grassland ecotone was characterized by fires of mixed severity, dominated by frequent, low-severity fires punctuated by widespread fires of moderate to high severity. This landscape-level variability in fire-climate relationships and patterns in forest structure has important implications for fire and grassland management in west central British Columbia and similar environments elsewhere. Forest restoration techniques such as prescribed fire and thinning are oftentimes applied at the forest-grassland ecotone on the basis that historically high frequency, low-severity fires defined the character of past fire activity. This study provides forest managers and policy makers with important information on mixed-severity fire activity at a low elevation forest-grassland ecotone, a crucial prerequisite for the effective management of these complex ecosystems. © 2017 by the Ecological Society of America.
Alaska Community Forest Council
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Firewood on Alaska State Lands
Conservation Education Timber Management Wildland Fire & Aviation Burn Permits Firewise Alaska Brochure (PDF) Fire Management Plans Fire Assignments Annual Fire Statistics Fire Terms Glossary Incident Business Management Grants Become an Alaska Firewise Community Community Wildland Fire Protection Plans
Austin, Lauren V.; Silvis, Alexander; Ford, W. Mark; Muthersbaugh, Michael; Powers, Karen E.
2018-01-01
After decades of fire suppression in eastern North America, land managers now are prioritizing prescribed fire as a management tool to restore or maintain fire-adapted vegetation communities. However, in long—fire-suppressed landscapes, such as the central and southern Appalachians, it is unknown how bats will respond to prescribed fire in both riparian and upland forest habitats. To address these concerns, we conducted zero-crossing acoustic surveys of bat activity in burned, unburned, riparian, and non-riparian areas in the central Appalachians, Virginia, USA. Burn and riparian variables had model support (ΔAICc < 4) to explain activity of all bat species. Nonetheless, parameter estimates for these conditions were small and confidence intervals overlapped zero for all species, indicating effect sizes were marginal. Our results suggest that bats respond to fire differently between upland and riparian forest habitats, but overall, large landscape-level prescribed fire has a slightly positive to neutral impact on all bats species identified at our study site post—fire application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, J.S.
DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irving, John S
DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.
Mapping Fuels on the Okanogan and Wenatchee National Forests
Crystal L. Raymond; Lara-Karena B. Kellogg; Donald McKenzie
2006-01-01
Resource managers need spatially explicit fuels data to manage fire hazard and evaluate the ecological effects of wildland fires and fuel treatments. For this study, fuels were mapped on the Okanogan and Wenatchee National Forests (OWNF) using a rule-based method and the Fuels Characteristic Classification System (FCCS). The FCCS classifies fuels based on their...
Anne E. Black; Brooke Baldauf McBride
2013-01-01
This study examined the effects of organisational, environmental, group and individual characteristics on five components of safety climate (High Reliability Organising Practices, Leadership, Group Culture, Learning Orientation and Mission Clarity) in the US federal wildland fire management community. Of particular interest were differences between perceptions based on...
Rocky to bullwinkle: understanding flying squirrels helps us restore dry forest ecosystems.
Jonathan Thompson
2006-01-01
A century of effective fire suppression has radically transformed many forested landscapes on the east side of the Cascades. Managers of dry forests critically need information to help plan for and implement forest restoration . Management priorities include the stabilization of fire regimes and the maintenance of habitat for the northern spotted owl and other old-...
A high-quality fuels database of photos and information
Clinton S. Wright; Paige C. Eagle; Diana L. Olson
2010-01-01
Photo series and their associated data provide a quick and easy way for managers to quantify and describe fuel and vegetation properties, such as loading of dead and down woody material, tree density, or height of understory vegetation. This information is critical for making fuel management decisions and for predicting fire behavior and fire effects. The Digital Photo...
Economics of wildfire management: The development and application of suppression expenditure models
Michael S. Hand; Krista M. Gebert; Jingjing Liang; David E. Calkin; Matthew P. Thompson; Mo Zhou
2014-01-01
In the United States, increased wildland fire activity over the last 15 years has resulted in increased pressure to balance the cost, benefits, and risks of wildfire management. Amid increased public scrutiny and a highly variable wildland fire environment, a substantial body of research has developed to study factors affecting the cost-effectiveness of wildfire...
Effects of fire on intangible cultural resources: Moving toward a landscape approach [Chapter 8
John R. Welch
2012-01-01
Long before the Secretaries of the Departments of Agriculture and Interior signed the Federal Wildland Fire Management Policy in 1995, most land and resource professionals in the United States had recognized unprecedented fuel accumulations in western forests as management priorities. The Policy, its 2001 revision, the 2003 Healthy Forests Restoration Act, and the...
Chapter 13: Effects of fuel and vegetation management activities on nonnative invasive plants
Erik J. Martinson; Molly E. Hunter; Jonathan P. Freeman; Philip N. Omi
2008-01-01
Twentieth century land use and management practices have increased the vertical and horizontal continuity of fuels over expansive landscapes. Thus the likelihood of large, severe wildfires has increased, especially in forest types that previously experienced more frequent, less severe fire (Allen and others 2002). Disturbances such as fire may promote nonnative plant...
Social and environmental issues in developing vegetation and fire management plans
Leonard Charles
1995-01-01
To reduce the risk of wildfire in the California urban interface often requires actions that will be viewed by members of the public as having adverse effects on such resources as wildlife, vegetation, views, air quality, and recreational opportunities. These citizens can substantially delay and even thwart development of fire management plans. In developing such a...
Effects of fire on spotted owl site occupancy in a late-successional forest
Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.
2011-01-01
The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.
Remote sensing of vegetation fires and its contribution to a fire management information system
Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux
2004-01-01
In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...
Jonathan Thompson
2006-01-01
In the mid-1990s, forest managers on the Malheur National Forest were concerned about their prescribed fire program. Although they have only a few weeks of acceptable conditions available in the spring and fall, they were worried that spring-season prescribed burning might be exacerbating black stain root disease and having negative effects on understory plants.
Katherine Elliott; James Vose; Ronald Hendrick
2009-01-01
We examined the long-term effects of a prescribed fire in a southern Appalachian watershed in Nantahala National Forest, western North Carolina, USA. Fire was prescribed in 1995 on this site by forest managers to restore a degraded pine (Pinus spp.)-hardwood community, specifically to stimulate forage production, promote pine and oak (Quercus spp.) regeneration, and...
Impact of spring or fall repeated prescribed fire on growth of ponderosa pine in eastern Oregon, USA
Walter G. Thies; Douglas J. Westlind; Mark. Loewen
2013-01-01
Prescribed burning is used to reduce fuel loads and to return fire to its historic disturbance role in western forests. Managers need to know the effects of prescribed fire on tree growth. Growth of residual ponderosa pine (Pinus ponderosa Dougl. ex Laws.) was measured in an existing long-term study of the effects of season-of-prescribed burn in...
USDA-ARS?s Scientific Manuscript database
Neonicotinoid insecticides are commonly used in managing pest ants, including the imported fire ant, Solenopsis invicta Buren. There is increasing evidence that neonicotinoid insecticides at sublethal concentrations have profound effects on social insects. However, the sublethal effect of neonicot...
Fire management in central America
Andrea L. Koonce; Armando González-Cabán
1992-01-01
Information on fire management operations in Central America is scant. To evaluate the known level of fire occurrence in seven countries in that area, fire management officers were asked to provide information on their fire control organizations and on any available fire statistics. The seven countries surveyed were Guatemala, Belize, Honduras, El Salvador, Nicaragua,...
Costanza, Jennifer; Terando, Adam J.; McKerrow, Alexa; Collazo, Jaime A.
2015-01-01
Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the face of these drivers. Our results show that while climatic warming had little effect on the wildfire regime, and thus on longleaf pine dynamics, urban growth led to an 8% reduction in annual wildfire area. The management scenarios we tested increase the ecosystem's total extent by up to 62% and result in expansion of open-canopy longleaf by as much as 216%, meeting one of the two conservation goals for the ecosystem. We find that both conservation goals for this ecosystem, which is climate-resilient but vulnerable to urbanization, are only attainable if a greater focus is placed on restoration of non-longleaf areas as opposed to maintaining existing longleaf stands. Our approach demonstrates the importance of accounting for multiple relevant anthropogenic threats in an ecosystem-specific context in order to facilitate more effective management actions.
Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T
2014-07-01
Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless, negative impacts on CWD of repeated low-intensity prescribed fires could be lessened by fire intervals of 10 rather than three years (to decrease losses of decayed CWD), and fires in moist rather than dry conditions (to conserve large CWD).
Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests
Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C.
2006-01-01
In forests, the effects of different life forms on fire behavior may vary depending on their contributions to total fuel loads. We examined the distribution of fuel components before fire, their effects on fire behavior, and the effects of fire on subsequent fuel recovery in pine forests within the National Key Deer Refuge in the Florida Keys. We conducted a burning experiment in six blocks, within each of which we assigned 1-ha plots to three treatments: control, summer, and winter burn. Owing to logistical constraints, we burned only 11 plots, three in winter and eight in summer, over a 4-year period from 1998 to 2001. We used path analysis to model the effects of fuel type and char height, an indicator of fire intensity, on fuel consumption. Fire intensity increased with surface fuel loads, but was negatively related to the quantity of hardwood shrub fuels, probably because these fuels are associated with a moist microenvironment within hardwood patches, and therefore tend to resist fire. Winter fires were milder than summer fires, and were less effective at inhibiting shrub encroachment. A mixed seasonal approach is suggested for fire management, with burns applied opportunistically under a range of winter and summer conditions, but more frequently than that prevalent in the recent past. ?? IAWF 2006.
