Sample records for effective hydrodynamic radius

  1. A Fluorescence Correlation Spectroscopy Study of the Cryoprotective Mechanism of Glucose on Hemocyanin

    NASA Astrophysics Data System (ADS)

    Hauger, Eric J.

    Cryopreservation is the method of preserving biomaterials by cooling and storing them at very low temperatures. In order to prevent the damaging effects of cooling, cryoprotectants are used to inhibit ice formation. Common cryoprotectants used today include ethylene glycol, propylene glycol, dimethyl sulfoxide, glycerol, and sugars. However, the mechanism responsible for the effectiveness of these cryoprotectants is poorly understood on the molecular level. The water replacement model predicts that water molecules around the surfaces of proteins are replaced with sugar molecules, forming a protective layer against the denaturing ice formation. Under this scheme, one would expect an increase in the hydrodynamic radius with increasing sugar concentration. In order to test this hypothesis, two-photon fluorescence correlation spectroscopy (FCS) was used to measure the hydrodynamic radius of hemocyanin (Hc), an oxygen-carrying protein found in arthropods, in glucose solutions up to 20wt%. FCS found that the hydrodynamic radius was invariant with increasing glucose concentration. Dynamic light scattering (DLS) results verified the hydrodynamic radius of hemocyanin in the absence of glucose. Although this invariant trend seems to indicate that the water replacement hypothesis is invalid the expected glucose layer around the Hc is smaller than the error in the hydrodynamic radius measurements for FCS. The expected change in the hydrodynamic radius with an additional layer of glucose is 1nm, however, the FCS standard error is +/-3.61nm. Therefore, the water replacement model cannot be confirmed nor refuted as a possible explanation for the cryoprotective effects of glucose on Hc.

  2. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells.

    PubMed

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  3. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    NASA Astrophysics Data System (ADS)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  4. Exploring the effects of defects on DT burn, the DIME experiment and measuring capsule zero-order hydrodynamics using Polar direct drive

    NASA Astrophysics Data System (ADS)

    Magelssen, G. R.; Bradley, P. A.; Tregillis, I. L.; Schmitt, M. J.; Dodd, E. S.; Wysocki, F. J.; Hsu, S. C.; Cobble, J.; Batha, S. H.; Defriend Obrey, K. A.

    2010-11-01

    Small capsule perturbations may impact our ability to achieve high yields on NIF. Diagnosing the hydrodynamic development and the effect of defects on burn will be difficult. Los Alamos is developing a program to better understand the hydrodynamics of defects and how they influence burn. Our first effort to study the effects of defects was on Omega. Both thin-shelled (exploding pusher) and thick-shelled capsules were shot and the results published [1]. In this work we add experimental shots done recently on Omega. These shots were to complete the study of how the width and depth of the defect affects DT yield. Our AMR code is used to predict the yield. Comparisons between capsule and experimental yields will be given. Experiments are also being designed for Polar direct drive. Our first experiments are being designed to understand the zero-order hydrodynamics with Polar direct drive. Capsules about a millimeter in radius are being designed with one to two dopants in the CH shell for radiograph and MMI usage. Also, to minimize the effect of mix on the radius versus time trajectory, some capsules will replace the DT with Xe.[0pt] [1] Magelssen G. R. et al., to be published in the 2009 IFSA proceedings.

  5. Onset of Darrieus-Landau Instability in Expanding Flames

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2017-11-01

    The effect of small amplitude perturbations on the propagation of circular flames in unconfined domains is investigated, computationally and analytically, within the context of the hydrodynamic theory. The flame, treated as a surface of density discontinuity separating fresh combustible mixture from the burnt gas, propagates at a speed dependent upon local curvature and hydrodynamic strain. For mixtures with Lewis numbers above criticality, thermodiffusive effects have stabilizing influences which largely affect the flame at small radii. The amplitude of these disturbances initially decay and only begin to grow once a critical radius is reached. This instability is hydrodynamic in nature and is a consequence of thermal expansion. Through linear stability analysis, predictions of critical flame radius at the onset of instability are obtained as functions of Markstein length and thermal expansion coefficients. The flame evolution is also examined numerically where the motion of the interface is tracked via a level-set method. Consistent with linear stability results, simulations show the flame initially remaining stable and the existence of a particular mode that will be first to grow and later determine the cellular structure observed experimentally at the onset of instability.

  6. Black branes in a box: hydrodynamics, stability, and criticality

    NASA Astrophysics Data System (ADS)

    Emparan, Roberto; Martınez, Marina

    2012-07-01

    We study the effective hydrodynamics of neutral black branes enclosed in a finite cylindrical cavity with Dirichlet boundary conditions. We focus on how the Gregory-Laflamme instability changes as we vary the cavity radius R. Fixing the metric at the cavity wall increases the rigidity of the black brane by hindering gradients of the redshift on the wall. In the effective fluid, this is reflected in the growth of the squared speed of sound. As a consequence, when the cavity is smaller than a critical radius the black brane becomes dynamically stable. The correlation with the change in thermodynamic stability is transparent in our approach. We compute the bulk and shear viscosities of the black brane and find that they do not run with R. We find mean-field theory critical exponents near the critical point.

  7. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.

    PubMed

    Li, Longqiu; Wang, Jiyuan; Li, Tianlong; Song, Wenping; Zhang, Guangyu

    2014-10-14

    The hydrodynamic behavior and propulsion mechanism of self-propelled micromotors are studied theoretically and experimentally. A hydrodynamic model to describe bubble growth and detachment is proposed to investigate the mechanism of a self-propelled conical tubular catalytic micromotor considering bubble geometric asymmetry and buoyancy force. The growth force caused by the growth of the bubble surface against the fluid is the driving force for micromotor motion. Also, the buoyancy force plays a primary role in bubble detachment. The effect of geometrical parameters on the micromotor velocity and drag force is presented. The bubble radius ratio is investigated for different micromotor radii to determine its hydrodynamic behavior during bubble ejection. The average micromotor velocity is found to be strongly dependent on the semi-cone angle, expelling frequency and bubble radius ratio. The semi-cone angle has a significant effect on the expelling frequency for conical tubular micromotors. The predicted results are compared to already existing experimental data for cylindrical micromotors (semi-cone angle δ = 0°) and conical micromotors. A good agreement is found between the theoretical calculation and experimental results. This model provides a profound explanation for the propulsion mechanism of a catalytic micromotor and can be used to optimize the micromotor design for its biomedical and environmental applications.

  8. Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.

    PubMed

    Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H

    1983-07-01

    The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.

  9. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2007-10-01

    Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.

  10. Jeans instability of magnetized quantum plasma: Effect of viscosity, rotation and finite Larmor radius corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Shweta, E-mail: jshweta09@gmail.com; Sharma, Prerana; Chhajlani, R. K.

    2015-07-31

    The Jeans instability of self-gravitating quantum plasma is examined considering the effects of viscosity, finite Larmor radius (FLR) corrections and rotation. The analysis is done by normal mode analysis theory with the help of relevant linearized perturbation equations of the problem. The general dispersion relation is obtained using the quantum magneto hydrodynamic model. The modified condition of Jeans instability is obtained and the numerical calculations have been performed to show the effects of various parameters on the growth rate of Jeans instability.

  11. Simulating X-ray bursts with a radiation hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Seong, Gwangeon; Kwak, Kyujin

    2018-04-01

    Previous simulations of X-ray bursts (XRBs), for example, those performed by MESA (Modules for Experiments in Stellar Astrophysics) could not address the dynamical effects of strong radiation, which are important to explain the photospheric radius expansion (PRE) phenomena seen in many XRBs. In order to study the effects of strong radiation, we propose to use SNEC (the SuperNova Explosion Code), a 1D Lagrangian open source code that is designed to solve hydrodynamics and equilibrium-diffusion radiation transport together. Because SNEC is able to control modules of radiation-hydrodynamics for properly mapped inputs, radiation-dominant pressure occurring in PRE XRBs can be handled. Here we present simulation models for PRE XRBs by applying SNEC together with MESA.

  12. Polymer translocation in solid-state nanopores: Dependence on hydrodynamic interactions and polymer configuration

    NASA Astrophysics Data System (ADS)

    Edmonds, Christopher M.; Hesketh, Peter J.; Nair, Sankar

    2013-11-01

    We present a Brownian dynamics investigation of 3-D Rouse and Zimm polymer translocation through solid-state nanopores. We obtain different scaling exponents α for both polymers using two initial configurations: minimum energy, and 'steady-state'. For forced translocation, Rouse polymers (no hydrodynamic interactions), shows a large dependence of α on initial configuration and voltage. Higher voltages result in crowding at the nanopore exit and reduced α. When the radius of gyration is in equilibrium at the beginning and end of translocation, α = 1 + υ where υ is the Flory exponent. For Zimm polymers (including hydrodynamic interactions), crowding is reduced and α = 2υ. Increased pore diameter does not affect α at moderate voltages that reduce diffusion effects. For unforced translocation using narrow pores, both polymers give α = 1 + 2υ. Due to increased polymer-pore interactions in the narrow pore, hydrodynamic drag effects are reduced, resulting in identical scaling.

  13. Hydrodynamic radius fluctuations in model DNA-grafted nanoparticles

    NASA Astrophysics Data System (ADS)

    Vargas-Lara, Fernando; Starr, Francis W.; Douglas, Jack F.

    2016-05-01

    We utilize molecular dynamics simulations (MD) and the path-integration program ZENO to quantify hydrodynamic radius (Rh) fluctuations of spherical symmetric gold nanoparticles (NPs) decorated with single-stranded DNA chains (ssDNA). These results are relevant to understanding fluctuation-induced interactions among these NPs and macromolecules such as proteins. In particular, we explore the effect of varying the ssDNA-grafted NPs structural parameters, such as the chain length (L), chain persistence length (lp), NP core size (R), and the number of chains (N) attached to the nanoparticle core. We determine Rh fluctuations by calculating its standard deviation (σRh) of an ensemble of ssDNA-grafted NPs configurations generated by MD. For the parameter space explored in this manuscript, σR h shows a peak value as a function of N, the amplitude of which depends on L, lp and R, while the broadness depends on R.

  14. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy.

    PubMed

    Lee, Hwankyu; Venable, Richard M; Mackerell, Alexander D; Pastor, Richard W

    2008-08-01

    A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length lambda = 3.7 A, in quantitative agreement with experimentally obtained values of 3.7 A for PEO and 3.8 A for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent upsilon relating the radius of gyration and molecular weight (R(g) proportional, variantM(w)(upsilon)) of PEO from the simulations equals 0.515 +/- 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius R(h)obtained from diffusion measurements in solution. This explains the correspondence of R(h) and R(p), the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion.

  15. Laser-generated Micro-bubbles for Molecular Delivery to Adherent Cells

    NASA Astrophysics Data System (ADS)

    Genc, Suzanne Lee

    We examine the use of optical breakdown in aqueous media as a means to deliver molecules into live adherent cell cultures. This process, called optoinjection (OI), is affected both by the media composition and the cellular exposure to hydrodynamic stresses associated with the cavitation bubble formed by the optical breakdown process. Here we explore the possibility of performing OI using laser microbeams focused at low numerical aperture to provide conditions where OI can be performed at high-throughput. We first investigate the effect of media composition on plasma and cavitation bubble formation. We make the discovery that irradiation of minimal essential media, supports the formation of low-density plasmas (LDP) resulting in the generation of small (2--20 mum radius) cavitation bubbles. This provides gentle specific hydrodynamic perturbations to single or small groups of cells. The addition of supplemental fetal bovine serum to the medium prevents the formation LDPs and the resulting avalanche ionization generates larger (> 100 mum radius) bubbles and more violent hydrodynamic effects. Second, using high-speed photography we provide the first visualization of LDP-generated cavitation bubbles at precise offset locations relative to a boundary on which a cell monolayer can be cultured. These images depict the cellular exposure to different hydrodynamic conditions depending on the normalized offset distance (gamma = s/Rmax) and show how it affects the cellular exposure to shear stresses upon bubble expansion and different distributions of bubble energy upon collapse. Lastly, we examine the effects of pulse energy, parameters, and single vs. multiple laser exposures on the ability to deliver 3-5 kDa dextrans into adherent cells using both small (< 20 mum) and large (100mu m) radius bubbles. For single exposures, we identify several conditions under which OI can be optimized: (a) conditions where cell viability is maximized (˜90%) but optoinjection of viable cells is relatively low (˜30%) and (b) conditions where cell viability is compromised (˜80%) but where the optoinjection of viable cells is higher (˜50%). For multiple exposures in a grid pattern, we generally found reduced optoinjection efficacy but do identify conditions where we achieve injection of viable cells approaching 50%. We correlate these results to the cavitation bubble dynamics.

  16. Detecting protein folding by thermal fluctuations of microcantilevers

    PubMed Central

    Aguilar-Sandoval, Felipe; Bellon, Ludovic; Melo, Francisco

    2017-01-01

    The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein’s structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever’s fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses. PMID:29267316

  17. Gyrokinetic water-bag modeling of a plasma column: Magnetic moment distribution and finite Larmor radius effects

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.

    2009-08-01

    Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.

  18. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles

    NASA Astrophysics Data System (ADS)

    Mountrakis, L.; Lorenz, E.; Hoekstra, A. G.

    2017-07-01

    The immersed-boundary lattice-Boltzmann method (IB-LBM) is increasingly being used in simulations of dense suspensions. These systems are computationally very expensive and can strongly benefit from lower resolutions that still maintain the desired accuracy for the quantities of interest. IB-LBM has a number of free parameters that have to be defined, often without exact knowledge of the tradeoffs, since their behavior in low resolutions is not well understood. Such parameters are the lattice constant Δ x , the number of vertices Nv, the interpolation kernel ϕ , and the LBM relaxation time τ . We investigate the effect of these IB-LBM parameters on a number of straightforward but challenging benchmarks. The systems considered are (a) the flow of a single sphere in shear flow, (b) the collision of two spheres in shear flow, and (c) the lubrication interaction of two spheres. All benchmarks are performed in three dimensions. The first two systems are used for determining two effective radii: the hydrodynamic radius rhyd and the particle interaction radius rinter. The last system is used to establish the numerical robustness of the lubrication forces, used to probe the hydrodynamic interactions in the limit of small gaps. Our results show that lower spatial resolutions result in larger hydrodynamic and interaction radii, while surface densities should be chosen above two vertices per LU2 result to prevent fluid penetration in underresolved meshes. Underresolved meshes also failed to produce the migration of particles toward the center of the domain due to lift forces in Couette flow, mostly noticeable for IBM-kernel ϕ2. Kernel ϕ4, despite being more robust toward mesh resolution, produces a notable membrane thickness, leading to the breakdown of the lubrication forces in larger gaps, and its use in dense suspensions where the mean particle distances are small can result in undesired behavior. rhyd is measured to be different from rinter, suggesting that there is no consistent measure to recalibrate the radius of the suspended particle.

  19. Light-emitting dendrimer film morphology: A neutron reflectivity study

    NASA Astrophysics Data System (ADS)

    Vickers, S. V.; Barcena, H.; Knights, K. A.; Thomas, R. K.; Ribierre, J.-C.; Gambino, S.; Samuel, I. D. W.; Burn, P. L.; Fragneto, Giovanna

    2010-06-01

    We have used neutron reflectivity (NR) measurements to probe the physical structure of phosphorescent dendrimer films. The dendrimers consisted of fac-tris(2-phenylpyridyl)iridium(III) cores, biphenyl-based dendrons (first or second generation), and perdeuterated 2-ethylhexyloxy surface groups. We found that the shape and hydrodynamic radius of the dendrimer were both important factors in determining the packing density of the dendrimers. "Cone" shaped dendrimers were found to pack more effectively than "spherical" dendrimers even when the latter had a smaller radius. The morphology of the films determined by NR was consistent with the measured photoluminescence and charge transporting properties of the materials.

  20. Using magnetic nanoparticles to probe protein damage in ferritin caused by freeze concentration

    NASA Astrophysics Data System (ADS)

    Chagas, E. F.; Correia Carreira, S.; Schwarzacher, W.

    2015-11-01

    We demonstrate a method for monitoring the damage caused to a protein during freeze-thawing in the presence of glycerol, a cryo-protectant. For this work we synthesized magnetite nanoparticles doped with 2.5% cobalt inside the protein ferritin (CMF), dissolved them in different concentration glycerol solutions and measured their magnetization after freezing in a high applied field (5 T). As the temperature was raised, a step-like decrease in the sample magnetization was observed, corresponding to the onset of Brownian relaxation as the viscosity of the freeze-concentrated glycerol solution decreased. The position of the step reveals changes to the protein hydrodynamic radius that we attribute to protein unfolding, while its height depends on how much protein is trapped by ice during freeze concentration. Changes to the protein hydrodynamic radius are confirmed by dynamic light scattering (DLS) measurements, but unlike DLS, the magnetic measurements can provide hydrodynamic data while the solution remains mainly frozen.

  1. Hydrodynamic Trapping of Swimming Bacteria by Convex Walls

    NASA Astrophysics Data System (ADS)

    Sipos, O.; Nagy, K.; Di Leonardo, R.; Galajda, P.

    2015-06-01

    Swimming bacteria display a remarkable tendency to move along flat surfaces for prolonged times. This behavior may have a biological importance but can also be exploited by using microfabricated structures to manipulate bacteria. The main physical mechanism behind the surface entrapment of swimming bacteria is, however, still an open question. By studying the swimming motion of Escherichia coli cells near microfabricated pillars of variable size, we show that cell entrapment is also present for convex walls of sufficiently low curvature. Entrapment is, however, markedly reduced below a characteristic radius. Using a simple hydrodynamic model, we predict that trapped cells swim at a finite angle with the wall and a precise relation exists between the swimming angle at a flat wall and the critical radius of curvature for entrapment. Both predictions are quantitatively verified by experimental data. Our results demonstrate that the main mechanism for wall entrapment is hydrodynamic in nature and show the possibility of inhibiting cell adhesion, and thus biofilm formation, using convex features of appropriate curvature.

  2. An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: The nanoemulsion method (featuring multi angle light scattering).

    PubMed

    Bolinsson, Hans; Lu, Yi; Hall, Stephen; Nilsson, Lars; Håkansson, Andreas

    2018-01-19

    This study suggests a novel method for determination of the channel height in asymmetrical flow field-flow fractionation (AF4), which can be used for calibration of the channel for hydrodynamic radius determinations. The novel method uses an oil-in-water nanoemulsion together with multi angle light scattering (MALS) and elution theory to determine channel height from an AF4 experiment. The method is validated using two orthogonal methods; first, by using standard particle elution experiments and, secondly, by imaging an assembled and carrier liquid filled channel by x-ray computed tomography (XCT). It is concluded that the channel height can be determined with approximately the same accuracy as with the traditional channel height determination technique. However, the nanoemulsion method can be used under more challenging conditions than standard particles, as the nanoemulsion remains stable in a wider pH range than the previously used standard particles. Moreover, the novel method is also more cost effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gas loss in simulated galaxies as they fall into clusters

    PubMed Central

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A.

    2014-01-01

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip. PMID:24843167

  4. Gas loss in simulated galaxies as they fall into clusters.

    PubMed

    Cen, Renyue; Pop, Ana Roxana; Bahcall, Neta A

    2014-06-03

    We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

  5. Hydrodynamic Boundary Effects on Thermophoresis of Confined Colloids.

    PubMed

    Würger, Alois

    2016-04-01

    We study hydrodynamic slowing down of a particle moving in a temperature gradient perpendicular to a wall. At distances much smaller than the particle radius, h≪a, the lubrication approximation leads to the reduced velocity u/u_{0}=3(h/a)[ln(a/h)-9/4], where u_{0} is the velocity in the bulk. With Brenner's result for confined diffusion, we find that the trapping efficiency, or effective Soret coefficient, increases logarithmically as the particle gets very close to the wall. Our results provide a quantitative explanation for the recently observed enhancement of thermophoretic trapping at short distances. Our discussion of parallel and perpendicular thermophoresis in a capillary reveals a good agreement with experiments on charged polystyrene particles, and sheds some light on a controversy concerning the size dependence and the nonequilibrium nature of the Soret effect.

  6. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    NASA Astrophysics Data System (ADS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  7. Stokes-Einstein relation for pure simple fluids.

    PubMed

    Cappelezzo, M; Capellari, C A; Pezzin, S H; Coelho, L A F

    2007-06-14

    The authors employed the equilibrium molecular dynamics technique to calculate the self-diffusion coefficient and the shear viscosity for simple fluids that obey the Lennard-Jones 6-12 potential in order to investigate the validity of the Stokes-Einstein (SE) relation for pure simple fluids. They performed calculations in a broad range of density and temperature in order to test the SE relation. The main goal of this work is to exactly calculate the constant, here denominated by alpha, present in the SE relation. Also, a modified SE relation where a fluid density is raised to a power in the usual expression is compared to the classical expression. According to the authors' simulations slip boundary conditions (alpha=4) can be satisfied in some state points. An intermediate value of alpha=5 was found in some regions of the phase diagram confirming the mode coupling theory. In addition depending on the phase diagram point and the definition of hydrodynamics radius, stick boundary condition (alpha=6) can be reproduced. The authors investigated the role of the hydrodynamic radius in the SE relation using three different definitions. The authors also present calculations for alpha in a hard-sphere system showing that the slip boundary conditions hold at very high density. They discuss possible explanations for their results and the role of the hydrodynamic radius for different definitions in the SE relation.

  8. Three-sphere low-Reynolds-number swimmer with a cargo container.

    PubMed

    Golestanian, R

    2008-01-01

    A recently introduced model for an autonomous swimmer at low Reynolds number that is comprised of three spheres connected by two arms is considered when one of the spheres has a large radius. The Stokes hydrodynamic flow associated with the swimming strokes and net motion of this system can be studied analytically using the Stokes Green's function of a point force in front of a sphere of arbitrary radius R provided by Oseen. The swimming velocity is calculated, and shown to scale as 1/R3 with the radius of the sphere.

  9. Hydrodynamic Force on a Cylinder Oscillating at Low Frequency

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Yao, Minwu; Panzarella, Charles H.

    2007-01-01

    The hydrodynamic force on a cylinder oscillating transversely to its axis is a nonlinear function of the displacement amplitude x0. We report measurements and numerical calculations of the force at frequencies low enough that delta > R, where delta is the viscous penetration length and R is the cylinder radius. For small amplitudes, the numerically calculated Fourier transform of the force per unit length, F(sub small), agrees with Stokes' analytical calculation. For larger amplitudes, the force per unit length found by both calculation and measurement is F = F(sub small)C (x(sub 0)/delta,R/delta). The complex function C depends only weakly on R/delta, indicating that x0/delta is more appropriate as a scaling variable than the Keulegan-Carpenter number KC = pi*x(sub 0)/R. The measurements used a torsion oscillator driven at frequencies from 1 to 12 Hz while immersed in dense xenon. The oscillator comprised cylinders with an effective radius of R = 13.4 micron and oscillation amplitudes as large as x(sub 0)/delta = 4 (corresponding to KC as large as 71). The calculations used similar conditions except that the amplitudes were as large as x0/delta = 28.

  10. Study on antidiabetic activity of wheat and barley starch using asymmetrical flow field-flow fractionation coupled with multiangle light scattering.

    PubMed

    Dou, Haiyang; Zhou, Bing; Jang, Hae-Dong; Lee, Seungho

    2014-05-02

    The ability of asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and refractive index detector (RI) (AF4-MALS-RI) for monitoring of change in molecular conformation of wheat and barley starch during germination process was evaluated. AF4 provides separation of starch molecules based on their hydrodynamic sizes, and MALS yields the molar mass and molecular size (radius of gyration, Rg). In vitro and in vivo anti-hyperglycemic effect of germinated wheat and barley was studied. The relationship between antidiabetic activity and molecular conformation was, for the first time, investigated. The ratio of Rg to the hydrodynamic radius (Rh) and the apparent density were proven to be important parameters as they offer an insight into molecular conformation. Results showed that, when geminated, the apparent density and the antidiabetic activity of barley were significantly increased, suggesting germination makes the molecules more compact which could contribute to enhancement of their antidiabetic activity. The information obtained by AF4-MALS-RI is valuable for understanding of germination mechanism, and thus for developing functional foods. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Validating Hydrodynamic Growth in National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. Luc

    2014-10-01

    The hydrodynamic growth of capsule imperfections can threaten the success of inertial confinement fusion implosions. Therefore, it is important to design implosions that are robust to hydrodynamic instabilities. However, the numerical simulation of interacting Rayleigh-Taylor and Richtmyer-Meshkov growth in these implosions is sensitive to modeling uncertainties such as radiation drive and material equations of state, the effects of which are especially apparent at high mode number (small perturbation wavelength) and high convergence ratio (small capsule radius). A series of validation experiments were conducted at the National Ignition Facility to test the ability to model hydrodynamic growth in spherically converging ignition-relevant implosions. These experiments on the Hydro-Growth Radiography platform constituted direct measurements of the growth of pre-imposed imperfections up to Legendre mode 160 and a convergence ratio of greater than four using two different laser drives: a ``low-foot'' drive used during the National Ignition Campaign and a larger adiabat ``high-foot'' drive that is modeled to be relatively more robust to ablation front hydrodynamic growth. We will discuss these experiments and how their results compare to numerical simulations and analytic theories of hydrodynamic growth, as well as their implications for the modeling of future designs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Amplified effect of Brownian motion in bacterial near-surface swimming

    PubMed Central

    Li, Guanglai; Tam, Lick-Kong; Tang, Jay X.

    2008-01-01

    Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion. PMID:19015518

  13. Contribution of Antibody Hydrodynamic Size to Vitreal Clearance Revealed through Rabbit Studies Using a Species-Matched Fab.

    PubMed

    Shatz, Whitney; Hass, Philip E; Mathieu, Mary; Kim, Hok Seon; Leach, Kim; Zhou, Michelle; Crawford, Yongping; Shen, Amy; Wang, Kathryn; Chang, Debby P; Maia, Mauricio; Crowell, Susan R; Dickmann, Leslie; Scheer, Justin M; Kelley, Robert F

    2016-09-06

    We have developed a tool Fab fragment of a rabbit monoclonal antibody that is useful for early evaluation in rabbit models of technologies for long acting delivery (LAD) of proteins to the eye. Using this Fab we show that vitreal clearance can be slowed through increased hydrodynamic size. Fab (G10rabFab) and Fab' (G10rabFab') fragments of a rabbit monoclonal antibody (G10rabIgG) were expressed in Chinese hamster ovary (CHO) cells and purified using antigen-based affinity chromatography. G10rabFab retains antigen-binding upon thermal stress (37 °C) for 8 weeks in phosphate-buffered saline (PBS) and can be detected in rabbit tissues using an antigen-based ELISA. Hydrodynamic radius, measured using quasi-elastic light scattering (QELS), was increased through site-specific modification of the G10rabFab' free cysteine with linear methoxy-polyethylene glycol(PEG)-maleimide of 20000 or 40000 molecular weight. Pharmacokinetic studies upon intravitreal dosing in New Zealand white rabbits were conducted on the G10rabFab and PEGylated G10rabFab'. Results of single and multidose pharmacokinetic experiments yield reproducible results and a vitreal half-life for G10rabFab of 3.2 days. Clearance from the eye is slowed through increased hydrodynamic size, with vitreal half-life showing a linear dependence on hydrodynamic radius (RH). A linear dependence of vitreal half-life on RH suggests that molecule diffusivity makes an important contribution to vitreal clearance. A method for prediction of vitreal half-life from RH measurements is proposed.

  14. The Effects of Gravitational Instabilities on Gas Giant Planet Migration in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Michael, Scott A.; Durisen, R. H.

    2010-05-01

    In this paper we conduct several three-dimensional radiative hydrodynamic simulations to explore the effect of the inclusion of gas giant planets in gravitationally unstable protoplanetary disks. We compare several simulations carried out with the CHYMERA code including: a baseline simulation without a planet, and three simulations including planets of various masses 0.3, 1 and 3 Jupiter masses. The planets are inserted into the baseline simulation after the gravitational instabilities (GIs) have grown to non-linear amplitude. The planets are inserted at the same radius, which coincides with the co-rotation radius of the dominant global mode in the baseline simulation. We examine the effect that the GIs have on migration rates as well as the potential of halting inward migration. We also examine the effect the insertion of the planet has on the global torques caused by the GIs. Furthermore, we explore the relationship between planet mass and migration rates and effect on GIs.

  15. Smoothed particle hydrodynamics simulations of black hole accretion: a step to model black hole feedback in galaxies

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, Daniel; Nagamine, Kentaro

    2011-11-01

    We test how accurately the smoothed particle hydrodynamics (SPH) numerical technique can follow spherically symmetric Bondi accretion. Using the 3D SPH code GADGET-3, we perform simulations of gas accretion on to a central supermassive black hole of mass 108 M⊙ within the radial range of 0.1-200 pc. We carry out simulations without and with radiative heating by a central X-ray corona and radiative cooling. For an adiabatic case, the radial profiles of hydrodynamical properties match the Bondi solution, except near the inner and outer radius of the computational domain. The deviation from the Bondi solution close to the inner radius is caused by the combination of numerical resolution, artificial viscosity and our inner boundary condition. Near the outer radius (≤200 pc), we observe either an outflow or development of a non-spherical inflow unless the outer boundary conditions are very stringently implemented. Despite these issues related to the boundary conditions, we find that adiabatic Bondi accretion can be reproduced for durations of a few dynamical times at the Bondi radius, and for longer times if the outer radius is increased. In particular, the mass inflow rate at the inner boundary, which we measure, is within 3-4 per cent of the Bondi accretion rate. With radiative heating and cooling included, the spherically accreting gas takes a longer time to reach a steady state than the adiabatic Bondi accretion runs, and in some cases does not reach a steady state even within several hundred dynamical times. We find that artificial viscosity causes excessive heating near the inner radius, making the thermal properties of the gas inconsistent with a physical solution. This overheating occurs typically only in the supersonic part of the flow, so that it does not affect the mass accretion rate. We see that increasing the X-ray luminosity produces a lower central mass inflow rate, implying that feedback due to radiative heating is operational in our simulations. With a sufficiently high X-ray luminosity, the inflowing gas is radiatively heated up, and an outflow develops. We conclude that the SPH simulations can capture the gas dynamics needed to study radiative feedback, provided artificial viscosity alters only highly supersonic part of the inflow.

  16. Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki

    2018-05-01

    Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.

  17. Yield and Depth of Burial Hydrodynamic Calculations in Granodiorite: Implications for the North Korean Test Site

    DTIC Science & Technology

    2011-09-01

    the existence of a test site body wave magnitude (mb) bias between U. S. and the former Soviet Union test sites in Nevada and Semipalatinsk . The use...YIELD AND DEPTH OF BURIAL HYDRODYNAMIC CALCULATIONS IN GRANODIORITE:IMPLICATIONS FOR THE NORTH KOREAN TEST SITE Esteban Rougier, Christopher R...Korean test site and the May 2009 test . When compared to the Denny and Johnson (1991) and to the Heard and Ackerman (1967) cavity radius scaling models

  18. Sequence Determinants of Compaction in Intrinsically Disordered Proteins

    PubMed Central

    Marsh, Joseph A.; Forman-Kay, Julie D.

    2010-01-01

    Abstract Intrinsically disordered proteins (IDPs), which lack folded structure and are disordered under nondenaturing conditions, have been shown to perform important functions in a large number of cellular processes. These proteins have interesting structural properties that deviate from the random-coil-like behavior exhibited by chemically denatured proteins. In particular, IDPs are often observed to exhibit significant compaction. In this study, we have analyzed the hydrodynamic radii of a number of IDPs to investigate the sequence determinants of this compaction. Net charge and proline content are observed to be strongly correlated with increased hydrodynamic radii, suggesting that these are the dominant contributors to compaction. Hydrophobicity and secondary structure, on the other hand, appear to have negligible effects on compaction, which implies that the determinants of structure in folded and intrinsically disordered proteins are profoundly different. Finally, we observe that polyhistidine tags seem to increase IDP compaction, which suggests that these tags have significant perturbing effects and thus should be removed before any structural characterizations of IDPs. Using the relationships observed in this analysis, we have developed a sequence-based predictor of hydrodynamic radius for IDPs that shows substantial improvement over a simple model based upon chain length alone. PMID:20483348

  19. Hydrodynamic Radii of Intrinsically Disordered Proteins Determined from Experimental Polyproline II Propensities

    PubMed Central

    Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.

    2016-01-01

    The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467

  20. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2009-07-01

    Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.

  1. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatiallymore » resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  2. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  3. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-01

    The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ˜ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  4. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; ...

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolvedmore » measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  5. Precision cosmology with baryons: non-radiative hydrodynamics of galaxy groups

    NASA Astrophysics Data System (ADS)

    Rabold, Manuel; Teyssier, Romain

    2017-05-01

    The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or Large Synoptic Survey Telescope (LSST). As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized haloes, which contribute the most to the weak-lensing power spectrum. We perform high-resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 haloes, comparing the profiles to popular analytical models. We find that the total mass profile is well fitted by a Navarro, Frenk & White model, with parameters slightly modified from the dark matter only simulation. We also find that the Komatsu & Seljak hydrostatic solution provides a good fit to the gas profiles, with however significant deviations, arising from strong turbulent mixing in the core and from non-thermal, turbulent pressure support in the outskirts. The turbulent energy follows a shallow, rising linear profile with radius, and correlates with the halo formation time. Using only three main structural halo parameters as variables (total mass, concentration parameter and central gas density), we can predict, with an accuracy better than 20 per cent, the individual gas density and temperature profiles. For the average total mass profile, which is relevant for power spectrum calculations, we even reach an accuracy of 1 per cent. The robustness of these predictions has been tested against resolution effects, different types of initial conditions and hydrodynamical schemes.

  6. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation

    NASA Astrophysics Data System (ADS)

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-01

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim]+) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ˜30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  7. Ionic liquid induced dehydration and domain closure in lysozyme: FCS and MD simulation.

    PubMed

    Ghosh, Shirsendu; Parui, Sridip; Jana, Biman; Bhattacharyya, Kankan

    2015-09-28

    Effect of a room temperature ionic liquid (RTIL, [pmim][Br]) on the structure and dynamics of the protein, lysozyme, is investigated by fluorescence correlation spectroscopy (FCS) and molecular dynamic (MD) simulation. The FCS data indicate that addition of the RTIL ([pmim][Br]) leads to reduction in size and faster conformational dynamics of the protein. The hydrodynamic radius (rH) of lysozyme decreases from 18 Å in 0 M [pmim][Br] to 11 Å in 1.5 M [pmim][Br] while the conformational relaxation time decreases from 65 μs to 5 μs. Molecular origin of the collapse (size reduction) of lysozyme in aqueous RTIL is analyzed by MD simulation. The radial distribution function of water, RTIL cation, and RTIL anion from protein clearly indicates that addition of RTIL causes replacement of interfacial water by RTIL cation ([pmim](+)) from the first solvation layer of the protein providing a comparatively dehydrated environment. This preferential solvation of the protein by the RTIL cation extends up to ∼30 Å from the protein surface giving rise to a nanoscopic cage of overall radius 42 Å. In the nanoscopic cage of the RTIL (42 Å), volume fraction of the protein (radius 12 Å) is only about 2%. RTIL anion does not show any preferential solvation near protein surface. Comparison of effective radius obtained from simulation and from FCS data suggests that the "dry" protein (radius 12 Å) alone diffuses in a nanoscopic cage of RTIL (radius 42 Å). MD simulation further reveals a decrease in distance ("domain closure") between the two domains (alpha and beta) of the protein leading to a more compact structure compared to that in the native state.

  8. Stationary hydrodynamic models of Wolf-Rayet stars with optically thick winds.

    NASA Astrophysics Data System (ADS)

    Heger, A.; Langer, N.

    1996-11-01

    We investigate the influence of a grey, optically thick wind on the surface and internal structure of Wolf-Rayet (WR) stars. We calculate hydrodynamic models of chemically homogeneous helium stars with stationary outflows, solving the full set of stellar structure equations from the stellar center up to well beyond the sonic point of the wind, including the line force originating from absorption lines in a parameterized way. For specific assumptions about mass loss rate and wind opacity above our outer boundary, we find that the iron opacity peak may lead to local super-Eddington luminosities at the sonic point. By varying the stellar wind parameters over the whole physically plausible range, we show that the radius of the sonic point of the wind flow is always very close to the hydrostatic stellar radius obtained in WR star models which ignore the wind. However, our models confirm the possibility of large values for observable WR radii and correspondingly small effective temperatures found in earlier models. We show further that the energy which is contained in a typical WR wind can not be neglected. The stellar luminosity may be reduced by several 10%, which has a pronounced effect on the mass-luminosity relation, i. e., the WR masses derived for a given luminosity may be considerably larger. Thereby, also the momentum problem of WR winds is considerably reduced, as well as the scatter in the ˙(M) vs. M diagram for observed hydrogen-free WN stars.

  9. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.

    PubMed

    Alarcón, Francisco; Valeriani, Chantal; Pagonabarraga, Ignacio

    2017-01-25

    In order to assess the effect of hydrodynamics in the assembly of active attractive spheres, we simulate a semi-dilute suspension of attractive self-propelled spherical particles in a quasi-two dimensional geometry comparing the case with and without hydrodynamics interactions. To start with, independent of the presence of hydrodynamics, we observe that depending on the ratio between attraction and propulsion, particles either coarsen or aggregate forming finite-size clusters. Focusing on the clustering regime, we characterize two different cluster parameters, i.e. their morphology and orientational order, and compare the case when active particles behave either as pushers or pullers (always in the regime where inter-particle attractions compete with self-propulsion). Studying cluster phases for squirmers with respect to those obtained for active Brownian disks (indicated as ABPs), we have shown that hydrodynamics alone can sustain a cluster phase of active swimmers (pullers), while ABPs form cluster phases due to the competition between attraction and self-propulsion. The structural properties of the cluster phases of squirmers and ABPs are similar, although squirmers show sensitivity to active stresses. Active Brownian disks resemble weakly pusher squirmer suspensions in terms of cluster size distribution, structure of the radius of gyration on the cluster size and degree of cluster polarity.

  10. Concentration dependence of lipopolymer self-diffusion in supported bilayer membranes

    PubMed Central

    Zhang, Huai-Ying; Hill, Reghan J.

    2011-01-01

    Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics. PMID:20504804

  11. Dynamics of the baryonic component in hierarchical clustering universes

    NASA Technical Reports Server (NTRS)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  12. Hohlraum design for the LMJ ignition target

    NASA Astrophysics Data System (ADS)

    Malinie, G.; Cherfils, C.; Gauthier, P.; Lambert, F.; Monteil, M. C.

    2011-10-01

    First experiments with the Laser MegaJoule (LMJ) are scheduled to be performed in 2014. The current nominal point design for ignition with 160 beams on the LMJ has been described in. It consists of an indirectly driven A943 capsule, with a plastic ablator doped with Germanium. This capsule is mounted in the center of a Rugby-shaped hohlraum, which is filled with a low density H/He gas, and has a gold-uranium cocktail wall lined with pure gold. We investigate the influence of two key parameters of the hohlraum design: the radius of the laser entrance holes (LEHs), and the thickness of the cocktail layer. Since the Rugby shape of the nominal point design is that of a half-ellipse going from the hohlraum waist to the LEH, any change in the LEH radius has a global effect on the hohlraum shape. Taking into account the current laser spot profiles of the LMJ and using 2D integrated calculations with our FCI2 radiation hydrodynamics code, we assess the flexiblility we have to reduce the LEH radius and/or the cocktail layer thickness.

  13. Compressible liquid flow in nano- or micro-sized circular tubes considering wall-liquid Lifshitz-van der Waals interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing

    2018-06-01

    Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.

  14. Underwater gas tornado

    NASA Astrophysics Data System (ADS)

    Byalko, Alexey V.

    2013-07-01

    We present the first experimental observation of a new hydrodynamic phenomenon, the underwater tornado. Simple measurements show that the tornado forms a vortex of the Rankine type, i.e. the rising gas rotates as a solid body and the liquid rotates with a velocity decreasing hyperbolically with the radius. We obtain the dependence of the tornado radius a on the gas stream value j theoretically: a ∼ j2/5. Processing of a set of experiments yielded the value 0.36 for the exponent in this expression. We also report the initial stages of the theoretical study of this phenomenon.

  15. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizos, Apostolos K.; Baritaki, Stavroula; Department of Virology, Medical School, University of Crete, Heraklion, Crete

    2007-04-20

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus productionmore » in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms.« less

  16. Comparative studies on the conformational change and aggregation behavior of irradiated carrageenans and agar by dynamic light scattering.

