Sample records for effective iptv channel

  1. A Key Establishment Protocol for RFID User in IPTV Environment

    NASA Astrophysics Data System (ADS)

    Jeong, Yoon-Su; Kim, Yong-Tae; Sohn, Jae-Min; Park, Gil-Cheol; Lee, Sang-Ho

    In recent years, the usage of IPTV (Internet Protocol Television) has been increased. The reason is a technological convergence of broadcasting and telecommunication delivering interactive applications and multimedia content through high speed Internet connections. The main critical point of IPTV security requirements is subscriber authentication. That is, IPTV service should have the capability to identify the subscribers to prohibit illegal access. Currently, IPTV service does not provide a sound authentication mechanism to verify the identity of its wireless users (or devices). This paper focuses on a lightweight authentication and key establishment protocol based on the use of hash functions. The proposed approach provides effective authentication for a mobile user with a RFID tag whose authentication information is communicated back and forth with the IPTV authentication server via IPTV set-top box (STB). That is, the proposed protocol generates user's authentication information that is a bundle of two public keys derived from hashing user's private keys and RFID tag's session identifier, and adds 1bit to this bundled information for subscriber's information confidentiality before passing it to the authentication server.

  2. Measurement and Analysis of P2P IPTV Program Resource

    PubMed Central

    Chen, Xingshu; Wang, Haizhou; Zhang, Qi

    2014-01-01

    With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs. PMID:24772008

  3. A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment

    NASA Astrophysics Data System (ADS)

    Bambini, Riccardo; Cremonesi, Paolo; Turrin, Roberto

    In this chapter we describe the integration of a recommender system into the production environment of Fastweb, one of the largest European IP Television (IPTV) providers. The recommender system implements both collaborative and content-based techniques, suitable tailored to the specific requirements of an IPTV architecture, such as the limited screen definition, the reduced navigation capabilities, and the strict time constraints. The algorithms are extensively analyzed by means of off-line and on-line tests, showing the effectiveness of the recommender systems: up to 30% of the recommendations are followed by a purchase, with an estimated lift factor (increase in sales) of 15%.

  4. IPTV multicast with peer-assisted lossy error control

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd

    2010-07-01

    Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.

  5. Vote Stuffing Control in IPTV-based Recommender Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajen

    Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.

  6. A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    NASA Astrophysics Data System (ADS)

    Lee, Sanghan; Yang, Hae-Yong; Yeom, Yongjin; Park, Jongsik

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4µA leakage current.

  7. Internet protocol television for personalized home-based health information: design-based research on a diabetes education system.

    PubMed

    Gray, Kathleen Mary; Clarke, Ken; Alzougool, Basil; Hines, Carolyn; Tidhar, Gil; Frukhtman, Feodor

    2014-03-10

    The use of Internet protocol television (IPTV) as a channel for consumer health information is a relatively under-explored area of medical Internet research. IPTV may afford new opportunities for health care service providers to provide health information and for consumers, patients, and caretakers to access health information. The technologies of Web 2.0 add a new and even less explored dimension to IPTV's potential. Our research explored an application of Web 2.0 integrated with IPTV for personalized home-based health information in diabetes education, particularly for people with diabetes who are not strong computer and Internet users, and thus may miss out on Web-based resources. We wanted to establish whether this system could enable diabetes educators to deliver personalized health information directly to people with diabetes in their homes; and whether this system could encourage people with diabetes who make little use of Web-based health information to build their health literacy via the interface of a home television screen and remote control. This project was undertaken as design-based research in two stages. Stage 1 comprised a feasibility study into the technical work required to integrate an existing Web 2.0 platform with an existing IPTV system, populated with content and implemented for user trials in a laboratory setting. Stage 2 comprised an evaluation of the system by consumers and providers of diabetes information. The project succeeded in developing a Web 2.0 IPTV system for people with diabetes and low literacies and their diabetes educators. The performance of the system in the laboratory setting gave them the confidence to engage seriously in thinking about the actual and potential features and benefits of a more widely-implemented system. In their feedback they pointed out a range of critical usability and usefulness issues related to Web 2.0 affordances and learning fundamentals. They also described their experiences with the system in

  8. Effects of channel thickness on oxide thin film transistor with double-stacked channel layer

    NASA Astrophysics Data System (ADS)

    Lee, Kimoon; Kim, Yong-Hoon; Yoon, Sung-Min; Kim, Jiwan; Oh, Min Suk

    2017-11-01

    To improve the field effect mobility and control the threshold voltage ( V th ) of oxide thin film transistors (TFTs), we fabricated the oxide TFTs with double-stacked channel layers which consist of thick Zn-Sn-O (ZTO) and very thin In-Zn-O (IZO) layers. We investigated the effects of the thickness of thin conductive layer and the conductivity of thick layer on oxide TFTs with doublestacked channel layer. When we changed the thickness of thin conductive IZO channel layer, the resistivity values were changed. This resistivity of thin channel layer affected on the saturation field effect mobility and the off current of TFTs. In case of the thick ZTO channel layer which was deposited by sputtering in Ar: O2 = 10: 1, the device showed better performances than that which was deposited in Ar: O2 = 1: 1. Our TFTs showed high mobility ( μ FE ) of 40.7 cm2/Vs and V th of 4.3 V. We assumed that high mobility and the controlled V th were caused by thin conductive IZO layer and thick stable ZTO layer. Therefore, this double-stacked channel structure can be very promising way to improve the electrical characteristics of various oxide thin film transistors.

  9. Quantum channels and memory effects

    NASA Astrophysics Data System (ADS)

    Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano

    2014-10-01

    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  10. Micro-channel filling flow considering surface tension effect

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sung; Lee, Kwang-Cheol; Kwon, Tai Hun; Lee, Seung S.

    2002-05-01

    Understanding filling flow into micro-channels is important in designing micro-injection molding, micro-fluidic devices and an MIMIC (micromolding in capillaries) process. In this paper, we investigated, both experimentally and numerically, 'transient filling' flow into micro-channels, which differs from steady-state completely 'filled' flow in micro-channels. An experimental flow visualization system was devised to facilitate observation of flow characteristics in filling into micro-channels. Three sets of micro-channels of various widths of different thicknesses (20, 30, and 40 μm) were fabricated using SU-8 on the silicon substrate to find a geometric effect with regard to pressure gradient, viscous force and, in particular, surface tension. A numerical analysis system has also been developed taking into account the surface tension effect with a contact angle concept. Experimental observations indicate that surface tension significantly affects the filling flow to such an extent that even a flow blockage phenomenon was observed at channels of small width and thickness. A numerical analysis system also confirms that the flow blockage phenomenon could take place due to the flow hindrance effect of surface tension, which is consistent with experimental observation. For proper numerical simulations, two correction factors have also been proposed to correct the conventional hydraulic radius for the filling flow in rectangular cross-sectioned channels.

  11. Simulation study of short-channel effects of tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Fukuda, Koichi; Asai, Hidehiro; Hattori, Junichi; Mori, Takahiro; Morita, Yukinori; Mizubayashi, Wataru; Masahara, Meishoku; Migita, Shinji; Ota, Hiroyuki; Endo, Kazuhiro; Matsukawa, Takashi

    2018-04-01

    Short-channel effects of tunnel field-effect transistors (FETs) are investigated in detail using simulations of a nonlocal band-to-band tunneling model. Discussion is limited to silicon. Several simulation scenarios were considered to address different effects, such as source overlap and drain offset effects. Adopting the drain offset to suppress the drain leakage current suppressed the short channel effects. The physical mechanism underlying the short-channel behavior of the tunnel FETs (TFETs) was very different from that of metal-oxide-semiconductor FETs (MOSFETs). The minimal gate lengths that do not lose on-state current by one order are shown to be 3 nm for single-gate structures and 2 nm for double gate structures, as determined from the drain offset structure.

  12. Screening effects in flow through rough channels.

    PubMed

    Andrade, J S; Araújo, A D; Filoche, M; Sapoval, B

    2007-05-11

    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect ratio are also investigated.

  13. Witnessing effective entanglement over a 2 km fiber channel.

    PubMed

    Wittmann, Christoffer; Fürst, Josef; Wiechers, Carlos; Elser, Dominique; Häseler, Hauke; Lütkenhaus, Norbert; Leuchs, Gerd

    2010-03-01

    We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2 km.

  14. Study on effective MOSFET channel length extracted from gate capacitance

    NASA Astrophysics Data System (ADS)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  15. Channel morphology effect on water transport through graphene bilayers.

    PubMed

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-12-08

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  16. Channel morphology effect on water transport through graphene bilayers

    PubMed Central

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun

    2016-01-01

    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology. PMID:27929106

  17. The alpha channeling effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a waymore » that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.« less

  18. The alpha channeling effect

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.

    2015-12-01

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  19. Hall-effect Thruster Channel Surface Properties Investigation (PREPRINT)

    DTIC Science & Technology

    2011-03-03

    Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Hall-effect Thruster Channel Surface Properties Investigation 5b...13. SUPPLEMENTARY NOTES For publication in the AIAA Journal of Propulsion and Power. 14. ABSTRACT Surface properties of Hall-effect thruster...incorporated into thruster simulations, and these models must account for evolution of channel surface properties due to thruster operation. Results from

  20. Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.

    PubMed

    Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan

    2015-09-22

    This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.

  1. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    NASA Astrophysics Data System (ADS)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  2. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels.

    PubMed

    Malekova, Lubica; Tomaskova, Jana; Novakova, Marie; Stefanik, Peter; Kopacek, Juraj; Lakatos, Boris; Pastorekova, Silvia; Krizanova, Olga; Breier, Albert; Ondrias, Karol

    2007-11-01

    We studied the effects of the chloride channel blockers, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), dihydro-4,4' diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), and phloretin on H2O2-induced primary culture cardiomyocyte apoptosis and activity of intracellular chloride channels obtained from rat heart mitochondrial and lysosomal vesicles. The chloride channel blockers (100 micromol/l) inhibited the H2O2-induced cardiomyocytes apoptosis. We characterized the effect of the blockers on single channel properties of the chloride channels derived from the mitochondrial and lysosomal vesicles incorporated into a bilayer lipid membrane. The single chloride channel currents were measured in 250:50 mmol/l KCl cis/trans solutions. NPPB, DIDS, and phloretin inhibited the chloride channels by decreasing the channel open probability in a concentration-dependent manner with EC50 values of 42, 7, and 20 micromol/l, respectively. NPPB and phloretin inhibited the channel's conductance and open dwell time, indicating that they could affect the chloride selective filter, pore permeability, and gating mechanism of the chloride channels. DIDS and NPPB inhibited the channels from the other side than bongkrekic acid and carboxyatractyloside. The results may contribute to understand a possible involvement of intracellular chloride channels in apoptosis and cardioprotection.

  3. Channel effect of the modified powdery mixture of ammonium nitrate and fuel oil

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ping; Liu, Lian-Sheng; Wang, Xu-Guang; Liu, Yong; Wang, Yin-Jun

    2010-10-01

    The modified powdery mixture of ammonium nitrate and fuel oil (MPANFO) is a new breed of industrial explosives developed years ago in China. As one of the important properties of an industrial explosive, the channel effect of MPANFO was reported in this paper. A series of experiments were conducted to determine the channel effect of MPANFO. The blasthole diameter range was estimated to avoid the channel effect of MPANFO. Three empirical formulae for predicting the detonation length of MPANFO were provided in terms of the channel effect. Experiments and theoretical analysis indicate that the channel effect of MPANFO is very serious. The reason why the channel effect of MPANFO is worse than that of other industrial explosives is explained at a theoretical level. In addition, some properties of MPANFO, such as sympathetic distance, detonation velocity and brisance, are determined.

  4. Effects of channel tap spacing on delay-lock tracking

    NASA Astrophysics Data System (ADS)

    Dana, Roger A.; Milner, Brian R.; Bogusch, Robert L.

    1995-12-01

    High fidelity simulations of communication links operating through frequency selective fading channels require both accurate channel models and faithful reproduction of the received signal. In modern radio receivers, processing beyond the analog-to-digital converter (A/D) is done digitally, so a high fidelity simulation is actually an emulation of this digital signal processing. The 'simulation' occurs in constructing the output of the A/D. One approach to constructing the A/D output is to convolve the channel impulse response function with the combined impulse response of the transmitted modulation and the A/D. For both link simulations and hardware channel simulators, the channel impulse response function is then generated with a finite number of samples per chip, and the convolution is implemented in a tapped delay line. In this paper we discuss the effects of the channel model tap spacing on the performance of delay locked loops (DLLs) in both direct sequence and frequency hopped spread spectrum systems. A frequency selective fading channel is considered, and the channel impulse response function is constructed with an integer number of taps per modulation symbol or chip. The tracking loop time delay is computed theoretically for this tapped delay line channel model and is compared to the results of high fidelity simulations of actual DLLs. A surprising result is obtained. The performance of the DLL depends strongly on the number of taps per chip. As this number increases the DLL delay approaches the theoretical limit.

  5. Effects of phenylalanine substitutions in gramicidin A on the kinetics of channel formation in vesicles and channel structure in SDS micelles.

    PubMed

    Jordan, J B; Easton, P L; Hinton, J F

    2005-01-01

    The common occurrence of Trp residues at the aqueous-lipid interface region of transmembrane channels is thought to be indicative of its importance for insertion and stabilization of the channel in membranes. To further investigate the effects of Trp-->Phe substitution on the structure and function of the gramicidin channel, four analogs of gramicidin A have been synthesized in which the tryptophan residues at positions 9, 11, 13, and 15 are sequentially replaced with phenylalanine. The three-dimensional structure of each viable analog has been determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. These phenylalanine analogs adopt a homodimer motif, consisting of two beta6.3 helices joined by six hydrogen bonds at their NH2-termini. The replacement of the tryptophan residues does not have a significant effect on the backbone structure of the channels when compared to native gramicidin A, and only small effects are seen on side-chain conformations. Single-channel conductance measurements have shown that the conductance and lifetime of the channels are significantly affected by the replacement of the tryptophan residues (Wallace, 2000; Becker et al., 1991). The variation in conductance appears to be caused by the sequential removal of a tryptophan dipole, thereby removing the ion-dipole interaction at the channel entrance and at the ion binding site. Channel lifetime variations appear to be related to changing side chain-lipid interactions. This is supported by data relating to transport and incorporation kinetics.

  6. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on themore » current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression.

  7. GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin

    PubMed Central

    Hablitz, Lauren M.; Molzof, Hylton E.; Abrahamsson, Kathryn E.; Cooper, Joanna M.; Prosser, Rebecca A.

    2015-01-01

    Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRK-dependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling. SIGNIFICANCE STATEMENT Despite the widespread use of melatonin supplementation for the treatment of sleep disruption and other neurological diseases such as epilepsy and depression, no studies have elucidated the

  8. Effects of Phenylalanine Substitutions in Gramicidin A on the Kinetics of Channel Formation in Vesicles and Channel Structure in SDS Micelles

    PubMed Central

    Jordan, J. B.; Easton, P. L.; Hinton, J. F.