Toledo, David; Kreuter, Urs P; Sorice, Michael G; Taylor, Charles A
2014-01-01
Risk and liability concerns regarding fire affect people's attitudes toward fire and have led to human-induced alterations of fire regimes. This has, in turn, contributed to brush encroachment and degradation of many grasslands and savannas. Efforts to successfully restore such degraded ecosystems at the landscape scale in regions of the United States with high proportions of private lands require the reintroduction of fire. Prescribed Burn Associations (PBA) provide training, equipment, and labor to apply fire safely, facilitating the application of this rangeland management tool and thereby reducing the associated risk. PBAs help build networks and social capital among landowners who are interested in using fire. They can also change attitudes toward fire and enhance the social acceptability of using prescribed fire as a management practice. PBAs are an effective mechanism for promoting the widespread use of prescribed fire to restore and maintain the biophysical integrity of grasslands and savannas at the landscape scale. We report findings of a project aimed at determining the human dimensions of using prescribed fire to control woody plant encroachment in three different eco-regions of Texas. Specifically, we examine membership in PBAs as it relates to land manager decisions regarding the use of prescribed fire. Perceived risk has previously been identified as a key factor inhibiting the use of prescribed fire by landowners. Our results show that perceived constraints, due to lack of skill, knowledge, and access to equipment and membership in a PBAs are more important factors than risk perceptions in affecting landowner decisions about the use of fire. This emphasizes the potential for PBAs to reduce risk perceptions regarding the application of prescribed fire and, therefore, their importance for restoring brush-encroached grasslands and savannas. Published by Elsevier Ltd.
Implications of fire management on cultural resources [Chapter 9
Rebecca S. Timmons; Leonard deBano; Kevin C. Ryan
2012-01-01
Previous chapters in this synthesis have identified the important fuel, weather, and fire relationships associated with damage to cultural resources (CR). They have also identified the types of effects commonly encountered in various fire situations and provided some guidance on how to recognize damages and minimize their occurrence. This chapter describes planning...
Fire-induced water repellency: An erosional factor in wildland environments
Leonard F. DeBano
2000-01-01
Watershed managers and scientists throughout the world have been aware of fire-induced water-repellent soils for over three decades. Water repellency affects many hydrologic processes, including infiltration, overland flow, and surface erosion (rill and sheet erosion). This paper describes; the formation of fire-induced water-repellent soils, the effect of soil water...
What kind of cutting and thinning can prevent crown fires?
Mick Harrington
2008-01-01
Many land managers are attempting to lessen the probability of severe wildfire behavior and impacts, especially near communities, by manipulating canopy and surface fuel characteristics. Various interest groups have questioned the value of fuels treatments. In reality, apart from fire exposure when a real fire went through a treated stand, effectiveness of fuel...
Integrating fire management analysis into land management planning
Thomas J. Mills
1983-01-01
The analysis of alternative fire management programs should be integrated into the land and resource management planning process, but a single fire management analysis model cannot meet all planning needs. Therefore, a set of simulation models that are analytically separate from integrated land management planning models are required. The design of four levels of fire...
Abraham, Joji; Dowling, Kim; Florentine, Singarayer
2018-01-01
Prescribed fire conducted in fire-prone areas is a cost-effective choice for forest management, but it also affects many of the physicochemical and bio-geological properties of the forest soil, in a similar manner to wild fires. The aim of this study is to investigate the nature of the mercury mobilization after a prescribed fire and the subsequent temporal changes in concentration. A prescribed fire was conducted in a legacy mine site in Central Victoria, Australia, in late August 2015 and soil sample collection and analyses were carried out two days before and two days after the fire, followed by collection at the end of each season and after an intense rainfall event in September 2016. Results revealed the occurrence of mercury volatilization (8.3-97%) during the fire, and the mercury concentration displayed a significant difference (p < 0.05) before and immediately after the fire. Integrated assessment with number of pollution indices has shown that the study site is extremely contaminated with mercury during all the sampling events, and this poses a serious ecological risk due to the health impacts of mercury on human and ecosystems. In times of climate fluctuation with concomitant increase in forest fire (including prescribed fire), and subsequent precipitation and runoff, the potential for an increased amount of mercury being mobilized is of heighted significance. Therefore, it is recommended that prescribed fire should be cautiously considered as a forest management strategy in any mercury affected landscapes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding fire drivers and relative impacts in different Chinese forest ecosystems.
Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing
2017-12-15
In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk of post-fire metal mobilization into surface water resources: A review.
Abraham, Joji; Dowling, Kim; Florentine, Singarayer
2017-12-01
One of the significant economic benefits to communities around the world of having pristine forest catchments is the supply of substantial quantities of high quality potable water. This supports a saving of around US$ 4.1 trillion per year globally by limiting the cost of expensive drinking water treatments and provision of unnecessary infrastructure. Even low levels of contaminants specifically organics and metals in catchments when in a mobile state can reduce these economic benefits by seriously affecting the water quality. Contamination and contaminant mobility can occur through natural and anthropogenic activities including forest fires. Moderate to high intensity forest fires are able to alter soil properties and release sequestered metals from sediments, soil organic matter and fragments of vegetation. In addition, the increase in post-fire erosion rate by rainfall runoff and strong winds facilitates the rapid transport of these metals downslope and downstream. The subsequent metal deposition in distal soil and water bodies can influence surface water quality with potential impacts to the larger ecosystems inclusive of negative effects on humans. This is of substantial concern as 4 billion hectares of forest catchments provide high quality water to global communities. Redressing this problem requires quantification of the potential effects on water resources and instituting rigorous fire and environmental management plans to mitigate deleterious effects on catchment areas. This paper is a review of the current state of the art literature dealing with the risk of post-fire mobilization of the metals into surface water resources. It is intended to inform discussion on the preparation of suitable management plans and policies during and after fire events in order to maintain potable water quality in a cost-effective manner. In these times of climate fluctuation and increased incidence of fires, the need for development of new policies and management frameworks are of heighted significance. Copyright © 2017 Elsevier B.V. All rights reserved.
Burton, J.A.; Hallgren, S.W.; Fuhlendorf, S.D.; Leslie, David M.
2011-01-01
Ecosystems in the eastern United States that were shaped by fire over thousands of years of anthropogenic burning recently have been subjected to fire suppression resulting in significant changes in vegetation composition and structure and encroachment by invasive species. Renewed interest in use of fire to manage such ecosystems will require knowledge of effects of fire regime on vegetation. We studied the effects of one aspect of the fire regime, fire frequency, on biomass, cover and diversity of understory vegetation in upland oak forests prescribe-burned for 20 years at different frequencies ranging from zero to five fires per decade. Overstory canopy closure ranged from 88 to 96% and was not affected by fire frequency indicating high tolerance of large trees for even the most frequent burning. Understory species richness and cover was dominated by woody reproduction followed in descending order by forbs, C3 graminoids, C4 grasses, and legumes. Woody plant understory cover did not change with fire frequency and increased 30% from one to three years after a burn. Both forbs and C3 graminoids showed a linear increase in species richness and cover as fire frequency increased. In contrast, C4 grasses and legumes did not show a response to fire frequency. The reduction of litter by fire may have encouraged regeneration of herbaceous plants and helped explain the positive response of forbs and C3 graminoids to increasing fire frequency. Our results showed that herbaceous biomass, cover, and diversity can be managed with long-term prescribed fire under the closed canopy of upland oak forests. ?? 2011 Springer Science+Business Media B.V.
Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA
Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.
2011-01-01
This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.
Effects of Prescribed Burning on Grazed Shortgrass Steppe
USDA-ARS?s Scientific Manuscript database
Over the past century, fire has been widely suppressed in the western Great Plains, in part due to potential negative effects on forage production for livestock. Interest in the use of prescribed fire in shortgrass steppe has increased recently due to applications for wildlife management, control of...
Fire hazard after prescribed burning in a gorse shrubland: implications for fuel management.
Marino, Eva; Guijarro, Mercedes; Hernando, Carmen; Madrigal, Javier; Díez, Carmen
2011-03-01
Prescribed burning is commonly used to prevent accumulation of biomass in fire-prone shrubland in NW Spain. However, there is a lack of knowledge about the efficacy of the technique in reducing fire hazard in these ecosystems. Fire hazard in burned shrubland areas will depend on the initial capacity of woody vegetation to recover and on the fine ground fuels existing after fire. To explore the effect that time since burning has on fire hazard, experimental tests were performed with two fuel complexes (fine ground fuels and regenerated shrubs) resulting from previous prescribed burnings conducted in a gorse shrubland (Ulex europaeus L.) one, three and five years earlier. A point-ignition source was used in burning experiments to assess ignition and initial propagation success separately for each fuel complex. The effect of wind speed was also studied for shrub fuels, and several flammability parameters were measured. Results showed that both ignition and initial propagation success of fine ground fuels mainly depended on fuel depth and were independent of time since burning, although flammability parameters indicated higher fire hazard three years after burning. In contrast, time since burning increased ignition and initial propagation success of regenerated shrub fuels, as well as the flammability parameters assessed, but wind speed had no significant effect. The combination of results of fire hazard for fine ground fuels and regenerated shrubs according to the variation in relative coverage of each fuel type after prescribed burning enabled an assessment of integrated fire hazard in treated areas. The present results suggest that prescribed burning is a very effective technique to reduce fire hazard in the study area, but that fire hazard will be significantly increased by the third year after burning. These results are valuable for fire prevention and fuel management planning in gorse shrubland areas. Copyright © 2010 Elsevier Ltd. All rights reserved.
Responses of oak and other hardwood regeneration to prescribed fire: what we know as of 2005
Patrick H. Brose; Thomas M. Schuler; Jeffrey S. Ward
2006-01-01
An obstacle to using prescribed fire to manage mixed oak forests is the varied results of previous fire studies. It has been reported that fires enhanced, hindered, or had no effect on the competitive position of oak in the regeneration pool. We review a portion of the published literature and identify key factors that led to the relative competitiveness of oak...
Determinants of postfire recovery and succession in mediterranean-climate shrublands of California
Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.