    PubMed

    Abad, Lucille; Okabe, Satoshi; Shibayama, Mitsuhiro; Kudo, Hisaaki; Saiki, Seiichi; Aranilla, Charito; Relleve, Lorna; de la Rosa, Alumanda

    2008-01-01

    The conformational associative properties of kappa-, iota-, and lambda-carrageenan and agar with irradiation dose were studied by dynamic light scattering. The random scission of the carrageenans and agar by gamma irradiation resulted in the formation of polydispersed lower molecular weight fragments. At high doses, the system moves towards uniformity. Conformational change from coil to helix was observed in all carrageenans and agar at doses up to 100 kGy. The conformational change in lambda-carrageenan may be due to the irregular and hybrid structure of this polysaccharide. Only agar and lambda-carrageenan still undergo conformational transition at a high dose of 200 kGy. Gelation is observed for kappa-, iota-carrageenan up to a dose of 50 kGy while gelation is still observed at 100 kGy for agar. Increase in the hydrodynamic radius with decreasing temperatures for the non-irradiated carrageenans follows this order: lambda-carrageenan>kappa-carrageenan>iota-carrageenan. Slight increases in hydrodynamic radius were observed with irradiation.

  17. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices.

    PubMed

    Kamalakshakurup, Gopakumar; Lee, Abraham P

    2017-12-05

    Single cell analysis has emerged as a paradigm shift in cell biology to understand the heterogeneity of individual cells in a clone for pathological interrogation. Microfluidic droplet technology is a compelling platform to perform single cell analysis by encapsulating single cells inside picoliter-nanoliter (pL-nL) volume droplets. However, one of the primary challenges for droplet based single cell assays is single cell encapsulation in droplets, currently achieved either randomly, dictated by Poisson statistics, or by hydrodynamic techniques. In this paper, we present an interfacial hydrodynamic technique which initially traps the cells in micro-vortices, and later releases them one-to-one into the droplets, controlled by the width of the outer streamline that separates the vortex from the flow through the streaming passage adjacent to the aqueous-oil interface (d gap ). One-to-one encapsulation is achieved at a d gap equal to the radius of the cell, whereas complete trapping of the cells is realized at a d gap smaller than the radius of the cell. The unique feature of this technique is that it can perform 1. high efficiency single cell encapsulations and 2. size-selective capturing of cells, at low cell loading densities. Here we demonstrate these two capabilities with a 50% single cell encapsulation efficiency and size selective separation of platelets, RBCs and WBCs from a 10× diluted blood sample (WBC capture efficiency at 70%). The results suggest a passive, hydrodynamic micro-vortex based technique capable of performing high-efficiency single cell encapsulation for cell based assays.

  18. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions

    DOE PAGES

    Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; ...

    2014-05-05

    Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D 3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm 3 to a factor of 100 at 0.14 mg/cm 3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, anothermore » figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.« less

  19. Fabrication of silver nanoparticles in pH responsive polymer microgel dispersion for catalytic reduction of nitrobenzene in aqueous medium

    NASA Astrophysics Data System (ADS)

    Farooqi, Zahoor H.; Begum, Robina; Naseem, Khalida; Rubab, Uma; Usman, Muhammad; Khan, Abbas; Ijaz, Aysha

    2016-12-01

    Copolymer microgels based on N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) have been synthesized by free radical emulsion polymerization using N, N-methylenebisacrylamide (BIS) as a cross-linker. Synthesized microgels were characterized by Fourier transform infrared spectroscopy (FTIR). Then silver nanoparticles were fabricated in the synthesized microgels by in-situ reduction of AgNO3 with NaBH4. The formation of silver nanoparticles was confirmed by UV-Vis spectroscopy. The pH sensitivity of the copolymer microgels was investigated using dynamic light scattering technique (DLS). Hydrodynamic radius of P (NIPAM-MAA) microgels increases with increase in pH of the medium at 25°C. Surface plasmon resonance wavelength (λSPR) of silver nanoparticles increases with increase in hydrodynamic radius due to change in pH of the medium. The catalytic activity for the reduction of nitrobenzene (NB), an environmental pollutant, into aniline was investigated by UV-Vis spectroscopy in excess of NaBH4 using hybrid microgels as catalyst. The value of apparent rate constant ( k app) of the reaction was calculated using pseudo first order kinetic model and it was found to be linearly related to the amount of catalyst. The results were compared with literature data. The system was found to be an effective catalyst for conversion of NB into aniline.

  20. Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy

    PubMed Central

    Lee, Hwankyu; Venable, Richard M.; MacKerell, Alexander D.; Pastor, Richard W.

    2008-01-01

    A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length λ = 3.7 Å, in quantitative agreement with experimentally obtained values of 3.7 Å for PEO and 3.8 Å for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent υ relating the radius of gyration and molecular weight (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{g}}}{\\propto}M_{{\\mathrm{w}}}^{{\\upsilon}}\\end{equation*}\\end{document}) of PEO from the simulations equals 0.515 ± 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document}obtained from diffusion measurements in solution. This explains the correspondence of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document} and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{p}}},\\end{equation*}\\end{document} the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion. PMID:18456821

  1. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  2. Influence of physical properties and operating parameters on hydrodynamics in Centrifugal Partition Chromatography.

    PubMed

    Adelmann, S; Schembecker, G

    2011-08-12

    Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Disk-Planet Torques from Radiation-Hydrodynamics Calculations with Spatially-Resolved Planetary Envelopes Undergoing Solids' Accretion

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.

    2016-12-01

    D'Angelo & Bodenheimer (2013, ApJ, 778, 77) performed global 3D radiation-hydrodynamics disk-planet simulations aimed at studying envelope formation around planetary cores, during the phase of sustained planetesimal accretion. The calculations modeled cores of 5, 10, and 15 Earth masses orbiting a sun-like star in a protoplanetary disk extending from ap/2 to 2ap in radius, ap=5 or 10 AU being the core's orbital radius. The gas equation of state - for a solar mixture of H2, H, He - accounted for translational, rotational, and vibrational states, for molecular dissociation and atomic ionization, and for radiation energy. Dust opacity calculations applied the Mie theory to multiple grain species whose size distributions ranged from 5e-6 to 1 mm. Mesh refinement via grid nesting allowed the planets' envelopes to be resolved at the core-radius length scale. Passive tracers were used to determine the volume of gas bound to a core, defining the envelope, and resulting in planet radii comparable to the Bondi radius. The energy budjet included contributions from the accretion of solids on the cores, whose rates were self-consistently computed with a 1D planet formation code. At this stage of the planet's growth, gravitational energy released in the envelope by solids' accretion far exceeds that released by gas accretion. These models are used to determine the gravitational torques exerted by the disk's gas on the planet and the resulting orbital migration rates. Since the envelope radius is a direct product of the models, they allow for a non-ambiguous assessment of the torques exerted by gas not bound to the planet. Additionally, since planets' envelopes are fully resolved, thermal and dynamical effects on the surrounding disk's gas are accurately taken into account. The computed migration rates are compared to those obtained from existing semi-analytical formulations for planets orbiting in isothermal and adiabatic disks. Because these formulations do not account for thermodynamical interactions between the planet's envelope and the disk's gas, the numerical models are also used to quanitfy the impact of short-scale tidal interactions on the total torque acting on the planet. Computing resources were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at Ames Research Center.

  4. The MUSIC of galaxy clusters - I. Baryon properties and scaling relations of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Sembolini, Federico; Yepes, Gustavo; De Petris, Marco; Gottlöber, Stefan; Lamagna, Luca; Comis, Barbara

    2013-02-01

    We introduce the Marenostrum-MultiDark SImulations of galaxy Clusters (MUSIC) data set. It constitutes one of the largest samples of hydrodynamically simulated galaxy clusters with more than 500 clusters and 2000 groups. The objects have been selected from two large N-body simulations and have been resimulated at high resolution using smoothed particle hydrodynamics (SPH) together with relevant physical processes that include cooling, UV photoionization, star formation and different feedback processes associated with supernovae explosions. In this first paper we focus on the analysis of the baryon content (gas and star) of clusters in the MUSIC data set as a function of both aperture radius and redshift. The results from our simulations are compared with a compilation of the most recent observational estimates of the gas fraction in galaxy clusters at different overdensity radii. We confirm, as in previous simulations, that the gas fraction is overestimated if radiative physics are not properly taken into account. On the other hand, when the effects of cooling and stellar feedbacks are included, the MUSIC clusters show a good agreement with the most recent observed gas fractions quoted in the literature. A clear dependence of the gas fractions with the total cluster mass is also evident. However, we do not find a significant evolution with redshift of the gas fractions at aperture radius corresponding to overdensities smaller than 1500 with respect to critical density. At smaller radii, the gas fraction does exhibit a decrease with redshift that is related to the gas depletion due to star formation in the central region of the clusters. The impact of the aperture radius choice, when comparing integrated quantities at different redshifts, is tested. The standard, widely used definition of radius at a fixed overdensity with respect to critical density is compared with a definition of aperture radius based on the redshift dependent overdensity with respect to background matter density: we show that the latter definition is more successful in probing the same fraction of the virial radius at different redshifts, providing a more reliable derivation of the time evolution of integrated quantities. We also present in this paper a detailed analysis of the scaling relations of the thermal Sunyaev-Zel'dovich (SZ) effect derived from MUSIC clusters. The integrated SZ brightness, Y, is related to the cluster total mass, M, as well as, the M - Y counterpart which is more suitable for observational applications. Both laws are consistent with predictions from the self-similar model, showing a very low scatter which is σlog Y ≃ 0.04 and even a smaller one (σlog M ≃ 0.03) for the inverse M-Y relation. The effects of the gas fraction on the Y-M scaling relation are also studied. At high overdensities, the dispersion of the gas fractions introduces non-negligible deviation from self-similarity, which is directly related to the fgas-M relation. The presence of a possible redshift dependence on the Y-M scaling relation is also explored. No significant evolution of the SZ relations is found at lower overdensities, regardless of the definition of overdensity used.

  5. Three-dimensional Numerical Analysis on Blade Response of Vertical Axis Tidal Current Turbine Under Operational Condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ye; Karri, Naveen K.; Wang, Qi

    Tidal power as a large-scale renewable source of energy has been receiving significant attention recently because of its advantages over the wind and other renewal energy sources. The technology used to harvest energy from tidal current is called a tidal current turbine. Though some of the principles of wind turbine design are applicable to tidal current turbines, the design of latter ones need additional considerations like cavitation damage, corrosion etc. for the long-term reliability of such turbines. Depending up on the orientation of axis, tidal current turbines can be classified as vertical axis turbines or horizontal axis turbines. Existing studiesmore » on the vertical axis tidal current turbine focus more on the hydrodynamic aspects of the turbine rather than the structural aspects. This paper summarizes our recent efforts to study the integrated hydrodynamic and structural aspects of the vertical axis tidal current turbines. After reviewing existing methods in modeling tidal current turbines, we developed a hybrid approach that combines discrete vortex method -finite element method that can simulate the integrated hydrodynamic and structural response of a vertical axis turbine. This hybrid method was initially employed to analyze a typical three-blade vertical axis turbine. The power coefficient was used to evaluate the hydrodynamic performance, and critical deflection was considered to evaluate the structural reliability. A sensitivity analysis was also conducted with various turbine height-to-radius ratios. The results indicate that both the power output and failure probability increase with the turbine height, suggesting a necessity for optimal design. An attempt to optimize a 3-blade vertical axis turbine design with hybrid method yielded a ratio of turbine height to radius (H/R) about 3.0 for reliable maximum power output.« less

  6. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters

    NASA Astrophysics Data System (ADS)

    Zhang, Wan-chao; Liu, Heng-xu; Zhang, Liang; Zhang, Xue-wei

    2016-12-01

    The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber's hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.

  7. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  8. Dynamic Fluid in a Porous Transducer-Based Angular Accelerometer

    PubMed Central

    Cheng, Siyuan; Fu, Mengyin; Wang, Meiling; Ming, Li; Fu, Huijin; Wang, Tonglei

    2017-01-01

    This paper presents a theoretical model of the dynamics of liquid flow in an angular accelerometer comprising a porous transducer in a circular tube of liquid. Wave speed and dynamic permeability of the transducer are considered to describe the relation between angular acceleration and the differential pressure on the transducer. The permeability and streaming potential coupling coefficient of the transducer are determined in the experiments, and special prototypes are utilized to validate the theoretical model in both the frequency and time domains. The model is applied to analyze the influence of structural parameters on the frequency response and the transient response of the fluidic system. It is shown that the radius of the circular tube and the wave speed affect the low frequency gain, as well as the bandwidth of the sensor. The hydrodynamic resistance of the transducer and the cross-section radius of the circular tube can be used to control the transient performance. The proposed model provides the basic techniques to achieve the optimization of the angular accelerometer together with the methodology to control the wave speed and the hydrodynamic resistance of the transducer. PMID:28230793

  9. Application of asymmetric flow-field flow fractionation to the characterization of colloidal dispersions undergoing aggregation.

    PubMed

    Lattuada, Marco; Olivo, Carlos; Gauer, Cornelius; Storti, Giuseppe; Morbidelli, Massimo

    2010-05-18

    The characterization of complex colloidal dispersions is a relevant and challenging problem in colloidal science. In this work, we show how asymmetric flow-field flow fractionation (AF4) coupled to static light scattering can be used for this purpose. As an example of complex colloidal dispersions, we have chosen two systems undergoing aggregation. The first one is a conventional polystyrene latex undergoing reaction-limited aggregation, which leads to the formation of fractal clusters with well-known structure. The second one is a dispersion of elastomeric colloidal particles made of a polymer with a low glass transition temperature, which undergoes coalescence upon aggregation. Samples are withdrawn during aggregation at fixed times, fractionated with AF4 using a two-angle static light scattering unit as a detector. We have shown that from the analysis of the ratio between the intensities of the scattered light at the two angles the cluster size distribution can be recovered, without any need for calibration based on standard elution times, provided that the geometry and scattering properties of particles and clusters are known. The nonfractionated samples have been characterized also by conventional static and dynamic light scattering to determine their average radius of gyration and hydrodynamic radius. The size distribution of coalescing particles has been investigated also through image analysis of cryo-scanning electron microscopy (SEM) pictures. The average radius of gyration and the average hydrodynamic radius of the nonfractionated samples have been calculated and successfully compared to the values obtained from the size distributions measured by AF4. In addition, the data obtained are also in good agreement with calculations made with population balance equations.

  10. Normal stress effects on Knudsen flow

    NASA Astrophysics Data System (ADS)

    Eu, Byung Chan

    2018-01-01

    Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.

  11. Gas Removal in the Ursa Minor Galaxy: Linking Hydrodynamics and Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caproni, Anderson; Lanfranchi, Gustavo Amaral; Baio, Gabriel Henrique Campos

    2017-04-01

    We present results from a non-cosmological, three-dimensional hydrodynamical simulation of the gas in the dwarf spheroidal galaxy Ursa Minor. Assuming an initial baryonic-to-dark-matter ratio derived from the cosmic microwave background radiation, we evolved the galactic gas distribution over 3 Gyr, taking into account the effects of the types Ia and II supernovae. For the first time, we used in our simulation the instantaneous supernovae rates derived from a chemical evolution model applied to spectroscopic observational data of Ursa Minor. We show that the amount of gas that is lost in this process is variable with time and radius, being themore » highest rates observed during the initial 600 Myr in our simulation. Our results indicate that types Ia and II supernovae must be essential drivers of the gas loss in Ursa Minor galaxy (and probably in other similar dwarf galaxies), but it is ultimately the combination of galactic winds powered by these supernovae and environmental effects (e.g., ram-pressure stripping) that results in the complete removal of the gas content.« less

  12. Ion-kinetic simulations of D- 3He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number

    DOE PAGES

    Larroche, O.; Rinderknecht, H. G.; Rosenberg, M. J.; ...

    2016-01-06

    Experiments designed to investigate the transition to non-collisional behavior in D 3He-gas inertial confinement fusion target implosions display increasingly large discrepancies with respect to simulations by standard hydrodynamics codes as the expected ion mean-free-paths λ c increase with respect to the target radius R (i.e., when the Knudsen number N K = λ c/R grows). To take properly into account large N K's, multi-ion-species Vlasov-Fokker-Planck computations of the inner gas in the capsules have been performed, for two different values of N K, one moderate and one large. The results, including nuclear yield, reactivity-weighted ion temperatures, nuclear emissivities, and surfacemore » brightness, have been compared with the experimental data and with the results of hydrodynamical simulations, some of which include an ad hocmodeling of kinetic effects. The experimental results are quite accurately rendered by the kinetic calculations in the smaller-N K case, much better than by the hydrodynamical calculations. The kinetic effects at play in this case are thus correctly understood. However, in the higher-N K case, the agreement is much worse. Furthermore, the remaining discrepancies are shown to arise from kinetic phenomena (e.g., inter-species diffusion) occurring at the gas-pusher interface, which should be investigated in the future work.« less

  13. Statistical and hydrodynamic properties of double-ring polymers with a fixed linking number between twin rings.

    PubMed

    Uehara, Erica; Deguchi, Tetsuo

    2014-01-28

    For a double-ring polymer in solution we evaluate the mean-square radius of gyration and the diffusion coefficient through simulation of off-lattice self-avoiding double polygons consisting of cylindrical segments with radius rex of unit length. Here, a self-avoiding double polygon consists of twin self-avoiding polygons which are connected by a cylindrical segment. We show numerically that several statistical and dynamical properties of double-ring polymers in solution depend on the linking number of the constituent twin ring polymers. The ratio of the mean-square radius of gyration of self-avoiding double polygons with zero linking number to that of no topological constraint is larger than 1, in particular, when the radius of cylindrical segments rex is small. However, the ratio is almost constant with respect to the number of vertices, N, and does not depend on N. The large-N behavior of topological swelling is thus quite different from the case of knotted random polygons.

  14. Effect of Convex Longitudinal Curvature on the Planing Characteristics of a Surface Without Dead Rise

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.

    1959-01-01

    A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.

  15. Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering

    NASA Astrophysics Data System (ADS)

    Kappus, B.; Bataller, A.; Putterman, S. J.

    2013-12-01

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  16. Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.

    PubMed

    Kappus, B; Bataller, A; Putterman, S J

    2013-12-06

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6  eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  17. YOUNG STELLAR CLUSTERS WITH A SCHUSTER MASS DISTRIBUTION. I. STATIONARY WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palous, Jan; Wuensch, Richard; Hueyotl-Zahuantitla, Filiberto

    2013-08-01

    Hydrodynamic models for spherically symmetric winds driven by young stellar clusters with a generalized Schuster stellar density profile are explored. For this we use both semi-analytic models and one-dimensional numerical simulations. We determine the properties of quasi-adiabatic and radiative stationary winds and define the radius at which the flow turns from subsonic to supersonic for all stellar density distributions. Strongly radiative winds significantly diminish their terminal speed and thus their mechanical luminosity is strongly reduced. This also reduces their potential negative feedback into their host galaxy interstellar medium. The critical luminosity above which radiative cooling becomes dominant within the clusters,more » leading to thermal instabilities which make the winds non-stationary, is determined, and its dependence on the star cluster density profile, core radius, and half-mass radius is discussed.« less

  18. Turbulent Collapse of Gravitationally Bound Clouds

    NASA Astrophysics Data System (ADS)

    Murray, Daniel W.

    In this dissertation, I explore the time-variable rate of star formation, using both numerical and analytic techniques. I discuss the dynamics of collapsing regions, the effect of protostellar jets, and development of software for use in the hydrodynamic code RAMSES. I perform high-resolution adaptive mesh refinement simulations of star formation in self-gravitating turbulently driven gas. I have run simulations including hydrodynamics (HD), and HD with protostellar jet feedback. Accretion begins when the turbulent fluctuations on largescales, near the driving scale, produce a converging flow. I find that the character of the collapse changes at two radii, the disk radius rd, and the radius r* where the enclosed gas mass exceeds the stellar mass. This is the first numerical work to show that the density evolves to a fixed attractor, rho(r, t) → rho( r), for rd < r < r*; mass flows through this structure onto a sporadically gravitationally unstable disk, and from thence onto the star. The total stellar mass M*(t) (t - t*)2, where (t - t *)2 is the time elapsed since the formation of the first star. This is in agreement with previous numerical and analytic work that suggests a linear rate of star formation. I show that protostellar jets change the normalization of the stellar mass accretion rate, but do not strongly affect the dynamics of star formation in hydrodynamics runs. In particular, M*(t) infinity (1 - f jet)2(t - t*) 2 is the fraction of mass accreted onto the protostar, where fjet is the fraction ejected by the jet. For typical values of fjet 0.1 - 0.3 the accretion rate onto the star can be reduced by a factor of two or three. However, I find that jets have only a small effect (of order 25%) on the accretion rate onto the protostellar disk (the "raw" accretion rate). In other words, jets do not affect the dynamics of the infall, but rather simply eject mass before it reaches the star. Finally, I show that the small scale structure--the radial density, velocity, and mass accretion profiles--are very similar in the jet and no-jet cases.

  19. Hydrodynamic properties of human cervical-mucus glycoproteins in 6M-guanidinium chloride.

    PubMed Central

    Sheehan, J K; Carlstedt, I

    1984-01-01

    Cervical mucins and fragments thereof were studied by sedimentation-velocity, rotatory viscometry and laser light-scattering performed as photon-correlation spectroscopy as well as low-angle total-intensity measurements. The Mr of the whole mucins is 10 X 10(6)-15 X 10(6), whereas fragments obtained after reduction of disulphide bonds ('subunits') have Mr 2.1 X 10(6)-2.9 X 10(6), depending on the method used. Subsequent trypsin digestion of subunits afforded glycopeptides with Mr approx. 0.4 X 10(6). The high frictional ratio for the whole mucins is interpreted as a large degree of expansion. The Stokes radius calculated from the diffusion coefficient is approx. 110nm for the whole mucins, which is in agreement with that estimated from the radius of gyration (130nm) by using the concept of the equivalent hydrodynamic sphere. The ratio of the concentration-dependence parameter for the reciprocal sedimentation coefficient (Ks) to the intrinsic viscosity ( [eta] ) for the whole mucins is 1.42, suggesting that the individual macromolecule occupies a spheroidal domain in solution. The relationship between [eta] and Mr for whole mucins, subunits and T-domains suggests that they are linear flexible macromolecules behaving as somewhat 'stiff' random coils. This conclusion is supported by the relationships between the sedimentation coefficients, the diffusion coefficients and the Mr. The hydrodynamic behaviour of the mucins is thus close to that expected for coiling macromolecules entrapping a lot of solvent, which is consistent with the postulated polymeric structure. PMID:6696734

  20. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein.

    PubMed

    Wojtas, Magdalena; Hołubowicz, Rafał; Poznar, Monika; Maciejewska, Marta; Ożyhar, Andrzej; Dobryszycki, Piotr

    2015-10-27

    Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.

  1. Macromolecular geometries determined with field-flow fractionation and their impact on the overlap concentration.

    PubMed

    Rojas, Cinthia Carola; Wahlund, Karl-Gustav; Bergenståhl, Björn; Nilsson, Lars

    2008-06-01

    In this paper we aim to understand the size/conformation relationship in waxy barley starch, a polydisperse and ultrahigh molar mass biomacromolecule. Characterizations are performed with asymmetrical flow field-flow fractionation (AsFlFFF). Furthermore, we study the effect of homogenization on the molar mass, rms radius (r rms) and hydrodynamic radius (r h). For the untreated sample, the macromolecules are elongated objects with low apparent density. As a result of homogenization, molar mass, and r rms decrease, while r h remains unaffected. The process also induces an increase, and scaling with size, of apparent density as well as changes in conformation, represented qualitatively by r rms/ r h. Finally, results from AsFlFFF are compared with viscosimetry and discussed in terms of concentration and close-packing in relation to macromolecular shape and conformation. Hence, the results show that AsFlFFF and our novel methodology enable the determination of several physical properties with high relevance for the solution behavior of polydisperse macromolecules.

  2. Geometric capture and escape of a microswimmer colliding with an obstacle.

    PubMed

    Spagnolie, Saverio E; Moreno-Flores, Gregorio R; Bartolo, Denis; Lauga, Eric

    2015-05-07

    Motivated by recent experiments, we consider the hydrodynamic capture of a microswimmer near a stationary spherical obstacle. Simulations of model equations show that a swimmer approaching a small spherical colloid is simply scattered. In contrast, when the colloid is larger than a critical size it acts as a passive trap: the swimmer is hydrodynamically captured along closed trajectories and endlessly orbits around the colloidal sphere. In order to gain physical insight into this hydrodynamic scattering problem, we address it analytically. We provide expressions for the critical trapping radius, the depth of the "basin of attraction," and the scattering angle, which show excellent agreement with our numerical findings. We also demonstrate and rationalize the strong impact of swimming-flow symmetries on the trapping efficiency. Finally, we give the swimmer an opportunity to escape the colloidal traps by considering the effects of Brownian, or active, diffusion. We show that in some cases the trapping time is governed by an Ornstein-Uhlenbeck process, which results in a trapping time distribution that is well-approximated as inverse-Gaussian. The predictions again compare very favorably with the numerical simulations. We envision applications of the theory to bioremediation, microorganism sorting techniques, and the study of bacterial populations in heterogeneous or porous environments.

  3. Piezoviscous effects in nonconformal contacts lubricated hydrodynamically

    NASA Technical Reports Server (NTRS)

    Jeng, Y. R.; Hamrock, B. J.; Brewe, D. E.

    1985-01-01

    The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.

  4. Piezoviscous effects in nonconformal contacts lubricated hydrodynamically

    NASA Technical Reports Server (NTRS)

    Jeng, Yeau-Ren; Hamrock, Bernard J.; Brewe, David E.

    1987-01-01

    The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids.

  5. Hydrodynamic interaction of trapped active Janus particles in two dimensions

    NASA Astrophysics Data System (ADS)

    Debnath, Tanwi; Li, Yunyun; Ghosh, Pulak K.; Marchesoni, Fabio

    2018-04-01

    The dynamics of a pair of identical artificial microswimmers bound inside two harmonic traps, in a thin sheared fluid film, is numerically investigated. In a two-dimensional Oseen approximation, the hydrodynamic pair coupling is long-ranged and proportional to the particle radius to film thickness ratio. On increasing such ratio above a certain threshold, a transition occurs between a free regime, where each swimmer orbits in its own trap with random phase, and a strong synchronization regime, where the two swimmers strongly repel each other to an average distance larger than both the trap distance and their free orbit diameter. Moreover, the swimmers tend to synchronize their positions opposite the center of the system.

  6. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-03-01

    EOF of non-Newtonian power-law fluids in a cylindrical microchannel is analyzed theoretically. Specially, exact solutions of electroosmotic velocity corresponding to two special fluid behavior indices (n = 0.5 and 1.0) are found, while approximate solutions are derived for arbitrary values of fluid behavior index. It is found that because of the approximation for the first-order modified Bessel function of the first kind, the approximate solutions introduce largest errors for predicting electroosmotic velocity when the thickness of electric double layer is comparable to channel radius, but can accurately predict the electroosmotic velocity when the thickness of electric double layer is much smaller or larger than the channel radius. Importantly, the analysis reveals that the Helmholtz-Smoluchowski velocity of power-law fluids in cylindrical microchannels becomes dependent on geometric dimensions (radius of channel), standing in stark contrast to the Helmholtz-Smoluchowski velocity over planar surfaces or in parallel-plate microchannels. Such interesting and counterintuitive effects can be attributed to the nonlinear coupling among the electrostatics, channel geometry, and non-Newtonian hydrodynamics. Furthermore, a method for enhancement of EOFs of power-law fluids is proposed under a combined DC and AC electric field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2010-08-01

    Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.

  8. Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes

    NASA Astrophysics Data System (ADS)

    Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Miller, John C.

    2017-08-01

    We propose an approximate approach for studying the relativistic regime of stellar tidal disruptions by rotating massive black holes. It combines an exact relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved space-time with a Newtonian treatment of the fluid's self-gravity. Explicit expressions for the equations of motion are derived for Kerr space-time using two different coordinate systems. We implement the new methodology within an existing Newtonian smoothed particle hydrodynamics code and show that including the additional physics involves very little extra computational cost. We carefully explore the validity of the novel approach by first testing its ability to recover geodesic motion, and then by comparing the outcome of tidal disruption simulations against previous relativistic studies. We further compare simulations in Boyer-Lindquist and Kerr-Schild coordinates and conclude that our approach allows accurate simulation even of tidal disruption events where the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the new method to study the effect of the black hole spin on the morphology and fallback rate of the debris streams resulting from tidal disruptions, finding that while the spin has little effect on the fallback rate, it does imprint heavily on the stream morphology, and can even be a determining factor in the survival or disruption of the star itself. Our methodology is discussed in detail as a reference for future astrophysical applications.

  9. Hydrodynamical simulations of the barred spiral galaxy NGC 1300. Dynamical interpretation of observations

    NASA Astrophysics Data System (ADS)

    Lindblad, P. A. B.; Kristen, H.

    1996-09-01

    We perform two-dimensional time dependent hydrodynamical simulations of the barred spiral galaxy NGC 1300. The input potential is divided into an axisymmetric part mainly derived from the observed rotation curve, and a perturbing part obtained from near infrared surface photometry of the bar and spiral structure. Self-gravitation of the gas is not taken into account in our modeling. A pure bar perturbed model is unable to reproduce the observations. It was found necessary to add a weak spiral potential to the perturbation, thus suggesting the presence of massive spiral arms in NGC 1300. We find two models, differing mainly in pattern speed, which are able to reproduce the essentials of NGC 1300. The high pattern speed model has {OMEGA}_p_=20km/s/kpc, corresponding to a corotation radius at R_CR_~104"=1.3R_bar_. Furthermore, the adopted rotation curve for this model supports one ILR at R_ILR_~26" and an OLR at R_OLR_~188". The low pattern speed model has {OMEGA}_p_=12km/s/kpc, corresponding to a corotation radius at R_ CR_~190"=2.4R_bar_. The adopted rotation curve for this model, which differs from the fast pattern speed model, supports one ILR at R_ILR_~25" and an OLR at R_OLR_~305". Morphological features, like spiral arms and offset dust lanes, are basically reproduced by both models. They are driven by orbit crowding effects across various resonances, leading to density enhancements. The general velocity structure, as described by HI data and optical long slit measurements, is fairly consistent with the model velocities.

  10. Nucleation of an oil phase in a nonionic microemulsion-containing chlorinated oil upon systematic temperature quench.

    PubMed

    Deen, G Roshan; Pedersen, Jan Skov

    2010-06-17

    A clear and stable nonionic model microemulsion consisting of pentaoxyethylene glycol dodecyl ether (C(12)E(5)), water, and 1-chlorotetradecane (CLTD) was prepared. This system was subjected to a systematic temperature quench (perturbation out of equilibrium) in steps of 1.0 degrees C from 20.4 to 15.3 degrees C in the unstable region of its phase diagram. The change in turbidity (for droplet volume fractions of 0.02 and 0.08) and hydrodynamic radius (R(h)) (for a droplet volume fraction of 0.02) of the system on its way to its new equilibrium was measured at each quench temperature. For small systematic temperature quenches just below the emulsification failure boundary (EFB) the turbidity decreases and remains constant indicating quick changes in the microstructures. Further lowering of temperature brings the system to the unstable region where the turbidity and light scattering increase sharply as function of time because of expulsion of excess oil from the microemulsion droplets. The newly formed oil-rich droplets grow in size as a function of time. These observations indicate the existence of a narrow but observable metastable region en route to the new equilibrium where both microemulsion droplets and larger oil-rich droplets coexist. The region in which microemulsion droplets are metastable is very narrow and is concentration-dependent. The presence of a metastable region is as for other similar systems attributed to the presence of a free energy barrier for the formation of the larger oil-rich droplets associated with curvature free energy of the surfactant film. The turbidity-time curves were converted to the radius-time curves using a model assuming monodisperse spherical droplets. The obtained results are in good agreement with the results for the hydrodynamic radius. The observed average radius from both type of measurements decreases in the metastable region. By performing calculation of the influence of eccentricity and size polydispersity on the observed radius, we have shown that the distribution of the microemulsion droplets becomes more homogeneous in the metastable region.

  11. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    NASA Astrophysics Data System (ADS)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  12. An overabundance of low-density Neptune-like planets

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.

    2017-04-01

    We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp < 30 M⊕). For each planet, we compute the restricted Jeans escape parameter, Λ, for a hydrogen atom evaluated at the planetary mass, radius, and equilibrium temperature. Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.

  13. Theory of energy and power flow of plasmonic waves on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-10-01

    The energy theorem of electrodynamics is extended so as to apply to the plasmonic waves on single-walled carbon nanotubes which propagate parallel to the axial direction of the system and are periodic waves in the azimuthal direction. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of free-electron gas which is described by means of the linearized hydrodynamic theory. General expressions of energy and power flow associated with surface waves are obtained by solving Maxwell and hydrodynamic equations with appropriate boundary conditions. Numerical results for the transverse magnetic mode show that energy, power flow, and energy transport velocity of the plasmonic waves strongly depend on the nanotube radius in the long-wavelength region.

  14. Physical interpretation of Jeans instability in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum

    2014-08-15

    In this paper, we use the quantum hydrodynamics and its hydrostatic limit to investigate the newly posed problem of Jeans instability in quantum plasmas from a different point of view in connection with the well-known Chandrasekhar mass-limit on highly collapsed degenerate stellar configurations. It is shown that the hydrodynamic stability of a spherically symmetric uniform quantum plasma with a given fixed mass is achieved by increase in its mass-density or decrease in the radius under the action of gravity. It is also remarked that for masses beyond the limiting Jeans-mass, the plasma becomes completely unstable and the gravitational collapse wouldmore » proceed forever. This limiting mass is found to depend strongly on the composition of the quantum plasma and the atomic-number of the constituent ions, where it is observed that heavier elements rather destabilize the quantum plasma hydrodynamically. It is also shown that the Chandrasekhar mass-limit for white dwarf stars can be directly obtained from the hydrostatic limit of our model.« less

  15. Boreal tree hydrodynamics: asynchronous, diverging, yet complementary.

    PubMed

    Pappas, Christoforos; Matheny, Ashley M; Baltzer, Jennifer L; Barr, Alan G; Black, T Andrew; Bohrer, Gil; Detto, Matteo; Maillet, Jason; Roy, Alexandre; Sonnentag, Oliver; Stephens, Jilmarie

    2018-05-08

    Water stress has been identified as a key mechanism of the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree hydrodynamics and their interspecific differences is still lacking. Here we examine the hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js), concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree water-use strategies. Our analysis revealed asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring 2 h earlier in larch than in black spruce. Interspecific differences in larch and black spruce crown architecture explained the observed asynchrony in their hydraulic functioning. Furthermore, the two species exhibited diverging stomatal regulation strategies with larch and black spruce employing relatively isohydric and anisohydric behaviour, respectively. Such asynchronous and diverging tree-level hydrodynamics provide new insights into the ecosystem-level complementarity in tree form and function, with implications for understanding boreal forests' water and carbon dynamics and their resilience to environmental stress.

  16. An analytical model of flagellate hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-04-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left-right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface.

  17. Non-Markovian closure kinetics of flexible polymers with hydrodynamic interactions.

    PubMed

    Levernier, N; Dolgushev, M; Bénichou, O; Blumen, A; Guérin, T; Voituriez, R

    2015-11-28

    This paper presents a theoretical analysis of the closure kinetics of a polymer with hydrodynamic interactions. This analysis, which takes into account the non-Markovian dynamics of the end-to-end vector and relies on the preaveraging of the mobility tensor (Zimm dynamics), is shown to reproduce very accurately the results of numerical simulations of the complete nonlinear dynamics. It is found that Markovian treatments based on a Wilemski-Fixman approximation significantly overestimate cyclization times (up to a factor 2), showing the importance of memory effects in the dynamics. In addition, this analysis provides scaling laws of the mean first cyclization time (MFCT) with the polymer size N and capture radius b, which are identical in both Markovian and non-Markovian approaches. In particular, it is found that the scaling of the MFCT for large N is given by T ∼ N(3/2)ln(N/b(2)), which differs from the case of the Rouse dynamics where T ∼ N(2). The extension to the case of the reaction kinetics of a monomer of a Zimm polymer with an external target in a confined volume is also presented.

  18. Silica nano-particle super-hydrophobic surfaces: the effects of surface morphology and trapped air pockets on hydrodynamic drainage forces.

    PubMed

    Chan, Derek Y C; Uddin, Md Hemayet; Cho, Kwun L; Liaw, Irving I; Lamb, Robert N; Stevens, Geoffrey W; Grieser, Franz; Dagastine, Raymond R

    2009-01-01

    We used atomic force microscopy to study dynamic forces between a rigid silica sphere (radius approximately 45 microm) and a silica nano-particle super-hydrophobic surface (SNP-SHS) in aqueous electrolyte, in the presence and absence of surfactant. Characterization of the SNP-SHS surface in air showed a surface roughness of up to two microns. When in contact with an aqueous phase, the SNP-SHS traps large, soft and stable air pockets in the surface interstices. The inherent roughness of the SNP-SHS together with the trapped air pockets are responsible for the superior hydrophobic properties of SNP-SHS such as high equilibrium contact angle (> 140 degrees) of water sessile drops on these surfaces and low hydrodynamic friction as observed in force measurements. We also observed that added surfactants adsorbed at the surface of air pockets magnified hydrodynamic interactions involving the SNP-SHS. The dynamic forces between the same silica sphere and a laterally smooth mica surface showed that the fitted Navier slip lengths using the Reynolds lubrication model were an order of magnitude larger than the length scale of the sphere surface roughness. The surface roughness and the lateral heterogeneity of the SNP-SHS hindered attempts to characterize the dynamic response using the Reynolds lubrication model even when augmented with a Navier slip boundary.

  19. Structure of block copolymer micelles in the presence of co-solvents

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Wang, Shu; Le, Kim Mai; Piemonte, Rachele; Madsen, Louis

    2015-03-01

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using scattering experiments and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  20. Influencing the structure of block copolymer micelles with small molecule additives

    NASA Astrophysics Data System (ADS)

    Robertson, Megan; Singh, Avantika; Cooksey, Tyler; Kidd, Bryce; Piemonte, Rachele; Wang, Shu; Mai Le, Kim; Madsen, Louis

    Amphiphilic block copolymer micelles in water are under broad exploration for drug delivery applications due to their high loading capacity and targeted drug delivery. We aim to understand the kinetic and thermodynamic processes that underlie the self-assembly of diblock copolymer micelle systems. The present work focuses on diblock copolymers containing poly(ethylene oxide) (a hydrophilic polymer) and polycaprolactone (a hydrophobic polymer), which spontaneously self-assemble into spherical micelles in water. Addition of a common good solvent (a co-solvent) for both of the constituting blocks, such as tetrahydrofuran (THF), reduces the interfacial tension at the core-corona interface. We are currently investigating the effect of this phenomenon on the micelle structural properties, using small-angle scattering and nuclear magnetic resonance. We have characterized the hydrodynamic radius, core radius, corona thickness, aggregation number, degree of swelling of the micelle core with the co-solvent, and unimer (free chain) concentration, as a function of the co-solvent concentration. Fundamental knowledge from these studies will inform design of drug delivery systems by allowing us to tailor micelle properties for optimal cargo loading.

  1. On the critical charge required for positive leader inception in long air gaps

    NASA Astrophysics Data System (ADS)

    Liu, Lipeng; Becerra, Marley

    2018-01-01

    The amount of the electric charge injected by the streamer corona bursts during the stage of leader inception determines the energy deposited to thermalize the corona stem into a leader segment. This paper is aimed at investigating the critical charge required for positive leader inception in air by using a thermo-hydrodynamic model with a detailed kinetic scheme. In order to simplify the analysis and to speed up the simulation, a reduced kinetic scheme for air is proposed. Numerical comparisons show that the reduced scheme can obtain almost the same results as the previous comprehensive kinetic scheme but with only half of the number of species and reactions. The thermo-hydrodynamic model with the reduced kinetics is then used to solve the radial dynamics of a single stem heated by current pulses typical of streamer corona bursts. The critical charge necessary for the direct transition of a first streamer corona into a leader under electrodes with large curvature radius is estimated between 0.08 and 0.5 µC per stem. Furthermore, the simulation shows that the gas heating of corona stem formed from electrodes with small curvature radius is mainly determined by the total accumulated charge injected by previous streamer corona bursts and the length of the dark periods in between the current pulses. The shape and the number of the corona current pulses in the discharge also play a role and their effects are discussed. It is suggested that the transition into a leader is triggered when a secondary streamer burst is initiated after the gas temperature is increased by the heating of previous streamers to about 1200 K. In addition, it is found that the heating produced by the charge injected by previous streamer corona bursts can be neglected if the dark period to the next burst is larger than few hundreds of µs for a corona stem with moderate initial stem radius. This indicates that the critical charge criterion obtained from laboratory experiments does not hold to evaluate the inception of positive leaders under conditions when long dark periods are present.

