Sample records for effective interaction length

  1. Stimulated Brillouin Scattering Phase Conjugation in Fiber Optic Waveguides

    DTIC Science & Technology

    2008-07-01

    61] The discrepancy is reduced since the effective length of the interaction may be limited by the coherence length of the signal laser as in Eq...these cases, the coherence length of the pulsed laser typically limits the effective length of the Brillouin scattering interaction. Long... coherence length lasers with long fiber SBS media have been used to reduce threshold energy, but as indicated at the end of Chapter 2, this has produced

  2. Swelling of biological and semiflexible polyelectrolytes.

    PubMed

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  3. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    PubMed

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  4. Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.

    PubMed

    Berkovits, Richard

    2012-04-27

    The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.

  5. Reversal modes in FeCoNi nanowire arrays: Correlation between magnetostatic interactions and nanowires length

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Almasi Kashi, M.; Ramazani, A.; Alikhani, M.

    2015-03-01

    FeCoNi nanowire arrays (175 nm in diameter and lengths ranging from 5 to 40 μm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. Increasing the length had no considerable effect on the composition and crystalline characteristics of Fe47Co38Ni15 nanowires (NWs). By eliminating the dendrites formed at the bottom of the pores, we report a careful investigation on the effect of magnetostatic interactions on magnetic properties and the effect of nanowire length on reversal modes. Hysteresis loop measurements indicated that increasing the length decreases coercivity and squareness values. On the other hand, first-order reversal curve measurements show a linear correlation between the magnetostatic interactions and length of NWs. Comparing reversal modes of the NWs both experimentally and theoretically using angular dependence of coercivity, we find that when L≤22 μm, a vortex domain wall mode is only occurred. When L>22 μm, a non-monotonic behavior indicates a transition from the vortex to transverse domain wall propagation. As a result, a critical length was found above which the transition between the reversal modes is occurred due the enhanced interactions. The transition angle also shifts toward a lower angle as the length increases. Moreover, with increasing length from 22 to 31 μm, the single domain structure of NWs changes to a pseudo single domain state. A multidomain-like behavior is also found for the longest NWs length.

  6. Alcohol's Effects on Lipid Bilayer Properties

    PubMed Central

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  7. Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions

    PubMed Central

    Wang, Chunlei; Zhou, Bo; Tu, Yusong; Duan, Manyi; Xiu, Peng; Li, Jingye; Fang, Haiping

    2012-01-01

    The wetting behavior of water on the solid surfaces is fundamental to various physical, chemical and biological processes. Conventionally, the surface with charges or charge dipoles is hydrophilic, whereas the non-polar surface is hydrophobic though some exceptions were recently reported. Using molecular dynamics simulations, we show that there is a critical length of the charge dipoles on the solid surface. The solid surface still exhibited hydrophobic behavior when the dipole length was less than the critical value, indicating that the water molecules on the solid surface seemed not “feel” attractive interactions from the charge dipoles on the solid surface. Those unexpected observations result from the collective interactions between the water molecules and charge dipoles on the solid surface, where the steric exclusion effect between water molecules greatly reduces the water-dipole interactions. Remarkably, the steric exclusion effect is also important for surfaces with charge dipole lengths greater than this critical length. PMID:22496954

  8. Romantic relationship development: The interplay between age and relationship length.

    PubMed

    Lantagne, Ann; Furman, Wyndol

    2017-09-01

    The present study explored how romantic relationship qualities develop with age and relationship length. Eight waves of data on romantic relationships were collected over 10.5 years during adolescence and early adulthood from a community-based sample in a Western U.S. city (100 males, 100 females; M age Wave 1 = 15.83). Measures of support, negative interactions, control, and jealousy were derived from interviews and questionnaire measures. Using multilevel modeling, main effects of age were found for jealousy, and main effects of relationship length were found for each quality. However, main effects were qualified by significant age by length interactions for each and every relationship quality. Short relationships increased in support with age. In comparison, long-term adolescent relationships were notable in that they were both supportive and turbulent, with elevated levels of support, negative interactions, control, and jealousy. With age, long-term relationships continued to have high levels of support, but decreased in negative interactions, control, and jealousy. Present findings highlight how the interplay between age and relationship length is key for understanding the development of romantic relationships. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  10. Memory for tonal pitches: a music-length effect hypothesis.

    PubMed

    Akiva-Kabiri, Lilach; Vecchi, Tomaso; Granot, Roni; Basso, Demis; Schön, Daniele

    2009-07-01

    One of the most studied effects of verbal working memory (WM) is the influence of the length of the words that compose the list to be remembered. This work aims to investigate the nature of musical WM by replicating the word length effect in the musical domain. Length and rate of presentation were manipulated in a recognition task of tone sequences. Results showed significant effects for both factors (length and presentation rate) as well as their interaction, suggesting the existence of different strategies (e.g., chunking and rehearsal) for the immediate memory of musical information, depending upon the length of the sequences.

  11. Effects of doping and interchain interactions on the metal-insulator transition in trans-polyacetylene

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1999-09-01

    Using a tight-binding Hamiltonian the metal-insulator phase diagram for trans-polyacetylene was calculated as a function of doping concentration and interchain interaction strength. The phase boundary for the periodic system coincides with the gap closing, which occurs for certain combinations of critical values for the doping concentration and the interchain interaction strength. The values found are in good agreement with the experimentally observed increase in the Pauli susceptibility. To simulate disorder in the polymer, the effect of finite chain lengths was studied. This type of disorder pushes the metal/insulator phase boundary towards the metallic side of the phase diagram. An increase in the doping concentration and/or interchain interaction is shown to reduce the localizing effects of disorder effectively. For realistic values of the interchain interaction strength the number of chain breaks needed to localize the states at the Fermi energy is quite small, of the order of a few percent. The localization length is found to be substantially longer than the conjugation length of the polymer.

  12. Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Zhang, Peng

    2018-04-01

    We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.

  13. Effective ergodicity breaking in an exclusion process with varying system length

    NASA Astrophysics Data System (ADS)

    Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi

    2015-09-01

    Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.

  14. Evaluating the Impact of Guessing and Its Interactions With Other Test Characteristics on Confidence Interval Procedures for Coefficient Alpha

    PubMed Central

    Paek, Insu

    2015-01-01

    The effect of guessing on the point estimate of coefficient alpha has been studied in the literature, but the impact of guessing and its interactions with other test characteristics on the interval estimators for coefficient alpha has not been fully investigated. This study examined the impact of guessing and its interactions with other test characteristics on four confidence interval (CI) procedures for coefficient alpha in terms of coverage rate (CR), length, and the degree of asymmetry of CI estimates. In addition, interval estimates of coefficient alpha when data follow the essentially tau-equivalent condition were investigated as a supplement to the case of dichotomous data with examinee guessing. For dichotomous data with guessing, the results did not reveal salient negative effects of guessing and its interactions with other test characteristics (sample size, test length, coefficient alpha levels) on CR and the degree of asymmetry, but the effect of guessing was salient as a main effect and an interaction effect with sample size on the length of the CI estimates, making longer CI estimates as guessing increases, especially when combined with a small sample size. Other important effects (e.g., CI procedures on CR) are also discussed. PMID:29795863

  15. Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding.

    PubMed

    Pathak, Jyotsana; Priyadarshini, Eepsita; Rawat, Kamla; Bohidar, H B

    2017-12-01

    In this review, a number of systems are described to demonstrate the effect of polyelectrolyte chain stiffness (persistence length) on the coacervation phenomena, after we briefly review the field. We consider two specific types of complexation/coacervation: in the first type, DNA is used as a fixed substrate binding to flexible polyions such as gelatin A, bovine serum albumin and chitosan (large persistence length polyelectrolyte binding to low persistence length biopolymer), and in the second case, different substrates such as gelatin A, bovine serum albumin, and chitosan were made to bind to a polyion gelatin B (low persistence length substrate binding to comparable persistence length polyion). Polyelectrolyte chain flexibility was found to have remarkable effect on the polyelectrolyte-protein complex coacervation. The competitive interplay of electrostatic versus surface patch binding (SPB) leading to associative interaction followed by complex coacervation between these biopolymers is elucidated. We modelled the SPB interaction in terms of linear combination of attractive and repulsive Coulombic forces with respect to the solution ionic strength. The aforesaid interactions were established via a universal phase diagram, considering the persistence length of polyion as the sole independent variable. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Dual-Route Perspective on Brain Activation in Response to Visual Words: Evidence for a Length by Lexicality Interaction in the Visual Word Form Area (VWFA)

    PubMed Central

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-01-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. PMID:19896538

  17. A dual-route perspective on brain activation in response to visual words: evidence for a length by lexicality interaction in the visual word form area (VWFA).

    PubMed

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-02-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  18. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  19. Effects of elevation and seed source on tracheid length in young ponderosa pine

    Treesearch

    R. M. Echols

    1973-01-01

    Tracheid lengths in 30-year-old ponderosa pine progeny test plantations in the central Sierra Nevada of California were analyzed for effects of (a) elevation of seed parents and (b) elevation and location of test sites. The influence of elevation of seed parents on progeny tracheid length was not significant. Plantation location was significant, but interaction between...

  20. Effect of charged amino acid side chain length on lateral cross-strand interactions between carboxylate- and guanidinium-containing residues in a β-hairpin.

    PubMed

    Kuo, Hsiou-Ting; Liu, Shing-Lung; Chiu, Wen-Chieh; Fang, Chun-Jen; Chang, Hsien-Chen; Wang, Wei-Ren; Yang, Po-An; Li, Jhe-Hao; Huang, Shing-Jong; Huang, Shou-Ling; Cheng, Richard P

    2015-05-01

    β-Sheet is one of the major protein secondary structures. Oppositely charged residues are frequently observed across neighboring strands in antiparallel sheets, suggesting the importance of cross-strand ion pairing interactions. The charged amino acids Asp, Glu, Arg, and Lys have different numbers of hydrophobic methylenes linking the charged functionality to the backbone. To investigate the effect of side chain length of guanidinium- and carboxylate-containing residues on lateral cross-strand ion pairing interactions at non-hydrogen-bonded positions, β-hairpin peptides containing Zbb-Agx (Zbb = Asp, Glu, Aad in increasing length; Agx = Agh, Arg, Agb, Agp in decreasing length) sequence patterns were studied by NMR methods. The fraction folded population and folding energy were derived from the chemical shift deviation data. Peptides with high fraction folded populations involved charged residue side chain lengths that supported high strand propensity. Double mutant cycle analysis was used to determine the interaction energy for the potential lateral ion pairs. Minimal interaction was observed between residues with short side chains, most likely due to the diffused positive charge on the guanidinium group, which weakened cross-strand electrostatic interactions with the carboxylate side chain. Only the Aad-Arg/Agh interactions with long side chains clearly exhibited stabilizing energetics, possibly relying on hydrophobics. A survey of a non-redundant protein structure database revealed that the statistical sheet pair propensity followed the trend Asp-Arg < Glu-Arg, implying the need for matching long side chains. This suggested the need for long side chains on both guanidinium-bearing and carboxylate-bearing residues to stabilize the β-hairpin motif.

  1. Mother-Father-Newborn Interaction: Effects of Maternal Medication, Labor, and Sex of Infant.

    ERIC Educational Resources Information Center

    Parke, Ross D.; And Others

    A research study was conducted to: (1) compare mother and father interactions with their newborn infant; (2) examine the effects of maternal drugs on mother-father infant interaction; (3) explore the impact of variations in length of labor on parent interaction; and (4) examine sex of parent and sex of newborn interactions to determine the nature…

  2. Cooperative and noncooperative magnetization reversal in alnicos

    DOE PAGES

    Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...

    2017-02-08

    Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.

  3. Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.

    PubMed

    Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M

    2015-10-16

    We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.

  4. Pairing versus quarteting coherence length

    NASA Astrophysics Data System (ADS)

    Delion, D. S.; Baran, V. V.

    2015-02-01

    We systematically analyze the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density-dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have, in all considered cases, a long-range character inside the nucleus and a decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in the continuum is investigated. Strong shell effects are put in evidence, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar shape, but with larger values on the nuclear surface. We provide evidence of the important role of proton-neutron correlations by estimating the so-called alpha coherence length, which takes into account the overlap with the proton-neutron part of the α -particle wave function. It turns out that it does not depend on the nuclear size and has a value comparable to the free α -particle radius. We have shown that pairing correlations are mainly concentrated inside the nucleus, while quarteting correlations are connected to the nuclear surface.

  5. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  6. Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jamil, M.; Rasheed, A.

    2015-07-15

    The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less

  7. Effect of a prehop on the muscle-tendon interaction during vertical jumps.

    PubMed

    Aeles, Jeroen; Lichtwark, Glen; Peeters, Dries; Delecluse, Christophe; Jonkers, Ilse; Vanwanseele, Benedicte

    2018-05-01

    Many movements use stretch-shortening cycles of a muscle-tendon unit (MTU) for storing and releasing elastic energy. The required stretching of medial gastrocnemius (MG) tendinous tissue during jumps, however, requires large length changes of the muscle fascicles because of the lack of MTU length changes. This has a negative impact on the force-generating capacity of the muscle fascicles. The purpose of this study was to induce a MG MTU stretch before shortening by adding a prehop to the squat jump. Eleven well-trained athletes specialized in jumping performed a prehop squat jump (PHSJ) and a standard squat jump (SSJ). Kinematic data were collected using a 3D motion capture system and were used in a musculoskeletal model to calculate MTU lengths. B-mode ultrasonography of the MG was used to measure fascicle length and pennation angle during the jumps. By combining the muscle-tendon unit lengths, fascicle lengths, and pennation angles, the stretch and recoil of the series elastic element of MG were calculated using a simple geometric muscle-tendon model. Our results show less length changes of the muscle fascicles during the upward motion and lower maximal shortening velocities, increasing the moment-generating capacity of the plantar flexors, reflected in the higher ankle joint moment in the PHSJ compared with the SSJ. Although muscle-tendon interaction during the PHSJ was more optimal, athletes were not able to increase their jump height compared with the SSJ. NEW & NOTEWORTHY This is the first study that aimed to improve the muscle-tendon interaction in squat jumping. We effectively introduced a stretch to the medial gastrocnemius muscle-tendon unit resulting in lower maximal shortening velocities and thus an increase in the plantar flexor force-generating capacity, reflected in the higher ankle joint moment in the prehop squat jump compared with the standard squat jump. Here, we demonstrate an effective method for mechanical optimization of the muscle-tendon interaction in the medial gastrocnemius during squat jumping.

  8. Using Video Interaction Guidance to Develop Intrapersonal and Interpersonal Skills in Professional Training for Educational Psychologists

    ERIC Educational Resources Information Center

    Hayes, Ben; Dewey, Jessica; Sancho, Michelle

    2014-01-01

    In this study we assessed the effects of paragraph length on the reading speed and comprehension of students. Students were randomly assigned to one of three groups: short paragraph length (SPL), medium paragraph length (MPL), or long paragraph length (LPL). Students read a 1423 word text on a computer screen formatted to align with their group…

  9. Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers

    PubMed Central

    Gilbert, Dustin A.; Liao, Jung-Wei; Kirby, Brian J.; Winklhofer, Michael; Lai, Chih-Huang; Liu, Kai

    2016-01-01

    Magnetic interactions in magnetic nanostructures are critical to nanomagnetic and spintronic explorations. Here we demonstrate an extremely sensitive magnetic yoking effect and tunable interactions in FePt based hard/soft bilayers mediated by the soft layer. Below the exchange length, a thin soft layer strongly exchange couples to the perpendicular moments of the hard layer; above the exchange length, just a few nanometers thicker, the soft layer moments turn in-plane and act to yoke the dipolar fields from the adjacent hard layer perpendicular domains. The evolution from exchange to dipolar-dominated interactions is experimentally captured by first-order reversal curves, the ΔM method, and polarized neutron reflectometry, and confirmed by micromagnetic simulations. These findings demonstrate an effective yoking approach to design and control magnetic interactions in wide varieties of magnetic nanostructures and devices. PMID:27604428

  10. Universal dimer–dimer scattering in lattice effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  11. Universal dimer–dimer scattering in lattice effective field theory

    DOE PAGES

    Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...

    2017-03-14

    We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less

  12. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  13. The interacting effects of temperature and food chain length on trophic abundance and ecosystem function.

    PubMed

    Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L

    2010-05-01

    1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.

  14. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    PubMed

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better elucidated, and novel devices/processes can be developed with capacity to modulate and control the hydrophobic effects from the molecular to the macroscopic scale.

  15. Growth parameters at birth mediate the relationship between prenatal manganese exposure and cognitive test scores among a cohort of 2- to 3-year-old Bangladeshi children.

    PubMed

    Lee, Jane J; Valeri, Linda; Kapur, Kush; Ibne Hasan, Md Omar Sharif; Quamruzzaman, Quazi; Wright, Robert O; Bellinger, David C; Christiani, David C; Mazumdar, Maitreyi

    2018-05-03

    Our previous study demonstrated that prenatal manganese exposure is associated with cognitive test scores among a cohort of 2- to 3-year-old Bangladeshi children. This study tested the hypothesis that the adverse effects of manganese are mediated through poor prenatal growth. Pregnant mothers were enrolled in a birth cohort in Bangladesh between 2008 and 2011, and children were followed at birth and age 20-40 months. Manganese concentration was measured in umbilical cord blood. Anthropometric measurements (weight, length, head circumference) were assessed at delivery. Children's cognitive development was assessed at age 20-40 months using the Bayley Scales of Infant and Toddler Development-Third Edition. Using recently developed statistical approaches that estimate mediation and interaction effects simultaneously, we evaluated whether the association between cord blood manganese and cognitive score was mediated through anthropometric measures at birth. This analysis included 764 mother-child pairs. Higher manganese concentration was associated with lower cognitive score [β=-0.61, standard error (SE)=0.23, p = 0.009]. Among the birth measures, we found a significant indirect effect only through birth length (β =-0.10, SE = 0.03, p = 0.001). We also found evidence of mediated interaction (both mediation and interaction, β =-0.03, SE = 0.01, p = 0.01) with birth length in the association between cord blood manganese and cognitive score. The overall proportion mediated by birth length was 33% (p = 0.02) and the proportion attributed to interaction was 11% (p = 0.04). We did not find evidence of a mediating effect through birth weight or head circumference. Our findings confirm that prenatal growth, particularly birth length, contributes to the overall effect of environmental manganese exposure on a child's cognitive development.

  16. Interactions and reversal-field memory in complex magnetic nanowire arrays

    NASA Astrophysics Data System (ADS)

    Rotaru, Aurelian; Lim, Jin-Hee; Lenormand, Denny; Diaconu, Andrei; Wiley, John. B.; Postolache, Petronel; Stancu, Alexandru; Spinu, Leonard

    2011-10-01

    Interactions and magnetization reversal of Ni nanowire arrays have been investigated by the first-order reversal curve (FORC) method. Several series of samples with controlled spatial distribution were considered including simple wires of different lengths and diameters (70 and 110 nm) and complex wires with a single modulated diameter along their length. Subtle features of magnetic interactions are revealed through a quantitative analysis of the local interaction field profile distributions obtained from the FORC method. In addition, the FORC analysis indicates that the nanowire systems with a mean diameter of 70 nm appear to be organized in symmetric clusters indicative of a reversal-field memory effect.

  17. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2016-06-16

    According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.

  18. "Serial" Effects in Parallel Models of Reading

    ERIC Educational Resources Information Center

    Chang, Ya-Ning; Furber, Steve; Welbourne, Stephen

    2012-01-01

    There is now considerable evidence showing that the time to read a word out loud is influenced by an interaction between orthographic length and lexicality. Given that length effects are interpreted by advocates of dual-route models as evidence of serial processing this would seem to pose a serious challenge to models of single word reading which…

  19. The Cross-Script Length Effect: Further Evidence Challenging PDP Models of Reading Aloud

    ERIC Educational Resources Information Center

    Rastle, Kathleen; Havelka, Jelena; Wydell, Taeko N.; Coltheart, Max; Besner, Derek

    2009-01-01

    The interaction between length and lexical status is one of the key findings used in support of models of reading aloud that postulate a serial process in the orthography-to-phonology translation (B. S. Weekes, 1997). However, proponents of parallel models argue that this effect arises in peripheral visual or articulatory processes. The authors…

  20. A study of the antibacterial activity of L-phenylalanine and L-tyrosine esters in relation to their CMCs and their interactions with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC as model membrane.

    PubMed

    Joondan, Nausheen; Jhaumeer-Laulloo, Sabina; Caumul, Prakashanand

    2014-01-01

    Cationic amino acid-based surfactants are known to interact with the lipid bilayer of cell membranes resulting in depolarization, lysis and cell death through a disruption of the membrane topology. A range of cationic surfactant analogues derived from L-Phenylalanine (C1-C20) and L-Tyrosine (C8-C14) esters have been synthesized and screened for their antibacterial activity. The esters were more active against gram positive than gram negative bacteria. The activity increased with increasing chain length, exhibiting a cut-off effect at C12 for gram positive and C8/C10 for gram negative bacteria. The cut-off effect for gram negative bacteria was observed at a lower alkyl chain length. The CMC was correlated with the MIC, inferring that micellar activity contribute to the cut-off effect in antibacterial activity. The interaction of the cationic surfactants with the phospholipid vesicles (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) in the presence of 1-anilino-8-naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescence probes showed that an increase in ionic interaction causes an increase in antibacterial activity. Increase in hydrophobic interaction increases the antibacterial activity only to a certain chain length, attributing to the cut-off effect. Therefore, both electrostatic and hydrophobic interactions, involving the polar and nonpolar moieties are of paramount importance for the bactericidal properties. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  2. Internal structure of vortices in a dipolar spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Lovegrove, Justin; Ruostekoski, Janne

    2017-04-01

    We demonstrate how dipolar interactions (DI) can have pronounced effects on the structure of vortices in atomic spinor Bose-Einstein condensates and illustrate generic physical principles that apply across dipolar spinor systems. We then find and analyze the cores of singular non-Abelian vortices in a spin-3 52Cr condensate. Using a simpler spin-1 model system, we analyze the underlying dipolar physics and show how a dipolar healing length interacts with the hierarchy of healing lengths of the contact interaction and leads to simple criteria for the core structure: vortex core size is restricted to the shorter spin-dependent healing length when the interactions both favor the ground-state spin condition, but can conversely be enlarged by DI when interactions compete. We further demonstrate manifestations of spin-ordering induced by the DI anisotropy, including DI-dependent angular momentum of nonsingular vortices, as a result of competition with adaptation to rotation, and potentially observable internal vortex-core spin textures. We acknowledge financial support from the EPSRC.

  3. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    NASA Astrophysics Data System (ADS)

    Bilić, Ante; Sanvito, Stefano

    2012-09-01

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.

  4. Impact of maternal and paternal smoking on birth outcomes.

    PubMed

    Inoue, Sachiko; Naruse, Hiroo; Yorifuji, Takashi; Kato, Tsuguhiko; Murakoshi, Takeshi; Doi, Hiroyuki; Subramanian, S V

    2017-09-01

    The adverse effects of maternal and paternal smoking on child health have been studied. However, few studies demonstrate the interaction effects of maternal/paternal smoking, and birth outcomes other than birth weight have not been evaluated. The present study examined individual effects of maternal/paternal smoking and their interactions on birth outcomes. A follow-up hospital-based study from pregnancy to delivery was conducted from 1997 to 2010 with parents and newborn infants who delivered at a large hospital in Hamamatsu, Japan. The relationships between smoking and growth were evaluated with logistic regression. The individual effects of maternal smoking are related to low birth weight (LBW), short birth length and small head circumference. The individual effects of paternal smoking are related to short birth length and small head circumference. In the adjusted model, both parents' smoking showed clear associations with LBW (odds ratio [OR] = 1.64, 95% confidence interval [CI] 1.18-2.27) and short birth length (-1 standard deviation [SD] OR = 1.38, 95% CI 1.07-1.79; -2 SD OR = 2.75, 95% CI 1.84-4.10). Maternal smoking was significantly associated with birth weight and length, but paternal smoking was not. However, if both parents smoked, the risk of shorter birth length increased. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  6. Effects of field interactions upon particle creation in Robertson-Walker universes

    NASA Technical Reports Server (NTRS)

    Birrell, N. D.; Davies, P. C. W.; Ford, L. H.

    1980-01-01

    Particle creation due to field interactions in an expanding Robertson-Walker universe is investigated. A model in which pseudoscalar mesons and photons are created as a result of their mutual interaction is considered, and the energy density of created particles is calculated in model universes which undergo a bounce at some maximum curvature. The free-field creation of non-conformally coupled scalar particles and of gravitons is calculated in the same space-times. It is found that if the bounce occurs at a sufficiently early time the interacting particle creation will dominate. This result may be traced to the fact that the model interaction chosen introduces a length scale which is much larger than the Planck length.

  7. Thermodynamics-hydration relationships within loops that affect G-quadruplexes under molecular crowding conditions.

    PubMed

    Fujimoto, Takeshi; Nakano, Shu-ichi; Sugimoto, Naoki; Miyoshi, Daisuke

    2013-01-31

    We systematically investigated the effects of loop length on the conformation, thermodynamic stability, and hydration of DNA G-quadruplexes under dilute and molecular crowding conditions in the presence of Na(+). Structural analysis showed that molecular crowding induced conformational switches of oligonucleotides with the longer guanine stretch and the shorter thymine loop. Thermodynamic parameters further demonstrated that the thermodynamic stability of G-quadruplexes increased by increasing the loop length from two to four, whereas it decreased by increasing the loop length from four to six. Interestingly, we found by osmotic pressure analysis that the number of water molecules released from the G-quadruplex decreased with increasing thermodynamic stability. We assumed that base-stacking interactions within the loops not only stabilized the whole G-quadruplex structure but also created hydration sites by accumulating nucleotide functional groups. The molecular crowding effects on the stability of G-quadruplexes composed of abasic sites, which reduce the stacking interactions at the loops, further demonstrated that G-quadruplexes with fewer stacking interactions within the loops released a larger number of water molecules upon folding. These results showed that the stacking interactions within the loops determined the thermodynamic stability and hydration of the whole G-quadruplex.

  8. Grasp and index finger reach zone during one-handed smartphone rear interaction: effects of task type, phone width and hand length.

    PubMed

    Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong

    2016-11-01

    Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.

  9. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion

    PubMed Central

    Lee, J.-M.; Ramos, E.M.; Lee, J.-H.; Gillis, T.; Mysore, J.S.; Hayden, M.R.; Warby, S.C.; Morrison, P.; Nance, M.; Ross, C.A.; Margolis, R.L.; Squitieri, F.; Orobello, S.; Di Donato, S.; Gomez-Tortosa, E.; Ayuso, C.; Suchowersky, O.; Trent, R.J.A.; McCusker, E.; Novelletto, A.; Frontali, M.; Jones, R.; Ashizawa, T.; Frank, S.; Saint-Hilaire, M.H.; Hersch, S.M.; Rosas, H.D.; Lucente, D.; Harrison, M.B.; Zanko, A.; Abramson, R.K.; Marder, K.; Sequeiros, J.; Paulsen, J.S.; Landwehrmeyer, G.B.; Myers, R.H.; MacDonald, M.E.; Durr, Alexandra; Rosenblatt, Adam; Frati, Luigi; Perlman, Susan; Conneally, Patrick M.; Klimek, Mary Lou; Diggin, Melissa; Hadzi, Tiffany; Duckett, Ayana; Ahmed, Anwar; Allen, Paul; Ames, David; Anderson, Christine; Anderson, Karla; Anderson, Karen; Andrews, Thomasin; Ashburner, John; Axelson, Eric; Aylward, Elizabeth; Barker, Roger A.; Barth, Katrin; Barton, Stacey; Baynes, Kathleen; Bea, Alexandra; Beall, Erik; Beg, Mirza Faisal; Beglinger, Leigh J.; Biglan, Kevin; Bjork, Kristine; Blanchard, Steve; Bockholt, Jeremy; Bommu, Sudharshan Reddy; Brossman, Bradley; Burrows, Maggie; Calhoun, Vince; Carlozzi, Noelle; Chesire, Amy; Chiu, Edmond; Chua, Phyllis; Connell, R.J.; Connor, Carmela; Corey-Bloom, Jody; Craufurd, David; Cross, Stephen; Cysique, Lucette; Santos, Rachelle Dar; Davis, Jennifer; Decolongon, Joji; DiPietro, Anna; Doucette, Nicholas; Downing, Nancy; Dudler, Ann; Dunn, Steve; Ecker, Daniel; Epping, Eric A.; Erickson, Diane; Erwin, Cheryl; Evans, Ken; Factor, Stewart A.; Farias, Sarah; Fatas, Marta; Fiedorowicz, Jess; Fullam, Ruth; Furtado, Sarah; Garde, Monica Bascunana; Gehl, Carissa; Geschwind, Michael D.; Goh, Anita; Gooblar, Jon; Goodman, Anna; Griffith, Jane; Groves, Mark; Guttman, Mark; Hamilton, Joanne; Harrington, Deborah; Harris, Greg; Heaton, Robert K.; Helmer, Karl; Henneberry, Machelle; Hershey, Tamara; Herwig, Kelly; Howard, Elizabeth; Hunter, Christine; Jankovic, Joseph; Johnson, Hans; Johnson, Arik; Jones, Kathy; Juhl, Andrew; Kim, Eun Young; Kimble, Mycah; King, Pamela; Klimek, Mary Lou; Klöppel, Stefan; Koenig, Katherine; Komiti, Angela; Kumar, Rajeev; Langbehn, Douglas; Leavitt, Blair; Leserman, Anne; Lim, Kelvin; Lipe, Hillary; Lowe, Mark; Magnotta, Vincent A.; Mallonee, William M.; Mans, Nicole; Marietta, Jacquie; Marshall, Frederick; Martin, Wayne; Mason, Sarah; Matheson, Kirsty; Matson, Wayne; Mazzoni, Pietro; McDowell, William; Miedzybrodzka, Zosia; Miller, Michael; Mills, James; Miracle, Dawn; Montross, Kelsey; Moore, David; Mori, Sasumu; Moser, David J.; Moskowitz, Carol; Newman, Emily; Nopoulos, Peg; Novak, Marianne; O'Rourke, Justin; Oakes, David; Ondo, William; Orth, Michael; Panegyres, Peter; Pease, Karen; Perlman, Susan; Perlmutter, Joel; Peterson, Asa; Phillips, Michael; Pierson, Ron; Potkin, Steve; Preston, Joy; Quaid, Kimberly; Radtke, Dawn; Rae, Daniela; Rao, Stephen; Raymond, Lynn; Reading, Sarah; Ready, Rebecca; Reece, Christine; Reilmann, Ralf; Reynolds, Norm; Richardson, Kylie; Rickards, Hugh; Ro, Eunyoe; Robinson, Robert; Rodnitzky, Robert; Rogers, Ben; Rosenblatt, Adam; Rosser, Elisabeth; Rosser, Anne; Price, Kathy; Price, Kathy; Ryan, Pat; Salmon, David; Samii, Ali; Schumacher, Jamy; Schumacher, Jessica; Sendon, Jose Luis Lópenz; Shear, Paula; Sheinberg, Alanna; Shpritz, Barnett; Siedlecki, Karen; Simpson, Sheila A.; Singer, Adam; Smith, Jim; Smith, Megan; Smith, Glenn; Snyder, Pete; Song, Allen; Sran, Satwinder; Stephan, Klaas; Stober, Janice; Sü?muth, Sigurd; Suter, Greg; Tabrizi, Sarah; Tempkin, Terry; Testa, Claudia; Thompson, Sean; Thomsen, Teri; Thumma, Kelli; Toga, Arthur; Trautmann, Sonja; Tremont, Geoff; Turner, Jessica; Uc, Ergun; Vaccarino, Anthony; van Duijn, Eric; Van Walsem, Marleen; Vik, Stacie; Vonsattel, Jean Paul; Vuletich, Elizabeth; Warner, Tom; Wasserman, Paula; Wassink, Thomas; Waterman, Elijah; Weaver, Kurt; Weir, David; Welsh, Claire; Werling-Witkoske, Chris; Wesson, Melissa; Westervelt, Holly; Weydt, Patrick; Wheelock, Vicki; Williams, Kent; Williams, Janet; Wodarski, Mary; Wojcieszek, Joanne; Wood, Jessica; Wood-Siverio, Cathy; Wu, Shuhua; Yastrubetskaya, Olga; de Yebenes, Justo Garcia; Zhao, Yong Qiang; Zimbelman, Janice; Zschiegner, Roland; Aaserud, Olaf; Abbruzzese, Giovanni; Andrews, Thomasin; Andrich, Jurgin; Antczak, Jakub; Arran, Natalie; Artiga, Maria J. Saiz; Bachoud-Lévi, Anne-Catherine; Banaszkiewicz, Krysztof; di Poggio, Monica Bandettini; Bandmann, Oliver; Barbera, Miguel A.; Barker, Roger A.; Barrero, Francisco; Barth, Katrin; Bas, Jordi; Beister, Antoine; Bentivoglio, Anna Rita; Bertini, Elisabetta; Biunno, Ida; Bjørgo, Kathrine; Bjørnevoll, Inga; Bohlen, Stefan; Bonelli, Raphael M.; Bos, Reineke; Bourne, Colin; Bradbury, Alyson; Brockie, Peter; Brown, Felicity; Bruno, Stefania; Bryl, Anna; Buck, Andrea; Burg, Sabrina; Burgunder, Jean-Marc; Burns, Peter; Burrows, Liz; Busquets, Nuria; Busse, Monica; Calopa, Matilde; Carruesco, Gemma T.; Casado, Ana Gonzalez; Catena, Judit López; Chu, Carol; Ciesielska, Anna; Clapton, Jackie; Clayton, Carole; Clenaghan, Catherine; Coelho, Miguel; Connemann, Julia; Craufurd, David; Crooks, Jenny; Cubillo, Patricia Trigo; Cubo, Esther; Curtis, Adrienne; De Michele, Giuseppe; De Nicola, A.; de Souza, Jenny; de Weert, A. Marit; de Yébenes, Justo Garcia; Dekker, M.; Descals, A. Martínez; Di Maio, Luigi; Di Pietro, Anna; Dipple, Heather; Dose, Matthias; Dumas, Eve M.; Dunnett, Stephen; Ecker, Daniel; Elifani, F.; Ellison-Rose, Lynda; Elorza, Marina D.; Eschenbach, Carolin; Evans, Carole; Fairtlough, Helen; Fannemel, Madelein; Fasano, Alfonso; Fenollar, Maria; Ferrandes, Giovanna; Ferreira, Jaoquim J.; Fillingham, Kay; Finisterra, Ana Maria; Fisher, K.; Fletcher, Amy; Foster, Jillian; Foustanos, Isabella; Frech, Fernando A.; Fullam, Robert; Fullham, Ruth; Gago, Miguel; García, RocioGarcía-Ramos; García, Socorro S.; Garrett, Carolina; Gellera, Cinzia; Gill, Paul; Ginestroni, Andrea; Golding, Charlotte; Goodman, Anna; Gørvell, Per; Grant, Janet; Griguoli, A.; Gross, Diana; Guedes, Leonor; BascuñanaGuerra, Monica; Guerra, Maria Rosalia; Guerrero, Rosa; Guia, Dolores B.; Guidubaldi, Arianna; Hallam, Caroline; Hamer, Stephanie; Hammer, Kathrin; Handley, Olivia J.; Harding, Alison; Hasholt, Lis; Hedge, Reikha; Heiberg, Arvid; Heinicke, Walburgis; Held, Christine; Hernanz, Laura Casas; Herranhof, Briggitte; Herrera, Carmen Durán; Hidding, Ute; Hiivola, Heli; Hill, Susan; Hjermind, Lena. E.; Hobson, Emma; Hoffmann, Rainer; Holl, Anna Hödl; Howard, Liz; Hunt, Sarah; Huson, Susan; Ialongo, Tamara; Idiago, Jesus Miguel R.; Illmann, Torsten; Jachinska, Katarzyna; Jacopini, Gioia; Jakobsen, Oda; Jamieson, Stuart; Jamrozik, Zygmunt; Janik, Piotr; Johns, Nicola; Jones, Lesley; Jones, Una; Jurgens, Caroline K.; Kaelin, Alain; Kalbarczyk, Anna; Kershaw, Ann; Khalil, Hanan; Kieni, Janina; Klimberg, Aneta; Koivisto, Susana P.; Koppers, Kerstin; Kosinski, Christoph Michael; Krawczyk, Malgorzata; Kremer, Berry; Krysa, Wioletta; Kwiecinski, Hubert; Lahiri, Nayana; Lambeck, Johann; Lange, Herwig; Laver, Fiona; Leenders, K.L.; Levey, Jamie; Leythaeuser, Gabriele; Lezius, Franziska; Llesoy, Joan Roig; Löhle, Matthias; López, Cristobal Diez-Aja; Lorenza, Fortuna; Loria, Giovanna; Magnet, Markus; Mandich, Paola; Marchese, Roberta; Marcinkowski, Jerzy; Mariotti, Caterina; Mariscal, Natividad; Markova, Ivana; Marquard, Ralf; Martikainen, Kirsti; Martínez, Isabel Haro; Martínez-Descals, Asuncion; Martino, T.; Mason, Sarah; McKenzie, Sue; Mechi, Claudia; Mendes, Tiago; Mestre, Tiago; Middleton, Julia; Milkereit, Eva; Miller, Joanne; Miller, Julie; Minster, Sara; Möller, Jens Carsten; Monza, Daniela; Morales, Blas; Moreau, Laura V.; Moreno, Jose L. López-Sendón; Münchau, Alexander; Murch, Ann; Nielsen, Jørgen E.; Niess, Anke; Nørremølle, Anne; Novak, Marianne; O'Donovan, Kristy; Orth, Michael; Otti, Daniela; Owen, Michael; Padieu, Helene; Paganini, Marco; Painold, Annamaria; Päivärinta, Markku; Partington-Jones, Lucy; Paterski, Laurent; Paterson, Nicole; Patino, Dawn; Patton, Michael; Peinemann, Alexander; Peppa, Nadia; Perea, Maria Fuensanta Noguera; Peterson, Maria; Piacentini, Silvia; Piano, Carla; Càrdenas, Regina Pons i; Prehn, Christian; Price, Kathleen; Probst, Daniela; Quarrell, Oliver; Quiroga, Purificacion Pin; Raab, Tina; Rakowicz, Maryla; Raman, Ashok; Raymond, Lucy; Reilmann, Ralf; Reinante, Gema; Reisinger, Karin; Retterstol, Lars; Ribaï, Pascale; Riballo, Antonio V.; Ribas, Guillermo G.; Richter, Sven; Rickards, Hugh; Rinaldi, Carlo; Rissling, Ida; Ritchie, Stuart; Rivera, Susana Vázquez; Robert, Misericordia Floriach; Roca, Elvira; Romano, Silvia; Romoli, Anna Maria; Roos, Raymond A.C.; Røren, Niini; Rose, Sarah; Rosser, Elisabeth; Rosser, Anne; Rossi, Fabiana; Rothery, Jean; Rudzinska, Monika; Ruíz, Pedro J. García; Ruíz, Belan Garzon; Russo, Cinzia Valeria; Ryglewicz, Danuta; Saft, Carston; Salvatore, Elena; Sánchez, Vicenta; Sando, Sigrid Botne; Šašinková, Pavla; Sass, Christian; Scheibl, Monika; Schiefer, Johannes; Schlangen, Christiane; Schmidt, Simone; Schöggl, Helmut; Schrenk, Caroline; Schüpbach, Michael; Schuierer, Michele; Sebastián, Ana Rojo; Selimbegovic-Turkovic, Amina; Sempolowicz, Justyna; Silva, Mark; Sitek, Emilia; Slawek, Jaroslaw; Snowden, Julie; Soleti, Francesco; Soliveri, Paola; Sollom, Andrea; Soltan, Witold; Sorbi, Sandro; Sorensen, Sven Asger; Spadaro, Maria; Städtler, Michael; Stamm, Christiane; Steiner, Tanja; Stokholm, Jette; Stokke, Bodil; Stopford, Cheryl; Storch, Alexander; Straßburger, Katrin; Stubbe, Lars; Sulek, Anna; Szczudlik, Andrzej; Tabrizi, Sarah; Taylor, Rachel; Terol, Santiago Duran-Sindreu; Thomas, Gareth; Thompson, Jennifer; Thomson, Aileen; Tidswell, Katherine; Torres, Maria M. Antequera; Toscano, Jean; Townhill, Jenny; Trautmann, Sonja; Tucci, Tecla; Tuuha, Katri; Uhrova, Tereza; Valadas, Anabela; van Hout, Monique S.E.; van Oostrom, J.C.H.; van Vugt, Jeroen P.P.; vanm, Walsem Marleen R.; Vandenberghe, Wim; Verellen-Dumoulin, Christine; Vergara, Mar Ruiz; Verstappen, C.C.P.; Verstraelen, Nichola; Viladrich, Celia Mareca; Villanueva, Clara; Wahlström, Jan; Warner, Thomas; Wehus, Raghild; Weindl, Adolf; Werner, Cornelius J.; Westmoreland, Leann; Weydt, Patrick; Wiedemann, Alexandra; Wild, Edward; Wild, Sue; Witjes-Ané, Marie-Noelle; Witkowski, Grzegorz; Wójcik, Magdalena; Wolz, Martin; Wolz, Annett; Wright, Jan; Yardumian, Pam; Yates, Shona; Yudina, Elizaveta; Zaremba, Jacek; Zaugg, Sabine W.; Zdzienicka, Elzbieta; Zielonka, Daniel; Zielonka, Euginiusz; Zinzi, Paola; Zittel, Simone; Zucker, Birgrit; Adams, John; Agarwal, Pinky; Antonijevic, Irina; Beck, Christopher; Chiu, Edmond; Churchyard, Andrew; Colcher, Amy; Corey-Bloom, Jody; Dorsey, Ray; Drazinic, Carolyn; Dubinsky, Richard; Duff, Kevin; Factor, Stewart; Foroud, Tatiana; Furtado, Sarah; Giuliano, Joe; Greenamyre, Timothy; Higgins, Don; Jankovic, Joseph; Jennings, Dana; Kang, Un Jung; Kostyk, Sandra; Kumar, Rajeev; Leavitt, Blair; LeDoux, Mark; Mallonee, William; Marshall, Frederick; Mohlo, Eric; Morgan, John; Oakes, David; Panegyres, Peter; Panisset, Michel; Perlman, Susan; Perlmutter, Joel; Quaid, Kimberly; Raymond, Lynn; Revilla, Fredy; Robertson, Suzanne; Robottom, Bradley; Sanchez-Ramos, Juan; Scott, Burton; Shannon, Kathleen; Shoulson, Ira; Singer, Carlos; Tabbal, Samer; Testa, Claudia; van, Kammen Dan; Vetter, Louise; Walker, Francis; Warner, John; Weiner, illiam; Wheelock, Vicki; Yastrubetskaya, Olga; Barton, Stacey; Broyles, Janice; Clouse, Ronda; Coleman, Allison; Davis, Robert; Decolongon, Joji; DeLaRosa, Jeanene; Deuel, Lisa; Dietrich, Susan; Dubinsky, Hilary; Eaton, Ken; Erickson, Diane; Fitzpatrick, Mary Jane; Frucht, Steven; Gartner, Maureen; Goldstein, Jody; Griffith, Jane; Hickey, Charlyne; Hunt, Victoria; Jaglin, Jeana; Klimek, Mary Lou; Lindsay, Pat; Louis, Elan; Loy, Clemet; Lucarelli, Nancy; Malarick, Keith; Martin, Amanda; McInnis, Robert; Moskowitz, Carol; Muratori, Lisa; Nucifora, Frederick; O'Neill, Christine; Palao, Alicia; Peavy, Guerry; Quesada, Monica; Schmidt, Amy; Segro, Vicki; Sperin, Elaine; Suter, Greg; Tanev, Kalo; Tempkin, Teresa; Thiede, Curtis; Wasserman, Paula; Welsh, Claire; Wesson, Melissa; Zauber, Elizabeth

    2012-01-01

    Objective: Age at onset of diagnostic motor manifestations in Huntington disease (HD) is strongly correlated with an expanded CAG trinucleotide repeat. The length of the normal CAG repeat allele has been reported also to influence age at onset, in interaction with the expanded allele. Due to profound implications for disease mechanism and modification, we tested whether the normal allele, interaction between the expanded and normal alleles, or presence of a second expanded allele affects age at onset of HD motor signs. Methods: We modeled natural log-transformed age at onset as a function of CAG repeat lengths of expanded and normal alleles and their interaction by linear regression. Results: An apparently significant effect of interaction on age at motor onset among 4,068 subjects was dependent on a single outlier data point. A rigorous statistical analysis with a well-behaved dataset that conformed to the fundamental assumptions of linear regression (e.g., constant variance and normally distributed error) revealed significance only for the expanded CAG repeat, with no effect of the normal CAG repeat. Ten subjects with 2 expanded alleles showed an age at motor onset consistent with the length of the larger expanded allele. Conclusions: Normal allele CAG length, interaction between expanded and normal alleles, and presence of a second expanded allele do not influence age at onset of motor manifestations, indicating that the rate of HD pathogenesis leading to motor diagnosis is determined by a completely dominant action of the longest expanded allele and as yet unidentified genetic or environmental factors. Neurology® 2012;78:690–695 PMID:22323755

  10. Reliability of EEG Measures of Interaction: A Paradigm Shift Is Needed to Fight the Reproducibility Crisis

    PubMed Central

    Höller, Yvonne; Uhl, Andreas; Bathke, Arne; Thomschewski, Aljoscha; Butz, Kevin; Nardone, Raffaele; Fell, Jürgen; Trinka, Eugen

    2017-01-01

    Measures of interaction (connectivity) of the EEG are at the forefront of current neuroscientific research. Unfortunately, test-retest reliability can be very low, depending on the measure and its estimation, the EEG-frequency of interest, the length of the signal, and the population under investigation. In addition, artifacts can hamper the continuity of the EEG signal, and in some clinical situations it is impractical to exclude artifacts. We aimed to examine factors that moderate test-retest reliability of measures of interaction. The study involved 40 patients with a range of neurological diseases and memory impairments (age median: 60; range 21–76; 40% female; 22 mild cognitive impairment, 5 subjective cognitive complaints, 13 temporal lobe epilepsy), and 20 healthy controls (age median: 61.5; range 23–74; 70% female). We calculated 14 measures of interaction based on the multivariate autoregressive model from two EEG-recordings separated by 2 weeks. We characterized test-retest reliability by correlating the measures between the two EEG-recordings for variations of data length, data discontinuity, artifact exclusion, model order, and frequency over all combinations of channels and all frequencies, individually for each subject, yielding a correlation coefficient for each participant. Excluding artifacts had strong effects on reliability of some measures, such as classical, real valued coherence (~0.1 before, ~0.9 after artifact exclusion). Full frequency directed transfer function was highly reliable and robust against artifacts. Variation of data length decreased reliability in relation to poor adjustment of model order and signal length. Variation of discontinuity had no effect, but reliabilities were different between model orders, frequency ranges, and patient groups depending on the measure. Pathology did not interact with variation of signal length or discontinuity. Our results emphasize the importance of documenting reliability, which may vary considerably between measures of interaction. We recommend careful selection of measures of interaction in accordance with the properties of the data. When only short data segments are available and when the signal length varies strongly across subjects after exclusion of artifacts, reliability becomes an issue. Finally, measures which show high reliability irrespective of the presence of artifacts could be extremely useful in clinical situations when exclusion of artifacts is impractical. PMID:28912704

  11. The Moderating Role of Genetics: The Effect of Length of Hospitalization on Children’s Internalizing and Externalizing Behaviors

    PubMed Central

    Benish-Weisman, Maya; Kerem, Eitan; Knafo-Noam, Ariel; Belsky, Jay

    2015-01-01

    The study considered individual differences in children’s ability to adjust to hospitalization and found the length of hospitalization to be related to adaptive psychological functioning for some children. Applying the theoretical framework of three competing models of gene-X-environment interactions (diathesis–stress, differential susceptibility, and vantage sensitivity), the study examined the moderating effect of genetics (DRD4) on the relationship between the length of hospitalization and internalizing and externalizing problems. Mothers reported on children’s hospitalization background and conduct problems (externalizing) and emotional symptoms (internalizing), using subscales of the 25-item Strength and Difficulties Questionnaire (1). Data on both hospitalization and genetics were available for 65 children, 57% of whom were females, with an average age of 61.4 months (SD = 2.3). The study found length of hospitalization did not predict emotional and behavior problems per se, but the interaction with genetics was significant; the length of hospitalization was related to diminished levels of internalizing and externalizing problems only for children with the 7R allele (the sensitive variant). The vantage sensitivity model best accounted for how the length of hospitalization and genetics related to children’s internalizing and externalizing problems. PMID:26347661

  12. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.