2005-01-01
Evergreen chaparral and semideciduous sage scrub shrublands were studied for five years after fires in order to evaluate hypothesized determinants of postfire recovery and succession. Residual species present in the immediate postfire environment dominated early succession. By the fifth year postfire, roughly half of the species were colonizers not present in the first year, but they comprised only 7-14% cover. Successional changes were evaluated in the context of four hypotheses: (1) event-dependent, (2) fire interval, (3) self-regulatory, and (4) environmental filter hypotheses. Characteristics specific to the fire event, for example, fire severity and annual fluctuations in precipitation, were important determinants of patterns of change in cover and density, supporting the "event-dependent" hypothesis. The "fire interval" hypothesis is also supported, primarily through the impact of short intervals on reproductive failure in obligate seeding shrubs and the impact of long intervals on fuel accumulation and resultant fire severity. Successional changes in woody cover were correlated with decreases in herb cover, indicating support for "self-regulatory" effects. Across this landscape there were strong "environmental filter" effects that resulted in complex patterns of postfire recovery and succession between coastal and interior associations of both vegetation types. Of relevance to fire managers is the finding that postfire recovery patterns are substantially slower in the interior sage scrub formations, and thus require different management strategies than coastal formations. Also, in sage scrub (but not chaparral), prefire stand age is positively correlated with fire severity, and negatively correlated with postfire cover. Differential responses to fire severity suggest that landscapes with combinations of high and low severity may lead to enhanced biodiversity. Predicting postfire management needs is complicated by the fact that vegetation recovery is significantly controlled by patterns of precipitation. ?? 2005 by the Ecological Society of America.
Francisco Rodríguez y Silva; Armando González-Cabán
2016-01-01
We propose an economic analysis using utility and productivity, and efficiency theories to provide fire managers a decision support tool to determine the most efficient fire management programs levels. By incorporating managersâ accumulated fire suppression experiences (capitalized experience) in the analysis we help fire managers...
Economic efficiency and risk character of fire management programs, Northern Rocky Mountains
Thomas J. Mills; Frederick W. Bratten
1988-01-01
Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...
75 FR 50713 - Procedural Changes to the Fire Management Assistance Declaration Process
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-17
... FEMA-2010-0036] RIN-1660-AA72 Procedural Changes to the Fire Management Assistance Declaration Process... Federal Emergency Management Agency (FEMA) is updating its Fire Management Assistance Grant Program regulations to reflect a change in the internal delegation of authority for fire management assistance...
Influence of fuels, weather and the built environment on the exposure of property to wildfire
Penman, Trent D.; Collins, Luke S.; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates.
Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire
Penman, Trent D.; Collins, Luke; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates. PMID:25360741
Simulation of the consequences of different fire regimes to support wildland fire use decisions
Carol Miller
2007-01-01
The strategy known as wildland fire use, in which lightning-ignited fires are allowed to burn, is rapidly gaining momentum in the fire management community. Managers need to know the consequences of an increase in area burned that might result from an increase in wildland fire use. One concern of land managers as they consider implementing wildland fire use is whether...
NASA Astrophysics Data System (ADS)
Yang, Z.; Law, B. E.; Jones, M. O.
2015-12-01
Previous projections of the contemporary forest carbon balance in the western US showed uncertainties associated with impacts of climate extremes and a coarse spatio-temporal resolution implemented over heterogeneous mountain regions. We modified the Community Land Model (CLM) 4.5 to produce 4km resolution forest carbon changes with drought, fire and management in the western US. We parameterized the model with species data using local plant trait observations for 30 species. To quantify uncertainty, we evaluated the model with data from flux sites, inventories and ancillary data in the region. Simulated GPP was lower than the measurements at our AmeriFlux sites by 17-22%. Simulated burned area was generally higher than Landsat observations, suggesting the model overestimates fire emissions with the new fire model. Landsat MTBS data show high severity fire represents only a small portion of the total burnt area (12-14%), and no increasing trend from 1984 to 2011. Moderate severity fire increased ~0.23%/year due to fires in the Sierra Nevada (Law & Waring 2014). Oregon, California, and Washington were a net carbon sink, and net ecosystem carbon balance (NECB) declined in California over the past 15 years, partly due to drought impacts. Fire emissions were a small portion of the regional carbon budget compared with the effect of harvest removals. Fossil fuel emissions in CA are more than 3x that of OR and WA combined, but are lower per capita. We also identified forest regions that are most vulnerable to climate-driven transformations and to evaluate the effects of management strategies on forest NECB. Differences in forest NECB among states are strongly influenced by the extent of drought (drier longer in the SW) and management intensity (higher in the PNW).
Interactions among wildland fires in a long-established Sierra Nevada natural fire area
Collins, B.M.; Miller, J.D.; Thode, A.E.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.
2009-01-01
We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term 'self-limiting' to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. ?? 2008 Springer Science+Business Media, LLC.
Legge, Sarah; Garnett, Stephen; Maute, Kim; Heathcote, Joanne; Murphy, Steve; Woinarski, John C. Z.; Astheimer, Lee
2015-01-01
Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species–one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)—from two large areas (> 2,830 km2) with initial contrasting fire regimes (‘extreme’: frequent, extensive, intense fire; versus ‘benign’: less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the ‘benign’ fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species. PMID:26445496
Francos, Marcos; Pereira, Paulo; Alcañiz, Meritxell; Úbeda, Xavier
2018-08-15
Post-fire management practices after wildfires have an important impact on soil properties. Nevertheless, little research has been carried out. The aim of this study is to examine the impact of different post-wildfire forest management practices in a 10-month period immediately after a severe wildfire on soil properties. Two months after a wildfire, three experimental areas were designed, each one with different post-fire management: Cut and Remove (CR) where burned trunks were cut after fire and removed manually from the area; No Treatment (NT) where no intervention was carried out; and, Cut and Leave (CL) where burned trunks were cut and left randomly on topsoil. In each treatment, we collected nine samples (0-5cm deep). In total, we sampled 27 samples in each sampling date, two and ten months after the wildfire. The properties analyzed were aggregate stability (AS), total nitrogen (TN), soil organic matter (SOM), inorganic carbon (IC), C/N ratio, pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na) and potassium (K). Soil C/N ratio was significantly higher in CR and CL treatments 10months after fire comparing to 2months after. On the other hand, pH, extractable Ca, Mg and K were significantly higher in all the treatments 2months after fire than 10months after. Aggregate stability, TN and SOM were significantly higher in CR comparing to CL, 10months after the fire. IC was significantly higher in CL than in NT treatment, also, 10months after the fire. Electrical conductivity was significantly higher in CR and CL treatments 2months after fire comparing to 10months after. According to the results, CR and CL post-fire management did not differ importantly from the NT scenario, showing that manual wood management does not have detrimental impacts on soil properties compared to mechanical operations. Copyright © 2018 Elsevier B.V. All rights reserved.
Resolving future fire management conflicts using multicriteria decision making.
Driscoll, Don A; Bode, Michael; Bradstock, Ross A; Keith, David A; Penman, Trent D; Price, Owen F
2016-02-01
Management strategies to reduce the risks to human life and property from wildfire commonly involve burning native vegetation. However, planned burning can conflict with other societal objectives such as human health and biodiversity conservation. These conflicts are likely to intensify as fire regimes change under future climates and as growing human populations encroach farther into fire-prone ecosystems. Decisions about managing fire risks are therefore complex and warrant more sophisticated approaches than are typically used. We applied a multicriteria decision making approach (MCDA) with the potential to improve fire management outcomes to the case of a highly populated, biodiverse, and flammable wildland-urban interface. We considered the effects of 22 planned burning options on 8 objectives: house protection, maximizing water quality, minimizing carbon emissions and impacts on human health, and minimizing declines of 5 distinct species types. The MCDA identified a small number of management options (burning forest adjacent to houses) that performed well for most objectives, but not for one species type (arboreal mammal) or for water quality. Although MCDA made the conflict between objectives explicit, resolution of the problem depended on the weighting assigned to each objective. Additive weighting of criteria traded off the arboreal mammal and water quality objectives for other objectives. Multiplicative weighting identified scenarios that avoided poor outcomes for any objective, which is important for avoiding potentially irreversible biodiversity losses. To distinguish reliably among management options, future work should focus on reducing uncertainty in outcomes across a range of objectives. Considering management actions that have more predictable outcomes than landscape fuel management will be important. We found that, where data were adequate, an MCDA can support decision making in the complex and often conflicted area of fire management. © 2015 Society for Conservation Biology.
78 FR 20135 - Notice of Temporary Closure on Public Lands in Boise County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Land Management (BLM). DATES: The Springs Fire closure will be in effect from April 3, 2013 through... public around the hot springs due to fire damage, as a result of the loss of stabilizing vegetation... DEPARTMENT OF THE INTERIOR Bureau of Land Management [13X LLIDB00200 LF2200000.JS0000 LFESG40D0000...
Mixed-conifer forests of central Oregon: Effects of logging and fire exclusion vary with environment
Andrew G. Merschel; Thomas A. Spies; Emily K. Heyerdahl
2014-01-01
Twentieth-century land management has altered the structure and composition of mixed-conifer forests and decreased their resilience to fire, drought, and insects in many parts of the Interior West. These forests occur across a wide range of environmental settings and historical disturbance regimes, so their response to land management is likely to vary across...
Mac A. Callaham; Peter H. Anderson; Thomas A. Waldrop; Darren J. Lione; Victor B. Shelburne
2004-01-01
As part of the National Fire and Fire Surrogate Study, we measured the short-term effects of different fuel-management practices on leaf litter decomposition and soil respiration in loblolly pine stands on the upper Piedmont of South Carolina. These stands had been subjected to a factorial arrangement of experimental fuel-management treatments that included prescribed...
Hunter, M.E.; Omi, Philip N.; Martinson, E.J.; Chong, G.W.
2006-01-01
Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species. ?? IAWF 2006.