  2. Static and dynamic light scattering studies on dilute polyrotaxane solutions

    NASA Astrophysics Data System (ADS)

    Kume, Tetsuya; Araki, Jun; Sakai, Yasuhiro; Mayumi, Koichi; Kidowaki, Masatoshi; Yokoyama, Hideaki; Ito, Kohzo

    2009-08-01

    Static and dynamic light scattering measurements were performed for dilute polyrotaxane solutions in different types of solvent systems, i.e. dimethylacetamide (DMAc) or dimethylformamide (DMF) containing 1-6 wt% lithium chloride (LiCl), 1 M aqueous sodium hydroxide (NaOH) and dimethylsulfoxide (DMSO). No aggregation of the polyrotaxane in DMF/LiCl was confirmed in the present study. Radius of gyration of the dissolved polyrotaxane was largest in NaOHaq., followed by values in amide solvents/LiCl and that in DMSO, and was probably dominated not by Coulombic repulsion but by the mutual affinity between solvent and polyrotaxane. Ratio of radius of gyration to hydrodynamic radius suggested the flexible random-coiled conformation in DMSO and relatively more extended, semi-flexible ones in amide solvents/LiCl and NaOHaq. The obtained values of second virial coefficient and weight average molecular weight seemed to be affected by a potential change in differential refractive index increments, caused by selective macrocationization or ionization.

  3. Nano-network with dual temperature and pH responsiveness based on copolymers of 2-hydroxyethyl methacrylate with 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane

    NASA Astrophysics Data System (ADS)

    Chiriac, Aurica P.; Nita, Loredana E.; Nistor, Manuela T.

    2011-12-01

    This study refers to the synthesis of a nano-network with dual temperature and pH responsiveness based on the 2-hydroxyethyl methacrylate (HEMA) copolymers with a comonomer with spiroacetal moiety and crosslinking capacity, namely 3,9-divinyl-2,4,8,10-tetraoxaspiro[5.5]-undecane (U). The copolymers were synthesized by radical emulsion polymerization, using 4,4'-azobis(cyanopentanoic acid) as initiator, in the presence of sodium lauryl sulfate as tensioactive agent and poly(vinyl alcohol) as protective colloid. Three copolymer variants were taken into study resulted from the different ratio between the comonomers (HEMA/U), which was about 98/2, 95/5, and 90/10, respectively. The copolymers were characterized by FTIR and thermal analysis. The copolymers sensitivity was evidenced by studying the evolution of the hydrodynamic radius and zeta potential of the polymeric particles as a function of pH. Thus, the particles size increases with the comonomer amount, from 193 nm in case of the homopolymer up to 253 nm for the copolymer with maximum content of the comonomer (10%). The increase of the particle hydrodynamic radius with the growth of temperature was also put into evidence.

  4. A fluorescence spectroscopy assay for real-time monitoring of enzyme immobilization into mesoporous silica particles.

    PubMed

    Nabavi Zadeh, Pegah S; Mallak, Kassam Abdel; Carlsson, Nils; Åkerman, Björn

    2015-05-01

    Mesoporous silica particles are used as support material for immobilization of enzymes. Here we investigated a fluorescence-based assay for real-time monitoring of the immobilization of lipase, bovine serum albumin, and glucose oxidase into micrometer-sized mesoporous silica particles. The proteins are labeled with the dye epicocconone, and the interaction with the particles is observed as an increase in emission intensity of the protein-dye conjugates that can be quantified if correcting for a comparatively slow photobleaching. The immobilization occurs in tens of minutes to hours depending on particle concentration and type of protein. In the limit of excess particles over proteins, the formation of the particle-protein complexes can be described by a single exponential growth for all three investigated proteins, and the fitted pseudo-first-order rate constant increases linearly with particle concentration for each protein type. The derived second-order rate constant k varies with the protein hydrodynamic radius according to k∼RH(-4.70±0.01), indicating that the rate-limiting step at high particle concentrations is not the diffusional encounter between proteins and particles but rather the entry into the pores, consistent with the hydrodynamic radii of the three proteins being smaller but comparable to the pore radius of the particles. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us

    Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at amore » mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.« less

  6. Theoretical interpretation of the limiting electric conductivity in ionic solution

    NASA Astrophysics Data System (ADS)

    Fraenkel, Dan

    2017-12-01

    The physical essence of the limiting equivalent ionic conductivity in solution, λ0i, has been a continuing challenge over almost a century. Here I briefly present an ab initio theoretical treatment providing (1) a new insight into the nature of λ0i, and (2) a mathematical formula for computing λ0i. In the new treatment, one assumes that any chosen ion i is surrounded by a spherical body of oriented solvent dipoles carrying the charge of the counterion, and the bulk solvent is a continuum with no molecular detail. λ0i is thus the result of the tandem operation, at hydrodynamic equilibrium, of the dipole body's electrophoretic and relaxation forces exerted on the drifting ion. λ0i is found to be proportional to the radius of ion i, and independent of the ionic charge. From experimental λ0i's, the ion radius can be computed as 'electric radius.' An electric ion-radius scale so derived compares well with other ion-size scales. The current theory expresses λ0i using only universal constants and unitary factors of the ionic solution, and it sheds new light on the fundamental nature of ion and charge transport in a polar liquid medium.

  7. Teaching light scattering spectroscopy: the dimension and shape of tobacco mosaic virus.

    PubMed Central

    Santos, N C; Castanho, M A

    1996-01-01

    The tobacco mosaic virus is used as a model molecular assembly to illustrate the basic potentialities of light scattering techniques (both static and dynamic) to undergraduates. The work has two objectives: a pedagogic one (introducing light scattering to undergraduate students) and a scientific one (stabilization of the virus molecular assembly structure by the nucleic acid). Students are first challenged to confirm the stabilization of the cylindrical shape of the virus by the nucleic acid, at pH and ionic strength conditions where the coat proteins alone do not self-assemble. The experimental intramolecular scattering factor is compared with the theoretical ones for several model geometries. The data clearly suggest that the geometry is, in fact, a rod. Comparing the experimental values of gyration radius and hydrodynamic radius with the theoretical expectations further confirms this conclusion. Moreover, the rod structure is maintained over a wider range of pH and ionic strength than that valid for the coat proteins alone. The experimental values of the diffusion coefficient and radius of gyration are compared with the theoretical expectations assuming the dimensions detected by electron microscopy techniques. In fact, both values are in agreement (length approximately 300 nm, radius approximately 20 nm). PMID:8874039

  8. Truncated disks - advective tori solutions around BHs. I. The effects of conduction and enhanced Coulomb coupling

    NASA Astrophysics Data System (ADS)

    Hujeirat, A.; Camenzind, M.

    2000-10-01

    We present the first 2D quasi-stationary radiative hydrodynamical calculations of accretion flows onto BHs taking into account cooling via Bremsstrahlung, Compton, Synchrotron and conduction. The effect of enhanced Coulomb coupling is investigated also. Based on the numerical results obtained, we find that two-temperature (2T) accretion flows are best suited to describe hard states, and one-temperature (1T) in the soft states, with transition possibly depending on the accretion rate. In the 2T case, the ion-conduction enlarges the disk-truncation-radius from 5 to 9 Schwarzschild radii (RS). The ion-pressure powers outflows, hence substantially decreasing the accretion rate with decreasing radius. The spectrum is partially modified BB with hard photons emitted from the inner region and showing a cutoff at 100 keV. In the 1T case, conduction decreases the truncation radius from 7 to 5 RS and lowers the maximum gas temperature. The outflows are weaker, the spectrum is pre-dominantly modified BB and the emitted photons from the inner region are much harder (up to 175 keV). In both cases, the unsaturated Comptonization region coincides with the transition region between the disk and the advective torus. When gradually enhancing the Coulomb coupling, we find that the ion-temperature Ti decreases and the electron temperature Te increases, asymptotically converging to 1T flows. However, once the dissipated energy goes into heating the ions, ion-electron thermal decoupling is inevitable within the last stable orbit (RMS) even when the Coulomb interaction is enhanced by an additional two orders of magnitude.

  9. Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates

    DTIC Science & Technology

    1990-08-30

    hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The

  10. Modeling the Transport of Heavy Metals in Soils

    DTIC Science & Technology

    1990-09-01

    vii NOMENCLATURE Term Definition a aggregate radius (cm) b Freundlich parameter (dimensionless) c concentration of dissolved chemical in soil solution (mg...metals (e.g., Cu, Hg, Cr, Cd, and Zn). retention-release reactions in the soil solution have been observed to be strongly time-dependent. Recent...of the dissolved chemical in the soil solution (mg L 2 s = mount of solute retained per unit mass of the soil matrix (mg kg- )-, D = hydrodynamic

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  12. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  13. Plasma hydrodynamics of the intense laser-cluster interaction*

    NASA Astrophysics Data System (ADS)

    Milchberg, Howard

    2002-11-01

    We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.

  14. Original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank

    NASA Astrophysics Data System (ADS)

    Oanta, Emil M.; Dascalescu, Anca-Elena; Sabau, Adrian

    2016-12-01

    The paper presents an original analytical model of the hydrodynamic loads applied on the half-bridge of a circular settling tank. The calculus domain is defined using analytical geometry and the calculus of the local dynamic pressure is based on the radius from the center of the settling tank to the current area, i.e. the relative velocity of the fluid and the depth where the current area is located, i.e. the density of the fluid. Calculus of the local drag forces uses the discrete frontal cross sectional areas of the submerged structure in contact with the fluid. In the last stage is performed the reduction of the local drag forces in the appropriate points belonging to the main beam. This class of loads is producing the flexure of the main beam in a horizontal plane and additional twisting moments along this structure. Taking into account the hydrodynamic loads, the results of the theoretical models, i.e. the analytical model and the finite element model, may have an increased accuracy.

  15. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  16. Laser-plasma interactions in direct-drive ignition plasmas

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Michel, D. T.; Igumenshchev, I. V.; Hu, S. X.; Yaakobi, B.; Myatt, J. F.; Edgell, D. H.; Follett, R.; Glebov, V. Yu; Goncharov, V. N.; Kessler, T. J.; Maximov, A. V.; Radha, P. B.; Sangster, T. C.; Seka, W.; Short, R. W.; Solodov, A. A.; Sorce, C.; Stoeckl, C.

    2012-12-01

    Direct-drive ignition is most susceptible to multiple-beam laser-plasma instabilities, as the single-beam intensities are low (Is ˜ 1014 W cm-2) and the electron temperature in the underdense plasma is high (Te ≃ 3.5 keV). Cross-beam energy transfer is driven by multiple laser beams and can significantly reduce the hydrodynamic efficiency in direct-drive experiments on OMEGA (Boehly et al 1997 Opt. Commun. 133 495). Reducing the radii of the laser beams significantly increases the hydrodynamic efficiency at the cost of an increase in the low-mode modulations. Initial 2D hydrodynamic simulations indicate that zooming, transitioning the laser-beam radius prior to the main drive, does not increase low-mode nonuniformities. The combination of zooming and dynamic bandwidth reduction will provide a 30% effective increase in the drive energy on OMEGA direct-drive implosions. It was shown that two-plasmon decay (TPD) can be driven by multiple laser beams and both planar and spherical experiments were performed to study the hot electrons generated by TPD. The fraction of laser energy converted to hot electrons scales with the hot-electron temperature for all geometries and over a wide range of intensities. At ignition-relevant intensities, the fraction of laser energy converted to hot electrons is measured to decrease by an order of magnitude when the ablator material is changed from carbon-hydrogen to aluminum. The TPD results are compared with a multiple-beam linear theory and a nonlinear Zakharov model.

  17. Dynamics of diamond nanoparticles in solution and cells.

    PubMed

    Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg

    2007-12-01

    The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.

  18. Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan

    2000-10-01

    A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.

  19. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  20. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  1. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  2. Optoelectrofluidic field separation based on light-intensity gradients.

    PubMed

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-07-14

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

  3. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    PubMed

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  4. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  5. A three-dimensional model of co-rotating streams in the solar wind. 2: Hydrodynamic streams

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1979-01-01

    Theoretical aspects of corotating solar wind dynamics on a global scale are explored by means of numerical simulations executed with a nonlinear, inviscid, adiabatic, single-fluid, three-dimensional (3-D) hydrodynamic formulation. A simple, hypothetical 3-D stream structure is defined on a source surface located at 35 solar radius and carefully documents its evolution to 1 AU under the influence of solar rotation. By manipulating the structure of this prototype configuration at the source surface, it is possible to elucidate the factors most strongly affecting stream evolution: (1) the intrinsic correlations among density, temperature, and velocity existing near the source; (2) the amplitude of the stream; (3) the longitudinal breadth of the stream; (4) the latitudinal breadth of the stream; and (5) the heliographic latitude of the centroid of the stream.

  6. The onset of fluid-dynamical behavior in relativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge; Denicol, Gabriel S.

    2017-11-01

    In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.

  7. Electrokinetic motion of a rectangular nanoparticle in a nanochannel

    NASA Astrophysics Data System (ADS)

    Movahed, Saeid; Li, Dongqing

    2012-08-01

    This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.

  8. A systematic comparison of two-equation Reynolds-averaged Navier-Stokes turbulence models applied to shock-cloud interactions

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.

    2017-07-01

    Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.

  9. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  10. Interaction of silicon nanoparticles with the molecules of bovine serum albumin in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anenkova, K A; Sergeeva, I A; Petrova, G P

    2011-05-31

    Using the method of photon-correlation spectroscopy, the coefficient of translational diffusion D{sub t} and the hydrodynamic radius R of the particles in aqueous solutions of the bovine serum albumin, containing silicon nanoparticles, are determined. The character of the dependence of these parameters on the concentration of the protein indicates the absence of interaction between the studied particles in the chosen range of albumin concentrations 0.2 - 1.0 mg mL{sup -1}. (optical technologies in biophysics and medicine)

  11. A Surface Panel Method for the Hydrodynamic Analysis of Ducted Propellers

    DTIC Science & Technology

    1987-01-01

    Flow About Arbitrary Three-Dimensional Lifting Bodies," Technical Report MDC J5679-01, McDonnell Douglas Corp., Oct. 197. 32 Van Manen , J. D...to that developed by Van Houten (4] for use with his vortex of a control point is less than the radius of the true surface. lattice ducted propeller...Boswell, R. J. and Miller, M. L., "Unsteady Propeller Load- erlands, 1983. ing-Measurement, Correlation, with Theory and Parametric 4 Van Houten, R

  12. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes.

    PubMed

    Shatursky, Oleg Ya; Volkova, Tatyana M; Himmelreich, Nina H; Grishin, Eugene V

    2007-11-01

    The dependence of single channel conductance formed by alpha-latroinsectotoxin (alpha-LIT) from black widow spider venom in the planar phospholipid membrane on the hydrodynamic radii of different nonelectrolytes allowed to determine the geometry of alpha-LIT water lumen. It was found that the cis- and trans-entrances of alpha-LIT channel had the same effective radii of 0.55-0.58 nm. Relatively small conductance of alpha-LIT channel (23.5+3.7 pS) in a symmetrical membrane bathing solution of 100 mM KCl (pH 7.4) may result from the constriction inside the channel with apparent radius of 0.37 nm located 32.5% of channel length away from the cis-entrance.

  13. The evolution of the Y-M scaling relation in MUSIC clusters

    NASA Astrophysics Data System (ADS)

    Sembolini, F.; Yepes, G.; De Petris, M.; Gottlöber, S.; Lamagna, L.; Comis, B.

    2013-04-01

    This work describes the baryon content and Sunyaev-Zeld'ovich properties of the MUSIC (Marenostrum-MultiDark SImulations of galaxy clusters) dataset and their evolution with redshift and aperture radius. The MUSIC dataset is one of the largest samples of hydrodynamically simulated galaxy clusters (more than 2000 objects, including more than 500 clusters). We show that when the effects of cooling and stellar feedbacks are properly taken into account, the gas fraction of the MUSIC clusters consistently agrees with recent observational results. Moreover, the gas fraction has a net dependence with the total mass of the cluster and increases slightly with redshift at high overdensities. The study of the Y-M relation confirms the consistence of the self-similar model, showing no evolution with redshift at low overdensities.

  14. The dynamical role of the central molecular ring within the framework of a seven-component Galaxy model

    NASA Astrophysics Data System (ADS)

    Simin, A. A.; Fridman, A. M.; Haud, U. A.

    1991-09-01

    A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.

  15. Expansion and internal friction in unfolded protein chain.

    PubMed

    Yasin, U Mahammad; Sashi, Pulikallu; Bhuyan, Abani K

    2013-10-10

    Similarities in global properties of homopolymers and unfolded proteins provide approaches to mechanistic description of protein folding. Here, hydrodynamic properties and relaxation rates of the unfolded state of carbonmonoxide-liganded cytochrome c (cyt-CO) have been measured using nuclear magnetic resonance and laser photolysis methods. Hydrodynamic radius of the unfolded chain gradually increases as the solvent turns increasingly better, consistent with theory. Curiously, however, the rate of intrachain contact formation also increases with an increasing denaturant concentration, which, by Szabo, Schulten, and Schulten theory for the rate of intramolecular contact formation in a Gaussian polymer, indicates growing intramolecular diffusion. It is argued that diminishing nonbonded atom interactions with increasing denaturant reduces internal friction and, thus, increases the rate of polypeptide relaxation. Qualitative scaling of the extent of unfolding with nonbonded repulsions allows for description of internal friction by a phenomenological model. The degree of nonbonded atom interactions largely determines the extent of internal friction.

  16. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.

    PubMed

    Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime

    2015-07-01

    The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.

  17. On the effect of galactic outflows in cosmological simulations of disc galaxies

    NASA Astrophysics Data System (ADS)

    Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.

    2017-09-01

    We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.

  18. An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Lin, Weipeng; Cui, Weiguang; Kang, Xi; Wang, Yang; Contini, E.; Yu, Yu

    2018-06-01

    Intracluster light (ICL) in observations is usually identified through the surface brightness limit (SBL) method. In this paper, for the first time we produce mock images of galaxy groups and clusters, using a cosmological hydrodynamical simulation to investigate the ICL fraction and focus on its dependence on observational parameters, e.g., the SBL, the effects of cosmological redshift-dimming, point-spread function (PSF), and CCD pixel size. Detailed analyses suggest that the width of the PSF has a significant effect on the measured ICL fraction, while the relatively small pixel size shows almost no influence. It is found that the measured ICL fraction depends strongly on the SBL. At a fixed SBL and redshift, the measured ICL fraction decreases with increasing halo mass, while with a much fainter SBL, it does not depend on halo mass at low redshifts. In our work, the measured ICL fraction shows a clear dependence on the cosmological redshift-dimming effect. It is found that there is more mass locked in the ICL component than light, suggesting that the use of a constant mass-to-light ratio at high surface brightness levels will lead to an underestimate of ICL mass. Furthermore, it is found that the radial profile of ICL shows a characteristic radius that is almost independent of halo mass. The current measurement of ICL from observations has a large dispersion due to different methods, and we emphasize the importance of using the same definition when observational results are compared with theoretical predictions.

  19. Hydrodynamical Modeling of Large Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Krtǐcka, J.

    2016-11-01

    Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.

  20. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE PAGES

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; ...

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  1. The rise-time of Type II supernovae

    NASA Astrophysics Data System (ADS)

    González-Gaitán, S.; Tominaga, N.; Molina, J.; Galbany, L.; Bufano, F.; Anderson, J. P.; Gutierrez, C.; Förster, F.; Pignata, G.; Bersten, M.; Howell, D. A.; Sullivan, M.; Carlberg, R.; de Jaeger, T.; Hamuy, M.; Baklanov, P. V.; Blinnikov, S. I.

    2015-08-01

    We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak & Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.

  2. Analysis of Mid-Latitude Plasma Density Irregularities in the Presence of Finite Larmor Radius Effects

    NASA Astrophysics Data System (ADS)

    Sotnikov, V. I.; Kim, T. C.; Mishin, E. V.; Kil, H.; Kwak, Y. S.; Paraschiv, I.

    2017-12-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during space storms. At mid-latitudes the source of F-region Field Aligned Irregularities (FAI) is yet to be determined. They can be created in enhanced subauroral flow channels (SAI/SUBS), where strong gradients of electric field, density and plasma temperature are present. Another important source of FAI is connected with Medium-scale travelling ionospheric disturbances (MSTIDs). Related shear flows and plasma density troughs point to interchange and Kelvin-Helmholtz type instabilities as a possible source of plasma irregularities. A model of nonlinear development of these instabilities based on the two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. This approach allows to resolve density irregularities on the meter scale. A numerical code in C language to solve the derived nonlinear equations for analysis of interchange and flow velocity shear instabilities in the ionosphere was developed. This code will be used to analyze competition between interchange and Kelvin-Helmholtz instabilities in the mid-latitude region. The high-resolution simulations with continuous density and velocity profiles will be driven by the ambient conditions corresponding to the in situ data obtained during the 2016 Daejeon (Korea) and MU (Japan) radar campaign and data collected simultaneously by the Swarm satellites passed over Korea and Japan. PA approved #: 88ABW-2017-3641

  3. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial pulsations, and atmospheric shocks of various scales, which give rise to complex changing structures in the atmospheres of AGB stars.

  4. Interaction mechanism of double bubbles in hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  5. The size and structure of the laser entrance hole in gas-filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Schneider, M. B.; MacLaren, S. A.; Widmann, K.; Meezan, N. B.; Hammer, J. H.; Yoxall, B. E.; Bell, P. M.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Dewald, E. L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Guymer, T. M.; Hinkel, D. E.; Hohenberger, M.; Hsing, W. W.; Kervin, M. L.; Kilkenny, J. D.; Landen, O. L.; Lindl, J. D.; May, M. J.; Michel, P.; Milovich, J. L.; Moody, J. D.; Moore, A. S.; Ralph, J. E.; Regan, S. P.; Thomas, C. A.; Wan, A. S.

    2015-12-01

    At the National Ignition Facility, a thermal X-ray drive is created by laser energy from 192 beams heating the inside walls of a gold cylinder called a "hohlraum." The x-ray drive heats and implodes a fuel capsule. The laser beams enter the hohlraum via laser entrance holes (LEHs) at each end. The LEH radius decreases as heated plasma from the LEH material blows radially inward but this is largely balanced by hot plasma from the high-intensity region in the center of the LEH pushing radially outward. The x-ray drive on the capsule is deduced by measuring the time evolution and spectra of the x-radiation coming out of the LEH and correcting for geometry and for the radius of the LEH. Previously, the LEH radius was measured using time-integrated images in an x-ray band of 3-5 keV (outside the thermal x-ray region). For gas-filled hohlraums, the measurements showed that the LEH radius is larger than that predicted by the standard High Flux radiation-hydrodynamic model by about 10%. A new platform using a truncated hohlraum ("ViewFactor hohlraum") is described, which allows time-resolved measurements of the LEH radius at thermal x-ray energies from two views, from outside the hohlraum and from inside the hohlraum. These measurements show that the LEH radius closes during the low power part of the pulse but opens up again at peak power. The LEH radius at peak power is larger than that predicted by the models by about 15%-20% and does not change very much with time. In addition, time-resolved images in a >4 keV (non-thermal) x-ray band show a ring of hot, optically thin gold plasma just inside the optically thick LEH plasma. The structure of this plasma varies with time and with Cross Beam Energy Transfer.

  6. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  7. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  8. Towards the concept of hydrodynamic cavitation control

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    1997-02-01

    A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

  9. Hydrodynamics of embedded planets' first atmospheres - III. The role of radiation transport for super-Earth planets

    NASA Astrophysics Data System (ADS)

    Cimerman, Nicolas P.; Kuiper, Rolf; Ormel, Chris W.

    2017-11-01

    The population of close-in super-Earths, with gas mass fractions of up to 10 per cent represents a challenge for planet formation theory: how did they avoid runaway gas accretion and collapsing to hot Jupiters despite their core masses being in the critical range of Mc ≃ 10 M⊕? Previous three-dimensional (3D) hydrodynamical simulations indicate that atmospheres of low-mass planets cannot be considered isolated from the protoplanetary disc, contrary to what is assumed in 1D-evolutionary calculations. This finding is referred to as the recycling hypothesis. In this paper, we investigate the recycling hypothesis for super-Earth planets, accounting for realistic 3D radiation hydrodynamics. Also, we conduct a direct comparison in terms of the evolution of the entropy between 1D and 3D geometries. We clearly see that 3D atmospheres maintain higher entropy: although gas in the atmosphere loses entropy through radiative cooling, the advection of high-entropy gas from the disc into the Bondi/Hill sphere slows down Kelvin-Helmholtz contraction, potentially arresting envelope growth at a sub-critical gas mass fraction. Recycling, therefore, operates vigorously, in line with results by previous studies. However, we also identify an `inner core' - in size ≈25 per cent of the Bondi radius - where streamlines are more circular and entropies are much lower than in the outer atmosphere. Future studies at higher resolutions are needed to assess whether this region can become hydrodynamically isolated on long time-scales.

  10. Cellular Instabilities and Self-Acceleration of Expanding Spherical Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Kwon, O. C.

    2003-01-01

    In the present investigation we aim to provide experimental information on and thereby understanding of the generation and propagation of spark-ignited, outwardly propagating cellular flames, with three major focuses. The first is to unambiguously demonstrate the influence of the four most important parameters in inducing hydrodynamic and diffusional-thermal cellularities, namely thermal expansion, flame thickness, non-unity Lewis number, and global activation energy. The second is to investigate the critical state for the onset of cellularity for the stretch-affected, expanding flame. The third is to identify and consequently quantify the phenomena of self-acceleration and possibly auto-turbulization of cellular flames. Due to space limitation the effects of activation energy and the critical state for the onset of cellularity will not be discussed herein. Experiments were conducted using C3H8-air and H2-O2-N2 mixtures for their opposite influences of non-equidiffusivity. The additional system parameters varied were the chamber pressure (p) and the mixture composition including the equivalence ratio (phi). From a sequence of the flame images we can assess the propensity of cell formation, and determine the instantaneous flame radius (R), the flame propagation rate, the global stretch rate experienced by the flame, the critical flame radius at which cells start to grow, and the average cell size.

  11. The motion of a train of vesicles in channel flow

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Shaqfeh, Eric

    2017-11-01

    The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.

  12. On the specta of X-ray bursters: Expansion and contraction stages

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev

    1994-01-01

    The theory of spectral formation during the explosion and contraction stages of X-ray bursters, which include the effects of Computonization and free-free absorption and emission, is described. Analytical expressions are provided for color ratios, and the spectral shape is given as a function of input parameters, elemental abundance, neutron star mass and radius, and Eddington ratio. An Eulerian calculation is used to determine the photospheric evolution accurately during the Eddington luminosity phase. The developed analytical theory for hydrodynamics of the expansion takes into account the dependence of Compton scattering opacity on electron temperature. An analytical expression is derived from the sonic point position and the value of the sonic velcoity. Using this value as a boundary condition at the sonic point, the velocity, density, and temperature profile are calculated throughout the whole photosphere. It is shown that the atmopsphere radiates spectra having a low-energy power-law shape and blackbody-like hard tail. In the expansion stage the spectra depend strongly on the temperature of the helium-burning zone at the neutron star surface. The X-ray photosheric radius increases to approximately 100 km or more, depending on the condition of the nuclear burning on the surface of the neutron star in the course of the expansion.

  13. Evolution of the distribution of baryons in a simulated Local Group Universe

    NASA Astrophysics Data System (ADS)

    Peirani, S.

    2012-12-01

    Using hydrodynamical zoom simulations in the standard ΛCDM cosmology, we have investigated the evolution of the distribution of baryons (gas and stars) in a local group-type universe. We found that physical mechanisms able to drive the gas out of the virial radius at high redshifts (such as AGN) will have a stronger impact on the deficit of baryons in the mass budget of Milky Way type-galaxies at present times than those that expel the gas in the longer, late phases of galaxy formation.

  14. A new model of arterial hemodynamics.

    PubMed

    Branzan, M; Sundri, G

    1983-01-01

    The determination of arterial blood flow parameters on the basis of ultrasound investigation requires a new hydrodynamic model of arterial circulation. Unlike previous research (Womersley, Bergel) considering the arterial pressure of its gradients to be known, the present model uses blood flow velocity and arterial radius magnitude easily obtained by ultrasound (Doppler effect). Processing these data requires the thorough analysis of rheological characteristics of blood flow and of arterial wall behaviour (elastic deformability). It has been assumed that: a) blood is a homogeneous and isotropic fluid; b) the artery has a cylindrical symmetry of a circular cross-section at any time moment; c) the pressure in the artery cross-section is constant. Because arterial dynamics has an undulatory character the Fourier analysis of the modified Navier-Stokes equations has been used. Finally, a simplified relation for blood pressure determination has been obtained.

  15. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Nanoparticle Analysis by Online Comprehensive Two-Dimensional Liquid Chromatography combining Hydrodynamic Chromatography and Size-Exclusion Chromatography with Intermediate Sample Transformation

    PubMed Central

    2017-01-01

    Polymeric nanoparticles have become indispensable in modern society with a wide array of applications ranging from waterborne coatings to drug-carrier-delivery systems. While a large range of techniques exist to determine a multitude of properties of these particles, relating physicochemical properties of the particle to the chemical structure of the intrinsic polymers is still challenging. A novel, highly orthogonal separation system based on comprehensive two-dimensional liquid chromatography (LC × LC) has been developed. The system combines hydrodynamic chromatography (HDC) in the first-dimension to separate the particles based on their size, with ultrahigh-performance size-exclusion chromatography (SEC) in the second dimension to separate the constituting polymer molecules according to their hydrodynamic radius for each of 80 to 100 separated fractions. A chip-based mixer is incorporated to transform the sample by dissolving the separated nanoparticles from the first-dimension online in tetrahydrofuran. The polymer bands are then focused using stationary-phase-assisted modulation to enhance sensitivity, and the water from the first-dimension eluent is largely eliminated to allow interaction-free SEC. Using the developed system, the combined two-dimensional distribution of the particle-size and the molecular-size of a mixture of various polystyrene (PS) and polyacrylate (PACR) nanoparticles has been obtained within 60 min. PMID:28745485

  17. Black hole feeding and feedback: the physics inside the `sub-grid'

    NASA Astrophysics Data System (ADS)

    Negri, A.; Volonteri, M.

    2017-05-01

    Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.

  18. A super-Earth transiting a nearby low-mass star.

    PubMed

    Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-12-17

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

  19. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements.

    PubMed Central

    Timmins, P A; Langowski, J; Brown, R S

    1988-01-01

    The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA. PMID:3419928

  20. Hydrodynamic interaction induced spontaneous rotation of coupled active filaments.

    PubMed

    Jiang, Huijun; Hou, Zhonghuai

    2014-12-14

    We investigate the coupled dynamics of active filaments with long range hydrodynamic interactions (HI). Remarkably, we find that filaments can rotate spontaneously under the same conditions in which a single filament alone can only move in translation. Detailed analysis reveals that the emergence of coupled rotation originates from an asymmetric flow field associated with HI which breaks the symmetry of translational motion when filaments approach. The breaking is then further stabilized by HI to form self-sustained coupled rotation. Intensive simulations show that coupled rotation forms easily when one filament tends to collide with the front-half of the other. For head-to-tail approaching, we observe another interesting HI-induced coupled motion, where filaments move together in the form of one following the other. Moreover, the radius of coupled rotation increases exponentially as the rigidity of the filament increases, which suggests that HI are also important for the alignment of rigid-rod-like filaments which has been assumed to be solely a consequence of direct collisions.

  1. Observation of Compressible Plasma Mix in Cylindrically Convergent Implosions

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Batha, Steven H.; Lanier, Nicholas E.; Magelssen, Glenn R.; Tubbs, David L.; Dunne, A. M.; Rothman, Steven R.; Youngs, David L.

    2000-10-01

    An understanding of hydrodynamic mix in convergent geometry will be of key importance in the development of a robust ignition/burn capability on NIF, LMJ and future pulsed power machines. We have made use of the OMEGA laser facility at the University of Rochester to investigate directly the mix evolution in a convergent geometry, compressible plasma regime. The experiments comprise a plastic cylindrical shell imploded by direct laser irradiation. The cylindrical shell surrounds a lower density plastic foam which provides sufficient back pressure to allow the implosion to stagnate at a sufficiently high radius to permit quantitative radiographic diagnosis of the interface evolution near turnaround. The susceptibility to mix of the shell-foam interface is varied by choosing different density material for the inner shell surface (thus varying the Atwood number). This allows the study of shock-induced Richtmyer-Meshkov growth during the coasting phase, and Rayleigh-Taylor growth during the stagnation phase. The experimental results will be described along with calculational predictions using various radiation hydrodynamics codes and turbulent mix models.

  2. Rapid black hole growth under anisotropic radiation feedback

    NASA Astrophysics Data System (ADS)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Omukai, Kazuyuki

    2017-07-01

    Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102-105 M⊙) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10° below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become high-redshift supermassive BHs.

  3. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness.

    PubMed

    Chen, Wei J; Keh, Huan J

    2013-08-22

    An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.

  4. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.

    PubMed

    Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta

    2018-02-01

    The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    PubMed

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  6. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Validating Semi-analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; Silvia, Devin W.; O’Shea, Brian W.; Smith, Britton; Wise, John H.

    2018-05-01

    We use a cosmological hydrodynamic simulation calculated with Enzo and the semi-analytic galaxy formation model (SAM) GAMMA to address the chemical evolution of dwarf galaxies in the early universe. The long-term goal of the project is to better understand the origin of metal-poor stars and the formation of dwarf galaxies and the Milky Way halo by cross-validating these theoretical approaches. We combine GAMMA with the merger tree of the most massive galaxy found in the hydrodynamic simulation and compare the star formation rate, the metallicity distribution function (MDF), and the age–metallicity relationship predicted by the two approaches. We found that the SAM can reproduce the global trends of the hydrodynamic simulation. However, there are degeneracies between the model parameters, and more constraints (e.g., star formation efficiency, gas flows) need to be extracted from the simulation to isolate the correct semi-analytic solution. Stochastic processes such as bursty star formation histories and star formation triggered by supernova explosions cannot be reproduced by the current version of GAMMA. Non-uniform mixing in the galaxy’s interstellar medium, coming primarily from self-enrichment by local supernovae, causes a broadening in the MDF that can be emulated in the SAM by convolving its predicted MDF with a Gaussian function having a standard deviation of ∼0.2 dex. We found that the most massive galaxy in the simulation retains nearby 100% of its baryonic mass within its virial radius, which is in agreement with what is needed in GAMMA to reproduce the global trends of the simulation.

  8. Triggering active galactic nuclei in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.

    2018-03-01

    We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.

  9. Trapping of low-mass planets outside the truncated inner edges of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Miranda, Ryan; Lai, Dong

    2018-02-01

    We investigate the migration of a low-mass (≲10 M⊕) planet near the inner edge of a protoplanetary disc using two-dimensional viscous hydrodynamics simulations. We employ an inner boundary condition representing the truncation of the disc at the stellar corotation radius. As described by Tsang, wave reflection at the inner disc boundary modifies the Type I migration torque on the planet, allowing migration to be halted before the planet reaches the inner edge of the disc. For low-viscosity discs (α ≲ 10-3), planets may be trapped with semi-major axes as large as three to five times the inner disc radius. In general, planets are trapped closer to the inner edge as either the planet mass or the disc viscosity parameter α increases, and farther from the inner edge as the disc thickness is increased. This planet trapping mechanism may impact the formation and migration history of close-in compact multiplanet systems.

  10. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  11. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  12. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation.

    PubMed

    Frutos, S; Jordan, J B; Bio, M M; Muir, T W; Thiel, O R; Vila-Perelló, M

    2016-10-12

    An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners.

  13. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    PubMed

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  14. Effect of Hyaluronic Acid on the Self Assembling Behaviour of PEO-PPO Copolymers in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Mayol, L.; Borzacchiello, A.; Quaglia, F.; La Rotonda, M. I.; Ambrosio, L.

    2008-07-01

    The influence of hyaluronic acid (HA) on the self assembling properties of pluronic (PEO-PPO-PEO block copolymers) blends has been studied with the aim of engineering thermosensitive and mucoadhesive polymeric platforms for drug delivery. The gelation temperature (Tgel), viscoelastic properties and mucoadhesive force of the systems were investigated and optimised by means of rheological analyses. Pluronic micellar radius was evaluated by Photon Correlation Spectroscopy (PCS). The addition of Low Molecular Weight HA did not hamper the self assembling process of pluronics just delaying the gelation temperature of few Celsius degrees. Furthermore, HA presence led to a strong increase of the pluronics gel rheological properties. PCS results show, in formulations containing HA, aggregates with hydrodynamic diameters values much higher than those of pluronic micelles. Mucoadhesive experiments indicate the possibility of interactions between the pluronic/HA gel and mucus glycoproteins.

  15. Modeling the relaxation of internal DNA segments during genome mapping in nanochannels.

    PubMed

    Jain, Aashish; Sheats, Julian; Reifenberger, Jeffrey G; Cao, Han; Dorfman, Kevin D

    2016-09-01

    We have developed a multi-scale model describing the dynamics of internal segments of DNA in nanochannels used for genome mapping. In addition to the channel geometry, the model takes as its inputs the DNA properties in free solution (persistence length, effective width, molecular weight, and segmental hydrodynamic radius) and buffer properties (temperature and viscosity). Using pruned-enriched Rosenbluth simulations of a discrete wormlike chain model with circa 10 base pair resolution and a numerical solution for the hydrodynamic interactions in confinement, we convert these experimentally available inputs into the necessary parameters for a one-dimensional, Rouse-like model of the confined chain. The resulting coarse-grained model resolves the DNA at a length scale of approximately 6 kilobase pairs in the absence of any global hairpin folds, and is readily studied using a normal-mode analysis or Brownian dynamics simulations. The Rouse-like model successfully reproduces both the trends and order of magnitude of the relaxation time of the distance between labeled segments of DNA obtained in experiments. The model also provides insights that are not readily accessible from experiments, such as the role of the molecular weight of the DNA and location of the labeled segments that impact the statistical models used to construct genome maps from data acquired in nanochannels. The multi-scale approach used here, while focused towards a technologically relevant scenario, is readily adapted to other channel sizes and polymers.

  16. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  17. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  18. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies.

    PubMed

    Nallathamby, Prakash D; Mortensen, Ninell P; Palko, Heather A; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J; Gu, Baohua; Roeder, Ryan K; Wang, Wei; Retterer, Scott T

    2015-04-21

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with (14)C, with a final activity of 0.097 nCi mg(-1) of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.

  19. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies†

    PubMed Central

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2016-01-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 ± 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90–110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of –35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg–1 of NPs. In chronic studies, the biodistribution profile is tracked using low-level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. PMID:25790032

  20. New Surface Radiolabeling Schemes of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) for Biodistribution Studies

    DOE PAGES

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; ...

    2015-03-02

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and 10 easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), wasmore » between 90 110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate 15 functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi/mg -1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-20 radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and 25 detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.« less

  1. Isolated Galaxies and Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, C.; Choi, Y. Y.

    2010-10-01

    We search for isolated galaxies using a volume-limited sample of galaxies with 0.02 < z < 0.04742 from SDSS DR7 supplemented by bright galaxies. We devise a diagnostic tool to select isolated galaxies in different environments using the projected separation (rp) normalized by the virial radius of the nearest neighbor (rvir,nei) and the local background density. We find that the isolation condition of rp > rvir,nei and ρ < ρbar well segregates the CIG galaxies. We confirm the morphology conformity between the host and their satellites, which suggests the importance to galaxy evolution of hydrodynamic interactions among galaxies within their virial radii.

  2. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head.

    PubMed

    Chen, Mingjun; Liu, Henan; Cheng, Jian; Yu, Bo; Fang, Zhen

    2017-07-01

    In order to achieve the deterministic finishing of optical components with concave surfaces of a curvature radius less than 10 mm, a novel magnetorheological finishing (MRF) process using a small ball-end permanent-magnet polishing head with a diameter of 4 mm is introduced. The characteristics of material removal in the proposed MRF process are studied. The model of the material removal function for the proposed MRF process is established based on the three-dimensional hydrodynamics analysis and Preston's equation. The shear stress on the workpiece surface is calculated by means of resolving the presented mathematical model using a numerical solution method. The analysis result reveals that the material removal in the proposed MRF process shows a positive dependence on shear stress. Experimental research is conducted to investigate the effect of processing parameters on the material removal rate and improve the surface accuracy of a typical rotational symmetrical optical component. The experimental results show that the surface accuracy of the finished component of K9 glass material has been improved to 0.14 μm (PV) from the initial 0.8 μm (PV), and the finished surface roughness Ra is 0.0024 μm. It indicates that the proposed MRF process can be used to achieve the deterministic removal of surface material and perform the nanofinishing of small curvature radius concave surfaces.