    2015-10-01

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.

  13. Rapid Microfluidic Mixers Utilizing Dispersion Effect and Interactively Time-Pulsed Injection

    NASA Astrophysics Data System (ADS)

    Leong, Jik-Chang; Tsai, Chien-Hsiung; Chang, Chin-Lung; Lin, Chiu-Feng; Fu, Lung-Ming

    2007-08-01

    In this paper, we present a novel active microfluidic mixer utilizing a dispersion effect in an expansion chamber and applying interactively time-pulsed driving voltages to the respective inlet fluid flows to induce electroosmotic flow velocity variations for developing a rapid mixing effect in a microchannel. Without using any additional equipment to induce flow perturbations, only a single high-voltage power source is required for simultaneously driving and mixing sample fluids, which results in a simple and low-cost system for mixing. The effects of the applied main electrical field, interactive frequency, and expansion ratio on the mixing performance are thoroughly examined experimentally and numerically. The mixing ratio can be as high as 95% within a mixing length of 3000 μm downstream from the secondary T-form when a driving electric field strength of 250 V/cm, a periodic switching frequency of 5 Hz, and the expansion ratio M=1:10 are applied. In addition, the optimization of the driving electric field, switching frequency, expansion ratio, expansion entry length, and expansion chamber length for achieving a maximum mixing ratio is also discussed in this study. The novel method proposed in this study can be used for solving the mixing problem in the field of micro-total-analysis systems in a simple manner.

  14. Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team

    2017-10-01

    The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.

  15. Sin1, a Mutation Affecting Female Fertility in Arabidopsis, Interacts with Mod1, Its Recessive Modifier

    PubMed Central

    Lang, J. D.; Ray, S.; Ray, A.

    1994-01-01

    In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564

  16. Interactions between pool geometry and hydraulics

    USGS Publications Warehouse

    Thompson, Douglas M.; Nelson, Jonathan M.; Wohl, Ellen E.

    1998-01-01

    An experimental and computational research approach was used to determine interactions between pool geometry and hydraulics. A 20-m-long, 1.8-m-wide flume was used to investigate the effect of four different geometric aspects of pool shape on flow velocity. Plywood sections were used to systematically alter constriction width, pool depth, pool length, and pool exit-slope gradient, each at two separate levels. Using the resulting 16 unique geometries with measured pool velocities in four-way factorial analyses produced an empirical assessment of the role of the four geometric aspects on the pool flow patterns and hence the stability of the pool. To complement the conclusions of these analyses, a two-dimensional computational flow model was used to investigate the relationships between pool geometry and flow patterns over a wider range of conditions. Both experimental and computational results show that constriction and depth effects dominate in the jet section of the pool and that pool length exhibits an increasing effect within the recirculating-eddy system. The pool exit slope appears to force flow reattachment. Pool length controls recirculating-eddy length and vena contracta strength. In turn, the vena contracta and recirculating eddy control velocities throughout the pool.

  17. Maternal Telomere Length and Risk of Down Syndrome: Epidemiological Impact of Smokeless Chewing Tobacco and Oral Contraceptive on Segregation of Chromosome 21.

    PubMed

    Ray, Anirban; Hong, Chang-Sook; Feingold, Eleanor; Ghosh, Papiya; Ghosh, Priyanka; Bhaumik, Pranami; Dey, Subratakumar; Ghosh, Sujay

    2016-01-01

    We have previously demonstrated a relationship between children born with Down syndrome and maternal telomere length. Similarly, exposure to tobacco and oral contraceptives has been explored in one of our earlier studies as a risk factor for Down syndrome. In the present study, we consider the interactions among these risk factors associated with Down syndrome in a population from Kolkata, India, using analyses stratified by maternal age. We estimated the telomere length of women with children with Down syndrome by restriction enzyme/Southern blot methods. Linear regression was employed to estimate telomere shortening as an indicator of the maternal age of conception. Interactions among the various factors were analyzed by logistic regression. We found an association between the use of smokeless chewing tobacco and shorter telomere length among women who experienced meiosis I nondisjunction at gametogenesis; the effect is seen across all maternal age groups. In contrast, oral contraceptive use alone did not exhibit a statistically significant association with maternal telomere length, but there was an interaction with the use of smokeless chewing tobacco in the older mothers who experienced meiotic II nondisjunction. Environmental/habitual factors interact with molecular components of the oocyte, which ultimately increases the risk of chromosome 21 nondisjunction and subsequently of giving birth to a child with Down syndrome. © 2015 S. Karger AG, Basel.

  18. Effect of rod length on the morphology of block copolymer/magnetic nanorod composites.

    PubMed

    Lo, Chieh-Tsung; Lin, Wei-Ting

    2013-05-02

    The organization of magnetic nanorods in microphase-separated diblock copolymers composed of poly(styrene-b-2-vinylpyridine) (PS-PVP) as a function of rod length and rod concentration was investigated using both transmission electron microscopy and small-angle X-ray scattering. Our results reveal that the nanorods were sequestered into the PVP domains, which is attributed to the preferential interaction between pyridine-tethered nanorods and PVP. Meanwhile, the addition of nanorods in PS-PVP caused chain stretching. To minimize the energy penalty, nanorods tended to align parallel to the interface between PS and PVP to increase the conformational entropy. As the length of nanorods increased, the increasing van der Waals interaction and magnetic interaction caused extensive rod aggregation, which suppressed the domain size of PVP and amplified the local compositional fluctuations. This creates conditions to induce disorder in the polymer morphology and nanorods undergo macrophase separation.

  19. The effect of word length and other sublexical, lexical, and semantic variables on developmental reading deficits.

    PubMed

    De Luca, Maria; Barca, Laura; Burani, Cristina; Zoccolotti, Pierluigi

    2008-12-01

    To examine the effect of word length and several sublexical, and lexico-semantic variables on the reading of Italian children with a developmental reading deficit. Previous studies indicated the role of word length in transparent orthographies. However, several factors that may interact with word length were not controlled for. Seventeen impaired and 34 skilled sixth-grade readers were presented words of different lengths, matched for initial phoneme, bigram frequency, word frequency, age of acquisition, and imageability. Participants were asked to read aloud, as quickly and as accurately as possible. Reaction times at the onset of pronunciation and mispronunciations were recorded. Impaired readers' reaction times indicated a marked effect of word length; in skilled readers, there was no length effect for short words but, rather, a monotonic increase from 6-letter words on. Regression analyses confirmed the role of word length and indicated the influence of word frequency (similar in impaired and skilled readers). No other variables predicted reading latencies. Word length differentially influenced word recognition in impaired versus skilled readers, irrespective of the action of (potentially interfering) sublexical, lexical, and semantic variables. It is proposed that the locus of the length effect is at a perceptual level of analysis. The independent influence of word frequency on the reading performance of both groups of participants indicates the sparing of lexical activation in impaired readers.

  20. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2012-11-01

    Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.

  1. Understanding the Effect of Audio Communication Delay on Distributed Team Interaction

    DTIC Science & Technology

    2013-06-01

    means for members to socialize and learn about each other, engenders development cooperative relationships, and lays a foundation for future interaction...length will result in increases in task completion time and mental workload. 3. Audiovisual technology will moderate the effect of communication...than audio alone. 4. Audiovisual technology will moderate the effect of communication delays such that task completion time and mental workload will

  2. Effect of day length on germination of seeds collected in Alaska

    USGS Publications Warehouse

    Densmore, R.V.

    1997-01-01

    Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5??C to 20??C, but on short day length few or no seeds germinated at 5??C and 10??C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15??C and 20??C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.

  3. Large structures and tethers working group

    NASA Technical Reports Server (NTRS)

    Murphy, G.; Garrett, H.; Samir, U.; Barnett, A.; Raitt, J.; Sullivan, J.; Katz, I.

    1986-01-01

    The Large Structures and Tethers Working Group sought to clarify the meaning of large structures and tethers as they related to space systems. Large was assumed to mean that the characteristic length of the structure was greater than one of such relevant plasma characteristics as ion gyroradius or debey length. Typically, anything greater than or equal to the Shuttle dimensions was considered large. It was agreed that most large space systems that the tether could be better categorized as extended length, area, or volume structures. The key environmental interactions were then identified in terms of these three categories. In the following Working Group summary, these categories and the related interactions are defined in detail. The emphasis is on how increases in each of the three spatial dimensions uniquely determine the interactions with the near-Earth space environment. Interactions with the environments around the other planets and the solar wind were assumed to be similar or capable of being extrapolated from the near-Earth results. It should be remembered in the following that the effects on large systems do not just affect specific technologies but will quite likely impact whole missions. Finally, the possible effects of large systems on the plasma environment, although only briefly discussed, were felt to be of potentially great concern.

  4. Entropy-driven crystal formation on highly strained substrates

    PubMed Central

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613

  5. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  6. Interactive Effects of CO2 and O2 in Soil on Root and Top Growth of Barley and Peas

    PubMed Central

    Geisler, G.

    1967-01-01

    Barley and pea plants were grown under several regimens of different compositions of soil atmosphere, the O2 concentration varying from 0 to 21% and the CO2 concentration from 0 to 8%. In absence of CO2, the effect of O2 on root length in barley was characterized by equal root lengths within the range of 21 to 7% O2 and a steep decline between 7 and 0%. In peas, while showing the same general response, the decline occurred between 14 and 7% O2. Root numbers of the seminal roots of barley decreased already with reduction in O2 concentration from 21 to 14%. Dry matter production was affected somewhat differently by O2 and CO2 concentration. Dry matter production in barley was reduced at 14% O2 while root length decreased between 7 and 0%. In peas, dry matter production was favored by low CO2 concentrations except where there was no oxygen. At 21% O2, increasing CO2 concentrations did not seem to affect root length up to concentrations of 2% CO2. At 8% CO2, root length was decreased. The inter-active effects of CO2 and O2 are characterized by a reduced susceptibility to CO2 at O2 values below 7%, and a very deleterious effect of 8% CO2 at 7% O2. PMID:16656508

  7. A numerical study of Coulomb interaction effects on 2D hopping transport.

    PubMed

    Kinkhabwala, Yusuf A; Sverdlov, Viktor A; Likharev, Konstantin K

    2006-02-15

    We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density S(I)(f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher f, there is a crossover to a broad range of frequencies in which S(I)(f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor [Formula: see text]. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F = 1), scaling with the length L of the conductor as F = (L(c)/L)(α). The exponent α is significantly affected by the Coulomb interaction effects, changing from α = 0.76 ± 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter L(c), interpreted as the average percolation cluster length along the electric field direction, scales as [Formula: see text] when Coulomb interaction effects are negligible and [Formula: see text] when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.

  8. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    PubMed

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  9. Scaling Effects on Materials Tribology: From Macro to Micro Scale

    PubMed Central

    Stoyanov, Pantcho; Chromik, Richard R.

    2017-01-01

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale. PMID:28772909

  10. Topological phase transition and the effect of Hubbard interactions on the one-dimensional topological Kondo insulator

    NASA Astrophysics Data System (ADS)

    Pillay, Jason C.; McCulloch, Ian P.

    2018-05-01

    The effect of a local Kondo coupling and Hubbard interaction on the topological phase of the one-dimensional topological Kondo insulator (TKI) is numerically investigated using the infinite matrix-product state density-matrix renormalization group algorithm. The ground state of the TKI is a symmetry-protected topological (SPT) phase protected by inversion symmetry. It is found that on its own, the Hubbard interaction that tends to force fermions into a one-charge per site order is insufficient to destroy the SPT phase. However, when the local Kondo Hamiltonian term that favors a topologically trivial ground state with a one-charge per site order is introduced, the Hubbard interaction assists in the destruction of the SPT phase. This topological phase transition occurs in the charge sector where the correlation length of the charge excitation diverges while the correlation length of the spin excitation remains finite. The critical exponents, central charge, and the phase diagram separating the SPT phase from the topologically trivial phase are presented.

  11. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  12. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  13. Radiation defect dynamics in Si at room temperature studied by pulsed ion beams

    DOE PAGES

    Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...

    2015-10-06

    The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less

  14. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution: effect of surfactant alkyl chain length.

    PubMed

    Bai, Guangyue; Nichifor, Marieta; Lopes, António; Bastos, Margarida

    2005-01-13

    We have used a precision isothermal titration microcalorimeter (ITC) to measure the enthalpy curves for the interaction of a hydrophobically modified polyelectrolyte (D40OCT30) with oppositely charged surfactants (SC(n)S) in aqueous solution. D40OCT30 is a newly synthesized polymer based on dextran having pendant N-(2-hydroxypropyl)-N,N-dimethyl-N-octylammonium chloride groups randomly distributed along the polymer backbone with degree of substitution of 28.1%. The employed anionic surfactants are sodium octyl sulfate (SC(8)S) and sodium tetradecyl sulfate (SC(14)S). Microcalorimetric results along with turbidity and kinematic viscosity measurements demonstrate systematically the thermodynamic characterization of the interaction of D40OCT30/SC(n)S. A three-dimensional diagram with the derived phase boundaries is drawn to describe the effect of the alkyl chain length of surfactant and of the ratio between surfactant and pendant groups on the interaction. A more complete picture of the interaction mechanism for D40OCT30/SC(n)S systems is proposed here.

  15. Androgen receptor repeat length polymorphism associated with male-to-female transsexualism.

    PubMed

    Hare, Lauren; Bernard, Pascal; Sánchez, Francisco J; Baird, Paul N; Vilain, Eric; Kennedy, Trudy; Harley, Vincent R

    2009-01-01

    There is a likely genetic component to transsexualism, and genes involved in sex steroidogenesis are good candidates. We explored the specific hypothesis that male-to-female transsexualism is associated with gene variants responsible for undermasculinization and/or feminization. Specifically, we assessed the role of disease-associated repeat length polymorphisms in the androgen receptor (AR), estrogen receptor beta (ERbeta), and aromatase (CYP19) genes. Subject-control analysis included 112 male-to-female transsexuals and 258 non-transsexual males. Associations and interactions were investigated between CAG repeat length in the AR gene, CA repeat length in the ERbeta gene, and TTTA repeat length in the CYP19 gene and male-to-female transsexualism. A significant association was identified between transsexualism and the AR allele, with transsexuals having longer AR repeat lengths than non-transsexual male control subjects (p=.04). No associations for transsexualism were evident in repeat lengths for CYP19 or ERbeta genes. Individuals were then classified as short or long for each gene polymorphism on the basis of control median polymorphism lengths in order to further elucidate possible combined effects. No interaction associations between the three genes and transsexualism were identified. This study provides evidence that male gender identity might be partly mediated through the androgen receptor.

  16. Androgen Receptor Repeat Length Polymorphism Associated with Male-to-Female Transsexualism

    PubMed Central

    Hare, Lauren; Bernard, Pascal; Sánchez, Francisco J.; Baird, Paul N.; Vilain, Eric; Kennedy, Trudy; Harley, Vincent R.

    2012-01-01

    Background There is a likely genetic component to transsexualism, and genes involved in sex steroidogenesis are good candidates. We explored the specific hypothesis that male-to-female transsexualism is associated with gene variants responsible for undermasculinization and/or feminization. Specifically, we assessed the role of disease-associated repeat length polymorphisms in the androgen receptor (AR), estrogen receptor β (ERβ), and aromatase (CYP19) genes. Methods Subject-control analysis included 112 male-to-female transsexuals and 258 non-transsexual males. Associations and interactions were investigated between CAG repeat length in the AR gene, CA repeat length in the ERβ gene, and TTTA repeat length in the CYP19 gene and male-to-female transsexualism. Results A significant association was identified between transsexualism and the AR allele, with transsexuals having longer AR repeat lengths than non-transsexual male control subjects (p = .04). No associations for transsexualism were evident in repeat lengths for CYP19 or ERβ genes. Individuals were then classified as short or long for each gene polymorphism on the basis of control median polymorphism lengths in order to further elucidate possible combined effects. No interaction associations between the three genes and transsexualism were identified. Conclusions This study provides evidence that male gender identity might be partly mediated through the androgen receptor. PMID:18962445

  17. Phrase Length Matters: The Interplay between Implicit Prosody and Syntax in Korean "Garden Path" Sentences

    ERIC Educational Resources Information Center

    Hwang, Hyekyung; Steinhauer, Karsten

    2011-01-01

    In spoken language comprehension, syntactic parsing decisions interact with prosodic phrasing, which is directly affected by phrase length. Here we used ERPs to examine whether a similar effect holds for the on-line processing of written sentences during silent reading, as suggested by theories of "implicit prosody." Ambiguous Korean sentence…

  18. Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions

    NASA Astrophysics Data System (ADS)

    Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-05-01

    Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.

  19. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  20. Effective defect diffusion lengths in Ar-ion bombarded 3C-SiC

    DOE PAGES

    Bayu Aji, L. B.; Wallace, J. B.; Shao, L.; ...

    2016-04-14

    Above room temperature, SiC exhibits pronounced processes of diffusion and interaction of radiation-generated point defects. Here, we use the recently developed pulsed ion beam method to measure effective defect diffusion lengths in 3C-SiC bombarded in the temperature range of 25–200 °C with 500 keV Ar ions. Results reveal a diffusion length of ~10 nm, which exhibits a weak temperature dependence, changing from 9 to 13 nm with increasing temperature. Lastly, these results have important implications for understanding and predicting radiation damage in SiC and for the development of radiation-resistant materials via interface-mediated defect reactions.

  1. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  2. Mechanical principles of effects of botulinum toxin on muscle length-force characteristics: an assessment by finite element modeling.

    PubMed

    Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A

    2014-05-07

    Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Order of wetting transitions in electrolyte solutions.

    PubMed

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  4. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  5. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  6. Telomere length in alcohol dependence: A role for impulsive choice and childhood maltreatment.

    PubMed

    Kang, Jee In; Hwang, Syung Shick; Choi, Jong Rak; Lee, Seung-Tae; Kim, Jieun; Hwang, In Sik; Kim, Hae Won; Kim, Chan-Hyung; Kim, Se Joo

    2017-09-01

    Telomere shortening, a marker of cellular aging, has been considered to be linked with psychosocial stress as well as with chronic alcohol consumption, possibly mediated by oxidative stress and inflammatory response. Recent findings suggested that early life adversity on telomere dynamics may be related to impulsive choice. To further our understanding of the association of impulsive choice and childhood trauma on telomere length, we examined whether delayed discounting and childhood trauma or their interaction is related to leukocyte telomere length, while controlling for multiple potential confounding variables, in patients with alcohol dependence who are considered to have higher impulsive choice and shorter telomere length. We recruited 253 male patients with chronic alcohol dependence. All participants performed the delay discounting task, and the area under curve was used as a measure of delay discounting. Steeper delay discounting represents more impulsive choices. The modified Parent-Child Conflict Tactics Scale was used to measure childhood maltreatment. In addition, confounding factors, including socio-demographic characteristics, the Alcohol Use Disorders Identification Test, the Buss-Perry Aggression Questionnaire, the Resilience Quotient, the Beck Depression Inventory, and the Beck Anxiety Inventory, were also assessed. Hierarchical regression analyses showed a significant main effect of delay discounting (β=0.161, t=2.640, p=0.009), and an interaction effect between delay discounting and childhood maltreatment on leukocyte telomere length (β=0.173, t=2.138, p=0.034). In subsequent analyses stratified by childhood maltreatment, patients with alcohol dependence and high childhood trauma showed a significant relationship between delay discounting and leukocyte telomere length (β=0.279, t=3.183, p=0.002), while those with low trauma showed no association between them. Our findings suggest that higher impulsive choice is associated with shorter telomere length, and childhood trauma may exert a moderating effect in the relationship between impulsive choice and telomere length. Copyright © 2017. Published by Elsevier Ltd.

  7. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and shear flows. In some cases, percentage of biofiber breakage in elongational flow is higher. In general, simulation predictions of final average lengths were in good agreement with experiments, indicating the importance of fiber-polymer interactions on fiber breakage. The largest discrepancies were obtained at higher fiber concentration composites; these differences might be resolved, in future simulations, by including the effect of fiber-fiber interactions.

  8. Independent effects of step length and foot strike pattern on tibiofemoral joint forces during running.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-10-01

    The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.

  9. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.

    PubMed

    Podgornik, Rudi

    2004-09-01

    We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.

  10. The nature of the force-induced conformation transition of dsDNA studied by using single molecule force spectroscopy.

    PubMed

    Liu, Ningning; Bu, Tianjia; Song, Yu; Zhang, Wei; Li, Jinjing; Zhang, Wenke; Shen, Jiacong; Li, Hongbin

    2010-06-15

    Single-stranded DNA binding proteins (SSB) interact with single-stranded DNA (ssDNA) specifically. Taking advantage of this character, we have employed Bacillus subtilis SSB protein to investigate the nature of force-induced conformation transition of double-stranded DNA (dsDNA) by using AFM-based single molecule force spectroscopy (SMFS) technique. Our results show that, when a dsDNA is stretched beyond its contour length, the dsDNA is partially melted, producing some ssDNA segments which can be captured by SSB proteins. We have also systematically investigated the effects of stretching length, waiting time, and salt concentration on the conformation transition of dsDNA and SSB-ssDNA interactions, respectively. Furthermore, the effect of proflavine, a DNA intercalator, on the SSB-DNA interactions has been investigated, and the results indicate that the proflavine-saturated dsDNA can be stabilized to the extent that the dsDNA will no longer melt into ssDNA under the mechanical force even up to 150 pN, and no SSB-DNA interactions are detectable.

  11. High-power, kilojoule laser interactions with near-critical density plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingale, L.; Thomas, A. G. R.; Maksimchuk, A.

    Experiments were performed using the Omega EP laser, which provided pulses containing 1kJ of energy in 9ps and was used to investigate high-power, relativistic intensity laser interactions with near-critical density plasmas, created from foam targets with densities of 3-100 mg/cm{sup 3}. The effect of changing the plasma density on both the laser light transmitted through the targets and the proton beam accelerated from the interaction was investigated. Two-dimensional particle-in-cell simulations enabled the interaction dynamics and laser propagation to be studied in detail. The effect of the laser polarization and intensity in the two-dimensional simulations on the channel formation and electronmore » heating are discussed. In this regime, where the plasma density is above the critical density, but below the relativistic critical density, the channel formation speed and therefore length are inversely proportional to the plasma density, which is faster than the hole boring model prediction. A general model is developed to describe the channel length in this regime.« less

  12. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2014-11-01

    We expand on a recent study of a lattice model of interacting particles [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601]. The adsorption isotherm and equilibrium fluctuations in particle number are discussed as a function of the interaction. Their behavior is similar to that of interacting particles in porous materials. Different expressions for the particle jump rates are derived from transition-state theory. Which expression should be used depends on the strength of the interparticle interactions. Analytical expressions for the self- and transport diffusion are derived when correlations, caused by memory effects in the environment, are neglected. The diffusive behavior is studied numerically with kinetic Monte Carlo (kMC) simulations, which reproduces the diffusion including correlations. The effect of correlations is studied by comparing the analytical expressions with the kMC simulations. It is found that the Maxwell-Stefan diffusion can exceed the self-diffusion. To our knowledge, this is the first time this is observed. The diffusive behavior in one-dimensional and higher-dimensional systems is qualitatively the same, with the effect of correlations decreasing for increasing dimension. The length dependence of both the self- and transport diffusion is studied for one-dimensional systems. For long lengths the self-diffusion shows a 1 /L dependence. Finally, we discuss when agreement with experiments and simulations can be expected. The assumption that particles in different cavities do not interact is expected to hold quantitatively at low and medium particle concentrations if the particles are not strongly interacting.

  13. Dielectric response of Anderson and pseudogapped insulators

    NASA Astrophysics Data System (ADS)

    Feigel’man, M. V.; Ivanov, D. A.; Cuevas, E.

    2018-05-01

    Using a combination of analytic and numerical methods, we study the polarizability of a (non-interacting) Anderson insulator in one-, two-, and three-dimensions and demonstrate that, in a wide range of parameters, it scales proportionally to the square of the localization length, contrary to earlier claims based on the effective-medium approximation. We further analyze the effect of electron–electron interactions on the dielectric constant in quasi-1D, quasi-2D and 3D materials with large localization length, including both Coulomb repulsion and phonon-mediated attraction. The phonon-mediated attraction (in the pseudogapped state on the insulating side of the superconductor-insulator transition) produces a correction to the dielectric constant, which may be detected from a linear response of a dielectric constant to an external magnetic field.

  14. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    NASA Astrophysics Data System (ADS)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  15. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  16. Hydrophobic interactions in complexes of antimicrobial peptides with bacterial polysaccharides.

    PubMed

    Kuo, Hsin H; Chan, Celine; Burrows, Lori L; Deber, Charles M

    2007-06-01

    Biofilms of Pseudomonas aeruginosa are responsible for chronic lung infections in cystic fibrosis patients, where they are characterized by overproduction of the exopolysaccharide alginate and are recalcitrant to treatment with conventional antibiotics. Cationic antimicrobial peptides (CAPs) are potential alternatives for the treatment of multi-drug-resistant P. aeruginosa. However, alginate in P. aeruginosa biofilms has been proposed to bind these peptides through hydrophobic interactions, consequently reducing their activity [Chan et al., J Biol Chem 2004; 279: 38749-38754]. Here we perform biophysical analyses of the interactions of alginate with a series of novel peptide antibiotics (alpha-CAPs) of prototypic sequence KK-AAAXAAAAAXAAWAAXAAA-KKKK (where X = Phe, Trp or Leu). The hydrophobic interaction interface in alginate was investigated by examining (i) the effects of polysaccharide composition with respect to D-mannuronate and L-guluronate content; (ii) glycan chain length; (iii) alpha-CAP Trp fluorescence; and (iv) 1-anilinonaphthalene-8-sulfonate fluorescence. The results show that, while M and G residues produce equivalent effects, hydrophobic interactions between alginate and alpha-CAPs require a minimal glycan chain length. Peptide interactions with alginate are deduced to be mediated by hydrophobic microdomains comprised of pyranosyl C-H groups that are inducible upon formation of alpha-CAP-alginate complexes due to charge neutralization between the two species.

  17. Interaction of nanoparticles with lipid membranes: a multiscale perspective

    NASA Astrophysics Data System (ADS)

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-05-01

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon. Electronic supplementary information (ESI) available: All the experimental details, figures and tables. See DOI: 10.1039/c4nr00838c

  18. All-optical intensity modulation based on graphene-coated microfibre waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Ruiduo; Li, Diao; Jiang, Man; Wu, Hao; Xu, Xiang; Ren, Zhaoyu

    2018-03-01

    We investigate graphene-covered microfibre (GCM) waveguides, and analyse the microfibres' evanescent field distributions in different diameters and lengths by numerically simulation. According to the simulation results, we designed a graphene-based all-optical modulator using 980 nm and Amplified Spontaneous Emission (ASE) lasers, employing the microfibre's evanescent field induced light-graphene interaction. We studied the modulation effect that is influenced by the microfibre's diameter, number of graphene layers, and effective graphene length. Compared to a single graphene layer of shorter length, the double graphene layer with longer length presents stronger absorption and higher modulation depth. Using a 2- μm diameter microfibre covered by ∼0.3 cm double graphene sheets, we achieved a modulation depth of 8.45 dB. This modulator features ease of fabrication, low cost, and a controllable modulation depth.

  19. Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor.

    PubMed

    Bukar, Natalia; Zhao, Sandy Shuo; Charbonneau, David M; Pelletier, Joelle N; Masson, Jean-Francois

    2014-05-18

    We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength exceeding 300 mM. Under these conditions, the aggregation constant of the Au NPs was approximately 10(4) M(-1) s(-1) and the Debye length was below 1 nm, on the same length scale as the size of the folate anion (approximately 0.8 nm). Longer Debye lengths led to poorer SPR responses, revealing a reduced affinity of the folic acid-modified Au NPs for hDHFR. While high colloidal stability of Au NPs is desired in most applications, these conditions may hinder molecular interactions due to Debye lengths exceeding the size of the ligand and thus preventing close interactions with the surface-bound molecular receptor.

  20. Effects of anisosmotic stress on cardiac muscle cell length, diameter, area, and sarcomere length

    NASA Technical Reports Server (NTRS)

    Tanaka, R.; Barnes, M. A.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    The purpose of this study was to examine the effects of anisosmotic stress on adult mammalian cardiac muscle cell (cardiocyte) size. Cardiocyte size and sarcomere length were measured in cardiocytes isolated from 10 normal rats and 10 normal cats. Superfusate osmolarity was decreased from 300 +/- 6 to 130 +/- 5 mosM and increased to 630 +/- 8 mosM. Cardiocyte size and sarcomere length increased progressively when osmolarity was decreased, and there were no significant differences between cat and rat cardiocytes with respect to percent change in cardiocyte area or diameter; however, there were significant differences in cardiocyte length (2.8 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05) and sarcomere length (3.3 +/- 0.3% in cat vs. 6.1 +/- 0.3% in rat, P < 0.05). To determine whether these species-dependent differences in length were related to diastolic interaction of the contractile elements or differences in relative passive stiffness, cardiocytes were subjected to the osmolarity gradient 1) during treatment with 7 mM 2,3-butanedione monoxime (BDM), which inhibits cross-bridge interaction, or 2) after pretreatment with 1 mM ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA), a bivalent Ca2+ chelator. Treatment with EGTA or BDM abolished the differences between cat and rat cardiocytes. Species-dependent differences therefore appeared to be related to the degree of diastolic cross-bridge association and not differences in relative passive stiffness. In conclusion, the osmolarity vs. cell size relation is useful in assessing the cardiocyte response to anisosmotic stress and may in future studies be useful in assessing changes in relative passive cardiocyte stiffness produced by pathological processes.

  1. Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.

    2016-01-01

    This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.

  2. Privacy functions and wilderness recreation: Use density and length of stay effects on experience

    Treesearch

    David N. Cole; Troy E. Hall

    2010-01-01

    Privacy and its functions are desirable attributes of the human experience in wilderness areas, where outstanding opportunities for solitude is legally mandated. Privacy, the ability to choose how and when to interact and exchange information with other people, enhances opportunities for both personal growth and interaction with the wilderness environment. This study...

  3. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Mozuelos, P.

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less

  4. Impact of the alkyl chain length on binding of imidazolium-based ionic liquids to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing

    2018-05-01

    The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.

  5. Chain length effect on the structure and stability of antimicrobial peptides of the (RW)n series.

    PubMed

    Phambu, Nsoki; Almarwani, Bashiyar; Garcia, Arlette M; Hamza, Nafisa S; Muhsen, Amira; Baidoo, Jacqueline E; Sunda-Meya, Anderson

    2017-08-01

    Three peptides containing (RW) n -NH 2 units (where n=4, 6, and 8) have been chosen to study the effect of the chain length on the structure and stability of the peptide using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Their interactions with Escherichia coli (E. coli) membrane mimetic vesicles are discussed. Infrared results indicate that addition of (RW) n -NH 2 units increases intermolecular H bonds with antiparallel orientation. TGA and DSC results reveal that (RW) 6 -NH 2 shows the optimal chain length in terms of stability and all three peptides show a preferential interaction with one of the anionic lipids in E. coli membranes. SEM images of (RW) 4 -NH 2 present large aggregates while those of (RW) 6 -NH 2 and (RW) 8 -NH 2 present layers of sheet-like structure. In the presence of model membranes, (RW) n -NH 2 show fibrillar peptide superstructures. This study suggests that repeating structures of (RW) n -NH 2 promotes lateral assembly. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  7. Effects of shock strength on shock turbulence interaction

    NASA Technical Reports Server (NTRS)

    Lee, Sangsan

    1993-01-01

    Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.

  8. Structural propensities and entropy effects in peptide helix-coil transitions

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Pelea, Adam Colt; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2012-09-01

    The helix-coil transition in peptides is a critical structural transition leading to functioning proteins. Peptide chains have a large number of possible configurations that must be accounted for in statistical mechanical investigations. Using hydrogen bond and local helix propensity interaction terms, we develop a method for obtaining and incorporating the degeneracy factor that allows the exact calculation of the partition function for a peptide as a function of chain length. The partition function is used in calculations for engineered peptide chains of various lengths that allow comparison with a variety of different types of experimentally measured quantities, such as fraction of helicity as a function of both temperature and chain length, heat capacity, and denaturation studies. When experimental sensitivity in helicity measurements is properly accounted for in the calculations, the calculated curves fit well with the experimental curves. We determine values of interaction energies for comparison with known biochemical interactions, as well as quantify the difference in the number of configurations available to an amino acid in a random coil configuration compared to a helical configuration.

  9. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    PubMed

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  10. Coherent and incoherent dipole-dipole interactions between atoms

    NASA Astrophysics Data System (ADS)

    Robicheaux, Francis

    2016-05-01

    Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.

  11. Kinetics of interior loop formation in semiflexible chains.

    PubMed

    Hyeon, Changbong; Thirumalai, D

    2006-03-14

    Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.

  12. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions.

    PubMed

    Hoernke, Maria; Schwieger, Christian; Kerth, Andreas; Blume, Alfred

    2012-07-01

    Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely omithine (Orn), alpha, gamma-diaminobutyric acid (Dab) and alpha, beta-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.

  13. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  14. Micromechanics of shear localization in granular rocks - effect of temperature

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Hirth, G.

    2017-12-01

    We conducted detailed microscopy on porous sandstones deformed to varying axial strains in the low-temperature, brittle faulting regime and high-temperature, semibrittle faulting regime. This study is aimed to test the hypothsis that macroscopic faulting results from the interaction of distributed microfractures in granular rocks, and to assess how elevated temperature influences these shear loalization processes. We determined the ratio of fracture length vs. spacing for distributed microfractures (away from macroscopic faults) and compared it with fracture mechanics models of crack interaction. At low temperature, both tensile and shear microfractures obtain the critical geometry for crack-tip interaction. Both modes of microfractures occur at initial yielding and continue to lengthen with strain, in which many tensile microfractures propagate across grains. In contrast, at high temperature, only shear microfractures continue to lengthen with strain and reach the critical geometry; almost all tensile microfracutures arrest at grain boundaries. In addition, using the observed microfracture lengths and stresses, we determined the energy release rate (including interaction effects) for the longest shear microfractues characterized. These microfractures show length and stress consistent with Griffith criteria. At low temperature, shear fractures show energy release rate far greater than fracture energy, consistent with the observed dynamic failure. In contrast, at high temperature, shear microfractures show energy release rate similar to fracture energy, consistent with observed stable failire. Taken toghether, our resutls show that the linkage of shear microfracture is far more important for shear localization (macroscopic faulting) in granular rocks than in non-porous rocks. The interaction of both tentile and shear microfractures is important at low temperature, whereas that of teneile fracture is less improtant at high temperature. In addition, structure (desnity distirbution and orientation) of microfractures within the fault tip region is being investigated.

  15. Predictors for individual patient antibiotic treatment effect in hospitalized community-acquired pneumonia patients.

    PubMed

    Simonetti, A F; van Werkhoven, C H; Schweitzer, V A; Viasus, D; Carratalà, J; Postma, D F; Oosterheert, J J; Bonten, M J M

    2017-10-01

    Our objective was to identify clinical predictors of antibiotic treatment effects in hospitalized patients with community-acquired pneumonia (CAP) who were not in the intensive care unit (ICU). Post-hoc analysis of three prospective cohorts (from the Netherlands and Spain) of adult patients with CAP admitted to a non-ICU ward having received either β-lactam monotherapy, β-lactam + macrolide, or a fluoroquinolone-based therapy as empirical antibiotic treatment. We evaluated candidate clinical predictors of treatment effects in multiple mixed-effects models by including interactions of the predictors with empirical antibiotic choice and using 30-day mortality, ICU admission and length of hospital stay as outcomes. Among 8562 patients, empirical treatment was β-lactam in 4399 (51.4%), fluoroquinolone in 3373 (39.4%), and β-lactam + macrolide in 790 (9.2%). Older age (interaction OR 1.67, 95% CI 1.23-2.29, p 0.034) and current smoking (interaction OR 2.36, 95% CI 1.34-4.17, p 0.046) were associated with lower effectiveness of fluoroquinolone on 30-day mortality. Older age was also associated with lower effectiveness of β-lactam + macrolide on length of hospital stay (interaction effect ratio 1.14, 95% CI 1.06-1.22, p 0.008). Older age and smoking could influence the response to specific antibiotic regimens. The effect modification of age and smoking should be considered hypothesis generating to be evaluated in future trials. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Effects of β-blockers and anxiety on complication rates after acute myocardial infarction.

    PubMed

    Abu Ruz, Mohannad E; Lennie, Terry A; Moser, Debra K

    2011-01-01

    Anxiety is common after acute myocardial infarction and increases the number of complications and the length of stay in the hospital. Anxiety-induced activation of the sympathetic nervous system is hypothesized to be an underlying cause of increased complication rates. Little is known about whether use of β-blockers eliminates the effects of anxiety on complication rate and length of stay. To compare number of complications and length of stay among nonanxious and anxious patients receiving β-blockers during hospitalization. A total of 322 patients with acute myocardial infarction participated in this study within 48 hours of hospital admission. Patients completed the Brief Symptom Inventory to assess anxiety level. After discharge, medical records were reviewed to determine use of β-blockers, type and number of complications, and length of stay. Most patients (96%) were treated with less than 200 mg daily of metoprolol. Anxious patients had more complications (mean [SD], 1.43 [0.15] vs 0.73 [.09], P ≤ .01) and longer stays (7.0 [0.49] vs 5.7 [0.36] days, P < .05) than did nonanxious patients. To test whether the dose of β-blocker made a difference, the interaction between daily dose and anxiety score was tested. No interaction was found between metoprolol dose and anxiety score, and no main effect was found for metoprolol dose. Anxious patients had more complications and longer stays than did nonanxious patients. The administration of metoprolol did not eliminate this relationship, perhaps because patients did not receive a sufficient dose of metoprolol to counter the effect of anxiety.

  17. Influence of solute charge and pyrrolidinium ionic liquid alkyl chain length on probe rotational reorientation dynamics.

    PubMed

    Guo, Jianchang; Mahurin, Shannon M; Baker, Gary A; Hillesheim, Patrick C; Dai, Sheng; Shaw, Robert W

    2014-01-30

    In recent years, the effect of molecular charge on the rotational dynamics of probe solutes in room-temperature ionic liquids (RTILs) has been a subject of growing interest. For the purpose of extending our understanding of charged solute behavior within RTILs, we have studied the rotational dynamics of three illustrative xanthene fluorescent probes within a series of N-alkylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Cnmpyr][Tf2N]) RTILs with different n-alkyl chain lengths (n = 3, 4, 6, 8, or 10) using time-resolved fluorescence anisotropy decay. The rotational dynamics of the neutral probe rhodamine B (RhB) dye lies between the stick and slip boundary conditions due to the influence of specific hydrogen bonding interactions. The rotation of the negatively charged sulforhodamine 640 (SR640) is slower than that of its positively charged counterpart rhodamine 6G (R6G). An analysis based upon Stokes-Einstein-Debye hydrodynamics indicates that SR640 adheres to stick boundary conditions due to specific interactions, whereas the faster rotation of R6G is attributed to weaker electrostatic interactions. No significant dependence of the rotational dynamics on the solvent alkyl chain length was observed for any of the three dyes, suggesting that the specific interactions between dyes and RTILs are relatively independent of this solvent parameter.

  18. Bose gases near resonance: Renormalized interactions in a condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less

  19. Flexibility and adaptability in binding of E. coli cytidine repressor to different operators suggests a role in differential gene regulation.

    PubMed

    Tretyachenko-Ladokhina, Vira; Cocco, Melanie J; Senear, Donald F

    2006-09-15

    Interactions between DNA-bound transcription factors CytR and CRP regulate the promoters of the Escherichia coli CytR regulon. A distinctive feature of the palindromic CytR operators is highly variable length central spacers (0-9 bp). Previously we demonstrated distinct modes of CytR binding to operators that differ in spacer length. These different modes are characterized by opposite enthalpic and entropic contributions at 25 degrees C. Of particular note were radically different negative DeltaCp values suggesting variable contribution from coupled protein folding and/or DNA structural transitions. We proposed that the CytR DNA binding-domain adopts either a more rigid or flexible DNA-bound conformation in response to the different spacer lengths. More recently, similar effects were shown to contribute to discrimination between operator and non-specific DNA binding by LacR, a CytR homolog. Here we have extended the thermodynamic analysis to the remaining natural CytR operators plus a set of synthetic operators designed to isolate spacing as the single variable. The thermodynamic results show a broad and monotonic range of effects that are primarily dependent on spacer length. The magnitude of effects suggests participation by more than the DNA-binding domain. 15N HSQC NMR and CD spectral analyses were employed to characterize the structural basis for these effects. The results indicate that while CytR forms a well-ordered structure in solution, it is highly dynamic. We propose a model in which a large ensemble of native state conformations narrows upon binding, to an extent governed by operator spacing. This in turn is expected to constrain intermolecular interactions in the CytR-CRP-DNA complex, thus generating operator-specific effects on repression and induction of transcription.