    2005-01-01

    The common occurrence of Trp residues at the aqueous-lipid interface region of transmembrane channels is thought to be indicative of its importance for insertion and stabilization of the channel in membranes. To further investigate the effects of Trp→Phe substitution on the structure and function of the gramicidin channel, four analogs of gramicidin A have been synthesized in which the tryptophan residues at positions 9, 11, 13, and 15 are sequentially replaced with phenylalanine. The three-dimensional structure of each viable analog has been determined using a combination of two-dimensional NMR techniques and distance geometry-simulated annealing structure calculations. These phenylalanine analogs adopt a homodimer motif, consisting of two β6.3 helices joined by six hydrogen bonds at their NH2-termini. The replacement of the tryptophan residues does not have a significant effect on the backbone structure of the channels when compared to native gramicidin A, and only small effects are seen on side-chain conformations. Single-channel conductance measurements have shown that the conductance and lifetime of the channels are significantly affected by the replacement of the tryptophan residues (Wallace, 2000; Becker et al., 1991). The variation in conductance appears to be caused by the sequential removal of a tryptophan dipole, thereby removing the ion-dipole interaction at the channel entrance and at the ion binding site. Channel lifetime variations appear to be related to changing side chain-lipid interactions. This is supported by data relating to transport and incorporation kinetics. PMID:15501932

  9. The effect of basal channels on oceanic ice-shelf melting

    NASA Astrophysics Data System (ADS)

    Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.

    2013-12-01

    The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.

  10. Charge Fractionalization in the Two-Channel Kondo Effect

    NASA Astrophysics Data System (ADS)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  11. Comparative effects of sodium channel blockers in short term rat whole embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsson, Mats F, E-mail: Mats.Nilsson@farmbio.uu.se; Sköld, Anna-Carin; Ericson, Ann-Christin

    2013-10-15

    This study was undertaken to examine the effect on the rat embryonic heart of two experimental drugs (AZA and AZB) which are known to block the sodium channel Nav1.5, the hERG potassium channel and the L-type calcium channel. The sodium channel blockers bupivacaine, lidocaine, and the L-type calcium channel blocker nifedipine were used as reference substances. The experimental model was the gestational day (GD) 13 rat embryo cultured in vitro. In this model the embryonic heart activity can be directly observed, recorded and analyzed using computer assisted image analysis as it responds to the addition of test drugs. The effectmore » on the heart was studied for a range of concentrations and for a duration up to 3 h. The results showed that AZA and AZB caused a concentration-dependent bradycardia of the embryonic heart and at high concentrations heart block. These effects were reversible on washout. In terms of potency to cause bradycardia the compounds were ranked AZB > bupivacaine > AZA > lidocaine > nifedipine. Comparison with results from previous studies with more specific ion channel blockers suggests that the primary effect of AZA and AZB was sodium channel blockage. The study shows that the short-term rat whole embryo culture (WEC) is a suitable system to detect substances hazardous to the embryonic heart. - Highlights: • Study of the effect of sodium channel blocking drugs on embryonic heart function • We used a modified method rat whole embryo culture with image analysis. • The drugs tested caused a concentration dependent bradycardia and heart block. • The effect of drugs acting on multiple ion channels is difficult to predict. • This method may be used to detect cardiotoxicity in prenatal development.« less

  12. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors.

    PubMed

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L; Banyai, Douglas; Savaikar, Madhusudan A; Jaszczak, John A; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.

  13. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    PubMed Central

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-01-01

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under various bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (in-situ STM-TEM). As suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending. PMID:26846587

  14. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE PAGES

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; ...

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  15. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  16. Generalized method calculating the effective diffusion coefficient in periodic channels.

    PubMed

    Kalinay, Pavol

    2015-01-07

    The method calculating the effective diffusion coefficient in an arbitrary periodic two-dimensional channel, presented in our previous paper [P. Kalinay, J. Chem. Phys. 141, 144101 (2014)], is generalized to 3D channels of cylindrical symmetry, as well as to 2D or 3D channels with particles driven by a constant longitudinal external driving force. The next possible extensions are also indicated. The former calculation was based on calculus in the complex plane, suitable for the stationary diffusion in 2D domains. The method is reformulated here using standard tools of functional analysis, enabling the generalization.

  17. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  18. Whittle's "Channel One": Effects on Impulsive Preadolescents' Desire for Advertised Products.

    ERIC Educational Resources Information Center

    Tozzo-Lyles, Teresa A.; Walsh-Childers, Kim

    A field experiment tested effects of "Channel One" commercials on impulsive preadolescent students' purchasing preferences, such as product liking and likelihood of buying regularly advertised products. A total of 67 sixth-grade middle school students participated in the field experiment. Students who viewed "Channel One' daily were…

  19. Effects of premature stimulation on HERG K+ channels

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I

    2001-01-01

    The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress

  20. The Geomorphically Effective Hydrograph: An Emerging Concept For Interpreting Channel Morphology And Evolution

    NASA Astrophysics Data System (ADS)

    Grant, G.; Hempel, L. A.; Marwan, H.; Eaton, B. C.; Lewis, S.

    2017-12-01

    Predicting how alluvial channels adjust to changes in their flow and sediment regimes is one of the Holy Grails of geomorphology. Consider Lane's balance - one of the most widely recognized conceptual models in geomorphology - which graphically shows how a change in any one of the driving variables of slope, grain size, sediment transport rate, or discharge can be accommodated by changes in the other variables. Much of the history of process geomorphology addresses how channels respond to these controlling factors. Yet the emphasis has been disproportionately focused on the effects and consequences of changing sediment transport rates or grain size. Much less attention has been paid to how changing discharge itself, particularly over short, event-based timescales influences the channel. Discharge has typically been treated as a single value - often the bankfull discharge - with little attention paid to how the unsteady nature of flow during floods may influence the morphology of the channel. More attention has been paid recently to the effect of hydrograph shape on channel characteristics, notably the texture of the channel bed. There is little theory and scant data, however, that highlights how the hydrograph affects the channel. We have begun to address this problem through models and targeted experiments. Our goal is to explore the idea of the geomorphically effective hydrograph: the concept that hydrographs with different forms, durations, and sequences play a major, controlling role in shaping the form and organization of alluvial channels. We report on results from both field studies and flume experiments that lend support to this hypothesis. We compare channel forms in channels with radically different flow regimes. The distinctive rectangular shape, constant slope, and absence of alluvial bars in spring-fed channels are in sharp contrast to the more asymmetric channels with regular pool/riffle patterns observed in systems where discharge varies over orders

  1. Sorting Out Effects of Active Stream Restoration: Channel Morphology, Channel Change Processes and Potential Controls

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2017-12-01

    In many active restoration projects, instream structures or modifications are designed to produce specific change in channel form, such as reduced W:D or increased pool depth, yet there is little monitoring to evaluate effectiveness. Active restoration often takes place within a context of other land management changes that can have an effect on channel form. Thus, the effects of active restoration are difficult to separate from the effects of other management actions. We measured morphologic response to restoration designs on sections of the Middle Fork John Day River, a gravel-cobble bed river under a cattle grazing regime in the Blue Mountain of Oregon. Since 2000, restoration actions have included elimination of cattle grazing in the riparian zone (passive restoration), riparian planting of woody vegetation, instream log structures for fish habitat and pool maintenance, and elimination of a major flow diversion. We listed the hypothetical effects of each of these management changes, showing overlap among effects of active and passive restoration. Repeat cross-section and longitudinal profile surveys over eight years, and repeat aerial imagery, documented changes in channel width, depth and bed morphology, and processes of change (bank erosion or aggradation, point bar erosion or aggradation, bed incision or aggradation), in two restored reaches and two adjacent control (unrestored) reaches. Morphologic changes were modest. Bankfull cross-section area, width, and W:D all decreased slightly in both restored reaches. Control reaches were unchanged or increased slightly. Processes of change were markedly different among the four reaches, with different reaches dominated by different processes. One restored reach was dominated by slight bed aggradation, increased pool depth and deep pools/km, while the other restored reach was dominated by bank erosion, bar aggradation and slight bed incision, along with increased deep pools/km. The longitudinal profile showed

  2. Scaling Trends and Tradeoffs between Short Channel Effect and Channel Boosting Characteristics in Sub-20 nm Bulk/Silicon-on-Insulator NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Miyaji, Kousuke; Hung, Chinglin; Takeuchi, Ken

    2012-04-01

    The scaling trends and limitation in sub-20 nm a bulk and silicon-on-insulator (SOI) NAND flash memory is studied by the three-dimensional (3D) device simulation focusing on short channel effects (SCE), channel boost leakage and channel voltage boosting characteristics during the program-inhibit operation. Although increasing punch-through stopper doping concentration is effective for suppressing SCE in bulk NAND cells, the generation of junction leakage becomes serious. On the other hand, SCE can be suppressed by thinning the buried oxide (BOX) in SOI NAND cells. However, the boosted channel voltage decreases by the higher BOX capacitance. It is concluded that the scaling limitation is dominated by the junction leakage and channel boosting capability for bulk and SOI NAND flash cells, respectively, and the scaling limit is decreased to 9 nm using SOI NAND flash memory cells from 13 nm in bulk NAND flash memory cells.

  3. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  4. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  5. Effect of Channel Thickness, Annealing Temperature and Channel Length on Nanoscale Ga2O3-In2O3-ZnO Thin Film Transistor Performance.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Song, Hui; Kim, Tae Heon; Choi, Boran; Jung, Gun Young

    2016-06-01

    We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 μm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V.

  6. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  7. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Maruyama, Yoshio; Kazama, Itsuro

    2015-10-01

    Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Effect of tyrphostin AG879 on Kv4.2 and Kv4.3 potassium channels

    PubMed Central

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-01-01

    Background and Purpose A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv4.2/Kv channel-interacting protein 2 (KChIP2) channels. Experimental Approach To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv4.2/KChIP2 channels using a whole-cell patch-clamp technique. Key Results Tyrphostin AG879 selectively and dose-dependently inhibited Kv4.2 and Kv4.3 channels. In Kv4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. Conclusion and Implications AG879 was identified as a selective and potent inhibitor the Kv4.2 channel. AG879 inhibited Kv4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. PMID:25752739

  9. Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels.

    PubMed

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-07-01

    A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. © 2015 The British Pharmacological Society.

  10. Inhibitory effects of cortisone and hydrocortisone on human Kv1.5 channel currents.

    PubMed

    Yu, Jing; Park, Mi-Hyeong; Jo, Su-Hyun

    2015-01-05

    Glucocorticoids are the primary hormones that respond to stress and protect organisms from dangerous situations. The glucocorticoids hydrocortisone and its dormant form, cortisone, affect the cardiovascular system with changes such as increased blood pressure and cardioprotection. Kv1.5 channels play a critical role in the maintenance of cellular membrane potential and are widely expressed in pancreatic β-cells, neurons, myocytes, and smooth muscle cells of the pulmonary vasculature. We examined the electrophysiological effects of both cortisone and hydrocortisone on human Kv1.5 channels expressed in Xenopus oocytes using a two-microelectrode voltage clamp technique. Both cortisone and hydrocortisone rapidly and irreversibly suppressed the amplitude of Kv1.5 channel current with IC50 values of 50.2±4.2μM and 33.4±3.2μM, respectively, while sustained the current trace shape of Kv1.5 current. The inhibitory effect of cortisone on Kv1.5 decreased progressively from -10mV to +30mV, while hydrocortisone׳s inhibition of the channel did not change across the same voltage range. Both cortisone and hydrocortisone blocked Kv1.5 channel currents in a non-use-dependent manner and neither altered the channel׳s steady-state activation or inactivation curves. These results show that cortisone and hydrocortisone inhibited Kv1.5 channel currents differently, and that Kv1.5 channels were more sensitive to hydrocortisone than to cortisone. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films

    DOE PAGES

    Zhu, L. J.; Nie, S. H.; Xiong, P.; ...

    2016-02-24

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less

  12. Orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, L. J.; Nie, S. H.; Xiong, P.

    The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades, no material system has been clearly identified to exhibit all three transport regimes characteristic of the two-channel Kondo effect in the same sample, leaving the interpretation of the experimental results a subject of debate. Here we present a transport study suggestive of a robust orbital two-channel Kondo effect in epitaxial ferromagnetic L1 0-MnAl films, as evidenced by a magnetic field-independent resistivity upturn with a clear transition from logarithmic-more » to square-root temperature dependence and deviation from it in three distinct temperature regimes. Lastly, our results also provide an experimental indication of the presence of two-channel Kondo physics in a ferromagnet, pointing to considerable robustness of the orbital two-channel Kondo effect even in the presence of spin polarization of the conduction electrons.« less

  13. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    PubMed Central

    Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  14. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    NASA Astrophysics Data System (ADS)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  15. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  16. Extracting Effective Higgs Couplings in the Golden Channel

    DOE PAGES

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  17. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    PubMed Central

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  18. Effect of protein tyrosine kinase inhibitors on the current through the Ca(V)3.1 channel.

    PubMed

    Kurejová, Martina; Lacinová, L'ubica

    2006-02-01

    In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.

  19. hERG K+ channel-associated cardiac effects of the antidepressant drug desipramine.

    PubMed

    Staudacher, Ingo; Wang, Lu; Wan, Xiaoping; Obers, Sabrina; Wenzel, Wolfgang; Tristram, Frank; Koschny, Ronald; Staudacher, Kathrin; Kisselbach, Jana; Koelsch, Patrick; Schweizer, Patrick A; Katus, Hugo A; Ficker, Eckhard; Thomas, Dierk

    2011-02-01

    Cardiac side effects of antidepressant drugs are well recognized. Adverse effects precipitated by the tricyclic drug desipramine include prolonged QT intervals, torsade de pointes tachycardia, heart failure, and sudden cardiac death. QT prolongation has been primarily attributed to acute blockade of hERG/I(Kr) currents. This study was designed to provide a more complete picture of cellular effects associated with desipramine. hERG channels were expressed in Xenopus laevis oocytes and human embryonic kidney (HEK 293) cells, and potassium currents were recorded using patch clamp and two-electrode voltage clamp electrophysiology. Ventricular action potentials were recorded from guinea pig cardiomyocytes. Protein trafficking and cell viability were evaluated in HEK 293 cells and in HL-1 mouse cardiomyocytes by immunocytochemistry, Western blot analysis, or colorimetric MTT assay, respectively. We found that desipramine reduced hERG currents by binding to a receptor site inside the channel pore. hERG protein surface expression was reduced after short-term treatment, revealing a previously unrecognized mechanism. When long-term effects were studied, forward trafficking was impaired and hERG currents were decreased. Action potential duration was prolonged upon acute and chronic desipramine exposure. Finally, desipramine triggered apoptosis in cells expressing hERG channels. Desipramine exerts at least four different cellular effects: (1) direct hERG channel block, (2) acute reduction of hERG surface expression, (3) chronic disruption of hERG trafficking, and (4) induction of apoptosis. These data highlight the complexity of hERG-associated drug effects.

  20. Electrical characteristics of tunneling field-effect transistors with asymmetric channel thickness

    NASA Astrophysics Data System (ADS)

    Kim, Jungsik; Oh, Hyeongwan; Kim, Jiwon; Meyyappan, M.; Lee, Jeong-Soo

    2017-02-01

    Effects of using asymmetric channel thickness in tunneling field-effect transistors (TFET) are investigated in sub-50 nm channel regime using two-dimensional (2D) simulations. As the thickness of the source side becomes narrower in narrow-source wide-drain (NSWD) TFETs, the threshold voltage (V th) and the subthreshold swing (SS) decrease due to enhanced gate controllability of the source side. The narrow source thickness can make the band-to-band tunneling (BTBT) distance shorter and induce much higher electric field near the source junction at the on-state condition. In contrast, in a TFET with wide-source narrow-drain (WSND), the SS shows almost constant values and the V th slightly increases with narrowing thickness of the drain side. In addition, the ambipolar current can rapidly become larger with smaller thickness on the drain side because of the shorter BTBT distance and the higher electric-field at the drain junction. The on-current of the asymmetric channel TFET is lower than that of conventional TFETs due to the volume limitation of the NSWD TFET and high series resistance of the WSND TFET. The on-current is almost determined by the channel thickness of the source side.