  3. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sheng; Ji, Jianghui; Mordasini, Christoph

    2014-11-01

    We apply hydrodynamic evaporation models to different synthetic planet populations that were obtained from a planet formation code based on the core-accretion paradigm. We investigated the evolution of the planet populations using several evaporation models, which are distinguished by the driving force of the escape flow (X-ray or EUV), the heating efficiency in energy-limited evaporation regimes, or both. Although the mass distribution of the planet populations is barely affected by evaporation, the radius distribution clearly shows a break at approximately 2 R {sub ⊕}. We find that evaporation can lead to a bimodal distribution of planetary sizes and to anmore » 'evaporation valley' running diagonally downward in the orbital distance—planetary radius plane, separating bare cores from low-mass planets that have kept some primordial H/He. Furthermore, this bimodal distribution is related to the initial characteristics of the planetary populations because low-mass planetary cores can only accrete small primordial H/He envelopes and their envelope masses are proportional to their core masses. We also find that the population-wide effect of evaporation is not sensitive to the heating efficiency of energy-limited description. However, in two extreme cases, namely without evaporation or with a 100% heating efficiency in an evaporation model, the final size distributions show significant differences; these two scenarios can be ruled out from the size distribution of Kepler candidates.« less

  4. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments.

    PubMed

    Shih, Hua-Ju; Shih, Po-Jen

    2015-07-28

    Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.

  5. Ballistic heat transport in laser generated nano-bubbles

    NASA Astrophysics Data System (ADS)

    Lombard, Julien; Biben, Thierry; Merabia, Samy

    2016-08-01

    Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR02144A

  6. Dissecting the thermal Sunyaev-Zeldovich-gravitational lensing cross-correlation with hydrodynamical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojjati, Alireza; Harnois-Deraps, Joachim; Waerbeke, Ludovic Van

    2015-10-01

    We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) y-parameter. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, ξ{sub yκ}(θ), well. The uncertainty arising from different possible feedback models appears to be important on small scales only (0θ ∼< 1 arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as σ{sub 8}, Ω{sub m} andmore » Ω{sub b}). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass (M{sub halo} ∼< 10{sup 14} M{sub ⊙}) clusters as well as from the region beyond the virial radius. We estimate that approximately 20% of the detected signal comes from low-mass clusters, which corresponds to about 30% of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos (∼> 5 times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.« less

  7. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. Formore » these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.« less

  8. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Stein-Margolina, Vita A.; Shubin, Vladimir V.; Markov, Denis I.; Kurganov, Boris I.

    2016-01-01

    Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates. PMID:27101281

  9. Flow of quasi-two dimensional water in graphene channels

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  10. The stellar metallicity gradients in galaxy discs in a cosmological scenario

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Machado, Rubens E. G.; Sanchez-Blazquez, Patricia; Pedrosa, Susana E.; Sánchez, Sebastián F.; Snaith, Owain; Vilchez, Jose

    2016-08-01

    Context. The stellar metallicity gradients of disc galaxies provide information on disc assembly, star formation processes, and chemical evolution. They also might store information on dynamical processes that could affect the distribution of chemical elements in the gas phase and the stellar components. Understanding their joint effects within a hierarchical clustering scenario is of paramount importance. Aims: We studied the stellar metallicity gradients of simulated discs in a cosmological simulation. We explored the dependence of the stellar metallicity gradients on stellar age and on the size and mass of the stellar discs. Methods: We used a catalogue of galaxies with disc components selected from a cosmological hydrodynamical simulation performed including a physically motivated supernova feedback and chemical evolution. Disc components were defined based on angular momentum and binding energy criteria. The metallicity profiles were estimated for stars with different ages. We confront our numerical findings with results from the Calar Alto Legacy Integral Field Area (CALIFA) Survey. Results: The simulated stellar discs are found to have metallicity profiles with slopes in global agreement with observations. Low stellar mass galaxies tend to have a larger variety of metallicity slopes. When normalized by the half-mass radius, the stellar metallicity gradients do not show any dependence and the dispersion increases significantly, regardless of the galaxy mass. Galaxies with stellar masses o f around 1010M⊙ show steeper negative metallicity gradients. The stellar metallicity gradients correlate with the half-mass radius. However, the correlation signal is not present when they are normalized by the half-mass radius. Stellar discs with positive age gradients are detected to have negative and positive metallicity gradients, depending on the relative importance of recent star formation activity in the central regions. Conclusions: Our results suggest that inside-out formation is the main process responsible for the metallicity and age profiles. The large dispersions in the metallicity gradients as a function of stellar mass could be ascribed to the effects of dynamical processes such as mergers, interactions and/or migration as well as those regulating the conversion of gas into stars. The fingerprints of the inside-out formation seem better preserved by the stellar metallicity gradients as a function of the half-mass radius.

  11. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    PubMed

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  12. Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2011-11-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  13. Radiation-hydrodynamic simulations of thermally-driven disc winds in X-ray binaries: A direct comparison to GRO J1655-40

    NASA Astrophysics Data System (ADS)

    Higginbottom, Nick; Knigge, Christian; Long, Knox S.; Matthews, James H.; Sim, Stuart A.; Hewitt, Henrietta A.

    2018-06-01

    Essentially all low-mass X-ray binaries (LMXBs) in the soft state appear to drive powerful equatorial disc winds. A simple mechanism for driving such outflows involves X-ray heating of the top of the disc atmosphere to the Compton temperature. Beyond the Compton radius, the thermal speed exceeds the escape velocity, and mass loss is inevitable. Here, we present the first coupled radiation-hydrodynamic simulation of such thermally-driven disc winds. The main advance over previous modelling efforts is that the frequency-dependent attenuation of the irradiating SED is taken into account. We can therefore relax the approximation that the wind is optically thin throughout which is unlikely to hold in the crucial acceleration zone of the flow. The main remaining limitations of our simulations are connected to our treatment of optically thick regions. Adopting parameters representative of the wind-driving LMXB GRO J1655-40, our radiation-hydrodynamic model yields a mass-loss rate that is ≃ 5 × lower than that suggested by pure hydrodynamic, optically thin models. This outflow rate still represents more than twice the accretion rate and agrees well with the mass-loss rate inferred from Chandra/HETG observations of GRO J1655-40 at a time when the system had a similar luminosity to that adopted in our simulations. The Fe XXV and Fe XXVI Lyman {α } absorption line profiles observed in this state are slightly stronger than those predicted by our simulations but the qualitative agreement between observed and simulated outflow properties means that thermal driving is a viable mechanism for powering the disc winds seen in soft-state LMXBs.

  14. Effects of the Bar Strength of Gaseous Features in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, W.; Kim, Y.

    2013-01-01

    Barred galaxies commonly possess gaseous structures such as a pair of dust lanes, a nuclear ring, and nuclear spirals at their centers. We use hydrodynamic simulations to study the physical properties of the gaseous structures in barred galaxies and their relationships with the bar strength. We vary the bar mass fbar relative to the spheroidal component as well as its aspect ratio. We derive expressions for the bar strength Qb and the radius where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have fbar = 0.25-0.5. Dust lanes approximately follow one of x1-orbits and tend to be more straight under a stronger and more elongated bar. A nuclear ring of a conventional x2 type forms only when the bar is not so massive or elongated. The radius of an x2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb, evidencing that the ring position is not determined by the resonance but by the bar strength. Nuclear spirals exist only when the ring is of the x2-type and sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out as being tightly-wound and weak, and then due to the nonlinear effect unwind and become stronger until turning into shocks, with an unwinding rate higher for larger Qb. These results suggest that the bar strength is the primary factor that determine the properties of gaseous structures in barred galaxies.

  15. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  16. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  17. Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.

    PubMed

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-11-01

    Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.

  18. Novel kinematic methods to trace Spiral Arms nature using Gaia data

    NASA Astrophysics Data System (ADS)

    Roca-Fàbrega, S.; Figueras, F.; Valenzuela, O.; Romero-Gómez, M.; Antoja, T.; Colín, P.; Pichardo, B.; Velázquez, H.

    2014-07-01

    In this work we shed new light in the nature of spiral arm structures in galaxies. We present a disk kinematic and dynamic study of MW like galaxies using complementary approaches: analytical models, test-particle simulations, pure N-body and cosmological N-body plus hydrodynamic simulations. Using collisionless N-body data we have found that models with strong bar present a flat rotation frequency, i.e. rigid body rotation, whereas in the opposite extreme case, i.e. in unbarred systems, spiral arms are disk corotant (Roca-Fàbrega et al. 2013). Complementary to this work, we discuss how the vertex deviation parameter is a good tracer of corotation (CR) and outer Lindblad resonance radius (OLR) (Roca-Fàbrega et al. 2014). We have succeeded to produce MW like models in fully cosmological N-body plus hydrodynamic simulations with a high resolution (Roca-Fàbrega et al., in preparation). First results concerning disk phase space properties in terms of spiral arm nature using these simulations are presented (http://www.am.ub.edu/ sroca/shared/PosterRocaFabrega.pdf).

  19. Hollow laser plasma self-confined microjet generation

    NASA Astrophysics Data System (ADS)

    Sizyuk, Valeryi; Hassanein, Ahmed; CenterMaterials under Extreme Environment Team

    2017-10-01

    Hollow laser beam produced plasma (LPP) devices are being used for the generation of the self-confined cumulative microjet. Most important place by this LPP device construction is achieving of an annular distribution of the laser beam intensity by spot. An integrated model is being developed to detailed simulation of the plasma generation and evolution inside the laser beam channel. The model describes in two temperature approximation hydrodynamic processes in plasma, laser absorption processes, heat conduction, and radiation energy transport. The total variation diminishing scheme in the Lax-Friedrich formulation for the description of plasma hydrodynamic is used. Laser absorption and radiation transport models on the base of Monte Carlo method are being developed. Heat conduction part on the implicit scheme with sparse matrixes using is realized. The developed models are being integrated into HEIGHTS-LPP computer simulation package. The integrated modeling of the hollow beam laser plasma generation showed the self-confinement and acceleration of the plasma microjet inside the laser channel. It was found dependence of the microjet parameters including radiation emission on the hole and beam radiuses ratio. This work is supported by the National Science Foundation, PIRE project.

  20. Gas inflow patterns and nuclear rings in barred galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhi

    2017-06-01

    Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.

  1. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies

    NASA Astrophysics Data System (ADS)

    Nallathamby, Prakash D.; Mortensen, Ninell P.; Palko, Heather A.; Malfatti, Mike; Smith, Catherine; Sonnett, James; Doktycz, Mitchel J.; Gu, Baohua; Roeder, Ryan K.; Wang, Wei; Retterer, Scott T.

    2015-04-01

    Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials.Nanomaterial based drug delivery systems allow for the independent tuning of the surface chemical and physical properties that affect their biodistribution in vivo and the therapeutic payloads that they are intended to deliver. Additionally, the added therapeutic and diagnostic value of their inherent material properties often provides extra functionality. Iron based nanomaterials with their magnetic properties and easily tailorable surface chemistry are of particular interest as model systems. In this study the core radius of the iron oxide nanoparticles (NPs) was 14.08 +/- 3.92 nm while the hydrodynamic radius of the NPs, as determined by Dynamic Light Scattering (DLS), was between 90-110 nm. In this study, different approaches were explored to create radiolabeled NPs that are stable in solution. The NPs were functionalized with polycarboxylate or polyamine surface functional groups. Polycarboxylate functionalized NPs had a zeta potential of -35 mV and polyamine functionalized NPs had a zeta potential of +40 mV. The polycarboxylate functionalized NPs were chosen for in vivo biodistribution studies and hence were radiolabeled with 14C, with a final activity of 0.097 nCi mg-1 of NPs. In chronic studies, the biodistribution profile is tracked using low level radiolabeled proxies of the nanoparticles of interest. Conventionally, these radiolabeled proxies are chemically similar but not chemically identical to the non-radiolabeled NPs of interest. This study is novel as different approaches were explored to create radiolabeled NPs that are stable, possess a hydrodynamic radius of <100 nm and most importantly they exhibit an identical surface chemical functionality as their non-radiolabeled counterparts. Identical chemical functionality of the radiolabeled probes to the non-radiolabeled probes was an important consideration to generate statistically similar biodistribution data sets using multiple imaging and detection techniques. The radiolabeling approach described here is applicable to the synthesis of a large class of nanomaterials with multiple core and surface functionalities. This work combined with the biodistribution data suggests that the radiolabeling schemes carried out in this study have broad implications for use in pharmacokinetic studies for a variety of nanomaterials. Electronic supplementary information (ESI) available: (S1) High-Resolution Transmission Electron Microscopy (HRTEM) image of iron oxide nanoparticles, (S2) Superconducting Quantum Interference Device (SQUID) measurement of magnetization of super paramagnetic iron oxide nanoparticles, (S3) Fourier Transform Infrared Spectroscopy (FT-IR) spectra of Fe-Si-COO- synthesised using Grignard reagents (S4) FT-IR spectra of iron oxide nanoparticles silanized with commercially available N-[(3-Trimethoxysilyl)propyl]ethylenediamine triacetic acid tripotassium salt, (S5) Synthesis of hyperbranched amine functionalized iron oxide nanoparticles from amino propyl triethyl silane functionalized iron nanoparticles using ethyleneimine as an initiator and polymerizing agent. See DOI: 10.1039/c4nr06441k

  2. Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment.

    PubMed

    Djoullah, Attaf; Krechiche, Ghali; Husson, Florence; Saurel, Rémi

    2016-01-01

    In this work, techniques for monitoring the intramolecular transglutaminase cross-links of pea proteins, based on protein size determination, were developed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of transglutaminase-treated low concentration (0.01% w/w) pea albumin samples, compared to the untreated one (control), showed a higher electrophoretic migration of the major albumin fraction band (26 kDa), reflecting a decrease in protein size. This protein size decrease was confirmed, after DEAE column purification, by dynamic light scattering (DLS) where the hydrodynamic radius of treated samples appears to be reduced compared to the control one. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility.

    PubMed

    Le Pape, S; Divol, L; Berzak Hopkins, L; Mackinnon, A; Meezan, N B; Casey, D; Frenje, J; Herrmann, H; McNaney, J; Ma, T; Widmann, K; Pak, A; Grimm, G; Knauer, J; Petrasso, R; Zylstra, A; Rinderknecht, H; Rosenberg, M; Gatu-Johnson, M; Kilkenny, J D

    2014-06-06

    A 200  μm radius hot spot at more than 2 keV temperature, 1  g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.

  4. Numerical study of electronic impact and radiation in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Xu, Ning; Wang, Long; Hu, Xiwei

    1998-02-01

    A hydrodynamic simulation of pure argon single-bubble sonoluminescence including electron collisional ionization, recombination, and radiative energy loss has been performed. We find that near the moment that the bubble reaches its minimum radius the atoms inside a very thin layer around the origin of the bubble are strongly ionized, and the light emission occurs nearly simultaneously. Therefore we conclude that multiple ionization and recombination, which mainly occur in the thin layer of plasma, play a dramatically important role in the noble gas sonoluminescence. We also find that the temperature and the intensity of luminescence are not so high as those predicted by previous models, which consider only neutral gases.

  5. Dynamics of a linear magnetic “microswimmer molecule”

    NASA Astrophysics Data System (ADS)

    Babel, S.; Löwen, H.; Menzel, A. M.

    2016-03-01

    In analogy to nanoscopic molecules that are composed of individual atoms, we consider an active “microswimmer molecule”. It is made of three individual magnetic colloidal microswimmers that are connected by harmonic springs and interact hydrodynamically. In the ground state, they form a linear straight molecule. We analyze the relaxation dynamics for perturbations of this straight configuration. As a central result, with increasing self-propulsion, we observe an oscillatory instability in accord with a subcritical Hopf bifurcation scenario. It is accompanied by a corkscrew-like swimming trajectory of increasing radius. Our results can be tested experimentally, using, for instance, magnetic self-propelled Janus particles, supposably linked by DNA molecules.

  6. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  7. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    NASA Astrophysics Data System (ADS)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  8. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Abeyta, E. O.; Archuleta, R.; Bender, H.; Broste, W.; Carlson, C.; Cook, G.; Frayer, D.; Harrison, J.; Hughes, T.; Johnson, J.; Jacquez, E.; McCuistian, B. Trent; Montoya, N.; Nath, S.; Nielsen, K.; Rose, C.; Schulze, M.; Smith, H. V.; Thoma, C.; Tom, C. Y.

    2011-12-01

    The second axis of the dual-axis radiography of hydrodynamic testing (DARHT) facility produces up to four radiographs within an interval of 1.6μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA). Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU) instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  9. Visualization of Topology through Simulation

    NASA Astrophysics Data System (ADS)

    Mulderig, Andrew; Beaucage, Gregory; Vogtt, Karsten; Jiang, Hanqiu

    Complex structures can be decomposed into their minimal topological description coupled with complications of tortuosity. We have found that a stick figure representation can account for the topological content of any structure and coupling with scaling measures of tortuosity we can reconstruct an object. This deconstruction is native to static small-angle scattering measurements where we can obtain quantitative measures of the tortuous structure and the minimal topological structure. For example, a crumpled sheet of paper is composed of a minimal sheet structure and parameters reflecting the extent of crumpling. This quantification yields information that can be used to calculate the hydrodynamic radius, radius of gyration, structural conductive pathway, modulus, and other properties of complex structures. The approach is general and has been applied to a wide range of nanostructures from crumpled graphene to branched polymers and unfolded proteins and RNA. In this poster we will demonstrate how simple structural simulations can be used to reconstruct from these parameters a 3d representation of the complex structure through a heuristic approach. Several examples will be given from nano-fractal aggregates.

  10. Hydrodynamic synchronization of flagella on the surface of the colonial alga Volvox carteri

    NASA Astrophysics Data System (ADS)

    Brumley, Douglas; Polin, Marco; Goldstein, Raymond; Pedley, Timothy

    2012-11-01

    Whether on the surface of unicellular ciliates or in the respiratory epithelium, groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales. The mechanism responsible for the emergence of these metachronal waves is still unclear, mostly because finding an experimental system in which the beating filaments can be followed individually is challenging. We propose the multicellular green alga Volvox carteri as an ideal model system to study metachronal coordination, and report the existence of robust metachronal waves on its surface. Inspired by flagellar tip trajectories of Volvox somatic cells, we model a flagellum using a sphere of radius a elastically bound to a circular orbit of radius r0, perpendicular to a no-slip plane. This elastohydrodynamic model of weakly-coupled self-sustained oscillators can be recast in terms of interacting phase oscillators, offering an intuitive understanding of the mechanism driving the emergence of coordination. Our results confirm that elasticity is fundamental to guarantee fast and robust synchronization, and that sufficiently compliant trajectories lead to the emergence of metachronal waves in a manner essentially independent of boundary conditions.

  11. Solution properties of a heteropolysaccharide extracted from pumpkin (Cucurbita pepo, lady godiva).

    PubMed

    Song, Yi; Zhao, Jing; Ni, Yuanying; Li, Quanhong

    2015-11-05

    A water-soluble galactoglucofucomannan was extracted from pumpkin (Cucurbita pepo, lady godiva variety). GC-MS analysis indicated that the polysaccharide was composed of 1,6-linked-glucosyl, 1,2,6-linked-mannosyl, 1,3,6-linked-mannosyl, 1,2,6-linked-galactosyl, 1,2,6-linked-galactosyl, terminal fucosyl and terminal glucose. The solution properties of the polysaccharide were studied systematically by using size-exclusion chromatography combined with multi-angle laser light scattering, viscometry and dynamic light scattering at 25 °C. The weight average molecular masses (Mw), intrinsic viscosity [η], radius of gyration (Rg) and hydrodynamic radius (Rh) were found to be 12.7 × 10(5)g/mol, 780 ml/g, 68 nm and 116 nm, respectively. The fraction dimension and value of ρ (Rg/Rh) of the polysaccharide revealed that it existed in a sphere-like conformation in distilled water. The dependence of zero shear specific viscosity on the coil overlap parameter was analyzed using different models. Furthermore, degradation of samples upon autoclaving has been observed and quantified by intrinsic viscosity determination and SEC-MALLS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Charge segregation in weakly ionized microgels

    DOE PAGES

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; ...

    2017-01-19

    Here we investigate microgels synthesized from N-isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ~0.2, indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence ofmore » a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. Lastly, we successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.« less

  13. Hydro-scaling of DT implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing.

    PubMed

    Hotta, Kinya; Ranganathan, Soumya; Liu, Ruchuan; Wu, Fei; Machiyama, Hiroaki; Gao, Rong; Hirata, Hiroaki; Soni, Neelesh; Ohe, Takashi; Hogue, Christopher W V; Madhusudhan, M S; Sawada, Yasuhiro

    2014-04-01

    Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD) of p130Cas (or BCAR1) has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.

  15. Hydrodynamic pumping by serial gill arrays in the mayfly nymph Centroptilum triangulifer.

    PubMed

    Sensenig, Andrew T; Kiger, Ken T; Shultz, Jeffrey W

    2010-10-01

    Aquatic nymphs of the mayfly Centroptilum triangulifer produce ventilatory flow using a serial array of seven abdominal gill pairs that operates across a Reynolds numbers (Re) range from 2 to 22 during ontogeny. Net flow in small animals is directed ventrally and essentially parallel to the stroke plane (i.e. rowing), but net flow in large animals is directed dorsally and essentially transverse to the stroke plane (i.e. flapping). Detailed flow measurements based on Particle Image Velocimetry (PIV) ensemble-correlation analysis revealed that the phasing of the gills produces a time-dependent array of vortices associated with a net ventilatory current, a fluid kinematic pattern, here termed a 'phased vortex pump'. Absolute size of vortices does not change with increasing animal size or Re, and thus the vortex radius (R(v)) decreases relative to inter-gill distance (L(is)) during mayfly growth. Given that effective flapping in appendage-array animals requires organized flow between adjacent appendages, we hypothesize that rowing should be favored when L(is)/R(v)<1 and flapping should be favored when L(is)/R(v)>1. Significantly, the rowing-to-flapping transition in Centroptilum occurs at Re∼5, when the mean dynamic inter-gill distance equals the vortex radius. This result suggests that the Re-based rowing-flapping demarcation observed in appendage-array aquatic organisms may be determined by the relative size of the propulsive mechanism and its self-generated vortices.

  16. Access to site-specific Fc–cRGD peptide conjugates through streamlined expressed protein ligation†

    PubMed Central

    Frutos, S.; Jordan, J. B.; Bio, M. M.; Muir, T. W.; Thiel, O. R.; Vila-Perelló, M.

    2018-01-01

    An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners. PMID:27722696

  17. The QCD Equation of state and critical end-point estimates at O (μB6)

    NASA Astrophysics Data System (ADS)

    Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration

    2017-11-01

    We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.

  18. Planetary influence in the gap of a protoplanetary disk: structure formation and an application to V1247 Ori

    NASA Astrophysics Data System (ADS)

    Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.

    2017-10-01

    We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5<τ<2 and τ≥2. The study of the structures shows: (1) an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.

  19. Pressure-driven occlusive flow of a confined red blood cell.

    PubMed

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  20. Structural Landscape of the Proline-Rich Domain of Sos1 Nucleotide Exchange Factor

    PubMed Central

    McDonald, Caleb B.; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Lednev, Igor K.; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. PMID:23528987

  1. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  2. Ram-pressure scaling and non-uniformity characterization of a spherically imploding liner formed by hypervelocity plasma jets

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team

    2014-10-01

    Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.

  3. Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Slaný, P.; Hledík, S.

    2000-11-01

    The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.

  4. Pairwise Force SPH Model for Real-Time Multi-Interaction Applications.

    PubMed

    Yang, Tao; Martin, Ralph R; Lin, Ming C; Chang, Jian; Hu, Shi-Min

    2017-10-01

    In this paper, we present a novel pairwise-force smoothed particle hydrodynamics (PF-SPH) model to enable simulation of various interactions at interfaces in real time. Realistic capture of interactions at interfaces is a challenging problem for SPH-based simulations, especially for scenarios involving multiple interactions at different interfaces. Our PF-SPH model can readily handle multiple types of interactions simultaneously in a single simulation; its basis is to use a larger support radius than that used in standard SPH. We adopt a novel anisotropic filtering term to further improve the performance of interaction forces. The proposed model is stable; furthermore, it avoids the particle clustering problem which commonly occurs at the free surface. We show how our model can be used to capture various interactions. We also consider the close connection between droplets and bubbles, and show how to animate bubbles rising in liquid as well as bubbles in air. Our method is versatile, physically plausible and easy-to-implement. Examples are provided to demonstrate the capabilities and effectiveness of our approach.

  5. Study of cellulase enzymes self-assembly in aqueous-acetonitrile solvent: Viscosity measurements

    NASA Astrophysics Data System (ADS)

    Ghaouar, N.; Aschi, A.; Belbahri, L.; Trabelsi, S.; Gharbi, A.

    2009-11-01

    The present study extends the viscosity measurements performed by Ghaouar et al. [Physica B, submitted for publication.] to study the conformational change of the cellulase enzymes in aqueous-acetonitrile mixture. We aim to investigate: (i) the denaturation process by measuring the specific viscosity for temperatures varying between 25 and 65 °C and acetonitrile concentrations between 0% and 50%, (ii) the enzyme-enzyme interaction by calculating the Huggins coefficient and (iii) the enzyme sizes by following the hydrodynamic radius for various temperatures. The precipitation of cellulases versus acetonitrile concentration is also considered. We show from all physical quantities measured in this work that the precipitation and the denaturation processes of cellulase enzymes exist together.

  6. Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation.

    PubMed

    Moisio, J E; Piili, J; Linna, R P

    2016-08-01

    We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.

  7. Improved Flux Formulations for Unsteady Low Mach Number Flows

    DTIC Science & Technology

    2012-06-01

    it requires the resolution of disparate time scales. Unsteady effects may arise from a combination of hydrodynamic effects in which pressure...including rotorcraft flows, jets and shear layers include a combination of both acoustic and hydrodynamic effects. Furthermore these effects may be...preconditioning parameter used for time scaling also affects the dissipation for the spatial flux, hydrodynamic unsteady effects (such as vortex propagation

  8. Hydrodynamics of a Digitized Adult Humpback Whale Flipper

    NASA Astrophysics Data System (ADS)

    Fassmann, Wesley N.; McDonald, Samuel J.; Thomson, Scott L.; Fish, Frank E.

    2013-11-01

    During feeding, humpback whales turn with a turn radius of up to 1 /6th of their length towards schools of fish enclosed by bubble nets. This high maneuverability requirement is facilitated by high aspect ratio flippers with leading edge tubercles that delay stall. Previous experimental and computational studies have used idealized models, such as airfoils with scalloped leading edges, to explore the influence of leading edge tubercles on boundary layer separation, vortex generation, and airfoil lift and drag characteristics. Owing to the substantial size of the flipper, no studies have been performed on a digitized adult humpback flipper with real geometry. In this study the hydrodynamics of a realistic humpback flipper model were explored. The model was developed by digitizing a sequence of 18 images circumscribing the suspended flipper of a beached humpback whale. A physical prototype was constructed based on the resulting 3D model, along with a complementary model with the tubercles removed. Experimentally-obtained measurements of lift and drag were used to study the influence of the tubercles. In the presentation, digitization and flow measurement methods are described, and the flow data and results are presented and discussed.

  9. Molecular size of the gamma-aminobutyric acidA receptor purified from mammalian cerebral cortex.

    PubMed

    Mamalaki, C; Barnard, E A; Stephenson, F A

    1989-01-01

    The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.

  10. Probing softness of the parietal pleural surface at the micron scale

    PubMed Central

    Kim, Jae Hun; Butler, James P.; Loring, Stephen H.

    2011-01-01

    The pleural surfaces of the chest wall and lung slide against each other, lubricated by pleural fluid. During sliding motion of soft tissues, shear induced hydrodynamic pressure deforms the surfaces, promoting uniformity of the fluid layer thickness, thereby reducing friction. To assess pleural deformability at length scales comparable to pleural fluid thickness, we measured the modulus of the parietal pleura of rat chest wall using atomic force microscopy (AFM) to indent the pleural surface with spheres (radius 2.5 µm and 5 µm). The pleura exhibited two distinct indentation responses depending on location, reflecting either homogeneous or significantly heterogeneous tissue properties. We found an elastic modulus of 0.38–0.95 kPa, lower than the values measured using flat-ended cylinders > 100 µm radii (Gouldstone et al., 2003, Journal of Applied Physiology 95, 2345–2349). Interestingly, the pleura exhibited a three-fold higher modulus when probed using 2.5 µm vs. 5 µm spherical tips at the same normalized depth, confirming depth dependent inhomogeneous elastic properties. The observed softness of the pleura supports the hypothesis that unevenness of the pleural surface on this scale is smoothed by local hydrodynamic pressure. PMID:21820660

  11. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy

    PubMed Central

    2009-01-01

    An important part of characterizing any protein molecule is to determine its size and shape. Sedimentation and gel filtration are hydrodynamic techniques that can be used for this medium resolution structural analysis. This review collects a number of simple calculations that are useful for thinking about protein structure at the nanometer level. Readers are reminded that the Perrin equation is generally not a valid approach to determine the shape of proteins. Instead, a simple guideline is presented, based on the measured sedimentation coefficient and a calculated maximum S, to estimate if a protein is globular or elongated. It is recalled that a gel filtration column fractionates proteins on the basis of their Stokes radius, not molecular weight. The molecular weight can be determined by combining gradient sedimentation and gel filtration, techniques available in most biochemistry laboratories, as originally proposed by Siegel and Monte. Finally, rotary shadowing and negative stain electron microscopy are powerful techniques for resolving the size and shape of single protein molecules and complexes at the nanometer level. A combination of hydrodynamics and electron microscopy is especially powerful. PMID:19495910

  12. One-step analysis of DNA/chitosan complexes by field-flow fractionation reveals particle size and free chitosan content.

    PubMed

    Ma, Pei Lian; Buschmann, Michael D; Winnik, Françoise M

    2010-03-08

    The composition of samples obtained upon complexation of DNA with chitosan was analyzed by asymmetrical flow field flow fractionation (AF4) with online UV-visible, multiangle light scattering (MALS), and dynamic light scattering (DLS) detectors. A chitosan labeled with rhodamine B to facilitate UV-vis detection of the polycation was complexed with DNA under conditions commonly used for transfection (chitosan glucosamine to DNA phosphate molar ratio of 5). AF4 analysis revealed that 73% of the chitosan-rhodamine remained free in the dispersion and that the DNA/chitosan complexes had a broad size distribution ranging from 20 to 160 nm in hydrodynamic radius. The accuracy of the data was assessed by comparison with data from batch-mode DLS and scanning electron microscopy. The AF4 combined with DLS allowed the characterization of small particles that were not detected by conventional batch-mode DLS. The AF4 analysis will prove to be an important tool in the field of gene therapy because it readily provides, in a single measurement, three important physicochemical parameters of the complexes: the amount of unbound polycation, the hydrodynamic size of the complexes, and their size distribution.

  13. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, R. P.; Roediger, E.; Machacek, M.

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less

  14. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  15. A hydrodynamic mechanism of meteor ablation. The melt-spraying model

    NASA Astrophysics Data System (ADS)

    Girin, Oleksandr G.

    2017-10-01

    Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org

  16. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.

    PubMed

    Kosaka, Ryo; Yasui, Kazuya; Nishida, Masahiro; Kawaguchi, Yasuo; Maruyama, Osamu; Yamane, Takashi

    2014-09-01

    We have developed a hydrodynamically levitated centrifugal pump as a bridge-to-decision device. The purpose of the present study is to determine the optimal bearing gap of a multiarc radial bearing in the developed blood pump for the reduction of hemolysis. We prepared eight pump models having bearing gaps of 20, 30, 40, 80, 90, 100, 180, and 250 μm. The driving conditions were set to a pressure head of 200 mm Hg and a flow rate of 4 L/min. First, the orbital radius of the impeller was measured for the evaluation of the impeller stability. Second, the hemolytic property was evaluated in an in vitro hemolysis test. As a result, the orbital radius was not greater than 15 μm when the bearing gap was between 20 and 100 μm. The relative normalized index of hemolysis (NIH) ratios in comparison with BPX-80 were 37.67 (gap: 20 μm), 0.95 (gap: 30 μm), 0.96 (gap: 40 μm), 0.82 (gap: 80 μm), 0.77 (gap: 90 μm), 0.92 (gap: 100 μm), 2.76 (gap: 180 μm), and 2.78 (gap: 250 μm). The hemolysis tended to increase at bearing gaps of greater than 100 μm due to impeller instability. When the bearing gap decreased from 30 to 20 μm, the relative NIH ratios increased significantly from 0.95 to 37.67 times (P < 0.01) due to high shear stress. We confirmed that the optimal bearing gap was determined between 30 and 100 μm in the developed blood pump for the reduction of hemolysis. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  18. Temperature-Triggered Protein Adsorption on Polymer-Coated Nanoparticles in Serum.

    PubMed

    Koshkina, Olga; Lang, Thomas; Thiermann, Raphael; Docter, Dominic; Stauber, Roland H; Secker, Christian; Schlaad, Helmut; Weidner, Steffen; Mohr, Benjamin; Maskos, Michael; Bertin, Annabelle

    2015-08-18

    The protein corona, which forms on the nanoparticle's surface in most biological media, determines the nanoparticle's physicochemical characteristics. The formation of the protein corona has a significant impact on the biodistribution and clearance of nanoparticles in vivo. Therefore, the ability to influence the formation of the protein corona is essential to most biomedical applications, including drug delivery and imaging. In this study, we investigate the protein adsorption on nanoparticles with a hydrodynamic radius of 30 nm and a coating of thermoresponsive poly(2-isopropyl-2-oxazoline) in serum. Using multiangle dynamic light scattering (DLS) we demonstrate that heating of the nanoparticles above their phase separation temperature induces the formation of agglomerates, with a hydrodynamic radius of 1 μm. In serum, noticeably stronger agglomeration occurs at lower temperatures compared to serum-free conditions. Cryogenic transmission electron microscopy (cryo-TEM) revealed a high packing density of agglomerates when serum was not present. In contrast, in the presence of serum, agglomerated nanoparticles were loosely packed, indicating that proteins are intercalated between them. Moreover, an increase in protein content is observed upon heating, confirming that protein adsorption is induced by the alteration of the surface during phase separation. After cooling and switching the surface back, most of the agglomerates were dissolved and the main fraction returned to the original size of approximately 30 nm as shown by asymmetrical flow-field flow fractionation (AF-FFF) and DLS. Furthermore, the amounts of adsorbed proteins are similar before and after heating the nanoparticles to above their phase-separation temperature. Overall, our results demonstrate that the thermoresponsivity of the polymer coating enables turning the corona formation on nanoparticles on and off in situ. As the local heating of body areas can be easily done in vivo, the thermoresponsive coating could potentially be used to induce the agglomeration of nanoparticles and proteins and the accumulation of nanoparticles in a targeted body region.

  19. Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery

    DTIC Science & Technology

    2006-11-01

    6) As a constraint, the hydrodynamic pressure needs to be greater than the liquid cavitation pressure everywhere in the flow domain, i.e. P...supply of the lubricant into the bearing. A more detailed discussion on lubricant cavitation and its physical model can be found in [3]. Hydrodynamic ...Hemisphere Pubs, 1980. Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery 10 - 36 RTO-EN-AVT-143 [3] Cavitation

  20. Hydrodynamics in Cell Studies

    PubMed Central

    2018-01-01

    Hydrodynamic phenomena are ubiquitous in living organisms and can be used to manipulate cells or emulate physiological microenvironments experienced in vivo. Hydrodynamic effects influence multiple cellular properties and processes, including cell morphology, intracellular processes, cell–cell signaling cascades and reaction kinetics, and play an important role at the single-cell, multicellular, and organ level. Selected hydrodynamic effects can also be leveraged to control mechanical stresses, analyte transport, as well as local temperature within cellular microenvironments. With a better understanding of fluid mechanics at the micrometer-length scale and the advent of microfluidic technologies, a new generation of experimental tools that provide control over cellular microenvironments and emulate physiological conditions with exquisite accuracy is now emerging. Accordingly, we believe that it is timely to assess the concepts underlying hydrodynamic control of cellular microenvironments and their applications and provide some perspective on the future of such tools in in vitro cell-culture models. Generally, we describe the interplay between living cells, hydrodynamic stressors, and fluid flow-induced effects imposed on the cells. This interplay results in a broad range of chemical, biological, and physical phenomena in and around cells. More specifically, we describe and formulate the underlying physics of hydrodynamic phenomena affecting both adhered and suspended cells. Moreover, we provide an overview of representative studies that leverage hydrodynamic effects in the context of single-cell studies within microfluidic systems. PMID:29420889

  1. Computational modeling of stress transient and bubble evolution in short-pulse laser irradiated melanosome particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, M.; Amendt, P.A.; London, R.A.

    1997-03-04

    Objective is to study retinal injury by subnanosecond laser pulses absorbed in the retinal pigment epithelium (RPE) cells. The absorption centers in the RPE cell are melanosomes of order 1 {mu}m radius. Each melanosome includes many melanin particles of 10-15 nm radius, which are the local absorbers of the laser light and generate a discrete structure of hot spots. This work use the hydrodynamic code LATIS (LAser-TISsue interaction modeling) and a water equation of state to first simulate the small melanin particle of 15 nm responsible for initiating the hot spot and the pressure field. A average melanosome of 1more » {mu}m scale is next simulated. Supersonic shocks and fast vapor bubbles are generated in both cases: the melanin scale and the melanosome scale. The hot spot induces a shock wave pressure than with a uniform deposition of laser energy. It is found that an absorption coefficient of 6000 -8000 cm{sup -1} can explain the enhanced shock wave emitted by the melanosome. An experimental and theoretical effort should be considered to identify the mechanism for generating shock wave enhancement.« less

  2. SPH Simulations of Spherical Bondi Accretion: First Step of Implementing AGN Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Proga, D.; Nagamine, K.

    2011-01-01

    Our motivation is to numerically test the assumption of Black Hole (BH) accretion (that the central massive BH of a galaxy accretes mass at the Bondi-Hoyle accretion rate, with ad-hoc choice of parameters), made in many previous galaxy formation studies including AGN feedback. We perform simulations of a spherical distribution of gas, within the radius range 0.1 - 200 pc, accreting onto a central supermassive black hole (the Bondi problem), using the 3D Smoothed Particle Hydrodynamics code Gadget. In our simulations we study the radial distribution of various gas properties (density, velocity, temperature, Mach number). We compute the central mass inflow rate at the inner boundary (0.1 pc), and investigate how different gas properties (initial density and velocity profiles) and computational parameters (simulation outer boundary, particle number) affect the central inflow. Radiative processes (namely heating by a central X-ray corona and gas cooling) have been included in our simulations. We study the thermal history of accreting gas, and identify the contribution of radiative and adiabatic terms in shaping the gas properties. We find that the current implementation of artificial viscosity in the Gadget code causes unwanted extra heating near the inner radius.

  3. Simulation of self-assembly of polyzwitterions into vesicles

    DOE PAGES

    Mahalik, Jyoti P.; Muthukumar, Murugappan

    2016-08-19

    Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less

  4. Improved Flux Formulations for Unsteady Low Mach Number Flows

    DTIC Science & Technology

    2012-07-01

    challenging problem since it requires the resolution of disparate time scales. Unsteady effects may arise from a combination of hydrodynamic effects...Many practical applications including rotorcraft flows, jets and shear layers include a combination of both acoustic and hydrodynamic effects...are computed independently as scalar formulations thus making it possible to independently tailor the dissipation for hydrodynamic and acoustic

  5. Research on key factors and their interaction effects of electromagnetic force of high-speed solenoid valve.

    PubMed

    Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.

  6. Research on Key Factors and Their Interaction Effects of Electromagnetic Force of High-Speed Solenoid Valve

    PubMed Central

    Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe

    2014-01-01

    Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217

  7. Effective dynamical coupling of hydrodynamics and transport for heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliinychenko, Dmytro; Petersen, Hannah

    2017-04-01

    Present hydrodynamics-based simulations of heavy-ion collisions neglect the feedback from the frozen-out particles flying back into the hydrodynamical region. This causes an artefact called “negative Cooper-Frye contributions”, which is negligible for high collision energies, but becomes significant for lower RHIC BES energies and for event-by-event simulations. To avoid negative Cooper-Frye contributions, while still preserving hydrodynamical behavior, we propose a pure hadronic transport approach with forced thermalization in the regions of high energy density. It is demonstrated that this approach exhibits enhancement of strangeness and mean transverse momenta compared to conventional transport - an effect typical for hydrodynamical approaches.