WebGIS Platform Adressed to Forest Fire Management Methodologies
NASA Astrophysics Data System (ADS)
André Ramos-Simões, Nuno; Neto Paixão, Helena Maria; Granja Martins, Fernando Miguel; Pedras, Celestina; Lança, Rui; Silva, Elisa; Jordán, António; Zavala, Lorena; Soares, Cristina
2015-04-01
Forest fires are one of the natural disasters that causes more damages in nature, as well as high material costs, and sometimes, a significant losses in human lives. In summer season, when high temperatures are attained, fire may rapidly progress and destroy vast areas of forest and also rural and urban areas. The forest fires have effect on forest species, forest composition and structure, soil properties and soil capacity for nutrient retention. In order to minimize the negative impact of the forest fires in the environment, many studies have been developed, e.g. Jordán et al (2009), Cerdà & Jordán (2010), and Gonçalves & Vieira (2013). Nowadays, Remote Sensing (RS) and Geographic Information System (GIS) technologies are used as support tools in fire management decisions, namely during the fire, but also before and after. This study presents the development of a user-friendly WebGIS dedicated to share data, maps and provide updated information on forest fire management for stakeholders in Iberia Peninsula. The WebGIS platform was developed with ArcGIS Online, ArcGIS for Desktop; HyperText Markup Language (HTML) and Javascript. This platform has a database that includes spatial and alphanumeric information, such as: origin, burned areas, vegetation change over time, terrain natural slope, land use, soil erosion and fire related hazards. The same database contains also the following relevant information: water sources, forest tracks and traffic ways, lookout posts and urban areas. The aim of this study is to provide the authorities with a tool to assess risk areas and manage more efficiently forest fire hazards, giving more support to their decisions and helping the populations when facing this kind of phenomena.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Gamon, J. A.; Zygielbaum, A. I.; Schweiger, A. K.; Cavender-Bares, J.; Yang, Y.; Knops, J. M. H.
2017-12-01
Grasslands cover as much as 25% of the Earth's surface and account for approximately 20% of overall terrestrial productivity and contribute to global biodiversity. To optimize the status of grasslands and to counteract their degradation, different management practices have been adopted. Fire has been shown to be an important management practice in the maintenance of grasslands. Our main goals were 1) to evaluate the productivity-biodiversity relationship in grasslands under fire treatment, and 2) to evaluate the capability of hyperspectral remote sensing in estimating biodiversity using spectral data (i.e. spectral diversity). We used above-ground biomass (as a surrogate for productivity), species richness (SR; as a surrogate for biodiversity), and airborne hyperspectral data from a natural grassland with fire treatment (20 plots), and a natural grassland without fire treatment (21 plots), all located at the Cedar Creek Ecosystem Science Reserve in Central Minnesota, USA. The productivity-biodiversity relationship for the fire treatment plots showed a hump-shaped model with adjusted R2=0.37, whereas the relationship for the non-burned plots were non-significant. The relationship between SR and spectral diversity (SD) were positive linear for both treatments; however, the relationship for plots with fire treatment was higher (adjusted R2 = 0.34 vs. 0.19). It is assumed that post-fire foliar nutrients increase soil nitrogen and phosphorus which facilitate post-fire growth and induce higher above-ground biomass and chlorophyll content in plants. Overall, the results of this study showed that management practices affect the productivity-biodiversity relationship and illustrated the effect of fire treatment on remote sensing of biodiversity.
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
Grasshopper fecundity responses to grazing and fire in a tallgrass prairie.
Laws, Angela N; Joern, Anthony
2011-10-01
Grasshopper abundance and diversity vary with management practices such as fire and grazing. Understanding how grasshopper life history traits such as fecundity respond to management practices is key to predicting grasshopper population dynamics in heterogeneous environments. Landscape-level experimental fire and bison grazing treatments at the Konza Prairie Biological Station (Manhattan, KS) provide an opportunity to examine how management affects grasshopper fecundity. Here we report on grasshopper fecundity for nine common species at Konza Prairie. From 2007 to 2009, adult female grasshoppers were collected every 3 wk from eight watersheds that varied in fire and grazing treatments. Fecundity was measured by examining female reproductive tracts, which contain a record of past and current reproductive activity. Body size was a poor predictor of fecundity for all species. Despite large differences in vegetation structure and composition with management regime (grazing and fire interval), we observed little effect of management on grasshopper fecundity. Habitat characteristics (grasshopper density, vegetation biomass, and vegetation quality; measured in 2008 and 2009) were better predictors of past fecundity than current fecundity, with species-specific responses. Fecundity increased throughout the summer, indicating that grasshoppers were able to acquire sufficient nutritional resources for egg production in the early fall when vegetation quality is generally low. Because fecundity did not vary across management treatments, population stage structure may be more important for determining population level reproduction than management regime at Konza Prairie.
The Great Basin: Wildland Fire Management in the Year 2000
James B. Webb
1987-01-01
The future of wildland fire management depends on the course chosen by fire managers today. Our responsiveness to issues will determine how much we influence where we go. Economics in concert with a better appreciation of fire's role in ecosystem dynamics will significantly alter fire management as we know it today. Public subsidies of homeowners who refuse to...
Long-term effects of burn severity on non-native plant cover
USDA-ARS?s Scientific Manuscript database
Effects of burn severity on non-native plant invasion post-fire is of great concern to managers and researchers, especially given predicted increases in large, high severity fires. However, little else is known about long-term (>10 year) vegetation recovery and non-native plant persistence. We anal...
Effects of high fire frequency in creosote bush scrub vegetation of the Mojave Desert
Brooks, M.L.
2012-01-01
Plant invasions can increase fire frequency in desert ecosystems where fires were historically infrequent. Although there are many resource management concerns associated with high frequency fire in deserts, fundamental effects on plant community characteristics remain largely unstudied. Here I describe the effects of fire frequency on creosote bush scrub vegetation in the Mojave Desert, USA. Biomass of the invasive annual grass Bromus rubens L. increased following fire, but did not increase further with additional fires. In contrast, density, cover and species richness of native perennial plants each decreased following fire and continued to decrease with subsequent fires, although not as dramatically as after the initial fire. Responses were similar 5 and 14 years post-fire, except that cover of Hymenoclea salsola Torr. & A. Gray and Achnatherum speciosa Trin. & Rupr. both increased in areas burnt once. These results suggest that control of B. rubens may be equally warranted after one, two or three fires, but revegetation of native perennial plants is most warranted following multiple fires. These results are valid within the scope of this study, which is defined as relatively short term vegetation responses (???14 years) to short fire return intervals (6.3 and 7.3 years for the two and three fire frequency levels) within creosote bush scrub of the Mojave Desert. ?? 2012 IAWF.
NASA Astrophysics Data System (ADS)
Diiwu, J.; Silins, U.; Kevin, B.; Anderson, A.
2008-12-01
Like many areas of the Rocky Mountains, Alberta's forests on the eastern slopes of the Rockies have been shaped by decades of successful fire suppression. These forests are at high risk to fire and large scale insect infestation, and climate change will continue to increase these risks. These headwaters forests provide the vast majority of usable surface water supplies to large region of the province, and large scale natural disasters can have dramatic effects on water quality and water availability. The population in the region has steadily increased and now this area is the main source water for many Alberta municipalities, including the City of Calgary, which has a population of over one million. In 2003 a fire burned 21,000 ha in the southern foothills area. The government land managers were concerned about the downstream implications of the fire and salvage operations, however there was very limited scientific information to guide the decision making. This led to establishment of the Southern Rockies Watershed Project, which is a partnership between Alberta Sustainable Resource Development, the provincial government department responsible for land management and the University of Alberta. After five years of data collection, the project has produced quantitative information that was not previously available about the effects of fire and management interventions such as salvage logging on headwaters and regional water quality. This information can be used to make decisions on forest operations, fire suppression, and post-fire salvage operations. In the past few years this project has captured the interest of large municipalities and water treatment researchers who are keen to investigate the potential implications of large natural disturbances to large and small drinking water treatment facilities. Examples from this project will be used to highlight the challenges and successes encountered while bridging the gap between science and land management policy.
Factors Affecting Survival of Longleaf Pine Seedlings
John S. Kush; Ralph S. Meldahl; William D. Boyer
2004-01-01
Longleaf pine may be managed most efficiently in large even-aged stands. Past research has shown that the effect of trees surrounding the openings (gaps) or the use of fire is a complicating factor, especially with small openings. Longleaf seedlings are considered more susceptible to fire under and nearer to standing trees, and seedling size, kind of fire, soil type,...
USDA-ARS?s Scientific Manuscript database
Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...
Response of northern bats (Myotis septentrionalis) to prescribed fires in eastern Kentucky forests
Michael J. Lacki; Daniel R. Cox; Luke E. Dodd; Matthew B. Dickinson
2009-01-01
Prescribed fire is becoming a common management tool for restoring forests of North America; however, effects of prescribed fire on forest-dwelling bats remain unclear. During 2006 and 2007, we monitored prey availability, diet, foraging behavior, and roost selection of adult female northern bats (Myotis septentrionalis) before and after 2 prescribed...
Hari Katuwal; Christopher J. Dunn; David E. Calkin
2017-01-01
Currently, limited research on large-fire suppression effectiveness suggests fire managers may over-allocate resources relative to values to be protected. Coupled with observations that weather may be more important than resource abundance to achieve control objectives, resource use may be driven more by risk aversion than efficiency. To explore this potential, we...
The role of fire in management of watershed responses
Malcolm J. Zwolinski
2000-01-01
Hydrologic responses of watersheds are strongly related to vegetation and soil disturbances. Many of the storage and transfer components of the global hydrologic cycle are altered by the occurrence of fire. The major effect of fire on the hydrologic functioning of watersheds is the removal of vegetation and litter materials that protect the soil surface. Reductions in...