  1. Dispersion and nonlinear effects in OFDM-RoF system

    NASA Astrophysics Data System (ADS)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  2. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  3. Nicotine is a potent blocker of the cardiac A-type K(+) channels. Effects on cloned Kv4.3 channels and native transient outward current.

    PubMed

    Wang, H; Shi, H; Zhang, L; Pourrier, M; Yang, B; Nattel, S; Wang, Z

    2000-09-05

    Nicotine is a main constituent of cigarette smoke and smokeless tobacco, known to increase the risk of sudden cardiac death. This study aimed at establishing ionic mechanisms underlying potential electrophysiological effects of nicotine. Effects of nicotine on Kv4.3 and Kv4.2 channels expressed in Xenopus oocytes were studied at the whole-cell and single-channel levels. The effects of nicotine on the transient outward K(+) current (I:(to)) were studied by use of whole-cell patch-clamp techniques in canine ventricular myocytes. Nicotine potently inhibited Kv4 current. The concentration for half-maximal inhibition (IC(50)) was 40+/-4 nmol/L, and the current was abolished by 100 micromol/L nicotine. The IC(50) for block of native I:(to) was 270+/-43 nmol/L. The steady-state activation properties of Kv4.3 and I:(to) were unaltered by nicotine, whereas positive shifts of the inactivation curves were observed. Of the total inhibition of Kv4.3 and I:(to) by nicotine, 40% was due to tonic block and 60% was attributable to use-dependent block. Activation, inactivation, and reactivation kinetics were not significantly changed by nicotine. Nicotine reduced single-channel conductance, open probability, and open time but increased the closed time of Kv4.3. The effects of nicotine were not altered by antagonists to various neurotransmitter receptors, indicating direct effects on I:(to) channels. Nicotine is a potent inhibitor of cardiac A-type K(+) channels, with blockade probably due to block of closed and open channels. This action may contribute to the ability of nicotine to affect cardiac electrophysiology and induce arrhythmias.

  4. KV7 channels in the human detrusor: channel modulator effects and gene and protein expression.

    PubMed

    Bientinesi, Riccardo; Mancuso, Cesare; Martire, Maria; Bassi, Pier Francesco; Sacco, Emilio; Currò, Diego

    2017-02-01

    Voltage-gated type 7 K + (K V 7 or KCNQ) channels regulate the contractility of various smooth muscles. With this study, we aimed to assess the role of K V 7 channels in the regulation of human detrusor contractility, as well as the gene and protein expression of K V 7 channels in this tissue. For these purposes, the isolated organ technique, RT-qPCR, and Western blot were used, respectively. XE-991, a selective K V 7 channel blocker, concentration-dependently contracted the human detrusor; mean EC 50 and E max of XE-991-induced concentration-response curve were 14.1 μM and 28.8 % of the maximal bethanechol-induced contraction, respectively. Flupirtine and retigabine, selective K V 7.2-7.5 channel activators, induced concentration-dependent relaxations of bethanechol-precontracted strips, with maximal relaxations of 51.6 and 51.8 % of the precontraction, respectively. XE-991 blocked the relaxations induced by flupirtine and retigabine. All five KCNQ genes were found to be expressed in the detrusor with KCNQ4 being the most expressed among them. Different bands, having sizes similar to some of reported K V 7.1, 7.4, and 7.5 channel subunit isoforms, were detected in the detrusor by Western blot with the K V 7.4 band being the most intense among them. In conclusion, K V 7 channels contribute to set the basal tone of the human detrusor. In addition, K V 7 channel activators significantly relax the detrusor. The K V 7.4 channels are probably the most important K V 7 channels expressed in the human detrusor. These data suggest that selective K V 7.4 channel activators might represent new pharmacological tools for inducing therapeutic relaxation of the detrusor.

  5. The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning

    NASA Astrophysics Data System (ADS)

    Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.

    2017-01-01

    In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.

  6. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    PubMed

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  7. The effect of Channeling on in-home utilization and subsequent nursing home care: a simultaneous equation perspective.

    PubMed Central

    Rabiner, D J; Stearns, S C; Mutran, E

    1994-01-01

    OBJECTIVE. This study explored the relationship between participation in a home/community-based long-term care case management intervention (known as the Channeling demonstration), use of formal in-home care, and subsequent nursing home utilization. STUDY DESIGN. Structural analysis of the randomized Channeling intervention was conducted to decompose the total effects of Channeling on nursing home use into direct and indirect effects. DATA COLLECTION METHOD. Secondary data analysis of the National Long-Term Care Data Set. PRINCIPAL FINDINGS. The use of formal in-home care, which was increased by the Channeling intervention, was positively associated with nursing home utilization at 12 months. However, the negative direct effect of Channeling on nursing home use was of sufficient magnitude to offset this positive indirect effect, so that a small but significant negative total effect of Channeling on subsequent nursing home utilization was found. CONCLUSIONS. This study shows why Channeling did not have a large total impact on nursing home utilization. The analysis did not provide evidence of direct substitution of in-home care for nursing home care because the direct reductions in nursing home utilization due to other aspects of Channeling (including, but not limited to case management) were substantially offset by the indirect increases in nursing home utilization associated with additional home care use. PMID:8002352

  8. Inhibitory effects of magnolol on voltage-gated Na+ and K+ channels of NG108-15 cells.

    PubMed

    Gong, Chi-Li; Wong, Kar-Lok; Cheng, Ka-Shun; Kuo, Chang-Shin; Chao, Chia-Chia; Tsai, Min-Fan; Leung, Yuk-Man

    2012-05-05

    Magnolol, a polyphenolic compound isolated from Houpu, a Chinese herb from the bark of Magnolia officinalis, has been reported to have in vitro and in vivo neuroprotective effects. In spite of these reported beneficial effects, studies on the direct impact of magnolol on neuronal ion channels have been scarce. Whether magnolol affects voltage-gated Na(+) channels (VGSC) and voltage-gated K(+) (Kv) channels is unknown. Using the whole-cell voltage-clamp method, we studied the effects of magnolol on voltage-gated ion channels in neuronal NG108-15 cells. Magnolol inhibited VGSC channels with mild state-dependence (IC(50) of 15 and 30 μM, at holding potentials of -70 and -100 mV, respectively). No frequency-dependence was observed in magnolol block. Magnolol caused a left-shift of 18 mV in the steady-state inactivation curve but did not affect the voltage-dependence of activation. Magnolol inhibited Kv channels with an IC(50) of 21 μM, and it caused a 20-mV left-shift in the steady-state inactivation curve without affecting the voltage-dependence of activation. In conclusion, magnolol is an inhibitor of both VGSC and Kv channels and these inhibitory effects may in part contribute to some of the reported neuroprotective effects of magnolol. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Investigation of InP/In0.65Ga0.35As metamorphic p-channel doped-channel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2016-07-01

    In this article, the device mechanism and characteristics of InP/InGaAs metamorphic p-channel field-effect transistor (FET), which has a high indium mole fraction of InGaAs channel, grown on the GaAs substrate is demonstrated. The device was fabricated on the top of the InxGa1-xP graded metamorphic buffer layer, and the In0.65Ga0.35As pseudomorphic channel was employed to elevate the transistor performance. For the p-type FET, due to the considerably large valence band discontinuity at InP/In0.65Ga0.35As heterojunction and a relatively thin as well as heavily doped pseudomorphic In0.65Ga0.35As channel between two undoped InP layers, a maximum extrinsic transconductance of 27.3 mS/mm and a maximum saturation current density of -54.3 mA/mm are obtained. Consequently, the studied metamorphic FET is suitable for the development in signal amplification, integrated circuits, and low supply-voltage complementary logic inverters.

  10. Effect of activators and inhibitors of K+ channels on insulin secretion in the amphibian pancreas.

    PubMed

    Francini, F; Pirotte, B; Gagliardino, J J

    1997-02-01

    The aim of this study was to obtain pharmacological evidence for the presence and participation of K+ channels in amphibian pancreatic islets. Pancreases from the toad Bufo arenarum were thus incubated with activators or blockers of K+ channels and the immunoreactive insulin released into the medium was measured by radioimmunoassay. Two K(+)-ATP channel openers (diazoxide and BPDZ44) inhibited; while a K(+)-ATP channel blocker (tolbutamide) and metabolizable sugars (glucose, glyceraldehyde) significantly stimulated the output of insulin. Although a nonmetabolizable sugar (galactose) failed to increase insulin release, dinitrophenol decreased the secretagogue effect of glucose. By contrast, although somatostatin and clonidine blocked the release of insulin, tetraethylammonium significantly stimulated secretion. For each compound tested, the effects on both insulin secretion and B-cell K+ channel activity were similar to those observed in the mammalian pancreas. These findings point to the existence of mammalian-like K+ channels in the B-cells of some amphibians.

  11. Involvement of peripheral TRPV1 channels in the analgesic effects of thalidomide.

    PubMed

    Song, Tieying; Wang, Liwen; Gu, Kunfeng; Yang, Yunliang; Yang, Lijun; Ma, Pengyu; Ma, Xiaojing; Zhao, Jianhui; Yan, Ruyv; Guan, Jiao; Wang, Chunping; Qi, Yan; Ya, Jian

    2015-01-01

    Thalidomide was introduced to the market in 1957 as a sedative and antiemetic agent, and returned to the market for the treatment of myelodysplastic syndrome and multiple myeloma. There are reports and studies of thalidomide as an analgesic or analgesic adjuvant in clinic. However, the underlying mechanism is quite elusive. Many studies suggest that the analgesic effect of thalidomide may be due to its immunomodulatory and anti-inflammatory properties as it suppresses the production of tumor necrosis factor α (TNF-α) selectively. However, it is not clear whether any other mechanisms are implicated in the pain relief. In this study, we demonstrated that the peripheral vanilloid receptor 1 (TRPV1) channel was also involved in the analgesic effect of thalidomide in different cell and animal models. During the activation by its agonist capsaicin, the cation inward influx through TRPV1 channels and the whole-cell current significantly decreased after TRPV1-overexpressed HEK293 cells or dorsal root ganglion (DRG) neurons were pre-treated with thalidomide for 20 minutes. And such attenuation in the TRPV1 activity was in a dose-dependent manner of thalidomide. In an acetic acid writhing test, pre-treatment of thalidomide decreased the writhing number in the wild type mice, while it did not happen in TRPV1 knockout mice, suggesting that the TRPV1 channel was involved in the pain relief by thalidomide. Taken together, the study showed that TRPV1 channels were involved in the analgesic effects of thalidomide. Such alteration in the action of TRPV1 channels by thalidomide may help understand how thalidomide takes analgesic effect in the body in addition to its selective inhibition of TNF-α production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels.

    PubMed

    Zhang, Zhi-Hao; Lee, Yan T; Rhodes, Kenneth; Wang, Kewei; Argentieri, Thomas M; Wang, Qiang

    2003-07-04

    The primary goal of this study was to use the cloned neuronal Kv channels to test if pimozide (PMZD), an antipsychotic drug, modulates the activity of Kv channels. In CHO cells, PMZD blocked Kv2.1, a major neuronal delayed rectifier, in a manner that depends upon time and concentration. The estimated IC50 was 4.2 microM at +50 mV. Tail current analysis shows that PMZD reduced the amplitude of the currents, with no effect on the steady-state activation curve (V(1/2) from 14.1 to 11.1 mV) or the slope (16.7 vs. 14.0 mV). From -120 to -20 mV, PMZD did not impact the deactivation kinetics of Kv2.1. PMZD also blocked Kv1.1, another neuronal delayed rectifier, with 16.1 microM of IC50. When Kv1.1 was co-expressed with Kvbeta1, approximately 50% of the Kv1.1 were converted into an inactivating A-type current and the Kv1.1/Kvbeta1 A-type currents were insensitive to PMZD. PMZD (10 microM) had minimal effect on Kv1.4, and had no effect on the M-current candidates, KCNQ2 and KCNQ3 when co-expressed in Xenopus oocytes. In hippocampal neurons, PMZD inhibited the delayed rectifiers by approximately 60%, and A-type currents were insensitive to PMZD. The results suggest that PMZD inhibits certain neuronal Kv channels in heterologous expression systems and in hippocampal neurons. PMZD was less effective on A-type currents, presumably because its ability to block requires a prolonged opening of the K channels. It is thus conceivable that the time-dependent and/or subunit-specific inhibition of Kv channels may increase the release of neurotransmitters such as serotonin and glutamate.

  13. Effects of Volatile Aromatic Anesthetics on Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes

    PubMed Central

    Horishita, Takafumi; Eger, Edmond I; Harris, R. Adron

    2008-01-01

    Background Many inhaled anesthetics inhibit voltage-gated sodium channels at clinically relevant concentrations, and suppression of neurotransmitter release by these agents results, at least partly, from decreased presynaptic sodium channel activity. Volatile aromatic anesthetics can inhibit N-methyl-D-aspartate (NMDA) receptor function and enhance γ-amino butyric acid A (GABAA) receptor function, but these effects depend strongly on the chemical properties of the aromatic ompounds. The present study tested whether diverse aromatic anesthetics consistently inhibit sodium channel function. Methods We studied the effect of eight aromatic anesthetics on Nav1.2 sodium channels with β1 subunits, using whole-cell, two-electrode voltage-clamp techniques in Xenopus oocytes. Results All aromatic anesthetics inhibited INa (sodium currents) at a holding potential which produce half-maximal current (V1/2) (partial depolarization); inhibition was modest with 1,3,5-trifluorobenzene (8 ± 2%), pentafluorobenzene (13 ± 2%), and hexafluorobenzene (13 ± 2%), but greater with benzene (37 ± 2%), fluorobenzene (39 ± 2%), 1,2-difluorobenzene (48 ± 2%), 1,4-difluorobenzene (31 ± 3%), and 1,2,4-trifluorobenzene (33 ± 1%). Such dichotomous effects were noted by others for NMDA and GABAA receptors. Parallel, but much smaller inhibition, was found for INa at a holding potential which produced near maximal current (−90 mV) (VH-90), and hexafluorobenzene caused small (6 ± 1%) potentiation of this current. These changes in sodium channel function were correlated with effectiveness for inhibiting NMDA receptors, with lipid solubility of the compounds, with molecular volume, and with cation-π interactions. Conclusion Aromatic compounds vary in their actions on the kinetics of sodium channel gating and this may underlie their variable inhibition. The range of inhibition produced by MAC concentrations of inhaled anesthetics indicates that sodium channel inhibition may underlie the

  14. Effects of Dike Fields on Channel Characteristics of the Lower Missiszippi River

    NASA Astrophysics Data System (ADS)

    Simon, A.; Biedenharn, D. S.; Danis, N.; Little, C. D.