  8. A study of environmental effects on galaxy spin using MaNGA data

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Chung, Haeun

    2018-06-01

    We investigate environmental effects on galaxy spin using the recent public data of Mapping Nearby Galaxies at APO (MaNGA) integral field spectroscopic survey containing ˜2800 galaxies. We measure the spin parameter of 1830 galaxies through the analysis of two-dimensional stellar kinematic maps within the effective radii, and obtain their large-scale (background mass density from 20 nearby galaxies) and small-scale (distance to and morphology of the nearest neighbour galaxy) environmental parameters for 1529 and 1767 galaxies, respectively. We first examine the mass dependence of galaxy spin, and find that the spin parameter of early-type galaxies decreases with stellar mass at log (M*/M⊙) ≳ 10, consistent with the results from previous studies. We then divide the galaxies into three subsamples using their stellar masses to minimize the mass effects on galaxy spin. The spin parameters of galaxies in each subsample do not change with background mass density, but do change with distance to and morphology of the nearest neighbour. In particular, the spin parameter of late-type galaxies decreases as early-type neighbours approach within the virial radius. These results suggest that the large-scale environments hardly affect the galaxy spin, but the small-scale environments such as hydrodynamic galaxy-galaxy interactions can play a substantial role in determining galaxy spin.

  9. Three-dimensional Simulations of Pure Deflagration Models for Thermonuclear Supernovae

    NASA Astrophysics Data System (ADS)

    Long, Min; Jordan, George C., IV; van Rossum, Daniel R.; Diemer, Benedikt; Graziani, Carlo; Kessler, Richard; Meyer, Bradley; Rich, Paul; Lamb, Don Q.

    2014-07-01

    We present a systematic study of the pure deflagration model of Type Ia supernovae (SNe Ia) using three-dimensional, high-resolution, full-star hydrodynamical simulations, nucleosynthetic yields calculated using Lagrangian tracer particles, and light curves calculated using radiation transport. We evaluate the simulations by comparing their predicted light curves with many observed SNe Ia using the SALT2 data-driven model and find that the simulations may correspond to under-luminous SNe Iax. We explore the effects of the initial conditions on our results by varying the number of randomly selected ignition points from 63 to 3500, and the radius of the centered sphere they are confined in from 128 to 384 km. We find that the rate of nuclear burning depends on the number of ignition points at early times, the density of ignition points at intermediate times, and the radius of the confining sphere at late times. The results depend primarily on the number of ignition points, but we do not expect this to be the case in general. The simulations with few ignition points release more nuclear energy E nuc, have larger kinetic energies E K, and produce more 56Ni than those with many ignition points, and differ in the distribution of 56Ni, Si, and C/O in the ejecta. For these reasons, the simulations with few ignition points exhibit higher peak B-band absolute magnitudes M B and light curves that rise and decline more quickly; their M B and light curves resemble those of under-luminous SNe Iax, while those for simulations with many ignition points are not.

  10. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    PubMed

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hydrodynamic cavitation for sonochemical effects.

    PubMed

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  12. Latitudinal Dependence of the Radial IMF Component: Coronal Imprint

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Smith, E. J.

    1996-01-01

    Measurements by Ulysses have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,) of the interplanetary magnetic field. In the corona, the plasma, beta is much less than 1, except directly above streamers, so longitudinal and latitudinal gradients in field strength will relax due to the transverse magnetic pressure gradient force as the solar wind carries magnetic flux away from the Sun. This happens quickly enough so that the field is essentially uniform by 5 - 10 solar radius, apparently remaining so as it is carried to beyond 1 AU. Here, we illustrate the coronal relaxation with a qualitative physical argument and by reference to a detailed Magneto HydroDynamics (MHD) simulation.

  13. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  14. Compressibility, isothermal titration calorimetry and dynamic light scattering analysis of the aggregation of the amphiphilic phenothiazine drug thioridazine hydrochloride in water/ethanol mixed solvent

    NASA Astrophysics Data System (ADS)

    Cheema, Mohammad Arif; Siddiq, Mohammad; Barbosa, Silvia; Castro, Emilio; Egea, José A.; Antelo, Luis T.; Taboada, Pablo; Mosquera, Víctor

    2007-07-01

    Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of the physico-chemical properties of the drug in different environments to understand the mechanism of action of the drug. Thioridazine can be considered as a hydrotrope if we considered that the term comprise hydrophilic and hydrophobic moieties that form aggregates by a stacking mechanism as it is the case of all the phenothiazine tranquillizing drugs. The association properties of the amphiphilic phenothiazine drug thioridazine hydrochloride were investigated by density, ultrasound, isothermal titration calorimetry and dynamic light scattering (DLS), yielding values of the critical concentration, adiabatic apparent compressibilities and hydrodynamic radius. The DLS data were analyzed according to the treatment of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory to study the stability of the system. The aim of the study is to obtain information about the physico-chemical characterization of the drug in aqueous solution and the effect of ethanol on the aggregate stability of this amphiphilic drug. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups.

  15. Effects of acylation on the functional properties and in vitro trypsin digestibility of red kidney bean (Phaseolus vulgaris L.) protein isolate.

    PubMed

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan

    2009-01-01

    The effects of succinylation and acetylation on some functional properties and the in vitro trypsin digestibility of kidney bean protein isolate (KPI) were investigated. The extent of succinylation or acetylation progressively increased from 0% to 96% to 97%, as the anhydride-to-protein ratio increased from 0 to 1 g/g. Polyacrylamide gel electrophoresis (PAGE) and zeta potential analyses indicated that acylation, especially succinylation, considerably increased the net charge and hydrodynamic radius of the proteins in KPI, especially vicilin. Acylation treatment at various anhydride-to-protein ratios (0.05 to 1 g/g) remarkably improved the protein solubility (PS) and emulsifying activity index (EAI) at neutral pH, but the improvement by succinylation was much better than that by acetylation. Succinylation resulted in a marked decrease in mechanical moduli of heat-induced gels of KPI, while the mechanical moduli were, on the contrary, increased by acetylation. Additionally, in vitro trypsin digestibility was improved by the acylation in an anhydride-type and level-dependent manner. The results suggest that the functional properties of KPI could be modulated by the chemical acylation treatment, using succinic or acetic anhydride at appropriate anhydride-to-protein ratios.

  16. The birth of a supermassive black hole binary

    NASA Astrophysics Data System (ADS)

    Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo

    2017-11-01

    We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.

  17. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation

    NASA Astrophysics Data System (ADS)

    Binh, Doan; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu

    2012-07-01

    The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml-1 in absorbed doses were investigated. There were some new peaks in the 1H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, Rh) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of Gx (Charlesby, 1960; Jung-Chul, 2010). The influence of the "size effect" was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml.

  18. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  19. The role of magnetic fields in the structure and interaction of supershells

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Dawson, Joanne R.; Hennebelle, Patrick; Fierlinger, Katharina

    2017-03-01

    Context. Large-scale shocks formed by clustered feedback of young OB stars are considered an important source of mechanical energy for the interstellar medium (ISM) and a trigger of molecular cloud formation. Their interaction sites are locations where kinetic energy and magnetic fields are redistributed between ISM phases. Aims: In this work we address two questions, both involving the role of galactic magnetic fields in the dynamics of supershells and their interactions. On the one hand, we study the effect of the magnetic field on the expansion and fragmentation of supershells and, on the other hand, we look for the signatures of supershell collisions on dense structures and on the kinetic and magnetic energy distribution of the ISM. Methods: We performed a series of high-resolution, three-dimensional simulations of colliding supershells. The shocks are created by time-dependent feedback and evolve in a diffuse turbulent environment that is either unmagnetized or has different initial magnetic field configurations. Results: In the hydrodynamical situation, the expansion law of the superbubbles is consistent with the radius-time relation R ∝ t3/5 that is theoretically predicted for wind-blown bubbles. The supershells fragment over their entire surface into small dense clumps that carry more than half of the total kinetic energy in the volume. However, this is not the case when a magnetic field is introduced, either in the direction of the collision or perpendicular to the collision. In both situations, the shell surfaces are more stable to dynamical instabilities. When the magnetic field opposes the collision, the expansion law of the supershells also becomes significantly flatter than in the hydrodynamical case. Although a two-phase medium arises in all cases, in the magnetohydrodynamical (MHD) simulations the cold phase is limited to lower densities and the cold clumps are located further away from the shocks with respect to the hydrodynamical simulations. Conclusions: For the parameters we explored, self-gravity has no effect on either the superbubble expansion or the shock fragmentation. In contrast, a magnetic field, whether mostly parallel or mostly perpendicular to the collision axis, causes a deceleration of the shocks, deforms them significantly, and largely suppresses the formation of the dense gas on their surface. The result is a multi-phase medium in which the cold clumps are not spatially correlated with the supershells.

  20. Self-propelled colloidal particle near a planar wall: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ali; Sharifi-Mood, Nima; Koplik, Joel; Maldarelli, Charles

    2018-01-01

    Miniaturized, self-propelled locomotors use chemo-mechanical transduction mechanisms to convert fuel in the environment to autonomous motion. Recent experimental and theoretical studies demonstrate that these autonomous engines can passively follow the contours of solid boundaries they encounter. Boundary guidance, however, is not necessarily stable: Mechanical disturbances can cause the motor to hydrodynamically depart from the passively guided pathway. Furthermore, given the scaled-down size of micromotors (typically 100 nm to10 μ m ), Brownian thermal fluctuation forces are necessarily important, and these stochastic forces can randomize passively steered trajectories. Here we examine theoretically the stability of boundary-guided motion of micromotors along infinite planar walls to mechanical disturbances and to Brownian forces. Our aim is to understand under what conditions this passively guided motion is stable. We choose a locomotor design in which spherical colloids are partially coated with a catalytic cap that reacts with solute to produce a product. The product is repelled from the particle surface, causing the particle to move with the inert face at the front (autonomous motion via self-diffusiophoresis). When propelled towards a planar wall, deterministic hydrodynamic studies demonstrate that these locomotors can exhibit, for large enough cap sizes, steady trajectories in which the particle either skims unidirectionally along the surface at a constant distance from the wall or becomes stationary. We first investigate the linear hydrodynamic stability of these states by expanding the equations of motion about the states, and we find that linear perturbations decay exponentially in time. We then study the effects of thermal fluctuations by formulating a Langevin equation for the particle motion which includes the Brownian stochastic force. The Péclet number scales the ratio of deterministic to Brownian forces, where Pe =π μ a2v˜c/kBT and a denotes the colloid radius, μ the continuous phase viscosity, v˜c the characteristic diffusiophoretic velocity, and kBT the thermal energy. The skimming and stationary states are found to persist for Pe above 103. At Pe below 200, the trajectory of a locomotor approaching the wall is unpredictable. We present representative individual trajectories along with probability distributions for statistical ensembles of particles, quantifying the effects of thermal fluctuations and illustrating the transition from unpredictable to passively guided motion.

  1. Effects of the nucleon radius on neutron stars in a quark mean field model

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Yu; Li, Ang

    2018-03-01

    We study the effects of free space nucleon radius on nuclear matter and neutron stars within the framework of the quark mean field model. The nucleon radius is treated self-consistently with this model, where quark confinement is adjusted to fit different values of nucleon radius. Corrections due to center-of-mass motion, quark-pion coupling, and one gluon exchange are included to obtain the nucleon mass in vacuum. The meson coupling constants that describe the behavior of the many-body nucleonic system are constructed by reproducing the empirical saturation properties of nuclear matter, including the recent determinations of symmetry energy parameters. Our results show that the nucleon radius in free space has negligible effects on the nuclear matter equation of state and neutron star mass-radius relations, which is different from the conclusion drawn in previous studies. We further explore that the sensitivity of star radius on the nucleon radius found in earlier publications is actually from the symmetry energy and its slope.

  2. On the apparent power law in CDM halo pseudo-phase space density profiles

    NASA Astrophysics Data System (ADS)

    Nadler, Ethan O.; Oh, S. Peng; Ji, Suoqing

    2017-09-01

    We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log-log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.

  3. Evaluation of Multi-Vessel Ship Motion Prediction Codes

    DTIC Science & Technology

    2008-09-01

    each other, and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non...Figure 28. Effects of irregular frequency smoothing has on the resultant pitch transfer function for three meter separation, 135 degree heading, and...and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non-hydrodynamic

  4. Effects of Second-Order Hydrodynamics on a Semisubmersible Floating Offshore Wind Turbine: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayati, I.; Jonkman, J.; Robertson, A.

    2014-07-01

    The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of the system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at themore » MARIN offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST in the future. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method has been applied to the OC4-DeepCwind semisubmersible platform, supporting the NREL 5-MW baseline wind turbine. The loads and response of the system due to the second-order hydrodynamics are analysed and compared to first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.« less

  5. Nucleation and chiral symmetry breaking under controlled hydrodynamic flows

    NASA Technical Reports Server (NTRS)

    Wu, Xiao-Lun; Martin, Brian; Tharrington, Arnold

    1994-01-01

    The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied.

  6. Determination of effective droplet radius and optical depth of liquid water clouds over a tropical site in northern Thailand using passive microwave soundings, aircraft measurements and spectral irradiance data

    NASA Astrophysics Data System (ADS)

    Nimnuan, P.; Janjai, S.; Nunez, M.; Pratummasoot, N.; Buntoung, S.; Charuchittipan, D.; Chanyatham, T.; Chantraket, P.; Tantiplubthong, N.

    2017-08-01

    This paper presents an algorithm for deriving the effective droplet radius and optical depth of liquid water clouds using ground-based measurements, aircraft observations and an adiabatic model of cloud liquid water. The algorithm derives cloud effective radius and cloud optical depth over a tropical site at Omkoi (17.80°N, 98.43°E), Thailand. Monthly averages of cloud optical depth are highest in April (54.5), which is the month with the lowest average cloud effective radius (4.2 μm), both occurring before the start of the rainy season and at the end of the high contamination period. By contrast, the monsoon period extending from May to October brings higher cloud effective radius and lower cloud optical depth to the region on average. At the diurnal scale there is a gradual increase in average cloud optical depth and decrease in cloud effective radius as the day progresses.

  7. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants.

    PubMed

    Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej

    2018-01-01

    Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Preparation of narrow dispersity gold nanorods by asymmetrical flow field-flow fractionation and investigation of surface plasmon resonance.

    PubMed

    Runyon, J Ray; Goering, Adam; Yong, Ken-Tye; Williams, S Kim Ratanathanawongs

    2013-01-15

    The development of an asymmetrical field-flow fractionation (AsFlFFF) method for separating gold nanorods (GNR) is reported. Collected fractions containing GNR subpopulations with aspect ratios, sizes, and shapes which are more narrowly dispersed than the original population were further characterized by UV-vis spectroscopy and transmission electron microscopy. This ability to obtain different sizes and shapes of nanoparticles enabled the evaluation of a new approach to estimating the retention time and hydrodynamic size of nanorods and the investigation of GNR optical properties at a previously unattainable level of detail. Experimental results demonstrate that the longitudinal surface plasmon absorption maximum of GNRs is correlated with the effective particle radius in addition to the aspect ratio. This may account for some of the variabilities reported in published empirical data from different research groups and supports reports of simulated absorption spectra of GNRs of different physical dimensions. The use of AsFlFFF with dual UV-vis detection to rapidly assess relative changes in GNR subpopulations was demonstrated for irregularly shaped gold nanoparticles formed at different synthesis temperatures.

  9. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    PubMed

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Forming Disc Galaxies In Major Mergers: Radial Density Profiles And Angular Momentum

    NASA Astrophysics Data System (ADS)

    Peschken, Nicolas; Athanassoula, E.; Rodionov, S. A.; Lambert, J. C.

    2017-06-01

    In Athanassoula et al. (2016), we used high resolution N-body hydrodynamical simulations to model the major merger between two disc galaxies with a hot gaseous halo each, and showed that the remnant is a spiral galaxy. The two discs are destroyed by the collision, but after the merger, accretion from the surrounding gaseous halo allows the building of a new disc in the remnant galaxy. In Peschken et al. (2017), we used these simulations to study the radial surface density profiles of the remnant galaxies with downbending profiles (type II), i.e. composed of an inner and an outer exponential disc separated by a break. We analyzed the effect of angular momentum on these profiles, and found that the inner and outer disc scalelengths, as well as the break radius, all increase linearly with the total angular momentum of the initial merging system. Following the angular momentum redistribution in our simulations, we find that the disc angular momentum is acquired via accretion from the gaseous halo. Furthermore, high angular momentum systems give more angular momentum to their discs, which affects directly their radial density profile.

  11. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study

    NASA Astrophysics Data System (ADS)

    Szymborska-Małek, Katarzyna; Komorowska, Małgorzata; Gąsior-Głogowska, Marlena

    2018-01-01

    We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100 nm) for 5, 10, and 20 min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50 °C a considerable increase in the A form was only observed for 10 min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.

  12. Radiation-hydrodynamical simulations of massive star formation using Monte Carlo radiative transfer - II. The formation of a 25 solar-mass star

    NASA Astrophysics Data System (ADS)

    Harries, Tim J.; Douglas, Tom A.; Ali, Ahmad

    2017-11-01

    We present a numerical simulation of the formation of a massive star using Monte Carlo-based radiation hydrodynamics (RHD). The star forms via stochastic disc accretion and produces fast, radiation-driven bipolar cavities. We find that the evolution of the infall rate (considered to be the mass flux across a 1500 au spherical boundary) and the accretion rate on to the protostar, are broadly consistent with observational constraints. After 35 kyr the star has a mass of 25 M⊙ and is surrounded by a disc of mass 7 M⊙ and 1500 au radius, and we find that the velocity field of the disc is close to Keplerian. Once again these results are consistent with those from recent high-resolution studies of discs around forming massive stars. Synthetic imaging of the RHD model shows good agreement with observations in the near- and far-IR, but may be in conflict with observations that suggest that massive young stellar objects are typically circularly symmetric in the sky at 24.5 μm. Molecular line simulations of a CH3CN transition compare well with observations in terms of surface brightness and line width, and indicate that it should be possible to reliably extract the protostellar mass from such observations.

  13. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.

    PubMed

    Niman, Cassandra S; Zuckermann, Martin J; Balaz, Martina; Tegenfeldt, Jonas O; Curmi, Paul M G; Forde, Nancy R; Linke, Heiner

    2014-12-21

    Synthetic molecular motors typically take nanometer-scale steps through rectification of thermal motion. Here we propose Inchworm, a DNA-based motor that employs a pronounced power stroke to take micrometer-scale steps on a time scale of seconds, and we design, fabricate, and analyze the nanofluidic device needed to operate the motor. Inchworm is a kbp-long, double-stranded DNA confined inside a nanochannel in a stretched configuration. Motor stepping is achieved through externally controlled changes in salt concentration (changing the DNA's extension), coordinated with ligand-gated binding of the DNA's ends to the functionalized nanochannel surface. Brownian dynamics simulations predict that Inchworm's stall force is determined by its entropic spring constant and is ∼ 0.1 pN. Operation of the motor requires periodic cycling of four different buffers surrounding the DNA inside a nanochannel, while keeping constant the hydrodynamic load force on the DNA. We present a two-layer fluidic device incorporating 100 nm-radius nanochannels that are connected through a few-nm-wide slit to a microfluidic system used for in situ buffer exchanges, either diffusionally (zero flow) or with controlled hydrodynamic flow. Combining experiment with finite-element modeling, we demonstrate the device's key performance features and experimentally establish achievable Inchworm stepping times of the order of seconds or faster.

  14. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  15. Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Kalinin, N.; Kovalenko, A.

    2016-11-01

    A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.

  16. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.

  17. Limitations of the Weissler reaction as a model reaction for measuring the efficiency of hydrodynamic cavitation.

    PubMed

    Morison, K R; Hutchinson, C A

    2009-01-01

    The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.

  18. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation

    PubMed Central

    Brady, Jacob P.; Farber, Patrick J.; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Chan, Hue Sun; Forman-Kay, Julie D.; Kay, Lewis E.

    2017-01-01

    Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid “membraneless organelles” that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, Ddx4cond, diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing Ddx4cond to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of Ddx4cond have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in Ddx4cond are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in Ddx4cond are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes. PMID:28894006

  19. Structural Effects of Fibulin 5 Missense Mutations Associated with Age-Related Macular Degeneration and Cutis Laxa

    PubMed Central

    Jones, Richard P. O.; Ridley, Caroline; Jowitt, Thomas A.; Wang, Ming-Chuan; Howard, Marjorie; Bobola, Nicoletta; Wang, Tao; Bishop, Paul N.; Kielty, Cay M.; Baldock, Clair; Lotery, Andrew J.; Trump, Dorothy

    2010-01-01

    Purpose. AMD has a complex etiology with environmental and genetic risk factors. Ten fibulin 5 sequence variants have been associated with AMD and two other fibulin 5 mutations cause autosomal-recessive cutis laxa. Fibulin 5 is a 52-kDa calcium-binding epidermal growth factor (cbEGF)–rich extracellular matrix protein that is essential for the formation of elastic tissues. Biophysical techniques were used to detect structural changes in the fibulin 5 mutants and to determine whether changes are predictive of pathogenicity. Methods. Native PAGE, nonreduced SDS-PAGE, size-exclusion column multiangle laser light scattering, sedimentation velocity, and circular dichroism (CD) were used to investigate the mobility, hydrodynamic radii, folding, and oligomeric states of the fibulin 5 mutants in the absence and presence of Ca2+. Results. CD showed that all mutants are folded, although perturbations to secondary structure contents were detected. Both cutis laxa mutants increased dimerization. Most other mutants slightly increased self-association in the absence of Ca2+ but this was also demonstrated by G202R, a polymorphism detected in a control individual. The AMD-associated mutant G412E showed lower-than-expected mobility during native-PAGE, the largest hydrodynamic radius for the monomer form and the highest levels of aggregation in both the absence and presence of Ca2+. Conclusions. The results identified structural differences for the disease-causing cutis laxa mutants and for one AMD variant (G412E), suggesting that this may also be pathogenic. Although the other AMD-associated mutants showed no gross structural differences, they cannot be excluded as pathogenic by differences outside the scope of this study—for example, disruption of heterointeractions. PMID:20007835

  20. Detectability of primordial gravitational waves produced in bouncing models

    NASA Astrophysics Data System (ADS)

    Pinto-Neto, Nelson; Scardua, Arthur

    2017-06-01

    It is widely known that bouncing models with a dust hydrodynamical fluid satisfying cs2=pd/ρd≈0 , where cs , pd , ρd are the sound velocity, pressure, and energy density of the dust fluid, respectively, have almost scale invariant spectrum of scalar perturbations and negligible primordial gravitational waves. We investigate whether adding another fluid with 1 /3

  1. Hydrodynamics of Gamma-Ray Burst Afterglow

    NASA Astrophysics Data System (ADS)

    Sari, Re'em

    1997-11-01

    The detection of delayed emission at X-ray optical and radio wavelengths (``afterglow'') following gamma-ray bursts (GRBs) suggests that the relativistic shell that emitted the initial GRB as the result of internal shocks decelerates on encountering an external medium, giving rise to the afterglow. We explore the interaction of a relativistic shell with a uniform interstellar medium (ISM) up to the nonrelativistic stage. We demonstrate the importance of several effects that were previously ignored and must be included in a detailed radiation analysis. At a very early stage (few seconds), the observed bolometric luminosity increases as t2. On longer timescales (more than ~10 s), the luminosity drops as t-1. If the main burst is long enough, an intermediate stage of constant luminosity will form. In this case, the afterglow overlaps the main burst; otherwise there is a time separation between the two. On the long timescale, the flow decelerates in a self-similar way, reaching nonrelativistic velocities after ~30 days. Explicit expressions for the radial profiles of this self-similar deceleration are given. As a result of the deceleration and the accumulation of ISM material, the relation between the observed time, the shock radius, and its Lorentz factor is given by t=R/16γ2c, which is a factor of 8 different from the usual expression. We show that even though only a small fraction of the internal energy is given to the electrons, most of the energy can be radiated over time. If the fraction of energy in electrons is greater than ~10%, radiation losses will significantly influence the hydrodynamical evolution at early times (less than ~1 day).

  2. In Vitro Effect of Laser-Induced Hydrodynamics on Cancer Cells.

    PubMed

    Elagin, V V; Pavlikov, A I; Yusupov, V I; Shirmanova, M V; Zagaynova, E V; Bagratashvili, V N

    2015-11-01

    We studied the effect of laser-induced hydrodynamic on viability of Colo-26 murine colon carcinoma cells in vitro. Laser-induced hydrodynamics was generated by a laser (λ=1.56 μ, power 3 W, 5 min exposure); to this end, the fiber end was submersed into a buffer above the cell monolayer. It was found that laser-induced hydrodynamics destructed the monolayer at standoff distances of between the working end of the laser fiber to cell monolayer of 1 and 5 mm and triggers apoptotic and necrotic death in remaining cells at a distance of 4 mm from the emitter.

  3. Conditions for shock revival by neutrino heating in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Janka, H.-Th.

    2001-03-01

    Energy deposition by neutrinos can rejuvenate the stalled bounce shock and can provide the energy for the supernova explosion of a massive star. This neutrino-heating mechanism, though investigated by numerical simulations and analytic studies, is not finally accepted or proven as the trigger of the explosion. Part of the problem is that different groups have obtained seemingly discrepant results, and the complexity of the hydrodynamic models often hampers a clear and simple interpretation of the results. This demands a deeper theoretical understanding of the requirements of a successful shock revival. A toy model is developed here for discussing the neutrino heating phase analytically. The neutron star atmosphere between the neutrinosphere and the supernova shock can well be considered to be in hydrostatic equilibrium, with a layer of net neutrino cooling below the gain radius and a layer of net neutrino heating above. Since the mass infall rate to the shock is in general different from the rate at which gas is advected into the neutron star, the mass in the gain layer varies with time. Moreover, the gain layer receives additional energy input by neutrinos emitted from the neutrinosphere and the cooling layer. Therefore the determination of the shock evolution requires a time-dependent treatment. To this end the hydrodynamical equations of continuity and energy are integrated over the volume of the gain layer to obtain conservation laws for the total mass and energy in this layer. The radius and velocity of the supernova shock can then be calculated from global properties of the gain layer as solutions of an initial value problem, which expresses the fact that the behavior of the shock is controlled by the cumulative effects of neutrino heating and mass accumulation in the gain layer. The described toy model produces steady-state accretion and mass outflow from the nascent neutron star as special cases. The approach is useful to illuminate the conditions that can lead to delayed explosions and in this sense supplements detailed numerical simulations. On grounds of the model developed here, a criterion is derived for the requirements of shock revival. It confirms the existence of a minimum neutrino luminosity that is needed for shock expansion, but also demonstrates the importance of a sufficiently large mass infall rate to the shock. If the neutrinospheric luminosity or accretion rate by the shock are too low, the shock is weakened because the gain layer loses more mass than is resupplied by inflow. On the other hand, very high infall rates damp the shock expansion and above some threshold, the development of positive total energy in the neutrino-heating layer is prevented. Time-dependent solutions for the evolution of the gain layer show that the total specific energy transferred to nucleons by neutrinos is limited by about 1052 erg Msun-1 ( ~ 5 MeV per nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because the typical mass in the gain layer is about 0.1 Msun and does not exceed a few tenths of a solar mass. The toy model also allows for a crude discussion of the global effects of convective energy transport in the neutrino-heating layer. Transfer of energy from the region of maximum heating to radii closer behind the shock mainly reduces the loss of energy by the inward flow of neutrino-heated matter through the gain radius.

  4. Hydrophilic CeO2 nanocubes protect pancreatic β-cell line INS-1 from H2O2-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Lyu, Guang-Ming; Wang, Yan-Jie; Huang, Xue; Zhang, Huai-Yuan; Sun, Ling-Dong; Liu, Yan-Jun; Yan, Chun-Hua

    2016-04-01

    Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage.Oxidative stress plays a key role in the occurrence and development of diabetes. With their unique redox properties, CeO2 nanoparticles (nanoceria) exhibit promising potential for the treatment of diabetes resulting from oxidative stress. Here, we develop a novel preparation of hydrophilic CeO2 nanocubes (NCs) with two different sizes (5 nm and 25 nm) via an acetate assisted hydrothermal method. Dynamic light scattering, zeta potential measurements and thermogravimetric analyses were utilized to investigate the changes in the physico-chemical characteristics of CeO2 NCs when exposed to in vitro cell culture conditions. CCK-8 assays revealed that the CeO2 NCs did not impair cell proliferation in the pancreatic β-cell line INS-1 at the highest dose of 200 μg mL-1 over the time scale of 72 h, while being able to protect INS-1 cells from H2O2-induced cytotoxicity even after protein adsorption. It is also noteworthy that nanoceria with a smaller hydrodynamic radius exhibit stronger antioxidant and anti-apoptotic effects, which is consistent with their H2O2 quenching capability in biological systems. These findings suggest that nanoceria can be used as an excellent antioxidant for controlling oxidative stress-induced pancreatic β-cell damage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00826g

  5. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-02-01

    Passive particles exhibit unique properties when immersed in an active bath of self-propelling entities. In particular, an effective attraction can appear between particles that repel each other when in a passive solution. Here we numerically study the effect of hydrodynamics on an active-passive hybrid system, where we observe qualitative differences as compared to simulations with excluded volume effects alone. The results shed light on an existing discrepancy in pair lifetimes between simulation and experiment, due to the hydrodynamically enhanced stability of coupled passive particles.

  6. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  7. Solitonic Dispersive Hydrodynamics: Theory and Observation

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.

    2018-04-01

    Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.

  8. The Effect of Symmetry on the Hydrodynamic Stability of and Bifurcation from Planar Shear Flows

    DTIC Science & Technology

    1990-12-01

    Effect of Symmetry on the Hydrodynamic Stability of ant Bifurcation from Planar Shear Flows AFOSR-88-0196 6. AUTHOR(S) 61102F 2304/A4 Thomas J. Bridges 7...December 1990 The Effect of Symmetry on the Hydrodynamic Stability of and Bifurcation from Planar Shear Flows TIIhOMAS J. BIUDGES MATl EM ATIc(AL...spatial stabili’.y into the nonlinear regime and a theory for spa- tial Hopf bifurcation , spatial Floquet theory, wavelength doubling and spatially quasi

  9. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  10. Massive radius-dependent flow slippage in carbon nanotubes.

    PubMed

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-08

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  11. Accretion of satellites on to central galaxies in clusters: merger mass ratios and orbital parameters

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo; Giocoli, Carlo; Despali, Giulia

    2018-05-01

    We study the statistical properties of mergers between central and satellite galaxies in galaxy clusters in the redshift range 0 < z < 1, using a sample of dark-matter only cosmological N-body simulations from Le SBARBINE data set. Using a spherical overdensity algorithm to identify dark-matter haloes, we construct halo merger trees for different values of the overdensity Δc. While the virial overdensity definition allows us to probe the accretion of satellites at the cluster virial radius rvir, higher overdensities probe satellite mergers in the central region of the cluster, down to ≈0.06rvir, which can be considered a proxy for the accretion of satellite galaxies on to central galaxies. We find that the characteristic merger mass ratio increases for increasing values of Δc: more than 60 per cent of the mass accreted by central galaxies since z ≈ 1 comes from major mergers. The orbits of satellites accreting on to central galaxies tend to be more tangential and more bound than orbits of haloes accreting at the virial radius. The obtained distributions of merger mass ratios and orbital parameters are useful to model the evolution of the high-mass end of the galaxy scaling relations without resorting to hydrodynamic cosmological simulations.

  12. Massive radius-dependent flow slippage in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-09-01

    Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

  13. Simulation of cathode spot crater formation and development on CuCr alloy in vacuum arc

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Zhang, Xiao; Wang, Yuan; Yang, Ze; Jia, Shenli

    2018-04-01

    The two-dimensional (2D) rotary axisymmetric model is used to describe the formation and development of a cathode spot on a copper-chromium alloy (CuCr) in a vacuum arc. The model includes hydrodynamic equations and the heat transfer equation. Parameters used in this model come from experiments and other researchers' work. The influence of parameters is analyzed, and the simulation results are compared with pure metal simulation results. In simulation, the depth of the cathode crater is from 0.5 μm to 1.1 μm, the radius of the cathode crater is from 1.6 μm to 2.6 μm, the maximum velocity of the droplet is from 200 m/s to 600 m/s, and the maximum temperature is from 3500 K to 5000 K which is located in the area with a radius of 0.5-1.5 μm. The simulation results show that a smooth cathode surface is advantageous for reducing ablation, the ablation on the CuCr alloy is smaller than that on the pure metal cathode electrode, and the cathode spot appears on the chromium grain only on CuCr. The simulation results are in good agreement with the experiment.

  14. An iterative algorithm for calculating stylus radius unambiguously

    NASA Astrophysics Data System (ADS)

    Vorburger, T. V.; Zheng, A.; Renegar, T. B.; Song, J.-F.; Ma, L.

    2011-08-01

    The stylus radius is an important specification for stylus instruments and is commonly provided by instrument manufacturers. However, it is difficult to measure the stylus radius unambiguously. Accurate profiles of the stylus tip may be obtained by profiling over an object sharper than itself, such as a razor blade. However, the stylus profile thus obtained is a partial arc, and unless the shape of the stylus tip is a perfect sphere or circle, the effective value of the radius depends on the length of the tip profile over which the radius is determined. We have developed an iterative, least squares algorithm aimed to determine the effective least squares stylus radius unambiguously. So far, the algorithm converges to reasonable results for the least squares stylus radius. We suggest that the algorithm be considered for adoption in documentary standards describing the properties of stylus instruments.

  15. Diagnostic of protein crystallization by dynamic light scattering; an application to an aminoacyl-tRNA synthetase

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Vincendon, Pascale; Eriani, Gilbert; Hirsch, Ernest; Giegé, Richard

    1991-03-01

    The apparent hydrodynamic radius of a truncated form of baker's yeast aspartyl-tRNA synthetase has been measured in various precipitating agent solutions as a function of the protein concentration by dynamic light scattering. In solvents containing ammonium sulfate or 2-methyl-2,4-pentanediol as the precipitating agent the protein remains essentially monodisperse, whereas in the presence of polyethylene glycol interactions and aggregations between protein molecules are detected before reaching supersaturation. These data are indications of possible crystallizations of the protein by the two former precipitants and no crystallization by the latter one. Crystallization experiments indeed have shown that the truncated synthetase crystallizes in the presence of ammonium sulfate and that no crystals grow in solvents containing polyethylene glycol.

  16. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Goya, G. F.; Fernandez-Pacheco, R.; Arruebo, M.; Cassinelli, N.; Ibarra, M. R.

    2007-09-01

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times τ were measured through the imaginary susceptibility component χ″(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe 3O 4 nanoparticles, whereas a second Fe 3O 4-based dispersion of similar concentration could be heated up to 12 K after 30 min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  17. Convective penetration in a young sun

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group

    2018-01-01

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.

  18. Redox-sensitive shell-crosslinked polypeptide-block-polysaccharide micelles for efficient intracellular anticancer drug delivery.

    PubMed

    Zhang, Aiping; Zhang, Zhe; Shi, Fenghua; Xiao, Chunsheng; Ding, Jianxun; Zhuang, Xiuli; He, Chaoliang; Chen, Li; Chen, Xuesi

    2013-09-01

    Redox-responsive SCMs based on amphiphilic PBLG-b-dextran with good biocompatibility are synthesized and used for efficient intracellular drug delivery. The molecular structures and SCMs characteristics are characterized by (1) H NMR, FT-IR, TEM, and DLS. The hydrodynamic radius of SCMs increases gradually in PBS due to the cleavage of disulfide bond in micellar shell caused by the presence of GSH. The encapsulation efficiency and release kinetics of DOX are investigated. The fastest DOX release is observed under intracellular-mimicking reductive environments. An MTT assay demonstrates that DOX-loaded SCMs show higher cellular proliferation inhibition against GSH-OEt pretreated HeLa and HepG2 than that of the non-pretreated and BSO-pretreated ones. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sackesteder, Kurt (Technical Monitor)

    1998-01-01

    The classical Landau/Levich models of liquid propellant combustion, which serve as seminal examples of hydrodynamic instability in reactive systems, have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and/or temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity, surface tension and viscosity on the hydrodynamic instability of the propagating liquid/gas interface. In particular, a composite asymptotic expression, spanning three distinguished wavenumber regimes, is derived for both cellular and pulsating hydrodynamic neutral stability boundaries A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. For the case of cellular (Landau) instability, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that cellular hydrodynamic instability in this context is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(l) wavenumber disturbances. It is also demonstrated that, in the large wavenumber regime, surface tension and both liquid and gas viscosity all produce comparable stabilizing effects in the large-wavenumber regime, thereby providing significant modifications to previous analyses of Landau instability in which one or more of these effects were neglected. In contrast, the pulsating hydrodynamic stability boundary is found to be insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity, which is a significant stabilizing effect for O(l) and higher wavenumbers. Liquid-propellant combustion is predicted to be stable (i.e., steady and planar) only for a range of negative pressure sensitivities that lie between the two types of hydrodynamic stability boundaries.

  20. Torques on Low-mass Bodies in Retrograde Orbit in Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Sánchez-Salcedo, F. J.; Chametla, Raúl O.; Santillán, A.

    2018-06-01

    We evaluate the torque acting on a gravitational perturber on a retrograde circular orbit in the midplane of a gaseous disk. We assume that the mass of this satellite is so low that it weakly disturbs the disk (type I migration). The perturber may represent the companion of a binary system with a small mass ratio. We compare the results of hydrodynamical simulations with analytic predictions. Our 2D simulations indicate that the torque acting on a perturber with softening radius R soft can be accounted for by a scattering approach if {R}soft}< 0.3H, where H is defined as the ratio between the sound speed and the angular velocity at the orbital radius of the perturber. For R soft > 0.3H, the torque may present large and persistent oscillations, but the resultant time-averaged torque decreases rapidly with increasing R soft/H, in agreement with previous analytical studies. We then focus on the torque acting on small-size perturbers embedded in full 3D disks and argue that the density waves propagating at distances ≲H from the perturber contribute significantly to the torque because they transport angular momentum. We find a good agreement between the torque found in 3D simulations and analytical estimates based on ballistic orbits. We compare the radial migration timescales of prograde versus retrograde perturbers. For a certain range of the perturber’s mass and aspect ratio of the disk, the radial migration timescale in the retrograde case may be appreciably shorter than in the prograde case. We also provide the smoothing length required in 2D simulations in order to account for 3D effects.

  1. Molecular Sieving by the Bacillus megaterium Cell Wall and Protoplast

    PubMed Central

    Scherrer, Rene; Gerhardt, Philipp

    1971-01-01

    Passive permeabilities of the cell wall and protoplast of Bacillus megaterium strain KM were characterized by use of 50 hydrophilic probing molecules (tritiated water, sugars, dextrans, glycols, and polyglycols) which varied widely in size. Weight per cent uptake values (Rw) were measured at diffusional equilibrium under conditions that negated the influences of adsorption or active transport. Plots of Rw for intact cells as a function of number-average molecular weight (¯Mn) or Einstein-Stokes hydrodynamic radius (¯rES) of the solutes showed three phases: a protoplast uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.6 × 103 to 1.1 × 103, ¯rES = 0.6 to 1.1 nm; a cell wall uptake phase with a polydisperse exclusion threshold of ¯Mn = 0.7 × 105 to 1.2 × 105, ¯rES ≅ 8.3 nm; and a total exclusion phase. Isolated cell walls showed only the latter two phases. However, it became evident that the cell wall selectively passed only the smallest molecules in a heterodisperse polymer sample. When the molecular-weight distributions of polyglycol samples (¯Mn = 1,000, 1,450, and 3,350) were determined by analytical gel chromatography before and after uptake by intact cells or isolated cell walls, a quasi-monodisperse exclusion threshold was obtained corresponding to Mn = 1,200, rES = 1.1 nm. The permeability of isolated protoplasts was assessed by the relative ability of solutes to effect osmotic stabilization. An indefinite exclusion threshold, evident even with monodisperse sugars, was attributed to lengthwise orientation of the penetrating rod-shaped molecules. Altogether, the best estimate of the limiting equivalent porosity of the protoplast was 0.4 to 0.6 nm in radius and of the cell wall, 1.1 nm. PMID:4999413

  2. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  3. The cumulative effects assessment of a coastal ecological restoration project in China: An integrated perspective.