Modeling fire and other disturbance processes using LANDIS
Stephen R. Shifley; Jian Yang; Hong He
2009-01-01
LANDIS is a landscape decision support tool that models spatial relationships to help managers and planners examine the large-scale, long-term, cumulative effects of succession, harvesting, wildfire, prescribed fire, insects, and disease. It can operate on forest landscapes from a few thousand to a few million acres in extent. Fire modeling capabilities in LANDIS are...
Effects of prescribed fire on wildlife and wildlife habitat in selected ecosystems of North America
William M. Block; L. Mike Conner; Paul A. Brewer; Paulette Ford; Jonathan Haufler; Andrea Litt; Ronald E. Masters; Laura R. Mitchell; Jane Park
2016-01-01
Prescribed fire is applied widely as a management tool in North America to meet various objectives such as reducing fuel loads and fuel continuity, returning fire to an ecosystem, enhancing wildlife habitats, improving forage, preparing seedbeds, improving watershed conditions, enhancing nutrient cycling, controlling exotic weeds, and enhancing resilience from...
Spatially explicit forecasts of large wildland fire probability and suppression costs for California
Haiganoush Preisler; Anthony L. Westerling; Krista M. Gebert; Francisco Munoz-Arriola; Thomas P. Holmes
2011-01-01
In the last decade, increases in fire activity and suppression expenditures have caused budgetary problems for federal land management agencies. Spatial forecasts of upcoming fire activity and costs have the potential to help reduce expenditures, and increase the efficiency of suppression efforts, by enabling them to focus resources where they have the greatest effect...
Thomas M. Floyd; Kevin R. Russell; Christopher E. Moorman; David H. van Lear; David C. Guynn; J. Drew Lanham
2002-01-01
Despite a large body of knowledge concerning the use of prescribed burning for wildlife management, amphibians and reptiles (collectively, herpetofauna) have received relatively little attention regarding their responses to fire. With few exceptions, previous studies of herpetofauna and prescribed burning have been confined to fire-maintained, pine-dominated...
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-12-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138
Air quality impacts from prescribed forest fires under different management practices.
Tian, Di; Wang, Yuhang; Bergin, Michelle; Hu, Yongtao; Liu, Yongqiang; Russell, Armistead G
2008-04-15
Large amounts of air pollutants are emitted during prescribed forest fires. Such emissions and corresponding air quality impacts can be modulated by different forest management practices. The impacts of changing burning seasons and frequencies and of controlling emissions during smoldering on regional air quality in Georgia are quantified using source-oriented air quality modeling, with modified emissions from prescribed fires reflecting effects of each practice. Equivalent fires in the spring and winter are found to have a greater impact on PM2.5 than those in summer, though ozone impacts are larger from spring and summer fires. If prescribed fires are less frequent more biofuel is burnt in each fire, leading to larger emissions and air quality impacts per fire. For example, emissions from a fire with a 5-year fire return interval (FRI) are 72% larger than those from a fire of the same acreage with a 2-year FRI. However, corresponding long-term regional impacts are reduced with the longer FRI since the annual burned area is reduced. Total emissions for fires in Georgia with a 5-year FRI are 32% less than those with a 2-year FRI. Smoldering emissions can lead to approximately 1.0 or 1.9 microg/m3 of PM2.5 in the Atlanta PM2.5 nonattainment area during March 2002.
LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard
2012-01-01
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...
The fire environment--innovations, management, and policy; conference proceedings
Bret W. Butler; Wayne Cook
2007-01-01
The International Association of Wildland Fire sponsored the second Fire Behavior and Fuels conference in Destin, Florida. The conference theme was "Fire Environment--Innovations, Management, and Policy." Over 450 attendees participated in presentations on the latest innovations in wildland fire management, examples of successful and maybe not so successful...
Prediction errors in wildland fire situation analyses.
Geoffrey H. Donovan; Peter Noordijk
2005-01-01
Wildfires consume budgets and put the heat on fire managers to justify and control suppression costs. To determine the appropriate suppression strategy, land managers must conduct a wildland fire situation analysis (WFSA) when:A wildland fire is expected to or does escape initial attack,A wildland fire managed for resource benefits...
Proposed wildland fire amendment to the Coronado National Forest Land and Resource Management Plan
Sherry A. Tune; Erin M. Boyle
2005-01-01
The Coronado National Forest proposed amending its 1986 Land and Resource Management Plan to conform to the 2001 Federal Wildland Fire Management Policy. This Policy emphasizes fireâs essential role in maintaining natural ecosystems and allows a broader range of management options for wildland fires. Under the current Forest Plan, fires must be suppressed in areas...
Rideout, Douglas B; Ziesler, Pamela S; Kernohan, Nicole J
2014-08-01
Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A
2017-03-01
Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.
Thompson, Matthew P; Scott, Joe; Helmbrecht, Don; Calkin, Dave E
2013-04-01
The financial, socioeconomic, and ecological impacts of wildfire continue to challenge federal land management agencies in the United States. In recent years, policymakers and managers have increasingly turned to the field of risk analysis to better manage wildfires and to mitigate losses to highly valued resources and assets (HVRAs). Assessing wildfire risk entails the interaction of multiple components, including integrating wildfire simulation outputs with geospatial identification of HVRAs and the characterization of fire effects to HVRAs. We present an integrated and systematic risk assessment framework that entails 3 primary analytical components: 1) stochastic wildfire simulation and burn probability modeling to characterize wildfire hazard, 2) expert-based modeling to characterize fire effects, and 3) multicriteria decision analysis to characterize preference structures across at-risk HVRAs. We demonstrate application of this framework for a wildfire risk assessment performed on the Little Belts Assessment Area within the Lewis and Clark National Forest in Montana, United States. We devote particular attention to our approach to eliciting and encapsulating expert judgment, in which we: 1) adhered to a structured process for using expert judgment in ecological risk assessment, 2) used as our expert base local resource scientists and fire/fuels specialists who have a direct connection to the specific landscape and HVRAs in question, and 3) introduced multivariate response functions to characterize fire effects to HVRAs that consider biophysical variables beyond fire behavior. We anticipate that this work will further the state of wildfire risk science and will lead to additional application of risk assessment to inform land management planning. Copyright © 2012 SETAC.
Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy
NASA Astrophysics Data System (ADS)
Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan
2016-04-01
The synergistic effect of wildfire and extreme post-fire climatic events, (e.g. droughts or torrential rainfall), may result in long windows of disturbance - challenging the overall resilience of Mediterranean ecosystems and communities. The notion that increased fire frequency and severity may reduce ecosystem resilience has received much attention in Mediterranean regions in recent decades. Careful evaluation of vegetation recovery and landscape regeneration after a fire event provides vital information useful in land management. In this study, an extension of Breaks For Additive Seasonal and Trend (BFAST) is proposed as an ideal approach to monitor change and assess fire dynamics at the landscape level based on analysis of the MODerate-resolution Imaging Spectroradiometer (MODIS, TERRA) time series. To this end, satellite images of three vegetation indices (VIs), the Normalized Burn Ratio (NBR), the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were used. The analysis was conducted on areas affected by wildfires in the Sardinia region (Italy) between 2007 and 2010. Some land surface (LS) descriptors (i.e. mean and maximum VI) and fire characteristics (e.g. pre-fire trend & VI, change magnitude, current VI) were extracted to characterize the post-fire evolution of each site within a fifteen-year period (2000-2015). Resilience was estimated using a classic linear function, whereby recovery rates were compared to regional climate data (e.g. water balance) and local landscape components (e.g.topography, land use and land cover). The methodology was applied according to land cover type (e.g. mixed forest, maquis, shrubland, pasture) within each fire site and highlighted the challenge of isolating effects and quantifying the role of fire regime characteristics on resilience in a dynamic way when considering large, heterogeneous areas. Preliminary findings can be outlined as follows: I. NBR showed it was most effective at detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.
Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.
Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W
2012-06-26
Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... [Docket ID FEMA-2013-0004] RIN 1660-AA78 Disaster Assistance; Fire Management Assistance Grant (FMAG..., DHS. ACTION: Proposed rule. SUMMARY: FEMA proposes to revise its Fire Management Assistance Grant...-2340, or (email) [email protected] . SUPPLEMENTARY INFORMATION: I. Background The Fire Management...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-05
... DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact... Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the National... the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On January...
Syphard, Alexandra D.; Keeley, Jon E.; Pfaff, Anne Hopkins; Ferschweiler, Ken
2017-01-01
Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.
NASA Astrophysics Data System (ADS)
Coughlan, Michael R.
2016-05-01
Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.
Coughlan, Michael R
2016-05-01
Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.
Bernard R. Parresol; John I. Blake; Andrew J. Thompson
2012-01-01
In the southeastern USA, land use history, forest management and natural geomorphic features have created heterogeneous fuel loads. This apparent temporal and spatial variation in fuel loads make it difficult to reliably assess potential fire behavior from remotely sensed canopy variables to determine risk and to prescribe treatments. We examined this variation by...
Colin C. Hardy; Helen Y. Smith; Ward McCaughey
2006-01-01
This paper presents several components of a multi-disciplinary project designed to evaluate the ecological and biological effects of two innovative silvicultural treatments coupled with prescribed fire in an attempt to both manage fuel profiles and create two-aged stand structures in lodgepole pine. Two shelterwood silvicultural treatments were designed to replicate as...
Sharon M. Hood; Helen Y. Smith; David K. Wright; Lance S. Glasgow
2012-01-01
Lodgepole pine is one of the most widely distributed conifers in North America, with a mixed-severity rather than stand-replacement fire regime throughout much of its range. These lodgepole pine forests are patchy and often two-aged. Fire exclusion can reduce two-aged lodgepole pine heterogeneity. This management guide summarizes the effects of thinning and prescribed...
Daniel C. Dey; George Hartman
2004-01-01
In 1997, The Nature Conservancy initiated a large-scale prescribed fire management study on approximately 2,500 acres of their Chilton Creek property located in Shannon and Carter counties, Missouri. Since the spring of 1998, five management units, of roughly 500 acres each, have been burned in the dormant season to simulate a range of fire regimes that vary from...