    2017-12-01

    Dike systems along the Lower Mississippi River have been functioning as intended through the mid-1990s. Measures of main-channel depth, which are primary metrics to evaluate the effectiveness of the dike fields show significant increases at both +0 and +35 Low Water Reference Plane (LWRP). Median values for the two conditions (+0 and +35 LWRP) show increases of 19.0 and 28.8%, respectively. Main-channel depths at +0 LWRP were in the 25- to 26-ft range, indicating that main-channel depths in the dike-system reaches have been maintained well above the minimum 9-ft value required. Increases in average boundary shear stress of about 8 and 18% for the whole channel and main channel at +35 LWRP, respectively, reflect increases in sediment-transport capacity. The effectiveness of the dike systems in reducing the need for maintenance dredging is supported by the inverse relation between the amount of dredging and the cumulative length of constructed dikes. Maintenance dredging peaked in the late 1960s at about 60 million cubic yards (yd3) in the Memphis and Vicksburg Districts and decreased to about 4 million yd3 by 2003, a reduction of about 93%. Cases where total conveyance has decreased appear to result from longer-termed, broad adjustment processes related to other factors including the historical cutoff program along the Lower Mississippi River.

  15. Effects of ginger and its pungent constituents on transient receptor potential channels.

    PubMed

    Kim, Young-Soo; Hong, Chan Sik; Lee, Sang Weon; Nam, Joo Hyun; Kim, Byung Joo

    2016-12-01

    Ginger extract is used as an analeptic in herbal medicine and has been reported to exert antioxidant effects. Transient receptor potential (TRP) canonical 5 (TRPC5), TRP cation channel, subfamily M, member 7 (TRPM7; melastatin 7), and TRP cation channel, subfamily A, member 1 (TRPA1; ankyrin 1) are non-selective cation channels that are modulated by reactive oxygen/nitrogen species (ROS/RNS) and subsequently control various cellular processes. The aim of this study was to evaluate whether ginger and its pungent constituents modulate these channels and exert antioxidant effects. It was found that TRPC5 and TRPA1 currents were modulated by ginger extract and by its pungent constituents, [6]-gingerol, zingerone and [6]-shogaol. In particular, [6]-shogaol markedly and dose-dependently inhibited TRPC5 currents with an IC50 of value of ~18.3 µM. Furthermore, the strong dose-dependent activation of TRPA1 currents by [6]-shogaol was abolished by A‑967079 (a selective TRPA1 inhibitor). However, ginger extract and its pungent constituents had no effect on TRPM7 currents. These results suggest the antioxidant effects of ginger extract and its pungent constituents are mediated through TRPC5 and TRPA1, and that [6]-shogaol is predominantly responsible for the regulation of TRPC5 and TRPA1 currents by ginger extract.

  16. Effect of potassium channel modulators in mouse forced swimming test

    PubMed Central

    Galeotti, Nicoletta; Ghelardini, Carla; Caldari, Bernardetta; Bartolini, Alessandro

    1999-01-01

    The effect of intracerebroventricular (i.c.v.) administration of different potassium channel blockers (tetraethylammonium, apamin, charybdotoxin, gliquidone), potassium channel openers (pinacidil, minoxidil, cromakalim) and aODN to mKv1.1 on immobility time was evaluated in the mouse forced swimming test, an animal model of depression. Tetraethylammonium (TEA; 5 μg per mouse i.c.v.), apamin (3 ng per mouse i.c.v.), charybdotoxin (1 μg per mouse i.c.v.) and gliquidone (6 μg per mouse i.c.v.) administered 20 min before the test produced anti-immobility comparable to that induced by the tricyclic antidepressants amitriptyline (15 mg kg−1 s.c.) and imipramine (30 mg kg−1 s.c.). By contrast pinacidil (10–20 μg per mouse i.c.v.), minoxidil (10–20 μg per mouse i.c.v.) and cromakalim (20–30 μg per mouse i.c.v.) increased immobility time when administered in the same experimental conditions. Repeated administration of an antisense oligonucleotide (aODN) to the mKv1.1 gene (1 and 3 nmol per single i.c.v. injection) produced a dose-dependent increase in immobility time of mice 72 h after the last injection. At day 7, the increasing effect produced by aODN disappeared. A degenerate mKv1.1 oligonucleotide (dODN), used as control, did not produce any effect in comparison with saline- and vector-treated mice. At the highest effective dose, potassium channels modulators and the mKv1.1 aODN did not impair motor coordination, as revealed by the rota rod test, nor did they modify spontaneous motility as revealed by the Animex apparatus. These results suggest that modulation of potassium channels plays an important role in the regulation of immobility time in the mouse forced swimming test. PMID:10323599

  17. Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamura, Yota, E-mail: takamura@spin.pe.titech.ac.jp; Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552; Akushichi, Taiju

    2014-05-07

    We reexamined curve-fitting analysis for spin-accumulation signals observed in Si-channel spin-accumulation devices, employing widely-used Lorentz functions and a new formula developed from the spin diffusion equation. A Si-channel spin-accumulation device with a high quality ferromagnetic spin injector was fabricated, and its observed spin-accumulation signals were verified. Experimentally obtained Hanle-effect signals for spin accumulation were not able to be fitted by a single Lorentz function and were reproduced by the newly developed formula. Our developed formula can represent spin-accumulation signals and thus analyze Hanle-effect signals.

  18. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    PubMed

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Neotectonic effects on sinuosity and channel migration, Belle Fourche River, Western South Dakota

    USGS Publications Warehouse

    Gomez, Basil; Marron, Donna C.

    1991-01-01

    Short-term instability in the behaviour of a small, meandering alluvial channel is identified from the relation between sinuosity and either floodplain slope or channel slope within 17 reaches along an 81-kilometre section of the Belle Fourche River in western South Dakota. In reaches 1 to 4 and 11 to 17 the channel is relatively stable and sinuosity varies inversely with channel slope. In reaches 5 to 10, sinuosity is positively related to floodplain slope. Sinuosity increases markedly in reaches 5, 6, and 7 (which are immediately downstream from a discontinuity in the long profile of the floodplain) in association with an increase in floodplain slope. Immediately upstream from the discontinuity, bankfull channel depth and sinuosity decrease and the area of the floodplain reworked by meander migration between 1939 and 1981 increases, in association with a decrease in floodplain slope. Channel behaviour in reaches 5 to 10 is best explained as a consequence of neotectonic activity, as indicated by changes in elevation recorded along geodetic survey lines that cross lineaments that may delimit the eastern boundary of the Black Hills uplift. Sinuosity acts as a barometer of the effects of neotectonic activity on alluvial channels. Initial indications of channel and floodplain instability due to neotectonic activity may be derived from evidence of anomalously active channel migration, as documented from photographic or topographic sources.

  20. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  1. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2017-08-28

    Ligand- or voltage-driven stochastic gating-the structural rearrangements by which the channel switches between its open and closed states-is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  2. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  3. Analytical model of nanoscale junctionless transistors towards controlling of short channel effects through source/drain underlap and channel thickness engineering

    NASA Astrophysics Data System (ADS)

    Roy, Debapriya; Biswas, Abhijit

    2018-01-01

    We develop a 2D analytical subthreshold model for nanoscale double-gate junctionless transistors (DGJLTs) with gate-source/drain underlap. The model is validated using well-calibrated TCAD simulation deck obtained by comparing experimental data in the literature. To analyze and control short-channel effects, we calculate the threshold voltage, drain induced barrier lowering (DIBL) and subthreshold swing of DGJLTs using our model and compare them with corresponding simulation value at channel length of 20 nm with channel thickness tSi ranging 5-10 nm, gate-source/drain underlap (LSD) values 0-7 nm and source/drain doping concentrations (NSD) ranging 5-12 × 1018 cm-3. As tSi reduces from 10 to 5 nm DIBL drops down from 42.5 to 0.42 mV/V at NSD = 1019 cm-3 and LSD = 5 nm in contrast to decrement from 71 to 4.57 mV/V without underlap. For a lower tSiDIBL increases marginally with increasing NSD. The subthreshold swing reduces more rapidly with thinning of channel thickness rather than increasing LSD or decreasing NSD.

  4. Effects of Channel Modification on Detection and Dating of Fault Scarps

    NASA Astrophysics Data System (ADS)

    Sare, R.; Hilley, G. E.

    2016-12-01

    Template matching of scarp-like features could potentially generate morphologic age estimates for individual scarps over entire regions, but data noise and scarp modification limits detection of fault scarps by this method. Template functions based on diffusion in the cross-scarp direction may fail to accurately date scarps near channel boundaries. Where channels reduce scarp amplitudes, or where cross-scarp noise is significant, signal-to-noise ratios decrease and the scarp may be poorly resolved. In this contribution, we explore the bias in morphologic age of a complex scarp produced by systematic changes in fault scarp curvature. For example, fault scarps may be modified by encroaching channel banks and mass failure, lateral diffusion of material into a channel, or undercutting parallel to the base of a scarp. We quantify such biases on morphologic age estimates using a block offset model subject to two-dimensional linear diffusion. We carry out a synthetic study of the effects of two-dimensional transport on morphologic age calculated using a profile model, and compare these results to a well- studied and constrained site along the San Andreas Fault at Wallace Creek, CA. This study serves as a first step towards defining regions of high confidence in template matching results based on scarp length, channel geometry, and near-scarp topography.

  5. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics.

    PubMed

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-08-22

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm(2)/Vs, respectively, at room temperature.

  6. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    PubMed

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  7. The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels.

    PubMed

    Gomes Castro, Allisson Jhonatan; Cazarolli, Luisa Helena; Bretanha, Lizandra C; Sulis, Paola Miranda; Rey Padilla, Diana Patricia; Aragón Novoa, Diana Marcela; Dambrós, Betina Fernanda; Pizzolatti, Moacir G; Mena Barreto Silva, Fátima Regina

    2018-06-15

    Betulinic acid (BA) has been described as an insulin secretagogue which may explain its potent antihyperglycemic effect; however, the exact role of BA as an insulinogenic agent is not clear. The aim of this study was to investigate the mechanism of BA on calcium influx and static insulin secretion in pancreatic islets isolated from euglycemic rats. We found that BA triggers calcium influx by a mechanism dependent on ATP-dependent potassium channels and L-type voltage-dependent calcium channels. Additionally, the voltage-dependent and calcium-dependent chloride channels are also involved in the mechanism of BA, probably due to an indirect stimulation of calcium entry and increased intracellular calcium. Additionally, the downstream activation of PKC, which is necessary for the effect of BA on calcium influx, is involved in the full stimulatory response of the triterpene. BA stimulated the static secretion of insulin in pancreatic islets, indicating that the abrupt calcium influx may be a key step in its secretagogue effect. As such, BA stimulates insulin secretion through the activation of electrophysiological mechanisms, such as the closure of potassium channels and opening of calcium and chloride channels, inducing cellular depolarization associated with metabolic-biochemical effects, in turn activating PKC and ensuring the secretion of insulin. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement

    NASA Astrophysics Data System (ADS)

    Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.

    2018-03-01

    In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

  9. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells.

    PubMed

    Kucherenko, Yuliya V; Wagner-Britz, Lisa; Bernhardt, Ingolf; Lang, Florian

    2013-04-01

    DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.

  10. Far-Field Plume Measurements of a Nested-Channel Hall-Effect Thruster (PREPRINT)

    DTIC Science & Technology

    2010-12-13

    nude Faraday probe, retarding potential analyzer, and ExB probe. Data from these probes were used to calculate utilization efficiencies from existing...USA Far-field plume measurements were performed on the X2 nested-channel Hall-effect thruster using an ar- ray of diagnostics, including a nude Faraday...mode to nested-channel mode by utilizing a traditional array of far-field diagnostics, which include a nude Faraday probe, retarding potential analyzer

  11. Deltas as Ecomorphodynamic Systems: Effects of Vegetation Gradients on Sediment Trapping and Channel Dynamics

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Goggin, H.

    2014-12-01

    Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to determine (1) the effects of plants on delta growth and channel dynamics and (2) the influence of fine material on delta evolution. Vegetated experiments were compared to a control run without plants to isolate the effects of vegetation, and experiments with fine sediment were compared to a set of similar experiments with only sand. We found that alfalfa increased sediment trapping on the delta topset, and that the plants were especially effective at retaining fine material. Compared to the control run, the vegetated experiments showed an increased retention of fine sediment on the floodplain that resulted in increased delta relief and stronger pulses of shoreline progradation when channel avulsion and migration occurred. In other words, a higher amount of sediment storage with the addition of vegetation corresponded to a higher amount of sediment excavation during channelization events. In natural systems, dense bank vegetation is typically expected to help confine flow. We seeded our delta uniformly, which eliminated typical vegetation density gradients from riverbank to island center and therefore diminished the gradient in overbank sedimentation that best confines channels by creating levees. Dense clusters of alfalfa throughout the interior of the floodplain and delta islands were therefore able to induce flow splitting, where channels diverged around a stand of plants. This created several smaller channels that were then able to more widely distribute sediment at the delta front compared to unvegetated experiments. We conclude that plants are efficient sediment trappers that change the rate and amount of sediment storage in the delta topset, and that gradients in vegetation density are an important

  12. Large conductance Ca(2+)-activated K(+) channel (BKCa) activating properties of a series of novel N-arylbenzamides: Channel subunit dependent effects.

    PubMed

    Kirby, R W; Martelli, A; Calderone, V; McKay, N G; Lawson, K

    2013-07-15

    Large conductance calcium activated potassium channels (BKCa) are fundamental in the control of cellular excitability. Thus, compounds that activate BKCa channels could provide potential therapies in the treatment of pathologies of the cardiovascular and central nervous system. A series of novel N-arylbenzamide compounds, and the reference compound NS1619, were evaluated for BKCa channel opener properties in Human Embryonic Kidney (HEK293) cells expressing the human BKCa channel α-subunit alone or α+β1-subunit complex. Channel activity was determined using a non-radioactive Rb(+) efflux assay to construct concentration effect curves for each compound. All N-arylbenzamide compounds and NS1619 evoked significant (p <0.05) concentration related increases in Rb(+) efflux both in cells expressing α-subunit alone or α+β1-subunits. Co-expression of the β1-subunit modified the Rb(+) efflux responses, relative to that obtained in cells expressing the α-subunit alone, for most of the N-arylbenzamide compounds, in contrast to NS1619. The EC40 values of NS1619, BKMe1 and BKOEt1 were not significantly affected by the co-expression of the BKCa channel α+β1-subunits. In contrast, 5 other N-arylbenzamides (BKPr2, BKPr3, BKPr4, BKH1 and BKVV) showed a significant (p <0.05) 2- to 10-fold increase in EC40 values when tested on the BKCa α+β1-subunit expressing cells compared to BKCa α-subunit expressing cells. Further, the Emax values for BKPr4, BKVV and BKH1 were lower in the BKCa channel α+β1-subunit expressing cells. In conclusion, the N-arylbenzamides studied, like NS1619, were able to activate BKCa channels formed of the α-subunit only. The co-expression of the β1-subunit, however, modified the ability of certain compounds to active the channel leading to differentiated pharmacodynamic profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    PubMed

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  14. Effects of preparation relief and flow channels on seating full coverage castings during cementation.

    PubMed

    Webb, E L; Murray, H V; Holland, G A; Taylor, D F

    1983-06-01

    Machined steel dies were used to study the effects of three die modifications on seating full coverage castings during cementation. The die modifications consisted of occlusal channels, occlusal surface relief, and axial channels. Fourteen specimens having one or more forms of die modification were compared with two control specimens having no die modifications. Statistical analysis of the data revealed that the addition of four axial channels to the simulated preparation on the steel die produced a significant reduction in the mean marginal discrepancy during cementation. Occlusal modifications alone failed to produce significant reductions in marginal discrepancies when compared with the control specimens. Occlusal modifications in conjunction with axial channels failed to produce further significant reductions in marginal discrepancies when compared with those reductions observed in specimens having only axial channels.