    PubMed

    Ma, Deqiang; Zhang, Liyu; Fang, Qinhua; Jiang, Yuwu; Elliott, Michael

    2017-05-15

    Large scale coastal land-claim and sea-enclosing (CLASE) activities have caused habitat destruction, biodiversity losses and water deterioration, thus the local governments in China have recently undertaken seabed dredging and dyke opening (SDADO) as typical ecological restoration projects. However, some projects focus on a single impact on hydrodynamic conditions, water quality or marine organisms. In a case study in Xiamen, China, an integrated effects assessment framework centres on ecohydrology, using modeling of hydrodynamic conditions and statistical analysis of water quality, was developed to assess the effects of ecological restoration projects. The benefits of SDADO projects include improving hydrodynamic conditions and water quality, as a precursor to further marine biological improvements. This study highlights the need to comprehensively consider ecological effects of SDADO projects in the planning stage, and an integrative assessment method combining cumulative effects of hydrodynamic conditions, water quality and biological factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Anomalous hydrodynamics of Weyl materials

    NASA Astrophysics Data System (ADS)

    Monteiro, Gustavo; Abanov, Alexander

    Kinetic theory is a useful tool to study transport in Weyl materials when the band-touching points are hidden inside a Fermi surface. It accounts, for example, for the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations (SdH effect) in the magnetoresistance together within the same framework. As an alternative approach to kinetic theory we also consider the regime of strong interactions where hydrodynamics can be applicable. A variational principle of these hydrodynamic equations can be found in and provide a natural framework to study hydrodynamic surface modes which correspond to the strongly-interacting physics signature of Fermi arcs. G.M. acknowledges the financial support from FAPESP.

  5. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    PubMed

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Fueling nuclear activity in disk galaxies: Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Heller, Clayton H.; Shlosman, Isaac

    1994-03-01

    We study the evolution of the gas distribution in a globally unstable galactic disk with a particular emphasis on the gasdynamics in the central kiloparsec and the fueling activity there. The two-component self-gravitating disk is embedded in a responsive halo of comparable mass. The gas and stars are evolved using a three-dimensional hybrid smoothed particle hydrodynamics/N-body code and the gravitational interactions are calculated using a hierarchical TREE algorithm. A massive 'star formation' is introduced when the gas becomes Jeans unstable and locally exceeds the critical density of approximately 100 solar mass pc-3. The newly formed OB stars deposit energy in the gas by means of radiation-driven winds and supernovae. This energy is partially thermalized (efficiency of a few percent); the rest is radiated away. Models without star formation are evolved for a comparison. The effect of a massive object at the disk center is studied by placing a 'seed' black hole (BH) of 5 x 107 solar mass with an accretion radius of 20 pc. The tendency of the system to form a massive object 'spontaneously' is tested in models without the BH. We find that for models without star formation the bar- or dynamical friction-driven inflows lead to (1) domination of the central kpc by a few massive clouds that evolve into a single object probably via a cloud binary system, with and without a 'seed' BH, (2) accretion onto the BH which has a sporadic character, and (3) formation of remnant disks around the BH with a radius of 60-80 pc which result from the capture and digestion of clouds. For models with star formation, we find that (1) the enrgy input into the gas induces angular momentum loss and inflow rates by a factor less than 3, (2) the star formation is concentrated mainly at the apocenters of the gaseous circulation in the stellar bar and in the nuclear region, (3) the nuclear starburst phase appears to be very luminous approximately 1045-1046 erg/s and episodic with a typical single burst duration of aproximately 107 yr, and (4) the starburst phase coincides with both the gas becoming dynamically important and the catastrophic growth of the BH. It ends with the formation of cold residual less than 1 kpc radius gas disks. Models without the 'seed' BH form less than 1 kpc radius fat disks which dominate the dynamics. Gaseous bars follow, drive further inflow, and may fission into a massive cloud binary system at the center.

  7. Cooperation of sperm in two dimensions: synchronization, attraction, and aggregation through hydrodynamic interactions.

    PubMed

    Yang, Yingzi; Elgeti, Jens; Gompper, Gerhard

    2008-12-01

    Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which sperm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multiparticle collision dynamics. We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multisperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies.

  8. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.

    PubMed

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  9. Activity-induced clustering in model dumbbell swimmers: The role of hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Furukawa, Akira; Marenduzzo, Davide; Cates, Michael E.

    2014-08-01

    Using a fluid-particle dynamics approach, we numerically study the effects of hydrodynamic interactions on the collective dynamics of active suspensions within a simple model for bacterial motility: each microorganism is modeled as a stroke-averaged dumbbell swimmer with prescribed dipolar force pairs. Using both simulations and qualitative arguments, we show that, when the separation between swimmers is comparable to their size, the swimmers' motions are strongly affected by activity-induced hydrodynamic forces. To further understand these effects, we investigate semidilute suspensions of swimmers in the presence of thermal fluctuations. A direct comparison between simulations with and without hydrodynamic interactions shows these to enhance the dynamic clustering at a relatively small volume fraction; with our chosen model the key ingredient for this clustering behavior is hydrodynamic trapping of one swimmer by another, induced by the active forces. Furthermore, the density dependence of the motility (of both the translational and rotational motions) exhibits distinctly different behaviors with and without hydrodynamic interactions; we argue that this is linked to the clustering tendency. Our study illustrates the fact that hydrodynamic interactions not only affect kinetic pathways in active suspensions, but also cause major changes in their steady state properties.

  10. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random walks. It is found that the fields are mainly longitudinal at early time. The initial energy densities are computed both for RHIC and LHC.

  11. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    NASA Astrophysics Data System (ADS)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of dynamical friction. Below this radius, the gas settles into a hydrostatic state, which - owing to its spherical symmetry - causes no net gravitational pull onto the moving body. Finally, we derive an analytic estimate for the stand-off distance that can easily be used when calculating the dynamical friction force.

  12. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Reynolds Number Effects on Leading Edge Radius Variations of a Supersonic Transport at Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Rivers, S. M. B.; Wahls, R. A.; Owens, L. R.

    2001-01-01

    A computational study focused on leading-edge radius effects and associated Reynolds number sensitivity for a High Speed Civil Transport configuration at transonic conditions was conducted as part of NASA's High Speed Research Program. The primary purposes were to assess the capabilities of computational fluid dynamics to predict Reynolds number effects for a range of leading-edge radius distributions on a second-generation supersonic transport configuration, and to evaluate the potential performance benefits of each at the transonic cruise condition. Five leading-edge radius distributions are described, and the potential performance benefit including the Reynolds number sensitivity for each is presented. Computational results for two leading-edge radius distributions are compared with experimental results acquired in the National Transonic Facility over a broad Reynolds number range.

  14. Face-seal lubrication: 1: Proposed and published models

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P.

    1976-01-01

    The numerous published theories on the mechanism of hydrodynamic lubrication of face seals were reviewed. These theories employ either an inclined-slider-bearing macrogeometry or an inclined-slider-bearing microgeometry to produce hydrodynamic pressure that separates the surfaces of the primary seal. Secondary seal friction and primary ring inertia effects are not considered. Hypothetical seal operating models were devised to include secondary seal friction and primary ring inertia effects. It was hypothesized that these effects induce relative angular misalinement of the primary seal faces and that this misalinement is, in effect, an inclined slider macrogeometry. Stable running was postulated for some of these hypothetical operating models. In others, periodic loss of hydrodynamic lubrication was postulated to be possible with certain combinations of waviness and angular misalinement. Application of restrictions that apply to seal operation led to a hydrodynamic governing equation for the new model that is a two-dimensional, time-dependent Reynolds equation with the short-bearing approximation.

  15. Hydrodynamic and Thermal Slip Effect on Double-Diffusive Free Convective Boundary Layer Flow of a Nanofluid Past a Flat Vertical Plate in the Moving Free Stream

    PubMed Central

    Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.

    2013-01-01

    The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566

  16. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  17. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  18. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu

    2015-10-07

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less

  19. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.

    PubMed

    Francesko, Antonio; Blandón, Lucas; Vázquez, Mario; Petkova, Petya; Morató, Jordi; Pfeifer, Annett; Heinze, Thomas; Mendoza, Ernest; Tzanov, Tzanko

    2015-05-13

    Laccase-assisted assembling of hybrid biopolymer-silver nanoparticles and cork matrices into an antimicrobial material with potential for water remediation is herein described. Amino-functional biopolymers were first used as doping agents to stabilize concentrated colloidal dispersions of silver nanoparticles (AgNP), additionally providing the particles with functionalities for covalent immobilization onto cork to impart a durable antibacterial effect. The solvent-free AgNP synthesis by chemical reduction was carried out in the presence of chitosan (CS) or 6-deoxy-6-(ω-aminoethyl) aminocellulose (AC), leading to simultaneous AgNP biofunctionalization. This approach resulted in concentrated hybrid NP dispersion stable to aggregation and with hydrodynamic radius of particles of about 250 nm. Moreover, laccase enabled coupling between the phenolic groups in cork and amino moieties in the biopolymer-doped AgNP for permanent modification of the material. The antibacterial efficiency of the functionalized cork matrices, aimed as adsorbents for wastewater treatment, was evaluated against Escherichia coli and Staphylococcus aureus during 5 days in conditions mimicking those in constructed wetlands. Both intrinsically antimicrobial CS and AC contributed to the bactericidal effect of the enzymatically grafted on cork AgNP. In contrast, unmodified AgNP were easily washed off from the material, confirming that the biopolymers potentiated a durable antibacterial functionalization of the cork matrices.

  20. Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field.

    PubMed

    Zhao, Hui; Bau, Haim H

    2008-06-17

    The polarization of, the forces acting on, and the electroosmotic flow field around a cylindrical particle of radius a* and uniform zeta potential zeta* submerged in an electrolyte solution and subjected to alternating electric fields are computed by solving the Poisson-Nernst-Planck (PNP) equations (the standard model). The dipole coefficient and the electrostatic and hydrodynamic forces are calculated as functions of the electric field's frequency, the solute concentration, and the particle's surface charge. The calculations are not restricted to small Debye screening lengths (lambdaD*). At relatively low frequencies, the polarization coefficient is nearly frequency-independent. As the frequency increases above D*/a*(2), where D* is the effective diffusion coefficient, the polarization coefficient initially increases, attains a maximum, and then decreases to an asymptotic value (when the frequency exceeds (1+Du)D*/lambdaD(*2), where Du is the Dukhin number). At low frequencies, when (lambdaD*/a*)(2)e(|zeta*F*/(2R*T*)|) < 1, the PNP calculations are in excellent agreement with the predictions of the Dukhin-Shilov (DS) low-frequency theory. At high frequencies, when lambda D*/a* < 1, the PNP calculations are in excellent agreement with the Maxwell-Wagner-O'Konski (MWO) theory.

  1. Effects of MHD instabilities on neutral beam current drive

    NASA Astrophysics Data System (ADS)

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-05-01

    Neutral beam injection (NBI) is one of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility. However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. A new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ∼50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  2. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  3. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  4. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  5. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans.

    PubMed

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm -3 ) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to -2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm -3 related to a +2.5 to -1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  6. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.

    2013-05-01

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.

  7. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  8. MASTER OT J004207.99+405501.1/M31LRN 2015 luminous red nova in M31: discovery, light curve, hydrodynamics and evolution

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Blinnikov, S.; Gorbovskoy, E.; Tutukov, A.; Baklanov, P.; Krushinski, V.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Gorbunov, I.; Shumkov, V.; Vladimirov, V.; Gress, O.; Budnev, N. M.; Ivanov, K.; Tlatov, A.; Gabovich, A.; Yurkov, V.; Sergienko, Yu.; Zalozhnykh, I.

    2017-09-01

    We report the discovery and multicolour (VRIW) photometry of the rare explosive star MASTER OT J004207.99+405501.1 - a luminous red nova - in the Andromeda galaxy M31N2015-01a. We use our original light curve acquired with identical MASTER Global Robotic Net telescopes in one photometric system: VRI during the first 30 d and W (unfiltered) during 70 d. Also, we added published multicolour photometry data to estimate the mass and energy of the ejected shell and we discuss the likely formation scenarios of outbursts of this type. We propose an interpretation of the explosion that is consistent with an evolutionary scenario where the merging of stellar components or the disruption of the common envelope of a close binary can explain some luminous red novae. Radiative hydrodynamic simulations of a luminous red nova were carried out in extended parameter space to fit its light curves. We find that the multicolour passband light curves of the luminous red nova are consistent with an initial common envelope radius of 10 R⊙, a merger mass of 3 M⊙ and an explosion energy of 3 × 1048 erg. As a result, the phenomenon of novae consists of two classes: classical nuclear novae and more rare events (red novae) connected with the loss of compact common envelopes.

  9. Viscous flow in and around a cavity surrounded by a concentric permeable patch

    NASA Astrophysics Data System (ADS)

    Palaniappan, D.

    2017-11-01

    Steady viscous incompressible fluid flow in and around a spherical fluid cavity of radius a surrounded by a permeable patch with thickness b - a is investigated in the limit of low-Reynolds number. Our model uses the Stokes equations in the pure fluid regions and the Darcy law in the concentric permeable patch. Analytic solutions for the velocity and pressure fields are derived in singularity form involving the key parameters such as the Darcy permeability coefficient k and the thickness of the permeable layer. The Faxen law for the hydrodynamical drag acting on the concentric spherical geometry due to an arbitrary incident flow is extracted from our singularity solutions. It is found that the thickness of the permeable layer and the permeability play a crucial role in controlling the drag. An expression for the mass of the fluid that enters the outer sphere is calculated by integrating the exterior radial velocity field. The hydrodynamic force on the concentric spherical shell due to the flow induced by a Stokeslet is also derived from our general expressions. Several special cases of interest are deduced from our exact analysis. The results are of some interest in the prediction of forces exerted on the walls in certain biological models with permeable layers. I request you to place my presentation on the 19th (Sunday) as I have to give final exams on Monday. Thank you.

  10. Dynamic light scattering measurements of mutual diffusion coefficients of water-rich 2-butoxyethanol/water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, T.M.; Pecora, R.

    1988-03-24

    The mutual diffusion coefficients of the water-rich region of the 2-butoxyethanol (BE)water system were measured by dynamic light scattering at 10, 25, and 40/sup 0/C. At mole fraction of BE greater than 0.02 (X/sub BE/ greater than or equal to 0.02), the results were in good agreement with the work of T. Kato. Below X/sub BE/ = 0.02 an anomalous diffusion region appeared with particles of apparent hydrodynamic radius of up to 1000 A being observed in agreement with the work of S. Kato et al. Further investigations using BE from different sources did not show the anomalous diffusion regionmore » and indicate that the possible presence of small amounts of contaminants in the BE is the source of this anomalous diffusion data« less

  11. Marangoni bursting

    NASA Astrophysics Data System (ADS)

    Reyssat, Etienne; Keiser, Ludovic; Bense, Hadrien; Colinet, Pierre; Bico, José

    2017-11-01

    At the surface of a sunflower oil bath, a drop of water adopts a lenticular shape. Conversely, alcohol totally wets the oil and spreads. Depositing a mixture of water and alcohol reveals a spectacular fragmentation phenomenon. If it contains enough alcohol, the drop spontaneously spreads and fragments into a myriad of minute droplets whose size strongly depends on the initial mixture composition. Marangoni flows resulting from the differential evaporation of alcohol and water play a key role in this self-emulsification process. The intricate coupling of hydrodynamics, wetting and evaporation is well captured by analytical scaling laws that predict the characteristic radius and timescale of spreading. Other combinations of liquids also lead to this fascinating phenomenon and further confirm our scenario. This work was partly funded by the Interuniversity Attraction Poles Program (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  12. Convective penetration in stars

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; Constantino, Tom; Popov, M. V.; Walder, Rolf; Folini, Doris; TOFU Collaboration

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC, currently being developed at the University of Exeter. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework (FP7/2007-2013)/ERC Grant agreement no. 320478.

  13. The Formation Mechanism of Nuclear Rings

    NASA Astrophysics Data System (ADS)

    Regan, M. W.; Teuben, P. J.

    2001-12-01

    Nuclear star forming rings are found in many barred galaxies. In some of these galaxies the majority of the star formation is occurring in the ring. Although there is circumstantial evidence that an inner Lindblad resonance is required for the ring to form, very little work has been done on why this is so. In this talk we will present some of the first analytical work on why, where, and under what conditions rings form. By using both hydrodynamic simulations and numerically integrated stellar orbits we are able to show the relationship between the extent of the X2 orbit family and the nuclear ring radius. This provides the first clear evidence that the ring is formed by the conflict between gas on X2 orbits oriented perpendicular to the bar major axis and gas on X1 orbits oriented along the bar major axis.

  14. Poly[n]catenanes: Synthesis of molecular interlocked chains

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong; Wojtecki, Rudy J.; de Pablo, Juan J.; Hore, Michael J. A.; Rowan, Stuart J.

    2017-12-01

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.

  15. Forces between functionalized silica nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-05-01

    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner’s analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiong; Rauscher, Phillip M.; Lang, Xiaolong

    As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (similar to 75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass similar to 21.4 kilograms per mole) to a mixturemore » of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2+.« less

  17. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1978-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, may be a significant factor in seal operating mechanism.

  18. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.

  19. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    PubMed

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Quark-gluon plasma (Selected Topics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, V. I., E-mail: vzakharov@itep.ru

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  1. Impacts of Mass-dimension and Area-dimension relationships on retrieval ice particle effective radius from radar and lidar measurements

    NASA Astrophysics Data System (ADS)

    Ham, S. H.; Kato, S.; Rose, F. G.

    2016-12-01

    In the retrieval of ice clouds from Radar and Lidar Measurements, mass-Dimension (m-D) and Area-Dimension (A-D) relationships are often used to describe nonspherical ice particle shapes. This study analytically investigates how the assumption of m-D and A-D relationships affects retrieval of ice effective radius. We use gamma and lognormal particle distributions and integrate optical parameters over the size distribution. The effective radius is expressed as a function of radar reflectivity factor, visible extinction coefficient, and parameters describing m-D and A-D relationships. The analytic expressions are used for converting effective radius retrieved from one set of m-D and A-D relationships into that with another set of m-D and A-D, including plates, solid columns, bullets, and mixture of different habits. The conversion method can be used for consistent radiative transfer simulation with cloud retrieval algorithms. In addition, when we want to merge cloud effective radii retrieved from different m-D and A-D, the conversion method can be efficiently used to remove undesired biases caused by m-D and A-D assumptions. Furthermore, the sensitivity of the effective radius to m-D and A-D relationships can be quantified by taking the first derivative of the effective radius with respect to parameters expressing the m-D and A-D relationships.

  2. Simulation of Helical Flow Hydrodynamics in Meanders and Advection-Turbulent Diffusion Using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.

    2013-12-01

    Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.

  3. Scale Effects on Magnet Systems of Heliotron-Type Reactors

    NASA Astrophysics Data System (ADS)

    S, Imagawa; A, Sagara

    2005-02-01

    For power plants heliotron-type reactors have attractive advantages, such as no current-disruptions, no current-drive, and wide space between helical coils for the maintenance of in-vessel components. However, one disadvantage is that a major radius has to be large enough to obtain large Q-value or to produce sufficient space for blankets. Although the larger radius is considered to increase the construction cost, the influence has not been understood clearly, yet. Scale effects on superconducting magnet systems have been estimated under the conditions of a constant energy confinement time and similar geometrical parameters. Since the necessary magnetic field with a larger radius becomes lower, the increase rate of the weight of the coil support to the major radius is less than the square root. The necessary major radius will be determined mainly by the blanket space. The appropriate major radius will be around 13 m for a reactor similar to the Large Helical Device (LHD).

  4. Interactions Between Peptide and Preservatives: Effects on Peptide Self-Interactions and Antimicrobial Efficiency In Aqueous Multi-Dose Formulations.

    PubMed

    Heljo, P; Ross, A; Zarraga, I E; Pappenberger, A; Mahler, H-C

    2015-10-01

    Antimicrobial preservatives are known to interact with proteins and potentially affect their stability in aqueous solutions. In this systematic study, the interactions of a model peptide with three commonly used preservatives, benzyl alcohol, phenol and m-cresol, were evaluated. The impact on peptide oligomerization was studied using GC-MALS, SEC-MALS and DLS, antimicrobial efficiency of different formulations were studied using the Ph. Eur. antimicrobial efficacy test, and the molecular adsorption of preservative molecules on reversible peptide oligomers was monitored using NMR. The hydrodynamic radius and molar mass of the peptide oligomers was shown to clearly increase in the presence of m-cresol but less significantly with phenol and benzyl alcohol. The increase in size was most likely caused by peptide self-interactions becoming more attractive, leading to reversible oligomerization. On the other hand, increasing the concentration of peptide in multi-dose formulations led to reduced molecular mobility and decreased antimicrobial efficacy of all preservatives. Peptide-preservative interactions not only affect peptide self-interactions, but also antimicrobial efficiency of the preservatives and are thus of significant relevance. Adsorption of preservatives on oligomeric states of peptides is proposed as a mechanism to explain this reduced antimicrobial efficacy.

  5. Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Simpson, Christine M.

    2014-08-01

    We analyse the properties of the circumgalactic medium and the metal content of the stars comprising the central galaxy in eight hydrodynamical `zoom-in' simulations of disc galaxy formation. We use these properties as a benchmark for our model of galaxy formation physics implemented in the moving-mesh code AREPO, which succeeds in forming quite realistic late-type spirals in the set of `Aquarius' initial conditions of Milky-Way-sized haloes. Galactic winds significantly influence the morphology of the circumgalactic medium and induce bipolar features in the distribution of heavy elements. They also affect the thermodynamic properties of the circumgalactic gas by supplying an energy input that sustains its radiative losses. Although a significant fraction of the heavy elements are transferred from the central galaxy to the halo, and even beyond the virial radius, enough metals are retained by stars to yield a peak in their metallicity distributions at about Z⊙. All our default runs overestimate the stellar [O/Fe] ratio, an effect that we demonstrate can be rectified by an increase of the adopted Type Ia supernova rate. Nevertheless, the models have difficulty in producing stellar metallicity gradients of the same strength as observed in the Milky Way.

  6. Solubilizing properties of new surface-active agents, products of catalytic oxyethylation of cholic acid.

    PubMed

    Kołodziejczyk, Michał Krzysztof; Nachajski, Michal Jakub; Lukosek, Marek; Zgoda, Marian Mikołaj

    2013-01-01

    Solubilizing properties of aqueous solutions of a series of surface-active agents, products of oxyethylation of cholic acid, were examined in the present study. The content of oxyethylated segments determined by means of the 1H NMR method enabled the verification of the molecular mass of surfactants along with the calculation of the structural hydrophilic-lipophilic balance (HLB), the solubility parameter delta1/2, and the required solubility level of balance HLB(R). Viscosimetric measurements enabled the calculation of the limiting viscosity number, the content-average molecular mass, the effective volume, the hydrodynamic radius of the surfactant micelle and their equilibrium adducts with rutin, diclofenac and loratadine (BCS Class II and III). By means of the spectrophotometric method (UV) the amount of the solubilized diclofenac, loratadine and rutin (rutoside) was determined in the equilibrium system (saturated solution) in the environment of aqueous solutions of cholic acid derivatives of n(TE) = 20-70. The obtained results serve as a basis for determining the solubilization mechanism of lipophilic therapeutic products and indirectly for estimating the influence of the above process on pharmaceutical as well as biological availability of a micellar adduct from model drug forms (Lindbladt lithogenolitic index).

  7. Morphological and biomechanical response to eutrophication and hydrodynamic stresses.

    PubMed

    Zhu, Guorong; Yuan, Changbo; Di, Guilan; Zhang, Meng; Ni, Leyi; Cao, Te; Fang, Rongting; Wu, Gongguo

    2018-05-01

    Eutrophication and hydrodynamics determine the final distribution patterns of aquatic macrophytes; however, there is limited available knowledge regarding their interactive effects. Morphological and biomechanical responses to eutrophication and hydrodynamic stresses were assessed by sampling five abundant and dominant species, Potamogeton maackianus, P. pectinatus, P. lucens, Ceratophyllum demersum and Myriophyllum spicatum, in three macrophyte beds in Lake Erhai, Yunnan Province, China: one exposed to eutrophication and moderate southeast (SE) wind; one with mesotrophication, but sheltered by the lakeshore, with weak wind disturbance; and one with meso-eutrophication and strong SE wind. The results showed significant interactive effects of eutrophication and hydrodynamics on most biomechanical traits and some morphological traits, suggesting that aquatic macrophytes preferentially undergo biomechanical adjustments to resist the coexisting eutrophication and hydrodynamic stresses. In particular, hydrodynamics increased both the tensile force and tensile strain of P. maackianus under meso-eutrophication and dramatically decreased them in eutrophic areas, suggesting that eutrophication triggers mechanical failure in this species. Additionally, P. pectinatus, C. demersum and M. spicatum showed the lowest and highest values for the biomechanical variables (greater values for M. spicatum) in the most eutrophic and hydrodynamic areas, respectively, implying that increases in hydrodynamics primarily induce mechanical damage in eutrophic species. The plants generally exhibited greater tensile strain in both shallow and deep waters and the greatest tensile force at moderate depths. The stem cross-sectional area, plant height, stem length, internode length, and branch traits were all responsible for determining the biomechanical variables. This study reveals that hydrodynamic changes primarily induce mechanical damage in eutrophic species, whereas eutrophication triggers mechanical damage in sensitive species. Copyright © 2017. Published by Elsevier B.V.

  8. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  9. Planck intermediate results: XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-02-09

    By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present in this paper a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift z ≈ 0.1. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the Central Galaxy Catalogue (CGC) samples extracted from Sloan Digital Sky Survey (SDSS-DR7) data. For the foreground-cleaned SEVEM, SMICA, NILC, and COMMANDER maps, we find 1.8–2.5σ detections of the kSZ signal, which are consistent with the kSZ evidence found in individualPlanck raw frequency maps, although lower than found inmore » the WMAP-9yr W-band (3.3σ). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a 3.0–3.7σ detection of the peculiar motion of extended gas on Mpc scales in flows correlated up to distances of 80–100 h -1 Mpc. Both the pairwise momentum estimates and the kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of >1 Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydrodynamical simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an effective optical depth to Thomson scattering. Finally, we find τT = (1.4 ± 0.5) × 10 -4; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal Sunyaev-Zeldovich observations.« less

  10. Model of Collective Fish Behavior with Hydrodynamic Interactions

    NASA Astrophysics Data System (ADS)

    Filella, Audrey; Nadal, François; Sire, Clément; Kanso, Eva; Eloy, Christophe

    2018-05-01

    Fish schooling is often modeled with self-propelled particles subject to phenomenological behavioral rules. Although fish are known to sense and exploit flow features, these models usually neglect hydrodynamics. Here, we propose a novel model that couples behavioral rules with far-field hydrodynamic interactions. We show that (1) a new "collective turning" phase emerges, (2) on average, individuals swim faster thanks to the fluid, and (3) the flow enhances behavioral noise. The results of this model suggest that hydrodynamic effects should be considered to fully understand the collective dynamics of fish.

  11. The Interplay between Proto--Neutron Star Convection and Neutrino Transport in Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.

    1998-01-01

    We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric. The peak angle-averaged radial and angular convection velocities are orders of magnitude smaller than they are in the corresponding ``hydrodynamics-only'' models. A simple analytical model supports our numerical results, indicating that the inclusion of neutrino transport reduces the entropy-driven (lepton-driven) convection growth rates and asymptotic velocities by a factor ~3 (50) at the neutrinosphere and a factor ~250 (1000) at ρ = 1012 g cm-3, for both our 15 and 25 M⊙ models. Moreover, when transport is included, the initial postbounce entropy gradient is smoothed out by neutrino diffusion, whereas the initial lepton gradient is maintained by electron capture and neutrino escape near the neutrinosphere. Despite the maintenance of the lepton gradient, proto-neutron star convection does not develop over the 100 ms duration typical of all our simulations, except in the instance where ``low-test'' intial conditions are used, which are generated by core-collapse and bounce simulations that neglect neutrino-electron scattering and ion-ion screening corrections to neutrino-nucleus elastic scattering. Models favoring the development of proto-neutron star convection either by starting with more favorable, albeit artificial (low-test), initial conditions or by including transport corrections that were ignored in our ``fiducial'' models were considered. Our conclusions nonetheless remained the same. Evidence of proto-neutron star convection in our two-dimensional entropy snapshots was minimal, and, as in our fiducial models, the angle-averaged convective velocities when neutrino transport was included remained orders of magnitude smaller than their counterparts in the corresponding hydrodynamics-only models.

  12. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  13. What to expect from dynamical modelling of galactic haloes - II. The spherical Jeans equation

    NASA Astrophysics Data System (ADS)

    Wang, Wenting; Han, Jiaxin; Cole, Shaun; More, Surhud; Frenk, Carlos; Schaller, Matthieu

    2018-06-01

    The spherical Jeans equation (SJE) is widely used in dynamical modelling of the Milky Way (MW) halo potential. We use haloes and galaxies from the cosmological Millennium-II simulation and hydrodynamical APOSTLE (A Project of Simulations of The Local Environment) simulations to investigate the performance of the SJE in recovering the underlying mass profiles of MW mass haloes. The best-fitting halo mass and concentration parameters scatter by 25 per cent and 40 per cent around their input values, respectively, when dark matter particles are used as tracers. This scatter becomes as large as a factor of 3 when using star particles instead. This is significantly larger than the estimated statistical uncertainty associated with the use of the SJE. The existence of correlated phase-space structures that violate the steady-state assumption of the SJE as well as non-spherical geometries is the principal source of the scatter. Binary haloes show larger scatter because they are more aspherical in shape and have a more perturbed dynamical state. Our results confirm that the number of independent phase-space structures sets an intrinsic limiting precision on dynamical inferences based on the steady-state assumption. Modelling with a radius-independent velocity anisotropy, or using tracers within a limited outer radius, result in significantly larger scatter, but the ensemble-averaged measurement over the whole halo sample is approximately unbiased.

  14. Trehalose induced structural modulation of Bovine Serum Albumin at ambient temperature.

    PubMed

    Das, Ahana; Basak, Pijush; Pattanayak, Rudradip; Kar, Turban; Majumder, Rajib; Pal, Debadrita; Bhattacharya, Anindita; Bhattacharyya, Maitree; Banik, Samudra Prosad

    2017-12-01

    Trehalose is a well-known protein stabilizing osmolyte. The present study has been designed to understand the interaction of trehalose with BSA at ambient temperature. Steady state fluorescence and life-time analysis along with CD, DLS and ITC have been employed to show that trehalose causes surface-associated structural perturbation of BSA to promote its compaction. Trehalose at 0.1M concentration resulted in increased solvent exposure of one of the two tryptophans of BSA with a 5nm redshift in emission and enhanced susceptibility to acrylamide quenching with an increase in K SV from 2.61M -1 to 5.16M -1 . 0.5M trehalose resulted in reduced accessibility of tryptophan and destabilization of ANS binding (Forster radius increased from 24Å to 27.36Å for tryptophan-ANS FRET) indicating shielding of BSA in trehalose matrix. Simultaneously, there was compaction of BSA as shown by increased alpha-helicity from 45.85% to 48.81%, decreased thioflavin-T binding and reduction in hydrodynamic radius from 9.69nm to 6.59nm. Trehalose induced solution viscosity resulted in significant decrease in binding affinity of BSA towards curcumin and resveratrol. The results are in unison with the preferential exclusion and vitrification models to explain protein stabilization by trehalose and also points at the structure-function trade-off of proteins in presence of trehalose. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Massive radius-dependent flow slippage in carbon nanotubes

    PubMed Central

    Secchi, Eleonora; Marbach, Sophie; Niguès, Antoine; Stein, Derek; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    Simulations and measurements have established that water moves through carbon nanotubes with exceptionally high rates due to nearly frictionless interfaces1–4. These observations have stimulated interest in nanotube-based membranes for applications that range from desalination to nano-filtration and energy harvesting5–10, yet the exact water transport mechanisms inside the nanotubes and at the water-carbon interface continue to be controversially discussed11,12 because existing theories fail to provide a satisfying explanation for the limited number of experimental results available to date13. This is because even though controlled and systematic studies have explored transport through individual nanotubes8,9,14–7, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube11. Here we show that the pressure-driven flow rate across individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes (CNT), and no slippage in boron-nitride nanotubes (BNNT) that are crystallographically similar to CNTs but differ electronically. This pronounced contrast between the two systems must originate from subtle differences in atomic-scale details of their solid-liquid interfaces, strikingly illustrating that nanofluidics is the frontier where the continuum picture of fluid mechanics confronts the atomic nature of matter. PMID:27604947

  16. Stability of a relativistic rotating electron-positron jet: non-axisymmetric perturbations

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Pariev, V. I.

    1996-07-01

    We investigate the linear stability of a hydrodynamic relativistic flow of magnetized plasma in the simplest case where the energy density of the electromagnetic fields is much greater than the energy density of the matter (including the rest mass energy). This is the force-free approximation. We consider the case of a light cylindrical jet in a cold and dense environment, so that the jet boundary remains at rest. Continuous and discrete spectra of frequencies are investigated analytically. An infinite sequence of eigenfrequencies is found near the edge of the Alfven continuum. Numerical calculations show that modes having reasonable values of azimuthal wavenumber m and radial number n are stable and their attenuation increment gamma is small. The dispersion curves omega=omega(k_----) have a minimum for k_----0~=1/R (R is the jet radius). This results in the accumulation of perturbations inside the jet with wavelengths of the order of the jet radius. The wave crests of the perturbation pattern formed in such a way move along the jet with a velocity exceeding the speed of light. If one has relativistic electrons emitting synchrotron radiation inside the jet, then this pattern will be visible. This provides us with a new type of superluminal source. If the jet is oriented close to the line of sight, then the observer will see knots moving backward to the core.

  17. The way from microscopic many-particle theory to macroscopic hydrodynamics.

    PubMed

    Haussmann, Rudolf

    2016-03-23

    Starting from the microscopic description of a normal fluid in terms of any kind of local interacting many-particle theory we present a well defined step by step procedure to derive the hydrodynamic equations for the macroscopic phenomena. We specify the densities of the conserved quantities as the relevant hydrodynamic variables and apply the methods of non-equilibrium statistical mechanics with projection operator techniques. As a result we obtain time-evolution equations for the hydrodynamic variables with three kinds of terms on the right-hand sides: reversible, dissipative and fluctuating terms. In their original form these equations are completely exact and contain nonlocal terms in space and time which describe nonlocal memory effects. Applying a few approximations the nonlocal properties and the memory effects are removed. As a result we find the well known hydrodynamic equations of a normal fluid with Gaussian fluctuating forces. In the following we investigate if and how the time-inversion invariance is broken and how the second law of thermodynamics comes about. Furthermore, we show that the hydrodynamic equations with fluctuating forces are equivalent to stochastic Langevin equations and the related Fokker-Planck equation. Finally, we investigate the fluctuation theorem and find a modification by an additional term.

  18. Hydrodynamic interaction of swimming organisms in an inertial regime

    NASA Astrophysics Data System (ADS)

    Li, Gaojin; Ostace, Anca; Ardekani, Arezoo M.

    2016-11-01

    We numerically investigate the hydrodynamic interaction of swimming organisms at small to intermediate Reynolds number regimes, i.e., Re˜O (0.1 -100 ) , where inertial effects are important. The hydrodynamic interaction of swimming organisms in this regime is significantly different from the Stokes regime for microorganisms, as well as the high Reynolds number flows for fish and birds, which involves strong flow separation and detached vortex structures. Using an archetypal swimmer model, called a "squirmer," we find that the inertial effects change the contact time and dispersion dynamics of a pair of pusher swimmers, and trigger hydrodynamic attraction for two pullers. These results are potentially important in investigating predator-prey interactions, sexual reproduction, and the encounter rate of marine organisms such as copepods, ctenophora, and larvae.

  19. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  20. Differences in liquid cloud droplet effective radius and number concentration estimates between MODIS Collections 5.1 and 6 over global oceans

    PubMed Central

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1° × 1° and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive (> 50 cm−3) change for C6-derived CDNC relative to C5.1 for the 1.6 µm and 2.1 µm channel retrievals, corresponding to a neutral to −2 µm difference in droplet effective radius. For 3.7 µm retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning −25 to +50 cm−3 related to a +2.5 to −1 µm transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC. PMID:29098040

  1. Differences in Liquid Cloud Droplet Effective Radius and Number Concentration Estimates Between MODIS Collections 5.1 and 6 Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Rausch, John; Meyer, Kerry; Bennartz, Ralf; Platnick, Steven

    2017-01-01

    Differences in cloud droplet effective radius and cloud droplet number concentration (CDNC) estimates inferred from the Aqua MODIS Collections 5.1 and 6 cloud products (MYD06) are examined for warm clouds over global oceans for the year 2008. Individual pixel level retrievals for both collections are aggregated to 1 degree x 1 degree and compared globally and regionally for the three main spectral channel pairs used for MODIS cloud optical property retrievals. Comparisons between both collections are performed for cases in which all three effective radii retrievals are classified by the MODIS Cloud Product as valid. The contribution to the observed differences of several key MYD06 Collection 6 algorithm updates are also explored, with a focus on changes to the surface reflectance model, assumed solar irradiance, above cloud emission, cloud top pressure, and pixel registration. Global results show a neutral to positive ( greater than 50cm(exp. -3) change for C6-derived CDNC relative to C5.1 for the 1.6 micrometers and 2.1 micrometers channel retrievals, corresponding to a neutral to -2 micrometers difference in droplet effective radius. For 3.7 micrometer retrievals, CDNC results show a negative change in the tropics, with differences transitioning toward positive values with increasing latitude spanning -25 to +50 cm(exp. -3) related to a +2.5 to -1 micrometers transition in effective radius. Cloud optical thickness differences were small relative to effective radius, and found to not significantly impact CDNC estimates. Regionally, the magnitude and behavior of the annual CDNC cycle are compared for each effective radius retrieval. Results from this study indicate significant intercollection differences in aggregated values of effective radius due to changes to the pre-computed retrieval lookup tables for ocean scenes, changes to retrieved cloud top pressure, solar irradiance, or above cloud thermal emission, depending upon spectral channel. The observed differences between collections may have implications for existing MODIS derived climatologies and validation studies of effective radius and CDNC.

  2. Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2017-12-01

    Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.

  3. Impacts of Sea Level Rise and Morphological Changes on Tidal Hydrodynamics in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Passeri, D. L.; Hagen, S. C.; Plant, N. G.; Bilskie, M. V.

    2014-12-01

    Sea level rise (SLR) threatens coastal environments with increased erosion, inundation of wetlands, and changes in hydrodynamic patterns. Planning for the effects of SLR requires understanding the coupled response of SLR, geomorphic and hydrodynamic processes; this will provide crucial information for managers to make informed decisions for human and natural communities. Evaluating changes in tidal hydrodynamics under future scenarios is a key aspect for understanding the effects of SLR on coastal systems; tidal hydrodynamics influence inundation, circulation patterns, sediment transport processes, shoreline erosion, and productivity of marshes and other species. This study evaluates the dynamic effects of SLR and morphologic change on tidal hydrodynamics along the Northern Gulf of Mexico (NGOM) coast from Mississippi to the Florida panhandle. A large-scale hydrodynamic model is used to simulate astronomic tides under present (circa 2005), and future conditions (circa 2050 and 2100). The model is modified with specific SLR scenarios, morphology, and shorelines that represent the conditions at each of the time periods. Future sea levels for the years 2050 and 2100 are determined using the Parris et al. (2012) projections. To make projections of future morphology, a Bayesian Network (BN) is implemented. The BN is used to define relationships between forcing mechanisms and coastal responses based on long-term relative SLR, mean wave height, long-term shoreline change rates, mean tidal range, geomorphic setting and coastal slope. Probabilistic predictions of future shoreline positions and dune heights are developed for each SLR scenario for the years 2050 and 2100. The Digital Elevation Model (DEM) is then updated to reflect the future morphologic changes. Comparison of present and future conditions illustrates the hydrodynamic response of the system to the changing landscape. Changes in variables such as harmonic tidal constituents, tidal range, tidal prism, tidal datums, circulation patterns and inundation areas are examined. This provides a better understanding of the physical processes of the current state of the NGOM and gives insight into how future SLR and coastal landscape changes may affect hydrodynamics within the NGOM estuary systems.

  4. [Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].

    PubMed

    Pitsios, T K

    1983-09-01

    Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.

  5. Performance of end-face seals with diametral tilt and coning - Hydrodynamic effects

    NASA Technical Reports Server (NTRS)

    Sharoni, A.; Etsion, I.

    1979-01-01

    Hydrodynamic effects in end-face seals with diametral tilt and coning are analyzed. A closed-form solution for the axial separating force and the restoring and transverse moments is presented that covers the whole range from zero to full angular misalignment at various degrees of coning. Both low-pressure seals with cavitating flow and high-pressure seals with full fluid film are considered. The effect of coning is to reduce the axial force and the restoring and transverse moments compared to their magnitude in flat-face seals. Strong coupling between diametral tilt and transverse moment is demonstrated. This transverse moment which is entirely due to hydrodynamic effects can be the source of dynamic instability in the form of seal wobble.