  20. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  1. Scaling and modeling of turbulent suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1989-01-01

    Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.

  2. Effects of alkyl spacer group length on Vis-NIR absorption behavior in FTC-like guest-host EO polymers

    NASA Astrophysics Data System (ADS)

    Barto, Richard R., Jr.; Bedworth, Peter V.; Epstein, Joseph A.; Ermer, Susan P.; Taylor, Rebecca E.; Frank, Curtis W.

    2003-07-01

    Spectral absorption behavior of a series of FTC-like dyes of varying shape incorporated into amorphous polycarbonate (APC) is characterized by photothermal deflection spectroscopy. Previous Monte Carlo calculations by Dalton and Robinson predict a strong dependence of the macroscopic nonlinear optical susceptibility on the chromophore waist:length aspect ratio in electric field-poled films. This dependence arises from London interactions between chromophores, which are expected to influence the absorption characteristics of the composite both by changing the local polarity of the medium and through dipole interactions. It is expected that these interactions will play a role in the absorption characteristics of unpoled films as well. Of particular interest are the spectral characteristics of the red edge of the main dye electronic absorption peak, and the fine structure in the near-IR, dominated by overtones of fundamental C-H stretching and bending modes. The spectral structure in these key regions can be influenced by inter- and intramolecular interactions and conformational changes in the dye. The near-IR structure, in turn, will dictate absorption loss in optical devices prepared from these materials at key transmission wavelengths (1.3 and 1.55 um). In this study, a homologous series of spacer lengths, ranging from ethyl to hexyl, attached to an FTC-like NLO chromophore, LMCO-46M, is characterized by a combination of photothermal deflection spectroscopy (PDS) and UV-Vis spectroscopy to examine the effects of the molecular environment on near-IR loss at 1090 nm, 1300 nm and 1550 nm.

  3. Interplay of screening and superconductivity in low-dimensional materials

    NASA Astrophysics Data System (ADS)

    Schönhoff, G.; Rösner, M.; Groenewald, R. E.; Haas, S.; Wehling, T. O.

    2016-10-01

    A quantitative description of Coulomb interactions is developed for two-dimensional superconducting materials, enabling us to compare intrinsic with external screening effects, such as those due to substrates. Using the example of a doped monolayer of MoS2 embedded in a tunable dielectric environment, we demonstrate that the influence of external screening is limited to a length scale, bounded from below by the effective thickness of the quasi-two-dimensional material and from above by its intrinsic screening length. As a consequence, it is found that unconventional Coulomb-driven superconductivity cannot be induced in MoS2 by tuning the substrate properties alone. Our calculations of the retarded Morel-Anderson Coulomb potential μ* reveal that the Coulomb interactions, renormalized by the reduced layer thickness and the substrate properties, can shift the onset of the electron-phonon driven superconducting phase in monolayer MoS2 but do not significantly affect the critical temperature at optimal doping.

  4. When authenticity matters most: Physicians' regulation of emotional display and patient satisfaction.

    PubMed

    Yagil, Dana; Shnapper-Cohen, Moran

    2016-10-01

    The emotions expressed by physicians in medical encounters have significant impact on health outcomes and patient satisfaction. This study explored how physicians' regulation of displayed emotions affects patients' satisfaction, under low and high levels of patient distress and length of physician-patient acquaintance. Questionnaires were administered to 46 physicians and 230 of their patients (before and after the medical encounter) in outpatient clinics of two hospitals. Data were analyzed with hierarchical linear modeling which takes the nested data structure into account. We found a significant interaction effect of physician regulation of displayed emotions and patient distress on satisfaction: When distress was high, physician regulation of emotions was negatively related to patient satisfaction. The results also show a significant interaction effect of physician regulation of displayed emotions and length of physician-patient acquaintance: With a longer acquaintance, physician regulation of emotions was negatively related to patient satisfaction. The effect of the physicians' emotional display on patient satisfaction depends on contextual factors, such as patient distress and length of physician-patient acquaintance, which affect patients' emotional needs and expectations. When patients have high emotional involvement in the encounter it is suggested that physicians consider presenting genuine emotions to patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  6. The exact solution of a four-body Coulomb problem

    NASA Astrophysics Data System (ADS)

    Ray, Hasi

    2018-03-01

    The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.

  7. Low eigenvalues of the entanglement Hamiltonian, localization length, and rare regions in one-dimensional disordered interacting systems

    NASA Astrophysics Data System (ADS)

    Berkovits, Richard

    2018-03-01

    The properties of the low-lying eigenvalues of the entanglement Hamiltonian and their relation to the localization length of a disordered interacting one-dimensional many-particle system are studied. The average of the first entanglement Hamiltonian level spacing is proportional to the ground-state localization length and shows the same dependence on the disorder and interaction strength as the localization length. This is the result of the fact that entanglement is limited to distances of order of the localization length. The distribution of the first entanglement level spacing shows a Gaussian-type behavior as expected for level spacings much larger than the disorder broadening. For weakly disordered systems (localization length larger than sample length), the distribution shows an additional peak at low-level spacings. This stems from rare regions in some samples which exhibit metalliclike behavior of large entanglement and large particle-number fluctuations. These intermediate microemulsion metallic regions embedded in the insulating phase are discussed.

  8. Three-body approach to the K-d scattering length in particle basis

    NASA Astrophysics Data System (ADS)

    Bahaoui, A.; Fayard, C.; Mizutani, T.; Saghai, B.

    2002-11-01

    We report on the first calculation of the scattering length AK-d based on a relativistic three-body approach where the K¯N coupled channel two-body input amplitudes have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes, based on the fixed center approximation, and for which we find significant deviations from the three-body results. Effects of the deuteron D-wave component, pion-nucleon, and hyperon-nucleon interactions are also evaluated.

  9. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    PubMed

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  10. Modeling and simulations of carbon nanotube (CNT) dispersion in water/surfactant/polymer systems

    NASA Astrophysics Data System (ADS)

    Uddin, Nasir Mohammad

    An innovative multiscale (atomistic to mesoscale) model capable of predicting carbon nanotube (CNT) interactions and dispersion in water/surfactant/polymer systems was developed. The model was verified qualitatively with available experimental data in the literature. It can be used to computationally screen potential surfactants, solvents, polymers, and CNT with appropriate diameter and length to obtain improved CNT dispersion in aqueous medium. Thus the model would facilitate the reduction of time and cost required to produce CNT dispersed homogeneous solutions and CNT reinforced materials. CNT dispersion in any water/surfactant/polymer system depends on interactions between CNTs and surrounding molecules. Central to the study was the atomistic scale model which used the atomic structure of the surfactant, solvent, polymer, and CNT. The model was capable of predicting the CNT interactions in terms of potential of mean force (PMF) between CNTs under the influence of surrounding molecules in an aqueous solution. On the atomistic scale, molecular dynamics method was used to compute the PMF as a function of CNT separation and CNT alignment. An adaptive biasing force (ABF) method was used to speed up the calculations. Correlations were developed to determine the effective interactions between CNTs as a function of their any inter-atomic distance and orientation angle in water as well as in water/surfactant by fitting the calculated PMF data. On the mesoscale, the fitted PMF correlations were used as input in the Monte Carlo simulations to determine the degree of dispersion of CNTs in water and water/surfactant system. The distribution of CNT cluster size was determined for the CNTs dispersed in water with and without surfactant addition. The entropie and enthalpie contributions to the CNT interactions in water were determined to understand the dispersion mechanism of CNTs in water. The effects of CNT orientation, length, diameter, chirality and surfactant concentrations and structures on CNT interactions in water were investigated at room conditions. CNT interactions in polymer solution were also investigated with polyethylene oxide (PEO) polymer and water as a solvent. In all cases, the atomic arrangement of molecules was discussed in detailed. Simulations revealed that CNT orientation, length, diameter, and addition of surfactant and its structures can significantly affect CNT interactions (i.e., PMFs varied significantly) and in-turn the degree of CNT dispersion in aqueous solution. For all simulation cases, a uniform sampling was achieved by using the ABF method to calculate the governing PMF between CNTs indicating the effectiveness and convergence of the adaptive sampling scheme. The surfactant molecules were shown to adsorb at the CNT surface and contribute to weaker interactions between CNTs which resulted less CNT aggregate size at the mesoscale. Surfactant consisting with a benzene ring contributed much weaker interactions between CNTs as compared with that of without benzene ring. The increase in CNT length contributed the stronger CNT interactions where the increase in CNT diameter caused weaker CNT interactions in water. The interfacial characteristics between the CNT, surfactant and the polymer were also predicted and discussed. The model can be expanded for more solvents, surfactants, and polymers.

  11. Evolution from BCS superconductivity to Bose condensation: Calculation of the zero-temperature phase coherence length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistolesi, F.; Strinati, G.C.

    1996-06-01

    We consider a fermionic system at zero temperature interacting through an effective nonretarded potential of the type introduced by Nozi{grave e}res and Schmitt-Rink, and calculate the {ital phase} coherence length {xi}{sub phase} (associated with the spatial fluctuations of the superconducting order parameter) by exploiting a functional-integral formulation for the correlation functions and the associated loop expansion. This formulation is especially suited to follow the evolution of the fermionic system from a BCS-type superconductor for weak coupling to a Bose-condensed system for strong coupling, since in the latter limit a {ital direct} mapping of the original fermionic system onto an effectivemore » system of bosons with a residual boson-boson interaction can be established. Explicit calculations are performed at the one-loop order. The phase coherence length {xi}{sub phase} is compared with the coherence length {xi}{sub pair} for two-electron correlation, which is relevant to distinguish the weak- ({ital k}{sub {ital F}}{xi}{sub pair}{gt}1) from the strong- ({ital k}{sub {ital F}}{xi}{sub pair}{lt}1) coupling limits ({ital k}{sub {ital F}} being the Fermi wave vector) {ital as} {ital well} {ital as} to follow the crossover in between. It is shown that {xi}{sub phase} coincides with {xi}{sub pair} down to {ital k}{sub {ital F}}{xi}{sub pair}{approx_equal}10, {xi}{sub pair} in turn coinciding with the Pippard coherence length. In the strong-coupling limit we find instead that {xi}{sub phase}{gt}{xi}{sub pair}, with {xi}{sub pair} coinciding with the radius of the bound-electron pair. From the mapping onto an effective system of bosons in the strong-coupling limit we further relate {xi}{sub pair} with the {open_quote}{open_quote}range{close_quote}{close_quote} of the residual boson-boson interaction, which is physically the only significant length associated with the dynamics of the bosonic system. {copyright} {ital 1996 The American Physical Society.}« less

  12. Driver responses to differing urban work zone configurations.

    PubMed

    Morgan, J F; Duley, A R; Hancock, P A

    2010-05-01

    This study reports the results of a simulator-based assessment of driver response to two different urban highway work zone configurations. One configuration represented an existing design which was contrasted with a second configuration that presented a reduced taper length prototype work zone design. Twenty-one drivers navigated the two different work zones in two different conditions, one with and one without a lead vehicle; in this case a bus. Measures of driver speed, braking, travel path, and collision frequency were recorded. Drivers navigated significantly closer to the boundary of the work area in the reduced taper length design. This proximity effect was moderated by the significant interaction between lead vehicle and taper length and such interactive effects were also observed for driver speed at the end of the work zone and the number of collisions observed within the work zone itself. These results suggest that reduced taper length poses an increase in risk to both drivers and work zone personnel, primarily when driver anticipation is reduced by foreshortened viewing distances. Increase in such risk is to a degree offset by the reduction of overall exposure to the work zone that a foreshortened taper creates. The benefits and limitations to a simulation-based approach to the assessment and prediction of driver behavior in different work zone configurations are also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. The electrostatic persistence length of polymers beyond the OSF limit.

    PubMed

    Everaers, R; Milchev, A; Yamakov, V

    2002-05-01

    We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.

  14. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length.

    PubMed

    Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun

    2010-03-03

    The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length.

    PubMed Central

    Ramstedt, B; Slotte, J P

    1999-01-01

    In this study we have synthesized sphingomyelins (SM) and phosphatidylcholines (PC) with amide-linked or sn-2 linked acyl chains with lengths from 14 to 24 carbons. The purpose was to examine how the chain length and degree of unsaturation affected the interaction of cholesterol with these phospholipids in model membrane systems. Monolayers of saturated SMs and PCs with acyl chain lengths above 14 carbons were condensed and displayed a high collapse pressure ( approximately 70 mN/m). Monolayers of N-14:0-SM and 1(16:0)-2(14:0)-PC had a much lower collapse pressure (58-60 mN/m) and monounsaturated SMs collapsed at approximately 50 mN/m. The relative interaction of cholesterol with these phospholipids was determined at 22 degreesC by measuring the rate of cholesterol desorption from mixed monolayers (50 mol % cholesterol; 20 mN/m) to beta-cyclodextrin in the subphase (1.7 mM). The rate of cholesterol desorption was lower from saturated SM monolayers than from chain-matched PC monolayers. In SM monolayers, the rate of cholesterol desorption was very slow for all N-linked chains, whereas for PC monolayers we could observe higher desorption rates from monolayers of longer PCs. These results show that cholesterol interacts favorably with SMs (low rate of desorption), whereas its interaction (or miscibility) with long chain PCs is weaker. Introduction of a single cis-unsaturation in the N-linked acyl chain of SMs led to faster rates of cholesterol desorption as compared with saturated SMs. The exception was monolayers of N-22:1-SM and N-24:1-SM from which cholesterol desorbed almost as slowly as from the corresponding saturated SM monolayers. The results of this study suggest that cholesterol is most likely capable of interacting with all physiologically relevant (including long-chain) SMs present in the plasma membrane of cells. PMID:9929492

  16. Cross-national comparison of prenatal methamphetamine exposure on infant and early child physical growth: A natural experiment

    PubMed Central

    Abar, Beau; LaGasse, Linda L.; Wouldes, Trecia; Derauf, Chris; Newman, Elana; Shah, Rizwan; Smith, Lynne M.; Arria, Amelia M.; Huestis, Marilyn A.; DellaGrotta, Sheri; Dansereau, Lynne M.; Wilcox, Tara; Neal, Charles R.; Lester, Barry M.

    2013-01-01

    The current study seeks to compare the effects of prenatal methamphetamine exposure (PME) on infant and child physical growth between the United States (US) and New Zealand (NZ). This cross-national comparison provides a unique opportunity to examine the potential impact of services provided to drug using mothers on child health. Methods The longitudinal Infant Development, Environment and Lifestyle (IDEAL) study of PME from birth to 36 months was conducted in the US and NZ. The US cohort included 204 children with PME and 212 non-PME matched comparisons (NPME); the NZ cohort included 108 children with PME and 115 NPME matched comparisons. Latent growth curve models were used to examine effects of PME, country of origin, and the country × PME interaction on growth in length/height and weight. Results In regard to length/height, PME and country of origin were associated with initial length and growth over time. There was also a significant interaction effect, such that children with PME in the US were shorter at birth than children with PME in NZ after controlling for other prenatal exposures, infant set, socioeconomic status, and maternal height. In regard to weight, there was only an effect of country of origin. Conclusions Effects of PME on infant and child growth were shown to differ across countries, with exposed children in NZ faring better than exposed children in the US. Implications for prevention programs and public policy are discussed. PMID:23943149

  17. Evaluation of a four- versus six-week length of stay in the Navy's alcohol treatment program.

    PubMed

    Trent, L K

    1998-05-01

    Attempts to balance escalating health care costs with resource downsizing have prompted alcohol treatment directors in the U.S. Navy to consider reducing the standard length of stay in treatment. The objectives of this study were to (1) determine whether a 4-week inpatient treatment program is as effective as a 6-week program, and (2) explore the potential for matching patients to a 4- or 6-week program according to the severity of their condition at intake. A total of 2,823 active-duty alcohol-dependent inpatients (2,685 men, 138 women) at 12 Navy treatment facilities participated in the evaluation. All facilities conducted a 6-week program until data had been collected for 1,380 participants; they then switched to a 4-week program (n = 1,443). Background information and clinical profile were obtained when patients entered treatment; 1-year outcome data (e.g., alcohol use, behavior problems, job performance, quality of life) were obtained from participants, work supervisors and aftercare advisors. Hierarchical multiple regression analyses were used to assess the effect of length of stay on outcome and to examine patient-program interactions. The single best predictor of success at 1 year was months of aftercare attendance. Program membership failed to explain any of the observed differences in the criterion measures, once the effects of other predictors had been taken into account. Severity of condition and patient-program interactions were likewise nonsignificant. It was concluded that a reduction in length of stay from 6 weeks to 4 weeks in the Navy's inpatient alcohol treatment program would not have an adverse effect on outcome.

  18. Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat

    USGS Publications Warehouse

    Dorazio, Robert M.; Connor, Edward F.

    2014-01-01

    We developed a statistical model to estimate the abundances of potentially interacting species encountered while conducting point-count surveys at a set of ecologically relevant locations - as in a metacommunity of species. In the model we assume that abundances of species with similar traits (e.g., body size) are potentially correlated and that these correlations, when present, may exist among all species or only among functionally related species (such as members of the same foraging guild). We also assume that species-specific abundances vary among locations owing to systematic and stochastic sources of heterogeneity. For example, if abundances differ among locations due to differences in habitat, then measures of habitat may be included in the model as covariates. Naturally, the quantitative effects of these covariates are assumed to differ among species. Our model also accounts for the effects of detectability on the observed counts of each species. This aspect of the model is especially important for rare or uncommon species that may be difficult to detect in community-level surveys. Estimating the detectability of each species requires sampling locations to be surveyed repeatedly using different observers or different visits of a single observer. As an illustration, we fitted models to species-specific counts of birds obtained while sampling an avian community during the breeding season. In the analysis we examined whether species abundances appeared to be correlated due to similarities in morphological measures (body mass, beak length, tarsus length, wing length, tail length) and whether these correlations existed among all species or only among species of the same foraging guild. We also used the model to estimate the effects of forested area on species abundances and the effects of sound power output (as measured by body size) on species detection probabilities.

  19. Strong and long: effects of word length on phonological binding in verbal short-term memory.

    PubMed

    Jefferies, Elizabeth; Frankish, Clive; Noble, Katie

    2011-02-01

    This study examined the effects of item length on the contribution of linguistic knowledge to immediate serial recall (ISR). Long words are typically recalled more poorly than short words, reflecting the greater demands that they place on phonological encoding, rehearsal, and production. However, reverse word length effects--that is, better recall of long than short words--can also occur in situations in which phonological maintenance is difficult, suggesting that long words derive greater support from long-term lexical knowledge. In this study, long and short words and nonwords (containing one vs. three syllables) were presented for immediate serial recall in (a) pure lists and (b) unpredictable mixed lists of words and nonwords. The mixed-list paradigm is known to disrupt the phonological stability of words, encouraging their phonemes to recombine with the elements of other list items. In this situation, standard length effects were seen for nonwords, while length effects for words were absent or reversed. A detailed error analysis revealed that long words were more robust to the mixed-list manipulation than short words: Their phonemes were less likely to be omitted and to recombine with phonemes from other list items. These findings support an interactive view of short-term memory, in which long words derive greater benefits from lexical knowledge than short words-especially when their phonological integrity is challenged by the inclusion of nonwords in mixed lists.

  20. Roughness Length as a Measure of the Effects of a Vegetative Windbreak

    NASA Astrophysics Data System (ADS)

    Kenny, W.; Maurer, K.; Bohrer, G.

    2012-12-01

    Vegetative windbreaks are often used as barriers to block the dispersion of particulate matter, particularly around agricultural facilities. Windbreaks and narrow forest strips alter the wind pattern and affect dispersion of particles and aerosols that are carried across. Our observations during two field campaigns, conducted near animal feeding lots where large flumes of dust are advected across edge-of-field windbreaks, suggest that sensible heat flux greatly affects the interaction between the flow and the windbreak. We used measurements at multiple heights upwind and downwind of the windbreak to calculate the background roughness length and the effective roughness length of the windbreak. While the flow is not fully adjusted at the wake of the windbreak, we use measurements at different times of the day as a sensitivity analysis to the strength of the buoyancy term within the theoretical surface similarity equation that includes the effects of the wind break. Clearly, calculated roughness length downwind of the windbreak is much greater than upwind of the windbreak, but as SHF increases, the difference in roughness length across the windbreak decreases indicating a decrease in the overall effect of the windbreak on flow. Our findings indicate that as SHF increases, windbreaks may not be able to play much of a role in affecting the dispersion of particulate matter, as the overall effects of windbreaks diminish.

  1. Characterization of Hydrophobic Interactions of Polymers with Water and Phospholipid Membranes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Drenscko, Mihaela

    Polymers and lipid membranes are both essential soft materials. The structure and hydrophobicity/hydrophilicity of polymers, as well as the solvent they are embedded in, ultimately determines their size and shape. Understating the variation of shape of the polymer as well as its interactions with model biological membranes can assist in understanding the biocompatibility of the polymer itself. Computer simulations, in particular molecular dynamics, can aid in characterization of the interaction of polymers with solvent, as well as polymers with model membranes. In this thesis, molecular dynamics serve to describe polymer interactions with a solvent (water) and with a lipid membrane. To begin with, we characterize the hydrophobic collapse of single polystyrene chains in water using molecular dynamics simulations. Specifically, we calculate the potential of mean force for the collapse of a single polystyrene chain in water using metadynamics, comparing the results between all atomistic with coarse-grained molecular simulation. We next explore the scaling behavior of the collapsed globular shape at the minimum energy configuration, characterized by the radius of gyration, as a function of chain length. The exponent is close to one third, consistent with that predicted for a polymer chain in bad solvent. We also explore the scaling behavior of the Solvent Accessible Surface Area (SASA) as a function of chain length, finding a similar exponent for both all-atomistic and coarse-grained simulations. Furthermore, calculation of the local water density as a function of chain length near the minimum energy configuration suggests that intermediate chain lengths are more likely to form dewetted states, as compared to shorter or longer chain lengths. Next, in order to investigate the molecular interactions between single hydrophobic polymer chains and lipids in biological membranes and at lipid membrane/solvent interface, we perform a series of molecular dynamics simulations of small membranes using all atomistic and coarse-grained methods. The molecular interaction between common polymer chains used in biomedical applications and the cell membrane is unknown. This interaction may affect the biocompatibility of the polymer chains. Molecular dynamics simulations offer an emerging tool to characterize the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. We systematically characterize with long-time all-atomistic molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a model phospholipid membrane. We find that the length of polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilize advanced sampling techniques in molecular dynamics to characterize the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. These results can be used to design polymer chain lengths and chemistries to optimize their interaction with cell membranes at the molecular level.

  2. Pointing towards visuospatial patterns in short-term memory: differential effects on familiarity- and recollection-based judgments.

    PubMed

    Rossi-Arnaud, Clelia; Spataro, Pietro; Marques, Valeria R S; Longobardi, Emiddia

    2015-03-01

    Previous studies have indicated that pointing toward to-be-remembered visuospatial patterns enhances short-term memory (STM) when the presentation of pointing and no-pointing trials is mixed (Chum et al., 2007; Dodd & Shumborski, 2009; Rossi-Arnaud et al., 2012). By contrast, when presentation is blocked, pointing has inhibitory effects on memory (Dodd & Shumborski, 2009; Rossi-Arnaud et al., 2012). In the present study, we demonstrated that pointing has different effects on short-term recollection- and familiarity-based judgments, depending on the length of the visuospatial patterns (5- vs. 7-item arrays) and the interval between the encoding and test phases (2 vs. 5 s). More specifically, pointing decreased the accuracy of recollection-based judgments for 5-item arrays, but not for 7-item arrays (this negative effect did not interact with interval length). In contrast, pointing facilitated familiarity-based judgments when the interval between the study and test phases was 5 s, but not when it was 2 s (this positive effect did not interact with pattern length). We proposed that the negative effects might be accounted for by the simultaneous recruitment of attention resources in the planning and execution of pointing movements. As a consequence, executive resources are diverted from the primary memory task, resulting in a less efficient use of attention-demanding retrieval strategies, like chunking. By contrast, the positive effects on familiarity judgments might reflect the unitization of the to-be-remembered items into a single shape. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. Orbitals for classical arbitrary anisotropic colloidal potentials

    NASA Astrophysics Data System (ADS)

    Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera

    2017-11-01

    Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.

  4. Eyelashes divert airflow to protect the eye

    PubMed Central

    Amador, Guillermo J.; Mao, Wenbin; DeMercurio, Peter; Montero, Carmen; Clewis, Joel; Alexeev, Alexander; Hu, David L.

    2015-01-01

    Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition of airborne particles and evaporation of the tear film by a factor of two. Using scaling theory, we find this optimum arises because of the incoming flow's interactions with both the eye and eyelashes. Short eyelashes create a stagnation zone above the ocular surface that thickens the boundary layer, causing shear stress to decrease with increasing eyelash length. Long eyelashes channel flow towards the ocular surface, causing shear stress to increase with increasing eyelash length. These competing effects result in a minimum shear stress for intermediate eyelash lengths. This design may be employed in creating eyelash-inspired protection for optical sensors. PMID:25716186

  5. Large momentum part of a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    It is well known that the momentum distribution of the two-component Fermi gas with large scattering length has a tail proportional to 1/k{sup 4} at large k. We show that the magnitude of this tail is equal to the adiabatic derivative of the energy with respect to the reciprocal of the scattering length, multiplied by a simple constant. This result holds at any temperature (as long as the effective interaction radius is negligible) and any large scattering length; it also applies to few-body cases. We then show some more connections between the 1/k{sup 4} tail and various physical quantities, includingmore » the pressure at thermal equilibrium and the rate of change of energy in a dynamic sweep of the inverse scattering length.« less

  6. Eccentric Torque-Producing Capacity is Influenced by Muscle Length in Older Healthy Adults.

    PubMed

    Melo, Ruth C; Takahashi, Anielle C M; Quitério, Robison J; Salvini, Tânia F; Catai, Aparecida M

    2016-01-01

    Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2 ± 2.9 years) and 16 older men (62.7 ± 2.5 years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60 and 120° · s(-1) through a functional range of motion. The older group presented lower peak torque (in newton-meters) than the young group for both isokinetic contraction types (age effect, p < 0.001). Peak torque deficits in the older group were near 30 and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120° · s(-1) than at 60° · s(-1) for both groups (angular velocity effect, p < 0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p < 0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22-56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in the stretched muscle length. In older men, the production of eccentric knee strength seems to be dependent on the muscle length. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.

  7. Self-propulsion and interactions of catalytic particles in a chemically active medium.

    PubMed

    Banigan, Edward J; Marko, John F

    2016-01-01

    Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.

  8. Eye movements and word skipping during reading: Effects of word length and predictability

    PubMed Central

    Rayner, Keith; Slattery, Timothy J.; Drieghe, Denis; Liversedge, Simon P.

    2012-01-01

    The extent to which target words were predictable from prior context was varied: half of the target words were predictable and the other half were unpredictable. In addition, the length of the target word varied: the target words were short (4–6 letters), medium (7–9 letters), or long (10–12 letters). Length and predictability both yielded strong effects on the probability of skipping the target words and on the amount of time readers fixated the target words (when they were not skipped). However, there was no interaction in any of the measures examined for either skipping or fixation time. The results demonstrate that word predictability (due to contextual constraint) and word length have strong and independent influences on word skipping and fixation durations. Furthermore, since the long words extended beyond the word identification span, the data indicate that skipping can occur on the basis of partial information in relation to word identity. PMID:21463086

  9. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  10. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  11. Fishing-induced changes in adult length are mediated by skipped-spawning.

    PubMed

    Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng

    2017-01-01

    Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.

  12. Experimental Investigation of the Application of Microramp Flow Control to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Anderson, Bernhard H.

    2009-01-01

    The effectiveness of microramp flow control devices in controlling an oblique shock interaction was tested in the 15- by 15-Centimeter Supersonic Wind Tunnel at NASA Glenn Research Center. Fifteen microramp geometries were tested varying the height, chord length, and spacing between ramps. Measurements of the boundary layer properties downstream of the shock reflection were analyzed using design of experiments methods. Results from main effects, D-optimal, full factorial, and central composite designs were compared. The designs provided consistent results for a single variable optimization.

  13. Constraints on food chain length arising from regional metacommunity dynamics

    PubMed Central

    Calcagno, Vincent; Massol, François; Mouquet, Nicolas; Jarne, Philippe; David, Patrice

    2011-01-01

    Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator–prey metacommunities with extinction–colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs. PMID:21367786

  14. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  15. Maternal long chain polyunsaturated fatty acid supplementation in infancy increases length- and weight-for-age but not BMI to 6 years when controlling for effects of maternal smoking

    PubMed Central

    Currie, L.M.; Tolley, E.A.; Thodosoff, J.M.; Kerling, E.H.; Sullivan, D.K.; Colombo, J.; Carlson, S.E.

    2015-01-01

    Summary Long chain polyunsaturated fatty acids (LCPUFA) are added to infant formula but their effect on long-term growth of children is under studied. We evaluated the effects of feeding LCPUFA-supplemented formula (n=54) compared to control formula (n=15) throughout infancy on growth from birth-6 years. Growth was described using separate models developed with the MIXED procedure of SAS® that included maternal smoking history and gender. Compared to children fed control formula, children who consumed LCPUFA supplemented formula had higher length-/stature-/and weight-for-age percentiles but not body mass index (BMI) percentile from birth to 6 years. Maternal smoking predicted lower stature (2-6 years), higher weight-for-length (birth-18 months) and BMI percentile (2-6 years) independent of LCPUFA effects. Gender interacted with the effect of LCPUFA on stature, and the relationship between smoking and BMI, with a larger effect for boys. Energy intake did not explain growth differences. A relatively small control sample is a limitation. PMID:25936840

  16. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  17. Predictors of treatment attrition and treatment length in Parent-Child Interaction Therapy in Taiwanese families✩,✩✩

    PubMed Central

    Chen, Yi-Chuen; Fortson, Beverly L.

    2015-01-01

    Parent–Child Interaction Therapy (PCIT) has been used successfully in the United States and in other countries around the world, but its use in Asian countries has been more limited. The present study is the first of its kind to examine the predictors of treatment attrition and length in a sample of Taiwanese caregivers and their children. It is also the first to examine PCIT outcomes in Taiwanese families. Maladaptive personality characteristics of the caregiver were the best predictor of attrition, followed by single-parent, removal of the child from the home, and lower levels of caregiver education. Treatment length was predicted by child minority status and parent–child interactions (i.e., parent commands and negative parent talk). In terms of outcomes, statistically significant treatment changes were noted for all treatment outcome variables at post-treatment and at 3-month follow-up. These findings suggest that PCIT is a promising intervention for this population. The predictors of treatment attrition and length can be used when Taiwanese caregiver–child dyads present for services so that additional assistance can be provided prior to or during treatment to increase adherence to the recommended number of treatment sessions for maximal impact. Future studies may replicate the present study with a larger clinical sample to examine the long-term effects of PCIT and to include a no-treatment control condition to afford a more robust empirical evaluation. PMID:26705373

  18. Interactive effects of microcystin and ammonia on the reproductive performance and phenotypic traits of the rotifer Brachionus calyciflorus.

    PubMed

    Liang, Ye; Lu, Xuxin; Min, Yuanqi; Liu, Lulu; Yang, Jiaxin

    2018-01-01

    Elevated microcystin-LR (MC-LR) and ammonia (NH 3 -N) concentrations co-occur during the degradation of Microcystis blooms, and are toxic to aquatic organisms. The freshwater rotifer, Brachionus calyciflorus, was exposed to mixtures of MC-LR (0, 10, 30, and 100µgL -1 ) and NH 3 -N (0, 270, and 540µgL -1 ) to assess the combined effects of the two toxicants on reproductive performance and phenotype traits. Single solutions of MC-LR (100µgL -1 ) and NH 3 -N (540µgL -1 ) had negative effects on rotifer reproductive timing and fecundity. Pre- and post-reproductive periods fluctuated with MC-LR and NH 3 -N concentrations, while reproductive period and total offspring per female were reduced in mixtures of MC-LR and NH 3 -N (p < 0.05). Grazing rate of rotifers decreased with grazing time and concentrations of the two toxicants (p < 0.001). MC-LR in combination with NH 3 -N had negative effects on swimming speed and body length but positively stimulated posterolateral spine development (p < 0.001). MC-LR and NH 3 -N had synergetic interactive effects on pre-reproductive period, reproductive period, total offspring per female, grazing rate, swimming speed, and body length (p < 0.05). In contrast, these effects were antagonistic on post-reproductive period and posterolateral spine length (p > 0.05). These results indicate that MC-LR and NH 3 -N act synergistically and antagonistically in causing toxicity to B. calyciflorus regarding reproductive performance and the formation of defensive phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Identification of a Novel LXXLL Motif in α-Actinin 4-spliced Isoform That Is Critical for Its Interaction with Estrogen Receptor α and Co-activators*

    PubMed Central

    Khurana, Simran; Chakraborty, Sharmistha; Zhao, Xuan; Liu, Yu; Guan, Dongyin; Lam, Minh; Huang, Wei; Yang, Sichun; Kao, Hung-Ying

    2012-01-01

    α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein. PMID:22908231

  20. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  1. Side-chain-side-chain interactions and stability of the helical state

    NASA Astrophysics Data System (ADS)

    Zangi, Ronen

    2014-01-01

    Understanding the driving forces that lead to the stability of the secondary motifs found in proteins, namely α-helix and β-sheet, is a major goal in structural biology. The thermodynamic stability of these repetitive units is a result of a delicate balance between many factors, which in addition to the peptide chain involves also the solvent. Despite the fact that the backbones of all amino acids are the same (except of that of proline), there are large differences in the propensity of the different amino acids to promote the helical structure. In this paper, we investigate by explicit-solvent molecular dynamics simulations the role of the side chains (modeled as coarse-grained single sites) in stabilizing α helices in an aqueous solution. Our model systems include four (six-mer-nine-mer) peptide lengths in which the magnitude of the effective attraction between the side chains is systematically increased. We find that these interactions between the side chains can induce (for the nine-mer almost completely) a transition from a coil to a helical state. This transition is found to be characterized by three states in which the intermediate state is a partially folded α-helical conformation. In the absence of any interactions between the side chains the free energy change for helix formation has a small positive value indicating that favorable contributions from the side chains are necessary to stabilize the helical conformation. Thus, the helix-coil transition is controlled by the effective potentials between the side-chain residues and the magnitude of the required attraction per residue, which is on the order of the thermal energy, reduces with the length of the peptide. Surprisingly, the plots of the population of the helical state (or the change in the free energy for helix formation) as a function of the total effective interactions between the side chains in the helical state for all peptide lengths fall on the same curve.

  2. Carbon dioxide-expanded liquid substrate phase: an effective medium for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol.

    PubMed

    Zhao, Fengyu; Fujita, Shin-ichio; Sun, Jianmin; Ikushima, Yutaka; Arai, Masahiko

    2004-10-21

    It has been shown that CO(2)-expanded cinnamaldehyde liquid phase is a unique and effective medium for cinnamaldehyde hydrogenation to cinnamyl alcohol, due to interactions between the C[double bond, length as m-dash]O group of the substrate and CO(2) molecules and increased solubility of H(2).

  3. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend

    2010-12-01

    Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Gene interaction at seed-awning loci in the genetic background of wild rice.

    PubMed

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  5. Polysubstance use, social anxiety, and length of treatment for alcohol use disorders.

    PubMed

    Oakland, Andrew; McChargue, Dennis

    2014-01-01

    The purpose of the present study was to examine the interactive effects of social anxiety and psychosocial factors (i.e., group attendance, polysubstance use) on substance use treatment for men with a primary diagnosis of alcohol use disorder. Social anxiety and alcohol use disorders often co-occur, but it is currently unclear how having high social anxiety might affect aspects of substance use treatment, such as group participation and length of stay. This study compared men with alcohol use disorder only versus those with alcohol plus other drug disorders in a residential treatment facility. Measures included demographics, self-reported social anxiety, self-reported drug history, attendance at treatment groups, and total number of days in treatment. Of 128 participants, 39 (30.5%) used only alcohol, while 89 (69.5%) used alcohol and other substances. Hierarchical linear regression showed only one significant interaction with social anxiety and length of treatment: people who used alcohol only or alcohol in addition to other substances (p < .05). Simple effects analyses revealed a positive relationship between social anxiety and length of stay among men who used only alcohol, but not among men who used more than one substance. Currently, the distinction between those who use only alcohol and those who use other substances as well is not often examined in the literature. However, the present study shows that this assumption of homogeneity may be inaccurate, given the differential relationships that these groups may have with factors such as social anxiety.

  6. Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling

    NASA Astrophysics Data System (ADS)

    Li, Zhidan; Han, Qiang

    2018-04-01

    The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.

  7. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose Binds to the N-terminal Metal Binding Region to Inhibit Amyloid β-protein Oligomer and Fibril Formation.

    PubMed

    de Almeida, Natália E C; Do, Thanh D; LaPointe, Nichole E; Tro, Michael; Feinstein, Stuart C; Shea, Joan-Emma; Bowers, Michael T

    2017-09-01

    The early oligomerization of amyloid β -protein (A β ) is a crucial step in the etiology of Alzheimer's disease (AD), in which soluble and highly neurotoxic oligomers are produced and accumulated inside neurons. In search of therapeutic solutions for AD treatment and prevention, potent inhibitors that remodel A β assembly and prevent neurotoxic oligomer formation offer a promising approach. In particular, several polyphenolic compounds have shown anti-aggregation properties and good efficacy on inhibiting oligomeric amyloid formation. 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a large polyphenol that has been shown to be effective at inhibiting aggregation of full-length A β 1-40 and A β 1-42 , but has the opposite effect on the C-terminal fragment A β 25-35 . Here, we use a combination of ion mobility coupled to mass spectrometry (IMS-MS), transmission electron microscopy (TEM) and molecular dynamics (MD) simulations to elucidate the inhibitory effect of PGG on aggregation of full-length A β 1-40 and A β 1-42 . We show that PGG interacts strongly with these two peptides, especially in their N-terminal metal binding regions, and suppresses the formation of A β 1-40 tetramer and A β 1-42 dodecamer. By exploring multiple facets of polyphenol-amyloid interactions, we provide a molecular basis for the opposing effects of PGG on full-length A β and its C-terminal fragments.

  8. Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C8MIM][NTf2].

    PubMed

    Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella

    2015-08-28

    Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.

  9. Randomized trial of a question prompt list to increase patient active participation during interactions with black patients and their oncologists.

    PubMed

    Eggly, Susan; Hamel, Lauren M; Foster, Tanina S; Albrecht, Terrance L; Chapman, Robert; Harper, Felicity W K; Thompson, Hayley; Griggs, Jennifer J; Gonzalez, Richard; Berry-Bobovski, Lisa; Tkatch, Rifky; Simon, Michael; Shields, Anthony; Gadgeel, Shirish; Loutfi, Randa; Ali, Haythem; Wollner, Ira; Penner, Louis A

    2017-05-01

    Communication during racially-discordant interactions is often of poor quality and may contribute to racial treatment disparities. We evaluated an intervention designed to increase patient active participation and other communication-related outcomes during interactions between Black patients and non-Black oncologists. Participants were 18 non-Black medical oncologists and 114 Black patients at two cancer hospitals in Detroit, Michigan, USA. Before a clinic visit to discuss treatment, patients were randomly assigned to usual care or to one of two question prompt list (QPL) formats: booklet (QPL-Only), or booklet and communication coach (QPL-plus-Coach). Patient-oncologist interactions were video recorded. Patients reported perceptions of the intervention, oncologist communication, role in treatment decisions, and trust in the oncologist. Observers assessed interaction length, patient active participation, and oncologist communication. The intervention was viewed positively and did not increase interaction length. The QPL-only format increased patient active participation; the QPL-plus-Coach format decreased patient perceptions of oncologist communication. No other significant effects were found. This QPL booklet is acceptable and increases patient active participation in racially-discordant oncology interactions. Future research should investigate whether adding physician-focused interventions might improve other outcomes. This QPL booklet is acceptable and can improve patient active participation in racially-discordant oncology interactions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Interaction of nanoparticles with lipid membranes: a multiscale perspective.

    PubMed

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-06-21

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.

  11. Results of an investigation of hypersonic viscous interaction effects of the space shuttle orbiter using a 0.010 scale model (51-0) in the AEDC-VKF tunnel F (OA160)

    NASA Technical Reports Server (NTRS)

    Elder, D. J.

    1975-01-01

    An experimental aerodynamic investigation was conducted in the AEDC-VKF Hypervelocity Wind Tunnel (Tunnel F) at a nomial Mach number of 19 to determine hypersonic viscous interaction effects on the space shuttle orbiter. The tests were conducted at an angle of attack of 30 degrees over a free-stream Reynolds number (based on fuselage length) variation from 0.1 to 0.4 million. Viscous interaction parameter was varied from 0.02 to 0.06. Six component static stability force and moment data were measured by an internally compensated internal strain gage balance. Resulting data are presented.

  12. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  13. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

    NASA Astrophysics Data System (ADS)

    Massa, L.; Jha, P.

    2012-05-01

    Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.

  14. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  15. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG.

    PubMed

    Heang, Dany; Sassa, Hidenori

    2012-06-01

    Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG.

  16. An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG

    PubMed Central

    Heang, Dany; Sassa, Hidenori

    2012-01-01

    Grain size is an important yield component in rice, however, genes controlling the trait remain poorly understood. Previously, we have shown that an antagonistic pair of basic helix-loop-helix (bHLH) proteins, POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and ANTAGONIST OF PGL1 (APG), is involved in controlling rice grain length. Here, we report the involvement of another atypical bHLH protein gene, POSITIVE REGULATOR OF GRAIN LENGTH 2 (PGL2), in the regulation of rice grain length. Over-expression of PGL2 in the lemma/palea increased grain length and weight in correlation with the level of transgene expression. Observation of the inner epidermal cells of lemma of PGL2-overexpressing lines revealed that the long grain size is caused by an increase in cell length. PGL2 interacts with a typical bHLH protein APG, a negative regulator of rice grain length and weight, in vitro and in vivo. It was reported that overexpression of BU1 (BRASSINOSTEROID UPREGULATED 1), the closest homolog of PGL2, caused an increase in grain length. However, we detected no interaction between BU1 and APG. These findings suggest that PGL2 and PGL1 redundantly suppress the function of APG by forming heterodimers to positively regulate the rice grain length, while the pathway through which BU1, the closest homolog of PGL2, controls grain length is independent of APG. PMID:23136524

  17. Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.

    2016-04-01

    Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.

  18. Effect of drug Piper nigrum on magnesium chloride at varying concentration and temperature through ultrasonic method: A thermoacoustic study

    NASA Astrophysics Data System (ADS)

    Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.

    2016-12-01

    The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.

  19. High temperature and oxygen supplementation can mitigate the effects of hypoxia on developmental stability of bilateral traits during incubation of broiler breeder eggs.

    PubMed

    Babacanoğlu, E; Güler, H C

    2018-03-06

    Hypoxia strongly affects embryonic development during the pre-hatch period. This study was conducted to investigate the effects of oxygen supplementation (O) and a 38.5°C high temperature (HT) at high altitude (HA, 1720 m) on morphological traits during a pre-hatch period and on relative fluctuating asymmetry (relative FA) and allometric growth during an early post-hatch period in broilers. A total of 720 eggs were obtained from a 45-week-old Ross 308 broiler breeder flock raised at sea level (2 m). The eggs were divided into six incubation condition (IC) groups and were incubated at HA. O groups were exposed to 23.5% O2 for 1 h daily from either days 0 to 11 (O0-11), days 12 to 21 (O12-21) or days 18 to 21 (O18-21) of incubation. HT groups were exposed to 38.5°C daily from either days 12 to 21 (HT12-21) or days 18 to 21 (HT18-21) of incubation. A control was maintained at 37.8°C and 21% O2. The hatched chicks were raised for 6 days at HA. Embryo/chick and beak lengths and head diameter were measured during pre- and post-hatch periods. The face, middle toe and shank lengths were measured for each chick. The relative asymmetry (RA), mean RA (MRA) and allometric growth of the lengths were computed and the existence of FA was demonstrated. The IC significantly affected the embryo length, with embryos of the O0-11 group shorter than embryos of the other O groups. Chicks were longer in the O and HT groups than those in the control, except for the O0-11. We found significant interactions between the IC and each development period for beak length. During the post-hatch period, the head diameter of the O0-11 was significantly smaller than that of the other groups, but not in O12-21. The interactions among IC, age and sex were significant for the RA of the face and middle toe lengths and for MRA. All the examined bilateral traits were evaluated as allometric growth. The FA for bilateral traits was determined in both sexes. The right (R) - left (L) and IR-Ll were the lowest in females for face length and in males for shank length from the O18-21 and in males for middle toe length from the O0-11 and HT18-21 groups. Therefore, the effects of factors such as HT and O2 could mitigate the adverse effects of HA-induced hypoxia on optimal developmental stability of bilateral traits of broiler.