A review of recent advances in risk analysis for wildfire management
Carol Miller; Alan A. Ager
2012-01-01
Risk analysis evolved out of the need to make decisions concerning highly stochastic events, and is well suited to analyze the timing, location and potential effects of wildfires. Over the past 10 years, the application of risk analysis to wildland fire management has seen steady growth with new risk-based analytical tools that support a wide range of fire and fuels...
FARSITE: a fire area simulator for fire managers
Mark A. Finney
1995-01-01
A fire growth model (FARSITE) has been developed for use on personal computers (PCâs). Because PCâs are commonly used by land and fire managers, this portable platform would be an accustomed means to bring fire growth modeling technology to management applications. The FARSITE model is intended for use in projecting the growth of prescribed natural fires for wilderness...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... NIOSH 141-A] Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires AGENCY: National Institute for Occupational Safety and Health (NIOSH) of the Centers for... publication entitled ``Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at...
Direct and indirect responses of tallgrass prairie butterflies to prescribed burning
Vogel, Jennifer A.; Koford, Rolf R.; Debinski, Diane M.
2010-01-01
Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard
2016-04-01
Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire-fighting missions. The ongoing development focuses on the following topics: (1) Development of a multi-level management solution to coordinate and guide different airborne and terrestrial deployed firefighting modules as well as related data processing and data distribution activities. (2) Further, a targeted control of the thermal sensor based on a rotating mirror system to extend the "area performance" (covered area per hour) in time critical situations for the monitoring requirements during forest fire events. (3) Novel computer vision methods for analysis of thermal sensor signatures, which allow an automatic classification of different forest fire types and situations. (4) A module for simulation-based decision support for planning and evaluation of resource usage and the effectiveness of performed fire-fighting measures. (5) Integration of wearable systems to assist ground teams in rescue operations as well as a mobile information system into innovative command and fire-fighting vehicles. In addition, the paper gives an outlook on future perspectives including a first concept for the integration of the near real-time multilevel forest fire fighting management system into an "EU Civil Protection Team" to support the EU civil protection modules and the Emergency Response Coordination Centre in Brussels. Keywords: Airborne sensing, multi sensor imaging, near real-time fire monitoring, simulation-based decision support, forest firefighting management, firefighting impact analysis.
Modeling disturbance-based native invasive species control and its implications for management.
Shackelford, Nancy; Renton, Michael; Perring, Michael P; Hobbs, Richard J
2013-09-01
Shifts in disturbance regime have often been linked to invasion in systems by native and nonnative species. This process can have negative effects on biodiversity and ecosystem function. Degradation may be ameliorated by the reinstatement of the disturbance regimes, such as the reintroduction of fire in pyrogenic systems. Modeling is one method through which potential outcomes of different regimes can be investigated. We created a population model to examine the control of a native invasive that is expanding and increasing in abundance due to suppressed fire. Our model, parameterized with field data from a case study of the tree Allocasuarina huegeliana in Australian sandplain heath, simulated different fire return intervals with and without the additional management effort of mechanical removal of the native invader. Population behavior under the different management options was assessed, and general estimates of potential biodiversity impacts were compared. We found that changes in fire return intervals made no significant difference in the increase and spread of the population. However, decreased fire return intervals did lower densities reached in the simulated heath patch as well as the estimated maximum biodiversity impacts. When simulating both mechanical removal and fire, we found that the effects of removal depended on the return intervals and the strategy used. Increase rates were not significantly affected by any removal strategy. However, we found that removal, particularly over the whole patch rather than focusing on satellite populations, could decrease average and maximum densities reached and thus decrease the predicted biodiversity impacts. Our simulation model shows that disturbance-based management has the potential to control native invasion in cases where shifted disturbance is the likely driver of the invasion. The increased knowledge gained through the modeling methods outlined can inform management decisions in fire regime planning that takes into consideration control of an invasive species. Although particularly applicable to native invasives, when properly informed by empirical knowledge these techniques can be expanded to management of invasion by nonnative species, either by restoring historic disturbance regimes or by instating novel regimes in innovative ways.
Remote sensing techniques in monitoring areas affected by forest fire
NASA Astrophysics Data System (ADS)
Karagianni, Aikaterini Ch.; Lazaridou, Maria A.
2017-09-01
Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.
William M. Ford; M. Alex Menzel; David W. McGill; Joshua Laerm; Timothy S. McCay
1999-01-01
As part of the Wine Spring Creek ecosystem management project on the Nantahala National forest, North Carolina, we assessed effects of a community restoration fire on small mammals and herpetofauna in the upper slope pitch pine (Pinus rigida) stands, neighboring midslope oak (Quercus spp.) stands and rhododendron (...
Fire effects on ponderosa pine soils and their management implications
W.W. Covington; S.S. Sackett
1990-01-01
Fire in southwestern ponderosa pine induces changes in soil properties including decreasing the amount of nutrients stored in fuels (forest floor, woody litter, and understory vegetation) increasing the amount of nutrients on the soil surface (the "ashbed effect"), and increasing the inorganic nitrogen and moisture content in the mineral soil. Soil...
Knowledge-Based Systems Approach to Wilderness Fire Management.
NASA Astrophysics Data System (ADS)
Saveland, James M.
The 1988 and 1989 forest fire seasons in the Intermountain West highlight the shortcomings of current fire policy. To fully implement an optimization policy that minimizes the costs and net value change of resources affected by fire, long-range fire severity information is essential, yet lacking. This information is necessary for total mobility of suppression forces, implementing contain and confine suppression strategies, effectively dealing with multiple fire situations, scheduling summer prescribed burning, and wilderness fire management. A knowledge-based system, Delphi, was developed to help provide long-range information. Delphi provides: (1) a narrative of advice on where a fire might spread, if allowed to burn, (2) a summary of recent weather and fire danger information, and (3) a Bayesian analysis of long-range fire danger potential. Uncertainty is inherent in long-range information. Decision theory and judgment research can be used to help understand the heuristics experts use to make decisions under uncertainty, heuristics responsible both for expert performance and bias. Judgment heuristics and resulting bias are examined from a fire management perspective. Signal detection theory and receiver operating curve (ROC) analysis can be used to develop a long-range forecast to improve decisions. ROC analysis mimics some of the heuristics and compensates for some of the bias. Most importantly, ROC analysis displays a continuum of bias from which an optimum operating point can be selected. ROC analysis is especially appropriate for long-range forecasting since (1) the occurrence of possible future events is stated in terms of probability, (2) skill prediction is displayed, (3) inherent trade-offs are displayed, and (4) fire danger is explicitly defined. Statements on the probability of the energy release component of the National Fire Danger Rating System exceeding a critical value later in the fire season can be made early July in the Intermountain West. Delphi was evaluated formally and informally. Continual evaluation and feedback to update knowledge-based systems results in a repository for current knowledge, and a means to devise policy that will augment existing knowledge. Thus, knowledge-based systems can help implement adaptive resource management.
Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.
Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S
2015-05-01
Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.
Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity
Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S
2015-01-01
Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206
Vegetation-site relationships and fire history of a savanna-glade-woodland mosaic in the Ozarks
Sean E. Jenkins; Richard Guyette; Alan J. Rebertus
1997-01-01
There is a growing interest in reconstructing past disturbance regimes and how they influenced plant composition, structure and landscape pattern. Such information is useful to resource managers for determining the effects of fire suppression on vegetation or tailoring prescribed fires to restore community and landscape diversity. In the spring of 1995, the National...
E.L. Rowan; W.M. Ford; S.B. Castleberry; J.L. Rodrigue; T.M. Schuler; T.M. Schuler
2005-01-01
We used radiotelemetry to examine the effects of spring prescribed fire for preharvest oak (Quercus spp.) shelterwood management on eastern chipmunk (Tamias striatus) home-range attributes and burrow use on the Fernow Experimental Forest in the central Appalachian Mountains of West Virginia. Results for 21 chipmunks showed that prescribed fire had little discernable...
Estimating wildland fire rate of spread in a spatially nonuniform environment
Francis M Fujioka
1985-01-01
Estimating rate of fire spread is a key element in planning for effective fire control. Land managers use the Rothermel spread model, but the model assumptions are violated when fuel, weather, and topography are nonuniform. This paper compares three averaging techniques--arithmetic mean of spread rates, spread based on mean fuel conditions, and harmonic mean of spread...
David T. Butry
2009-01-01
This paper examines the effect wildfire mitigation has on broad-scale wildfire behavior. Each year, hundreds of million of dollars are spent on fire suppression and fuels management applications, yet little is known, quantitatively, of the returns to these programs in terms of their impact on wildfire extent and intensity. This is especially true when considering that...
John N. Rinne; Codey D. Carter
2008-01-01
Summer 2002 was a season of markedly increased wildfire in the southwestern United States. Four fires affected landscapes that encompassed watersheds and streams containing fishes. Streams affected in three of the four fires were sampled for multiple factors, including fishes, to delineate the impact of fires on aquatic ecosystems in the -Southwest. All fishes were...
Colin C. Hardy; Elizabeth D. Reinhardt
1998-01-01
The essential role of fire in sustaining ecosystems has recently been formally recognized. It is specifically addressed in several new national policy documents. In the Federal Wildland Fire Policy and Program Review's Implementation Action Plan (US Department of Interior and U.S. Department of Agriculture 1996). federal land managers expect to implement a several...
Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA
Peter R. Robichaud
2000-01-01
Infiltration rates in undisturbed forest environments are generally high. These high infiltration rates may be reduced when forest management activities such as timber harvesting and/or prescribed fires are used. Post-harvest residue burning is a common site preparation treatment used in the Northern Rocky Mountains, USA, to reduce forest fuels and to prepare sites for...