  6. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  7. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  8. Dependence of the form factor of ganglioside micelles on a conformational change with temperature

    NASA Astrophysics Data System (ADS)

    Corti, Mario; Boretta, Marco; Cantù, Laura; Del Favero, Elena; Lesieur, Pierre

    1996-09-01

    The gangliosides GM2, GM1 and GD1b, biological amphiphiles with a double tail hydrophobic part and an oligosaccharide chain headgroup, form micelles in solution. Light scattering experiments have shown that ganglioside micelles which have gone through a temperature cycle have a smaller molecular mass and hydrodynamic radius than those which have been kept at room temperature. This fact has been interpreted with the hypothesis that, with temperature, the ganglioside molecules undergo a conformational change which affects their micellar properties appreciably. Careful small angle X-ray experiments, aimed to confirm the light scattering data and to evidence differences in the micellar internal structure are presented. Ganglioside micelles are quite inhomogeneous particles with respect to X-ray scattering, since there is a large contrast variation between the inner lipid part and the external hydrated sugar layer. Experimental form factors are fitted with a double-shell oblate-ellipsoid model.

  9. OFF-AXIS THERMAL AND SYNCHROTRON EMISSION FOR SHORT GAMMA RAY BURST

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyi

    2018-01-01

    We present light curves of photospheric and synchrotron emission from a relativistic jet propagating through the ejecta cloud of a neutron star merger. We use a moving-mesh relativistic hydrodynamics code with adaptive mesh refinement to compute the continuous evolution of jet over 13 orders of magnitude in radius from the scale of the central merger engine all the way through the late afterglow phase. As the jet propagates through the cloud it forms a hot cocoon surrounding the jet core. We find that the photospheric emission released by the hot cocoon is bright for on-axis observers and is detectable for off-axis observers at a wide range of observing angles for sufficiently close sources. As the jet and cocoon drive an external shock into the surrounding medium we compute synchrotron light curves and find bright emission for off-axis observers which differs from top-hat Blandford-McKee jets, especially for lower explosion energies.

  10. Interaction of Se{sup 0} nanoparticles stabilized by poly(vinylpyrrolidone) with gel films of cellulose Acetobacter xylinum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baklagina, Yu. G.; Khripunov, A. K.; Tkachenko, A. A.

    2006-07-15

    The sorption and desorption of poly(vinylpyrrolidone)-Se{sup 0} (PVP-Se{sup 0}) nanoparticles on gel films of cellulose Acetobacter xylinum (CAX) are investigated. It is revealed that the hydrodynamic radius R{sub h} of PVP-Se{sup 0} nanoparticles decreases from 57 nm in the initial solution (without CAX gel films) to 25 nm after the sorption of nanostructures on gel films and then increases to approximately 100 nm after the desorption of nanoparticles with water from dry samples of the CAX gel film-PVP-Se{sup 0} nanocomposite. It is found that selenium atoms do not penetrate into crystallites of the cellulose nanofibrils and replace water molecules sorbedmore » by the primary hydroxyl groups of their walls. Poly(vinylpyrrolidone)-Se{sup 0} nanoclusters differ in the number and size upon their sorption inside the cellulose gel film and on the film surface.« less

  11. Tidal disruption of inviscid protoplanets

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.; Cameron, A. G. W.; Benz, W.

    1991-01-01

    Roche showed that equilibrium is impossible for a small fluid body synchronously orbiting a primary within a critical radius now termed the Roche limit. Tidal disruption of orbitally unbound bodies is a potentially important process for planetary formation through collisional accumulation, because the area of the Roche limit is considerably larger then the physical cross section of a protoplanet. Several previous studies were made of dynamical tidal disruption and different models of disruption were proposed. Because of the limitation of these analytical models, we have used a smoothed particle hydrodynamics (SPH) code to model the tidal disruption process. The code is basically the same as the one used to model giant impacts; we simply choose impact parameters large enough to avoid collisions. The primary and secondary both have iron cores and silicate mantles, and are initially isothermal at a molten temperature. The conclusions based on the analytical and numerical models are summarized.

  12. Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers

    NASA Technical Reports Server (NTRS)

    Tong, P.; Ackerson, B. J.

    1999-01-01

    A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.

  13. Semi-analytic model of plasma-jet-driven magneto-inertial fusion

    DOE PAGES

    Langendorf, Samuel J.; Hsu, Scott C.

    2017-03-01

    A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less

  14. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    PubMed

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  15. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.

    PubMed

    Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun

    2014-09-01

    Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.

  16. Microworm optode sensors limit particle diffusion to enable in vivo measurements.

    PubMed

    Ozaydin-Ince, Gozde; Dubach, J Matthew; Gleason, Karen K; Clark, Heather A

    2011-02-15

    There have been a variety of nanoparticles created for in vivo uses ranging from gene and drug delivery to tumor imaging and physiological monitoring. The use of nanoparticles to measure physiological conditions while being fluorescently addressed through the skin provides an ideal method toward minimally invasive health monitoring. Here we create unique particles that have all the necessary physical characteristics to serve as in vivo reporters, but with minimized diffusion from the point of injection. These particles, called microworms, have a cylindrical shape coated with a biocompatible porous membrane that possesses a large surface-area-to-volume ratio while maintaining a large hydrodynamic radius. We use these microworms to create fluorescent sodium sensors for use as in vivo sodium concentration detectors after subcutaneous injection. However, the microworm concept has the potential to extend to the immobilization of other types of polymers for continuous physiological detection or delivery of molecules.

  17. Effect of microstructure and notch root radius on fracture toughness of an aluminum metal matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Recent results on the effects of matrix aging condition (matrix temper) and notch root radius on the measured fracture toughness of a SiC particulate reinforced aluminum alloy are reviewed. Stress intensity factors at catastrophic fracture were obtained for both underaged and overaged composites reveal. The linear relation found between apparent fracture toughness and the square root of the notch root radius implies a linear dependence of the crack opening displacement on the notch root radius. The results suggest a strain controlled fracture process, and indicate that there are differences in the fracture micromechanisms of the two aging conditions.

  18. Relativistic Gurzhi effect in channels of Dirac materials

    NASA Astrophysics Data System (ADS)

    Kashuba, Oleksiy; Trauzettel, Björn; Molenkamp, Laurens W.

    2018-05-01

    Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime, where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic transport, can be observed.

  19. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  20. Composite generalized Langevin equation for Brownian motion in different hydrodynamic and adhesion regimes.

    PubMed

    Yu, Hsiu-Yu; Eckmann, David M; Ayyaswamy, Portonovo S; Radhakrishnan, Ravi

    2015-05-01

    We present a composite generalized Langevin equation as a unified framework for bridging the hydrodynamic, Brownian, and adhesive spring forces associated with a nanoparticle at different positions from a wall, namely, a bulklike regime, a near-wall regime, and a lubrication regime. The particle velocity autocorrelation function dictates the dynamical interplay between the aforementioned forces, and our proposed methodology successfully captures the well-known hydrodynamic long-time tail with context-dependent scaling exponents and oscillatory behavior due to the binding interaction. Employing the reactive flux formalism, we analyze the effect of hydrodynamic variables on the particle trajectory and characterize the transient kinetics of a particle crossing a predefined milestone. The results suggest that both wall-hydrodynamic interactions and adhesion strength impact the particle kinetics.

  1. Numerical Modeling of Fluid Flow in Solid Tumors

    PubMed Central

    Soltani, M.; Chen, P.

    2011-01-01

    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges. PMID:21673952

  2. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    PubMed Central

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-01-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition. PMID:26658159

  3. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.

    2015-12-01

    Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (<1 μm) than for colloids and was numerically simulated using a Convective-Diffusion model and experimentally validated. Inclusion of flow field and hydrodynamic retardation effects explained particle deposition profiles better than when only the Derjaguin-Landau-Verwey-Overbeek (DLVO) force was considered. This work provides 1) a first comprehensive framework for describing the hydrodynamic impacts of nano-scale surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.

  4. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other between the viscosity and hydrodynamic radii, as potential measures of shape anisotropy. We also find a strong correlation between anisotropy and effective fractal dimension. These observations should provide new practical methods for quantifying the nature of particle clustering in diverse contexts.

  5. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings

    NASA Astrophysics Data System (ADS)

    Su, Yu; Swan, James W.; Zia, Roseanna N.

    2017-03-01

    Accurate modeling of particle interactions arising from hydrodynamic, entropic, and other microscopic forces is essential to understanding and predicting particle motion and suspension behavior in complex and biological fluids. The long-range nature of hydrodynamic interactions can be particularly challenging to capture. In dilute dispersions, pair-level interactions are sufficient and can be modeled in detail by analytical relations derived by Jeffrey and Onishi [J. Fluid Mech. 139, 261-290 (1984)] and Jeffrey [Phys. Fluids A 4, 16-29 (1992)]. In more concentrated dispersions, analytical modeling of many-body hydrodynamic interactions quickly becomes intractable, leading to the development of simplified models. These include mean-field approaches that smear out particle-scale structure and essentially assume that long-range hydrodynamic interactions are screened by crowding, as particle mobility decays at high concentrations. Toward the development of an accurate and simplified model for the hydrodynamic interactions in concentrated suspensions, we recently computed a set of effective pair of hydrodynamic functions coupling particle motion to a hydrodynamic force and torque at volume fractions up to 50% utilizing accelerated Stokesian dynamics and a fast stochastic sampling technique [Zia et al., J. Chem. Phys. 143, 224901 (2015)]. We showed that the hydrodynamic mobility in suspensions of colloidal spheres is not screened, and the power law decay of the hydrodynamic functions persists at all concentrations studied. In the present work, we extend these mobility functions to include the couplings of particle motion and straining flow to the hydrodynamic stresslet. The couplings computed in these two articles constitute a set of orthogonal coupling functions that can be utilized to compute equilibrium properties in suspensions at arbitrary concentration and are readily applied to solve many-body hydrodynamic interactions analytically.

  6. A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped droplets using Cox theory

    NASA Astrophysics Data System (ADS)

    Wörner, M.; Cai, X.; Alla, H.; Yue, P.

    2018-03-01

    The Cox–Voinov law on dynamic spreading relates the difference between the cubic values of the apparent contact angle (θ) and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing spreading results with this hydrodynamic wetting theory requires accurate data of θ and U during the entire process. We consider the case when gravitational forces are negligible, so that the shape of the spreading drop can be closely approximated by a spherical cap. Using geometrical dependencies, we transform the general Cox law in a semi-analytical relation for the temporal evolution of the spreading radius. Evaluating this relation numerically shows that the spreading curve becomes independent from the gas viscosity when the latter is less than about 1% of the drop viscosity. Since inertia may invalidate the made assumptions in the initial stage of spreading, a quantitative criterion for the time when the spherical-cap assumption is reasonable is derived utilizing phase-field simulations on the spreading of partially wetting droplets. The developed theory allows us to compare experimental/computational spreading curves for spherical-cap shaped droplets with Cox theory without the need for instantaneous data of θ and U. Furthermore, the fitting of Cox theory enables us to estimate the effective slip length. This is potentially useful for establishing relationships between slip length and parameters in numerical methods for moving contact lines.

  7. Galactic satellite systems: radial distribution and environment dependence of galaxy morphology

    NASA Astrophysics Data System (ADS)

    Ann, H. B.; Park, Changbom; Choi, Yun-Young

    2008-09-01

    We have studied the radial distribution of the early (E/S0) and late (S/Irr) types of satellites around bright host galaxies. We made a volume-limited sample of 4986 satellites brighter than Mr = -18.0 associated with 2254 hosts brighter than Mr = -19.0 from the Sloan Digital Sky Survey Data Release 5 sample. The morphology of satellites is determined by an automated morphology classifier, but the host galaxies are visually classified. We found segregation of satellite morphology as a function of the projected distance from the host galaxy. The amplitude and shape of the early-type satellite fraction profile are found to depend on the host luminosity. This is the morphology-radius/density relation at the galactic scale. There is a strong tendency for morphology conformity between the host galaxy and its satellites. The early-type fraction of satellites hosted by early-type galaxies is systematically larger than that of late-type hosts, and is a strong function of the distance from the host galaxies. Fainter satellites are more vulnerable to the morphology transformation effects of hosts. Dependence of satellite morphology on the large-scale background density was detected. The fraction of early-type satellites increases in high-density regions for both early- and late-type hosts. It is argued that the conformity in morphology of galactic satellite system is mainly originated by the hydrodynamical and radiative effects of hosts on satellites.

  8. Semiempirical limits on the thermal conductivity of intracluster gas

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Hughes, John P.; Tucker, Wallace H.

    1992-01-01

    A semiempirical method for establishing lower limits on the thermal conductivity of hot gas in clusters of galaxies is described. The method is based on the observation that the X-ray imaging data (e.g., Einstein IPC) for clusters are well described by the hydrostatic-isothermal beta model, even for cooling flow clusters beyond about one core radius. In addition, there are strong indications that noncooling flow clusters (like the Coma Cluster) have a large central region (up to several core radii) of nearly constant gas temperature. This suggests that thermal conduction is an effective means of transporting and redistributing the thermal energy of the gas. This in turn has implications for the extent to which magnetic fields in the cluster are effective in reducing the thermal conductivity of the gas. Time-dependent hydrodynamic simulations for the gas in the Coma Cluster under two separate evolutionary scenarios are presented. One scenario assumes that the cluster potential is static and that the gas has an initial adiabatic distribution. The second scenario uses an evolving cluster potential. These models along with analytic results show that the thermal conductivity of the gas in the Coma Cluster cannot be less than 0.1 of full Spitzer conductivity. These models also show that high gas conductivity assists rather than hinders the development of radiative cooling in the central regions of clusters.

  9. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    NASA Technical Reports Server (NTRS)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  10. Fibrillar disruption by AC electric field induced oscillation: A case study with human serum albumin.

    PubMed

    Sen, Shubhatam; Chakraborty, Monojit; Goley, Snigdha; Dasgupta, Swagata; DasGupta, Sunando

    2017-07-01

    The effect of oscillation induced by a frequency-dependent alternating current (AC) electric field to dissociate preformed amyloid fibrils has been investigated. An electrowetting-on-dielectric type setup has been used to apply the AC field of varying frequencies on preformed fibrils of human serum albumin (HSA). The disintegration potency has been monitored by a combination of spectroscopic and microscopic techniques. The experimental results suggest that the frequency of the applied AC field plays a crucial role in the disruption of preformed HSA fibrils. The extent of stress generated inside the droplet due to the application of the AC field at different frequencies has been monitored as a function of the input frequency of the applied AC voltage. This has been accomplished by assessing the morphology deformation of the oscillating HSA fibril droplets. The shape deformation of the oscillating droplets is characterized using image analysis by measuring the dynamic changes in the shape dependent parameters such as contact angle and droplet footprint radius and the amplitude. It is suggested that the cumulative effects of the stress generated inside the HSA fibril droplets due to the shape deformation induced hydrodynamic flows and the torque induced by the intrinsic electric dipoles of protein due to their continuous periodic realignment in presence of the AC electric field results in the destruction of the fibrillar species. Copyright © 2017. Published by Elsevier B.V.

  11. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-21

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s -1 ) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  12. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    NASA Astrophysics Data System (ADS)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  13. Simulations of sheared dense noncolloidal suspensions: Evaluation of the role of long-range hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gallier, Stany; Peters, François; Lobry, Laurent

    2018-04-01

    This work intends to evaluate the role of many-body long-range hydrodynamics by simulations of sheared neutrally buoyant non-Brownian, noncolloidal suspensions. Three-dimensional simulations of sheared suspensions are conducted with and without long-range hydrodynamics, for a volume fraction range between 0.1-0.62 (frictionless) and 0.1-0.56 (frictional). Discarding long-range hydrodynamics has only a moderate effect on viscosity for the range of volume fractions investigated and viscosities diverge with similar scaling laws; the critical fraction is found to be approximately 0.64 (frictionless) and 0.58 (frictional). Conversely, many-body hydrodynamics are found to affect diffusion and particle velocities, which are correlated on a longer range when long-range interactions are included, even in dense suspensions. This means that long-range hydrodynamics may not be significantly screened by crowding. Assuming only short-range lubrication interactions is therefore suitable for predicting viscosity in noncolloidal suspensions but becomes questionable when flow details (e.g., diffusion or velocity correlations) are needed.

  14. OASIS Observation and Analysis of Smectic Islands in Space

    NASA Technical Reports Server (NTRS)

    Tin, Padetha

    2014-01-01

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that will probe the interfacial and hydrodynamic behavior of freely suspended liquid crystal films in space. These are the thinnest known stable condensed phase structures, making them ideal for studies of fluctuation and interface phenomena. The experiments seek to verify theories of coarsening dynamics, hydrodynamic flow, relaxation of hydrodynamic perturbations, and hydrodynamic interactions of a near two-dimensional structure. The effects of introducing islands or droplets on a very thin bubble will be studied, both as controllable inclusions that modify the flow and as markers of flow.

  15. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators

    NASA Astrophysics Data System (ADS)

    Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.

    2018-05-01

    Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.

  16. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.

    2011-06-20

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varyingmore » sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 {mu}m) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.« less

  17. Fluid flows created by swimming bacteria drive self-organization in confined suspensions

    PubMed Central

    Lushi, Enkeleida; Wioland, Hugo; Goldstein, Raymond E.

    2014-01-01

    Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell–cell and cell–fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms. PMID:24958878

  18. Migration of Gas Giant Planets in a Gravitationally Unstable Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.

    2017-01-01

    Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.

  19. Imprints of feedback in young gasless clusters?

    NASA Astrophysics Data System (ADS)

    Parker, Richard J.; Dale, James E.

    2013-06-01

    We present the results of N-body simulations in which we take the masses, positions and velocities of sink particles from five pairs of hydrodynamical simulations of star formation by Dale et al. and evolve them for further 10 Myr. We compare the dynamical evolution of star clusters that formed under the influence of mass-loss driven by photoionization feedback to the evolution of clusters that formed without feedback. We remove any remaining gas and follow the evolution of structure in the clusters (measured by the Q-parameter), half-mass radius, central density, surface density and the fraction of bound stars. There is little discernible difference in the evolution of clusters that formed with feedback compared to those that formed without. The only clear trend is that all clusters which form without feedback in the hydrodynamical simulations lose any initial structure over 10 Myr, whereas some of the clusters which form with feedback retain structure for the duration of the subsequent N-body simulation. This is due to lower initial densities (and hence longer relaxation times) in the clusters from Dale et al. which formed with feedback, which prevents dynamical mixing from erasing substructure. However, several other conditions (such as supervirial initial velocities) also preserve substructure, so at a given epoch one would require knowledge of the initial density and virial state of the cluster in order to determine whether star formation in a cluster has been strongly influenced by feedback.

  20. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  2. Applying a Hydrodynamical Treatment of Stream Flow and Accretion Disk Formation in WASP-12/b Exoplanetary System

    NASA Astrophysics Data System (ADS)

    Weaver, Ian; Lopez, Aaron; Macias, Phil

    2016-01-01

    WASP-12b is a hot Jupiter orbiting dangerously close to its parent star WASP-12 at a radius 1/44th the distance between the Earth and the Sun, or roughly 16 times closer than Mercury. WASP-12's gravitational influence at this incredibly close proximity generates tidal forces on WASP-12b that distort the planet into an egg-like shape. As a result, the planet's surface overflows its Roche lobe through L1, transferring mass to the host star at a rate of 270 million metric tonnes per second. This mass transferring stream forms an accretion disk that transits the parent star, which aids sensitive instruments, such as the Kepler spacecraft, whose role is to examine the periodic dimming of main sequence stars in order to detect ones with orbiting planets. The quasi-ballistic stream trajectory is approximated by that of a massless point particle released from analogous initial conditions in 2D. The particle dynamics are shown to deviate negligibly across a broad range of initial conditions, indicating applicability of our model to "WASP-like" systems in general. We then apply a comprehensive fluid treatment by way of hydrodynamical code FLASH in order to directly model the behavior of mass transfer in a non-inertial reference frame and subsequent disk formation. We hope to employ this model to generate virtual spectroscopic signatures and compare them against collected light curve data from the Hubble Space Telescope's Cosmic Origins Spectrograph (COS).

  3. Charge radius of the 13N* proton halo nucleus with Halo Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Mosavi Khansari, M.; Khalili, H.; Sadeghi, H.

    2018-02-01

    We evaluated the charge radius of the first excited state of 13N with halo Effective Field Theory (hEFT) at the low energies. The halo effective field theory without pion is used to examine the halo nucleus bound state with a large S-wave scattering length. We built Lagrangian from the effective core and the valence proton of the fields and obtained the charge form factor at Leading-Order (LO). The charge radius at leading order for the first excited state of the proton halo nucleus, 13N, has been estimated as rc = 2.52 fm. This result is without any finite-size contributions included from the core and the proton. If we consider the contributions of the charge radius of the proton and the core, the result will be [rC]13N* = 5.85 fm.

  4. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  5. A theoretical study of hydrodynamic cavitation.

    PubMed

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  6. Hydrodynamic impact of a system with a single elastic mode I : theory and generalized solution with an application to an elastic airframe

    NASA Technical Reports Server (NTRS)

    Mayo, Wilbur L

    1952-01-01

    Solutions of impact of a rigid prismatic float connected by a massless spring to a rigid upper mass are presented. The solutions are based on hydrodynamic theory which has been experimentally confirmed for a rigid structure. Equations are given for defining the spring constant and the ratio of the sprung mass to the lower mass so that the two-mass system provides representation of the fundamental mode of an airplane wing. The forces calculated are more accurate than the forces which would be predicted for a rigid airframe since the effect of the fundamental mode on the hydrodynamic force is taken into account. In a comparison of the theoretical data with data for a severe flight-test landing impact, the effect of the fundamental mode on the hydrodynamic force is considered and response data are compared with experimental data.

  7. Free vibration of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, C. Y.; Ru, C. Q.; Mioduchowski, A.

    2005-06-01

    A multiple-elastic shell model is applied to systematically study free vibration of multiwall carbon nanotubes (MWNTs). Using Flugge [Stresses in Shells (Springer, Berlin, 1960)] equations of elastic shells, vibrational frequencies and associated modes are calculated for MWNTs of innermost radii 5 and 0.65 nm, respectively. The emphasis is placed on the effect of interlayer van der Waals (vdW) interaction on free vibration of MWNTs. Our results show that the interlayer vdW interaction has a crucial effect on radial (R) modes of large-radius MWNTs (e.g., of the innermost radius 5 nm), but is less pronounced for R modes of small-radius MWNTs (e.g., of the innermost radius 0.65 nm), and usually negligible for torsional (T) and longitudinal (L) modes of MWNTs. This is attributed to the fact that the interlayer vdW interaction, characterized by a radius-independent vdW interaction coefficient, depends on radial deflections only, and is dominant only for large-radius MWNTs of lower radial rigidity but less pronounced for small-radius MWNTs of much higher radial rigidity. As a result, the R modes of large-radius MWNTs are typically collective motions of almost all nested tubes, and the R modes of small-radius MWNTs, as well as the T and L modes of MWNTs, are basically vibrations of individual tubes. In particular, an approximate single-shell model is suggested to replace the multiple-shell model in calculating the lowest frequency of R mode of thin MWNTs (defined by the innermost radius-to-thickness ratio not less than 4) with relative errors less than 10%. In addition, the simplified Flugge single equation is adopted to substitute the exact Flugge equations in determining the R-mode frequencies of MWNTs with relative errors less than 10%.

  8. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  9. Moving-mesh cosmology: characteristics of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2012-09-01

    We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates of massive galaxies in AREPO also slightly increase the baryon content within the virial radius of massive haloes. We show that these differences persist as a function of numerical resolution. While both codes agree to acceptable accuracy on a number of baryonic properties of cosmic structures, our results thus clearly demonstrate that galaxy formation simulations greatly benefit from the use of more accurate hydrodynamical techniques such as AREPO and call into question the reliability of galaxy formation studies in a cosmological context using traditional standard formulations of SPH, such as the one implemented in GADGET. Our new moving-mesh simulations demonstrate that a population of extended gaseous discs of galaxies in large volume cosmological simulations can be formed even without energetic feedback in the form of galactic winds, although such outflows appear required to obtain realistic stellar masses.

  10. Hydrodynamical analysis of the effect of fish fins morphology

    NASA Astrophysics Data System (ADS)

    Azwadi Che Sidik, Nor; Yen, Tey Wah

    2013-12-01

    The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.

  11. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  12. Utilizing dimensional analysis with observed data to determine the significance of hydrodynamic solutions in coastal hydrology

    USGS Publications Warehouse

    Swain, Eric D.; Decker, Jeremy D.; Hughes, Joseph D.

    2014-01-01

    In this paper, the authors present an analysis of the magnitude of the temporal and spatial acceleration (inertial) terms in the surface-water flow equations and determine the conditions under which these inertial terms have sufficient magnitude to be required in the computations. Data from two South Florida field sites are examined and the relative magnitudes of temporal acceleration, spatial acceleration, and the gravity and friction terms are compared. Parameters are derived by using dimensionless numbers and applied to quantify the significance of the hydrodynamic effects. The time series of the ratio of the inertial and gravity terms from field sites are presented and compared with both a simplified indicator parameter and a more complex parameter called the Hydrodynamic Significance Number (HSN). Two test-case models were developed by using the SWIFT2D hydrodynamic simulator to examine flow behavior with and without the inertial terms and compute the HSN. The first model represented one of the previously-mentioned field sites during gate operations of a structure-managed coastal canal. The second model was a synthetic test case illustrating the drainage of water down a sloped surface from an initial stage while under constant flow. The analyses indicate that the times of substantial hydrodynamic effects are sporadic but significant. The simplified indicator parameter correlates much better with the hydrodynamic effect magnitude for a constant width channel such as Miami Canal than at the non-uniform North River. Higher HSN values indicate flow situations where the inertial terms are large and need to be taken into account.

  13. Scaling laws and dynamics of bubble coalescence

    NASA Astrophysics Data System (ADS)

    Anthony, Christopher R.; Kamat, Pritish M.; Thete, Sumeet S.; Munro, James P.; Lister, John R.; Harris, Michael T.; Basaran, Osman A.

    2017-08-01

    The coalescence of bubbles and drops plays a central role in nature and industry. During coalescence, two bubbles or drops touch and merge into one as the neck connecting them grows from microscopic to macroscopic scales. The hydrodynamic singularity that arises when two bubbles or drops have just touched and the flows that ensue have been studied thoroughly when two drops coalesce in a dynamically passive outer fluid. In this paper, the coalescence of two identical and initially spherical bubbles, which are idealized as voids that are surrounded by an incompressible Newtonian liquid, is analyzed by numerical simulation. This problem has recently been studied (a) experimentally using high-speed imaging and (b) by asymptotic analysis in which the dynamics is analyzed by determining the growth of a hole in the thin liquid sheet separating the two bubbles. In the latter, advantage is taken of the fact that the flow in the thin sheet of nonconstant thickness is governed by a set of one-dimensional, radial extensional flow equations. While these studies agree on the power law scaling of the variation of the minimum neck radius with time, they disagree with respect to the numerical value of the prefactors in the scaling laws. In order to reconcile these differences and also provide insights into the dynamics that are difficult to probe by either of the aforementioned approaches, simulations are used to access both earlier times than has been possible in the experiments and also later times when asymptotic analysis is no longer applicable. Early times and extremely small length scales are attained in the new simulations through the use of a truncated domain approach. Furthermore, it is shown by direct numerical simulations in which the flow within the bubbles is also determined along with the flow exterior to them that idealizing the bubbles as passive voids has virtually no effect on the scaling laws relating minimum neck radius and time.

  14. Particles decorated by an ionizable thermoresponsive polymer brush in water: experiments and self-consistent field modeling.

    PubMed

    Alves, S P C; Pinheiro, J P; Farinha, J P S; Leermakers, F A M

    2014-03-20

    We have synthesized anionic multistimuli responsive core-shell polymer nanoparticles with low size dispersity composed of glassy poly(methyl methacrylate) (PMMA) cores of ca. 40 nm radius and poly(N-isopropylacrylamide) (PNIPAM) anionic brush-like shells with methacrylic acid comonomers. Using dynamic light scattering, we observed a volume phase transition upon an increase in temperature and this response was pH and ionic strength dependent. Already at room temperature we observed a pronounced polyelectrolyte effect, that is, a shift of the apparent pKa extracted from the degree of dissociation of the acids as a function of the pH. The multiresponsive behavior of the hydrophobic polyelectrolyte brush has been modeled using the Scheutjens-Fleer self-consistent field (SF-SCF) approach. Using a phenomenological relation between the Flory-Huggins χ parameter and the temperature, we confront the predicted change in the brush height with the observed change of the hydrodynamic radius and degree of dissociation and obtain estimates for the average chain lengths (number of Kuhn segments) of the corona chains, the grafting density and charge density distributions. The theory reveals a rich internal structure of the hydrophobic polyelectrolyte brush, especially near the collapse transition, where we find a microphase segregated structure. Considering this complexity, it is fair to state that the theoretical predictions follow the experimental data semiquantitatively, and it is attractive to attribute the observed disparity between theory and experiments to the unknown polydispersity of the chains, the unknown distribution of the charges, or other experimental complications. More likely, however, the deviations point to significant problems of the mean field theory, which focuses solely on the radial distributions and ignores the possibility of the formation of lateral (local) inhomogeneities in partially collapsed polyelectrolyte brushes. We argue that the PNIPAM brush at room temperature is already behaving nonideally.

  15. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  16. Gaseous Structures in Barred Galaxies: Effects of the Bar Strength

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young; Kim, Yonghwi

    2012-10-01

    Using hydrodynamic simulations, we investigate the physical properties of gaseous substructures in barred galaxies and their relationships with the bar strength. The gaseous medium is assumed to be isothermal and unmagnetized. The bar potential is modeled as a Ferrers prolate with index n. To explore situations with differing bar strength, we vary the bar mass f bar relative to the spheroidal component as well as its aspect ratio { R}. We derive expressions as functions of f bar and { R} for the bar strength Qb and the radius r(Qb ) where the maximum bar torque occurs. When applied to observations, these expressions suggest that bars in real galaxies are most likely to have f bar ~ 0.25-0.50 and n <~ 1. Dust lanes approximately follow one of the x 1-orbits and tend to be straighter under a stronger and more elongated bar, but are insensitive to the presence of self-gravity. A nuclear ring of a conventional x 2 type forms only when the bar is not so massive or elongated. The radius of an x 2-type ring is generally smaller than the inner Lindblad resonance, decreases systematically with increasing Qb , and is slightly larger when self-gravity is included. This is evidence that the ring position is not determined by the resonance, but instead by the amount of angular momentum loss at dust-lane shocks. Nuclear spirals exist only when the ring is of the x 2 type and is sufficiently large in size. Unlike the other features, nuclear spirals are transient in that they start out being tightly wound and weak, and then, due to the nonlinear effect, unwind and become stronger until they turn into shocks, with an unwinding rate that is higher for larger Qb . The mass inflow rate to the galaxy center is found to be less than 0.01 M ⊙ yr-1 for models with Qb <~ 0.2, while becoming larger than 0.1 M ⊙ yr-1 when Qb >~ 0.2 and self-gravity is included.

  17. The effect of non-gravitational gas heating in groups and clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Borgani, S.; Governato, F.; Wadsley, J.; Menci, N.; Tozzi, P.; Quinn, T.; Stadel, J.; Lake, G.

    2002-10-01

    We present a detailed study of a set of gas-dynamical simulations of galaxy groups and clusters in a flat, Λ-cold dark matter (ΛCDM) model with Ωm= 0.3, aimed at exploring the effect of non-gravitational heating on the observable properties of the intracluster medium (ICM). We use GASOLINE, a version of the code PKDGRAV that includes a smoothed particle hydrodynamics description of hydrodynamics to simulate the formation of four haloes with virial temperatures in the range 0.5 <~T<~ 8 keV. These simulations resolve the structure and properties of the ICM down to a small fraction of the virial radius, Rvir. At our resolution X-ray luminosities, LX, of runs with gravitational heating only are in good agreement with analytical predictions, which assume a universal profile for CDM haloes, over almost two orders of magnitude in mass. For each simulated structure, non-gravitational heating of the ICM is implemented in two different ways: (i) by imposing a minimum-entropy floor, Sfl, at a given redshift, which we take in the range 1<=z<= 5; (ii) by gradually heating gas within collapsed regions, proportionally to the supernova rate expected from semi-analytical modelling of galaxy formation in haloes having mass equal to that of the simulated systems. Our main results are the following. (i) An extra heating energy Eh>~ 1 keV per gas particle within Rvir at z= 0 is required to reproduce the observed LX-T relation, independent of whether it is provided in an impulsive way to create an entropy floor Sfl= 50-100 keV cm2, or is modulated in redshift according to the star formation rate; our supernova (SN) feedback recipe provides at most Eh~= 1/3 keV particle-1 and, therefore, its effect on the LX-T relation is too small to account for the observed LX-T relation. (ii) The required heating implies, in small groups with T~ 0.5 keV, a baryon fraction as low as <~40 per cent of the cosmic value at Rvir/2 this fraction increases to about 80 per cent for a T~= 3 keV cluster. (iii) Temperature profiles are almost scale-free across the whole explored mass range, with T decreasing by a factor of 3 at the virial radius. (iv) The mass-temperature relation is almost unaffected by non-gravitational heating and follows quite closely the M~T3/2 scaling; however, when compared with data on the M500-Tew relation, it has a ~40 per cent higher normalization. This discrepancy is independent of the heating scheme adopted. The inclusion of cooling in a run of a small group steepens the central profile of the potential well while removing gas from the diffuse phase. This has the effects of increasing Tew by ~30 per cent, possibly reconciling the simulated and the observed M500-Tew relations, and of decreasing LX by ~40 per cent. However, in spite of the inclusion of SN feedback energy, almost 40 per cent of the gas drops out from the hot diffuse phase, in excess of current observational estimates of the number of cold baryons in galaxy systems. It is likely that only a combination of different heating sources (SNe and active galactic nuclei) and cooling will be able to reproduce both the LX-Tew and M500-Tew relations, as observed in groups and clusters, while balancing the cooling runaway.

  18. Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. II - Marine stratocumulus observations

    NASA Technical Reports Server (NTRS)

    Nakajima, Teruyuki; King, Michael D.; Spinhirne, James D.; Radke, Lawrence F.

    1991-01-01

    A multispectral scanning radiometer has been used to obtain measurements of the reflection function of marine stratocumulus clouds at 0.75 micron and at 1.65 and 2.16 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE, conducted off the coast of southern California during July 1987. Multispectral images of the reflection function were used to derive the optical thickness and the effective particle radius of stratiform cloud layers on four days. In addition to the radiation measurements, in situ microphysical measurements were obtained from an aircraft. In this paper, the remote sensing results are compared with in situ observations, which show a good spatial correlation for both optical thickness and effective radius. These comparisons further show systematic differences between remote sensing and in situ values, with a tendency for remote sensing to overestimate the effective radius by about 2-3 microns, independent of particle radius. The optical thickness, in contrast, is somewhat overestimated for small optical thicknesses and underestimated for large optical thicknesses. An introduction of enhanced gaseous absorption at a wavelength of 2.16 microns successfully explains some of these observed discrepancies.

  19. Radiation-induced synthesis of poly(acrylic acid) nanogels

    NASA Astrophysics Data System (ADS)

    Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr

    2018-01-01

    Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.

  20. Role of Reverse Divalent Cation Diffusion in Forward Osmosis Biofouling.

    PubMed

    Xie, Ming; Bar-Zeev, Edo; Hashmi, Sara M; Nghiem, Long D; Elimelech, Menachem

    2015-11-17

    We investigated the role of reverse divalent cation diffusion in forward osmosis (FO) biofouling. FO biofouling by Pseudomonas aeruginosa was simulated using pristine and chlorine-treated thin-film composite polyamide membranes with either MgCl2 or CaCl2 draw solution. We related FO biofouling behavior-water flux decline, biofilm architecture, and biofilm composition-to reverse cation diffusion. Experimental results demonstrated that reverse calcium diffusion led to significantly more severe water flux decline in comparison with reverse magnesium permeation. Unlike magnesium, reverse calcium permeation dramatically altered the biofilm architecture and composition, where extracellular polymeric substances (EPS) formed a thicker, denser, and more stable biofilm. We propose that FO biofouling was enhanced by complexation of calcium ions to bacterial EPS. This hypothesis was confirmed by dynamic and static light scattering measurements using extracted bacterial EPS with the addition of either MgCl2 or CaCl2 solution. We observed a dramatic increase in the hydrodynamic radius of bacterial EPS with the addition of CaCl2, but no change was observed after addition of MgCl2. Static light scattering revealed that the radius of gyration of bacterial EPS with addition of CaCl2 was 20 times larger than that with the addition of MgCl2. These observations were further confirmed by transmission electron microscopy imaging, where bacterial EPS in the presence of calcium ions was globular, while that with magnesium ions was rod-shaped.

  1. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    PubMed

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  2. Lane-Emden equation with inertial force and general polytropic dynamic model for molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken

    2018-01-01

    We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n < 5, we adjust the inertial force parameter c and find the range of c > 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.

  3. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less

  4. Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin

    2017-06-01

    We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.

  5. Radius morphology and its effects on rotation with contoured and noncontoured plating of the proximal radius.

    PubMed

    Rupasinghe, Shavantha L; Poon, Peter C

    2012-05-01

    The radius has a sagittal bow and a coronal bow. Fractures are often treated with volar anterior plating. However, the sagittal bow is often overlooked when plating. This study looks at radial morphology and the effect of plating the proximal radius with straight plates and then contoured plates bowed in the sagittal plane. We report our findings and their effect on forearm rotation. Morphology was investigated in 14 radii. Attention was paid to the proximal shaft of the radius and its sagittal bow; from this, 6-, 7-, and 8-hole plates were contoured to fit this bow. A simple transverse fracture was then made at the apex of this bow in 23 cadaver arms. Supination and pronation were compared when plating with a straight plate and a contoured plate. Ten cadavers underwent ulna plating at the same level. The effect on rotation of fractures plated in the distal-third shaft was also measured. A significant reduction in rotation was found when a proximal radius fracture was plated with a straight plate compared with a contoured plate: 10.8°, 12.8°, and 21.7° for 6-, 7-, and 8-hole plates, respectively (P < .05). Forearm rotation was decreased further when a longer plate was used. Ulna or distal shaft plating did not reduce rotation. This study has shown a significant sagittal bow of the proximal shaft of the radius. Plating this with contoured plates in the sagittal plane improves rotation when compared with straight plates. Additional ulna plating is not a source of reduced forearm rotation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  6. Surface Piercing Propeller Performance

    DTIC Science & Technology

    2005-09-01

    solid body ( hydrodynamic cavitation ) or by high-intensity sound waves (acoustic cavitation). A Research study done by Yin Lu Young at UT studied and...discusses the effect of hydrodynamic cavitation , which occurs when pressure drops below the saturated vapor pressure, consequently resulting in the

  7. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.

    PubMed

    Raut-Jadhav, Sunita; Saini, Daulat; Sonawane, Shirish; Pandit, Aniruddha

    2016-01-01

    Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC+Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hydrodynamic stability of the painted turtle (Chrysemys picta): effects of four-limbed rowing versus forelimb flapping in rigid-bodied tetrapods

    PubMed Central

    Rivera, Gabriel; Rivera, Angela R. V.; Blob, Richard W.

    2011-01-01

    Hydrodynamic stability is the ability to resist recoil motions of the body produced by destabilizing forces. Previous studies have suggested that recoil motions can decrease locomotor performance, efficiency and sensory perception and that swimming animals might utilize kinematic strategies or possess morphological adaptations that reduce recoil motions and produce more stable trajectories. We used high-speed video to assess hydrodynamic stability during rectilinear swimming in the freshwater painted turtle (Chrysemys picta). Parameters of vertical stability (heave and pitch) were non-cyclic and variable, whereas measures of lateral stability (sideslip and yaw) showed repeatable cyclic patterns. In addition, because freshwater and marine turtles use different swimming styles, we tested the effects of propulsive mode on hydrodynamic stability during rectilinear swimming, by comparing our data from painted turtles with previously collected data from two species of marine turtle (Caretta caretta and Chelonia mydas). Painted turtles had higher levels of stability than both species of marine turtle for six of the eight parameters tested, highlighting potential disadvantages associated with ‘aquatic flight’. Finally, available data on hydrodynamic stability of other rigid-bodied vertebrates indicate that turtles are less stable than boxfish and pufferfish. PMID:21389201

  9. Study on cavitation effect of mechanical seals with laser-textured porous surface

    NASA Astrophysics Data System (ADS)

    Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.

    2012-11-01

    Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.