  20. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj

    2007-09-01

    A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.

  1. Analysis of magic lengths in growth of supported metallic nanowires

    NASA Astrophysics Data System (ADS)

    Han, Yong

    2014-12-01

    Metallic nanowires can exhibit fascinating physical properties. These unique properties often originate primarily from the quantum confinement of free electrons in a potential well, while electron-electron interactions do not play a decisive role. A recent experimental study shows that self-assembled Ir nanowires grown on Ge(001) surface have a strong length preference: the nanowire lengths are an integer multiple of 4.8 nm. In this paper, a free-electron-gas model for geometries corresponding to the nanowires is used to analyze the selection of these preferred or magic lengths. The model shows that the inclusion of even numbers of free electrons in an Ir nanowire produces these magic lengths once an electron spillage effect is taken into account. The model also shows that the stability of the nanowire diminishes with its increasing length, and consequently suggests why no long nanowires are observed in experiments. It is also shown that applying generic results for quantum size effects in a nanofilm geometry is not adequate to accurately describe the length selection in the rather different nanowire geometry, where the transverse dimensions are smaller than the electron Fermi wavelength. Finally, monatomic Au chain growth on Ge(001) surface is also analyzed. In contrast to Ir nanowires, the model shows that the stability of an Au chain depends strongly on the extent of electron spillage.

  2. Anatomy of the larynx and pharynx: effects of age, gender and height revealed by multidetector computed tomography.

    PubMed

    Inamoto, Y; Saitoh, E; Okada, S; Kagaya, H; Shibata, S; Baba, M; Onogi, K; Hashimoto, S; Katada, K; Wattanapan, P; Palmer, J B

    2015-09-01

    Although oropharyngeal and laryngeal structures are essential for swallowing, the three-dimensional (3D) anatomy is not well understood, due in part to limitations of available measuring techniques. This study uses 3D images acquired by 320-row area detector computed tomography ('320-ADCT'), to measure the pharynx and larynx and to investigate the effects of age, gender and height. Fifty-four healthy volunteers (30 male, 24 female, 23-77 years) underwent one single-phase volume scan (0.35 s) with 320-ADCT during resting tidal breathing. Six measurements of the pharynx and two of larynx were performed. Bivariate statistical methods were used to analyse the effects of gender, age and height on these measurements. Length and volume were significantly larger for men than for women for every measurement (P < 0.05) and increased with height (P < 0.05). Multiple regression analysis was performed to understand the interactions of gender, height and age. Gender, height and age each had significant effects on certain values. The volume of the larynx and hypopharynx was significantly affected by height and age. The length of pharynx was associated with gender and age. Length of the vocal folds and distance from the valleculae to the vocal folds were significantly affected by gender (P < 0.05). These results suggest that age, gender and height have independent and interacting effects on the morphology of the pharynx and larynx. Three-dimensional imaging and morphometrics using 320-ADCT are powerful tools for efficiently and reliably observing and measuring the pharynx and larynx. © 2015 John Wiley & Sons Ltd.

  3. Manipulation of Length and Lexicality Localizes the Functional Neuroanatomy of Phonological Processing in Adult Readers

    PubMed Central

    Church, Jessica A.; Balota, David A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2010-01-01

    In a previous study of single word reading, regions in the left supramarginal gyrus and left angular gyrus showed positive BOLD activity in children but significantly less activity in adults for high-frequency words. This developmental decrease may reflect decreased reliance on phonological processing for familiar stimuli in adults. Therefore, in the present study, variables thought to influence phonological demand (string length and lexicality) were manipulated. Length and lexicality effects in the brain were explored using both ROI and whole-brain approaches. In the ROI analysis, the supramarginal and angular regions from the previous study were applied to this study. The supramarginal region showed a significant positive effect of length, consistent with a role in phonological processing, whereas the angular region showed only negative deflections from baseline with a strong effect of lexicality and other weaker effects. At the whole-brain level, varying effects of length and lexicality and their interactions were observed in 85 regions throughout the brain. The application of hierarchical clustering analysis to the BOLD time course data derived from these regions revealed seven clusters, with potentially revealing anatomical locations. Of note, a left angular gyrus region was the sole constituent of one cluster. Taken together, these findings in adult readers (1) provide support for a widespread set of brain regions affected by lexical variables, (2) corroborate a role for phonological processing in the left supramarginal gyrus, and (3) do not support a strong role for phonological processing in the left angular gyrus. PMID:20433237

  4. [Influences of arbuscular mycorrhizal fungus and phosphorus level on the lateral root formation of tomato seedlings].

    PubMed

    Jiang, Xia; Chen, Wei-li; Xu, Chun-xiang; Zhu, Hong-hui; Yao, Qing

    2015-04-01

    To explore the influences of arbuscular mycorrhizal fungi (AMF) and P level on plant root system architecture, tomato seedlings were inoculated with AMF strain Rhizophagus irregularis BGC JX04B under two P levels, and the influences of AMF and P level on lateral root (LR) formation of tomato seedlings were studied. Results indicated that the promoting effect of AMF on plant biomass was not evident, but significantly decreased the root to shoot ratio of plants. AMF significantly increased the primary root length but decreased the 1st order LR length and interacted with the mycorrhizal colonization period. AMF significantly lowered the 2nd-3rd order LR number and the ratio of 2nd order LR number to 1st order LR number, but did not significantly affect the 1st-2nd order LR density. High P level (50 mg x kg(-1) P) significantly promoted the plant growth and decreased the root to shoot ratio of plants. It had no significant effect on the primary root length and the 1st order root length, but significantly enhanced the 1st-3rd order LR number and the ratio of 2nd order LR number to P order LR number, increased the 1st-2nd order LR density. It suggested that AMF and P level did not share a common mechanism to influence the LR formation of tomato plants. The influence of high P level may depend on its promoting effects on nutrient uptake and plant growth, while the influence of AMF is more complex. Furthermore, the interaction between AMF and mycorrhizal colonization period implies the possible involvement of carbohydrate distribution (sugar signaling) in the regulation of root system architecture by AMF.

  5. Gain-assisted broadband ring cavity enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Selim, Mahmoud A.; Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2017-02-01

    Incoherent broadband cavity enhanced spectroscopy can significantly increase the effective path length of light-matter interaction to detect weak absorption lines over broad spectral range, for instance to detect gases in confined environments. Broadband cavity enhancement can be based on the decay time or the intensity drop technique. Decay time measurement is based on using tunable laser source that is expensive and suffers from long scan time. Intensity dependent measurement is usually reported based on broadband source using Fabry-Perot cavity, enabling short measurement time but suffers from the alignment tolerance of the cavity and the cavity insertion loss. In this work we overcome these challenges by using an alignment-free ring cavity made of an optical fiber loop and a directional coupler, while having a gain medium pumped below the lasing threshold to improve the finesse and reduce the insertion loss. Acetylene (C2H2) gas absorption is measured around 1535 nm wavelength using a semiconductor optical amplifier (SOA) gain medium. The system is analyzed for different ring resonator forward coupling coefficient and loses, including the 3-cm long gas cell insertion loss and fiber connector losses used in the experimental verification. The experimental results are obtained for a coupler ratio of 90/10 and a fiber length of 4 m. The broadband source is the amplified spontaneous emission of another SOA and the output is measured using a 70pm-resolution optical spectrum analyzer. The absorption depth and the effective interaction length are improved about an order of magnitude compared to the direct absorption of the gas cell. The presented technique provides an engineering method to improve the finesse and, consequently the effective length, while relaxing the technological constraints on the high reflectivity mirrors and free-space cavity alignment.

  6. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.; Reich, David B.; O'Connor, Michael B.

    2010-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15 x 15 cm supersonic wind tunnel at NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the micro-ramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  7. Micro-Ramp Flow Control for Oblique Shock Interactions: Comparisons of Computational and Experimental Data

    NASA Technical Reports Server (NTRS)

    Hirt, Stephanie M.; Reich, David B.; O'Connor, Michael B.

    2012-01-01

    Computational fluid dynamics was used to study the effectiveness of micro-ramp vortex generators to control oblique shock boundary layer interactions. Simulations were based on experiments previously conducted in the 15- by 15-cm supersonic wind tunnel at the NASA Glenn Research Center. Four micro-ramp geometries were tested at Mach 2.0 varying the height, chord length, and spanwise spacing between micro-ramps. The overall flow field was examined. Additionally, key parameters such as boundary-layer displacement thickness, momentum thickness and incompressible shape factor were also examined. The computational results predicted the effects of the microramps well, including the trends for the impact that the devices had on the shock boundary layer interaction. However, computing the shock boundary layer interaction itself proved to be problematic since the calculations predicted more pronounced adverse effects on the boundary layer due to the shock than were seen in the experiment.

  8. Statistical-Mechanical Studies of the Collective Binding of Proteins to DNA

    NASA Astrophysics Data System (ADS)

    Zhang, Houyin

    My dissertation work focuses on the microscopic statistical-mechanical studies of DNA-protein interactions and mainly comprises of three projects. In living cells, binding of proteins to DNA controls gene expression and packaging of the genome. Single-DNA stretching and twisting experiments provide a powerful tool to detect binding of proteins, via detection of their modification of DNA mechanical properties. However, it is often difficult or impossible to determine the numbers of proteins bound in such experiments, especially when the proteins interact nonspecifically with DNA. In the first project, we developed single-molecule versions of classical thermodynamic Maxwell relations and proposed that these relations could be used to measure DNA-bound protein numbers, changes in DNA double-helix torque with force, and many other quantities which are hard to directly measure. This approach does not need any theoretical assumptions beyond the existence of thermodynamic equilibrium and has been used in single-DNA experiments. Many single-molecule experiments associated with DNA-bending proteins suggest the existence of cooperative interactions between adjacent DNA-bound proteins. In the second project, we studied a statistical-mechanical worm-like chain model including binding cooperativity effects and found that the intrinsic cooperativity of binding sharpens force-extension curves and causes enhancement of fluctuation of extension and protein occupation. This model also allows us to estimate the intrinsic cooperativity in experiments. We also analyzed force-generated cooperativity and found that the related interaction between proteins is always attractive. This suggests that tension in DNA in vivo could alter the distribution of proteins bound along DNA, causing chromosome refolding, or changes in gene expression. In the third project, we investigated the correlations along DNA-protein complexes. We found there are two different correlation lengths corrected to the geometry of DNA bending - the shorter “longitudinal” correlation length ξ∥(f, μ) and the longer “transverse” correlation length ξ⊥( f, μ). In the high-force limit, ξ∥(f, μ) = ξ⊥(f, μ)/2 = A/4bf . Surprisingly, the range of the interaction between DNA-bending proteins is controlled by the second-longest correlation length. The effect arises from the protein-bend contribution to the Hamiltonian having an axial rotational symmetry which eliminates its coupling to the transverse bending fluctuations.

  9. Novel mechanisms for self-assembled pattern formation in nanoscopic metal films

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, R.; Trice, J.; Favazza, C.; Thomas, D.; Sureshkumar, R.

    2007-03-01

    Classical hydrodynamic theory of dewetting of spinodally unstable thin films (Vrij, Disc. farad. Soc. 1966) predicts a monotonic increase in patterning length scales with increasing film thickness. We verified this effect for nanoscopic Co metal films following melting by ns laser pulses for thickness regime h<=hc˜8,m (Favazza et al. Nanotechnology, 2006). However, a dramatic change is observed beyond this thickness hc, with length scales decreasing with increasing h. This novel behavior arises from strong thickness dependence of heating by ultrafast laser light resulting in thermocapillary effects, whose magnitude and sign are thickness dependent. We modified the classical theory, according to which the instability occurs when the stabilizing capillary force is overcome by destabilizing attractive long-range interactions, to include thermocapillary effects. The modified theory accurately predicts the experimentally observed trend. This result suggests that a variety of new length scales can be accessed by robust self-assembly via dewetting of metal films under ultrafast light.

  10. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.

    PubMed Central

    Williams, S P; Langmore, J P

    1991-01-01

    Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522

  11. Length distributions of nanowires: Effects of surface diffusion versus nucleation delay

    NASA Astrophysics Data System (ADS)

    Dubrovskii, Vladimir G.

    2017-04-01

    It is often thought that the ensembles of semiconductor nanowires are uniform in length due to the initial organization of the growth seeds such as lithographically defined droplets or holes in the substrate. However, several recent works have already demonstrated that most nanowire length distributions are broader than Poissonian. Herein, we consider theoretically the length distributions of non-interacting nanowires that grow by the material collection from the entire length of their sidewalls and with a delay of nucleation of the very first nanowire monolayer. The obtained analytic length distribution is controlled by two parameters that describe the strength of surface diffusion and the nanowire nucleation rate. We show how the distribution changes from the symmetrical Polya shape without the nucleation delay to a much broader and asymmetrical one for longer delays. In the continuum limit (for tall enough nanowires), the length distribution is given by a power law times an incomplete gamma-function. We discuss interesting scaling properties of this solution and give a recipe for analyzing and tailoring the experimental length histograms of nanowires which should work for a wide range of material systems and growth conditions.

  12. Exploring the relationship between age and tenure with length of disability

    PubMed Central

    Young, Amanda E.; Pransky, Glenn

    2015-01-01

    Background The aging of the workforce, coupled with the changing nature of career tenure has raised questions about the impact of these trends on work disability. This study aimed to determine if age and tenure interact in relating to work disability duration. Methods Relationships were investigated using random effects models with 239,359 work disability claims occurring between 2008 and 2012. Results A 17‐day difference in the predicted length of disability was observed from ages 25 to 65. Tenure moderated the relationship between age and length of disability. At younger ages, the length of disability decreased as tenure increased, but at older age, the length of disability increased as tenure increased. Discussion Results indicate that although there is a relationship between length of disability and tenure, age makes a greater unique contribution to explaining variance in length of disability. Future research is needed to better understand why specifically age shows a strong relationship with length of disability and why that relationship varies with age. Am. J. Ind. Med. 58:974–987, 2015. © 2015 The Authors. American Journal of Industrial Medicine Published by Wiley Periodicals, Inc. PMID:26010587

  13. The cellular level of O-antigen polymerase Wzy determines chain length regulation by WzzB and WzzpHS-2 in Shigella flexneri 2a.

    PubMed

    Carter, Javier A; Jiménez, Juan C; Zaldívar, Mercedes; Alvarez, Sergio A; Marolda, Cristina L; Valvano, Miguel A; Contreras, Inés

    2009-10-01

    The lipopolysaccharide O antigen of Shigella flexneri 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded Wzz(pHS-2) proteins, respectively. In this study, genes wzzB, wzz(pHS-2) and wzy (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators wzzB and wzz(pHS-2) revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the wzy gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of wzy. Thus, the level of expression of wzy is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and Wzz(pHS-2) proteins, but very low levels of Wzy. In vivo cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.

  14. Social Relationships and Salivary Telomere Length Among Middle-Aged and Older African American and White Adults.

    PubMed

    Lincoln, Karen D; Lloyd, Donald A; Nguyen, Ann W

    2017-05-09

    A common mechanism underlying premature morbidity may be accelerated biological aging as reflected by salivary telomere length (STL). This study examined the extent to which social relationships, both positive and negative, can be protective or confer risk relative to biological aging. Data from the Health and Retirement Study and multiple regression were used to examine cross-sectional associations between STL, self-reported social support, and negative interaction (e.g., conflict, criticism) with family in a nationally representative sample of African American and non-Hispanic White middle-aged and older adults (N = 4,080). Social support from family was associated with shorter STL. Negative interaction with family had no main effect on STL but interactions characterized by high social support and more frequent negative interactions were associated with longer STL. Negative interaction with family was negatively associated with STL for African Americans and Whites but the magnitude of the effect was greater for African Americans. Study findings highlight the role of social relationships in physiological deterioration among middle-aged and older adults and identify a potential mechanism whereby race is linked to accelerated biological aging. Findings highlight the importance of considering positive and negative aspects of social relationships to understand the consequences of social connections for cellular aging in diverse populations. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Influences of roads and development on bird communities in protected Chihuahuan Desert landscapes

    USGS Publications Warehouse

    Gutzwiller, K.J.; Barrow, W.C.

    2003-01-01

    Our objective was to improve knowledge about effects of broad-scale road and development variables on bird communities in protected desert landscapes. Bird species richness and the relative abundance or probability of occurrence of many species were significantly associated with total length of roads within each of two spatial extents (1- and 2-km radii), distance to the nearest road, distance to the nearest development, or the two-way interactions of these variables. Regression models reflected non-linear relations, interaction effects, spatial-extent effects, and interannual variation. Road and development effects warrant special attention in protected areas because such places may be important sources of indigenous bird communities in a region.

  16. Effect of Leukocyte Telomere Length on Total and Regional Brain Volumes in a Large Population-Based Cohort

    PubMed Central

    King, Kevin S.; Kozlitina, Julia; Rosenberg, Roger N.; Peshock, Ronald M.; McColl, Roderick W.; Garcia, Christine K.

    2017-01-01

    Importance Telomere length has been associated with dementia and psychological stress, but its relationship with human brain size is unknown. Objective To determine if peripheral blood telomere length is associated with brain volume. Design, Setting, and Participants Peripheral blood leukocyte telomere length and brain volumes were measured for 1960 individuals in the Dallas Heart Study, a population-based, probability sample of Dallas County, Texas, residents, with a median (25th-75th percentile) age of 50 (42-58) years. Global and 48 regional brain volumes were assessed from the automated analysis of magnetic resonance imaging. Main Outcomes and Measures Telomere length and global and regional brain volumes. Results Leukocyte telomere length was associated with total cerebral volume (β [SE], 0.06 [0.01], P <.001) including white and cortical gray matter volume (β [SE], 0.04 [0.01], P = .002; β [SE], 0.07 [0.02], P <.001, respectively), independent of age, sex, ethnicity, and total intracranial volume. While age was associated with the size of most subsegmental regions of the cerebral cortex, telomere length was associated with certain subsegmental regions. Compared with age, telomere length (TL) explained a sizeable proportion of the variance in volume of the hippocampus, amygdala, and inferior temporal region (hippocampus: βTL [SE], 0.08 [0.02], R2, 0.91% vs βage [SE], −0.16 [0.02], R2, 3.80%; amygdala: βTL [SE], 0.08 [0.02], R2, 0.78% vs βage [SE], −0.19 [0.02], R2,4.63%; inferior temporal: βTL [SE], 0.07 [0.02], R2, 0.92% vs βage [SE], −0.14 [0.02], R2, 3.98%) (P <.001 for all). The association of telomere length and the size of the inferior and superior parietal, hippocampus, and fusiform regions was stronger in individuals older than 50 years than younger individuals (inferior parietal: β>50 [SE], 0.13 [0.03], P <.001 vs β≤50 [SE], 0.02 [0.02], P = .51, P for interaction = .001; superior parietal: β>50 [SE], 0.11 [0.03], P <.001 vs β≤50 [SE], 0.01 [0.02], P = .71, P for interaction = .004; hippocampus: β>50 [SE], 0.10 [0.03], P = .004 vs β≤50 [SE], 0.05 [0.02], P = .07, P for interaction = .04; fusiform: β>50 [SE], 0.09 [0.03], P = .002, β≤50 [SE], 0.03 [0.02], P = .31, P for interaction = .03). The volume of the hippocampus, amygdala, superior and inferior temporal, precuneus, lateral orbitofrontal, posterior cingulate, thalamus and ventral diencephalon were independently associated with telomere length after adjustment for all covariates (age, gender, ethnicity, total intracranial volume, body mass index, blood pressure, diabetes, smoking status, and APOE genotype). Conclusions and Relevance To our knowledge, this is the first population-based study to date to evaluate telomere length as an independent predictor of global and regional brain size. Future studies are needed to determine how telomere length and anatomic structural changes are related to cognitive function, dementia, and psychological disease. PMID:25090243

  17. Aerothermal and Propulsion Ground Testing That Can Be Conducted to Increase Chances for Successful Hypervelocity Flight Experiments

    DTIC Science & Technology

    2005-10-01

    interaction • Turbulence/ flow chemistry plus combustion interaction • Transpiration Cooling and ablation – Ram/Scramjet Technology – Ignition, mixing...turbulence models for separated regions of shock wave/turbulent boundary layer interaction – Modeling turbulence/ flow chemistry /combustion...Minutes FLOW DURATION Flow velocity Reynolds number Mach number Velocity Temperature Vehicle length NoneLengthVelocity Flow Chemistry Total temperature

  18. Interactions between Genetic and Ecological Effects on the Evolution of Life Cycles.

    PubMed

    Rescan, Marie; Lenormand, Thomas; Roze, Denis

    2016-01-01

    Sexual reproduction leads to an alternation between haploid and diploid phases, whose relative length varies widely across taxa. Previous genetical models showed that diploid or haploid life cycles may be favored, depending on dominance interactions and on effective recombination rates. By contrast, niche differentiation between haploids and diploids may favor biphasic life cycles, in which development occurs in both phases. In this article, we explore the interplay between genetical and ecological factors, assuming that deleterious mutations affect the competitivity of individuals within their ecological niche and allowing different effects of mutations in haploids and diploids (including antagonistic selection). We show that selection on a modifier gene affecting the relative length of both phases can be decomposed into a direct selection term favoring the phase with the highest mean fitness (due to either ecological differences or differential effects of mutations) and an indirect selection term favoring the phase in which selection is more efficient. When deleterious alleles occur at many loci and in the presence of ecological differentiation between haploids and diploids, evolutionary branching often occurs and leads to the stable coexistence of alleles coding for haploid and diploid cycles, while temporal variations in niche sizes may stabilize biphasic cycles.

  19. Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.

  20. Dynamics of an elastic sphere containing a thin creeping region and immersed in an acoustic region for similar viscous-elastic and acoustic time- and length-scales

    NASA Astrophysics Data System (ADS)

    Gat, Amir; Friedman, Yonathan

    2017-11-01

    The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.

  1. An experimental investigation of two-dimensional thrust augmenting ejectors, part 2

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1984-01-01

    The flow-field within a two-dimensional thrust augmenting ejector has been documented experimentally. Results are presented on the mean velocity field and the turbulent correlations by Laser Doppler Velocimeter, surface pressure distribution, surface temperature distribution, and thrust performance for two shroud geometries. The maximum primary nozzle pressure ratio tested was 3.0. The tests were conducted at primary nozzle temperature ratios of 1.0, 1.8 and 2.7. Two ejector characteristic lengths have been identified based on the dynamics of the ejector flow field, i.e., a minimum length L sub m below which no significant mixing occurs, and a critical length L sub c associated with the development of U'V' correlation in the ejector. These characteristic lengths divide the ejector flow field into three distinctive regions: the entrance region where there is no direct interaction between the primary flow and the ejector shroud; the interaction region where there is an increased momentum of induced flow near the shroud surface; and a pipe flow region characterized by an increased skin friction where x is the distance downstream from the ejector inlet. The effect of the coflowing induced flow has been shown to produce inside the ejector a centerline velocity that has increased over the free-jet data.

  2. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, A. C.; Bachand, M.; Gomez, A.

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  3. Interactions regulating the head-to-tail directed assembly of biological Janus rods

    DOE PAGES

    Greene, A. C.; Bachand, M.; Gomez, A.; ...

    2017-03-31

    We can generalize the directed, head-to-tail self-assembly of microtubule filaments in the context of Janus colloidal rods. Specifically, their assembly at the tens of micron-length scale involves a careful balance between long-range electrostatic repulsion and short-range attractive forces. We show that the addition of counterion salts increases the rate of directed assembly by screening the electrostatic forces and enhancing the effectiveness of short-range interactions at the microtubule ends.

  4. Interaction of a vortex and a premixed flame

    NASA Technical Reports Server (NTRS)

    Ferziger, Joel H.; Rutland, Christopher J.

    1989-01-01

    The interaction of a vortex structure and a premixed flame is studied. The presence of pressure gradients in the vortex and density gradients in the flame result in a complicated interaction. This interaction has been examined when the flame and vortex are fully coupled and in two special cases where they are decoupled: a frozen flame case and a frozen vortex case. In the frozen flame case the main effect of the flame on the vortex is through the barocline torque term. This has been modeled for high Damkoehler numbers. In the frozen vortex case the main effect, at moderate Damkoehler numbers, is to convect the flame around the vortex. At low Damkoehler numbers, depending on the length scales, pockets of unburned gas can form or the flame structure can be significantly changed. The two frozen cases provide a basis for understanding the full interaction.

  5. The Effect of Chain Length on Mid-Infrared and Near-Infrared Spectra of Aliphatic 1-Alcohols.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2018-02-01

    Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH 3 , CH 2 , and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.

  6. Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length.

    PubMed

    Macpherson, Morag F; Kleczkowski, Adam; Healey, John R; Hanley, Nick

    2017-04-01

    Forests deliver multiple benefits both to their owners and to wider society. However, a wave of forest pests and pathogens is threatening this worldwide. In this paper we examine the effect of disease on the optimal rotation length of a single-aged, single rotation forest when a payment for non-timber benefits, which is offered to private forest owners to partly internalise the social values of forest management, is included. Using a generalisable bioeconomic framework we show how this payment counteracts the negative economic effect of disease by increasing the optimal rotation length, and under some restrictive conditions, even makes it optimal to never harvest the forest. The analysis shows a range of complex interactions between factors including the rate of spread of infection and the impact of disease on the value of harvested timber and non-timber benefits. A key result is that the effect of disease on the optimal rotation length is dependent on whether the disease affects the timber benefit only compared to when it affects both timber and non-timber benefits. Our framework can be extended to incorporate multiple ecosystem services delivered by forests and details of how disease can affect their production, thus facilitating a wide range of applications.

  7. Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo

    PubMed Central

    2012-01-01

    Background Frustrated phagocytosis has been stated as an important factor in the initiation of an inflammatory response after fibre exposure. The length of fibrous structures has been linked to the potential of fibres to induce adverse health effects for at least 40 years. However, we only recently reported for the first time the threshold length for fibre-induced inflammation in the pleural space and we implicated frustrated phagocytosis in the pro-inflammatory effects of long fibres. This study extends the examination of the threshold value for frustrated phagocytosis using well-defined length classes of silver nanowires (AgNW) ranging from 3–28 μm and describes in detail the morphology of frustrated phagocytosis using a novel technique and also describes compartmentalisation of fibres in the pleural space. Methods A novel technique, backscatter scanning electron microscopy (BSE) was used to study frustrated phagocytosis since it provides high-contrast detection of nanowires, allowing clear discrimination between the nanofibres and other cellular features. A human monocyte-derived macrophage cell line THP-1 was used to investigate cell-nanowire interaction in vitro and the parietal pleura, the site of fibre retention after inhalation exposure was chosen to visualise the cell- fibre interaction in vivo after direct pleural installation of AgNWs. Results The length cut-off value for frustrated phagocytosis differs in vitro and in vivo. While in vitro frustrated phagocytosis could be observed with fibres ≥14 μm, in vivo studies showed incomplete uptake at a fibre length of ≥10 μm. Recently we showed that inflammation in the pleural space after intrapleural injection of the same nanofibre panel occurs at a length of ≥5 μm. This onset of inflammation does not correlate with the onset of frustrated phagocytosis as shown in this study, leading to the conclusion that intermediate length fibres fully enclosed within macrophages as well as frustrated phagocytosis are associated with a pro-inflammatory state in the pleural space. We further showed that fibres compartmentalise in the mesothelial cells at the parietal pleura as well as in inflammatory cells in the pleural space. Conclusion BSE is a useful way to clearly distinguish between fibres that are, or are not, membrane-bounded. Using this method we were able to show differences in the threshold length at which frustrated phagocytosis occurred between in vitro and in vivo models. Visualising nanowires in the pleura demonstrated at least 2 compartments – in leukocyte aggregations and in the mesothelium - which may have consequences for long term pathology in the pleural space including mesothelioma. PMID:22929371

  8. Ligand structure and mechanical properties of single-nanoparticle-thick membranes.

    PubMed

    Salerno, K Michael; Bolintineanu, Dan S; Lane, J Matthew D; Grest, Gary S

    2015-06-01

    The high mechanical stiffness of single-nanoparticle-thick membranes is believed to result from the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with a nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH(3)) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Moreover, the particular end group (COOH or CH(3)) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salerno, Kenneth Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.

    We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with amore » nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH 3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH 3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less

  10. Cellular manipulation and patterning using ferromagnetic nanowires

    NASA Astrophysics Data System (ADS)

    Hultgren, Anne

    Ferromagnetic nanowires are demonstrated as an effective tool to apply forces to living cells. Both magnetic cell separations and the magnetic patterning of cells on a substrate will be accomplished through the use of cell-nanowire interactions as well as nanowire-magnetic field interactions. When introduced into cultures of NIH-3T3 cells, the nanowires are internalized by cells via the integrin-mediated adhesion pathway without inflicting any toxic effects on the cell cycle over the course of several days. In addition, the length of the nanowires was found to have an effect on the cell-nanowire interactions when the cells were dissociated from the tissue culture dish. To compare the effectiveness of the nanowires as a means of manipulating cells to the current technology which is based on superparamagnetic beads, magnetic cell separations were performed with electrodeposited Ni nanowires 350 nm in diameter and 5--35 mum long in field gradients of 80 T/m. Single-pass separations of NIH-3T3 cells bound to nanowires achieve up to 81% purity with 85% yield, a dramatic improvement over the 55% purity and 20% yield obtained with the beads. The yield for the separations were found to be dependent on the length of the nanowires, and was maximized when the length of the nanowires equaled the diameter of the cells. This dependence was exploited to perform a size-selective magnetic separation. Substrates containing arrays of micro-magnets, fabricated using photolithography, were placed in cell cultures. These micro-magnet arrays create regions of locally strong magnetic field gradients to trap nanowires in specific locations on the substrate. These substrates were used in conjunction with fluid flow and a weak, externally applied magnetic field to create and control patterns of cells bound to nanowires. Controlled isolation of heterogeneous pairs and groups of cells will enable the study of the biochemistry of cell-cell contacts.

  11. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  12. Effect of segmented electrode length on the performances of Hall thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan

    2016-09-01

    The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.

  13. Spin relaxation in graphene nanoribbons in the presence of substrate surface roughness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaghazardi, Zahra; Faez, Rahim; Touski, Shoeib Babaee

    2016-08-07

    In this work, spin transport in corrugated armchair graphene nanoribbons (AGNRs) is studied. We survey combined effects of spin-orbit interaction and surface roughness, employing the non-equilibrium Green's function formalism and multi-orbitals tight-binding model. Rough substrate surfaces have been statistically generated and the hopping parameters are modulated based on the bending and distance of corrugated carbon atoms. The effects of surface roughness parameters, such as roughness amplitude and correlation length, on spin transport in AGNRs are studied. The increase of surface roughness amplitude results in the coupling of σ and π bands in neighboring atoms, leading to larger spin flipping ratemore » and therefore reduction of the spin-polarization, whereas a longer correlation length makes AGNR surface smoother and increases spin-polarization. Moreover, spin diffusion length of carriers is extracted and its dependency on the roughness parameters is investigated. In agreement with experimental data, the spin diffusion length for various substrate ranges between 2 and 340 μm. Our results indicate the importance of surface roughness on spin-transport in graphene.« less

  14. Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim

    2018-01-01

    We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.

  15. FIBER AND INTEGRATED OPTICS: Magnetooptic interaction in fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Gulyaev, Yurii V.

    1989-11-01

    Theoretical and experimental studies were made of the effects of a distributed magnetooptic interaction in fiber waveguides. Analytic solutions were obtained for relating light modulation at the exit of a waveguide to the parameters of its winding in the form of a coil and to an external magnetic field under conditions ensuring the exact spatial phase matching. It was confirmed experimentally that the interaction length of the order of several tens of meters was quite acceptable and could ensure a sensitivity of at least 10 - 4 Oe in the case of a quartz fiber waveguide.

  16. Infrared length scale and extrapolations for the no-core shell model

    DOE PAGES

    Wendt, K. A.; Forssén, C.; Papenbrock, T.; ...

    2015-06-03

    In this paper, we precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3(A-1)-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound statesmore » of 4He, 6He, 6Li, and 7Li. Finally, we also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.« less

  17. Tunable evolutions of shock absorption and energy partitioning in magnetic granular chains

    NASA Astrophysics Data System (ADS)

    Leng, Dingxin; Liu, Guijie; Sun, Lingyu

    2018-01-01

    In this paper, we investigate the tunable characteristics of shock waves propagating in one-dimensional magnetic granular chains at various chain lengths and magnetic flux densities. According to the Hertz contact theory and Maxwell principle, a discrete element model with coupling elastic and field-induced interaction potentials of adjacent magnetic grains is proposed. We also present hard-sphere approximation analysis to describe the energy partitioning features of magnetic granular chains. The results demonstrate that, for a fixed magnetic field strength, when the chain length is greater than two times of the wave width of the solitary wave, the chain length has little effect on the output energy of the system; for a fixed chain length, the shock absorption and energy partitioning features of magnetic granular chains are remarkably influenced by varying magnetic flux densities. This study implies that the magnetic granular chain is potential to construct adaptive shock absorption components for impulse mitigation.

  18. Word skipping: effects of word length, predictability, spelling and reading skill.

    PubMed

    Slattery, Timothy J; Yates, Mark

    2017-08-31

    Readers eyes often skip over words as they read. Skipping rates are largely determined by word length; short words are skipped more than long words. However, the predictability of a word in context also impacts skipping rates. Rayner, Slattery, Drieghe and Liversedge (2011) reported an effect of predictability on word skipping for even long words (10-13 characters) that extend beyond the word identification span. Recent research suggests that better readers and spellers have an enhanced perceptual span (Veldre & Andrews, 2014). We explored whether reading and spelling skill interact with word length and predictability to impact word skipping rates in a large sample (N=92) of average and poor adult readers. Participants read the items from Rayner et al. (2011) while their eye movements were recorded. Spelling skill (zSpell) was assessed using the dictation and recognition tasks developed by Sally Andrews and colleagues. Reading skill (zRead) was assessed from reading speed (words per minute) and accuracy of three 120 word passages each with 10 comprehension questions. We fit linear mixed models to the target gaze duration data and generalized linear mixed models to the target word skipping data. Target word gaze durations were significantly predicted by zRead while, the skipping likelihoods were significantly predicted by zSpell. Additionally, for gaze durations, zRead significantly interacted with word predictability as better readers relied less on context to support word processing. These effects are discussed in relation to the lexical quality hypothesis and eye movement models of reading.

  19. Comparative analysis of genetic architectures for nine developmental traits of rye.

    PubMed

    Masojć, Piotr; Milczarski, P; Kruszona, P

    2017-08-01

    Genetic architectures of plant height, stem thickness, spike length, awn length, heading date, thousand-kernel weight, kernel length, leaf area and chlorophyll content were aligned on the DArT-based high-density map of the 541 × Ot1-3 RILs population of rye using the genes interaction assorting by divergent selection (GIABDS) method. Complex sets of QTL for particular traits contained 1-5 loci of the epistatic D class and 10-28 loci of the hypostatic, mostly R and E classes controlling traits variation through D-E or D-R types of two-loci interactions. QTL were distributed on each of the seven rye chromosomes in unique positions or as a coinciding loci for 2-8 traits. Detection of considerable numbers of the reversed (D', E' and R') classes of QTL might be attributed to the transgression effects observed for most of the studied traits. First examples of E* and F QTL classes, defined in the model, are reported for awn length, leaf area, thousand-kernel weight and kernel length. The results of this study extend experimental data to 11 quantitative traits (together with pre-harvest sprouting and alpha-amylase activity) for which genetic architectures fit the model of mechanism underlying alleles distribution within tails of bi-parental populations. They are also a valuable starting point for map-based search of genes underlying detected QTL and for planning advanced marker-assisted multi-trait breeding strategies.

  20. Study on the measuring distance for blood glucose infrared spectral measuring by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.

  1. Arsenic exposure, genetic susceptibility and leukocyte telomere length in an Italian young adult population.

    PubMed

    Borghini, Andrea; Faita, Francesca; Mercuri, Antonella; Minichilli, Fabrizio; Bustaffa, Elisa; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2016-09-01

    Arsenic-induced health effects may be associated with critically shortened telomeres. However, few data are available on the effects of arsenic exposure on telomere length. The aim of this study was to investigate the effects of chronic arsenic exposure on leukocyte telomere length (LTL) as well as the contribution of common polymorphisms in genes implicated in arsenic metabolism (GSTT1 and GSTM1) and DNA repair (hOGG1 and XRCC1). A group of 241 healthy subjects was enrolled from four areas of Italy known to be affected by natural or anthropogenic arsenic pollution. Urine samples were tested for inorganic As (iAs), monomethylarsinic (MMA) and dimethylarsinic acid (DMA). LTL was evaluated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Genotyping was carried out by PCR-RFLP on leukocyte DNA. In multiple linear regression analysis, LTL was significantly and inversely correlated with age (β = -0.231, P = 0.006) and showed a certain trend toward significance with iAs urinary concentration (log10 iAs, β = -0.106, P = 0.08). The genotype distribution showed significant associations between GSTT1 and the As concentration (log10 iAs, P = 0.01) and metabolite patterns (log10 DMA, P = 0.05) in the urine. However, GST genes did not interact with arsenic exposure in the modulation of LTL. Conversely, the combined presence of a higher level of iAs + MMA + DMA ≥ 19.3 μg/l (F = 6.0, P interaction = 0.01), Asi ≥ 3.86 (F = 3.9, P interaction = 0.04) μg/l, iAs + MMA + DMA ≥ 15 μg/l (F = 4.2, P interaction = 0.04) and hOGG1 Cys allele was associated with a significantly lower LTL. An interaction between XRCC1 Arg399Gln and arsenic exposure was also observed (all P interaction = 0.04). These findings suggest that telomere shortening may represent a mechanism that contributes to arsenic-related disease. The interaction of hOGG1 and XRCC1 DNA repair polymorphisms and exposure enhances telomeric DNA damage. Future studies are warranted to understand better the epidemiologic impact of arsenic on telomere function as well as to identify the subgroups of exposed subjects who need better health surveillance. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Interaction of a finite-length ion beam with a background plasma - Reflected ions at the quasi-parallel bow shock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Winske, D.; Thomsen, M. F.

    1991-01-01

    The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. It is found that interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long.

  3. Bromovirus RNA Replication Compartment Formation Requires Concerted Action of 1a's Self-Interacting RNA Capping and Helicase Domains

    PubMed Central

    Diaz, Arturo; Gallei, Andreas

    2012-01-01

    All positive-strand RNA viruses replicate their genomes in association with rearranged intracellular membranes such as single- or double-membrane vesicles. Brome mosaic virus (BMV) RNA synthesis occurs in vesicular endoplasmic reticulum (ER) membrane invaginations, each induced by many copies of viral replication protein 1a, which has N-terminal RNA capping and C-terminal helicase domains. Although the capping domain is responsible for 1a membrane association and ER targeting, neither this domain nor the helicase domain was sufficient to induce replication vesicle formation. Moreover, despite their potential for mutual interaction, the capping and helicase domains showed no complementation when coexpressed in trans. Cross-linking showed that the capping and helicase domains each form trimers and larger multimers in vivo, and the capping domain formed extended, stacked, hexagonal lattices in vivo. Furthermore, coexpressing the capping domain blocked the ability of full-length 1a to form replication vesicles and replicate RNA and recruited full-length 1a into mixed hexagonal lattices with the capping domain. Thus, BMV replication vesicle formation and RNA replication depend on the direct linkage and concerted action of 1a's self-interacting capping and helicase domains. In particular, the capping domain's strong dominant-negative effects showed that the ability of full-length 1a to form replication vesicles was highly sensitive to disruption by non-productively titrating lattice-forming self-interactions of the capping domain. These and other findings shed light on the roles and interactions of 1a domains in replication compartment formation and support prior results suggesting that 1a induces replication vesicles by forming a capsid-like interior shell. PMID:22090102

  4. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  5. Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: relationship to structural plasticity and immediate early gene expression in frontal cortex.

    PubMed

    Hamilton, Derek A; Akers, Katherine G; Rice, James P; Johnson, Travis E; Candelaria-Cook, Felicha T; Maes, Levi I; Rosenberg, Martina; Valenzuela, C Fernando; Savage, Daniel D

    2010-03-05

    The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24h of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior abnormalities. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Scaling of plasma-body interactions in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2017-04-01

    This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.

  7. Differential Effects of Wait-Time on Textually Explicit and Implicit Responding: Interactional Explanation.

    ERIC Educational Resources Information Center

    Pond, Marlene R.; Newman, Isadore

    The effects of wait-time, the pause following a teacher question and the pause after a student response, on the length and number of student responses were analyzed at different cognitive levels. Data were obtained from 95 students in grade 4 and from 5 teachers using a wait-time of 5 seconds. Four oral discussion sessions by teachers and students…

  8. Effects of a glyphosate-based herbicide on the development of Common toads (Bufo bufo L.; Amphibia) at different temperatures

    NASA Astrophysics Data System (ADS)

    Baier, Fabian; Gruber, Edith; Spangl, Bernhard; Zaller, Johann G.

    2016-04-01

    Herbicides based on the active ingredient glyphosate are frequently applied in agriculture, horticulture and private gardens all over the world. Recently, leaching of glyphosate or its metabolite (AMPA) into water bodies inhabited by amphibians has been reported. However, very little is known about non-target effects of these herbicides on amphibians and even less is known to what extent different temperatures might alter these effects. Using climate chambers, we investigated the effects of the glyphosate-based herbicide Roundup PowerFlex® (480 g L-1 glyphosate, formulated as 588 g L-1 potassium salt) on the larval development of Common toads (Bufo bufo L.; Amphibia: Anura) under different temperature regimes (15°C vs. 20°C). We established five herbicide concentrations: 0, 1.5, 3, 4 mg acid equivalent L-1 and a 4 mg a.e. L-1 pulse treatment (totally three applications of 1.5, 1.5 and another 1 mg a.e. L-1) at each temperature in a full-factorial design. Each treatment combination was replicated five times, the experiment ran for 24 days. Results showed a highly significant effect of temperature on body length and body width but no effect of herbicide concentration on these growth parameters. Moreover, highly significant interactions between herbicide and temperature on body length and body width were observed suggesting that herbicides had different effects on different temperatures. In conclusion, although Roundup PowerFlex® at the tested concentrations appeared to have no acute toxicity to larvae of Common toads, the observed effects on tadpole morphology will potentially affect competitive interactions in spawning ponds of amphibia. Our findings of herbicide x temperature interactions might become more prevalent when human-induced climate change will lead to more extreme temperatures.

  9. Nonequilibrium localization and the interplay between disorder and interactions.

    PubMed

    Mascarenhas, Eduardo; Bragança, Helena; Drumond, R; Aguiar, M C O; França Santos, M

    2016-05-18

    We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.

  10. Interactions among Variables Affecting Hospital Utilization

    PubMed Central

    Ro, Kong-kyun

    1973-01-01

    For purposes of developing a more refined basis for prediction of hospital utilization using readily available demographic variables, data for some 9000 patients admitted to 22 short-term general hospitals in the Pittsburgh area are analyzed to determine the relationship of age, sex, and race to hospital use. Significant differences in length of stay and number of services used are found for various combinations of these variables when a form of multiple regression is used that allows for interaction effects among the variables. PMID:4783753

  11. Probing the cross-effect of strains in non-linear elasticity of nearly regular polymer networks by pure shear deformation.

    PubMed

    Katashima, Takuya; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa

    2015-05-07

    The pure shear deformation of the Tetra-polyethylene glycol gels reveals the presence of an explicit cross-effect of strains in the strain energy density function even for the polymer networks with nearly regular structure including no appreciable amount of structural defect such as trapped entanglement. This result is in contrast to the expectation of the classical Gaussian network model (Neo Hookean model), i.e., the vanishing of the cross effect in regular networks with no trapped entanglement. The results show that (1) the cross effect of strains is not dependent on the network-strand length; (2) the cross effect is not affected by the presence of non-network strands; (3) the cross effect is proportional to the network polymer concentration including both elastically effective and ineffective strands; (4) no cross effect is expected exclusively in zero limit of network concentration in real polymer networks. These features indicate that the real polymer networks with regular network structures have an explicit cross-effect of strains, which originates from some interaction between network strands (other than entanglement effect) such as nematic interaction, topological interaction, and excluded volume interaction.