  15. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    NASA Astrophysics Data System (ADS)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  16. The Development and User Satisfaction Evaluation of Internet-Based N-Screen Healthcare Walking Content to Increase Continuous Usage Motivation.

    PubMed

    Youm, Sekyoung

    2015-08-01

    The purpose of the current study is (1) to apply Internet-based N-Screen (this is used like the term "emultiscreen"; as the technology that provides services of shared content or application via N devices, it includes all screens such as personal computers [PCs], TV, and mobile devices) services to healthcare services by developing games for improving one's health and (2) to present ways to activate the use of health promotion contents in the future by investigating user satisfaction and whether there is any intention to accept the contents and/or use the services continuously. In order to evaluate the customized health maintenance content provided by the healthcare walking system developed in the current study, 98 adult men and women residing in Seoul, Korea, were instructed to use 10 minutes' worth of the walking content. Perceived quality, level of trust in the results, effectiveness of the exercise, and overall satisfaction were measured in regard to the N-Screen-based walking content, including those for the cell phone, PC, and Internet protocol TV (IPTV). Walking contents using N-Screen services were perceived with high levels of trust in the results of the exercise, the effectiveness of the exercise, and overall satisfaction. In terms of the usability of N-Screen services, the younger the participants, the more usable they found the mobile or PC programs. The older the participants, the more usable they found the IPTV screens, although they still struggled with using the content given; operating IPTVs proved to be difficult for them. Furthermore, participants who were engaged in exercise on a regular basis were less satisfied with the program, in general. The present study has developed a walking system using N-Screen programs to make the most common and effective forms of exercise-walking and running-accessible indoors. This may increase motivation to exercise by offering services that boost one's interest in exercising, such as personal monitoring and real

  17. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  18. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  19. Laboratory Modelling of the Effect of Bend Orientation on the Morphological Development of Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Good, R. G. R.; Sullivan, C.; Binns, A. D.

    2017-12-01

    Bend orientation, or skewness, in natural streams is often caused by riparian vegetation or underlying geology that lead to a meandering stream following a non-sinuous path. The bend orientation affects how the fluid momentum interacts with the bed and banks, which can alter the location and shape of bedforms as well as the channel planform geometry. An experimental study in a laboratory sand flume with movable bed and banks (5.6 m long, 1.9 m wide; D50 = 0.7 mm; B = 0.2m; 3 wavelengths) was carried out to quantify the effect of bend orientation on bedform development and planform changes. While previous research in the literature has found that channels with an upstream bend orientation had a less developed secondary flow than a downstream orientation, few studies on the morphological development of streams having varying bend orientation have been conducted. In total, three runs were carried out using channels with upstream, downstream, and no skewness. The runs progressed in a series of time-steps to monitor the morphological evolution of the streams with time. Sediment transport rates were quantified at the outlet, flow was measured using an ultrasonic flow meter at the inlet, flow depths were measured at the apex of the bends, and channel morphology was measured at each time step using Structure-from-Motion photogrammetry with Agisoft Photoscan. Bend orientation was found to influence the position of the point bar development as well as the locations of maximum and minimum channel migration. Relative to the bend apex, point bars tended to be positioned in the same direction as the channel skewness. Channel width showed the greatest variation with the upstream orientation, with the channel narrowing before the apex where the channel flows in the up-valley direction, and widening downstream of the apex. These results show that the channel orientation influences the morphological development of the channel bed and banks. The effect of velocity structure and

  20. Investigation of Short Channel Effects on Device Performance for 60nm NMOS Transistor

    NASA Astrophysics Data System (ADS)

    Chinnappan, U.; Sanudin, R.

    2017-08-01

    In the aggressively scaled complementary metal oxide semiconductor (CMOS) devices, shallower p-n junctions and low sheet resistances are essential for short-channel effect (SCE) control and high device performance. The SCE are attributed to two physical phenomena that are the limitation imposed on electron drift characteristics in channel and the modification of the threshold voltage (Vth) due to the shortening channel length. The decrement of Vth with decrement in gate length is a well-known attribute in SCE known as “threshold voltage roll-off’. In this research, the Technology Computer Aided Design (TCAD) was used to model the SCE phenomenon effect on 60nm n-type metal oxide semiconductor (NMOS) transistor. There are three parameters being investigated, which are the oxide thickness (Tox), gate length (L), acceptor concentration (Na). The simulation data were used to visualise the effect of SCE on the 60nm NMOS transistor. Simulation data suggest that all three parameters have significant effect on Vth, and hence on the transistor performance. It is concluded that there is a trade-off among these three parameters to obtain an optimized transistor performance.

  1. Online written consultation, telephone consultation and offline appointment: An examination of the channel effect in online health communities.

    PubMed

    Wu, Hong; Lu, Naiji

    2017-11-01

    The emergence of online health communities broadens and diversifies channels for patient-doctor interaction. Given limited medical resources, online health communities aim to provide better treatment by decreasing medical costs, making full use of available resources and providing more diverse channels for patients. This research examines how online channel usage affects offline channels, i.e., "Online Booking, Service in Hospitals" (OBSH), and how the channel effects change with doctors' online and offline reputation. The study uses data of 4254 doctors from a Chinese online health community. Our findings demonstrate a strong relationship between online health communities and offline hospital communication with an important moderating role for reputation. There are significant channel effects, wherein written consultation complements OBSH (β=3.320, p<0.10), but telephone consultation can be a readily substitute for OBSH (β=-9.854, p<0.001). We also find that doctors with higher online and offline reputations can attract more patients to use the OBSH (β online =0.433, p<0.001; β offline =2.318&2.123, p<0.001). Third, channel effects fluctuate, relative to doctors' online and offline reputations: doctors with higher online reputations mitigate substitution effects between telephone consultation and OBSH (β=0.064, p<0.01), and doctors with higher offline reputations mitigate complementary effects between written consultation and OBSH (β=-1.586&-1.417, p<0.001). This study contributes to both knowledge and practice. This study shows that there is channel effect in healthcare, websites' managers can encourage physicians to provide online services, especially for these physicians who do not have enough patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Compound-Specific Effects of Mutations at Val787 in DII-S6 of Nav1.4 Sodium Channels on the Action of Sodium Channel Inhibitor Insecticides

    PubMed Central

    von Stein, Richard T.; Soderlund, David M.

    2012-01-01

    Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119

  3. Investigation of piezoresistive effect in p-channel metal–oxide–semiconductor field-effect transistors fabricated on circular silicon-on-insulator diaphragms using cost-effective minimal-fab process

    NASA Astrophysics Data System (ADS)

    Liu, Yongxun; Tanaka, Hiroyuki; Umeyama, Norio; Koga, Kazuhiro; Khumpuang, Sommawan; Nagao, Masayoshi; Matsukawa, Takashi; Hara, Shiro

    2018-06-01

    P-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs) with the 〈110〉 or 〈100〉 channel direction have been successfully fabricated on circular silicon-on-insulator (SOI) diaphragms using a cost-effective minimal-fab process, and their electrical characteristics have been systematically investigated before and after the SOI diaphragm formation. It was found that almost the same subthreshold slope (S-slope) and threshold voltage (V t) are observed in the fabricated PMOSFETs before and after the SOI diaphragm formation, and they are independent of the channel direction. On the other hand, significant variations in drain current were observed in the fabricated PMOSFETs with the 〈110〉 channel direction after the SOI diaphragm formation owing to the residual mechanical stress-induced piezoresistive effect. It was also confirmed that electrical characteristics of the fabricated PMOSFETs with the 〈100〉 channel direction are almost the same before and after the SOI diaphragm formation, i.e., not sensitive to the mechanical stress. Moreover, the drain current variations at different directions of mechanical stress and current flow were systematically investigated and discussed.

  4. Clofilium inhibits Slick and Slack potassium channels.

    PubMed

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  5. Effects of Na(+) and K(+) channel blockade on vulnerability to and termination of fibrillation in simulated normal cardiac tissue.

    PubMed

    Qu, Zhilin; Weiss, James N

    2005-10-01

    Na(+) and K(+) channel-blocking drugs have anti- and proarrhythmic effects. Their effects during fibrillation, however, remain poorly understood. We used computer simulation of a two-dimensional (2-D) structurally normal tissue model with phase I of the Luo-Rudy action potential model to study the effects of Na(+) and K(+) channel blockade on vulnerability to and termination of reentry in simulated multiple-wavelet and mother rotor fibrillation. Our main findings are as follows: 1) Na(+) channel blockade decreased, whereas K(+) channel blockade increased, the vulnerable window of reentry in heterogeneous 2-D tissue because of opposing effects on dynamical wave instability. 2) Na(+) channel blockade increased the cycle length of reentry more than it increased refractoriness. In multiple-wavelet fibrillation, Na(+) channel blockade first increased and then decreased the average duration or transient time () of fibrillation. In mother rotor fibrillation, Na(+) channel blockade caused peripheral fibrillatory conduction block to resolve and the mother rotor to drift, leading to self-termination or sustained tachycardia. 3) K(+) channel blockade increased dynamical instability by steepening action potential duration restitution. In multiple-wavelet fibrillation, this effect shortened because of enhanced wave instability. In mother rotor fibrillation, this effect converted mother rotor fibrillation to multiple-wavelet fibrillation, which then could self-terminate. Our findings help illuminate, from a theoretical perspective, the possible underlying mechanisms of termination of different types of fibrillation by antiarrhythmic drugs.

  6. Dependence of interface charge trapping on channel engineering in pentacene field effect transistors.

    PubMed

    Lee, Sunwoo; Park, Junghyuck; Park, In-Sung; Ahn, Jinho

    2014-07-01

    We investigate the dependence of charge carrier mobility by trap states at various interface regions through channel engineering. Prior to evaluation of interface trap density, the electrical performance in pentaene field effect transistors (FET) with high-k gate oxide are also investigated depending on four channel engineering. As a channel engineering, gas treatment, coatings of thin polymer layer, and chemical surface modification using small molecules were carried out. After channel engineering, the performance of device as well as interface trap density calculated by conductance method are remarkably improved. It is found that the reduced interface trap density is closely related to decreasing the sub-threshold swing and improving the mobility. Particularly, we also found that performance of device such as mobility, subthreshold swing, and interface trap density after gas same is comparable to those of OTS.

  7. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  8. Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors

    NASA Astrophysics Data System (ADS)

    Gasparyan, Ferdinand; Zadorozhnyi, Ihor; Khondkaryan, Hrant; Arakelyan, Armen; Vitusevich, Svetlana

    2018-03-01

    Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.

  9. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons.

    PubMed

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; Shi, Wu; Lee, Kyunghoon; Wu, Shuang; Yong Choi, Byung; Braganza, Rohit; Lear, Jordan; Kau, Nicholas; Choi, Wonwoo; Chen, Chen; Pedramrazi, Zahra; Dumslaff, Tim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus; Fischer, Felix; Zettl, Alex; Ruffieux, Pascal; Yablonovitch, Eli; Crommie, Michael; Fasel, Roman; Bokor, Jeffrey

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch  ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on  > 1 μA at V d  = -1 V) and high I on /I off  ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 10 5 on-off current ratio.

  10. Universal core model for multiple-gate field-effect transistors with short channel and quantum mechanical effects

    NASA Astrophysics Data System (ADS)

    Shin, Yong Hyeon; Bae, Min Soo; Park, Chuntaek; Park, Joung Won; Park, Hyunwoo; Lee, Yong Ju; Yun, Ilgu

    2018-06-01

    A universal core model for multiple-gate (MG) field-effect transistors (FETs) with short channel effects (SCEs) and quantum mechanical effects (QMEs) is proposed. By using a Young’s approximation based solution for one-dimensional Poisson’s equations the total inversion charge density (Q inv ) in the channel is modeled for double-gate (DG) and surrounding-gate SG (SG) FETs, following which a universal charge model is derived based on the similarity of the solutions, including for quadruple-gate (QG) FETs. For triple-gate (TG) FETs, the average of DG and QG FETs are used. A SCEs model is also proposed considering the potential difference between the channel’s surface and center. Finally, a QMEs model for MG FETs is developed using the quantum correction compact model. The proposed universal core model is validated on commercially available three-dimensional ATLAS numerical simulations.

  11. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  12. Effects of WDRC release time and number of channels on output SNR and speech recognition

    PubMed Central

    Alexander, Joshua M.; Masterson, Katie

    2014-01-01

    Objectives The purpose of this study was to investigate the joint effects that wide dynamic range compression (WDRC) release time (RT) and number of channels have on recognition of sentences in the presence of steady and modulated maskers at different signal-to-noise ratios (SNRs). How the different combinations of WDRC parameters affect output SNR and the role this plays in the observed findings was also investigated. Design Twenty-four listeners with mild to moderate sensorineural hearing loss identified sentences mixed with steady or modulated maskers at 3 SNRs (−5, 0, +5 dB) that had been processed using a hearing aid simulator with 6 combinations of RT (40 and 640 ms) and number of channels (4, 8, and 16). Compression parameters were set using the Desired Sensation Level v5.0a prescriptive fitting method. For each condition, amplified speech and masker levels and the resultant long-term output SNR were measured. Results Speech recognition with WDRC depended on the combination of RT and number of channels, with the greatest effects observed at 0 dB input SNR, in which mean speech recognition scores varied by 10–12% across WDRC manipulations. Overall, effect sizes were generally small. Across both masker types and the three SNRs tested, the best speech recognition was obtained with 8 channels, regardless of RT. Increased speech levels, which favor audibility, were associated with the short RT and with an increase in the number of channels. These same conditions also increased masker levels by an even greater amount, for a net decrease in the long-term output SNR. Changes in long-term SNR across WDRC conditions were found to be strongly associated with changes in the temporal envelope shape as quantified by the Envelope Difference Index, however, neither of these factors fully explained the observed differences in speech recognition. Conclusions A primary finding of this study was that the number of channels had a modest effect when analyzed at each level of

  13. Electrohydrodynamic channeling effects in narrow fractures and pores

    NASA Astrophysics Data System (ADS)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  14. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  15. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  16. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons

    DOE PAGES

    Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela; ...

    2017-09-21

    Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 μA at V d = -1 V) and highmore » I on /I off ~ 10 5 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.« less

  17. Investigation of the effect of scattering centers on low dimensional nanowire channel

    NASA Astrophysics Data System (ADS)

    Cariappa, K. S.; Shukla, Raja; Sarkar, Niladri

    2018-05-01

    In this work, we studied the effect of scattering centers on the electron density profiles of a one dimensional Nanowire channel. Density Matrix Formalism is used for calculating the local electron densities at room temperature. Various scattering centers have been simulated in the channel. The nearest neighbor tight binding method is applied to construct the Hamiltonian of nanoscale devices. We invoke scattering centers by adding local scattering potentials to the Hamiltonian. This analysis could give an insight into the understanding and utilization of defects for device engineering.

  18. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects.