  10. Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romatschke, Paul

    In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less

  11. Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions

    DOE PAGES

    Romatschke, Paul

    2016-06-24

    In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less

  12. Skew resisting hydrodynamic seal

    DOEpatents

    Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.

    2001-01-01

    A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.

  13. Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Aharon, I.; Shaw, B. D.

    1995-01-01

    This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.

  14. Coupled Electro-Hydrodynamic Effects of Electro-Osmosis from Pore Scale to Darcy Scale

    NASA Astrophysics Data System (ADS)

    Schotting, R.; Joekar-Niasar, V.; Leijnse, A.

    2011-12-01

    Electro-osmosis is "movement of a fluid under the effect of an electric field in a porous medium". This phenomenon has many applications in civil engineering (slope stabilization, dewatering), environmental engineering (soil remediation, sludge dewatering), chemical engineering (micro- or nano- mixers), medical engineering (drug delivery), etc. The key factor in electro-osmosis is the competition between the electrochemical and hydrodynamic forces as well as the coupling between the solid surface and the electrolyte properties. The objective of this research is to understand the influence of pore-scale heterogeneities of surface properties on the Darcy-scale behavior. We develop novel analytical solutions for the flow and transport of electrolyte including electro-hydrodynamic forces in a single micro-channel. We propose the complete analytical solution for monovalent electrolyte at full range overlapping double layers, and nonlinear electric field, including the Donan effect in transport of ions. These pore-scale formulations are numerically upscaled to obtain the Darcy-scale behavior. Our results show the contribution of electro-osmotic, chemical-osmotic and hydrodynamic components of the flow equation on pressure field evolution and multi-directional flow field at Darcy scale.

  15. Evaporation effects in a shock-driven multiphase instability with a spherical interface

    NASA Astrophysics Data System (ADS)

    Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob

    2017-11-01

    This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.

  16. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes.

    PubMed Central

    Bussell, S J; Koch, D L; Hammer, D A

    1995-01-01

    Tracer diffusion coefficients of integral membrane proteins (IMPs) in intact plasma membranes are often much lower than those found in blebbed, organelle, and reconstituted membranes. We calculate the contribution of hydrodynamic interactions to the tracer, gradient, and rotational diffusion of IMPs in plasma membranes. Because of the presence of immobile IMPs, Brinkman's equation governs the hydrodynamics in plasma membranes. Solutions of Brinkman's equation enable the calculation of short-time diffusion coefficients of IMPs. There is a large reduction in particle mobilities when a fraction of them is immobile, and as the fraction increases, the mobilities of the mobile particles continue to decrease. Combination of the hydrodynamic mobilities with Monte Carlo simulation results, which incorporate excluded area effects, enable the calculation of long-time diffusion coefficients. We use our calculations to analyze results for tracer diffusivities in several different systems. In erythrocytes, we find that the hydrodynamic theory, when combined with excluded area effects, closes the gap between existing theory and experiment for the mobility of band 3, with the remaining discrepancy likely due to direct obstruction of band 3 lateral mobility by the spectrin network. In lymphocytes, the combined hydrodynamic-excluded area theory provides a plausible explanation for the reduced mobility of sIg molecules induced by binding concanavalin A-coated platelets. However, the theory does not explain all reported cases of "anchorage modulation" in all cell types in which receptor mobilities are reduced after binding by concanavalin A-coated platelets. The hydrodynamic theory provides an explanation of why protein lateral mobilities are restricted in plasma membranes and why, in many systems, deletion of the cytoplasmic tail of a receptor has little effect on diffusion rates. However, much more data are needed to test the theory definitively. We also predict that gradient and tracer diffusivities are the same to leading order. Finally, we have calculated rotational diffusion coefficients in plasma membranes. They decrease less rapidly than translational diffusion coefficients with increasing protein immobilization, and the results agree qualitatively with the limited experimental data available. PMID:7612825

  17. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  18. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  19. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    PubMed

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  20. Hydrodynamic optical soliton tunneling

    NASA Astrophysics Data System (ADS)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  1. Hydrodynamic optical soliton tunneling.

    PubMed

    Sprenger, P; Hoefer, M A; El, G A

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  2. Estimation of the effective heating systems radius as a method of the reliability improving and energy efficiency

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2017-11-01

    When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.

  3. ON THE VARIATION OF SOLAR RADIUS IN ROTATION CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Z. N.; Kong, D. F.; Xiang, N. B.

    2015-01-10

    The Date Compensated Discrete Fourier Transform and CLEANest algorithm are used to study the temporal variations of the solar radius observed at Rio de Janeiro Observatory from 1998 March 2 to 2009 November 6. The CLEANest spectra show several significant periodicities around 400, 312, 93.5, 86.2, 79.4, 70.9, 53.2, and 26.3 days. Then, combining the data on the daily solar radius measured at Calern Observatory and Rio de Janeiro Observatory and the corresponding daily sunspot areas, we study the short-term periodicity of the solar radius and the role of magnetic field in the variation of the solar radius. The rotation periodmore » of the daily solar radius is determined to be statistically significant. Moreover, its temporal evolution is anti-phase with that of sunspot activity, and it is found anti-phase with solar activity. Generally, the stronger solar activity is, the more obvious is the anti-phase relation of radius with solar activity. This indicates that strong magnetic fields have a greater inhibitive effect than weak magnetic fields on the variation of the radius.« less

  4. Hydrodynamics based transfection in normal and fibrotic rats

    PubMed Central

    Yeikilis, Rita; Gal, Shunit; Kopeiko, Natalia; Paizi, Melia; Pines, Mark; Braet, Filip; Spira, Gadi

    2006-01-01

    AIM: Hydrodynamics based transfection (HBT), the injection of a large volume of naked plasmid DNA in a short time is a relatively simple, efficient and safe method for in vivo transfection of liver cells. Though used for quite some time, the mechanism of gene transfection has not yet been elucidated. METHODS: A luciferase encoding plasmid was injected using the hydrodynamics based procedure into normal and thioacetamide-induced fibrotic Sprague Dawley rats. Scanning and transmission electron microscopy images were taken. The consequence of a dual injection of Ringer solution and luciferase pDNA was followed. Halofuginone, an anti collagen type I inhibitor was used to reduce ECM load in fibrotic rats prior to the hydrodynamic injection. RESULTS: Large endothelial gaps formed as soon as 10’ following hydrodynamic injection; these gradually returned to normal 10 d post injection. Hydrodynamic administration of Ringer 10 or 30 m prior to moderate injection of plasmid did not result in efficient transfection suggesting that endothelial gaps by themselves are not sufficient for gene expression. Gene transfection following hydrodynamic injection in thioacetamide induced fibrotic rats was diminished coinciding with the level of fibrosis. Halofuginone, a specific collagen typeIinhibitor, alleviated this effect. CONCLUSION: The hydrodynamic pressure formed following HBT results in the formation of large endothelial gaps. These gaps, though important in the transfer of DNA molecules from the blood to the space of Disse are not enough to provide the appropriate conditions for hepatocyte transfection. Hydrodynamics based injection is applicable in fibrotic rats provided that ECM load is reduced. PMID:17036386

  5. Hydrodynamics and long range correlations

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    2011-04-01

    It is shown that the recently proposed method of studying the long-range correlations in multiparticle production can be effectively used to verify the hydrodynamic nature of the longitudinal expansion of the partonic system created in the collision. The case of ALICE detector is explicitly considered.

  6. Estimation of weapon-radius versus maneuverability trade-off for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1977-01-01

    A chase in a horizontal plane between a pursuer with a large capture radius and a more maneuverable evading vehicle is examined with constant-speed vehicle models. An approximation to the 'sidestepping' maneuver of the Homicidal Chauffeur Game is modified to account for the effect of evader turning rate, and an estimate of capture radius required is so obtained which agrees remarkably well with Cockayne's point-capture result. The maneuver assumes central importance for barrier surfaces appearing in the Game of Two Cars. Results are given for required weapon capture-radius in terms of the maneuverability of the two vehicles. Some calculations of capture radius are presented.

  7. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  8. Effect of Positioning of the ROI on BMD of the Forearm and Its Subregions.

    PubMed

    Rosen, Elizabeth O; McNamara, Elizabeth A; Whittaker, LaTarsha G; Malabanan, Alan O; Rosen, Harold N

    2018-03-21

    Inconsistent positioning of patients and region of interest (ROI) is known to influence the precision of bone mineral density (BMD) measurements in the spine and hip. However, it is unknown whether minor shifts in the positioning of the ROI along the shaft of the radius affect the measurement of forearm BMD and its subregions. The ultradistal (UD-), mid-, one-third, and total radius BMDs of 50 consecutive clinical densitometry patients were acquired. At baseline the distal end of the ROI was placed at the tip of the ulnar styloid as usual, and then the forearm was reanalyzed 10 more times, each time shifting the ROI 1 mm proximally. No corrections for multiple comparisons were necessary since the differences that were significant were significant at p < 0.001. The UD-radius BMD increased as the ROI was shifted proximally; the increase was significant when shifted even 1 mm proximally (p < 0.001). These same findings held true for the mid- and total radius bone density, though the percent increase with moving proximally was significantly greater for the UD radius than for the other subregions. However, there was no significant change in the one-third radius BMD when shifted proximally 1-10 mm. Minor proximal shifts of the forearm ROI substantially affect the BMD of the UD-, mid- and total radius, while having no effect on the one-third radius BMD. Since the one-third radius is the only forearm region usually reported, minor proximal shifts of the ROI should not influence forearm BMD results significantly. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  9. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, LiFeng; Ye, WenHua; He, XianTu; Wu, JunFeng; Fan, ZhengFeng; Xue, Chuang; Guo, HongYu; Miao, WenYong; Yuan, YongTeng; Dong, JiaQin; Jia, Guo; Zhang, Jing; Li, YingJun; Liu, Jie; Wang, Min; Ding, YongKun; Zhang, WeiYan

    2017-05-01

    Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.

  10. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    PubMed

    Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly

    2017-01-01

    Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  11. Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylor-Couette bioreactor.

    PubMed

    Sorg, Robin; Tanzeglock, Timm; Soos, Miroslav; Morbidelli, Massimo; Périlleux, Arnaud; Solacroup, Thomas; Broly, Hervé

    2011-12-01

    The objective of the present study was to investigate the effect of hydrodynamic stress heterogeneity on metabolism and productivity of an industrial mammalian cell line. For this purpose, a novel Lobed Taylor-Couette (LTC) mixing unit combining a narrow distribution of hydrodynamic stresses and a membrane aeration system to prevent cell damage by bubble bursting was developed. A hydrodynamic analysis of the LTC was developed to reproduce, in a uniform hydrodynamic environment, the same hydrodynamic stress encountered locally by cells in a stirred tank, particularly at the large scale, e.g., close and far from the impeller. The developed LTC was used to simulate the stress values near the impeller of a laboratory stirred tank bioreactor, equal to about 0.4 Pa, which is however below the threshold value leading to cell death. It was found that the cells actively change their metabolism by increasing lactate production and decreasing titer while the consumption of the main nutrients remains substantially unchanged. When considering average stress values ranging from 1 to 10 Pa found by other researchers to cause physiological response of cells to the hydrodynamic stress in heterogeneous stirred vessels, our results are close to the lower boundary of this interval. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing

    PubMed Central

    Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly

    2017-01-01

    Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities. PMID:28403171

  13. Heat transfer in a conical porous medium due to inner and top surface heating: Effect of radius ratio

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Khan, T. M. Yunus

    2018-05-01

    The present study investigates the effect of radius ratio and Rayleigh number on beat transfer characteristics of an annular cone subjected to two side heating and one side cooling. Finite element method is used to convert the partial differential equations into algebraic equations. The resulting equations are solved with the help of in-house computer code developed for specific purpose of heat transfer in conical porous medium. The results are discussed with respect to the radius ratio and Rayleigh number.

  14. Non-Parabolic Hydrodynamic Formulations for the Simulation of Inhomogeneous Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models cannot fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations or the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship ((hk)(exp 2)/2m = W(1 + alphaW). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(exp y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships; parabolic, Kane dispersion and power law dispersion.

  15. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.

    PubMed

    Doster, Wolfgang; Longeville, Stéphane

    2007-08-15

    The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.

  16. Non-parabolic hydrodynamic formulations for the simulation of inhomogeneous semiconductor devices

    NASA Technical Reports Server (NTRS)

    Smith, Arlynn W.; Brennan, Kevin F.

    1995-01-01

    Hydrodynamic models are becoming prevalent design tools for small scale devices and other devices in which high energy effects can dominate transport. Most current hydrodynamic models use a parabolic band approximation to obtain fairly simple conservation equations. Interest in accounting for band structure effects in hydrodynamic device simulation has begun to grow since parabolic models can not fully describe the transport in state of the art devices due to the distribution populating non-parabolic states within the band. This paper presents two different non-parabolic formulations of the hydrodynamic model suitable for the simulation of inhomogeneous semiconductor devices. The first formulation uses the Kane dispersion relationship (hk)(exp 2)/2m = W(1 + alpha(W)). The second formulation makes use of a power law ((hk)(exp 2)/2m = xW(sup y)) for the dispersion relation. Hydrodynamic models which use the first formulation rely on the binomial expansion to obtain moment equations with closed form coefficients. This limits the energy range over which the model is valid. The power law formulation readily produces closed form coefficients similar to those obtained using the parabolic band approximation. However, the fitting parameters (x,y) are only valid over a limited energy range. The physical significance of the band non-parabolicity is discussed as well as the advantages/disadvantages and approximations of the two non-parabolic models. A companion paper describes device simulations based on the three dispersion relationships: parabolic, Kane dispersion, and power low dispersion.

  17. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.

    PubMed

    Theers, Mario; Winkler, Roland G

    2014-08-28

    We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.

  18. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields

    PubMed Central

    Uma, B.; Swaminathan, T. N.; Radhakrishnan, R.; Eckmann, D. M.; Ayyaswamy, P. S.

    2011-01-01

    We consider the Brownian motion of a nanoparticle in an incompressible Newtonian fluid medium (quiescent or fully developed Poiseuille flow) with the fluctuating hydrodynamics approach. The formalism considers situations where both the Brownian motion and the hydrodynamic interactions are important. The flow results have been modified to account for compressibility effects. Different nanoparticle sizes and nearly neutrally buoyant particle densities are also considered. Tracked particles are initially located at various distances from the bounding wall to delineate wall effects. The results for thermal equilibrium are validated by comparing the predictions for the temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical and experimental results where available. The equipartition theorem for a Brownian particle in Poiseuille flow is verified for a range of low Reynolds numbers. Numerical predictions of wall interactions with the particle in terms of particle diffusivities are consistent with results, where available. PMID:21918592

  19. Size effects in non-linear heat conduction with flux-limited behaviors

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  20. Electrohydrodynamics and other hydrodynamic phenomena in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1982-01-01

    The process known as continuous flow electrophoresis employs an electric field to separate the constituents of particulate samples suspended in a liquid. Complications arise because the electric field generates temperature gradients due to Joule heating and derives an electrohydrodynamic crossflow. Several aspects of the flow are discussed including entrance effects, hydrodynamic stability and a flow restructuring due to the combined effects of buoyancy and the crossflow.

  1. Distal radius reconstruction with vascularized proximal fibular autograft after en-bloc resection of recurrent giant cell tumor.

    PubMed

    Yang, Yun-Fa; Wang, Jian-Wei; Huang, Pin; Xu, Zhong-He

    2016-08-17

    Giant cell tumors (GCTs) located in the distal radius are likely to recur, and the treatment of such recurrent tumors is very difficult. Here, we report our clinical experience in distal radius reconstruction with vascularized proximal fibular autografts after en-bloc excision of the entire distal radius in 17 patients with recurrent GCT (RGCT) of the distal radius. All 17 patients with RGCT in distal radius underwent plain radiography and/or magnetic resonance imaging (MRI) of the distal radius as the initial evaluation after hospitalization. Then the distal radius were replaced by vascularized proximal fibular autografts after en-bloc RGCT resection. We assessed all patients by using clinical examinations, plain radiography of the wrist and chest, and Mayo wrist scores in the follow-ups. After an average follow-up of 4.3 years (range: 1.5-10.0 years), no lung metastasis or local recurrence was detected in any of the 17 patients. In total, 14 patients had excellent or good functional wrist scores, 16 were pain free or had occasional pain, and 15 patients returned to work. The mean range of motion of the wrist was 101° (flexion-extension), and the mean grip strength was 77.2 % of the contralateral normal hand. En-bloc excision of the entire distal radius and distal radius reconstruction with a vascularized proximal fibular autograft can effectively achieve local tumor control and preserve wrist function in patients with RGCT of the distal radius.

  2. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  3. Improved MICROBASE Product with Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng

    The data set contains four primary microphysics, including liquid water content, ice water content, liquid effective radius, and ice effective radius. Bit QC and data quality QC are also calculated. Quantification of uncertainties (incorporating the work of Zhao et al. 2013) are included for all four microphysics.

  4. Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry

    NASA Astrophysics Data System (ADS)

    Yuge, Koretaka

    2018-04-01

    Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.

  5. Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Wolf, Eric. T.; Joshi, Manoj; Zhang, Xi; Kopparapu, Ravi Kumar

    2018-01-01

    We investigate the atmospheric dynamics of terrestrial planets in synchronous rotation within the habitable zone of low-mass stars using the Community Atmosphere Model. The surface temperature contrast between the day and night hemispheres decreases with an increase in incident stellar flux, which is opposite the trend seen in gas giants. We define three dynamical regimes in terms of the equatorial Rossby deformation radius and the Rhines length. The slow rotation regime has a mean zonal circulation that spans from the day to the night sides, which occurs for planets around stars with effective temperatures of 3300–4500 K (rotation period > 20 days), with both the Rossby deformation radius and the Rhines length exceeding the planetary radius. Rapid rotators have a mean zonal circulation that partially spans a hemisphere and with banded cloud formation beneath the substellar point, which occurs for planets orbiting stars with effective temperatures of less than 3000 K (rotation period < 5 days), with the Rossby deformation radius less than the planetary radius. In between is the Rhines rotation regime, which retains a thermally direct circulation from the day side to the night side but also features midlatitude turbulence-driven zonal jets. Rhines rotators occur for planets around stars in the range of 3000–3300 K (rotation period ∼5–20 days), where the Rhines length is greater than the planetary radius but the Rossby deformation radius is less than the planetary radius. The dynamical state can be observationally inferred from a comparison of the morphologies of the thermal emission phase curves of synchronously rotating planets.

  6. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.

    1998-01-01

    The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.

  7. Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Margolis, S. B.

    1997-01-01

    The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.

  8. Study of insertion force and deformation for suturing with precurved NiTi guidewire.

    PubMed

    Wang, Yancheng; Chen, Roland K; Tai, Bruce L; Xu, Kai; Shih, Albert J

    2015-04-01

    This research presents an experimental study evaluating stomach suturing using a precurved nickel-titanium (NiTi) guidewire for an endoscopic minimally invasive obesity treatment. Precise path planning is critical for accurate and effective suturing. A position measurement system utilizing a hand-held magnetic sensor was used to measure the shape of a precurved guidewire and to determine the radius of curvature before and after suturing. Ex vivo stomach suturing experiments using four different guidewire tip designs varying the radius of curvature and bevel angles were conducted. The changes in radius of curvature and suturing force during suturing were measured. A model was developed to predict the guidewire radius of curvature based on the measured suturing force. Results show that a small bevel angle and a large radius of curvature reduce the suturing force and the combination of small bevel angle and small radius of curvature can maintain the shape of guidewire for accurate suturing.

  9. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  10. Effect of hydrodynamic cavitation on the rate of OH-radical formation in the presence of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Aseev, D. G.; Batoeva, A. A.

    2014-01-01

    It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.

  11. Dynamics of nanoparticles in complex fluids

    NASA Astrophysics Data System (ADS)

    Omari, Rami A.

    Soft matter is a subfield of condensed matter including polymers, colloidal dispersions, surfactants, and liquid crystals. These materials are familiar from our everyday life- glues, paints, soaps, and plastics are examples of soft materials. Many phenomena in these systems have the same underlying physical mechanics. Moreover, it has been recognized that combinations of these systems, like for example polymers and colloids, exhibit new properties which are not found in each system separately. These mixed systems have a higher degree of complexity than the separate systems. In order to understand their behavior, knowledge from each subfields of soft matter has to be put together. One of these complex systems is the mixture of nanoparticles with macromolecules such as polymers, proteins, etc. Understanding the interactions in these systems is essential for solving various problems in technological and medical fields, such as developing high performance polymeric materials, chromatography, and drug delivery vehicles. The author of this dissertation investigates fundemental soft matter systems, including colloid dispersions in polymer solutions and binary mixture. The diffusion of gold nanoparticles in semidilute and entangled solutions of polystyrene (PS) in toluene were studied using fluorescence correlation spectroscopy (FCS). In our experiments, the particle radius (R ≈ 2.5 nm) was much smaller compared to the radius of gyration of the chain but comparable to the average mesh size of the fluctuating polymer network. The diffusion coefficient (D) of the particles decreased monotonically with polymer concentration and it can be fitted with a stretched exponential function. At high concentration of the polymer, a clear subdiffusive motion of the particles was observed. The results were compared with the diffusion of free dyes, which showed normal diffusive behavior for all concentrations. In another polymer solution, poly ethylene glycol (PEG) in water, the diffusion of the gold nanoparticles depends on the dimentionless length scale R/zeta, where R is the radius of the nanoparticle and zeta is the average mesh size of the fluctuating polymer network. FCS were used to study the critical adsorption on curved surfaces by utilizing spherical nanoparticles immersed in a critical binary liquid mixture of 2,6 lutidine + water. The temperature dependence of the adsorbed film thickness and excess adsorption was determined from FCS measurements of the enlarged effective hydrodynamic radius of the particles. Our results indicated that the adsorbed film thickness is of the order of correlation length associated with concentration fluctuations. The excess adsorption per unit area increases following a power law in reduced temperature with an exponent of -1, which is the mean-field value for the bulk susceptibility exponent. The kinetics of adsorption of gold nanoparticles in polymer solutions on silicon substrate was studied using ellipsometry by measuring the thickness of the adsorbed layer versus time. The data showed an exponential growth with relaxation time constants, which is proportional to the diffusion of the gold nanoparticles in polymer solution.

  12. Effects of wing flexibility and variable air lift upon wing bending moment during landing impacts of a small seaplane

    NASA Technical Reports Server (NTRS)

    Merten, Kenneth F; Beck, Edgar B

    1951-01-01

    A smooth-water-landing investigation was conducted with a small seaplane to obtain experimental wing-bending-moment time histories together with time histories of the various parameters necessary for the prediction of wing bending moments during hydrodynamic forcing functions. The experimental results were compared with calculated results which include inertia-load effects and the effects of air-load variation during impact. The responses of the fundamental mode were calculated with the use of the measured hydrodynamic forcing functions. From these responses, the wing bending moments due to the hydrodynamic load were calculated according to the procedure given in R.M. No. 2221. The comparison of the time histories of the experimental and calculated wing bending moments showed good agreement both in phase relationship of the oscillations and in numerical values.

  13. Point Counts Modifications and Breeding Bird Abundances in Central Appalachian Forests

    Treesearch

    J. Edwards Gates

    1995-01-01

    The effects of point count duration and radius on detection of breeding birds were compared by recording all birds seen or heard within two consecutive 5-minute intervals and for fixed-radius (within 30 m) or unlimited radius counts. Counts were conducted on Green Ridge State Forest (GRSF) and Savage River State Forest (SRSF) in western Maryland. More than 70 percent...

  14. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation.

    PubMed

    Kosel, Janez; Gutiérrez-Aguirre, Ion; Rački, Nejc; Dreo, Tanja; Ravnikar, Maja; Dular, Matevž

    2017-11-01

    The aim of this study was to accurately quantify the impact of hydrodynamic cavitation on the infectivity of bacteriophage MS2, a norovirus surrogate, and to develop a small scale reactor for testing the effect of hydrodynamic cavitation on human enteric viruses, which cannot be easily prepared in large quantities. For this purpose, 3 mL scale and 1 L scale reactors were constructed and tested. Both devices were efficient in generating hydrodynamic cavitation and in reducing the infectivity of MS2 virus. Furthermore, they reached more than 4 logs reductions of viral infectivity, thus confirming the scalability of hydrodynamic cavitation for this particular application. As for the mechanism of page inactivation, we suspect that cavitation generated OH - radicals formed an advanced oxidation process, which could have damaged the host's recognition receptors located on the surface of the bacteriophage. Additional damage could arise from the high shear forces inside the cavity. Moreover, the effectiveness of the cavitation was higher for suspensions containing low initial viral titers that are in similar concentration to the ones found in real water samples. According to this, cavitation generators could prove to be a useful tool for treating virus-contaminated wastewaters in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    PubMed

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Relativistic hydrodynamic jets in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    2017-08-01

    We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.

  17. Galactic r-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Kereš, Dušan; Faucher-Giguère, Claude-André

    2015-02-01

    We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron star (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H] ≲ -2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduce an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.

  18. A thermodynamic model to predict electron mobility in superfluid helium.

    PubMed

    Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi

    2017-06-21

    Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.

  19. Supernovae from massive stars with extended tenuous envelopes

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Yoon, Sung-Chul; Livne, Eli; Waldman, Roni

    2018-04-01

    Massive stars with a core-halo structure are interesting objects for stellar physics and hydrodynamics. Using simulations for stellar evolution, radiation hydrodynamics, and radiative transfer, we study the explosion of stars with an extended and tenuous envelope (i.e. stars in which 95% of the mass is contained within 10% or less of the surface radius). We consider both H-rich supergiant and He-giant progenitors resulting from close-binary evolution and dying with a final mass of 2.8-5 M⊙. An extended envelope causes the supernova (SN) shock to brake and a reverse shock to form, sweeping core material into a dense shell. The shock-deposited energy, which suffers little degradation from expansion, is trapped in ejecta layers of moderate optical depth, thereby enhancing the SN luminosity at early times. With the delayed 56Ni heating, we find that the resulting optical and near-IR light curves all exhibit a double-peak morphology. We show how an extended progenitor can explain the blue and featureless optical spectra of some Type IIb and Ib SNe. The dense shell formed by the reverse shock leads to line profiles with a smaller and near-constant width. This ejecta property can explain the statistically narrower profiles of Type IIb compared to Type Ib SNe, as well as the peculiar Hα profile seen in SN 1993J. At early times, our He-giant star explosion model shows a high luminosity, a blue colour, and featureless spectra reminiscent of the Type Ib SN 2008D, suggesting a low-mass progenitor.

  20. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  1. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    PubMed

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  2. Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Gogate, Parag R.; Pandit, Aniruddha B.

    Hydrodynamic Cavitation, which was and is still looked upon as an unavoidable nuisance in the flow systems, can be a serious contender as an alternative to acoustic cavitation for harnessing the spectacular effects of cavitation in physical and chemical processing. The present chapter covers the basics of hydrodynamic cavitation including the considerations for the bubble dynamics analysis, reactor designs and recommendations for optimum operating parameters. An overview of applications in different areas of physical, chemical and biological processing on scales ranging from few grams to several hundred kilograms has also been presented. Since hydrodynamic cavitation was initially proposed as an alternative to acoustic cavitation, it is necessary to compare the efficacy of both these modes of cavitations for a variety of applications and hence comparisons have been discussed either on the basis of energy efficiency or based on the scale of operation. Overall it appears that hydrodynamic cavitation results in conditions similar to those generated using acoustic cavitation but at comparatively much larger scale of operation and with better energy efficiencies.

  3. Mutated-leptin gene transfer induces increases in body weight by electroporation and hydrodynamics-based gene delivery in mice.

    PubMed

    Xiang, Lan; Murai, Atsushi; Muramatsu, Tatsuo

    2005-12-01

    To investigate whether in vivo gene transfer causes leptin-antagonistic effects on food intake, animal body weight and fat tissue weight, the R128Q mutated-leptin gene, an R to Q substitution at position 128 of mouse leptin, was transferred into mouse liver and leg muscle by electroporation and hydrodynamics-based gene delivery. Mutated-leptin gene transfer by electroporation caused significant increases in body weight at 5 days and after (5.4% increase relative to control; p<0.05). Hydrodynamics-based gene delivery of the mutated-leptin gene also caused an increase in body weight (3.0% increase relative to control; p<0.05). Mutated-leptin gene transfer by electroporation significantly increased the tissue weight of epididymal white fat and neuropeptide Y mRNA expression in the hypothalamus compared with those of the control group 3 weeks after gene transfer (p<0.05). These results suggest that mutated-leptin gene transfer successfully produced leptin-antagonistic effects by modulating the central regulator of energy homeostasis. Also, the extent of leptin-antagonistic effects by electroporation was much higher than hydrodynamics-based gene delivery, with at least single gene transfer.

  4. Fluctuation, dissipation, and a non-equilibrium ``equation of state'' via nonlinear microrheology of hydrodynamically interacting colloids

    NASA Astrophysics Data System (ADS)

    Chu, Henry; Zia, Roseanna

    2014-11-01

    In our recently developed non-equilibrium Stokes-Einstein relation for microrheology, we showed that, in the absence of hydrodynamic interactions, the stress in a suspension is given by a balance between fluctuation and dissipation. Here we generalize our theory to develop a simple analytical relation connecting diffusive fluctuation, viscous dissipation and suspension stress in systems of hydrodynamically interacting colloids. In active microrheology, a Brownian probe is driven through a complex medium. The strength of probe forcing compared to the entropic restoring force defines a Peclet number, Pe. In the absence of hydrodynamics, normal stress differences scale as Pe4 and Pe for weak and strong probe forcing, respectively. But as hydrodynamics become important, interparticle forces give way to lubrication interactions and the normal stresses scale as Pe2 and Peδln(Pe), where 0.773 <= δ <= 1 as hydrodynamics vary from strong to weak. The new phenomenological theory is shown to agree with standard micromechanical definitions of the stress. A connection is made between the stress and an effective temperature of the medium, prompting the interpretation of the particle stress as the energy density, and the expression for osmotic pressure as a ``non-equilibrium equation of state.''

  5. Fixed-Radius Point Counts in Forests: Factors Influencing Effectiveness and Efficiency

    Treesearch

    Daniel R. Petit; Lisa J. Petit; Victoria A. Saab; Thomas E. Martin

    1995-01-01

    The effectiveness of fixed-radius point counts in quantifying abundance and richness of bird species in oak-hickory, pine-hardwoods, mixed-mesophytic, beech-maple, and riparian cottonwood forests was evaluated in Arkansas, Ohio, Kentucky, and Idaho. Effects of count duration and numbers of stations and visits per stand were evaluated in May to July 1991 by conducting...

  6. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  7. Reconstruction of the mass distribution of galaxy clusters from the inversion of the thermal Sunyaev-Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Majer, C. L.; Meyer, S.; Konrad, S.; Sarli, E.; Bartelmann, M.

    2016-07-01

    This paper continues a series in which we intend to show how all observables of galaxy clusters can be combined to recover the two-dimensional, projected gravitational potential of individual clusters. Our goal is to develop a non-parametric algorithm for joint cluster reconstruction taking all cluster observables into account. For this reason we focus on the line-of-sight projected gravitational potential, proportional to the lensing potential, in order to extend existing reconstruction algorithms. In this paper, we begin with the relation between the Compton-y parameter and the Newtonian gravitational potential, assuming hydrostatic equilibrium and a polytropic stratification of the intracluster gas. Extending our first publication we now consider a spheroidal rather than a spherical cluster symmetry. We show how a Richardson-Lucy deconvolution can be used to convert the intensity change of the CMB due to the thermal Sunyaev-Zel'dovich effect into an estimate for the two-dimensional gravitational potential. We apply our reconstruction method to a cluster based on an N-body/hydrodynamical simulation processed with the characteristics (resolution and noise) of the ALMA interferometer for which we achieve a relative error of ≲20 per cent for a large fraction of the virial radius. We further apply our method to an observation of the galaxy cluster RXJ1347 for which we can reconstruct the potential with a relative error of ≲20 per cent for the observable cluster range.

  8. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Yoon, DooSoo; Li, Ya-Ping; Gan, Zhao-Ming; Ho, Luis C.; Guo, Fulai

    2018-04-01

    We investigate the effects of AGN feedback on the cosmological evolution of an isolated elliptical galaxy by performing two-dimensional high-resolution hydrodynamical numerical simulations. The inner boundary of the simulation is chosen so that the Bondi radius is resolved. Compared to previous works, the two accretion modes—namely, hot and cold, which correspond to different accretion rates and have different radiation and wind outputs—are carefully discriminated, and the feedback effects by radiation and wind in each mode are taken into account. The most updated AGN physics, including the descriptions of radiation and wind from the hot accretion flows and wind from cold accretion disks, are adopted. Physical processes like star formation and SNe Ia and II are taken into account. We study the AGN light curve, typical AGN lifetime, growth of the black hole mass, AGN duty cycle, star formation, and X-ray surface brightness of the galaxy. We compare our simulation results with observations and find general consistency. Comparisons with previous simulation works find significant differences, indicating the importance of AGN physics. The respective roles of radiation and wind feedback are examined, and it is found that they are different for different problems of interest, such as AGN luminosity and star formation. We find that it is hard to neglect any of them, so we suggest using the names “cold feedback mode” and “hot feedback mode” to replace the currently used ones.

  9. Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

    PubMed Central

    Schrader, Alex M.; Donaldson, Stephen H.; Song, Jinsuk; Cheng, Chi-Yuan; Lee, Dong Woog; Han, Songi; Israelachvili, Jacob N.

    2015-01-01

    Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems. PMID:26261313

  10. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE PAGES

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    2016-06-27

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  11. Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigurdsson, Jon Karl; Atzberger, Paul J.

    Here, we develop theory and computational methods to investigate particle inclusions embedded within curved lipid bilayer membranes. We consider the case of spherical lipid vesicles where inclusion particles are coupled through (i) intramembrane hydrodynamics, (ii) traction stresses with the external and trapped solvent fluid, and (iii) intermonolayer slip between the two leaflets of the bilayer. We investigate relative to flat membranes how the membrane curvature and topology augment hydrodynamic responses. We show how both the translational and rotational mobility of protein inclusions are effected by the membrane curvature, ratio of intramembrane viscosity to solvent viscosity, and intermonolayer slip. For generalmore » investigations of many-particle dynamics, we also discuss how our approaches can be used to treat the collective diffusion and hydrodynamic coupling within spherical bilayers.« less

  12. Hydrodynamic limit of the Yukawa one-component plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salin, Gwenaeel

    This paper presents a detailed mathematical analysis of the dynamical correlation of density fluctuations of the Yukawa one component plasma in the framework of linearized hydrodynamics. In particular, expressions for the hydrodynamic modes which hold both for the plasma and the neutral fluid are derived. This work constitutes an extension of the computation of the dynamical structure factor in the hydrodynamic limit done by Vieillefosse and Hansen [Phys. Rev. A 12, 1106 (1975)]. As a typical result of Yukawa plasma, a coupling appears between thermal and mechanical effects in the damping of the sound modes, which does not exist inmore » the classical one component plasma. Theoretical and numerical results obtained by means of equilibrium molecular-dynamic simulations in the microcanonical ensemble are compared and discussed.« less

  13. Longitudinal afterbody grooves and shoulder radiusing for low-speed bluff body drag reduction

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Quass, B. F.; Weinstein, L. M.; Bushnell, D. M.

    1981-01-01

    A new low-speed drag reduction approach is proposed which employs longitudinal surface V-shaped grooves cutting through the afterbody shoulder region. The test Reynolds number range was from 20,000 to 200,000 based on undisturbed free-stream flow and a body diameter of 6.08 cm. The V-grooves are shown to be most effective in reducing drag when the afterbody shoulder radius is zero. Reductions in drag of up to 33% have been measured for this condition. For large shoulder radius, the grooves are only effective at the lower Reynolds numbers of the test.

  14. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    PubMed

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hydrodynamic properties of the gonadotropin receptor from a murine Leydig tumor cell line are altered by desensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebois, R.V.; Bradley, R.M.; Titlow, C.C.

    1987-10-06

    The murine Leydig tumor cell line 1 (MLTC-1) contains gonadotropin receptors (GR) that are coupled to adenylate cyclase through the stimulatory guanine nucleotide binding protein (G/sub s/). The binding of human choriogonadotropin (hGC) causes MLTC-1 cells to accumulate cAMP. With time, the ability of MLTC-1 cells to respond to hCG is attenuated by a process called desensitization. The hydrodynamic properties of GR from control and desensitized MLTC-1 cells were studied. Sucrose density gradient sedimentation in H/sub 2/O and D/sub 2/O and gel filtration chromatography were used to estimate the Stokes radius (a), partial specific volume (v/sub c/), sedimentation coefficient (s/submore » 20,w/), and molecular weight (M/sub r/) of the detergent-solubilized hormone-receptor complex (hCG-GR). (/sup 125/I)hCG was bound to MLTC-1 cells under conditions that allow (37/sup 0/C) or prevent (0/sup 0/C) desensitization, and hCG-GR was solubilized in Triton X-100. In the absence of desensitization, control hCG-GR had a M/sub r/ of 213,000, whereas desensitized hCG-GR had a M/sub r/ of 158,000. Deglycosylated hCG (DG-HCG) is an antagonist that binds to GR with high affinity but fails to stimulate adenylate cyclase or cause desensitization. (/sup 125/I)DG-hCG was bound to MLTC-1 cells and DG-hCG-GR solubilized in Triton X-100. The hydrodynamic properties of DG-hCG-GR were the same as that for control hCG-GR. There was no evidence for the association of adenylate cyclase or G/sub s/ with GR in Triton X-100 solubilized preparations. When hCG was cross-linked to GR and solubilized with sodium dodecyl sulfate (SDS), the M/sub r/ was found to be 116,000, which was similar to that determined by SDS-polyacrylamide gel electrophoresis and less than that of the Triton X-100 solubilized control hCG-GR.« less

  16. A new method to quantify the effects of baryons on the matter power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch

    2015-12-01

    Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less

  17. DC power limitation of the heterojunction bipolar transistor with dot geometry: Effect of base potential distribution on thermal runaway

    NASA Astrophysics Data System (ADS)

    Liou, L. L.; Jenkins, T.; Huang, C. I.

    1997-06-01

    The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.

  18. Combined analysis of the radar cross-section modulation due to the long ocean waves around 14° and 34° incidence: Implication for the hydrodynamic modulation

    NASA Astrophysics Data System (ADS)

    Hauser, DanièLe; Caudal, GéRard

    1996-11-01

    The analysis of synthetic aperture radar observations over the ocean to derive the directional spectra of the waves is based upon a complex transfer function which is the sum of three terms: tilt modulation, hydrodynamic modulation, and velocity bunching effect. Both the hydrodynamic and the velocity bunching terms are still poorly known. Here we focus on the hydrodynamic part of the transfer function, from an experimental point of view. In this paper a new method is proposed to estimate the hydrodynamic modulation. The approach consists in analyzing observations obtained with an airborne real-aperture radar (called RESSAC). This radar (C band, HH polarized, broad beam of 14° × 3°) was used during the SEMAPHORE experiment, in two different modes. From the first mode (incidence angles from 7° to 21°) the directional spectra of the long waves are deduced under the assumption that the hydrodynamic modulation can be neglected (small incidence angles) and validated against in situ measurements. From the second mode (incidence angle from 27° to 41°) the amplitude and phase of the hydrodynamic modulation are deduced by combining the measured signal modulation spectrum at a mean incidence angle of 34° and the directional wave spectrum obtained from the first mode. The results, obtained in four different wind-wave cases of the SEMAPHORE experiment, show that the modulus of the hydrodynamic modulation is larger than that of the tilt modulation. Furthermore, we find that the modulus of the hydrodynamic transfer function is several times larger (by a factor 2-12) than the theoretical value proposed in previous works and 1.5-2.5 larger than experimental values reported in recent papers. The phase of the hydrodynamic modulation is found to be close to zero for waves propagating at an angle from the wind direction and between -20° and -40° for waves propagating along the wind direction. This indicates a significant influence of the wind-wave angle on the phase of the hydrodynamic modulation, in agreement with experimental results reported in recent papers.

  19. Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture.

    PubMed

    Neunstoecklin, Benjamin; Stettler, Matthieu; Solacroup, Thomas; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav

    2015-01-20

    Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of these are affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell growth, morphology, metabolism and productivity. They were found to be different in between the cell lines with values equal to 32.4±4.4Pa and 25.2±2.4Pa for CHO and Sp2/0, respectively. Below the measured thresholds both cell lines do not show any appreciable effect of the hydrodynamic stress on any critical quality attribute, while above, cells responded negatively to the elevated stress. To confirm the applicability of the proposed method, the obtained results were compared with data generated from classical small-scale reactors with a working volume of 3L. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow

    NASA Astrophysics Data System (ADS)

    Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.

    2018-02-01

    The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

Top