  12. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  13. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE PAGES

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  14. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  15. Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Ardila, L. A. Peña; Giorgini, S.

    2015-09-01

    We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.

  16. How PEGylation enhances the stability and potency of insulin: a molecular dynamics simulation.

    PubMed

    Yang, Cheng; Lu, Diannan; Liu, Zheng

    2011-04-05

    While the effectiveness of PEGylation in enhancing the stability and potency of protein pharmaceuticals has been validated for years, the underlying mechanism remains poorly understood, particularly at the molecular level. A molecular dynamics simulation was developed using an annealing procedure that allowed an all-atom level examination of the interaction between PEG polymers of different chain lengths and a conjugated protein represented by insulin. It was shown that PEG became entangled around the protein surface through hydrophobic interaction and concurrently formed hydrogen bonds with the surrounding water molecules. In addition to enhancing its structural stability, as indicated by the root-mean-square difference (rmsd) and secondary structure analyses, conjugation increased the size of the protein drug while decreasing the solvent accessible surface area of the protein. All these thus led to prolonged circulation life despite kidney filtration, proteolysis, and immunogenic side effects, as experimentally demonstrated elsewhere. Moreover, the simulation results indicated that an optimal chain length exists that would maximize drug potency underpinned by the parameters mentioned above. The simulation provided molecular insight into the interaction between PEG and the conjugated protein at the all-atom level and offered a tool that would allow for the design of PEGylated protein pharmaceuticals for given applications.

  17. Colorectal anatomy in adults at computed tomography colonography: normal distribution and the effect of age, sex, and body mass index.

    PubMed

    Khashab, M A; Pickhardt, P J; Kim, D H; Rex, D K

    2009-08-01

    Computed tomography colonography (CTC) is an accurate tool for assessing the large intestinal anatomy. Our aims were to determine the normal distribution of in vivo colorectal anatomy and to investigate the effect of age, sex, and body mass index (BMI) on colorectal length. Asymptomatic adults who underwent primary CTC examination at a single institution over an 8-month period were evaluated. The interactive three-dimensional map was used to determine total and segmental lengths and number of acute-angle flexures. The two-dimensional multiplanar display was used to measure luminal diameters. The effects of age, sex, and BMI on colorectal lengths were examined. The study cohort consisted of 505 consecutive adults (266 women, mean age 56.6 years). Mean total colorectal length was 189.5 +/- 26.3 cm and mean number of acute-angle flexures was 10.9 +/- 2.4. Total length for older adults (> 60 years) did not significantly differ from those who were younger than 60 years ( P = 0.22), although the transverse colon was significantly longer in older adults ( P = 0.04). Women had significantly longer colons than men (193.3 cm vs. 185.4 cm, P = 0.002), whereas overweight adults (BMI > 25) had significantly shorter colons compared with those with BMI

  18. Length of Maternity Leave and Quality of Mother-Infant Interactions.

    ERIC Educational Resources Information Center

    Clark, Roseanne; And Others

    1997-01-01

    Assessed association between length of maternity leave and quality of mother-infant interaction. Found a direct association between shorter leave and more negative affect and behavior; mothers with more depressive symptoms or who perceived their infant as having a difficult temperament, and with shorter leaves expressed less positive affect,…

  19. Introducing a model of pairing based on base pair specific interactions between identical DNA sequences

    NASA Astrophysics Data System (ADS)

    (O' Lee, Dominic J.

    2018-02-01

    At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.

  20. Hunting of roe deer and wild boar in Germany: Is non-lead ammunition suitable for hunting?

    PubMed

    Martin, Annett; Gremse, Carl; Selhorst, Thomas; Bandick, Niels; Müller-Graf, Christine; Greiner, Matthias; Lahrssen-Wiederholt, Monika

    2017-01-01

    Non-lead hunting ammunition is an alternative to bullets that contain lead. The use of lead ammunition can result in severe contamination of game meat, thus posing a health risk to consumers. With any kind of ammunition for hunting, the terminal effectiveness of bullets is an animal welfare issue. Doubts about the effectiveness of non-lead bullets for a humane kill of game animals in hunting have been discussed. The length of the escape distance after the shot has been used previously as an indicator for bullet performance. The object of this study was to determine how the bullet material (lead or non-lead) influences the observed escape distances. 1,234 records of the shooting of roe deer (Capreolus capreolus) and 825 records of the shooting of wild boar (Sus scrofa) were evaluated. As the bullet material cannot be regarded as the sole cause of variability of escape distances, interactions of other potential influencing variables like shot placement, shooting distance, were analyzed using conditional regression trees and two-part hurdle models. The length of the escape distance is not influenced by the use of lead or non-lead ammunition with either roe deer or wild boar. With roe deer, the length of the escape distance is influenced significantly by the shot placement and the type of hunting. Increasing shooting distances increased the length of the escape distance. With wild boar, shot placement and the age of the animals were found to be a significant influencing factor on the length of the escape distance. The length of the escape distance can be used as an indicator for adequate bullet effectiveness for humane killings of game animals in hunting.Non-lead bullets already exist which have an equally reliable killing effect as lead bullets.

  1. Effect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser

    PubMed Central

    Gumenyuk, R.; Melkumov, M. A.; Khopin, V. F.; Dianov, E. M.; Okhotnikov, O. G.

    2014-01-01

    Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity length by variation of the pump power and polarization. Pulse positioning within the ensemble depends on the saturation fluence and the relatively fast recovery dynamics of bismuth fiber. PMID:25391808

  2. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  3. Effects of varying energy intake and sire breed on duration of postpartum anestrus, insulin like growth factor-1, and growth hormone in mature crossbred cows.

    PubMed

    Roberts, A J; Klindt, J; Jenkins, T G

    2005-07-01

    Objectives of this study were to evaluate effects of seven sire breed groups and three levels of daily ME intake (DMEI = 132 or 189 kcal ME/kg BW(0.75) or ad libitum), beginning 5 mo prepartum, on BCS, length of postpartum anestrus, and circulating concentrations of IGF-1 and GH in F1 cows (six to eight cows per sire breed in each DMEI group) out of Angus or Hereford dams. At the initiation of the study, BW were 522, 530, 548, 572, 575, 577, and 595 kg for cows sired by Longhorn, Galloway, 1960s Hereford or Angus, 1980s Hereford or Angus, or Nellore, Salers, and Shorthorn bulls, respectively (SE = 13; P < 0.001 for sire breed). After 4 mo on DMEI treatment during the pre-partum period, cows fed 132 kcal of ME/kg BW(0.75)gained little to no BW; cows fed 189 kcal ME/kg BW(0.75) gained 50 kg; and cows fed ad libitum gained 70 kg (all groups differ P < 0.05). Concentrations of progesterone in weekly blood samples collected 2 to 14 wk after calving were used to establish when normal luteal function resumed to predict length of postpartum anestrus. Length of anestrus was affected by level of DMEI in cows sired by Galloway, Longhorn, and Nellore bulls, but not other breeds (P < 0.02 for interaction of sire breed and DMEI). Level of DMEI, but not sire breed, affected (P < 0.01) BCS at wk 2 postpartum. Concentrations of IGF-1 at wk 2 postpartum differed (P < 0.001) due to sire breed, and changes in concentrations of IGF-1 from wk 2 to 14 were influenced (P < 0.03) by the interaction of sire breed and level of DMEI; which was primarily the result of differences in rate of decrease over time among different sire breed x level of DMEI groupings. Concentrations of GH did not differ due to sire breed but varied (P < 0.001) due to the interaction of DMEI and week postpartum, for which concentrations of GH did not differ at wk 2 but increased over time at rates that were inversely proportional to level of DMEI. Length of anestrus was negatively associated (P < 0.05) with day of calving, BCS, and BW. When effects of sire breed and level of DMEI were accounted for (residual correlation), length of anestrus was inversely associated (P < 0.01) with IGF-1 concentrations. Breed of sire influenced length of postpartum anestrus and energy balance, as predicted by IGF-1, in crossbred cows fed varying levels of DMEI.

  4. Walking velocity and step length adjustments affect knee joint contact forces in healthy weight and obese adults.

    PubMed

    Milner, Clare E; Meardon, Stacey A; Hawkins, Jillian L; Willson, John D

    2018-04-28

    Knee osteoarthritis is a major public health problem and adults with obesity are particularly at risk. One approach to alleviating this problem is to reduce the mechanical load at the joint during daily activity. Adjusting temporospatial parameters of walking could mitigate cumulative knee joint mechanical loads. The purpose of this study was to determine how adjustments to velocity and step length affects knee joint loading in healthy weight adults and adults with obesity. We collected three-dimensional gait analysis data on 10 adults with a normal body mass index and 10 adults with obesity during over ground walking in nine different conditions. In addition to preferred velocity and step length, we also conducted combinations of 15% increased and decreased velocity and step length. Peak tibiofemoral joint impulse and knee adduction angular impulse were reduced in the decreased step length conditions in both healthy weight adults (main effect) and those with obesity (interaction effect). Peak knee joint adduction moment was also reduced with decreased step length, and with decreased velocity in both groups. We conclude from these results that adopting shorter step lengths during daily activity and when walking for exercise can reduce mechanical stimuli associated with articular cartilage degenerative processes in adults with and without obesity. Thus, walking with reduced step length may benefit adults at risk for disability due to knee osteoarthritis. Adopting a shorter step length during daily walking activity may reduce knee joint loading and thus benefit those at risk for knee cartilage degeneration. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:XX-XX, 2018. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Progress in long scale length laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.

    2004-12-01

    The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.

  6. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    PubMed

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  7. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content

    PubMed Central

    Hansen, Thomas; Ismar, Stefanie M. H.; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1–5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts. PMID:27224476

  8. Effect of gender and visit length on participation in pediatric visits.

    PubMed

    Cox, Elizabeth D; Smith, Maureen A; Brown, Roger L; Fitzpatrick, Mary A

    2007-03-01

    To examine the effect of child, physician and parent genders as well as visit length on participation. We analyzed videotapes and sociodemographics from 100 pediatric visits. Using the Roter Interaction Analysis System, coded utterances were aggregated to reflect key visit tasks: information giving, information gathering and relationship building. Negative binomial models were used to analyze how participation was associated with participants' genders and visit length. After adjustment, girls did twice as much relationship building as boys (incidence rate ratio = 2.33, 95% confidence interval = 1.01-5.36) and their physicians did 34% more information gathering (1.34, 1.16-1.55). Female physicians did 29% less information giving (0.71, 0.54-0.94). Having the father accompany the child reduced child relationship building 76% (0.24, 0.08-0.69) and reduced physician information giving 14% (0.86, 0.75-0.995), compared to having mother accompany. After adjusting for participants' genders, longer visits were associated with more participation for all participants. Child participation was impacted by child gender and by the accompanying parent's gender as well as the visit length. Because gender-based patterns of participation are evident in childhood, interventions to facilitate participation might begin early in life. To improve participation, interventions might include advocating for policies to support longer visit lengths.

  9. Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen.

    PubMed

    Khan, Khalid; Badshah, Syed Lal; Ahmad, Nasir; Rashid, Haroon Ur; Mabkhot, Yahia

    2017-05-11

    The inclusion complexes of a new family of nonionic amphiphilic calix[4]arenes with the anti-inflammatory hydrophobic drugs naproxen (NAP) and ibuprofen (IBP) were investigated. The effects of the alkyl chain's length and the inner core of calix[4]arenes on the interaction of the two drugs with the calix[4]arenes were explored. The inclusion complexes of Amphiphiles 1a - c with NAP and IBP increased the solubility of these drugs in aqueous media. The interaction of 1a - c with the drugs in aqueous media was investigated through fluorescence, molecular modeling, and ¹H-NMR analysis. TEM studies further supported the formation of inclusion complexes. The length of lipophilic alkyl chains and the intrinsic cyclic nature of cailx[4]arene derivatives 1a - c were found to have a significant impact on the solubility of NAP and IBP in pure water.

  10. Modification of the G-phonon mode of graphene by nitrogen doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah; Zhao, Liuyan

    2016-01-25

    The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. Wemore » show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.« less

  11. Highly localized distributed Brillouin scattering response in a photonic integrated circuit

    NASA Astrophysics Data System (ADS)

    Zarifi, Atiyeh; Stiller, Birgit; Merklein, Moritz; Li, Neuton; Vu, Khu; Choi, Duk-Yong; Ma, Pan; Madden, Stephen J.; Eggleton, Benjamin J.

    2018-03-01

    The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth lasers, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis to locally measure the SBS spectrum with high spatial resolution of 800 μm and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit. This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.

  12. Modified coulomb law in a strongly magnetized vacuum.

    PubMed

    Shabad, Anatoly E; Usov, Vladimir V

    2007-05-04

    We study the electric potential of a charge placed in a strong magnetic field B>B(0) approximately 4.4x10(13) G, as modified by the vacuum polarization. In such a field the electron Larmour radius is much less than its Compton length. At the Larmour distances a scaling law occurs, with the potential determined by a magnetic-field-independent function. The scaling regime implies short-range interaction, expressed by the Yukawa law. The electromagnetic interaction regains its long-range character at distances larger than the Compton length, the potential decreasing across B faster than along. Correction to the nonrelativistic ground-state energy of a hydrogenlike atom is found. In the limit B = infinity, the modified potential becomes the Dirac delta function plus a regular background. With this potential the ground-state energy is finite--the best pronounced effect of the vacuum polarization.

  13. Contribution of Long-Range Interactions to the Secondary Structure of an Unfolded Globin

    PubMed Central

    Fedyukina, Daria V.; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C.; Eun, Ye-Jin; Cavagnero, Silvia

    2010-01-01

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an α-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable α-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. PMID:20816043

  14. The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry

    NASA Astrophysics Data System (ADS)

    Tsao, Heng-Kwong; Tseng, Wen Liang

    2001-11-01

    The interaction between ionic surfactants and phosphatidylcholine vesicles, which are prepared without addition of buffer and salt, is investigated by conductivity measurements. On the basis of the vesicle acting as a trap of charge carriers, the bilayer/aqueous phase partition coefficient K and the surfactant/lipid molar ratio Re of nine surfactants are determined. The thermodynamic consistency is satisfied by the measured parameters. The effects of the alkyl chain length (C10-C16) and ionic head group are then studied. The inverse partition coefficient K-1 is linearly related to the critical micelle concentration. The solubilizing ability Reb is a consequence of the competition between the surfactant incorporation into the bilayer and the formation of micelles. Consequently, the K parameter rises whereas the Reb parameter declines as the chain length is increased. The influence due to addition of salt is also discussed.

  15. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  16. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.

    PubMed

    Al-Asadi, H A; Al-Mansoori, M H; Ajiya, M; Hitam, S; Saripan, M I; Mahdi, M A

    2010-10-11

    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.

  17. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V; Gorkunov, Maxim V; Osipov, Mikhail A

    2017-04-14

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  18. Ordering of anisotropic nanoparticles in diblock copolymer lamellae: Simulations with dissipative particle dynamics and a molecular theory

    NASA Astrophysics Data System (ADS)

    Berezkin, Anatoly V.; Kudryavtsev, Yaroslav V.; Gorkunov, Maxim V.; Osipov, Mikhail A.

    2017-04-01

    Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

  19. Multiple bottlenecks in hierarchical control of action sequences: what does "response selection" select in skilled typewriting?

    PubMed

    Yamaguchi, Motonori; Logan, Gordon D; Li, Vanessa

    2013-08-01

    Does response selection select words or letters in skilled typewriting? Typing performance involves hierarchically organized control processes: an outer loop that controls word level processing, and an inner loop that controls letter (or keystroke) level processing. The present study addressed whether response selection occurs in the outer loop or the inner loop by using the psychological refractory period (PRP) paradigm in which Task1 required typing single words and Task2 required vocal responses to tones. The number of letters (string length) in the words was manipulated to discriminate selection of words from selection of keystrokes. In Experiment 1, the PRP effect depended on string length of words in Task1, suggesting that response selection occurs in the inner loop. To assess contributions of the outer loop, the influence of string length was examined in a lexical-decision task that also involves word encoding and lexical access (Experiment 2), or to-be-typed words were preexposed so outer-loop processing could finish before typing started (Experiment 3). Response time for Task2 (RT2) did not depend on string length with lexical decision, and RT2 still depended on string length with typing preexposed strings. These results support the inner-loop locus of the PRP effect. In Experiment 4, typing was performed as Task2, and the effect of string length on typing RT interacted with stimulus onset asynchrony superadditively, implying that another bottleneck also exists in the outer loop. We conclude that there are at least two bottleneck processes in skilled typewriting. 2013 APA, all rights reserved

  20. Correctors of the Major Cystic Fibrosis Mutant Interact through Membrane-Spanning Domains.

    PubMed

    Laselva, Onofrio; Molinski, Steven; Casavola, Valeria; Bear, Christine E

    2018-06-01

    The most common cystic fibrosis causing mutation is deletion of phenylalanine at position 508 (F508del), a mutation that leads to protein misassembly with defective processing. Small molecule corrector compounds: VX-809 or Corr-4a (C4) partially restores processing of the major mutant. These two prototypical corrector compounds cause an additive effect on F508del/cystic fibrosis transmembrane conductance regulator (CFTR) processing, and hence were proposed to act through distinct mechanisms: VX-809 stabilizing the first membrane-spanning domain (MSD) 1, and C4 acting on the second half of the molecule [consisting of MSD2 and/or nucleotide binding domain (NBD) 2]. We confirmed the effect of VX-809 in enhancing the stability of MSD1 and showed that it also allosterically modulates MSD2 when coexpressed with MSD1. We showed for the first time that C4 stabilizes the second half of the CFTR protein through its action on MSD2. Given the allosteric effect of VX-809 on MSD2, we were prompted to test the hypothesis that the two correctors interact in the full-length mutant protein. We did see evidence supporting their interaction in the full-length F508del-CFTR protein bearing secondary mutations targeting domain:domain interfaces. Disruption of the MSD1:F508del-NBD1 interaction (R170G) prevented correction by both compounds, pointing to the importance of this interface in processing. On the other hand, stabilization of the MSD2:F508del-NBD1 interface (by introducing R1070W) led to a synergistic effect of the compound combination on the total abundance of both the immature and mature forms of the protein. Together, these findings suggest that the two correctors interact in stabilizing the complex of MSDs in F508del-CFTR. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Interaction of grid generated turbulence with expansion waves

    NASA Astrophysics Data System (ADS)

    Xanthos, Savvas Steliou

    2004-11-01

    The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence. The Mach number of the incoming flows investigated was about 0.3 hence interactions are considered as interactions with an almost incompressible flow. Mild interactions with expansion waves, which generated expansion ratios of the order of 1.8, were achieved in the present investigations. In that respect the compressibility effects started to become important during the interaction. A custom designed vorticity probe was used to measure for the first time the rate-of-strain, the rate-of-rotation and the velocity-gradient tensors in several of the present flows. Custom made x-hotwire probes were initially used to measure the flow quantities simultaneously at different locations inside the flow field. Although the strength of the generated expansion waves was mild, S = 6U6x EW = 50 to 100 s-1, the effect on damping fluctuations of turbulence was clear. Vorticity fluctuations were reduced dramatically more than velocity or pressure fluctuations. Attenuation of longitudinal velocity fluctuations has been observed in all experiments. It appears that the attenuation increases in interactions with higher Reynolds number. The data of velocity fluctuations in the lateral directions show no consistent behavior change or some minor attenuation through the interaction. The present results clearly show that in most of the cases, attenuation occurs at large xM distances where length scales of the incoming flow are high and turbulence intensities are low. Thus large in size eddies with low velocity fluctuations are affected the most by the interaction with the expansion waves. Spectral analysis indicated that spectral energy is shifted after the interaction to lower wave numbers suggesting that the typical length scales of turbulence are increased after the interaction.

  2. An Attempt to Simulate Letter-by-Letter Dyslexia in Normal Readers

    ERIC Educational Resources Information Center

    Fiset, Stephanie; Arguin, Martin; Fiset, Daniel

    2006-01-01

    We attempted to simulate the main features of letter-by-letter (LBL) dyslexia in normal readers through stimulus degradation (i.e. contrast reduction and removal of high spatial frequencies). The results showed the word length and the letter confusability effects characteristic of LBL dyslexia. However, the interaction of letter confusability and…

  3. The Influence of Lexical Status and Neighborhood Density on Children's Nonword Repetition

    ERIC Educational Resources Information Center

    Metsala, Jamie L.; Chisholm, Gina M.

    2010-01-01

    This study examined effects of lexical status and neighborhood density of constituent syllables on children's nonword repetition and interactions with nonword length. Lexical status of the target syllable impacted repetition accuracy for the longest nonwords. In addition, children made more errors that changed a nonword syllable to a word syllable…

  4. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster.

    PubMed

    Morrow, E H; Leijon, A; Meerupati, A

    2008-11-01

    Spermatozoa are the most diverse of all animal cells. Variation in size alone is enormous and yet there are still no clear evolutionary explanations that can account for such diversity. The basic genetics of sperm form is also poorly understood, although sperm size is known to have a strong genetic component. Here, using hemiclonal analysis of Drosophila melanogaster, we demonstrate that there is not only a significant additive genetic component contributing to phenotypic variation in sperm length but also a significant environmental effect. Furthermore, the plasticity of sperm size has a significant genetic component to it (a genotype x environment interaction). A genotype x environment interaction could contribute to the maintenance of the substantial genetic variation in this trait and thereby explain the persistent inter-male differences in sperm size seen in numerous taxa. We suggest that the low conditional dependence and high heritability but low evolvability (the coefficient of additive genetic variation) of sperm length is more consistent with a history of stabilizing selection rather than either sexual selection or strong directional selection.

  5. Spin-Orbit Effect on the Molecular Properties of TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4): A Density Functional Theory and Ab Initio Study.

    PubMed

    Moon, Jiwon; Kim, Joonghan

    2016-09-29

    Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.

  6. AC conductivity of a quantum Hall line junction

    NASA Astrophysics Data System (ADS)

    Agarwal, Amit; Sen, Diptiman

    2009-09-01

    We present a microscopic model for calculating the AC conductivity of a finite length line junction made up of two counter- or co-propagating single mode quantum Hall edges with possibly different filling fractions. The effect of density-density interactions and a local tunneling conductance (σ) between the two edges is considered. Assuming that σ is independent of the frequency ω, we derive expressions for the AC conductivity as a function of ω, the length of the line junction and other parameters of the system. We reproduce the results of Sen and Agarwal (2008 Phys. Rev. B 78 085430) in the DC limit (\\omega \\to 0 ), and generalize those results for an interacting system. As a function of ω, the AC conductivity shows significant oscillations if σ is small; the oscillations become less prominent as σ increases. A renormalization group analysis shows that the system may be in a metallic or an insulating phase depending on the strength of the interactions. We discuss the experimental implications of this for the behavior of the AC conductivity at low temperatures.

  7. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide.

    PubMed

    Karabulut, Sedat; Namli, Hilmi; Kurtaran, Raif; Yildirim, Leyla Tatar; Leszczynski, Jerzy

    2014-03-01

    The title compound, N-3-hydroxyphenyl-4-methoxybenzamide (3) was prepared by the acylation reaction of 3-aminophenol (1) and 4-metoxybenzoylchloride (2) in THF and characterized by ¹H NMR, ¹³C NMR and elemental analysis. Molecular structure of the crystal was determined by single crystal X-ray diffraction and DFT calculations. 3 crystallizes in monoclinic P2₁/c space group. The influence of intermolecular interactions (dimerization and crystal packing) on molecular geometry has been evaluated by calculations performed for three different models; monomer (3), dimer (4) and dimer with added unit cell contacts (5). Molecular structure of 3, 4 and 5 was optimized by applying B3LYP method with 6-31G+(d,p) basis set in gas phase and compared with X-ray crystallographic data including bond lengths, bond angles and selected dihedral angles. It has been concluded that although the crystal packing and dimerization have a minor effect on bond lengths and angles, however, these interactions are important for the dihedral angles and the rotational conformation of aromatic rings. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-01

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl →ɛ,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe25+ ion, as an example.

  9. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, L. Y.; Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-26, Beijing 100088; Wang, J. G.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl→ε,l±1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels.more » The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.« less

  10. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  11. Impact of Linear Alkyl Length on the Assembly of Twisted Perylene Bisimides: From Molecular Arrangement to Nanostructures.

    PubMed

    Guo, Zongxia; Wang, Kun; Yu, Ping; Wang, Xiangnan; Lan, Shusha; Sun, Kai; Yi, Yuanping; Li, Zhibo

    2017-11-02

    The effect of the length of linear alkyl chains substituted at imine positions on the assembly of tetrachlorinated perylene bisimides (1: PBI with -C 6 H 13 ; 2: PBI with -C 12 H 25 ) has been investigated. Solvent-induced assembly was performed in solutions of THF and methanol with varying volume ratios. Morphological (SEM, AFM, and TEM) and spectral (UV/Vis, fluorescence, FTIR, and XRD) methods were used to characterize the assembled nanostructures and the molecular arrangement in the aggregates. It was found that uniform structures could be obtained for both molecules in solutions with a high ratio of methanol. PBI 1 formed rigid nanosheets, whereas 2 assembled into longer nanostripes with a high ratio of length to width. On combining the morphological data with the spectral data, it was suggested that π-π stacking predominated in assemblies of 1, and the synergetic effect of van der Waals interactions from the long alkyl chains and π-π stacking between neighboring building blocks facilitated the growth of the long-range-ordered nanostructures of 2. By changing the linear chain length, the hierarchical assembly of PBIs modified on bay positions could be manipulated effectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast.

    PubMed

    Kedziora, Sylwia; Gali, Vamsi K; Wilson, Rosemary H C; Clark, Kate R M; Nieduszynski, Conrad A; Hiraga, Shin-Ichiro; Donaldson, Anne D

    2018-05-04

    The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.

  13. Dressed ion theory of size-asymmetric electrolytes: effective ionic charges and the decay length of screened Coulomb potential and pair correlations.

    PubMed

    Forsberg, Björn; Ulander, Johan; Kjellander, Roland

    2005-02-08

    The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.

  14. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    PubMed

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  15. Rotational dynamics of coumarin-153 and 4-aminophthalimide in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: effect of alkyl chain length on the rotational dynamics.

    PubMed

    Das, Sudhir Kumar; Sarkar, Moloy

    2012-01-12

    Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.

  16. Emotions and family interactions in childhood: Associations with leukocyte telomere length emotions, family interactions, and telomere length.

    PubMed

    Robles, Theodore F; Carroll, Judith E; Bai, Sunhye; Reynolds, Bridget M; Esquivel, Stephanie; Repetti, Rena L

    2016-01-01

    Conceptualizations of links between stress and cellular aging in childhood suggest that accumulating stress predicts shorter leukocyte telomere length (LTL). At the same time, several models suggest that emotional reactivity to stressors may play a key role in predicting cellular aging. Using intensive repeated measures, we tested whether exposure or emotional "reactivity" to conflict and warmth in the family were related to LTL. Children (N=39; 30 target children and 9 siblings) between 8 and 13 years of age completed daily diary questionnaires for 56 consecutive days assessing daily warmth and conflict in the marital and the parent-child dyad, and daily positive and negative mood. To assess exposure to conflict and warmth, diary scale scores were averaged over the 56 days. Mood "reactivity" was operationalized by using multilevel modeling to generate estimates of the slope of warmth or conflict scores (marital and parent-child, separately) predicting same-day mood for each individual child. After diary collection, a blood sample was collected to determine LTL. Among children aged 8-13 years, a stronger association between negative mood and marital conflict, suggesting greater negative mood reactivity to marital conflict, was related to shorter LTL (B=-1.51, p<.01). A stronger association between positive mood and marital affection, suggesting positive mood reactivity, was related to longer LTL (B=1.15, p<.05). These effects were independent of exposure to family and marital conflict and warmth, and positive and negative mood over a two-month period. To our knowledge, these findings, although cross-sectional, represent the first evidence showing that link between children's affective responses and daily family interactions may have implications for telomere length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ligand structure and mechanical properties of single-nanoparticle thick membranes

    DOE PAGES

    Salerno, Kenneth Michael; Bolintineanu, Dan S.; Lane, J. Matthew D.; ...

    2015-06-16

    We believe that the high mechanical stiffness of single-nanoparticle-thick membranes is the result of the local structure of ligand coatings that mediate interactions between nanoparticles. These ligand structures are not directly observable experimentally. We use molecular dynamics simulations to observe variations in ligand structure and simultaneously measure variations in membrane mechanical properties. We have shown previously that ligand end group has a large impact on ligand structure and membrane mechanical properties. Here we introduce and apply quantitative molecular structure measures to these membranes and extend analysis to multiple nanoparticle core sizes and ligand lengths. Simulations of nanoparticle membranes with amore » nanoparticle core diameter of 4 or 6 nm, a ligand length of 11 or 17 methylenes, and either carboxyl (COOH) or methyl (CH 3) ligand end groups are presented. In carboxyl-terminated ligand systems, structure and interactions are dominated by an end-to-end orientation of ligands. In methyl-terminated ligand systems large ordered ligand structures form, but nanoparticle interactions are dominated by disordered, partially interdigitated ligands. Core size and ligand length also affect both ligand arrangement within the membrane and the membrane's macroscopic mechanical response, but are secondary to the role of the ligand end group. Additionally, the particular end group (COOH or CH 3) alters the nature of how ligand length, in turn, affects the membrane properties. The effect of core size does not depend on the ligand end group, with larger cores always leading to stiffer membranes. Asymmetry in the stress and ligand density is observed in membranes during preparation at a water-vapor interface, with the stress asymmetry persisting in all membranes after drying.« less

  18. Theory of polyelectrolytes in solvents.

    PubMed

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  19. Manipulation of upstream rotor leading edge vortex and its effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Squires, Becky

    1993-01-01

    The leading edge vortex of a counter rotating propeller (CRP) model was altered by using shrouds and by turning the upstream rotors to a forward sweep configuration. Performance, flow, and acoustic data were used to determine the effect of vortex impingement on the noise signature of the CRP system. Forward sweep was found to eliminate the leading edge vortex of the upstream blades. Removal of the vortex had little effect on the tone noise at the forward and rear blade passing frequencies (BPF's) but significantly altered both the sound pressure level and directivity of the interaction tone which occurs at the sum of the two BPF's. A separate manipulation of the leading edge vortex performed by installing shrouds of various inlet length on the CRP verified that diverting the vortex path increases the noise level of the interaction tone. An unexpected link has been established between the interaction tone and the leading edge vortex-blade interaction phenomenon.

  20. Effect of the size of charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Derbenev, I. N.

    The effect of the size of two charged spherical macroparticles on their electrostatic interaction in an equilibrium plasma is analyzed within the linearized Poisson–Botzmann model. It is established that, under the interaction of two charged dielectric macroparticles in an equilibrium plasma, the forces acting on each particle turn out to be generally unequal. The forces become equal only in the case of conducting macroparticles or in the case of dielectric macroparticles of the same size and charge. They also turn out to be equal when the surface potentials of the macroparticles remain constant under the variation of interparticle distances. Formulasmore » are proposed that allow one to calculate the interaction force with a high degree of accuracy under the condition that the radii of macroparticles are much less than the screening length, which is usually satisfied in experiments with dusty plasmas.« less

  1. Thermodynamic Insights into the Binding of Mono- and Dicationic Imidazolium Surfactant Ionic Liquids with Methylcellulose in the Diluted Regime.

    PubMed

    Ziembowicz, Francieli Isa; Bender, Caroline Raquel; Frizzo, Clarissa Piccinin; Martins, Marcos Antonio Pinto; de Souza, Thiane Deprá; Kloster, Carmen Luisa; Santos Garcia, Irene Teresinha; Villetti, Marcos Antonio

    2017-09-07

    Alkylimidazolium salts are an important class of ionic liquids (ILs) due to their self-assembly capacity when in solution and due to their potential applications in chemistry and materials science. Therefore, detailed knowledge of the physicochemical properties of this class of ILs and their mixtures with natural polymers is highly desired. This work describes the interactions between a homologous series of mono- (C n MIMBr) and dicationic imidazolium (C n (MIM) 2 Br 2 ) ILs with cellulose ethers in aqueous medium. The effects of the alkyl chain length (n = 10, 12, 14, and 16), type, and concentration range of ILs (below and above their cmc) on the binding to methylcellulose (MC) were evaluated. The thermodynamic parameters showed that the interactions are favored by the increase of the IL hydrocarbon chain length, and that the binding of monocationic ILs to MC is driven by entropy. The monocationic ILs bind more effectively on the methoxyl group of MC when compared to dicationic ILs, and this outcome may be rationalized by considering the structural difference between the conventional (C n MIMBr) and the bolaform (C n (MIM) 2 Br 2 ) surfactant ILs. The C 16 MIMBr interacts more strongly with hydroxypropylcellulose when compared to methylcellulose, indicating that the strength of the interaction also depends on the hydrophobicity of the cellulose ethers. Our findings highlight that several parameters should be taken into account when designing new complex formulations.

  2. Theoretical Studies of Magnetic Systems. Final Report, August 1, 1994 - November 30, 1997

    DOE R&D Accomplishments Database

    Gor`kov, L. P.; Novotny, M. A.; Schrieffer, J. R.

    1997-01-01

    During the grant period the authors have studied five areas of research: (1) low dimensional ferrimagnets; (2) lattice effects in the mixed valence problem; (3) spin compensation in the one dimensional Kondo lattice; (4) the interaction of quasi particles in short coherence length superconductors; and (5) novel effects in angle resolved photoemission spectra from nearly antiferromagnetic materials. Progress in each area is summarized.

  3. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  4. Interaction-induced backscattering in short quantum wires

    DOE PAGES

    Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...

    2014-10-06

    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Shim, Jaewon; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    The influence of renormalization plasma screening on the entanglement fidelity for the elastic electron-atom scattering is investigated in partially ionized dense hydrogen plasmas. The partial wave analysis and effective interaction potential are employed to obtain the scattering entanglement fidelity in dense hydrogen plasmas as functions of the collision energy, the Debye length, and the renormalization parameter. It is found that the renormalization plasma shielding enhances the scattering entanglement fidelity. Hence, we show that the transmission of the quantum information can be increased about 10% due to the renormalization shielding effect in dense hydrogen plasmas. It is also found that themore » renormalization shielding effect on the entanglement fidelity for the electron-atom collision increases with an increase of the collision energy. In addition, the renormalization shielding function increases with increasing collision energy and saturates to the unity with an increase of the Debye length.« less

  6. Knee joint kinetics in response to multiple three-dimensional printed, customised foot orthoses for the treatment of medial compartment knee osteoarthritis.

    PubMed

    Allan, Richard; Woodburn, James; Telfer, Scott; Abbott, Mandy; Steultjens, Martijn Pm

    2017-06-01

    The knee adduction moment is consistently used as a surrogate measure of medial compartment loading. Foot orthoses are designed to reduce knee adduction moment via lateral wedging. The 'dose' of wedging required to optimally unload the affected compartment is unknown and variable between individuals. This study explores a personalised approach via three-dimensional printed foot orthotics to assess the biomechanical response when two design variables are altered: orthotic length and lateral wedging. Foot orthoses were created for 10 individuals with symptomatic medial knee osteoarthritis and 10 controls. Computer-aided design software was used to design four full and four three-quarter-length foot orthoses per participant each with lateral posting of 0° 'neutral', 5° rearfoot, 10° rearfoot and 5° forefoot/10° rearfoot. Three-dimensional printers were used to manufacture all foot orthoses. Three-dimensional gait analyses were performed and selected knee kinetics were analysed: first peak knee adduction moment, second peak knee adduction moment, first knee flexion moment and knee adduction moment impulse. Full-length foot orthoses provided greater reductions in first peak knee adduction moment (p = 0.038), second peak knee adduction moment (p = 0.018) and knee adduction moment impulse (p = 0.022) compared to three-quarter-length foot orthoses. Dose effect of lateral wedging was found for first peak knee adduction moment (p < 0.001), second peak knee adduction moment (p < 0.001) and knee adduction moment impulse (p < 0.001) indicating greater unloading for higher wedging angles. Significant interaction effects were found for foot orthosis length and participant group in second peak knee adduction moment (p = 0.028) and knee adduction moment impulse (p = 0.036). Significant interaction effects were found between orthotic length and wedging condition for second peak knee adduction moment (p = 0.002). No significant changes in first knee flexion moment were found. Individual heterogeneous responses to foot orthosis conditions were observed for first peak knee adduction moment, second peak knee adduction moment and knee adduction moment impulse. Biomechanical response is highly variable with personalised foot orthoses. Findings indicate that the tailoring of a personalised intervention could provide an additional benefit over standard interventions and that a three-dimensional printing approach to foot orthosis manufacturing is a viable alternative to the standard methods.

  7. X-ray diffraction from nonuniformly stretched helical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodanovic, Momcilo; Irving, Thomas C.; Mijailovich, Srboljub M.

    2016-04-18

    The fibrous proteins in living cells are exposed to mechanical forces interacting with other subcellular structures. X-ray fiber diffraction is often used to assess deformation and movement of these proteins, but the analysis has been limited to the theory for fibrous molecular systems that exhibit helical symmetry. However, this approach cannot adequately interpret X-ray data from fibrous protein assemblies where the local strain varies along the fiber length owing to interactions of its molecular constituents with their binding partners. To resolve this problem a theoretical formulism has been developed for predicting the diffraction from individual helical molecular structures nonuniformly strainedmore » along their lengths. This represents a critical first step towards modeling complex dynamical systems consisting of multiple helical structures using spatially explicit, multi-scale Monte Carlo simulations where predictions are compared with experimental data in a `forward' process to iteratively generate ever more realistic models. Here the effects of nonuniform strains and the helix length on the resulting magnitude and phase of diffraction patterns are quantitatively assessed. Examples of the predicted diffraction patterns of nonuniformly deformed double-stranded DNA and actin filaments in contracting muscle are presented to demonstrate the feasibly of this theoretical approach.« less

  8. Fan noise caused by the ingestion of anisotropic turbulence - A model based on axisymmetric turbulence theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Gliebe, P. R.

    1980-01-01

    An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.

  9. Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length

    PubMed Central

    Zheng, Xiangdong; Ramani, Anand; Soni, Komal; Gottardo, Marco; Zheng, Shuangping; Ming Gooi, Li; Li, Wenjing; Feng, Shan; Mariappan, Aruljothi; Wason, Arpit; Widlund, Per; Pozniakovsky, Andrei; Poser, Ina; Deng, Haiteng; Ou, Guangshuo; Riparbelli, Maria; Giuliano, Callaini; Hyman, Anthony A.; Sattler, Michael; Gopalakrishnan, Jay; Li, Haitao

    2016-01-01

    Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets β-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's α-β surface of β-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAPF375A, with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet- instead of triplet-microtubules. CPAPEE343RR that unmasks the β-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a ‘clutch-like' mechanism. PMID:27306797

  10. Interactions among cluster-root investment, leaf phosphorus concentration, and relative growth rate in two Lupinus species.

    PubMed

    Wang, Xing; Veneklaas, Erik J; Pearse, Stuart J; Lambers, Hans

    2015-09-01

    Cluster-root (CR) formation is a desirable trait to improve phosphorus (P) acquisition as global P resources are dwindling. CRs in some lupine species are suppressed at higher P status. Whether increased growth rate enhances CR formation due to a "dilution" of leaf P concentration is unknown. We investigated interactive effects of leaf P status and relative growth rate (RGR) on CR formation in two Lupinus species, which differ in their CR biomass investment. Variation in RGR was imposed by varying day length. Lupinus albus and L. pilosus were grown hydroponically with KH2PO4 at a day length of 6, 10, or 14 h. We used a slightly higher P supply at longer day lengths to avoid a decline in leaf P concentration, which would induce CRs. Cluster-root percentage, leaf P concentrations, and RGR were determined at 22, 38, and 52 d after sowing. Lupinus species grown at similar root P availability, but with a faster growth rate, as dependent on day length, showed a greater CR percentage. Because our aim to achieve exactly the same leaf P concentrations at different day lengths was only partially achieved, we carried out a multiple regression analysis. This analysis showed the CR percentage was strongly and negatively correlated with plant P status and only marginally and positively correlated with RGR. The two Lupinus species invariably formed fewer cluster roots at higher leaf P status, irrespective of RGR. Differences in RGR or leaf P concentration cannot explain the species-specific variation in cluster-root investment. © 2015 Botanical Society of America.

  11. Plasma and cyclotron frequency effects on output power of the plasma wave-pumped free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolghadr, S. H.; Jafari, S., E-mail: sjafari@guilan.ac.ir; Raghavi, A.

    2016-05-15

    Significant progress has been made employing plasmas in the free-electron lasers (FELs) interaction region. In this regard, we study the output power and saturation length of the plasma whistler wave-pumped FEL in a magnetized plasma channel. The small wavelength of the whistler wave (in sub-μm range) in plasma allows obtaining higher radiation frequency than conventional wiggler FELs. This configuration has a higher tunability by adjusting the plasma density relative to the conventional ones. A set of coupled nonlinear differential equations is employed which governs on the self-consistent evolution of an electromagnetic wave. The electron bunching process of the whistler-pumped FELmore » has been investigated numerically. The result reveals that for a long wiggler length, the bunching factor can appreciably change as the electron beam propagates through the wiggler. The effects of plasma frequency (or plasma density) and cyclotron frequency on the output power and saturation length have been studied. Simulation results indicate that with increasing the plasma frequency, the power increases and the saturation length decreases. In addition, when density of background plasma is higher than the electron beam density (i.e., for a dense plasma channel), the plasma effects are more pronounced and the FEL-power is significantly high. It is also found that with increasing the strength of the external magnetic field frequency, the power decreases and the saturation length increases, noticeably.« less

  12. Near-infrared optical-absorption behavior in high-beta nonlinear optical chromophore-polymer guest-host materials. II. Dye spacer length effects in an amorphous polycarbonate copolymer host

    NASA Astrophysics Data System (ADS)

    Barto, Richard R.; Frank, Curtis W.; Bedworth, Peter V.; Ermer, Susan; Taylor, Rebecca E.

    2005-06-01

    In the second of a three-part series, spectral absorption behavior of nonlinear optical (NLO) dyes incorporated into amorphous polycarbonate, comprised of a homologous series of dialkyl spacer groups extending from the midsection of the dye molecule, is characterized by UV-Vis and photothermal deflection spectroscopy. The dyes are structural analogs of the NLO dye FTC [2-(3-cyano-4-{2-[5-(2-{4-[ethyl-(2-methoxyethyl)amino]phenyl}vinyl)-3,4-diethylthiophen-2-yl]vinyl}-5,5-dimethyl-5H-furan-2-ylidene)malononitrile]. Previous Monte Carlo calculations [B. H. Robinson and L. R. Dalton, J. Phys. Chem. A 104, 4785 (2000)] predict a strong dependence of the macroscopic nonlinear optical susceptibility on the chromophore waist: length aspect ratio in electric-field-poled films arising from interactions between chromophores. It is expected that these interactions will play a role in the absorption characteristics of unpoled films, as well. The spacer groups range in length from diethyl to dihexyl, and each dye is studied over a wide range of concentrations. Among the four dyes studied, a universal dependence of near-IR loss on inhomogeneous broadening of the dye main absorption peak is found. The inhomogeneous width and its concentration dependence are seen to vary with spacer length in a manner characteristic of the near-IR loss-concentration slope at transmission wavelengths of 1.06 and 1.3μm, but not at 1.55μm. The lower wavelength loss behavior is assigned to purely Gaussian broadening, and is described by classical mixing thermodynamic quantities based on the Marcus theory of inhomogeneous broadening [R. A. Marcus, J. Chem. Phys. 43, 1261 (1965)], modeled as a convolution of dye-dye dipole broadening and dye-polymer van der Waals broadening. The Gaussian dipole interactions follow a Loring dipole-broadening description [R. F. Loring, J. Phys. Chem. 94, 513 (1990)] dominated by the excited-state dipole moment, and have a correlated homogeneous broadening contribution. The long-wavelength loss behavior has a non-Gaussian dye-dye dipole contribution which follows Kador's broadening analysis [L. Kador, J. Chem. Phys. 95, 5574 (1991)], with a net broadening described by a convolution of this term with a Gaussian van der Waals interaction given by Obata et al. [M. Obata, S. Machida, and K. Horie, J. Polym. Sci. B 37, 2173 (1999)], with each term governed by the dye spacer length. A minimum in broadening and loss-concentration slope at a spacer length of four carbons per alkyl at all wavelengths has important consequences for practical waveguide devices, and is of higher aspect ratio than the spherical limit shown by Robinson and Dalton to minimize dipole interactions under a poling field.