    PubMed

    Sanacora, G; Smith, M A; Pathak, S; Su, H-L; Boeijinga, P H; McCarthy, D J; Quirk, M C

    2014-09-01

    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) channel blocker, has been found to induce rapid and robust antidepressant-like effects in rodent models and in treatment-refractory depressed patients. However, the marked acute psychological side effects of ketamine complicate the interpretation of both preclinical and clinical data. Moreover, the lack of controlled data demonstrating the ability of ketamine to sustain the antidepressant response with repeated administration leaves the potential clinical utility of this class of drugs in question. Using quantitative electroencephalography (qEEG) to objectively align doses of a low-trapping NMDA channel blocker, AZD6765 (lanicemine), to that of ketamine, we demonstrate the potential for NMDA channel blockers to produce antidepressant efficacy without psychotomimetic and dissociative side effects. Furthermore, using placebo-controlled data, we show that the antidepressant response to NMDA channel blockers can be maintained with repeated and intermittent drug administration. Together, these data provide a path for the development of novel glutamatergic-based therapeutics for treatment-refractory mood disorders.

  19. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells.

    PubMed

    Ketabi, N; Mobasheri, H; Faraji-Dana, R

    2015-03-01

    The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.

  20. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  1. Effects of chlorogenic acid on voltage-gated potassium channels of trigeminal ganglion neurons in an inflammatory environment.

    PubMed

    Liu, Fei; Lu, Xiao-Wen; Zhang, Yu-Jiao; Kou, Liang; Song, Ning; Wu, Min-Ke; Wang, Min; Wang, Hang; Shen, Jie-Fei

    2016-10-01

    Chlorogenic acid (CGA) composed of coffee acid and quinic acid is an effective ingredient of many foods and medicines and widely exhibits biological effects. Recently, it is reported to have analgesic effect. However, little is known about the analgesic mechanism of CGA. In this study, whole-cell patch-clamp recordings were performed on two main subtypes (I K,A and I K,V channels) of voltage-gated potassium (K V ) channels in small-diameter(<30μm) trigemianl ganglion neurons to analyze the effects of CGA in an inflammatory environment created by Prostaglandin E 2 (PGE 2 ). On one hand, the activation and inactivation V 1/2 values of I K,A and I K,V channels showed an elevation towards a depolarizing shift caused by PGE 2 . On the other hand, the activation and inactivation V 1/2 values of the two channels had a reduction towards a hyperpolarizing shift caused by CGA under PGE 2 pretreatment. Our results demonstrated that CGA may exhibited an analgesic effect by promoting K V channels activation and inactivation under inflammatory condition, which provided a novel molecular and ionic mechanism underlying anti-inflammatory pain of CGA. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    NASA Astrophysics Data System (ADS)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  3. Effects of unsaturated fatty acids on the kinetics of voltage‐gated proton channels heterologously expressed in cultured cells

    PubMed Central

    Kawanabe, Akira

    2016-01-01

    Key points Arachidonic acid (AA) greatly enhances the activity of the voltage‐gated proton (Hv) channel, although its mechanism of action and physiological function remain unclear.In the present study, we analysed the effects of AA on proton currents through Hv channels heterologously expressed in HEK293T cells.The dramatic increase in proton current amplitude elicited by AA was accompanied by accelerated activation kinetics and a leftward shift in the voltage‐dependence of activation.Mutagenesis studies suggest the two aforementioned effects of AA reflect two distinct structural mechanisms.Application of phospholipase A2, which liberates AA from phospholipids in the membrane, also enhances Hv channel activity, supporting the idea that AA modulates Hv channel activity within physiological contexts. Abstract Unsaturated fatty acids are key components of the biological membranes of all cells, and precursors of mediators for cell signalling. Arachidonic acid (AA) is an unsaturated fatty acid known to modulate the activities of various ion channels, including the voltage‐gated proton (Hv) channel, which supports the rapid production of reactive oxygen species (ROS) in phagocytes through regulation of pH and membrane potential. However, the molecular mechanisms and physiological functions of the effects of AA on Hv channels remain unclear. In the present study, we report an electrophysiological analysis of the effects of AA on the mouse Hv channel (mHv1) heterologously expressed in HEK293T cells. Application of AA to excised inside‐out patch membranes rapidly induced a robust increase in the amplitude of the proton current through mHv1. The current increase was accompanied by accelerated activation kinetics and a small leftward shift of the current–voltage relationship. In monomeric channels lacking the coiled‐coil region of the channel protein, the shift in the current–voltage relationship was diminished but activation and deactivation remained

  4. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  5. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or

  6. Analysis of long-channel nanotube field-effect-transistors (NT FETs)

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides an analysis of long-channel nanotube (NT) field effect transistors (FET) from NASA's Ames Research Center. The structure of such a transistor including the electrode contact, 1D junction, and the planar junction is outlined. Also mentioned are various characteristics of a nanotube tip-equipped scanning tunnel microscope (STM).

  7. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  8. Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sunghwan; Song, Yang; Park, Hongsik; Zaslavsky, A.; Paine, D. C.

    2017-09-01

    Amorphous oxide semiconductors (AOSs) based on indium oxides are of great interest for next generation ultra-high definition displays that require much smaller pixel driving elements. We describe the scaling behavior in amorphous InZnO thin film transistors (TFTs) with a significant decrease in the extracted field-effect mobility μFE with channel length L (from 39.3 to 9.9 cm2/V·s as L is reduced from 50 to 5 μm). Transmission line model measurements reveal that channel scaling leads to a significant μFE underestimation due to contact resistance (RC) at the metallization/channel interface. Therefore, we suggest a method of extracting correct μFE when the TFT performance is significantly affected by RC. The corrected μFE values are higher (45.4 cm2/V·s) and nearly independent of L. The results show the critical effect of contact resistance on μFE measurements and suggest strategies to determine accurate μFE when a TFT channel is scaled.

  9. 2D modeling based comprehensive analysis of short channel effects in DMG strained VSTB FET

    NASA Astrophysics Data System (ADS)

    Saha, Priyanka; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-06-01

    The paper aims to develop two dimensional analytical model of the proposed dual material (DM) Vertical Super Thin Body (VSTB) strained Field Effect Transistor (FET) with focus on its short channel behaviour in nanometer regime. Electrostatic potential across gate/channel and dielectric wall/channel interface is derived by solving 2D Poisson's equation with parabolic approximation method by applying appropriate boundary conditions. Threshold voltage is then calculated by using the criteria of minimum surface potential considering both gate and dielectric wall side potential. Performance analysis of the present structure is demonstrated in terms of potential, electric field, threshold voltage characteristics and subthreshold behaviour by varying various device parameters and applied biases. Effect of application of strain in channel is further explored to establish the superiority of the proposed device in comparison to conventional VSTB FET counterpart. All analytical results are compared with Silvaco ATLAS device simulated data to substantiate the accuracy of our derived model.

  10. Effectiveness of public health messaging and communication channels during smoke events: A rapid systematic review.

    PubMed

    Fish, Jennifer A; Peters, Micah D J; Ramsey, Imogen; Sharplin, Greg; Corsini, Nadia; Eckert, Marion

    2017-05-15

    Exposure to smoke emitted from wildfire and planned burns (i.e., smoke events) has been associated with numerous negative health outcomes, including respiratory symptoms and conditions. This rapid review investigates recent evidence (post-2009) regarding the effectiveness of public health messaging during smoke events. The objectives were to determine the effectiveness of various communication channels used and public health messages disseminated during smoke events, for general and at-risk populations. A search of 12 databases and grey literature yielded 1775 unique articles, of which 10 were included in this review. Principal results were: 1) Smoke-related public health messages are communicated via a variety of channels, but limited evidence is available regarding their effectiveness for the general public or at-risk groups. 2) Messages that use simple language are more commonly recalled, understood, and complied with. Compliance differs according to socio-demographic characteristics. 3) At-risk groups may be advised to stay indoors before the general population, in order to protect the most vulnerable people in a community. The research included in this review was observational and predominantly descriptive, and is therefore unable to sufficiently answer questions regarding effectiveness. Experimental research, as well as evaluations, are required to examine the effectiveness of modern communication channels, channels to reach at-risk groups, and the 'stay indoors' message. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Amazon floodplain channels regulate channel-floodplain water exchange

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Baugh, C.; Trigg, M.

    2017-12-01

    We examine the role of floodplain channels in regulating the exchange of water between the Amazon main stem and its extensive floodplains using a combination of field survey, remote sensing and numerical modelling for a 30,000 km2 area around the confluence of the Solimões and Purus rivers. From Landsat imagery we identified 1762 individual floodplain channel reaches with total length of nearly 9300 line km that range in width from 900m to 20m. Using a boat survey we measured width and depth along 509 line km of floodplain channels in 45 separate reaches and used these data to develop geomorphic relationships between width and depth. This enabled reconstruction of the depth of all other channels in the Landsat survey to an RMSE of 2.5m. We then constructed a 2D hydraulic model of this site which included all 9300km of floodplain channels as sub-grid scale features using a recently developed version of the LISFLOOD-FP code. The DEM for the model was derived from a version of the SRTM Digital Elevation Model that was processed to remove vegetation artefacts. The model was run at 270m resolution over the entire 30,000 km2 domain for the period from 2002-2009. Simulations were run with and without floodplain channels to examine the impact of these features on floodplain flow dynamics and storage. Simulated floodplain channel hydraulics were validated against a combination of in-situ and remotely sensed data. Our results show that approximately 100 km3 of water is exchanged between the channel and the floodplain during a typical annual cycle, and 8.5±2.1% of mainstem flows is routed through the floodplain. The overall effect of floodplains channels was to increase the duration of connections between the Amazon River and the floodplain. Inclusion of floodplain channels in the model increased inundation volume by 7.3% - 11.3% at high water, and decreased it at low water by 4.0% - 16.6%, with the range in these estimates due to potential errors in floodplain channel

  12. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.

    PubMed

    Mak, D O; Webb, W W

    1995-12-01

    Conductance noise measurement of the open states of alamethicin transmembrane channels reveals excess noise attributable to cooperative low-frequency molecular dynamics that can generate fluctuations approximately 1 A rms in the effective channel pore radius. Single-channel currents through both persistent and nonpersistent channels with multiple conductance states formed by purified polypeptide alamethicin in artificial phospholipid bilayers isolated onto micropipettes with gigaohm seals were recorded using a voltage-clamp technique with low background noise (rms noise < 3 pA up to 20 kHz). Current noise power spectra between 100 Hz and 20 kHz of each open channel state showed little frequency dependence. Noise from undetected conductance state transitions was insignificant. Johnson and shot noises were evaluated. Current noise caused by electrolyte concentration fluctuation via diffusion was isolated by its dependence on buffer concentration. After removing these contributions, significant current noise remains in all persistent channel states and increases in higher conductance states. In nonpersistent channels, remaining noise occurs primarily in the lowest two states. These fluctuations of channel conductance are attributed to thermal oscillations of the channel molecular conformation and are modeled as a Langevin translational oscillation of alamethicin molecules moving radially from the channel pore, damped mostly by lipid bilayer viscosity.

  13. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  14. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  15. Effect of matching between the magnetic field and channel length on the performance of low sputtering Hall thrusters

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren

    2018-02-01

    Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.

  16. Calculation of the electron wave function in a graded-channel double-heterojunction modulation-doped field-effect transistor

    NASA Technical Reports Server (NTRS)

    Mui, D. S. L.; Patil, M. B.; Morkoc, H.

    1989-01-01

    Three double-heterojunction modulation-doped field-effect transistor structures with different channel composition are investigated theoretically. All of these transistors have an In(x)Ga(1-x)As channel sandwiched between two doped Al(0.3)Ga(0.7)As barriers with undoped spacer layers. In one of the structures, x varies from 0 from either heterojunction to 0.15 at the center of the channel quadratically; in the other two, constant values of x of 0 and 0.15 are used. The Poisson and Schroedinger equations are solved self-consistently for the electron wave function in all three cases. The results showed that the two-dimensional electron gas (2DEG) concentration in the channel of the quadratically graded structure is higher than the x = 0 one and slightly lower than the x = 0.15 one, and the mean distance of the 2DEG is closer to the center of the channel for this transistor than the other two. These two effects have important implications on the electron mobility in the channel.

  17. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes

    NASA Astrophysics Data System (ADS)

    Chianese, F.; Candini, A.; Affronte, M.; Mishra, N.; Coletti, C.; Cassinese, A.

    2018-05-01

    In this work, we test graphene electrodes in nanometric channel n-type Organic Field Effect Transistors (OFETs) based on thermally evaporated thin films of the perylene-3,4,9,10-tetracarboxylic acid diimide derivative. By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied bias, in contrast with the supralinear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrode devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ˜140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current in short channel OFETs.

  18. Methamphetamine acutely inhibits voltage-gated calcium channels but chronically up-regulates L-type channels.

    PubMed

    Andres, Marilou A; Cooke, Ian M; Bellinger, Frederick P; Berry, Marla J; Zaporteza, Maribel M; Rueli, Rachel H; Barayuga, Stephanie M; Chang, Linda

    2015-07-01

    In neurons, calcium (Ca(2+) ) channels regulate a wide variety of functions ranging from synaptic transmission to gene expression. They also induce neuroplastic changes that alter gene expression following psychostimulant administration. Ca(2+) channel blockers have been considered as potential therapeutic agents for the treatment of methamphetamine (METH) dependence because of their ability to reduce drug craving among METH users. Here, we studied the effects of METH exposure on voltage-gated Ca(2+) channels using SH-SY5Y cells as a model of dopaminergic neurons. We found that METH has different short- and long-term effects. A short-term effect involves immediate (< 5 min) direct inhibition of Ca(2+) ion movements through Ca(2+) channels. Longer exposure to METH (20 min or 48 h) selectively up-regulates the expression of only the CACNA1C gene, thus increasing the number of L-type Ca(2+) channels. This up-regulation of CACNA1C is associated with the expression of the cAMP-responsive element-binding protein (CREB), a known regulator of CACNA1C gene expression, and the MYC gene, which encodes a transcription factor that putatively binds to a site proximal to the CACNA1C gene transcription initiation site. The short-term inhibition of Ca(2+) ion movement and later, the up-regulation of Ca(2+) channel gene expression together suggest the operation of cAMP-responsive element-binding protein- and C-MYC-mediated mechanisms to compensate for Ca(2+) channel inhibition by METH. Increased Ca(2+) current density and subsequent increased intracellular Ca(2+) may contribute to the neurodegeneration accompanying chronic METH abuse. Methamphetamine (METH) exposure has both short- and long-term effects. Acutely, methamphetamine directly inhibits voltage-gated calcium channels. Chronically, neurons compensate by up-regulating the L-type Ca(2+) channel gene, CACNA1C. This compensatory mechanism is mediated by transcription factors C-MYC and CREB, in which CREB is linked to the

  19. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans

    PubMed Central

    Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He

    2016-01-01

    TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724

  20. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad

    2017-02-01

    A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.