Doug J. Schwemlein; Roger A. Williams
2007-01-01
The use of fire to maintain and restore oak (Quercus spp.) ecosystems is becoming an increasingly accepted silvicultural tool; however, specific management recommendations have been slow to develop as past studies have shown mixed results. By examining fire temperature in response to landscape position and season of burn, we attempted to offer...
J. Greg Jones; Woodam Chung; Carl Seielstad; Janet Sullivan; Kurt Krueger
2010-01-01
There is a recognized need to apply and maintain fuel treatments to reduce catastrophic wildland fires. A number of models and decision support systems have been developed for addressing different aspects of fuel treatments while considering other important resource management issues and constraints. Although these models address diverse aspects of the fuel treatment-...
The Lick Creek Demonstration - Forest Renewal Through Partial Harvest and Fire
Benjamin Zamora; Melinda Martin
2006-01-01
The Lick Creek Demonstration Site on the Pomeroy Ranger District, Umatilla National Forest, is a Joint Fire Science Program sponsored project to create a demonstration of the effects of fuels management on forest health. The project was initiated in 2001 and involved the integration of two levels of partial harvest with prescribed fire, a burn only treatment and an...
Numerical response of small vertebrates to prescribed fire in a California oak woodland
Justin K. Vreeland; William D. Tietje
2002-01-01
Use of prescribed fire for management of livestock forage and fuel load is increasing in California oak woodlands, but its effects on vertebrate wildlife are unknown. We conducted a light-intensity prescribed fire in mixed blue oak-coast live-oak woodlands in coastal-central California and assessed vegetation change and numerical response of small, non-game vertebrates...
Jyh-Min Chiang; Ryan W. McEwan; Daniel A. Yaussy; Kim J. Brown
2008-01-01
More than 70 years of fire suppression has influenced forest dynamics and led to the accumulation of fuels in many forests of the United States. To address these changes, forest managers increasingly seek to restore historical ecosystem structure and function through the reintroduction of fire and disturbance processes that mimic fire such as silvicultural thinning. In...
Expert systems applied to spacecraft fire safety
NASA Technical Reports Server (NTRS)
Smith, Richard L.; Kashiwagi, Takashi
1989-01-01
Expert systems are problem-solving programs that combine a knowledge base and a reasoning mechanism to simulate a human expert. The development of an expert system to manage fire safety in spacecraft, in particular the NASA Space Station Freedom, is difficult but clearly advantageous in the long-term. Some needs in low-gravity flammability characteristics, ventilating-flow effects, fire detection, fire extinguishment, and decision models, all necessary to establish the knowledge base for an expert system, are discussed.
Risk in fire management decisionmaking: techniques and criteria
Gail Blatternberger; William F. Hyde; Thomas J. Mills
1984-01-01
In the past, decisionmaking in wildland fire management generally has not included a full consideration of the risk and uncertainty that is inherent in evaluating alternatives. Fire management policies in some Federal land management agencies now require risk evaluation. The model for estimating the economic efficiency of fire program alternatives is the minimization...
Applying Open Source Game Engine for Building Visual Simulation Training System of Fire Fighting
NASA Astrophysics Data System (ADS)
Yuan, Diping; Jin, Xuesheng; Zhang, Jin; Han, Dong
There's a growing need for fire departments to adopt a safe and fair method of training to ensure that the firefighting commander is in a position to manage a fire incident. Visual simulation training systems, with their ability to replicate and interact with virtual fire scenarios through the use of computer graphics or VR, become an effective and efficient method for fire ground education. This paper describes the system architecture and functions of a visual simulated training system of fire fighting on oil storage, which adopting Delat3D, a open source game and simulation engine, to provide realistic 3D views. It presents that using open source technology provides not only the commercial-level 3D effects but also a great reduction of cost.
Woody encroachment in northern Great Plains grasslands: Perceptions, actions, and needs
Symstad, Amy J.; Leis, Sherry A.
2017-01-01
The United States Northern Great Plains (NGP) has a high potential for landscape-scale conservation, but this grassland landscape is threatened by encroachment of woody species. We surveyed NGP land managers to identify patterns in, and illustrate a broad range of, individual managers' perceptions on (1) the threat of woody encroachment to grasslands they manage, and (2) what management practices they use that may influence woody encroachment in this region. In the 34 surveys returned, which came from predominantly public lands in the study area, 79% of responses reported moderate or substantial woody encroachment. Eastern redcedar (Juniperus virginiana) and Rocky Mountain juniper (Juniperus scopulorum) were the most problematic encroachers. Thirty-one survey respondents said that prescribed fire was used on the lands they manage, and 64% of these responses reported that controlling woody encroachment was a fire management objective. However, only 18% of survey respondents using prescribed fire were achieving their desired fire return interval. Most respondents reported using mechanical and/or chemical methods to control woody species. In contrast to evidence from the central and southern Great Plains, few survey respondents viewed grazing as affecting encroachment. Although the NGP public land managers we surveyed clearly recognize woody encroachment as a problem and are taking steps to address it, many feel that the rate of their management is not keeping pace with the rate of encroachment. Developing strategies for effective woody plant control in a variety of NGP management contexts requires filling ecological science gaps and overcoming societal barriers to using prescribed fire.
2016-08-21
USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...forecast landscape change in response to projected changes in climate , fire regime, and fire management. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
Ficken, Cari D; Wright, Justin P
2017-01-01
Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.
Wright, Justin P.
2017-01-01
Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system. PMID:29023560
A fire management simulation model using stochastic arrival times
Eric L. Smith
1987-01-01
Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...
A suite of fire, fuels, and smoke management tools
Roger D. Ottmar; Clint S. Wright; Susan J. Prichard
2009-01-01
The Fire and Environmental Research Applications Team (FERA) of the Forest Service, Pacific Northwest Research Station, is an interdisciplinary team of scientists that conduct primary research on wildland fire and provide decision support for fire hazard and smoke management. The team is committed to providing easy-to-use tools that help managers in their fire and...
44 CFR 204.21 - Fire management assistance declaration criteria.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Declaration Process § 204.21 Fire management assistance declaration criteria. (a) Determinations. We will... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Fire management assistance declaration criteria. 204.21 Section 204.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT...
44 CFR 204.21 - Fire management assistance declaration criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Declaration Process § 204.21 Fire management assistance declaration criteria. (a) Determinations. We will... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Fire management assistance declaration criteria. 204.21 Section 204.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT...
44 CFR 204.21 - Fire management assistance declaration criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Declaration Process § 204.21 Fire management assistance declaration criteria. (a) Determinations. We will... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Fire management assistance declaration criteria. 204.21 Section 204.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT...
44 CFR 204.21 - Fire management assistance declaration criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Declaration Process § 204.21 Fire management assistance declaration criteria. (a) Determinations. We will... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Fire management assistance declaration criteria. 204.21 Section 204.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT...
44 CFR 204.21 - Fire management assistance declaration criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Declaration Process § 204.21 Fire management assistance declaration criteria. (a) Determinations. We will... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Fire management assistance declaration criteria. 204.21 Section 204.21 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT...
Prescribed-fire effects on an aquatic community of a southwest montane grassland system
Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna
2013-01-01
The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality) of prescription burn and anticipated effects on aquatic communities.
The Influence of Proximity to a National Forest on Emotions and Fire-Management Decisions
NASA Astrophysics Data System (ADS)
Vining, Joanne; Merrick, Melinda S.
2008-02-01
Because American national forests are managed for all citizens, it is important that researchers explore the differences and similarities between citizens living both near and far from publicly managed land. We surveyed residents living at various distances from nationally managed land to collect resident perceptions of different forest fire-management techniques, to determine public preferences for these techniques, and to examine the motivations behind these preferences. Participants both close to and far away from national forests tended to favor a multipronged approach to fire management by preferring the use of a combination of two or more fire-management techniques. There were no significant differences by proximity in participants’ self-rated emotions, types of fire-management techniques preferred, or the reasons and rationales for their preferred fire-management technique(s), indicating that the proximity variable may not be as significant as previously thought.
The influence of proximity to a national forest on emotions and fire-management decisions.
Vining, Joanne; Merrick, Melinda S
2008-02-01
Because American national forests are managed for all citizens, it is important that researchers explore the differences and similarities between citizens living both near and far from publicly managed land. We surveyed residents living at various distances from nationally managed land to collect resident perceptions of different forest fire-management techniques, to determine public preferences for these techniques, and to examine the motivations behind these preferences. Participants both close to and far away from national forests tended to favor a multipronged approach to fire management by preferring the use of a combination of two or more fire-management techniques. There were no significant differences by proximity in participants' self-rated emotions, types of fire-management techniques preferred, or the reasons and rationales for their preferred fire-management technique(s), indicating that the proximity variable may not be as significant as previously thought.
Jason M. Forthofer; Bret W. Butler; Charles W. McHugh; Mark A. Finney; Larry S. Bradshaw; Richard D. Stratton; Kyle S. Shannon; Natalie S. Wagenbrenner
2014-01-01
The effect of fine-resolution wind simulations on fire growth simulations is explored. The wind models are (1) a wind field consisting of constant speed and direction applied everywhere over the area of interest; (2) a tool based on the solution of the conservation of mass only (termed mass-conserving model) and (3) a tool based on a solution of conservation of mass...
2013 Annual Report: Fire Modeling Institute
Robin J. Innes; Faith Ann Heinsch; Kristine M. Lee
2014-01-01
The Fire Modeling Institute (FMI) of the U.S. Forest Service, Rocky Mountain Research Station (RMRS), is a national and international resource for fire managers. Located within the Fire, Fuel, and Smoke Science Program at the Missoula Fire Sciences Laboratory (Fire Lab) in Montana, FMI helps managers utilize fire and fuel science and technology developed throughout the...
Biodiversity management of fens and fen meadows by grazing, cutting and burning
Middleton, B.A.; Holsten, B.; Van Diggelen, R.