  13. Lag-length effect on repetition priming of famous and unfamiliar faces: evidence from N250r and N400.

    PubMed

    Nie, Aiqing; Li, Minye; Ye, Jingheng

    2016-07-06

    Previous event-related potentials research has reliably identified two repetition priming components in faces, the N250r and the N400, which are believed to reflect, respectively, the accessing to the stored structural representations and the semantic retrieval. However, the effect of lags longer than immediate repetition and shorter than 3 min on the two components has not been described as yet, and the interaction between lag length and familiarity is unclear. The current experiment aims to address these issues. In this experiment, famous and unfamiliar faces were represented after short, medium, or long lags, and participants were required to decide whether each face was known or not. The data showed that the frontal N250r, rather than the temporal counterpart, persisted to the medium lag case for famous faces; for unfamiliar faces, no N250r was observed. The frontal N400 was more regulated by lag length than the centroparietal counterpart. These results suggest that the frontal N250r and the frontal N400 are affected by the lag length; moreover, the former is more sensitive to the pre-experimental familiarity of faces.

  14. Communication: Polymer entanglement dynamics: Role of attractive interactions

    DOE PAGES

    Grest, Gary S.

    2016-10-10

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less

  15. Role of Fiber Length on Phagocytosis & Inflammatory Response

    NASA Astrophysics Data System (ADS)

    Turkevich, Leonid; Stark, Carahline; Champion, Julie

    2014-03-01

    Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.

  16. Length scales and pinning of interfaces

    PubMed Central

    Tan, Likun

    2016-01-01

    The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068

  17. Manipulation of length and lexicality localizes the functional neuroanatomy of phonological processing in adult readers.

    PubMed

    Church, Jessica A; Balota, David A; Petersen, Steven E; Schlaggar, Bradley L

    2011-06-01

    In a previous study of single word reading, regions in the left supramarginal gyrus and left angular gyrus showed positive BOLD activity in children but significantly less activity in adults for high-frequency words [Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18, 2054-2065, 2008]. This developmental decrease may reflect decreased reliance on phonological processing for familiar stimuli in adults. Therefore, in the present study, variables thought to influence phonological demand (string length and lexicality) were manipulated. Length and lexicality effects in the brain were explored using both ROI and whole-brain approaches. In the ROI analysis, the supramarginal and angular regions from the previous study were applied to this study. The supramarginal region showed a significant positive effect of length, consistent with a role in phonological processing, whereas the angular region showed only negative deflections from baseline with a strong effect of lexicality and other weaker effects. At the whole-brain level, varying effects of length and lexicality and their interactions were observed in 85 regions throughout the brain. The application of hierarchical clustering analysis to the BOLD time course data derived from these regions revealed seven clusters, with potentially revealing anatomical locations. Of note, a left angular gyrus region was the sole constituent of one cluster. Taken together, these findings in adult readers (1) provide support for a widespread set of brain regions affected by lexical variables, (2) corroborate a role for phonological processing in the left supramarginal gyrus, and (3) do not support a strong role for phonological processing in the left angular gyrus.

  18. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  19. Spin-Hall effect and emergent antiferromagnetic phase transition in n-Si

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spin current experiences minimal dephasing and scattering in Si due to small spin-orbit coupling and spin-lattice interactions is the primary source of spin relaxation. We hypothesize that if the specimen dimension is of the same order as the spin diffusion length then spin polarization will lead to non-equilibrium spin accumulation and emergent phase transition. In n-Si, spin diffusion length has been reported up to 6 μm. The spin accumulation in Si will modify the thermal transport behavior of Si, which can be detected with thermal characterization. In this study, we report observation of spin-Hall effect and emergent antiferromagnetic phase transition behavior using magneto-electro-thermal transport characterization. The freestanding Pd (1 nm)/Ni80Fe20 (75 nm)/MgO (1 nm)/n-Si (2 μm) thin film specimen exhibits a magnetic field dependent thermal transport and spin-Hall magnetoresistance behavior attributed to Rashba effect. An emergent phase transition is discovered using self-heating 3ω method, which shows a diverging behavior at 270 K as a function of temperature similar to a second order phase transition. We propose that spin-Hall effect leads to the spin accumulation and resulting emergent antiferromagnetic phase transition. We propose that the length scale for Rashba effect can be equal to the spin diffusion length and two-dimensional electron gas is not essential for it. The emergent antiferromagnetic phase transition is attributed to the site inversion asymmetry in diamond cubic Si lattice.

  20. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  1. Interaction between parental psychosis and risk factors during pregnancy and birth for schizophrenia - the Northern Finland 1966 Birth Cohort study.

    PubMed

    Keskinen, E; Miettunen, J; Koivumaa-Honkanen, H; Mäki, P; Isohanni, M; Jääskeläinen, E

    2013-04-01

    Our aim was to investigate the association between parental psychosis and potential risk factors for schizophrenia and their interaction. We evaluated whether the factors during pregnancy and birth have a different effect among subjects with and without a history of parental psychosis and whether parental psychosis may even explain their effects on the risk of schizophrenia. The sample comprised 10,526 individuals from the Northern Finland 1966 Birth Cohort. A total of 150 (1.4%) cohort members had schizophrenia by the age of 44 years, of them 18 (12.0%) had a parent with a history of psychosis. In non-psychotic cohort members, this figure was 495 (4.8%). In the parental psychosis group, significant early biological risk factors for schizophrenia included high birth weight (hazard ratio, HR 11.4; 95% confidence interval 3.3-39.7) and length (HR 4.1; 1.3-12.5), high birth weight in relation to gestational age (HR 3.2; 1.1-9.0), and high maternal age (HR 2.6.; 1.0-6.7). High birth weight and length and high maternal education had a significant interaction with parental psychosis. The presence of any biological risk factor increased the risk of schizophrenia significantly only among the parental psychosis group (HR 4.0; 1.5-10.5), whereas the presence of any psychosocial risk factor had no interaction with parental psychosis. Parental psychosis can act as an effect modifier on early risk factors for schizophrenia. Evaluation of the mechanisms behind the risk factors should, therefore, include consideration of the parental history of psychosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Collectivism and individualism in Latino recovery homes.

    PubMed

    Jason, Leonard A; Luna, Roberto D; Alvarez, Josefina; Stevens, Ed

    2016-04-26

    Research indicates that Latinos underutilize substance abuse interventions; cultural variables may contribute to difficulties accessing and completing treatment for this group. As a result, there is a need to understand the role of cultural constructs in treatment outcomes. The purpose of this study was to investigate how levels of collectivism (COL) and individualism (IND) relate to length of stay and relapse outcomes in self-run recovery homes. We compared Latinos in several culturally modified recovery Oxford Houses to Latinos in traditional recovery Oxford Houses. By examining COL and IND in the OH model, we explored whether aspects of COL and IND led to longer lengths of stay and better substance use outcomes. We hypothesized that higher levels of COL would predict longer stays in an Oxford House and less relapse. COL did not have a main effect on length of stay. However, COL had a significant interaction effect with house type such that COL was positively correlated with length of stay in traditional houses and negatively correlated with length of stay in the culturally modified condition; that is, those with higher collectivism tended to stay longer in traditional houses. When we investigated COL, length of stay, and substance use, COL was negatively correlated with relapse in the culturally modified houses and positively correlated with relapse in the traditional houses. In other words, those with higher COL spent less time and had less relapse in the culturally modified compared to the traditional Oxford Houses. The implications of these findings are discussed.

  3. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response

    DTIC Science & Technology

    2012-11-01

    random bases to its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA...its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA binding site. We...produces a purple-blue color.4.5 AuNP-based sensing strategies are designed by promoting a change in the AuNPs stability and aggregation state as a result

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, S. R.; Sissakian, A. N.; Tarasov, A. V.

    The Fermi-Watson theorem is generalized to the case of two coupled channels with different masses and applied to final-state interaction inK{sub e4} decays. The impact of the considered effect on the phase of {pi}{pi} scattering is estimated and it is shown that it can be crucial for the scattering length extraction from experimental data on K{sub e4} decays.

  5. Modeling Reader and Text Interactions during Narrative Comprehension: A Test of the Lexical Quality Hypothesis

    ERIC Educational Resources Information Center

    Hamilton, Stephen T.; Freed, Erin M.; Long, Debra L.

    2013-01-01

    The goal of this study was to examine predictions derived from the Lexical Quality Hypothesis regarding relations among word decoding, working-memory capacity, and the ability to integrate new concepts into a developing discourse representation. Hierarchical Linear Modeling was used to quantify the effects of three text properties (length,…

  6. Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents.

    PubMed

    Hosseinzadeh, Ghader; Maghari, Ali; Farniya, Seyed Morteza Famil; Keihan, Amir Homayoun; Moosavi-Movahedi, Ali A

    2017-08-01

    Interaction of quantum dots (QDs) and proteins strongly influenced by the surface characteristics of the QDs at the protein-QD interface. For a precise control of these surface-related interactions, it is necessary to improve our understanding in this field. In this regard, in the present work, the interaction between the insulin and differently functionalized ZnS quantum dots (QDs) were studied. The ZnS QDs were functionalized with various functional groups of hydroxyl (OH), carboxyl (COOH), amine (NH 2 ), and amino acid (COOH and NH 2 ). The effect of surface hydrophobicity was also studied by changing the alkyl-chain lengths of mercaptocarboxylic acid capping agents. The interaction between insulin and the ZnS QDs were investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD), and thermal aggregation techniques. The results reveal that among the studied QDs, mercaptosuccinic acid functionalized QDs has the strongest interaction (∆G ° =-51.50kJ/mol at 310K) with insulin, mercaptoethanol functionalized QDs destabilize insulin by increasing the beta-sheet contents, and only cysteine functionalized QDs improves the insulin stability by increasing the alpha-helix contents of the protein, and. Our results also indicate that by increasing the alkyl-chain length of capping agents, due to an increase in hydrophobicity of the QDs surface, the beta-sheet contents of insulin increase which results in the enhancement of insulin instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Proportional hazards model with varying coefficients for length-biased data.

    PubMed

    Zhang, Feipeng; Chen, Xuerong; Zhou, Yong

    2014-01-01

    Length-biased data arise in many important applications including epidemiological cohort studies, cancer prevention trials and studies of labor economics. Such data are also often subject to right censoring due to loss of follow-up or the end of study. In this paper, we consider a proportional hazards model with varying coefficients for right-censored and length-biased data, which is used to study the interact effect nonlinearly of covariates with an exposure variable. A local estimating equation method is proposed for the unknown coefficients and the intercept function in the model. The asymptotic properties of the proposed estimators are established by using the martingale theory and kernel smoothing techniques. Our simulation studies demonstrate that the proposed estimators have an excellent finite-sample performance. The Channing House data is analyzed to demonstrate the applications of the proposed method.

  8. Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Jinhee; Pham, Viet Hung; Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk

    2014-05-01

    Alkylamine-functionalized graphene oxides (FGOs) have superior dispersibility in low-polar solvents and, as a result, they interact with low-polar polymers such as polystyrene. In this work, the functionalization of graphene oxide using three types of alkylamines, octylamine (OA), dodecylamine (DDA), and hexadecylamine (HDA), was performed, and nanocomposites of polystyrene (PS) and FGOs were prepared via solution blending. Different dispersions of FGOs over PS were obtained for the three alkylamines, and the properties of the PS composites were influenced by the length of the alkylamine. A better thermal stability was observed with a longer chain length of the alkylamine. On the other hand, functionalization with the shortest chain length alkylamine resulted in the highest increase in the storage modulus (3,640 MPa, 140%) at a 10 wt.% loading of FGO.

  9. The effect of orthographic neighborhood in the reading span task.

    PubMed

    Robert, Christelle; Postal, Virginie; Mathey, Stéphanie

    2015-04-01

    This study aimed at examining whether and to what extent orthographic neighborhood of words influences performance in a working memory span task. Twenty-five participants performed a reading span task in which final words to be memorized had either no higher frequency orthographic neighbor or at least one. In both neighborhood conditions, each participant completed three series of two, three, four, or five sentences. Results indicated an interaction between orthographic neighborhood and list length. In particular, an inhibitory effect of orthographic neighborhood on recall appeared in list length 5. A view is presented suggesting that words with higher frequency neighbors require more resources to be memorized than words with no such neighbors. The implications of the results are discussed with regard to memory processes and current models of visual word recognition.

  10. Effect of long-range correlation on the metal-insulator transition in a disordered molecular crystal

    NASA Astrophysics Data System (ADS)

    Unge, Mikael; Stafström, Sven

    2006-12-01

    Localization lengths of the electronic states in a disordered two-dimensional system, resembling highly anisotropic molecular crystals such as pentacene, have been calculated numerically using the transfer matrix method. The disorder is based on a model with small random fluctuations of induced molecular dipole moments which give rise to long-range correlated disorder in the on-site energies as well as a coupling between the on-site energies and the intermolecular interactions. Our calculations show that molecular crystals such as pentacene can exhibit states with very long localization lengths with a possibility to reach a truly metallic state.

  11. Stabilizing Effect of Sweep on Low-Frequency STBLI Unsteadiness

    NASA Astrophysics Data System (ADS)

    Adler, Michael; Gaitonde, Datta

    2017-11-01

    A Large-Eddy Simulation database is generated to examine unsteady shock/turbulent boundary-layer-interaction (STBLI) mechanisms in a Mach 2 swept-compression-corner. Such interactions exhibit open separation, with separation relief from the sweep, and lack the closed mean recirculation found in spanwise-homogeneous STBLIs. We find that the swept interaction lacks the low-frequency coherent shock unsteadiness, two-decades below incoming turbulent boundary layer scales, that is a principal feature of comparable closed separation STBLIs. Rather, the prominent unsteady content is a mid-frequency regime that develops in the separated shear layer and scales weakly with the local separation length. Additionally, a linear perturbation analysis of the unsteady flow indicates that the feedback pathway (associated with an absolute instability in spanwise-homogeneous interactions) is absent in swept-compression-corner interactions. This suggests that 1) the linear oscillator is an essential component of low-frequency unsteadiness in interactions with closed separation. 2) Low-frequency control efforts should be focused on disrupting this oscillator. 3) Introduction of 3D effects constitute one mechanism to disrupt the oscillator.

  12. Effects of offenders' age and health on sentencing decisions.

    PubMed

    Mueller-Johnson, Katrin U; Dhami, Mandeep K

    2010-01-01

    Two experiments investigated the effects of age and health on mock judges' sentencing decisions. The effects of these variables on length of prison sentence were examined in the context of offense severity and prior convictions. Experiment 1 involved a violent crime. Main effects were observed for age, health, offense severity and prior convictions. There was also an age by offense severity interaction. Experiment 2 involved a child sexual abuse case. Main effects were observed for health, offense severity, and prior convictions. In addition, an age by offense severity by prior convictions interaction effect was found. Thus, across both experiments, the age leniency effect was moderated by legal factors, suggesting that extra-legal factors affect sentencing in the context of legal factors. Further, for both offenses, offenders in poor health received shorter sentences than offenders in good health, suggesting that health deserves further research attention as an extra-legal variable.

  13. Study a Fluid Structure Interaction Mechanism to Find Its Impact on Flow Regime and the Effectiveness of This Novel Method on Declining Pressure Loss in Ducts

    NASA Astrophysics Data System (ADS)

    Kamali, Hamidreza; Javan Ahram, Masoud; Mohammadi, S. Ali

    2017-09-01

    Using channels and tubes with a variety of shapes for fluids transportation is an epidemic approach which has been grown rampantly through recent years. In some cases obstacles which placed in the fluid flow act as a barrier and cause increase in pressure loss and accordingly enhance the need to more power in the entry as well as change flow patterns and produce vortexes that are not optimal. In this paper a method to suppress produced vortexes in two dimension channel that a fixed square cylinder placed in the middle of it in ReD 200 in order to find a way to suppress vortexes are investigated. At first different length of splitter plates attached to square obstruction are studied to obtain the effects of length on flow pattern. Subsequently simulations have been conducted in three dimension to validate previous results as well as acquire better understanding about the selected approach. Simulations have done by Lagrangian Eulerian method, plates first assummed fix with length 1.5mm, 4mm and 7.5mm, and then flexible plates with the same length are studied. Young’s modulus for flexible plate and blockage ratio were constant values of 2×106 and 0.25 in all simulations, respectively. Results indicate more vortexes would be suppressed when the length of splitter plate enhances.

  14. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length.

    PubMed

    Voronov, Roman S; Papavassiliou, Dimitrios V; Lee, Lloyd L

    2006-05-28

    Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.

  15. Electrostatic and hydrodynamics effects in a sedimented magnetorheological suspension.

    PubMed

    Domínguez-García, P; Pastor, J M; Melle, Sonia; Rubio, Miguel A

    2009-08-01

    We present experimental results on the equilibrium microstructure of a sedimented magnetorheological suspension, namely, an aqueous suspension of micron-sized superparamagnetic particles. We develop a study of the electrical interactions on the suspension by processing video-microscopy images of the sedimented particles. We calculate the pair distribution function, g(r), which yields the electrostatic pair potential u(r), showing an anomalous attractive interaction for distances on the order of twice the particle diameter, with characteristic parameters whose values show a dependence with the two-dimensional concentration of particles. The repulsive body of the potential is adjusted to a DLVO expression in order to calculate the Debye screening length and the effective surface charge density. Influence of confinement and variations on the Boltzmann sedimentation profile because of the electrostatic interactions appear to be essential for the interpretation of experimental results.

  16. Analytical energy gradient for the two-component normalized elimination of the small component method

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter

    2015-06-01

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown that bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg2 and Cn2, which are due to the admixture of more bonding character to the highest occupied spinors.

  17. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  18. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  19. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  20. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  1. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.

    PubMed

    Perišić, Ognjen; Schlick, Tamar

    2017-08-24

    The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.

  2. Application of linker technique to trap transiently interacting protein complexes for structural studies

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J.

    2016-01-01

    Protein-protein interactions are key events controlling several biological processes. We have developed and employed a method to trap transiently interacting protein complexes for structural studies using glycine-rich linkers to fuse interacting partners, one of which is unstructured. Initial steps involve isothermal titration calorimetry to identify the minimum binding region of the unstructured protein in its interaction with its stable binding partner. This is followed by computational analysis to identify the approximate site of the interaction and to design an appropriate linker length. Subsequently, fused constructs are generated and characterized using size exclusion chromatography and dynamic light scattering experiments. The structure of the chimeric protein is then solved by crystallization, and validated both in vitro and in vivo by substituting key interacting residues of the full length, unlinked proteins with alanine. This protocol offers the opportunity to study crucial and currently unattainable transient protein interactions involved in various biological processes. PMID:26985443

  3. A comparison of Kodak Ultraspeed and Ektaspeed Plus dental X-ray films for use in endodontics.

    PubMed

    Moule, A J; Wong, A; Monsour, P A; Basford, K E

    2001-06-01

    The advantage of using a faster film for length determination in endodontic therapy is obvious. However, for such a film to be generally accepted, it must demonstrate comparable diagnostic quality to traditionally used films. The comparative accuracy of canal length determination of Ultraspeed and Ektaspeed Plus dental X-ray films was assessed in maxillary first and second molars; for different canals, for different teeth, for different exposures, and for different examiners (five general dentists and three endodontic specialists). In general, there were no significant differences between films, among examiners, or any interaction between films and exposures. That is, an assessor's ability to estimate lengths was not significantly influenced by the film type or by exposure used. There was a wide divergence in the individual assessor's ability to estimate lengths. Specialists estimated lengths more accurately than general practitioners and estimated lengths more accurately with Ektaspeed Plus film. Length determination in distobuccal and mesiobuccal canals was more accurate than in palatal canals. Most palatal canals were underestimated in length by more than 1mm. The use of file sizes larger in number than size 15 is recommended in these canals. For length determination, Ektaspeed Plus dental X-ray film is as effective as Ultraspeed film. Given the acceptable quality and accuracy of Ektaspeed Plus film, there seems to be no clinical reason to subject patients to greater radiation by using a slower film during endodontic therapy.

  4. Factors influencing consultation length in general/family practice.

    PubMed

    Orton, Peter K; Pereira Gray, Denis

    2016-10-01

    The length of consultations is an important factor affecting the quality of care in general practice. It is however difficult to study as many factors are simultaneously involved. Much that is known is about patient factors as so far, doctor factors have been neglected. To investigate multiple factors affecting consultation length, how they interact and the association between consultation length and patient-centredness. Previously collected observational data from 38 National Health Service NHS GPs in England stratified according to doctor's gender, experience and degree of emotional exhaustion were used. Multiple regression analyses were applied to 822 audio-recorded and timed consultations. Each consultation was analysed for the doctor's gender, patient's gender, experience, level of emotional exhaustion and patient-centredness. We previously reported that 261/564 (46%) of GPs in Essex England were emotionally exhausted. Here, we found that male and female doctors respond differently to both experience and emotional exhaustion, which are associated with differences in their consultation length. The effect of experience on consultation length is only observed in male doctors: the more experienced, the shorter their consultation. Emotional exhaustion affected consultation length in opposite ways for females and male GPs: exhausted female GPs had shorter consultations, while exhausted male doctors had longer ones. Longer consultations were significantly more patient-centred and were associated with female patients. We found five factors affecting consultation length significantly. Moreover, these factors can predict the consultation length. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Some factors influencing radiation of sound from flow interaction with edges of finite surfaces

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Fox, H. L.; Chanaud, R. C.

    1976-01-01

    Edges of surfaces which are exposed to unsteady flow cause both strictly acoustic effects and hydrodynamic effects, in the form of generation of new hydrodynamic sources in the immediate vicinity of the edge. An analytical model is presented which develops the explicit sound-generation role of the velocity and Mach number of the eddy convection past the edge, and the importance of relative scale lengths of the turbulence, as well as the relative intensity of pressure fluctuations. The Mach number (velocity) effects show that the important paramater is the convection Mach number of the eddies. The effects of turbulence scale lengths, isotropy, and spatial density (separation) are shown to be important in determining the level and spectrum of edge sound radiated for the edge dipole mechanism. Experimental data is presented which provides support for the dipole edge noise model in terms of Mach number (velocity) scaling, parametric dependence on flow field parameter, directivity, and edge diffraction effects.

  6. Study of ultrasonic attenuation in f-electron systems in the paramagnetic limit of Coulomb interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadangi, Asit Ku., E-mail: asitshad@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in

    2015-05-15

    We report here a microscopic model study of ultrasonic attenuation in f-electron systems based on Periodic Anderson Model in which Coulomb interaction is considered within a mean-field approximation for a weak interaction. The Phonon is coupled to the conduction band and f-electrons. The phonon Green's function is calculated by Zubarev's technique of the Green's function method. The temperature dependent ultrasonic attenuation co-efficient is calculated from the imaginary part of the phonon self-energy in the dynamic and long wave length limit. The f-electron occupation number is calculated self-consistently in paramagnetic limit of Coulomb interaction. The effect of the Coulomb interaction onmore » ultrasonic attenuation is studied by varying the phonon coupling parameters to the conduction and f-electrons, hybridization strength, the position of f-level and the Coulomb interaction Strength. Results are discussed on the basis of experimental results.« less

  7. Interacting holographic dark energy models: a general approach

    NASA Astrophysics Data System (ADS)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  8. General Theory of Carrier-Envelope Phase Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roudnev, V.; Esry, B. D.

    2007-11-30

    We present a general framework for understanding carrier-envelope phase (CEP) effects in a quantum system interacting with an intense, short laser pulse. We establish a simple connection between the CEP and the wave function that can be exploited to obtain the full CEP dependence of an observable given the wave function at a single CEP. Within this framework, all CEP effects are interpreted as interference between different photon amplitudes which, in turn, can be used to put limits on the pulse lengths and intensities required to see significant CEP effects.

  9. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating

    PubMed Central

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-01-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes- 300nm and ~ 1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums - (1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5 wt%. NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1 µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  10. Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, Sergei O.

    2017-01-04

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both ofmore » these milestones have been met.« less

  11. The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation.

    PubMed

    Tillgren, Viveka; Mörgelin, Matthias; Önnerfjord, Patrik; Kalamajski, Sebastian; Aspberg, Anders

    2016-11-04

    Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Reciprocity phase in various 2×2 games by agents equipped with two-memory length strategy encouraged by grouping for interaction and adaptation.

    PubMed

    Wakiyama, Motoya; Tanimoto, Jun

    2011-01-01

    This paper numerically investigates 2×2 games involving the Prisoner's Dilemma, Chicken, Hero, Leader, Stag Hunt, and Trivial Games in which agents have a strategy expressed by five-bit, two-memory length. Our motivation is to explore how grouping for game interaction and strategy adaptation influence ST reciprocity and R reciprocity (Tanimoto and Sagara, 2007a [Tanimoto, J., Sagara, H., 2007a. A study on emergence of coordinated alternating reciprocity in a 2×2 game with 2-memory length strategy. Biosystems 90(3), 728-737]. Enhanced R reciprocity is observed with the stronger grouping for game interaction when a relatively stronger grouping for strategy adaptation is assumed. On the other hand, enhanced ST reciprocity emerged with the stronger grouping for strategy adaptation when the relatively weaker grouping for game interaction is imposed. Our numerical experiment deals with those two groupings independently and dependently. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Sublethal effects of four insecticides on folding and spinning behavior in the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae).

    PubMed

    Yang, Yajun; Wang, Caiyun; Xu, Hongxing; Lu, Zhongxian

    2018-03-01

    The rice leaffolder, Cnaphalocrocis medinalis, is an important rice pest. The sublethal effects of chlorpyrifos, chlorantraniliprole, emamectin benzoate and spinosad were investigated on the folding and spinning behaviors of third- to fifth-instar C. medinalis larvae (L3 - L5) after insecticidal exposure of the second instar. A 25% lethal concentration (LC 25 ) of chlorpyrifos prolonged the leaf selection time of L5, and reduced the number of binds per primary fold for L4 and L5. An LC 10 of chlorantraniliprole reduced the number of binds per primary fold for L4 and increased the number of head swings per bind for L5. An LC 10 of emamectin benzoate shortened the primary fold length for L5 and decreased the number of head swings per primary fold for L3 and L4 and the number of head swings per bind for L3, while an LC 25 of emamectin benzoate shortened the fold length per 24 h for L5 and folding time for L3. An LC 10 of spinosad lowered the fold length per 24 h and the number of head swings for L5. An LC 25 of spinosad prolonged leaf selection time, and decreased primary fold length, binds per primary fold, binds per fold and fold length per 24 h in L5. Emamectin benzoate and spinosad exerted stronger sublethal effects on the folding and spinning behavior of C. medinalis than chlorpyrifos and chlorantraniliprole. These results provide better understanding of the sublethal effects of interactions of insecticides on C. medinalis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Conformation transitions of a single polyelectrolyte chain in a poor solvent: a replica-exchange lattice Monte-Carlo study.

    PubMed

    Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui

    2017-03-15

    The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.

  15. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  16. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  17. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  18. An Interactive Life Cycle Cost Forecasting Tool

    DTIC Science & Technology

    1990-03-01

    of Phase in period PO - Length of Phase out period PV - Present value viii AFIT/GOR/ENS/90M-17 Abstract A tool was developed for Monte Carlo...and B. Note that this is for a given configuration. The E represents effectiveness and is equated to some function of the quantity of systems A and B...purchased. Either strategy, maximizing effectiveness or minimizing cost, leads to some type of cost comparison among the proposed systems. The problem

  19. Effect of polydispersity, bimodality, and aspect ratio on the phase behavior of colloidal platelet suspensions

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Velasco, Enrique

    2012-10-01

    We use a fundamental-measure density functional for hard board-like polydisperse particles, in the restricted-orientation approximation, to explain the phase behaviour of platelet colloidal suspensions studied in recent experiments. In particular, we focus our attention on the behavior of the total packing fraction of the mixture, η, in the region of two-phase isotropic-nematic coexistence as a function of mean aspect ratio, polydispersity, and fraction of total volume γ occupied by the nematic phase. In our model, platelets are polydisperse in the square section, of side length σ, but have constant thickness L (and aspect ratio κ ≡ L/⟨σ⟩ < 1, with ⟨σ⟩ the mean side length). Good agreement between our theory and recent experiments is obtained by mapping the real system onto an effective one, with excluded volume interactions but with thicker particles (due to the presence of long-ranged repulsive interactions between platelets). The effect of polydispersity in both shape and particle size has been taken into account by using a size distribution function with an effective mean-square deviation that depends on both polydispersities. We also show that the bimodality of the size distribution function is required to correctly describe the huge two-phase coexistence gap and the nonlinearity of the function γ(η), two important features that these colloidal suspensions exhibit.

  20. Transfer effects of fall training on balance performance and spatiotemporal gait parameters in healthy community-dwelling older adults: a pilot study.

    PubMed

    Donath, Lars; Faude, Oliver; Bridenbaugh, Stephanie A; Roth, Ralf; Soltermann, Martin; Kressig, Reto W; Zahner, Lukas

    2014-07-01

    This study examined transfer effects of fall training on fear of falling (Falls Efficacy Scale-International [FES-I]), balance performance, and spatiotemporal gait characteristics in older adults. Eighteen community-dwelling older adults (ages 65-85) were randomly assigned to an intervention or control group. The intervention group completed 12 training sessions (60 min, 6 weeks). During pre- and posttesting, we measured FES-I, balance performance (double limb, closed eyes; single limb, open eyes; double limb, open eyes with motor-interfered task), and gait parameters (e.g., velocity; cadence; stride time, stride width, and stride length; variability of stride time and stride length) under single- and motor-interfered tasks. Dual tasks were applied to appraise improvements of cognitive processing during balance and gait. FES-I (p = .33) and postural sway did not significantly change (0.36 < p < .79). Trends toward significant interaction effects were found for step width during normal walking and stride length variability during the motor dual task (p = .05, ηp 2 = .22). Fall training did not sufficiently improve fear of falling, balance, or gait performance under single- or dual-task conditions in healthy older adults.

  1. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation.

    PubMed

    Sansam, Courtney G; Goins, Duane; Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L

    2015-03-01

    S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled. © 2015 Sansam et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Radial oscillations of strange quark stars admixed with condensed dark matter

    NASA Astrophysics Data System (ADS)

    Panotopoulos, G.; Lopes, Ilídio

    2017-10-01

    We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.

  3. Hot QCD equations of state and relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  4. The Effects of Ocean Acidification on Predator-Prey Interactions between Mya arenaria and Callinectes sapidus

    NASA Astrophysics Data System (ADS)

    Longmire, K.; Glaspie, C.; Seitz, R.

    2016-02-01

    The study examined the implications of ocean acidification for Mya arenaria and the predator-prey dynamics between M. arenaria and Callinectes sapidus. Clams were subjected to either ambient conditions or acidified conditions and grown over four weeks. Mortality, shell lengths, and biomass (ash-free dry weights) were recorded for clams destructively sampled each week. Clams were subjected to behavioral experiments to determine their response to an approaching physical disturbance. Crabs were exposed to acidified or ambient conditions for 48 hours, and placed in 48 hour mesocosm trials with clams. Shell lengths, mortality and biomass between the ambient and acidified clams were not significantly different between acidified and ambient treatments. Shell ash weights were lower for acidified clams, evidence of shell dissolution. In the behavioral experiment, ocean acidification reduced the ability of clams to respond to a predator stimulus. Lastly, in predator-prey mesocosm trials, in ambient conditions, crabs ate all or none of the available clams, whereas acidified crabs ate all available clams in many trials and ate at least one acidified clam per trial. The early effects of ocean acidification on M. arenaria will manifest in trophic interactions with other species, rather than impacting M. arenaria alone.

  5. Study of molecular interactions in binary mixtures of 2-chloro-4'methoxy benzoin with various solvents through ultrasonic speed measurements

    NASA Astrophysics Data System (ADS)

    Thanuja, B.; Kanakam, C.; Nithya, G.

    2013-12-01

    Density ( ρ) and ultrasonic velocity ( U), for binary mixtures of 2-chloro-4'-methoxy benzoin with ethanol, chloroform, acetonitrile, benzene and 1,4-dioxane of different compositions have been measured at 298 K and explanation of solute solvent interactions and effect of polarity of the solvent on type of interactions are presented in this paper. From the above data, adiabatic compressibility ( β), intermolecular free length ( L f ) and relative association ( R A ) have been calculated. Other useful parameters such as excess density, excess velocity, excess intermolecular freelength and excess adiabatic compressibility have also been calculated. These parameters have been used to study the nature and extent of intermolecular interactions between component molecules in present binary mixtures.

  6. Long-Term Effects of Radiation Exposure and Metabolic Status on Telomere Length of Peripheral Blood T Cells in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro

    2016-10-01

    In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.

  7. Validating and Improving Interrill Erosion Equations

    PubMed Central

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi

    2014-01-01

    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624

  8. Low Temperature Conductance of Thin Metal Wires and Films.

    NASA Astrophysics Data System (ADS)

    Masden, Joseph Thomas

    The topic of this thesis is the study of electrical conduction in one and two dimensional systems; specifically the effects predicted by localization and electron-electron interaction theory. We have measured the resistance of wires with very small cross-sectional areas at low temperatures. We find at low temperatures that the resistance varies as T('- 1/2) and that the magnitude of the resistance rise is inversely proportional to the area, as found previously by others. From an analysis of the temperature dependence of the resistance, we find a characteristic length of 0.18 (mu)m at 1K for Pt and AuPd wires, which is the same length found by others. We have also measured the resistance of thin Pt and AuPd films and find that the resistance increases as the temperature decreases. This increase varies as the logarithm of the temperature, and the magnitude of the increase is proportional to the sheet resistance for films with sheet resistances less than about 2 K(OMEGA). A method for fabricating short wires and films was developed to determine the characteristic length by measuring the length dependence of the resistance rise. According to the theories, the behavior of the wires and films should change when the length of the wire or film is comparable to the characteristic length. For the short wires, we found this to be so, and our results are in semi-quantitative agreement with the theory. In short films, we also see an effect as the length of the film is decreased, but the results appear to be inconsistent with the theory, at least in its present form.

  9. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia

    PubMed Central

    Branquinho, Luis C.; Carrião, Marcus S.; Costa, Anderson S.; Zufelato, Nicholas; Sousa, Marcelo H.; Miotto, Ronei; Ivkov, Robert; Bakuzis, Andris F.

    2013-01-01

    Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia. PMID:24096272

  10. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  11. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    PubMed

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Information Cost, Memory Length and Market Instability.

    PubMed

    Diks, Cees; Li, Xindan; Wu, Chengyao

    2018-07-01

    In this article, we study the instability of a stock market with a modified version of Diks and Dindo's (2008) model where the market is characterized by nonlinear interactions between informed traders and uninformed traders. In the interaction of heterogeneous agents, we replace the replicator dynamics for the fractions by logistic strategy switching. This modification makes the model more suitable for describing realistic price dynamics, as well as more robust with respect to parameter changes. One goal of our paper is to use this model to explore if the arrival of new information (news) and investor behavior have an effect on market instability. A second, related, goal is to study the way markets absorb new information, especially when the market is unstable and the price is far from being fully informative. We find that the dynamics become locally unstable and prices may deviate far from the fundamental price, routing to chaos through bifurcation, with increasing information costs or decreasing memory length of the uninformed traders.

  13. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  14. Power law tails in phylogenetic systems.

    PubMed

    Qin, Chongli; Colwell, Lucy J

    2018-01-23

    Covariance analysis of protein sequence alignments uses coevolving pairs of sequence positions to predict features of protein structure and function. However, current methods ignore the phylogenetic relationships between sequences, potentially corrupting the identification of covarying positions. Here, we use random matrix theory to demonstrate the existence of a power law tail that distinguishes the spectrum of covariance caused by phylogeny from that caused by structural interactions. The power law is essentially independent of the phylogenetic tree topology, depending on just two parameters-the sequence length and the average branch length. We demonstrate that these power law tails are ubiquitous in the large protein sequence alignments used to predict contacts in 3D structure, as predicted by our theory. This suggests that to decouple phylogenetic effects from the interactions between sequence distal sites that control biological function, it is necessary to remove or down-weight the eigenvectors of the covariance matrix with largest eigenvalues. We confirm that truncating these eigenvectors improves contact prediction.

  15. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    PubMed

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hunting of roe deer and wild boar in Germany: Is non-lead ammunition suitable for hunting?

    PubMed Central

    Gremse, Carl; Selhorst, Thomas; Bandick, Niels; Müller-Graf, Christine; Greiner, Matthias; Lahrssen-Wiederholt, Monika

    2017-01-01

    Background Non-lead hunting ammunition is an alternative to bullets that contain lead. The use of lead ammunition can result in severe contamination of game meat, thus posing a health risk to consumers. With any kind of ammunition for hunting, the terminal effectiveness of bullets is an animal welfare issue. Doubts about the effectiveness of non-lead bullets for a humane kill of game animals in hunting have been discussed. The length of the escape distance after the shot has been used previously as an indicator for bullet performance. Objective The object of this study was to determine how the bullet material (lead or non-lead) influences the observed escape distances. Methods 1,234 records of the shooting of roe deer (Capreolus capreolus) and 825 records of the shooting of wild boar (Sus scrofa) were evaluated. As the bullet material cannot be regarded as the sole cause of variability of escape distances, interactions of other potential influencing variables like shot placement, shooting distance, were analyzed using conditional regression trees and two-part hurdle models. Results The length of the escape distance is not influenced by the use of lead or non-lead ammunition with either roe deer or wild boar. With roe deer, the length of the escape distance is influenced significantly by the shot placement and the type of hunting. Increasing shooting distances increased the length of the escape distance. With wild boar, shot placement and the age of the animals were found to be a significant influencing factor on the length of the escape distance. Conclusions The length of the escape distance can be used as an indicator for adequate bullet effectiveness for humane killings of game animals in hunting.Non-lead bullets already exist which have an equally reliable killing effect as lead bullets. PMID:28926620

  17. Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2009-03-28

    Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.

  18. Thixotropy and Rheopexy of Muscle Fibers Probed Using Sinusoidal Oscillations

    PubMed Central

    Altman, David; Minozzo, Fabio C.; Rassier, Dilson E.

    2015-01-01

    Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon. PMID:25880774

  19. pi-Selective stationary phases: (II) Adsorption behavior of substituted aromatic compounds on n-alkyl-phenyl stationary phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A; Mayfield, Kirsty

    2010-01-01

    The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weightmore » aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.« less

  20. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia.

    PubMed

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L Anders

    2014-01-01

    Plant-pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.

  1. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia

    PubMed Central

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L. Anders

    2014-01-01

    Background and Aims Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Methods Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Key Results Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. Conclusions The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts. PMID:24169591

  2. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity

    PubMed Central

    Prilutsky, Boris I.; Gregor, Robert J.; Abelew, Thomas A.; Nichols, T. Richard

    2016-01-01

    In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed. PMID:27306676

  3. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-05-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  4. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    NASA Astrophysics Data System (ADS)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-02-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  5. Make dark matter charged again

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  6. Characteristics of a Strongly-Pulsed Non-Premixed Jet Flame in Cross-flow

    NASA Astrophysics Data System (ADS)

    Gamba, Mirko; Clemens, Noel T.; Ezekoye, Ofodike A.

    2006-11-01

    The effects of large-amplitude, high-frequency harmonic forcing of turbulent nonpremixed hydrogen/methane jet flames in cross-flow (JFICF) are investigated experimentally. Flame lengths, penetration lengths, and mixing characteristics are studied using flame luminosity imaging, planar laser Mie scattering visualization and particle image velocimetry. Mean jet Reynolds numbers of 1,600 and 3,250 (peak Re ˜2,500--6,500) with corresponding mean momentum flux ratios, r, of 1.9 and 3.7 (peak r ˜2.6--8.3) are considered. Forcing frequencies of 100 Hz and 300 Hz with amplitudes of ˜60%--300% are investigated. Consistent with previous work, a drastic decrease in flame length and soot emission, an increase in flame penetration and an improved jet fuel/cross-flow air mixing are observed for the larger forcing amplitude cases. Partial pre-mixing induced by near-field reverse flow, near-field vortex/vortex interaction and large-scale stirring, rendered stronger by large forcing amplitudes and frequencies, are thought to play a key role on the observed effects.

  7. Analysis of Fault Lengths Across Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Fori, A. N.; Schultz, R. A.

    1996-03-01

    Summary. As part of a larger project to determine the history of stress and strain across Valles Marineris, Mars, graben lengths located within the Valley are measured using a two-dimensional window-sampling method to investigate depth of faulting and accuracy of measurement. The resulting degree of uncertainty in measuring lengths (+19 km - 80% accuracy) is independent of the resolution at which the faults are measured, so data sets and resultant statistical analysis from different scales or map areas can be compared. The cumulative length frequency plots show that the geometry of Valley faults display no evidence of a frictional stability transition at depth in the lithosphere if mechanical interaction between individual faults (an unphysical situation) is not considered. If strongly interacting faults are linked and the composite lengths used to re-create the cumulative lengths plots, a significant change in slope is apparent suggesting the existence of a transition at about 35-65 km below the surface (assuming faults are dipping from 50deg to 70deg This suggests the thermal gradient to the associated 300-400degC isotherm is 53C/km to 12degC/km.

  8. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  9. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  10. Pulsed Turbulent Diffusion Flames in a Coflow

    NASA Astrophysics Data System (ADS)

    Usowicz, James E.; Hermanson, James C.; Johari, Hamid

    2000-11-01

    Fully modulated diffusion flames were studied experimentally in a co-flow combustor using unheated ethylene fuel at atmospheric pressure. A fast solenoid valve was used to fully modulate (completely shut-off) the fuel flow. The fuel was released from a 2 mm diameter nozzle with injection times ranging from 2 to 750 ms. The jet exit Reynolds number was 2000 to 10,000 with a co-flow air velocity of up to 0.02 times the jet exit velocity. Establishing the effects of co-flow for the small nozzle and short injection times is required for future tests of pulsed flames under microgravity conditions. The very short injection times resulted in compact, burning puffs. The compact puffs had a mean flame length as little as 20flame for the same Reynolds number. As the injection time and fuel volume increased, elongated flames resembling starting jets resulted with a flame length comparable to that of a steady flame. For short injection times, the addition of an air co-flow resulted in an increase in flame length of nearly 50flames with longer injection times was correspondingly smaller. The effects of interaction of successive pulses on the flame length were most pronounced for the compact puffs. The emissions of unburned hydrocarbon and NOx from the pulsed flames were examined.

  11. Sources of heterogeneity in studies of the BMI-mortality association.

    PubMed

    Peter, Raphael Simon; Nagel, Gabriele

    2017-06-01

    To date, the amount of heterogeneity among studies of the body mass index-mortality association attributable to differences in the age distribution and length of follow-up has not been quantified. Therefore, we wanted to quantify the amount of heterogeneity attributable to age and follow-up in results of studies on the body mass index-mortality relation. We used optima of the body mass index mortality association reported for 30 populations and performed meta-regression to estimate the amount of heterogeneity attributable to sex, ethnicity, mean age at baseline, percentage smokers, and length of follow-up. Ethnicity as single factor accounted for 36% (95% CI, 11-56%) of heterogeneity. Mean age and length of follow-up had an interactive effect and together accounted for 56% (95% CI, 24-74%) of the remaining heterogeneity. Sex did not significantly contribute to the heterogeneity, after controlling for ethnicity, age, and length of follow-up. A considerable amount of heterogeneity in studies of the body mass index-mortality association is attributable to ethnicity, age, and length of follow-up. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics.

    PubMed

    Jansen, Karen; De Groote, Friedl; Aerts, Wouter; De Schutter, Joris; Duysens, Jacques; Jonkers, Ilse

    2014-04-30

    Spasticity is an important complication after stroke, especially in the anti-gravity muscles, i.e. lower limb extensors. However the contribution of hyperexcitable muscle spindle reflex loops to gait impairments after stroke is often disputed. In this study a neuro-musculoskeletal model was developed to investigate the contribution of an increased length and velocity feedback and altered reflex modulation patterns to hemiparetic gait deficits. A musculoskeletal model was extended with a muscle spindle model providing real-time length and velocity feedback of gastrocnemius, soleus, vasti and rectus femoris during a forward dynamic simulation (neural control model). By using a healthy subject's base muscle excitations, in combination with increased feedback gains and altered reflex modulation patterns, the effect on kinematics was simulated. A foot-ground contact model was added to account for the interaction effect between the changed kinematics and the ground. The qualitative effect i.e. the directional effect and the specific gait phases where the effect is present, on the joint kinematics was then compared with hemiparetic gait deviations reported in the literature. Our results show that increased feedback in combination with altered reflex modulation patterns of soleus, vasti and rectus femoris muscle can contribute to excessive ankle plantarflexion/inadequate dorsiflexion, knee hyperextension/inadequate flexion and increased hip extension/inadequate flexion during dedicated gait cycle phases. Increased feedback of gastrocnemius can also contribute to excessive plantarflexion/inadequate dorsiflexion, however in combination with excessive knee and hip flexion. Increased length/velocity feedback can therefore contribute to two types of gait deviations, which are both in accordance with previously reported gait deviations in hemiparetic patients. Furthermore altered modulation patterns, in particular the reduced suppression of the muscle spindle feedback during swing, can contribute largely to an increased plantarflexion and knee extension during the swing phase and consequently to hampered toe clearance. Our results support the idea that hyperexcitability of length and velocity feedback pathways, especially in combination with altered reflex modulation patterns, can contribute to deviations in hemiparetic gait. Surprisingly, our results showed only subtle temporal differences between length and velocity feedback. Therefore, we cannot attribute the effects seen in kinematics to one specific type of feedback.