  1. Saturation of conductance in single ion channels: the blocking effect of the near reaction field.

    PubMed

    Nadler, Boaz; Schuss, Zeev; Hollerbach, Uwe; Eisenberg, R S

    2004-11-01

    The ionic current flowing through a protein channel in the membrane of a biological cell depends on the concentration of the permeant ion, as well as on many other variables. As the concentration increases, the rate of arrival of bath ions to the channel's entrance increases, and typically so does the net current. This concentration dependence is part of traditional diffusion and rate models that predict Michaelis-Menten current-concentration relations for a single ion channel. Such models, however, neglect other effects of bath concentrations on the net current. The net current depends not only on the entrance rate of ions into the channel, but also on forces acting on ions inside the channel. These forces, in turn, depend not only on the applied potential and charge distribution of the channel, but also on the long-range Coulombic interactions with the surrounding bath ions. In this paper, we study the effects of bath concentrations on the average force on an ion in a single ion channel. We show that the force of the reaction field on a discrete ion inside a channel embedded in an uncharged lipid membrane contains a blocking (shielding) term that is proportional to the square root of the ionic bath concentration. We then show that different blocking strengths yield different behavior of the current-concentration and conductance-concentration curves. Our theory shows that at low concentrations, when the blocking force is weak, conductance grows linearly with concentration, as in traditional models, e.g., Michaelis-Menten formulations. As the concentration increases to a range of moderate shielding, conductance grows as the square root of concentration, whereas at high concentrations, with high shielding, conductance may actually decrease with increasing concentrations: the conductance-concentration curve can invert. Therefore, electrostatic interactions between bath ions and the single ion inside the channel can explain the different regimes of conductance

  2. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age

    PubMed Central

    Oiki, Shigetoshi

    2015-01-01

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the ‘frozen’ crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. PMID:25833254

  3. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.

    PubMed

    Oiki, Shigetoshi

    2015-06-15

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  4. The effect of channel height on bubble nucleation in superhydrophobic microchannels due to subcritical heating

    NASA Astrophysics Data System (ADS)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2017-11-01

    This work experimentally investigates the effects of heating on laminar flow in high aspect ratio superhydrophobic (SH) microchannels. When water that is saturated with dissolved air is used, the unwetted cavities of the SH surfaces act as nucleation sites and air effervesces out of solution onto the surfaces. The microchannels consist of a rib/cavity structured SH surface, that is heated, and a glass surface that is utilized for flow visualization. Two channel heights of nominally 183 and 366 μm are considered. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements and the temperature profile along the channel is obtained via thermocouples embedded in an aluminum block below the SH surface. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Depending on the surface type/configuration, large bubbles can form and adversely affect fRe and lead to higher temperatures along the channel. Once bubbles grow large enough, they are expelled from the channel. The channel size greatly effects the residence time of the bubbles and consequently fRe and the channel temperature. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881) and the Utah NASA Space Grant Consortium (NASA Grant NNX15A124H).

  5. Modelling shoal margin collapses and their morphodynamic effect on channels and shoals in a sandy estuary

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; Mastbergen, D. R.; Van der Werf, J. J.; Leuven, J.; Kleinhans, M. G.

    2017-12-01

    Channel bank failure and collapses of shoal margins due to flow slides have been recorded in Dutch estuaries for the past 200 years. The effects of these collapses on the morphodynamics of estuaries are unknown, but could potentially increase the dynamics of channel-shoal interactions by causing perturbations of up to a million cubic meters per event, which could impact habitats and navigability. The processes of shoal margin collapses are currently not included in numerical morphodynamic models. The objectives of this study are to investigate where shoal margins collapses typically occur, what their dimensions are, and to model how shoal margin collapses affect the morphodynamics at the channel-shoal scale. We identified 300 shoal margin collapses from bathymetry data of the Western Scheldt estuary for the period 1959-2015, and found that the shape of a shoal margin collapse is well represented by 1/3 of an ellipsoid, and that its volume has a log-normal distribution with an average of 100,000 m3. We implemented a parameterization for shoal margin collapses and tested their effects on morphodynamics in a Delft3D numerical model schematization of the Western Scheldt estuary. Three sets of scenarios were analyzed for near-field morphodynamics and far-field effects on flow pattern and channel-bar morphology: 1) an observed single shoal margin collapse of 2014, 2) collapses on various locations that are susceptible to collapses, and 3) our novel stochastic model producing collapses over a time span of a decade. Results show that single shoal margin collapses only affect the local dynamics in longitudinal direction and dampen out within a year when the collapse is small. When larger disturbances reach the seaward or landward sill at tidal channel junctions over a longer time span, the bed elevation at the sill increases on average and decrease the hydraulic geometry of the channel junctions. The extent of far-field effects is sensitive to the grain-size of the deposit

  6. Selective Ablation of GIRK Channels in Dopamine Neurons Alters Behavioral Effects of Cocaine in Mice.

    PubMed

    McCall, Nora M; Kotecki, Lydia; Dominguez-Lopez, Sergio; Marron Fernandez de Velasco, Ezequiel; Carlblom, Nicholas; Sharpe, Amanda L; Beckstead, Michael J; Wickman, Kevin

    2017-02-01

    The increase in dopamine (DA) neurotransmission stimulated by in vivo cocaine exposure is tempered by G protein-dependent inhibitory feedback mechanisms in DA neurons of the ventral tegmental area (VTA). G protein-gated inwardly rectifying K + (GIRK/Kir3) channels mediate the direct inhibitory effect of GABA B receptor (GABA B R) and D 2 DA receptor (D 2 R) activation in VTA DA neurons. Here we examined the effect of the DA neuron-specific loss of GIRK channels on D 2 R-dependent regulation of VTA DA neuron excitability and on cocaine-induced, reward-related behaviors. Selective ablation of Girk2 in DA neurons did not alter the baseline excitability of VTA DA neurons but significantly reduced the magnitude of D 2 R-dependent inhibitory somatodendritic currents and blunted the impact of D 2 R activation on spontaneous activity and neuronal excitability. Mice lacking GIRK channels in DA neurons exhibited increased locomotor activation in response to acute cocaine administration and an altered locomotor sensitization profile, as well as increased responding for and intake of cocaine in an intravenous self-administration test. These mice, however, showed unaltered cocaine-induced conditioned place preference. Collectively, our data suggest that feedback inhibition to VTA DA neurons, mediated by GIRK channel activation, tempers the locomotor stimulatory effect of cocaine while also modulating the reinforcing effect of cocaine in an operant-based self-administration task.

  7. CNG channel subunit glycosylation regulates MMP-dependent changes in channel gating

    PubMed Central

    Meighan, Starla E.; Meighan, Peter C.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2013-01-01

    Cyclic-nucleotide gated (CNG) channels are essential for phototransduction within retinal photoreceptors. We have demonstrated previously that enzymatic activity of matrix metalloproteinase-2 and -9, members of the MMP family of extracellular, Ca+2- and Zn+2-dependent proteases, enhances the ligand sensitivity of both rod (CNGA1 + CNGB1) and cone CNGA3 + CNGB3) CNG channels. Additionally, we have observed a decrease in maximal CNG channel current (IMAX) that begins late during MMP-directed gating changes. Here we demonstrate that CNG channels become non-conductive after prolonged MMP exposure. Concurrent with the loss of conductive channels is the increased relative contribution of channels exhibiting non-modified gating properties, suggesting the presence of a subpopulation of channels that are protected from MMP-induced gating effects. CNGA subunits are known to possess one extracellular core glycosylation site, located at one of two possible positions within the turret loop near the pore-forming region. Our results indicate that CNGA glycosylation can impede MMP-dependent modification of CNG channels. Furthermore, the relative position of the glycosylation site within the pore turret influences the extent of MMP-dependent proteolysis. Glycosylation at the site found in CNGA3 subunits was found to be protective, while glycosylation at the bovine CNGA1 site was not. Relocating the glycosylation site in CNGA1 to the position found in CNGA3 recapitulated CNGA3-like protection from MMP-dependent processing. Taken together, these data indicate that CNGA glycosylation may protect CNG channels from MMP-dependent proteolysis, consistent with MMP modification of channel function having a requirement for physical access to the extracellular face of the channel. PMID:24164424

  8. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  9. Comparison of the effects of the K(+)-channel openers cromakalim and minoxidil sulphate on vascular smooth muscle.

    PubMed Central

    Wickenden, A. D.; Grimwood, S.; Grant, T. L.; Todd, M. H.

    1991-01-01

    1 The actions of the potassium channel openers, cromakalim and minoxidil sulphate, were compared in a range of isolated blood vessel preparations. 2 Cromakalim and minoxidil sulphate inhibited spontaneous mechanical activity of the guinea-pig portal vein and relaxed the noradrenaline precontracted rat aorta with similar potency. In contrast, minoxidil sulphate was less potent than cromakalim in inhibiting spontaneous activity in the rat portal vein and was essentially inactive in the noradrenaline precontracted rat mesenteric artery and rabbit aorta. 3 Minoxidil sulphate did not antagonize the effects of cromakalim in the rabbit aorta indicating it was not acting as a partial 'agonist'. 4 Charybdotoxin, noxiustoxin and rubidium failed to discriminate between cromakalim and minoxidil sulphate indicating that the apparently selective effects of minoxidil sulphate were not mediated by either Ca(2+)-activated potassium channels, delayed rectifiers or rubidium impermeable potassium channels. 5 Glibenclamide antagonized the effects of cromakalim in an apparently competitive manner whereas the effects of minoxidil sulphate were antagonized in a non-competitive manner. The involvement of subtypes of ATP-sensitive potassium channels is discussed. PMID:1878752

  10. Reliable video transmission over fading channels via channel state estimation

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-04-01

    Transmission of continuous media such as video over time- varying wireless communication channels can benefit from the use of adaptation techniques in both source and channel coding. An adaptive feedback-based wireless video transmission scheme is investigated in this research with special emphasis on feedback-based adaptation. To be more specific, an interactive adaptive transmission scheme is developed by letting the receiver estimate the channel state information and send it back to the transmitter. By utilizing the feedback information, the transmitter is capable of adapting the level of protection by changing the flexible RCPC (rate-compatible punctured convolutional) code ratio depending on the instantaneous channel condition. The wireless channel is modeled as a fading channel, where the long-term and short- term fading effects are modeled as the log-normal fading and the Rayleigh flat fading, respectively. Then, its state (mainly the long term fading portion) is tracked and predicted by using an adaptive LMS (least mean squares) algorithm. By utilizing the delayed feedback on the channel condition, the adaptation performance of the proposed scheme is first evaluated in terms of the error probability and the throughput. It is then extended to incorporate variable size packets of ITU-T H.263+ video with the error resilience option. Finally, the end-to-end performance of wireless video transmission is compared against several non-adaptive protection schemes.

  11. Lightning-channel conditioning

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, R.; da Silva, C. L.; Eack, K.; Edens, H. E.; Harley, J.; McHarg, M.; Contreras Vidal, L.

    2017-12-01

    The concept of "conditioning" has several distinct applications in understanding lightning. It is commonly associated to the greater speed of dart-leaders vs. stepped leaders and the retrace of a cloud-to-ground channel by later return strokes. We will showadditional examples of conditioning: (A) High-speed videos of triggered flashes show "dark" periods of up to 50 ms between rebrightenings of an existing channel. (B) Interferometer (INTF) images of intra-cloud (IC) flashes demonstrate that electric-field "K-changes" correspond to rapid propagation of RF impulses along a previously formed channel separated by up to 20 ms with little RF emission on that channel. (C) Further, INTF images (like the one below) frequently show that the initial IC channel is more branched and "fuzzier'' than its later incarnations. Also, we contrast high-speed video, INTF observations, and spectroscopic measurements with possible physical mechanisms that can explain how channel conditioning guides and facilitates dart leader propagation. These mechanisms include: (1) a plasmochemical effect where electrons are stored in negative ions and released during the dart leader propagation via field-induced detachment; (2) small-amplitude residual currents that can maintain electrical conductivity; and (3) slow heat conduction cooling of plasma owing to channel expansion dynamics.

  12. The joint measurement entanglement can significantly offset the effect of a noisy channel in teleportation

    NASA Astrophysics Data System (ADS)

    Roa, Luis; Ladrón de Guevara, María L.; Soto-Moscoso, Matias; Catalán, Pamela

    2018-05-01

    In our work we consider the following problem in the context of teleportation: an unknown pure state has to be teleported and there are two laboratories which can perform the task. One laboratory uses a pure non-maximally entangled channel but has a capability of performing the joint measurement on bases with a constrained degree of entanglement; the other lab makes use of a mixed X-state channel but can perform a joint measurement on bases with higher entanglement degrees. We compare the average teleportation fidelity achieved in both cases, finding that the fidelity achieved with the X-state can surpass the obtained with a pure channel, even though the X-state is less entangled than the latter. We find the conditions under which this effect occurs. Our results evidence that the entanglement of the joint measurement plays a role as important as the entanglement of the channel in order to optimize the teleportation process. We include an example showing that the average fidelity of teleportation obtained with a Werner state channel can be greater than that obtained with a Bell state channel.

  13. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation.

    PubMed

    Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan

    2016-03-01

    Ion channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. Previous studies on the effects of channel blockers on T cell proliferation reported variable effectiveness due to differing experimental systems. Therefore our aim was to investigate how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. Human peripheral blood lymphocytes were activated via monoclonal antibodies targeting the TCR-CD3 complex and the co-stimulator CD28. We applied the blockers of Kv1.3 (Anuroctoxin), KCa3.1 (TRAM-34) and CRAC (2-Apb) channels of T cells either alone or in combination with rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR). Five days after the stimulation ELISA and flow cytometric measurements were performed to determine IL-10 and IFN-γ secretion, cellular viability and proliferation. Our results showed that ion channel blockers and rapamycin inhibit IL-10 and IFN-γ secretion and cell division in a dose-dependent manner. Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways. Upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished. This phenomenon may be important in understanding the fine-tuning of T cell activation. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Effects of metomindate hydrochloride and tricaine methanesulfonate on the short term cortisol response in channel catfish

    USDA-ARS?s Scientific Manuscript database

    The effects of metomidate hydrochloride and tricaine methanesulfonate (MS-222) on cortisol stress response of channel catfish, Ictalurus punctatus, were examined during 10 minutes of sedation. Channel catfish were assigned to three treatments: 1. Metomidate hydrochloride (12.5 mg/L), 2. MS-222 (100...

  15. Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.

    PubMed

    Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung

    2017-03-01

    The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.

  16. Sediment sorting at a side channel bifurcation

    NASA Astrophysics Data System (ADS)

    van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne

    2017-04-01

    Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under

  17. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  18. Probing the effect of electron channelling on atomic resolution energy dispersive X-ray quantification.

    PubMed

    MacArthur, Katherine E; Brown, Hamish G; Findlay, Scott D; Allen, Leslie J

    2017-11-01

    Advances in microscope stability, aberration correction and detector design now make it readily possible to achieve atomic resolution energy dispersive X-ray mapping for dose resilient samples. These maps show impressive atomic-scale qualitative detail as to where the elements reside within a given sample. Unfortunately, while electron channelling is exploited to provide atomic resolution data, this very process makes the images rather more complex to interpret quantitatively than if no electron channelling occurred. Here we propose small sample tilt as a means for suppressing channelling and improving quantification of composition, whilst maintaining atomic-scale resolution. Only by knowing composition and thickness of the sample is it possible to determine the atomic configuration within each column. The effects of neighbouring atomic columns with differing composition and of residual channelling on our ability to extract exact column-by-column composition are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. AlGaN channel field effect transistors with graded heterostructure ohmic contacts

    NASA Astrophysics Data System (ADS)

    Bajaj, Sanyam; Akyol, Fatih; Krishnamoorthy, Sriram; Zhang, Yuewei; Rajan, Siddharth

    2016-09-01

    We report on ultra-wide bandgap (UWBG) Al0.75Ga0.25N channel metal-insulator-semiconductor field-effect transistors (MISFETs) with heterostructure engineered low-resistance ohmic contacts. The low intrinsic electron affinity of AlN (0.6 eV) leads to large Schottky barriers at the metal-AlGaN interface, resulting in highly resistive ohmic contacts. In this work, we use a reverse compositional graded n++ AlGaN contact layer to achieve upward electron affinity grading, leading to a low specific contact resistance (ρsp) of 1.9 × 10-6 Ω cm2 to n-Al0.75Ga0.25N channels (bandgap ˜5.3 eV) with non-alloyed contacts. We also demonstrate UWBG Al0.75Ga0.25N channel MISFET device operation employing the compositional graded n++ ohmic contact layer and 20 nm atomic layer deposited Al2O3 as the gate-dielectric.