2006-01-01
Question: Can the biodiversity of fens in Europe and North America be maintained through the use of grazing (especially cattle grazing), fire, and/or cutting? Location: European and North American fens. Methods: This paper is a review of the literature on the effects of grazing, fire and cutting on fens, to explore the relationship between management and biodiversity in fens. Results: A reduction of cattle grazing, mowing and burning in fens has led to a reduction in biodiversity in fens. The vegetation of abandoned fens shifts to trees and shrubs after 10-15 years, which shade the smaller and rarer species of these wetlands. While careful use of fire is used to manage fens in North America, it is not widely used in European fens, perhaps because the peat of drained fens may catch fire. Cattle grazing cannot be considered a natural disturbance in North America, since cattle did not evolve on that continent. In Europe, cattle do not generally graze in unaltered fens, but they do use slightly drained fen meadows. Conclusions: Three approaches have been used to control the dominance of tall woody and herbaceous species in abandoned fens, including the re-introduction of cattle, mowing, and burning. Overgrazing results in a permanent reduction in biodiversity, therefore cattle re-introduction must be approached cautiously. In Europe, but not in North America, mowing has been an important management tool, and mowing has been successful in maintaining species richness, particularly in fens that have been mowed annually for centuries. Fire has been the most common and successful management tool in North America although it is not effective in removing shrubs that have become large. Because the problems and solutions are similar, the literature of both European and North American fen management can be analyzed to better assess the management of fens on both continents. Many management questions require further study and these are listed in the paper. ?? IAVS; Opulus Press.
Mark A. Finney; Charles W. McHugh; Roberta Bartlette; Kelly Close; Paul Langowski
2003-01-01
This report summarizes the progress of the Hayman Fire, its behavior, and the influence of environmental conditions. Data were obtained from narratives from fire behavior analysts assigned to the fire management teams, discussions with fire management staff, meteorology from local weather stations and Bradshaw and others (2003), photographs, satellite imagery, and...
Equipping tomorrow's fire manager
Christopher A. Dicus
2008-01-01
Fire managers are challenged with an ever-increasing array of both responsibilities and critics. As in the past, fire managers must master the elements of fire behavior and ecology using the latest technologies. In addition, todayâs managers must be equipped with the skills necessary to understand and liaise with a burgeoning group of vocal stakeholders while also...
Developing standardized strategic response categories for fire management units
Matthew P. Thompson; Crystal S. Stonesifer; Robert C. Seli; Marlena Hovorka
2013-01-01
Federal wildland fire policy requires that publicly owned lands with burnable vegetation have a fire management plan (FMP); this applies to the five primary Federal fire agencies (Bureau of Indian Affairs, Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and Forest Service). FMPs are based on land and resource management plans and are...
Estimation of wildfire size and risk changes due to fuels treatments
Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.
NASA Astrophysics Data System (ADS)
Manning, George C.; Baer, Sara G.; Blair, John M.
2017-12-01
Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies ( P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies ( P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI ( P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.
Manning, George C; Baer, Sara G; Blair, John M
2017-12-01
Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index (FQI). Further, the influence of fire and grazing on soil properties and functions are difficult for land managers and restoration practitioners to assess. The objectives of this study were to: (1) quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie to provide potential benchmarks for community assessment, and (2) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 years return intervals) and grazing (by bison or ungrazed) treatments were sampled for plant species composition, and for several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies (P < 0.05). Available inorganic N, microbial biomass N, total N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies (P < 0.05). Microbial biomass C, total organic C, and total soil N were positively correlated with FQI (P < 0.05). This study shows that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie.
Effects of prescribed fire on vegetation and passerine birds in northern mixed-grass prairie
Grant, T.A.; Madden, E.M.; Shaffer, T.L.; Dockens, J.S.
2010-01-01
Prescribed fire is used widely to manage grasslands on National Wildlife Refuges and other public lands in the northern Great Plains, but its effects on habitat use or production of wildlife in the region are poorly understood. During 19982003, we used point counts to examine effects of prescribed fire on vegetation and passerines in a mixed-grass prairie complex in north-central North Dakota, USA (n 7 units, each 4070 ha). Vegetation structure and, to a lesser extent, plant community composition varied with year of study (likely related to changes in annual precipitation) and with number of growing seasons since fire. Fire altered plant structure, especially the amount of residual vegetation, which in turn influenced bird species richness and abundance. The number of indicated pairs for sedge wren (Cistothorus platensis), clay-colored sparrow (Spizella pallida), Le Conte's sparrow (Ammodramus leconteii), Savannah sparrow (Passerculus sandwichensis), and bobolink (Dolichonyx oryzivorus) were lowest during the first postfire growing season but generally increased and stabilized within 23 postfire growing seasons. Our results support the premise that grassland passerines are well-adapted to frequent, periodic fires, generally corresponding to those occurring prior to EuroAmerican settlement of the region. Prescribed fire is important for reducing tree and shrub invasion, restoring biological integrity of plant communities, and maintaining or enhancing populations of grassland-dependent bird species. Managers in the northern mixed-grass prairie region should not be overly concerned about reductions in bird abundances that are limited mostly to the first growing season after fire. 2010 The Wildlife Society.
Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.
2007-01-01
Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.
Israel wildfires: future trends, impacts and mitigation strategies
NASA Astrophysics Data System (ADS)
Wittenberg, Lea
2017-04-01
Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.
Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J
2016-04-01
Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (< 5 yr from outbreak to time of fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and wildfires have increased autonomously due to recent climate variability, but this study does not support the expectation that post-beetle outbreak forests will alter fire severity, a result that has important implications for management and policy decisions.
Interagency wilderness fire management
Jim Desmond
1995-01-01
Wilderness fire managers are often confronted with natural fire ignitions that start and/or burn near an adjoining agencyâs wilderness area boundary. Management strategies for prescribed natural fires (PNF) are often developed using the adjoining agencyâs wilderness boundary as the maximum allowable perimeter (control line) for the PNF. When this occurs, fireâs natural...
Evaluating risks and benefits of wildland fire at landscape scales
Carol Miller; Peter B. Landres; Paul B. Alaback
2000-01-01
Fire suppression has resulted in severe management challenges, especially in the wildland-urban interface zone. Fire managers seek to reduce fuels and risks in the interface zone, while striving to return the natural role of fire to wildland ecosystems. Managers must balance the benefits of wildland fire on ecosystem health against the values that need to be protected...
Post-fire land management: Comparative effects of different strategies on hillslope sediment yield
NASA Astrophysics Data System (ADS)
Cole, R.; Bladon, K. D.; Wagenbrenner, J.; Coe, D. B. R.
2017-12-01
High-severity wildfire can increase erosion on burned, forested hillslopes. Salvage logging is a post-fire land management practice to extract economic value from burned landscapes, reduce fuel loads, and improve forest safety. Few studies assess the impact of post-fire salvage logging or alternative land management approaches on erosion in forested landscapes, especially in California. In September 2015, the Valley Fire burned approximately 31,366 ha of forested land and wildland-urban interface in the California's Northern Coast Range, including most of Boggs Mountain Demonstration State Forest. The primary objective of our study is to quantify erosion rates at the plot scale ( 75 m2) for different post-fire land management practices, including mechanical logging and subsoiling (or ripping) after logging. We measured sediment yields using sediment fences in four sets of replicated plots. We also estimated ground cover in each plot using three randomly positioned 1-meter quadrats. We are also measuring rainfall near each plot to understand hydrologic factors that influence erosion. Preliminary results indicate that burned, unlogged reference plots yielded the most sediment over the winter rainy season (3.3 kg m-2). Sediment yields of burned and logged (0.9 kg m-2), and burned, logged, and ripped (0.7 kg m-2), were substantially lower. Burned and unlogged reference plots had the least ground cover (49%), while ground cover was higher and more similar between logged (65%) and logged and ripped (72%) plots. These initial results contrast with previous studies in which the effect of post-fire salvage logging ranged from no measured impact to increased sediment yield related to salvage logging.
NASA Astrophysics Data System (ADS)
Tóthmérész, Béla; Valkó, Orsolya; Török, Péter; Végvári, Zsolt; Deák, Balázs
2015-04-01
Fire as a natural disturbance has been present in most European grasslands. In parallel controlled use of burning was an important part of the traditional landscape management for millennia. It was used to reduce litter and suppress woody vegetation as well as to maintain open landscapes suitable for farming. Recently, human activities have a considerable impact on natural fire regimes through habitat fragmentation, cessation of traditional grassland management and climate change. Nowadays the majority of human-ignited fires are uncontrolled burnings and arson, which have serious negative impacts on human life, property and can be detrimental also from the nature conservation point of view. Despite fire was widely applied in the past and the considerable extension and frequency of current grassland fires, the impact of fire on the grassland biodiversity is still scarcely documented in Europe. The aim of our study was to gather practical knowledge and experiences from Hungary concerning the effects of fire on grasslands. To fulfil this aim we sent questionnaires to experts from Hungarian national park directorates to gather unpublished data and field observations concerning the effects of burning on grasslands. Based on the answers for the questionnaires fire regularly occur in almost every grassland types in Hungary. We found that effects of fire are habitat-specific. One hand uncontrolled burning and arson have serious detrimental impacts on many endangered species (ground-dwelling birds, such as Asio flammeus, Tringa totanus and Vanellus vanellus; or lizards, such as Ablepharus kitaibelii). On the other hand in several cases fire has a positive effect on the habitat structure and favours species of high nature conservation interest (plant species, such as Adonis volgensis, Chamaecytisus supinus and Pulsatilla grandis; butterflies, such as Euphydryas aurinia; bird species such as Circus aeruginosus and Larus cachinnans). Our results suggest that even uncontrolled burning can have positive impacts from a nature conservation point of view by supporting several endangered species, reducing accumulated litter and maintaining open landscapes. Given the fact that due to land use changes and global warming the frequency of fire events are expected to increase in the next future, it is crucial to summarize evidence-based knowledge on fire in a European level and to design prescribed burning experiments in which the effects of fire could be studied in a controlled way.