  13. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages

    PubMed Central

    Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.

    2017-01-01

    Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615

  14. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  15. Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2.

    PubMed

    Moon, Byoung Hee; Bae, Jung Jun; Joo, Min-Kyu; Choi, Homin; Han, Gang Hee; Lim, Hanjo; Lee, Young Hee

    2018-05-24

    Quantum localization-delocalization of carriers are well described by either carrier-carrier interaction or disorder. When both effects come into play, however, a comprehensive understanding is not well established mainly due to complexity and sparse experimental data. Recently developed two-dimensional layered materials are ideal in describing such mesoscopic critical phenomena as they have both strong interactions and disorder. The transport in the insulating phase is well described by the soft Coulomb gap picture, which demonstrates the contribution of both interactions and disorder. Using this picture, we demonstrate the critical power law behavior of the localization length, supporting quantum criticality. We observe asymmetric critical exponents around the metal-insulator transition through temperature scaling analysis, which originates from poor screening in insulating regime and conversely strong screening in metallic regime due to free carriers. The effect of asymmetric scaling behavior is weakened in monolayer MoS 2 due to a dominating disorder.

  16. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  17. DNA bending-induced phase transition of encapsidated genome in phage λ

    PubMed Central

    Lander, Gabriel C.; Johnson, John E.; Rau, Donald C.; Potter, Clinton S.; Carragher, Bridget; Evilevitch, Alex

    2013-01-01

    The DNA structure in phage capsids is determined by DNA–DNA interactions and bending energy. The effects of repulsive interactions on DNA interaxial distance were previously investigated, but not the effect of DNA bending on its structure in viral capsids. By varying packaged DNA length and through addition of spermine ions, we transform the interaction energy from net repulsive to net attractive. This allowed us to isolate the effect of bending on the resulting DNA structure. We used single particle cryo-electron microscopy reconstruction analysis to determine the interstrand spacing of double-stranded DNA encapsidated in phage λ capsids. The data reveal that stress and packing defects, both resulting from DNA bending in the capsid, are able to induce a long-range phase transition in the encapsidated DNA genome from a hexagonal to a cholesteric packing structure. This structural observation suggests significant changes in genome fluidity as a result of a phase transition affecting the rates of viral DNA ejection and packaging. PMID:23449219

  18. Correlation Imaging Reveals Specific Crowding Dynamics of Kinesin Motor Proteins

    NASA Astrophysics Data System (ADS)

    Miedema, Daniël M.; Kushwaha, Vandana S.; Denisov, Dmitry V.; Acar, Seyda; Nienhuis, Bernard; Peterman, Erwin J. G.; Schall, Peter

    2017-10-01

    Molecular motor proteins fulfill the critical function of transporting organelles and other building blocks along the biopolymer network of the cell's cytoskeleton, but crowding effects are believed to crucially affect this motor-driven transport due to motor interactions. Physical transport models, like the paradigmatic, totally asymmetric simple exclusion process (TASEP), have been used to predict these crowding effects based on simple exclusion interactions, but verifying them in experiments remains challenging. Here, we introduce a correlation imaging technique to precisely measure the motor density, velocity, and run length along filaments under crowding conditions, enabling us to elucidate the physical nature of crowding and test TASEP model predictions. Using the kinesin motor proteins kinesin-1 and OSM-3, we identify crowding effects in qualitative agreement with TASEP predictions, and we achieve excellent quantitative agreement by extending the model with motor-specific interaction ranges and crowding-dependent detachment probabilities. These results confirm the applicability of basic nonequilibrium models to the intracellular transport and highlight motor-specific strategies to deal with crowding.

  19. Electron Acceleration from the Interaction of VULCAN 100TW Laser with Au Foils and its Dependence on Laser Polarisation

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Bellei, C.; Kneip, S.; Mangles, S. P. D.; Palmer, C.; Willingale, L.; Dangor, A. E.; Najmudin, Z.; Clarke, R. J.; Heathcote, R.; Henig, A.; Schreiber, J.; Saevert, A.; Kaluza, M.

    2008-11-01

    Electrons as well as ions can be accelerated to high energies (MeV) by high intensity laser interactions with solid targets. An overview of an experiment on the Vulcan laser (pulse length cτ˜150μm, energy on target ˜60 J), will be presented. In this experiment electron acceleration from thick overdense plasmas is investigated by conducting thickness scans using Au foil targets ranging from 10 to 100 μm. The electron spectra, of the most energetic electrons produced in the interaction, are measured along the laser direction and extend up to 40MeV. Surprisingly the electron acceleration depends on target thickness. Simultaneously rear surface proton beam profiles show a dependence of target thickness. Both effects are attributed to electron recirculation. In addition the effects of polarisation was investigated. A decrease in number and effective temperature of energetic electrons is observed for circular polarisation as compared to linear polarisation.

  20. Shielded transient self-interaction of a bunch entering a circle from a straight path

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-08-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straightmore » path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.« less

  1. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    PubMed

    Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, Sébastien; Brostaux, Yves; du Jardin, Patrick

    2015-08-12

    Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.

  2. Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanossi, A.; Ro''der, J.; Bishop, A. R.

    2001-01-01

    We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less

  3. Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.

    1996-11-01

    Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  4. Theory of a Nearly Two-Dimensional Dipolar Bose Gas

    DTIC Science & Technology

    2016-05-11

    temperatures, and when roton excitations are present. Further, BECs in nearly 2D geometries take the form of quasi -condensates, or BECs with finite spatial...extent. Quasi -condensates behave like BECs on shorter length scales, but not on longer length scales. The project incorporates the presence of a quasi ... Quasi -Condensate 23 J. Superfluidity 25 III. Results 26 A. Three Dimensions with Contact Interactions 26 B. Two Dimensions with Contact Interactions

  5. Wh-Questions in Child L2 French: Derivational Complexity and Its Interactions with L1 Properties, Length of Exposure, Age of Exposure, and the Input

    ERIC Educational Resources Information Center

    Prévost, Philippe; Strik, Nelleke; Tuller, Laurie

    2014-01-01

    This study investigates how derivational complexity interacts with first language (L1) properties, second language (L2) input, age of first exposure to the target language, and length of exposure in child L2 acquisition. We compared elicited production of "wh"-questions in French in two groups of 15 participants each, one with L1 English…

  6. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  7. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  8. Influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers fed on wheat-based diets.

    PubMed

    Abdollahi, M R; Ravindran, V; Wester, T J; Ravindran, G; Thomas, D V

    2013-06-01

    1. The influence of pellet diameter and length on the quality of pellets and performance, nutrient utilisation and digestive tract development of broilers given wheat-based diets was examined from 10 to 42 d of age. The experimental design was a 2 × 2 factorial arrangement of treatments evaluating two pellet diameters (3 and 4.76 mm) and two pellet lengths (3 and 6 mm). From 0 to 9 d of age, all birds were offered a common starter diet pelleted with a 3-mm diameter die and 3-mm length. Broiler grower (d 10 to 21) and finisher (d 22 to 42) diets, based on wheat, were formulated and then subjected to the 4 different treatments. 2. In grower diets, increasing pellet diameter and pellet length reduced the gelatinised starch (GS) content of the diets. In finisher diets, GS content of 3-mm diameter pellets did not change with increasing pellet length but decreased in 4.76-mm diameter pellets. 3. In grower and finisher diets, increments in intact pellet weight, pellet durability index and pellet hardness with increasing pellet length were greater in 3-mm diameter pellets than those with 4.76-mm diameter. 4. Increasing pellet length from 3 to 6 mm increased apparent metabolisable energy values. Neither the interaction nor main effects were significant for the ileal digestibility of nitrogen and starch. 5. During the grower period (d 10 to 21), birds given pellets of 6-mm length had greater body-weight gain than those given 3-mm length pellets. Feeding 6-mm length pellets decreased feed per body-weight gain compared to 3-mm length pellets. During the finisher (d 22 to 42) and whole grow-out (d 10 to 42) periods, while different pellet lengths had no effect on feed per body-weight gain values at 3-mm pellet diameter, increasing the pellet length decreased feed per body-weight gain at 4.76-mm pellet diameter. 6. Increasing pellet diameter and pellet length reduced the relative length of duodenum. Birds given 3-mm diameter pellets had heavier proventriculus compared to those given 4.76-mm diameter pellets. 7. Overall, the data suggest that increasing the pellet length from 3 to 6 mm improved the body-weight gain and feed per body-weight gain during the grower period (d 10 to 21). While the positive effect on body-weight gain disappeared as the birds grew older, improvements in feed per body-weight gain were maintained over the finisher and whole grow-out periods only in 4.76-mm diameter pellets. Small diameter die holes and longer pellet lengths may be considered as potential manipulations to manufacture high-quality pellets under low conditioning temperatures.

  9. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  10. Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ding, Qiuyue; Ding, Ning; Chen, Xiangfeng; Wu, Chi-Man Lawrence

    2018-04-01

    How nanomaterials interact with pollutants is the central for understanding their environmental behavior and practical application. In this work, molecular dynamics (MD) and density functional theoretical (DFT) methods were used to investigated the influence of carbon chain length, degree of chlorination, chain configuration, and chirality of chlorinated paraffin (CP) and diameter of single-walled carbon nanotubes (SWNTs) on the interaction between CPs and SWNTs. The simulation results demonstrated that CP chain length and chlorination degree played considerably important roles in determining interaction strength between SWNTs and CPs. The interaction energies increased with increasing chain length and chlorination degree. The chirality of SWNT exerted negligible influence on the interaction energy between SWNTs and CPs. On the contrary, interaction energy increased with increasing radius of SWNTs due to the surface curvatures. This result was rationalized by considering the decrease in SWNT curvature with increasing radius, which resulted in plane-like CNT wall. The negligible influence of CP chain configurations was attributed to relative flexibility of CP carbon chains, which can wrap on tubes through conformational changes with low-energy barriers. MD results indicated that CPs could adsorb on SWNT surface rapidly in aqueous environment. Charge transfer and electronic density results indicated that the interaction between CPs and SWNTs was physisorption in nature. This work provides fundamental information regarding SWNTs as sorbents for CPs extraction and adsorptive removal from environmental water system.

  11. Resistance to uprooting of Alfalfa and Avena Sativa and related importance for flume experiments

    NASA Astrophysics Data System (ADS)

    Edmaier, K.; Crouzy, B.; Burlando, P.; Perona, P.

    2012-04-01

    Vegetation influences sediment dynamics by stabilizing the alluvial sediment with its root system. Thus, vegetation engineers the riparian ecosystem by contributing to the formation and stabilization of river bars and islands. The resistance to uprooting of young plants in non-cohesive sediment depends on the competition between flow induced drag and root growth timescales. The investigation of flow-sediment-plant interactions in situ is difficult since variables cannot be controlled and material hardly be collected. In order to investigate ecomorphological processes, laboratory experiments are essential and have gained importance in the last decade. To achieve a better understanding of the dependence of resistance to uprooting on the root system (length and structure) we conducted vertical uprooting experiments with Alfalfa and Avena Sativa which are both species that have been used in flume experiments on vegetation-flow interactions (e.g. Tal and Paola, 2010; Perona et al., in press). Seeds were seeded on quartz sand and vertically uprooted with constant velocity whereat the weight force required to uproot a seedling was measured. After uprooting, roots were scanned and analyzed and the correlation of root parameters with the uprooting work was studied. Total root length was found to be the best explanatory variable, in particular the uprooting work increases following a power law with increasing root length. The impact of other root parameters (main root length, root number, tortuosity) on the uprooting work was as well analyzed. Still, not all influencing root parameters could be captured, like the angle between roots or root hair distribution. Environmental conditions like grain size and saturation were also found to have an effect on the uprooting resistance of roots. So, lower saturated sediment results in a higher uprooting work. This work is a first step to better understand the energy regime for vegetation uprooting and its dependence on various biological and hydraulic variables. Future experiments using the same sediment and vegetation species will apply this knowledge to further investigate flow-vegetation-sediment interactions.

  12. Effect of Dendritic Polymer Architecture on Biological Behaviors of Self-Assembled Nanocarriers

    NASA Astrophysics Data System (ADS)

    Hsu, Hao-Jui

    Polymeric self-assembled nanocarriers represent one of the most versatile platforms for drug delivery. Through tailoring the physiochemical properties of amphiphilic block copolymers, self-assembled nanocarriers with great thermodynamic stability and desired biological properties could be achieved. The PEGylated dendron-based copolymers (PDCs) are one of the novel amphiphilic copolymers that have attracted a great deal of scientific interest due to their unique dendritic structure and properties. While the dendritic polymer architecture of PDC has been shown to enhance the thermodynamic stability of the self-assembling PDCs, dendron micelles, the effect of this polymer architecture on the biological properties of dendron micelles has not yet been studied. Therefore, this dissertation research is focused on understanding the role of dendritic polymer structure on moderating the biological properties of various self-assembled nanocarriers. To systematically investigate this, three studies have been designed and performed. First, we studied whether the dendritic structure of PDC allows dendron micelles to behave non-specific cellular interactions in a similar way that dendrimers would do. Second, cell-specific interactions of dendron micelles mediated by conjugated ligands were investigated. Third, we investigated the influence of dendritic PEG outer shell on micelle-serum protein interactions and its subsequent implication. Our results revealed that both non-specific and specific cellular interactions of dendron micelles were controllable through modulation of the PEG corona length. While the non-specific charge-dependent cellular interactions of dendron micelles were tunable through controlling the length of PEG corona, the use of long PEG tether was found to enhance the ligand-mediated cellular interactions of dendron micelles. With the ligand tethers, a 27-fold enhancement in ligand-mediated cellular interactions can be achieved, compared to non-targeted dendron micelles. Furthermore, we demonstrate that the dense PEG outer shell introduced by its dendritic structure reduced non-specific micelle-serum protein interactions and suppressed the subsequent micelle disintegration or premature drug release, which was not the case for linear block copolymer (LBC)-based micelles. Molecular dynamic (MD) simulation results also supported that dendron micelles exhibited a weaker interaction with serum albumin compared to LBC-based micelles. In the presence of serum proteins, the half-life of dendron micelles was 2-fold longer than that of LBC-based micelles, which could be attributed to their low serum protein interactions. In conclusion, our results provide fundamental understanding on the role of PEG corona and the effect of polymeric architecture on biological properties of polymer micelles, all indicating that dendron micelles have great potential as a novel drug delivery platform.

  13. Effect of non-classical current paths in networks of 1-dimensional wires

    NASA Astrophysics Data System (ADS)

    Echternach, P. M.; Mikhalchuk, A. G.; Bozler, H. M.; Gershenson, M. E.; Bogdanov, A. L.; Nilsson, B.

    1996-04-01

    At low temperatures, the quantum corrections to the resistance due to weak localization and electron-electron interaction are affected by the shape and topology of samples. We observed these effects in the resistance of 2D percolation networks made from 1D wires and in a series of long 1D wires with regularly spaced side branches. Branches outside the classical current path strongly reduce the quantum corrections to the resistance and these reductions become a measure of the quantum lengths.

  14. Investigating the role of chain and linker length on the catalytic activity of an H 2 production catalyst containing a β-hairpin peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reback, Matthew L.; Ginovska, Bojana; Buchko, Garry W.

    Building on our recent report of an active H2 production catalyst [Ni(PPh2NProp-peptide)2]2+ (Prop=para-phenylpropionic acid, peptide (R10)=WIpPRWTGPR-NH2, p=D-proline, and P2N=1-aza-3,6-diphosphacycloheptane) that contains structured -hairpin peptides, here we investigate how H2 production is effected by: (1) the length of the hairpin (eight or ten residues) and (2) limiting the flexibility between the peptide and the core complex by altering the length of the linker: para-phenylpropionic acid (three carbons) or para-benzoic acid (one carbon). Reduction of the peptide chain length from ten to eight residues increases or maintains the catalytic current for H2 production for all complexes, suggesting a non-productive steric interaction atmore » longer peptide lengths. While the structure of the hairpin appears largely intact for the complexes, NMR data are consistent with differences in dynamic behavior which may contribute to the observed differences in catalytic activity. Molecular dynamics simulations demonstrate that complexes with a one-carbon linker have the desired effect of restricting the motion of the hairpin relative to the complex; however, the catalytic currents are significantly reduced compared to complexes containing a three-carbon linker as a result of the electron withdrawing nature of the -COOH group. These results demonstrate the complexity and interrelated nature of the outer coordination sphere on catalysis.« less

  15. Resonant charge exchange for H-H+ in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Laricchiuta, Annarita; Colonna, Gianpiero; Capitelli, Mario; Kosarim, Alexander; Smirnov, Boris M.

    2017-11-01

    The dynamics of resonant charge exchange in proton-hydrogen collisions embedded in plasma is investigated in the framework of the asymptotic approach, modified to account for the effect of Debye-Hückel screening in particle interactions. The cross sections exhibit a marked dependence on the Debye length in regimes of severe plasma confinement. Processes involving excited states H( n)-H+ are also discussed.

  16. Hydrophobic Tail Length, Degree of Fluorination and Headgroup Stereochemistry are Determinants of the Biocompatibility of (Fluorinated) Carbohydrate Surfactants

    PubMed Central

    Li, Xueshu; Turánek, Jaroslav; Knötigová, Pavlína; Kudláčková, Hana; Mašek, Josef; Parkin, Sean; Rankin, Stephen E; Knutson, Barbara L; Lehmler, Hans-Joachim

    2009-01-01

    A series of hydrocarbon and fluorocarbon carbohydrate surfactants with different headgroups (i.e., gluco-, galacto- and maltopyranoside) and (fluorinated) alkyl tails (i.e., C7 and C14 to C19) was synthesized to investigate trends in their cytotoxicity and haemolytic activity, and how surfactant-lipid interactions of selected surfactants contribute to these two measures of biocompatibility. All surfactants displayed low cytotoxicity (EC50 = 25 to > 250 μM) and low haemolytic activity (EC50 = 0.2 to > 3.3 mM), with headgroup structure, tail length and degree of fluorination being important structural determinants for both endpoints. The EC50 values of hydrocarbon and fluorocarbon glucopyranoside surfactants displayed a “cut-off” effect (i.e., a maximum with respect to the chain length). According to steady-state fluorescence anisotropy studies, short chain (C7) surfactants partitioned less readily into model membranes, which explains their low cytotoxicity and haemolytic activity. Interestingly, galactopyranosides were less toxic compared to glucopyranosides with the same hydrophobic tail. Although both surfactant types only differ in the stereochemistry of the 4-OH group, hexadecyl gluco- and galactopyranoside surfactants had similar apparent membrane partition coefficients, but differed in their overall effect on the phase behaviour of DPPC model membranes, as assessed using steady-state fluorescence anisotropy studies. These observations suggest that highly selective surfactant-lipid interactions may be responsible for the differential cytotoxicity and, possible, haemolytic activity of hydrocarbon and fluorocarbon carbohydrate surfactants intended for a variety of pharmaceutical and biomedical applications. PMID:19481909

  17. Direct extraction of electron parameters from magnetoconductance analysis in mesoscopic ring array structures

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Faniel, S.; Mineshige, S.; Kawabata, S.; Saito, K.; Kobayashi, K.; Sekine, Y.; Sugiyama, H.; Koga, T.

    2018-05-01

    We report an approach for examining electron properties using information about the shape and size of a nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays (MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation. Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC) curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.

  18. Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; van Anders, Greg; Glotzer, Sharon

    Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.

  19. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    NASA Astrophysics Data System (ADS)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.

  20. Hydrodynamic Interactions in Active and Passive Matter

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.

    Active matter is present at all biological length scales, from molecular apparatuses interior to cells, to swimming microscopic organisms, to birds, fish, and people. Its properties are varied and its applications diverse, but our understanding of the fundamental driving forces of systems with these constituents remains incomplete. This thesis examines active matter suspensions, exploring the role of hydrodynamic interactions on the unique and emergent properties therein. Both qualitative and quantitative impacts are considered, and care is taken in determining the physical origin of the results in question. It is found that fluid dynamical interactions are fundamentally, qualitatively important, and much of the properties of a system can be explained with an effective energy density defined via the fluid fields arising from the embedded self-propelling entities themselves.

  1. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S.; Set, Sze Y.

    2007-01-01

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  2. Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers.

    PubMed

    Song, Yong-Won; Yamashita, Shinji; Goh, Chee S; Set, Sze Y

    2007-01-15

    We demonstrate a novel passive mode-locking scheme for pulsed lasers enhanced by the interaction of carbon nanotubes (CNTs) with the evanescent field of propagating light in a D-shaped optical fiber. The scheme features all-fiber operation as well as a long lateral interaction length, which guarantees a strong nonlinear effect from the nanotubes. Mode locking is achieved with less than 30% of the CNTs compared with the amount of nanotubes used for conventional schemes. Our method also ensures the preservation of the original morphology of the individual CNTs. The demonstrated pulsed laser with our CNT mode locker has a repetition rate of 5.88 MHz and a temporal pulse width of 470 fs.

  3. Single-cycle high-intensity electromagnetic pulse generation in the interaction of a plasma wakefield with regular nonlinear structures.

    PubMed

    Bulanov, S S; Esirkepov, T Zh; Kamenets, F F; Pegoraro, F

    2006-03-01

    The interaction of regular nonlinear structures (such as subcycle solitons, electron vortices, and wake Langmuir waves) with a strong wake wave in a collisionless plasma can be exploited in order to produce ultrashort electromagnetic pulses. The electromagnetic field of the nonlinear structure is partially reflected by the electron density modulations of the incident wake wave and a single-cycle high-intensity electromagnetic pulse is formed. Due to the Doppler effect the length of this pulse is much shorter than that of the nonlinear structure. This process is illustrated with two-dimensional particle-in-cell simulations. The considered laser-plasma interaction regimes can be achieved in present day experiments and can be used for plasma diagnostics.

  4. Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions

    NASA Astrophysics Data System (ADS)

    Abhinav, Kumar; Chandrasekhar, B.; Vyas, Vivek M.; Panigrahi, Prasanta K.

    2017-02-01

    The correlated fermionic many-particle system, near infinite scattering length, reveals an underlying Heisenberg symmetry in one dimension, as compared to an SO (2 , 1) symmetry in two dimensions. This facilitates an exact map from the interacting to the non-interacting system, both with and without a harmonic trap, and explains the short-distance scaling behavior of the wave-function. Taking advantage of the phenomenological Calogero-Sutherland-type interaction, motivated by the density functional approach, we connect the ground-state energy shift, to many-body correlation effect. For the excited states, modes at integral values of the harmonic frequency ω are predicted in one dimension, in contrast to the breathing modes with frequency 2ω in two dimensions.

  5. Analytical energy gradient for the two-component normalized elimination of the small component method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Wenli; Filatov, Michael; Cremer, Dieter, E-mail: dcremer@smu.edu

    2015-06-07

    The analytical gradient for the two-component Normalized Elimination of the Small Component (2c-NESC) method is presented. The 2c-NESC is a Dirac-exact method that employs the exact two-component one-electron Hamiltonian and thus leads to exact Dirac spin-orbit (SO) splittings for one-electron atoms. For many-electron atoms and molecules, the effect of the two-electron SO interaction is modeled by a screened nucleus potential using effective nuclear charges as proposed by Boettger [Phys. Rev. B 62, 7809 (2000)]. The effect of spin-orbit coupling (SOC) on molecular geometries is analyzed utilizing the properties of the frontier orbitals and calculated SO couplings. It is shown thatmore » bond lengths can either be lengthened or shortened under the impact of SOC where in the first case the influence of low lying excited states with occupied antibonding orbitals plays a role and in the second case the jj-coupling between occupied antibonding and unoccupied bonding orbitals dominates. In general, the effect of SOC on bond lengths is relatively small (≤5% of the scalar relativistic changes in the bond length). However, large effects are found for van der Waals complexes Hg{sub 2} and Cn{sub 2}, which are due to the admixture of more bonding character to the highest occupied spinors.« less

  6. Dynamics of Entangled Polymers: Role of Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Koski, Jason

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.

  7. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution.

    PubMed

    Hammel, Michal; Nemecek, Daniel; Keightley, J Andrew; Thomas, George J; Geisbrecht, Brian V

    2007-12-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein-protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein-protein interactions with its many ligands.

  8. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution

    PubMed Central

    Hammel, Michal; Němeček, Daniel; Keightley, J. Andrew; Thomas, George J.; Geisbrecht, Brian V.

    2007-01-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein–protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein–protein interactions with its many ligands. PMID:18029416

  9. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Photoionization mass spectrometry of ω -phenylalkylamines: Role of radical cation-π interaction

    NASA Astrophysics Data System (ADS)

    Corinti, Davide; Catone, Daniele; Turchini, Stefano; Rondino, Flaminia; Crestoni, Maria Elisa; Fornarini, Simonetta

    2018-04-01

    Linear ω-phenylalkylamines of increasing alkyl chain length have been investigated employing synchrotron radiation in the photon energy range from 7 to 15 eV. These molecules have received considerable interest because they bear the skeleton of biologically relevant compounds including neurotransmitters and because of the possible interaction between the amino moiety and the phenyl ring. Recently, the contribution of this interaction has been assayed in both neutral and protonated species, pointing to a role of the polymethylene chain length. In this work, the ionization energy (IE) values of benzylamine (BA), 2-phenylethylamine (2-PEA), 3-phenylpropylamine (3-PPA), and 4-phenylbutylamine (4-PBA) were investigated in order to ascertain the impact of the different alkyl chain lengths and to verify an amino radical cation-π interaction. The IEs obtained experimentally, 8.54, 8.37, 8.29, and 8.31 eV for BA, 2-PEA, 3-PPA and 4-PBA, respectively, show a decreasing trend that is discussed employing calculations at the CBS-QB3 level. Moreover, the appearance energy values for major fragments produced by the photofragmentation process are reported.

  11. Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA.

    PubMed

    Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A

    2016-10-07

    Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Characterization of protein-protein interaction domains within the baculovirus Autographa californica multiple nucleopolyhedrovirus late expression factor LEF-3.

    PubMed

    Downie, Kelsey; Adetola, Gbolagade; Carstens, Eric B

    2013-11-01

    Autographa californica nucleopolyhedrovirus late expression factor 3 (LEF-3) is required for late viral gene expression probably through its numerous functions related to DNA replication, including nuclear localization of the virus helicase P143 and binding to ssDNA. LEF-3 appears to interact with itself as a homo-oligomer, although the details of this oligomeric structure are not yet known. To examine LEF-3-LEF-3 interactions, a bimolecular fluorescent protein complementation assay was used. Pairs of recombinant plasmids expressing full-length LEF-3 fused to one of two complementary fragments (V1 or V2) of a variant of yellow fluorescent protein named 'Venus' were constructed. Plasmids expressing fusions with complementary fragments of Venus were co-transfected into Sf21 cells and analysed by fluorescence microscopy. Co-transfected plasmids expressing full-length V1-LEF-3 and V2-LEF-3 showed positive fluorescence, confirming the formation of homo-oligomers. A series of truncated V1/V2-LEF-3 fusions was constructed and used to investigate interactions with one another as well as with full-length LEF-3.

  13. Molecular Architecture of Full-length TRF1 Favors Its Interaction with DNA*

    PubMed Central

    Boskovic, Jasminka; Martinez-Gago, Jaime; Mendez-Pertuz, Marinela; Buscato, Alberto; Martinez-Torrecuadrada, Jorge Luis; Blasco, Maria A.

    2016-01-01

    Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function. PMID:27563064

  14. Walking Speed Influences the Effects of Implicit Visual Feedback Distortion on Modulation of Gait Symmetry

    PubMed Central

    Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae

    2018-01-01

    The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481

  15. Mechanical heterogeneity in ionic liquids

    NASA Astrophysics Data System (ADS)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  16. Model-independent description of quartet nd scattering at low energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinyuk, B.E.; Simenog, I.V.; Sitnichenko, A.I.

    1984-02-01

    Asymptotic expansions are obtained for the scattering length a/sub 3//sub ///sub 2/ and the effective range r/sub 3//sub ///sub 2/ for the quartet state of three nucleons in the form of series in powers of the two-nucleon triplet effective range r/sub 0t/. This allows a model-independent description of these parameters and of the quartet phase shift of nd scattering in the effective-range approximation. Correlations between the parameters of three- and two-nucleon scattering are proposed and explained; these correlations allow the systematization of numerical calculations of a/sub 3//sub ///sub 2/ and r/sub 3//sub ///sub 2/ for different forms of interaction potentials.more » The influence of the energy dependence of the interaction on a/sub 3//sub ///sub 2/ is also considered.« less

  17. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  18. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer.

    PubMed

    Clarke, Christina K; Gregory, Peter J; Lukac, Martin; Burridge, Amanda J; Allen, Alexandra M; Edwards, Keith J; Gooding, Mike J

    2017-09-01

    The genetic basis of increased rooting below the plough layer, post-anthesis in the field, of an elite wheat line (Triticum aestivum 'Shamrock') with recent introgression from wild emmer (T. dicoccoides), is investigated. Shamrock has a non-glaucous canopy phenotype mapped to the short arm of chromosome 2B (2BS), derived from the wild emmer. A secondary aim was to determine whether genetic effects found in the field could have been predicted by other assessment methods. Roots of doubled haploid (DH) lines from a winter wheat ('Shamrock' × 'Shango') population were assessed using a seedling screen in moist paper rolls, in rhizotrons to the end of tillering, and in the field post-anthesis. A linkage map was produced using single nucleotide polymorphism markers to identify quantitative trait loci (QTLs) for rooting traits. Shamrock had greater root length density (RLD) at depth than Shango, in the field and within the rhizotrons. The DH population exhibited diversity for rooting traits within the three environments studied. QTLs were identified on chromosomes 5D, 6B and 7B, explaining variation in RLD post-anthesis in the field. Effects associated with the non-glaucous trait on RLD interacted significantly with depth in the field, and some of this interaction mapped to 2BS. The effect of genotype was strongly influenced by the method of root assessment, e.g. glaucousness expressed in the field was negatively associated with root length in the rhizotrons, but positively associated with length in the seedling screen. To our knowledge, this is the first study to identify QTLs for rooting at depth in field-grown wheat at mature growth stages. Within the population studied here, our results are consistent with the hypothesis that some of the variation in rooting is associated with recent introgression from wild emmer. The expression of genetic effects differed between the methods of root assessment. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.

  20. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  1. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  2. Effect of length and location of edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography scans.

    PubMed

    Jamjoom, Faris Z; Kim, Do-Gyoon; Lee, Damian J; McGlumphy, Edwin A; Yilmaz, Burak

    2018-02-05

    Effects of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into cone-beam computed tomography (CBCT) scans has not been investigated. To evaluate the effect of length and location of the edentulous area on the accuracy of prosthetic treatment plan incorporation into CBCT scans using different methods. Direct digital scans of a completely dentate master model with removable radiopaque teeth were made using an intraoral scanner, and digital scans of stone duplicates of the master model were made using a laboratory scanner. Specific teeth were removed to simulate different clinical situations and their CBCT scans were made. Surface scans were registered onto the CBCT scans. Radiographic templates for each clinical situation were also fabricated and used during CBCT scans of the master models. Using metrology software, three-dimensional (3D) deviation was measured on standard tesselation language (STL) files created from the CBCT scans against an STL file of the master model created from a CBCT scan. Statistical analysis was done using the MIXED procedure in a statistical software and Tukey HSD test (α =.05). The interaction between location and method was significant (P = .009). Location had no significant effect on registration methods (P > .05), but on the radiographic templates (P = .011). Length of the edentulous area did not have any significant effect (P > .05). Accuracy of digital image registration methods was similar and higher than that of radiographic templates in all clinical situations. Tooth-bound radiographic templates were significantly more accurate than the free-end templates. The results of this study suggest using image registration instead of radiographic templates when planning dental implants, particularly in free-end situations. © 2018 Wiley Periodicals, Inc.

  3. Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia

    2018-01-01

    One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.

  4. Extensive citrus triploid hybrid production by 2x×4x sexual hybridizations and parent-effect on the length of the juvenile phase.

    PubMed

    Aleza, P; Juárez, J; Cuenca, J; Ollitrault, P; Navarro, L

    2012-09-01

    The citrus fresh market demands the production of seedless citrus fruits, as seedy fruits are not accepted by consumers. The recovery of triploid plants has proven to be the most promising approach to achieve this goal, since triploids have very low fertility, are generally seedless and do not induce seeds in other cultivars by cross pollination. Triploid plants can be recovered by 2x×4x sexual hybridization. In this work, we present an effective methodology to recover triploid plants from 2x×4x hybridizations based on in vitro embryo rescue, ploidy level analysis by flow cytometry and genetic origin of triploid plants. The pollen viability of diploid and tetraploid citrus genotypes was analyzed by comparing the pollen germination rate in vitro. The pollen viability of tetraploid (doubled-diploid) genotypes is generally reduced but sufficient for successful pollination. Triploid embryos were identified in normal and undeveloped seeds that did not germinate under greenhouse conditions. The influence of parents and environmental conditions on obtaining triploid plants was analyzed and a strong interaction was noted between the parents and environmental conditions. The parental effect on the length of the juvenile phase was also demonstrated through observations of a large number of progeny over the last 15 years. The juvenile phase length of the triploid hybrids obtained with 'Fortune' mandarin as female parent and tetraploid 'Orlando' tangelo as male parent was shorter than the juvenile phase obtained with a clementine as female parent and tetraploids of 'Nova', 'W. Leaf' and 'Pineapple' male parents. Effective methodology to recover citrus triploid plants from 2x×4x sexual hybridizations and the parental effect on the length of the juvenile phase.

  5. Molecular modeling of proteinlike inclusions in lipid bilayers: lipid-mediated interactions.

    PubMed

    Kik, Richard A; Leermakers, Frans A M; Kleijn, J Mieke

    2010-02-01

    We investigated the insertion of transmembrane structures in a lipid bilayer and their interactions using self-consistent field theory. The lipids are coarse-grained on a united-atom level and consist of a phosphatidylcholinelike headgroup and two hydrophobic tails. The inclusions, acting as simple models for proteins that span biological membranes, are rigid rods (radius R ) with a hydrophobic surface and hydrophilic end caps. The insertion free energy Omega of an individual rod is strongly regulated by the affinity between its hydrophobic surface and the lipid tails. This affinity also controls the best match of the hydrophobic length of the rod with that of the bilayer. The line tension tau(=Omega/2piR) is practically independent of R . The perturbations in the bilayer as a function of distance from the inclusion, have the shape of a damped oscillation. The wavelength and decay length are related to the elastic properties of the bilayer and do not depend on R . These results are used to analyze how the lipid matrix affects the interaction between transmembrane objects, for computational reasons considering the limit of R-->infinity . Contributions on different length scales can be distinguished: (i) a long-range elastic interaction, which is an exponentially decaying oscillation; (ii) an exponentially decaying repulsion on an intermediate length scale, resulting from the loss of conformational entropy of the lipid tails; and (iii) a short-range interaction due to the finite compressibility of the lipid tails, which manifests either as a depletion attraction if there is no affinity between the tails and the inclusions' surface or, otherwise, as an oscillatory structural force.

  6. Thumb Reach of Indonesian Young Adult When Interacting with Touchscreen of Single-Handed Device: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Umami, M. K.

    2018-01-01

    This study is a preliminary survey on thumb reach of Indonesian population when interacting with single-handed device. This study was aimed to know the thumb reach envelope on the screen of mobile phone. The correlation between the thumb reach vs. the hand length and thumb length was also identified. Thirty young adults participated in the study. All participants had normal body stature and were right-handed person. In the observational phase, the participant was asked to colour the canvas area on the screen of the mobile phone by using his/her thumb. The participant had to complete the task by applying the single hand interaction. The participant should grab the mobile phone as he/she use it normally in his/her daily activities. The thumb reach envelope of participants was identified from the coloured area of the canvas. The results of this study found that participants with a large hand length and thumb length tend to have a large thumb reach. The results of this study also show the thumb reach area of the participants is forming an elliptical shape that runs from the northeast to southwest on the device screen.

  7. Cultural Proficiency: Using Films to Get Groups Talking--and Listening--to One Another

    ERIC Educational Resources Information Center

    Nelson, Sarah W.; Guerra, Patricia L.

    2009-01-01

    Full-length films allow viewers to see the complexity and nuances of cultural interactions. Discussions following full-length films tend to be deeper and more insightful than those in response to a short clip. This makes watching full-length films an excellent strategy for helping teachers unpack beliefs, values, and stereotypes. In this article,…

  8. Nonlinear conductance in weakly disordered mesoscopic wires: Interaction and magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Mitscherling, Johannes

    2018-02-01

    We study the nonlinear conductance G ˜∂2I /∂ V2|V =0 in coherent quasi-one-dimensional weakly disordered metallic wires. Our analysis is based on the scattering approach and includes the effect of Coulomb interaction. The nonlinear conductance correlations can be related to integrals of two fundamental correlation functions: the correlator of functional derivatives of the conductance and the correlator of injectivities (the injectivity is the contribution to the local density of states of eigenstates incoming from one contact). These correlators are obtained explicitly by using diagrammatic techniques for weakly disordered metals. In a coherent wire of length L , we obtain rms (G )≃0.006 ETh-1 (and =0 ), where ETh=ℏ D /L2 is the Thouless energy of the wire and D the diffusion constant; the small dimensionless factor results from screening, i.e., cannot be obtained within a simple theory for noninteracting electrons. Electronic interactions are also responsible for an asymmetry under magnetic field reversal; the antisymmetric part of the nonlinear conductance (at high magnetic field) being much smaller than the symmetric one, rms (Ga)≃0.001 (gETh) -1 , where g ≫1 is the dimensionless (linear) conductance of the wire. In a weakly coherent wire (i.e., Lφ≪L , where Lφ is the phase coherence length), the nonlinear conductance is of the same order as the result G0 of a free electron calculation (although screening again strongly reduces the dimensionless prefactor); we get G ˜G0˜(Lφ/L ) 7 /2ETh-1 , while the antisymmetric part (at high magnetic field) now behaves as Ga˜(Lφ/L ) 11 /2(gETh) -1≪G . The effect of thermal fluctuations is studied: when the thermal length LT=√{ℏ D /kBT } is the smallest length scale, LT≪Lφ≪L , the free electron result G0˜(LT/L ) 3(Lφ/L ) 1 /2ETh-1 is negligible and the dominant contribution is provided by screening, G ˜(LT/L ) (Lφ/L ) 7 /2ETh-1 ; in this regime, the antisymmetric part is Ga˜(LT/L ) 2(Lφ/L ) 7 /2(gETh) -1 . All the precise dimensionless prefactors are obtained. Crossovers from zero to strong magnetic field regimes are also analyzed.

  9. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  10. Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2010-03-01

    The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.

  11. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy.

    PubMed

    Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G

    2016-03-07

    This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

  12. Influences of the chemical structure of entrainers on the activity coefficients in presence of biodiesel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Fleischmann, A.; Fang, Ye; Ruck, W.; Krahl, J.

    2012-05-01

    In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.

  13. Computational estimation of the influence of the main body-to-iliac limb length ratio on the displacement forces acting on an aortic endograft. Theoretical application to Bolton Treovance® Abdominal Stent-Graft.

    PubMed

    Georgakarakos, E; Xenakis, A; Georgiadis, G S; Argyriou, C; Manopoulos, C; Tsangaris, S; Lazarides, M K

    2014-10-01

    The influence of the relative iliac limb length of an endograft (EG) on the displacements forces (DF) predisposing to adverse effects are under-appreciated in the literature. Therefore, we conducted a computational study to estimate the magnitude of the DF acting over an entire reconstructed EG and its counterparts for a range of main body-to-iliac limb length (L1/L2) ratios. A customary bifurcated 3D model was computationally created and meshed using the commercially available ANSYS ICEM (Ansys Inc., Canonsburg, PA, USA) software. Accordingly, Fluid Structure Interaction was used to estimate the DF. The total length of the EG was kept constant, while the L1/L2 ratio ranged from 0.3 to 1.5. The increase in L1/L2 slightly affected the DF on the EG (ranging from 3.8 to 4.1 N) and its bifurcation (4.0 to 4.6 N). However, the forces exerted at the iliac sites were strongly affected by the L1/L2 values (ranging from 0.9 to 2.2 N), showing a parabolic pattern with a minimum for 0.6 ratio. It is suggested that the hemodynamic effect of the relative limb lengths should not be considered negligible. A high main body-to-iliac limb length ratio seems to favor hemodynamically a low bifurcation but it attenuates the main body-iliac limbs modular stability. Further clinical studies should investigate the relevant value of these findings. The Bolton Treovance(®) device is presented as a representative, improved stent-graft design that takes into account these hemodynamic parameters in order to achieve a promising, improved clinical performance.

  14. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length.

    PubMed

    Marko, John F

    2009-05-01

    The Gauss linking number (Ca) of two flexible polymer rings which are tethered to one another is investigated. For ideal random walks, mean linking-squared varies with the square root of polymer length while for self-avoiding walks, linking-squared increases logarithmically with polymer length. The free-energy cost of linking of polymer rings is therefore strongly dependent on degree of self-avoidance, i.e., on intersegment excluded volume. Scaling arguments and numerical data are used to determine the free-energy cost of fixed linking number in both the fluctuation and large-Ca regimes; for ideal random walks, for |Ca|>N;{1/4} , the free energy of catenation is found to grow proportional, variant|Ca/N;{1/4}|;{4/3} . When excluded volume interactions between segments are present, the free energy rapidly approaches a linear dependence on Gauss linking (dF/dCa approximately 3.7k_{B}T) , suggestive of a novel "catenation condensation" effect. These results are used to show that condensation of long entangled polymers along their length, so as to increase excluded volume while decreasing number of statistical segments, can drive disentanglement if a mechanism is present to permit topology change. For chromosomal DNA molecules, lengthwise condensation is therefore an effective means to bias topoisomerases to eliminate catenations between replicated chromatids. The results for mean-square catenation are also used to provide a simple approximate estimate for the "knotting length," or number of segments required to have a knot along a single circular polymer, explaining why the knotting length ranges from approximately 300 for an ideal random walk to 10;{6} for a self-avoiding walk.

  15. A comparison of attitudes toward length and quality of life between community-dwelling older adults and patients with advanced cancer.

    PubMed

    Malhotra, Chetna; Xiang, Ling; Ozdemir, Semra; Kanesvaran, Ravindran; Chan, Noreen; Finkelstein, Eric Andrew

    2017-10-01

    Applying prospect theory to end-of-life decision making, we hypothesize that community-dwelling older adults (CDOAs) will be relatively less inclined towards extending length over improving quality of life compared with patients. We also hypothesize that differences in relative inclination for length over quality of life between the 2 groups will decrease with advancing age. We tested these hypotheses by administering the quality-quantity questionnaire to 1067 CDOAs and 320 stage IV cancer patients and applying a linear regression model to assess whether relative inclination for length over quality of life, as estimated by the questionnaire, differed between CDOAs and patients after controlling for differences in sociodemographic characteristics. We also assessed the effect of interaction between age and participant status (CDOA compared to patient) on relative inclination for length over quality of life. Consistent with prospect theory, a lower proportion of CDOAs (26%) than patients (42%) were relatively more inclined towards length over quality of life. Results were significant even after adjusting for differences in sociodemographics (P < .01). With increasing age, the difference in relative inclination between CDOAs and patients increased (P = .01). Findings indicate that attitudes towards length and quality of life differ by life stage. This has implications for end-of-life care decisions made by CDOAs, such as purchasing health or disability insurance and signing advance directives or care plans. Copyright © 2016 John Wiley & Sons, Ltd.

  16. MODEL AND CELL MEMBRANE PARTITIONING OF PERFLUOROOCTANESULFONATE IS INDEPENDENT OF THE LIPID CHAIN LENGTH

    PubMed Central

    Xie, Wei; Ludewig, Gabriele; Wang, Kai; Lehmler, Hans-Joachim

    2009-01-01

    Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse health effects in humans and animals by interacting with and disturbing of the normal properties of biological lipid assemblies. To gain further insights into these interactions, we investigated the effect of PFOS potassium salt on dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) model membranes using fluorescence anisotropy measurements and differential scanning calorimetry (DSC) and on the cell membrane of HL-60 human leukemia cells and freshly isolated rat alveolar macrophages using fluorescence anisotropy measurements. PFOS caused a concentration-dependent decrease of the main phase transition temperature (Tm) and an increased peak width (ΔTw) in both the fluorescence anisotropy and the DSC experiments, with a rank order DMPC > DPPC > DSPC. PFOS caused a fluidization of the gel phase of all phosphatidylcholines investigated, but had the opposite effect on the liquid crystalline phase. The apparent partition coefficients of PFOS between the phosphatidylcholine bilayer and the bulk aqueous phase were largely independent of the phosphatidylcholine chain length and ranged from 4.4 × 104 to 8.8 × 104. PFOS also significantly increased the fluidity of membranes of cells. These findings suggest that PFOS readily partitions into lipid assemblies, independent of their composition, and may cause adverse biological effects by altering their fluidity in a manner that depends on the membrane cooperativity and state (e.g., gel versus liquid crystalline phase) of the lipid assembly. PMID:19932010

  17. Development of a QTL-environment-based predictive model for node addition rate in common bean.

    PubMed

    Zhang, Li; Gezan, Salvador A; Eduardo Vallejos, C; Jones, James W; Boote, Kenneth J; Clavijo-Michelangeli, Jose A; Bhakta, Mehul; Osorno, Juan M; Rao, Idupulapati; Beebe, Stephen; Roman-Paoli, Elvin; Gonzalez, Abiezer; Beaver, James; Ricaurte, Jaumer; Colbert, Raphael; Correll, Melanie J

    2017-05-01

    This work reports the effects of the genetic makeup, the environment and the genotype by environment interactions for node addition rate in an RIL population of common bean. This information was used to build a predictive model for node addition rate. To select a plant genotype that will thrive in targeted environments it is critical to understand the genotype by environment interaction (GEI). In this study, multi-environment QTL analysis was used to characterize node addition rate (NAR, node day - 1 ) on the main stem of the common bean (Phaseolus vulgaris L). This analysis was carried out with field data of 171 recombinant inbred lines that were grown at five sites (Florida, Puerto Rico, 2 sites in Colombia, and North Dakota). Four QTLs (Nar1, Nar2, Nar3 and Nar4) were identified, one of which had significant QTL by environment interactions (QEI), that is, Nar2 with temperature. Temperature was identified as the main environmental factor affecting NAR while day length and solar radiation played a minor role. Integration of sites as covariates into a QTL mixed site-effect model, and further replacing the site component with explanatory environmental covariates (i.e., temperature, day length and solar radiation) yielded a model that explained 73% of the phenotypic variation for NAR with root mean square error of 16.25% of the mean. The QTL consistency and stability was examined through a tenfold cross validation with different sets of genotypes and these four QTLs were always detected with 50-90% probability. The final model was evaluated using leave-one-site-out method to assess the influence of site on node addition rate. These analyses provided a quantitative measure of the effects on NAR of common beans exerted by the genetic makeup, the environment and their interactions.

  18. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.

    PubMed

    Gong, Xiuqing; Wu, Jinbo; Huang, Xianxiang; Wen, Weijia; Sheng, Ping

    2008-04-23

    We show that the chemical structures of silicone oils can have an important role in the giant electrorheological (GER) effect. The interaction between silicone oils and solid nanoparticles is found to significantly influence the ER effect. By increasing the kinematic viscosity of silicone oils, which is a function of siloxane chain length, sol-like, gel-like and clay-like appearances of the constituted ER fluids were observed. Different functional-group-terminated silicone oils were also employed as the dispersing media. Significant differences of yield stress were found. We systematically study the effect of siloxane chain lengths on the permeability of oils traveling through the porous spaces between the particles (using the Washburn method), oils adsorbed on the particles' surface (using FT-IR spectra), as well as their particle size distribution (using dynamic light scattering). Our results indicate the hydrogen bonds are instrumental in linking the silicone oil to GER solid particles, and long chain lengths can enhance the agglomeration of the GER nanoparticles to form large clusters. An optimal oil structure, with hydroxyl-terminated silicone oil and a suitable viscosity, was chosen which can create the highest yield stress of ∼300 kPa under a 5 kV mm(-1) DC electric field.

  19. Word learning and the cerebral hemispheres: from serial to parallel processing of written words

    PubMed Central

    Ellis, Andrew W.; Ferreira, Roberto; Cathles-Hagan, Polly; Holt, Kathryn; Jarvis, Lisa; Barca, Laura

    2009-01-01

    Reading familiar words differs from reading unfamiliar non-words in two ways. First, word reading is faster and more accurate than reading of unfamiliar non-words. Second, effects of letter length are reduced for words, particularly when they are presented in the right visual field in familiar formats. Two experiments are reported in which right-handed participants read aloud non-words presented briefly in their left and right visual fields before and after training on those items. The non-words were interleaved with familiar words in the naming tests. Before training, naming was slow and error prone, with marked effects of length in both visual fields. After training, fewer errors were made, naming was faster, and the effect of length was much reduced in the right visual field compared with the left. We propose that word learning creates orthographic word forms in the mid-fusiform gyrus of the left cerebral hemisphere. Those word forms allow words to access their phonological and semantic representations on a lexical basis. But orthographic word forms also interact with more posterior letter recognition systems in the middle/inferior occipital gyri, inducing more parallel processing of right visual field words than is possible for any left visual field stimulus, or for unfamiliar non-words presented in the right visual field. PMID:19933140

  20. Relaxant effect of superimposed length oscillation on sensitized airway smooth muscle.

    PubMed

    Jo-Avila, Miguel; Al-Jumaily, Ahmed M; Lu, Jun

    2015-03-01

    Asthma is associated with reductions in the airway lumen and breathing difficulties that are attributed to airway smooth muscles (ASM) hyperconstriction. Pharmaceutical bronchodilators such as salbutamol and isoproterenol are normally used to alleviate this constriction. Deep inspirations and tidal oscillations (TO) have also been reported to relax ASM in healthy airways with less response in asthmatics. Little information is available on the effect of other forms of oscillation on asthmatic airways. This study investigates the effect of length oscillations (LO), with amplitude 1 and 1.5% in the frequency range 5-20 Hz superimposed on breathing equivalent LO, on contracted ASM dissected from sensitized mice. These mice are believed to show some symptoms such as airway hyperreactivity similar to those associated with asthma in humans. In the frequency range used in this work, this study shows an increase in ASM relaxation of an average of 10% for 1.5% amplitude when compared with TO, ISO, or the combination of both. No similar finding is observed with 1% amplitude. This suggests that superimposed length oscillation acting over the interaction of myosin and actin during contraction may lead to temporal rearrangement and disturbance of the cross-bridge process in asthmatic airways. Copyright © 2015 the American Physiological Society.

  1. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    PubMed

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Kinesin 1 regulates cilia length through an interaction with the Bardet-Biedl syndrome related protein CCDC28B.

    PubMed

    Novas, Rossina; Cardenas-Rodriguez, Magdalena; Lepanto, Paola; Fabregat, Matías; Rodao, Magela; Fariello, María Inés; Ramos, Mauricio; Davison, Camila; Casanova, Gabriela; Alfaya, Lucía; Lecumberry, Federico; González-Sapienza, Gualberto; Irigoín, Florencia; Badano, Jose L

    2018-02-14

    Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, polydactyly, renal disease and mental retardation. CCDC28B is a BBS-associated protein that we have previously shown plays a role in cilia length regulation whereby its depletion results in shortened cilia both in cells and Danio rerio (zebrafish). At least part of that role is achieved by its interaction with the mTORC2 component SIN1, but the mechanistic details of this interaction and/or additional functions that CCDC28B might play in the context of cilia remain poorly understood. Here we uncover a novel interaction between CCDC28B and the kinesin 1 molecular motor that is relevant to cilia. CCDC28B interacts with kinesin light chain 1 (KLC1) and the heavy chain KIF5B. Notably, depletion of these kinesin 1 components results in abnormally elongated cilia. Furthermore, through genetic interaction studies we demonstrate that kinesin 1 regulates ciliogenesis through CCDC28B. We show that kinesin 1 regulates the subcellular distribution of CCDC28B, unexpectedly, inhibiting its nuclear accumulation, and a ccdc28b mutant missing a nuclear localization motif fails to rescue the phenotype in zebrafish morphant embryos. Therefore, we uncover a previously unknown role of kinesin 1 in cilia length regulation that relies on the BBS related protein CCDC28B.

  3. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    PubMed

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  4. Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions

    DOE PAGES

    Pollng-Skutvik, Ryan; Mongcopa, Katrina Irene S.; Faraone, Antonio; ...

    2016-08-17

    We investigate the structure and dynamics of silica nanoparticles and polymer chains in semidilute solutions of high molecular weight polystyrene in 2-butanone to determine the effect of long-range interparticle interactions on the coupling between particle and polymer dynamics. Particles at concentrations of 1–10 wt % are well dispersed in the semidilute polymer solutions and exhibit long-range electrostatic repulsions between particles. Because the particles are comparably sized to the radius of gyration of the polymer, the particle dynamics is predicted to couple to that of the polymer. We verify that the polymer structure and dynamics are not significantly affected by themore » particles, indicating that the particle–polymer coupling does not change with increasing particle loading. We find that the coupling between the dynamics of comparably sized particles and polymer results in subdiffusive particle dynamics, as expected. Over the interparticle distance, however, the particle dynamics is hindered and not fully described by the relaxation of the surrounding polymer chains. Instead, the particle dynamics is inversely related to the structure factor, suggesting that physical particle–polymer coupling on short length scales and interparticle interactions on long length scales both present energetic barriers to particle motion that lead to subdiffusive dynamics and de Gennes narrowing, respectively.« less

  5. Potential interactions among linguistic, autonomic, and motor factors in speech.

    PubMed

    Kleinow, Jennifer; Smith, Anne

    2006-05-01

    Though anecdotal reports link certain speech disorders to increases in autonomic arousal, few studies have described the relationship between arousal and speech processes. Additionally, it is unclear how increases in arousal may interact with other cognitive-linguistic processes to affect speech motor control. In this experiment we examine potential interactions between autonomic arousal, linguistic processing, and speech motor coordination in adults and children. Autonomic responses (heart rate, finger pulse volume, tonic skin conductance, and phasic skin conductance) were recorded simultaneously with upper and lower lip movements during speech. The lip aperture variability (LA variability index) across multiple repetitions of sentences that varied in length and syntactic complexity was calculated under low- and high-arousal conditions. High arousal conditions were elicited by performance of the Stroop color word task. Children had significantly higher lip aperture variability index values across all speaking tasks, indicating more variable speech motor coordination. Increases in syntactic complexity and utterance length were associated with increases in speech motor coordination variability in both speaker groups. There was a significant effect of Stroop task, which produced increases in autonomic arousal and increased speech motor variability in both adults and children. These results provide novel evidence that high arousal levels can influence speech motor control in both adults and children. (c) 2006 Wiley Periodicals, Inc.

  6. Structural modulation of factor VIIa by full-length tissue factor (TF1-263): implication of novel interactions between EGF2 domain and TF.

    PubMed

    Prasad, Ramesh; Sen, Prosenjit

    2018-02-01

    Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.

  7. Nano and Mesoscale Ion and Water Transport in Perfluorosulfonic AcidMembranes

    DTIC Science & Technology

    2017-10-01

    Nano- and Mesoscale Ion and Water Transport in Perfluorosulfonic-Acid Membranes A. R. Crothers a,b , C. J. Radke a,b , A. Z. Weber a a...Berkeley, CA 94720, USA Water and aqueous cations transport along multiple length scales in perfluorosulfonic-acid membranes. Molecular interactions...as a function of hydration. A resistor network upscales the nanoscale properties to predict effective membrane ion and water transport and their

  8. Promoting Linguistic Complexity, Greater Message Length and Ease of Engagement in Email Writing in People with Aphasia: Initial Evidence from a Study Utilizing Assistive Writing Software

    ERIC Educational Resources Information Center

    Thiel, Lindsey; Sage, Karen; Conroy, Paul

    2017-01-01

    Background: Improving email writing in people with aphasia could enhance their ability to communicate, promote interaction and reduce isolation. Spelling therapies have been effective in improving single-word writing. However, there has been limited evidence on how to achieve changes to everyday writing tasks such as email writing in people with…

  9. Effects of Different Lipophilized Ferulate Esters in Fish Oil-Enriched Milk: Partitioning, Interaction, Protein, and Lipid Oxidation.

    PubMed

    Qiu, Xujian; Jacobsen, Charlotte; Villeneuve, Pierre; Durand, Erwann; Sørensen, Ann-Dorit Moltke

    2017-11-01

    Antioxidant effects of ferulic acid and lipophilized ferulate esters were investigated in fish oil-enriched milk. Methyl ferulate (C1) and ethyl ferulate (C2) more efficiently prevented lipid oxidation than dodecyl ferulate (C12) did, followed by ferulic acid (C0). The combination of C1 or C2 with C12 could have a "synergistic" effect indicated by peroxide value, hexanal, and 1-penten-3-ol analysis results. These antioxidants also showed protein oxidation inhibition effects. The most effective antioxidants (C1 and C2) had the highest concentration in the precipitate phase but the lowest concentration in the aqueous phase, which was the opposite of the partitioning of C0. C12 had the highest concentration in the oil and emulsion phase. In particular, the interaction between ferulates esterified with short and medium alkyl chain lengths could lead to their "synergistic" effects in fish oil-enriched milk, which could be caused by the change in their partitioning or localization at the interface.

  10. Hydrophobic tail length plays a pivotal role in amyloid beta (25-35) fibril-surfactant interactions.

    PubMed

    Bag, Sudipta; Chaudhury, Susmitnarayan; Pramanik, Dibyendu; DasGupta, Sunando; Dasgupta, Swagata

    2016-09-01

    The amyloid β-peptide fragment comprising residues 25-35 (Aβ25-35 ) is known to be the most toxic fragment of the full length Aβ peptide which undergoes fibrillation very rapidly. In the present work, we have investigated the effects of the micellar environment (cationic, anionic, and nonionic) on preformed Aβ25-35 fibrils. The amyloid fibrils have been prepared and characterized by several biophysical and microscopic techniques. Effects of cationic dodecyl trimethyl ammonium bromide (DTAB), cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS), and nonionic polyoxyethyleneoctyl phenyl ether (Triton X-100 or TX) on fibrils have been studied by Thioflavin T fluorescence, UV-vis spectroscopy based turbidity assay and microscopic analyses. Interestingly, DTAB and SDS micelles were observed to disintegrate prepared fibrils to some extent irrespective of their charges. CTAB micelles were found to break down the fibrillar assembly to a greater extent. On the other hand, the nonionic surfactant TX was found to trigger the fibrillation process. The presence of a longer hydrophobic tail in case of CTAB is assumed to be a reason for its higher fibril disaggregating efficacy, the premise of their formation being largely attributed to hydrophobic interactions. Proteins 2016; 84:1213-1223. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks

    DOE PAGES

    Halpern, Federico D.; Ricci, Paolo

    2016-12-19

    The narrow power decay-length (λ q), recently found in the scrape-off layer (SOL) of inner wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared E×B poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. As a result, analytical calculations suggest that the IWL λ q is roughlymore » equal to the turbulent correlation length.« less

  12. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    USGS Publications Warehouse

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  13. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  14. Salt Neutrino Detector for Ultrahigh-Energy Neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiba, M.; Yasuda, O.; Kamijo, T.

    2004-11-01

    Rock salt and limestone are studied to determine their suitability for use as a radio-wave transmission medium in an ultrahigh energy (UHE) cosmic neutrino detector. A sensible radio wave would be emitted by the coherent Cherenkov radiation from negative excess charges inside an electromagnetic shower upon interaction of a UHE neutrino in a high-density medium (Askar'yan effect). If the attenuation length for the radio wave in the material is large, a relatively small number of radio-wave sensors could detect the interaction occurring in the massive material. We measured the complex permittivity of the rock salt and limestone by the perturbedmore » cavity resonator method at 9.4 and 1 GHz to good precision. We obtained new results of measurements at the frequency at 1.0 GHz. The measured value of the radio-wave attenuation length of synthetic rock salt samples is 1080 m. The samples from the Hockley salt mine in the United States show attenuation length of 180 m at 1 GHz, and then we estimate it by extrapolation to be as long as 900 m at 200 MHz. The results show that there is a possibility of utilizing natural massive deposits of rock salt for a UHE neutrino detector. A salt neutrino detector with a size of 2 x 2 x 2 km would detect 10 UHE neutrino/yr generated through the GZK process.« less

  15. Brownian Dynamics Simulations of Polyelectrolyte Adsorption in Shear Flow

    NASA Astrophysics Data System (ADS)

    Panwar, Ajay

    2005-03-01

    The adsorption of polyelectrolytes onto charged surfaces often occurs in microfludic devices and can influence their operation. We employ Brownian dynamics simulations to investigate the effect of a simple shear flow on the adsorption of an isolated polyelectrolyte molecule onto an oppositely charged surface. The polyelectrolyte is modeled as a freely-jointed bead-rod chain where the total charge is distributed uniformly among all the beads, and the beads are allowed to interact with one another and the charged surface through screened Coulombic interactions. The simulations are performed by placing the chain some distance above the surface, and the adsorption behavior is studied as a function of the screening length. Specifically, we look at the components of the radius of gyration, normal and parallel to the adsorbing surface, as functions of the screening length, both in the absence and presence of the flow. We find that in the absence of flow, the chain lies flat and stretched on the adsorbing surface in the limit of weak screening, but attains free solution behavior in the limit of strong screening. In the presence of a shear flow, the chain orientation in the direction of the flow increases with increasing Weissenberg number over the entire range of screening lengths studied. We also find that increasing the strength of the shear flow leads to an increased contact of the chain with the surface compared to the case when no flow is present.

  16. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase.

    PubMed

    Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu

    2015-11-01

    An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Monitoring HPV-16 E7 phosphorylation events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogueira, Marcela O.; Hošek, Tomáš; Calçada, Eduar

    HPV-16 E7 is one of the key proteins that, by interfering with the host metabolism through many protein-protein interactions, hijacks cell regulation and contributes to malignancy. Here we report the high resolution investigation of the CR3 region of HPV-16 E7, both as an isolated domain and in the full-length protein. This opens the way to the atomic level study of the many interactions in which HPV-16 E7 is involved. Along these lines we show here the effect of one of the key post-translational modifications of HPV-16 E7, the phosphorylation by casein kinase II.

  18. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    PubMed

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.

  19. FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers

    NASA Astrophysics Data System (ADS)

    Bulyuk, A. N.

    1992-10-01

    The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.

  20. Therapeutic touch and post-Hurricane Hugo stress.

    PubMed

    Olson, M; Sneed, N; Bonadonna, R; Ratliff, J; Dias, J

    1992-06-01

    This repeated-session design sought to answer questions about the effectiveness of therapeutic touch in reduction of stress for 23 individuals following a natural disaster. In addition, methodological issues related to the average length of time for a therapeutic-touch treatment and a method of documenting the nonverbal interaction between subject and toucher were investigated. Findings indicate that stressed people report themselves to be less stressed following therapeutic touch (p = .05). Time of therapeutic-touch intervention varied significantly between the touchers, with a range of 6.8 to 20 minutes. Qualitative data examining the interaction of toucher and subject raised a number of questions that require further study.

  1. Prediction of enhancer-promoter interactions via natural language processing.

    PubMed

    Zeng, Wanwen; Wu, Mengmeng; Jiang, Rui

    2018-05-09

    Precise identification of three-dimensional genome organization, especially enhancer-promoter interactions (EPIs), is important to deciphering gene regulation, cell differentiation and disease mechanisms. Currently, it is a challenging task to distinguish true interactions from other nearby non-interacting ones since the power of traditional experimental methods is limited due to low resolution or low throughput. We propose a novel computational framework EP2vec to assay three-dimensional genomic interactions. We first extract sequence embedding features, defined as fixed-length vector representations learned from variable-length sequences using an unsupervised deep learning method in natural language processing. Then, we train a classifier to predict EPIs using the learned representations in supervised way. Experimental results demonstrate that EP2vec obtains F1 scores ranging from 0.841~ 0.933 on different datasets, which outperforms existing methods. We prove the robustness of sequence embedding features by carrying out sensitivity analysis. Besides, we identify motifs that represent cell line-specific information through analysis of the learned sequence embedding features by adopting attention mechanism. Last, we show that even superior performance with F1 scores 0.889~ 0.940 can be achieved by combining sequence embedding features and experimental features. EP2vec sheds light on feature extraction for DNA sequences of arbitrary lengths and provides a powerful approach for EPIs identification.

  2. Differential segregation in a cell-cell contact interface: the dynamics of the immunological synapse.

    PubMed Central

    Burroughs, Nigel John; Wülfing, Christoph

    2002-01-01

    Receptor-ligand couples in the cell-cell contact interface between a T cell and an antigen-presenting cell form distinct geometric patterns and undergo spatial rearrangement within the contact interface. Spatial segregation of the antigen and adhesion receptors occurs within seconds of contact, central aggregation of the antigen receptor then occurring over 1-5 min. This structure, called the immunological synapse, is becoming a paradigm for localized signaling. However, the mechanisms driving its formation, in particular spatial segregation, are currently not understood. With a reaction diffusion model incorporating thermodynamics, elasticity, and reaction kinetics, we examine the hypothesis that differing bond lengths (extracellular domain size) is the driving force behind molecular segregation. We derive two key conditions necessary for segregation: a thermodynamic criterion on the effective bond elasticity and a requirement for the seeding/nucleation of domains. Domains have a minimum length scale and will only spontaneously coalesce/aggregate if the contact area is small or the membrane relaxation distance large. Otherwise, differential attachment of receptors to the cytoskeleton is required for central aggregation. Our analysis indicates that differential bond lengths have a significant effect on synapse dynamics, i.e., there is a significant contribution to the free energy of the interaction, suggesting that segregation by differential bond length is important in cell-cell contact interfaces and the immunological synapse. PMID:12324401

  3. Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster

    NASA Astrophysics Data System (ADS)

    Duan, Ping; Bian, Xingyu; Cao, Anning; Liu, Guangrui; Chen, Long; Yin, Yan

    2016-05-01

    The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of the segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected. supported by National Natural Science Foundation of China (Nos. 11375039 and 11275034) and the Key Project of Science and Technology of Liaoning Province, China (No. 2011224007) and the Fundamental Research Funds for the Central Universities, China (No. 3132014328)

  4. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems

    PubMed Central

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140

  5. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    PubMed

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  6. Casimir interaction of rodlike particles in a two-dimensional critical system.

    PubMed

    Eisenriegler, E; Burkhardt, T W

    2016-09-01

    We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.

  7. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  8. Membrane-Mediated Cooperativity of Proteins

    NASA Astrophysics Data System (ADS)

    Weikl, Thomas R.

    2018-04-01

    Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.

  9. Interaction of cationic surfactants with DNA: a single-molecule study

    PubMed Central

    Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin

    2008-01-01

    The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749

  10. Role of anode length in a mather-type plasma focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, F.N.; Zakaullah, M.; Nisar, M.

    In this paper, neutron emission from a 3 KJ Mather-type plasma focus is studied. Specifically, the behavior of system with the change in anode length is investigated. Anode lengths of high and low fluence anisotropy as well as for high neutron yield are identified. Experiment also suggest the possibility of ion beam generation leading to neutron production via beam-plasma interaction.

  11. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    NASA Astrophysics Data System (ADS)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  12. The interaction of glottal-pulse rate and vocal-tract length in judgements of speaker size, sex, and age

    NASA Astrophysics Data System (ADS)

    Smith, David R. R.; Patterson, Roy D.

    2005-11-01

    Glottal-pulse rate (GPR) and vocal-tract length (VTL) are related to the size, sex, and age of the speaker but it is not clear how the two factors combine to influence our perception of speaker size, sex, and age. This paper describes experiments designed to measure the effect of the interaction of GPR and VTL upon judgements of speaker size, sex, and age. Vowels were scaled to represent people with a wide range of GPRs and VTLs, including many well beyond the normal range of the population, and listeners were asked to judge the size and sex/age of the speaker. The judgements of speaker size show that VTL has a strong influence upon perceived speaker size. The results for the sex and age categorization (man, woman, boy, or girl) show that, for vowels with GPR and VTL values in the normal range, judgements of speaker sex and age are influenced about equally by GPR and VTL. For vowels with abnormal combinations of low GPRs and short VTLs, the VTL information appears to decide the sex/age judgement.

  13. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    NASA Astrophysics Data System (ADS)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  14. Nonlinear Response of Thin Cylindrical Shells with Longitudinal Cracks and Subjected to Internal Pressure and Axial compression Loads

    NASA Technical Reports Server (NTRS)

    Starnes, James H.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical study of the nonlinear response of a thin unstiffened aluminum cylindrical shell with a longitudinal crack are presented. The shell is analyzed with a nonlinear shell analysis code that maintains the shell in a nonlinear equilibrium state while the crack is grown. The analysis accurately accounts for global and local structural response phenomena. Results are presented for internal pressure, axial compression, and combined internal pressure and axial compression loads. The effects of varying crack length on the nonlinear response of the shell subjected to internal pressure are described. The effects of varying crack length on the prebuckling, buckling and postbuckling responses of the shell subjected to axial compression, and subjected to combined internal pressure and axial compression are also described. The results indicate that the nonlinear interaction between the in-plane stress resultants and the out-of-plane displacements near a crack can significantly affect the structural response of the shell. The results also indicate that crack growth instabilities and shell buckling instabilities can both affect the response of the shell as the crack length is increased.

  15. Adult Chinese as a Second Language Learners' Willingness to Communicate in Chinese: Effects of Cultural, Affective, and Linguistic Variables.

    PubMed

    Liu, Meihua

    2017-06-01

    The present research explored the effects of cultural, affective, and linguistic variables on adult Chinese as a second language learners' willingness to communicate in Chinese. One hundred and sixty-two Chinese as a second language learners from a Chinese university answered the Willingness to Communicate in Chinese Scale, the Intercultural Sensitivity Scale, Chinese Speaking Anxiety Scale, Chinese Learning Motivation Scale, Use of Chinese Profile, as well as the Background Questionnaire. The major findings were as follows: (1) the Willingness to Communicate in Chinese Scales were significantly negatively correlated with Chinese Speaking Anxiety Scale but positively correlated with length of stay in China and (2) Chinese Speaking Anxiety Scale was a powerful negative predictor for the overall willingness to communicate in Chinese and the Willingness to Communicate in Chinese Scales, followed by length of stay in China, Chinese Learning Motivation Scale, interaction attentiveness, and Chinese proficiency level. Apparently, students' willingness to communicate in Chinese is largely determined by their Chinese Speaking Anxiety Scale level and length of stay in China, mediated by other variables such as Chinese proficiency level and intercultural communication sensitivity level.

  16. Is the sagittal postural alignment different in normal and dysphonic adult speakers?

    PubMed

    Franco, Débora; Martins, Fernando; Andrea, Mário; Fragoso, Isabel; Carrão, Luís; Teles, Júlia

    2014-07-01

    Clinical research in the field of voice disorders, in particular functional dysphonia, has suggested abnormal laryngeal posture due to muscle adaptive changes, although specific evidence regarding body posture has been lacking. The aim of our study was to verify if there were significant differences in sagittal spine alignment between normal (41 subjects) and dysphonic speakers (33 subjects). Cross-sectional study. Seventy-four adults, 35 males and 39 females, were submitted to sagittal plane photographs so that spine alignment could be analyzed through the Digimizer-MedCalc Software Ltd program. Perceptual and acoustic evaluation and nasoendoscopy were used for dysphonic judgments: normal and dysphonic speakers. For thoracic length curvature (TL) and for the kyphosis index (KI), a significant effect of dysphonia was observed with mean TL and KI significantly higher for the dysphonic speakers than for the normal speakers. Concerning the TL variable, a significant effect of sex was found, in which the mean of the TL was higher for males than females. The interaction between dysphonia and sex did not have a significant effect on TL and KI variables. For the lumbar length curvature variable, a significant main effect of sex was demonstrated; there was no significant main effect of dysphonia or significant sex×dysphonia interaction. Findings indicated significant differences in some sagittal spine posture measures between normal and dysphonic speakers. Postural measures can add useful information to voice assessment protocols and should be taken into account when considering particular treatment strategies. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Long-legged bees make adaptive leaps: linking adaptation to coevolution in a plant-pollinator network.

    PubMed

    Pauw, Anton; Kahnt, Belinda; Kuhlmann, Michael; Michez, Denis; Montgomery, Graham A; Murray, Elizabeth; Danforth, Bryan N

    2017-09-13

    Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant-pollinator coevolution. © 2017 The Author(s).

  18. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pechurskaya, Tatiana A.; Harnastai, Ivan N.; Grabovec, Irina P.

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major rolemore » in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.« less

  19. Thermal spraying of polyethylene-based polymers: Processing and characterization

    NASA Astrophysics Data System (ADS)

    Otterson, David Mark

    This research explores the development of a flame-spray process map as it relates to polymers. This work provides a more complete understanding of the thermal history of the coating material from injection, to deposition and finally to cooling. This was accomplished through precise control of the processing conditions during deposition. Mass flow meters were used to monitor air and fuel flows as they were systematically changed, while temperatures were simultaneously monitored along the length of the flame. A process model was then implemented that incorporated this information along with measured particle velocities, particle size distribution, the polymer's melting temperature and its enthalpy of melting. This computational model was then used to develop a process map that described particle softening, melting and decomposition phenomena as a function of particle size and standoff distance. It demonstrated that changes in particle size caused significant variations in particle states achieved in-flight. A series of experiments were used to determine the range of spray parameters within which a cohesive coating without visible signs of degradation could be sprayed. These results provided additional information that complimented the computational processing map. The boundaries established by these results were the basis for a Statistical Design of Experiments that tested the effects that subtle processing changes had on coating properties. A series of processing maps were developed that combined the computational and the experimental results to describe the manner in which processing parameters interact to determine the degree of melting, polymer degradation and coating porosity. Strong interactions between standoff distance and traverse rate can cause the polymer to degrade and form pores in the coating. A clear picture of the manner in which particle size and standoff distance interact to determine particle melting was provided by combining the computational processing map with the collected splats and microstructures. Finally, a strong interaction was observed between standoff distance and flame length, which is determined by the air:fuel ratio. When flame length exceeds the standoff distance, polymer degradation results from excessive heating of the substrate. A descriptive model of the process is then provided to highlight the importance of these interactions. (Abstract shortened by UMI.)

  20. Ionic liquids-mediated interactions between nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhou; Zhang, Fei; Huang, Jingsong

    Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less

  1. Ionic liquids-mediated interactions between nanorods

    DOE PAGES

    Yu, Zhou; Zhang, Fei; Huang, Jingsong; ...

    2017-10-06

    Surface forces mediated by room-temperature ionic liquids (RTILs) play an essential role in diverse applications including self-assembly, lubrication, and electrochemical energy storage. In this work, using molecular simulations we study the interactions between two nanorods immersed in model RTILs at rod-rod separations where both structural and double layer forces are important. The interaction force between neutral rods oscillates as the two rods approach each other, similar to the classical structural forces. Such oscillatory force originates from the density oscillation of RTILs near each rod and is affected by the packing constraints imposed by the neighboring rods. The oscillation period andmore » decay length of the oscillatory force are mainly dictated by the ion density distribution near isolated nanorods. When charges are introduced on the rods, the interaction force remains short-range and oscillatory, similar to the interactions between planar walls mediated by some protic RTILs reported earlier. Nevertheless, introducing net charges to the rods greatly changes the rod-rod interactions, e.g., by delaying the appearance of the first force trough and increasing the oscillation period and decay length of the interaction force. The oscillation period and decay length of the oscillatory force and free energy are commensurate with those of the space charge density near an isolated, charged rod. The free energy of rod-rod interactions reaches local minima (maxima) at rod-rod separations when the space charges near the two rods interfere constructively (destructively). Here, the insight on the short-range interactions between nanorods in RTILs helps guide the design of novel materials, e.g., crystalline ion gels based on rigid-rod polyanions and RTILs.« less

  2. The effects of two levels of linguistic constraint on echolalia and generative language production in children with autism.

    PubMed

    Rydell, P J; Mirenda, P

    1991-06-01

    The effects of specific types of adult antecedent utterances (high vs. low constraint) on the verbal behaviors produced by three subjects with autism were examined. Adult utterance types were differentiated in terms of the amount of control the adults exhibited in their verbal interactions with the subjects during a free play setting. Videotaped interactions were analyzed and coded according to a predetermined categorical system. The results of this investigation suggest that the level of linguistic constraint exerted on the child interactants during naturalistic play sessions affected their communicative output. The overall findings suggest that (a) adult high constraint utterances elicited more verbal utterances in general, as well as a majority of the subjects' echolalia; (b) adult low constraint utterances elicited more subject high constraint utterances; and (c) the degree of constraint of adult utterances did not appear to influence the mean lengths of subjects' utterances. The results are discussed in terms of their implications for educational interventions, and suggestions are made for future research concerning the dynamics of echolalia in interactive contexts.

  3. Make dark matter charged again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less

  4. Effects of manifest ethnic identification on employment discrimination.

    PubMed

    Barron, Laura G; Hebl, Michelle; King, Eden B

    2011-01-01

    Evidence from recent laboratory experiments suggests that ethnic identification can lead to negative evaluations of ethnic minorities (Kaiser & Pratt-Hyatt, 2009). The current research considers the generalizability of these findings to face-to-face interactions in contexts wherein impression management concerns are salient: the workplace hiring process. In a field experiment, Black, Hispanic, and Irish individuals applied for retail jobs with or without visible display of their ethnic identification. Analysis of indicators of formal (e.g., application offering, interview scheduling) and interpersonal discrimination (e.g., interaction length, nonverbal negativity) suggest store personnel interacting with other-race applicants exhibited greater positivity and longer interactions when applicants displayed ethnic identification than when they did not. The findings suggest that psychologists need to understand not only attitudes or intentions expressed in the lab, but also the behavioral consequences of manifest group identity as they unfold in natural environments.

  5. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  6. Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model

    PubMed Central

    Ito, Shinya; Hansen, Michael E.; Heiland, Randy; Lumsdaine, Andrew; Litke, Alan M.; Beggs, John M.

    2011-01-01

    Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons. PMID:22102894

  7. Emergence of Lévy walks in systems of interacting individuals

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2017-03-01

    We propose a model of superdiffusive Lévy walk as an emergent nonlinear phenomenon in systems of interacting individuals. The aim is to provide a qualitative explanation of recent experiments [G. Ariel et al., Nat. Commun. 6, 8396 (2015), 10.1038/ncomms9396] revealing an intriguing behavior: swarming bacteria fundamentally change their collective motion from simple diffusion into a superdiffusive Lévy walk dynamics. We introduce microscopic mean-field kinetic equations in which we combine two key ingredients: (1) alignment interactions between individuals and (2) non-Markovian effects. Our interacting run-and-tumble model leads to the superdiffusive growth of the mean-squared displacement and the power-law distribution of run length with infinite variance. The main result is that the superdiffusive behavior emerges as a cooperative effect without using the standard assumption of the power-law distribution of run distances from the inception. At the same time, we find that the collision and repulsion interactions lead to the density-dependent exponential tempering of power-law distributions. This qualitatively explains the experimentally observed transition from superdiffusion to the diffusion of mussels as their density increases [M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014), 10.1098/rspb.2013.2605].

  8. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  9. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions

    PubMed Central

    Dovidio, John F.; Gonzalez, Richard; Albrecht, Terrance L.; Chapman, Robert; Foster, Tanina; Harper, Felicity W.K.; Hagiwara, Nao; Hamel, Lauren M.; Shields, Anthony F.; Gadgeel, Shirish; Simon, Michael S.; Griggs, Jennifer J.; Eggly, Susan

    2016-01-01

    Purpose Health providers’ implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients’ perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Methods Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists’ patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. Results As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists’ communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists’ communication (as rated by both patients and observers). Conclusion Oncologist implicit racial bias is negatively associated with oncologist communication, patients’ reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. PMID:27325865

  10. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions.

    PubMed

    Penner, Louis A; Dovidio, John F; Gonzalez, Richard; Albrecht, Terrance L; Chapman, Robert; Foster, Tanina; Harper, Felicity W K; Hagiwara, Nao; Hamel, Lauren M; Shields, Anthony F; Gadgeel, Shirish; Simon, Michael S; Griggs, Jennifer J; Eggly, Susan

    2016-08-20

    Health providers' implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients' perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists' patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists' communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists' communication (as rated by both patients and observers). Oncologist implicit racial bias is negatively associated with oncologist communication, patients' reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. © 2016 by American Society of Clinical Oncology.

  11. Antagonistic Actions of HLH/bHLH Proteins Are Involved in Grain Length and Weight in Rice

    PubMed Central

    Heang, Dany; Sassa, Hidenori

    2012-01-01

    Grain size is a major yield component in rice, and partly controlled by the sizes of the lemma and palea. Molecular mechanisms controlling the sizes of these organs largely remain unknown. In this study, we show that an antagonistic pair of basic helix-loop-helix (bHLH) proteins is involved in determining rice grain length by controlling cell length in the lemma/palea. Overexpression of an atypical bHLH, named POSITIVE REGULATOR OF GRAIN LENGTH 1 (PGL1), in lemma/palea increased grain length and weight in transgenic rice. PGL1 is an atypical non-DNA-binding bHLH and assumed to function as an inhibitor of a typical DNA-binding bHLH through heterodimerization. We identified the interaction partner of PGL1 and named it ANTAGONIST OF PGL1 (APG). PGL1 and APG interacted in vivo and localized in the nucleus. As expected, silencing of APG produced the same phenotype as overexpression of PGL1, suggesting antagonistic roles for the two genes. Transcription of two known grain-length-related genes, GS3 and SRS3, was largely unaffected in the PGL1-overexpressing and APG-silenced plants. Observation of the inner epidermal cells of lemma revealed that are caused by increased cell length. PGL1-APG represents a new grain length and weight-controlling pathway in which APG is a negative regulator whose function is inhibited by PGL1. PMID:22363621

  12. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.

    PubMed

    Abraham, Alex; Chatterji, Apratim

    2018-04-21

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  13. Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions

    NASA Astrophysics Data System (ADS)

    Abraham, Alex; Chatterji, Apratim

    2018-04-01

    We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.

  14. Force sensing by the vascular protein von Willebrand factor is tuned by a strong intermonomer interaction

    PubMed Central

    Müller, Jochen P.; Mielke, Salomé; Löf, Achim; Obser, Tobias; Beer, Christof; Bruetzel, Linda K.; Pippig, Diana A.; Vanderlinden, Willem; Lipfert, Jan; Schneppenheim, Reinhard; Benoit, Martin

    2016-01-01

    The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF’s hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above ∼50 pN and provided ∼80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF’s effective length contributing to force sensing, they can be expected to tune VWF’s sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF’s function in hemostasis and thrombosis. PMID:26787887

  15. Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Thurman-Keup, R.; Edstrom Jr., D.

    2016-10-09

    Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch lengthmore » without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.« less

  16. Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology

    PubMed Central

    Gokhin, David S.; Lewis, Raymond A.; McKeown, Caroline R.; Nowak, Roberta B.; Kim, Nancy E.; Littlefield, Ryan S.; Lieber, Richard L.

    2010-01-01

    During myofibril assembly, thin filament lengths are precisely specified to optimize skeletal muscle function. Tropomodulins (Tmods) are capping proteins that specify thin filament lengths by controlling actin dynamics at pointed ends. In this study, we use a genetic targeting approach to explore the effects of deleting Tmod1 from skeletal muscle. Myofibril assembly, skeletal muscle structure, and thin filament lengths are normal in the absence of Tmod1. Tmod4 localizes to thin filament pointed ends in Tmod1-null embryonic muscle, whereas both Tmod3 and -4 localize to pointed ends in Tmod1-null adult muscle. Substitution by Tmod3 and -4 occurs despite their weaker interactions with striated muscle tropomyosins. However, the absence of Tmod1 results in depressed isometric stress production during muscle contraction, systemic locomotor deficits, and a shift to a faster fiber type distribution. Thus, Tmod3 and -4 compensate for the absence of Tmod1 structurally but not functionally. We conclude that Tmod1 is a novel regulator of skeletal muscle physiology. PMID:20368620

  17. Proceedings of the U.S. Air Force and The Federal Republic of Germany Data Exchange Agreement Meeting (9th), Viscous and Interacting Flow Field Effects Held at Silver Spring, Maryland on 9-10 May 1984,

    DTIC Science & Technology

    1984-08-01

    found in References 1-3. 2. Modeling of Roughness Effects on Turbulent Flow In turbulent flow analysis , use of time-averaged equations leads to the...eddy viscosity and the mixing length which are important parameters used in current algebraic modeling of the turbulence shear term. Two different ...surfaces with three-dimensional (distributed) roughness elements. Calculations using the present model have been compared with experimental data from

  18. Cow characteristics and their association with udder health after different dry period lengths.

    PubMed

    van Hoeij, R J; Lam, T J G M; de Koning, D B; Steeneveld, W; Kemp, B; van Knegsel, A T M

    2016-10-01

    Shortening or omitting the dry period (DP) in dairy cows is of interest because of potential beneficial effects on energy balance and metabolic health. Reported effects of a short or omitted dry period on udder health are ambiguous. This study aimed to evaluate the effect of no DP (0d), a short DP (30d), or a conventional DP (60 d) on the occurrence of intramammary infections (IMI) during the precalving period and on somatic cell counts (SCC), elevations of SCC (SCC≥200,000 cells/mL), and clinical mastitis in the subsequent lactation. The study also aimed to analyze which prepartum cow characteristics are associated with udder health after different DP lengths. Holstein-Friesian dairy cows (n=167) were randomly assigned to a DP length (0, 30, or 60 d). Cows with a 0-d DP had a greater occurrence of chronic IMI and a lower occurrence of cured IMI during the precalving period than cows with a 30-d or 60-d DP. Postpartum average SCC for lactation was greater in cows with a 0-d DP than in cows with a 30-d or 60-d DP. The number of cows with at least 1 elevation of SCC, the number of elevations of SCC per affected cow, the number of cows treated for clinical mastitis, and the number of cases of mastitis per affected cow did not differ among DP lengths. Cow characteristics related to postpartum average SCC for lactation were DP length, parity, and the following interactions: DP length with prepartum elevation of SCC, DP length with fat- and protein-corrected milk (FPCM) reduction between 150 and 67d prepartum, DP length with parity and with average SCC for lactation, and last FPCM before the conventional drying-off day with average SCC for lactation. Cows with prepartum parity 1 had a lower occurrence of at least 1 elevation of SCC in subsequent lactation compared with cows with parity >2. Last SCC before the conventional drying-off day was positively associated with occurrence of clinical mastitis in the subsequent lactation. In this study, DP length was not a risk factor for either elevation of SCC or occurrence of clinical mastitis in the subsequent lactation. The identified cow characteristics could be used in a decision support model to optimize DP length for individual cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Bispentafluorophenyl-Containing Additive: Enhancing Efficiency and Morphological Stability of Polymer Solar Cells via Hand-Grabbing-Like Supramolecular Pentafluorophenyl-Fullerene Interactions.

    PubMed

    Hung, Kai-En; Tsai, Che-En; Chang, Shao-Ling; Lai, Yu-Ying; Jeng, U-Ser; Cao, Fong-Yi; Hsu, Chain-Shu; Su, Chun-Jen; Cheng, Yen-Ju

    2017-12-20

    A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C 6 F 5 ) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C 6 F 5 groups and the surface of fullerene, the P3HT:PC 61 BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C 6 F 5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerene's movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C 6 F 5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C 6 F 5 -C 60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C 6 F 5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC 71 BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC 71 BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully preserved by the incorporation of BF7. This research also demonstrates that BF7 is not only effective with PC 61 BM but also to PC 71 BM.

  20. Effects of age, gender, and stimulus presentation period on visual short-term memory.

    PubMed

    Kunimi, Mitsunobu

    2016-01-01

    This study focused on age-related changes in visual short-term memory using visual stimuli that did not allow verbal encoding. Experiment 1 examined the effects of age and the length of the stimulus presentation period on visual short-term memory function. Experiment 2 examined the effects of age, gender, and the length of the stimulus presentation period on visual short-term memory function. The worst memory performance and the largest performance difference between the age groups were observed in the shortest stimulus presentation period conditions. The performance difference between the age groups became smaller as the stimulus presentation period became longer; however, it did not completely disappear. Although gender did not have a significant effect on d' regardless of the presentation period in the young group, a significant gender-based difference was observed for stimulus presentation periods of 500 ms and 1,000 ms in the older group. This study indicates that the decline in visual short-term memory observed in the older group is due to the interaction of several factors.

Top