  20. Critical band masking reveals the effects of optical distortions on the channel mediating letter identification.

    PubMed

    Young, Laura K; Smithson, Hannah E

    2014-01-01

    There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.

  1. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test.

    PubMed

    Budni, Josiane; Gadotti, Vinícius M; Kaster, Manuella P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2007-12-01

    The administration of agmatine elicits an antidepressant-like effect in the mouse forced swimming test by a mechanism dependent on the inhibition of the NMDA receptors and the L-arginine-nitric oxide (NO) pathway. Since it has been reported that the NO can activate different types of potassium (K(+)) channels in several tissues, the present study investigates the possibility of synergistic interactions between different types of K(+) channel inhibitors and agmatine in the forced swimming test. Treatment of mice by i.c.v. route with subeffective doses of tetraethylammonium (a non specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channels inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site), augmented the effect of agmatine (0.001 mg/kg, i.p.) in the forced swimming test. Furthermore, the administration of agmatine and the K(+) channel inhibitors, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time elicited by an active dose of agmatine (10 mg/kg, i.p.) in the forced swimming test was prevented by the pre-treatment of mice with the K(+) channel openers cromakalim (10 microg/site, i.c.v.) and minoxidil (10 microg/site, i.c.v.), without affecting locomotion. Together these data raise the possibility that the antidepressant-like effect of agmatine in the forced swimming test is related to its modulatory effects on neuronal excitability, via inhibition of K(+) channels.

  2. Lignan from Thyme Possesses Inhibitory Effect on ASIC3 Channel Current*

    PubMed Central

    Dubinnyi, Maxim A.; Osmakov, Dmitry I.; Koshelev, Sergey G.; Kozlov, Sergey A.; Andreev, Yaroslav A.; Zakaryan, Naira A.; Dyachenko, Igor A.; Bondarenko, Dmitry A.; Arseniev, Alexander S.; Grishin, Eugene V.

    2012-01-01

    A novel compound was identified in the acidic extract of Thymus armeniacus collected in the Lake Sevan region of Armenia. This compound, named “sevanol,” to our knowledge is the first low molecular weight natural molecule that has a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. Sevanol completely blocked the transient component (IC50 353 ± 23 μm) and partially (∼45%) inhibited the amplitude of the sustained component (IC50 of 234 ± 53 μm). Other types of acid-sensing ion channel (ASIC) channels were intact to sevanol application, except ASIC1a, which showed more than six times less affinity to it as compared with the inhibitory action on the ASIC3 channel. To elucidate the structure of sevanol, the set of NMR spectra in two solvents (d6-DMSO and D2O) was collected, and the complete chemical structure was confirmed by liquid chromatography-mass spectrometry with electrospray ionization (LC-ESI+-MS) fragmentation. This compound is a new lignan built up of epiphyllic acid and two isocitryl esters in positions 9 and 10. In vivo administration of sevanol (1–10 mg/kg) significantly reversed thermal hyperalgesia induced by complete Freund's adjuvant injection and reduced response to acid in a writhing test. Thus, we assume the probable considerable role of sevanol in known analgesic and anti-inflammatory properties of thyme. PMID:22854960

  3. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization.

    PubMed

    Smith, Charles O; Wang, Yves T; Nadtochiy, Sergiy M; Miller, James H; Jonas, Elizabeth A; Dirksen, Robert T; Nehrke, Keith; Brookes, Paul S

    2018-06-04

    Controversy surrounds the molecular identity of mitochondrial K + channels that are important for protection against cardiac ischemia-reperfusion injury. Although K Na 1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-K Na 1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of K Na 1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2 -/- mice yielded no such channels. The K Na opener bithionol uncoupled respiration in WT but not Kcnt2 -/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2 -/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2 -/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial K Na 1.2 channel, and a role for cardiac K Na 1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of K Na 1.2 channel deletion and evidence for its mitochondrial localization.

  4. Relativistic Gurzhi effect in channels of Dirac materials

    NASA Astrophysics Data System (ADS)

    Kashuba, Oleksiy; Trauzettel, Björn; Molenkamp, Laurens W.

    2018-05-01

    Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime, where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic transport, can be observed.

  5. Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment

    NASA Astrophysics Data System (ADS)

    Fiori, A.

    2014-12-01

    Channeling effects in heterogeneous formations are studied through a new quantity denoted as channel density a(x,t). Focusing on advection only, a(x,t) is defined as the relative number of streamtubes (or channels) containing solute between x and x + dx at a given time t, regardless of the mass that they carry. The channel density generally differs from the widely employed longitudinal mass distribution m(x,t), and their difference increases with time and the degree of heterogeneity. The difference between a and m reflects the nonuniformity of mass distribution relative to the plume geometry. In particular, the "fast" channels typically carry a larger fraction of mass than their share in their relative volume, which in turn can be rather small. Detecting such channels by a network of monitoring wells may be a challenging task, which might explain the poor solute recovery of some field experiments at increasing times. After application of the proposed concepts to the simple case of stratified formations, we model the channel density and mass distribution pertaining to the MADE experiment, which exhibited poor mass recovery at large times. The results presented in this study emphasize the possible channeling effects at MADE and the general difficulty in sampling the leading edge of the plume, which in turn may contain a significant fraction of the plume mass.

  6. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    PubMed

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  7. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

    PubMed

    Kagan; Mitzi; Dimitrakopoulos

    1999-10-29

    Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

  8. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination.

    PubMed

    Wang, Fei; Dong, Jianji; Xu, Enming; Zhang, Xinliang

    2010-11-22

    An all-optical UWB pulses generation and modulation scheme using cross phase modulation (XPM) effect of semiconductor optical amplifier (SOA) and DWDM-based multi-channel frequency discrimination is proposed and demonstrated, which has potential application in multiuser UWB-Over-Fiber communication systems. When a Gaussian pulse light and a wavelength-tunable CW probe light are together injected into the SOA, the probe light out from the SOA will have a temporal chirp due to SOA-XPM effect. When the chirped probe light is tuned to the slopes of single DWDM channel transmittance curve, the optical phase modulation to intensity modulation conversion is achieved at DWDM that serves as a multi-channel frequency discriminator, the inverted polarity Gaussian monocycle and doublet pulse is detected by a photodetector, respectively. If the probe lights are simultaneously aimed to different slopes of several DWDM channels, multi-channel or binary-phase-coded UWB signal generation can be acquired. Using proposed scheme, pulse amplitude modulation (PAM), pulse polarity modulation (PPM) and pulse shape modulation (PSM) to UWB pulses also can be conveniently realized.

  9. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    PubMed

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of K ATP channels, after determination of sub-effective doses of glibenclamide as a K ATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is K ATP -dependent, and baclofen seems that exert this effect by blocking the K ATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. Differential effects of lipopolysaccharide on mouse sensory TRP channels.

    PubMed

    Boonen, Brett; Alpizar, Yeranddy A; Sanchez, Alicia; López-Requena, Alejandro; Voets, Thomas; Talavera, Karel

    2018-04-14

    Acute neurogenic inflammation and pain associated to bacterial infection have been traditionally ascribed to sensitization and activation of sensory nerve afferents secondary to immune cell stimulation. However, we recently showed that lipopolysaccharides (LPS) directly activate the Transient Receptor Potential channels TRPA1 in sensory neurons and TRPV4 in airway epithelial cells. Here we investigated whether LPS activates other sensory TRP channels expressed in sensory neurons. Using intracellular Ca 2+ imaging and patch-clamp we determined the effects of LPS on recombinant TRPV1, TRPV2, TRPM3 and TRPM8, heterologously expressed in HEK293T cells. We found that LPS activates TRPV1, although with lower potency than for TRPA1. Activation of TRPV1 by LPS was not affected by mutations of residues required for activation by electrophilic agents or by diacylglycerol and capsaicin. On the other hand, LPS weakly activated TRPM3, activated TRPM8 at 25 °C, but not at 35 °C, and was ineffective on TRPV2. Experiments performed in mouse dorsal root ganglion (DRG) neurons revealed that genetic ablation of Trpa1 did not abolish the responses to LPS, but remain detected in 30% of capsaicin-sensitive cells. The population of neurons responding to LPS was dramatically lower in double Trpa1/Trpv1 KO neurons. Our results show that, in addition to TRPA1, other TRP channels in sensory neurons can be targets of LPS, suggesting that they may contribute to trigger and regulate innate defenses against gram-negative bacterial infections. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Correction of thin cirrus effects in AVIRIS images using the sensitive 1.375-micron cirrus detecting channel

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.

    1995-01-01

    Using spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during various field programs, it was found that narrow channels near the center of the strong 1.38-micrometer water vapor band are very effective in detecting think cirrus clouds. Based on this observation from AVIRIS data, Gao and Kaufman proposed to put a channel centered at 1.375 micrometers with a width of 30 nm on the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micrometer MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, much larger fraction of the satellite data is expected to be identified as being covered by cirrus clouds, some of them so thin that their obscuration of the surface is very small. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. Therefore, there is a need to study radiative properties of thin cirrus clouds, so that a strategy for correction or removal of the thin cirrus effects, similar to the correction of atmospheric aerosol effect, can be formed. In this extended abstract, we describe an empirical approach for removing/correcting thin cirrus effects in AVIRIS images using channels near 1.375 microns - one step beyond the detection of cirrus clouds using these channels.

  12. A Numerical Model Study of the Effect of Channel Deepening on Shoaling and Salinity Intrusion in the Savannah Estuary

    DTIC Science & Technology

    1989-12-01

    H tY) T , iv OFTECHNICAL REPORT HL-89-26 A NUMERICAL MODEL STUDY OF THE EFFECT SOF CHANNEL DEEPENING ON SHOALING AND SALINITY INTRUSION IN THE... Study of the Effect of Channel Deepening on Shoaling and Salinity Intrusion in the Savannah Estuary 12. PERSONAL AUTHOR(S) Johnson, B. H.; Trawle, M. J...a multiple-connected system of channels. Results from a study in the Savannah Estuary show good agreement with 1985 field data on tides, velocities

  13. Minoxidil opens mitochondrial KATP channels and confers cardioprotection

    PubMed Central

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2003-01-01

    ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoKATP channel) rather than in the sarcolemma (sarcKATP channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcKATP and mitoKATP channels in guinea-pig ventricular myocytes. Minoxidil activated a glybenclamide-sensitive sarcKATP channel current in the whole-cell recording mode with an EC50 of 182.6 μM. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoKATP channel activity, in a concentration-dependent manner. The EC50 for mitoKATP channel activation was estimated to be 7.3 μM; this value was notably ≈25-fold lower than that for sarcKATP channel activation. Minoxidil (10 μM) significantly attenuated the ouabain-induced increase of mitochondrial Ca2+ concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 μM) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoKATP channel blocker 5-hydroxydecanoate (500 μM). Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoKATP channels. PMID:14691056

  14. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  15. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  16. Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density.

    PubMed Central

    Sherman, A; Keizer, J; Rinzel, J

    1990-01-01

    The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells. PMID:2174274

  17. Study on the reduction and hysteresis effect of soil nitrogen pollution by Alfalfa in channel buffer bank

    NASA Astrophysics Data System (ADS)

    Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying

    2018-01-01

    Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.

  18. Groundwater sapping channels: Summary of effects of experiments with varied stratigraphy

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Simmons, David W.

    1987-01-01

    Experiments in the recirculating flume sapping box have modeled valley formation by groundwater sapping processes in a number of settings. The effects of the following parameters on sapping channel morphology were examined: surface slope; stratigraphic variations in permeability cohesion and dip; and structure of joints and dikes. These kinds of modeling experiments are particularly good for: testing concepts; developing a suite of distinctive morphologies and morphometries indicative of sapping; helping to relate process to morphology; and providing data necessary to assess the relative importance of runoff, sapping, and mass wasting processes on channel development. The observations from the flume systems can be used to help interpret features observed in terrestrial and Martian settings where sapping processes are thought to have played an important role in the development of valley networks.

  19. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    NASA Astrophysics Data System (ADS)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  20. Double gate graphene nanoribbon field effect transistor with single halo pocket in channel region

    NASA Astrophysics Data System (ADS)

    Naderi, Ali

    2016-01-01

    A new structure for graphene nanoribbon field-effect transistors (GNRFETs) is proposed and investigated using quantum simulation with a nonequilibrium Green's function (NEGF) method. Tunneling leakage current and ambipolar conduction are known effects for MOSFET-like GNRFETs. To minimize these issues a novel structure with a simple change of the GNRFETs by using single halo pocket in the intrinsic channel region, "Single Halo GNRFET (SH-GNRFET)", is proposed. An appropriate halo pocket at source side of channel is used to modify potential distribution of the gate region and weaken band to band tunneling (BTBT). In devices with materials like Si in channel region, doping type of halo and source/drain regions are different. But, here, due to the smaller bandgap of graphene, the mentioned doping types should be the same to reduce BTBT. Simulations have shown that in comparison with conventional GNRFET (C-GNRFET), an SH-GNRFET with appropriately halo doping results in a larger ON current (Ion), smaller OFF current (Ioff), a larger ON-OFF current ratio (Ion/Ioff), superior ambipolar characteristics, a reduced power-delay product and lower delay time.

  1. A 700 V narrow channel nJFET with low pinch-off voltage and suppressed drain-induced barrier lowering effect

    NASA Astrophysics Data System (ADS)

    Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji

    2014-11-01

    This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).

  2. Downstream reduction of rural channel size with contrasting urban effects in small coastal streams of southeastern Australia

    NASA Astrophysics Data System (ADS)

    Nanson, G. C.; Young, R. W.

    1981-07-01

    Although most streams show a downstream increase in channel size corresponding to a downstream increase in flood discharges, those flowing off the Illawarra escarpment of New South Wales show a marked reduction of channel size, accompanied by a down-stream increase in flood frequency in their lower reaches. Within the confined and steeply sloping valleys of the escarpment foothills, bed and bank sediments are relatively coarse and uncohesive, and channels increase in size, corresponding to increasing discharge downstream. However, once these streams emerge into more open rural valleys at lower slopes and are accompanied by extensive floodplains formed of fine cohesive sediment, there is a dramatic reduction in channel size. This decrease in channel size apparently results from a sudden decline in channel slope and associated stream power, the cohesive nature of downstream alluvium, its retention on the channel banks by a dense cover of pasture grasses, and the availability of an extensive floodplain to carry displaced floodwater. Under these conditions floodwaters very frequently spill out over the floodplain and the downstream channel-flow becomes a relatively unimportant component of the total peak discharge. This emphasizes the importance of these floodplains as a part of the total channel system. In situations where urban development has increased peak runoff and reduced the available area of effective floodplain, stream channels formed in this fine alluvium rapidly entrench and increase in cross-sectional area by 2-3 times. Minor man-induced channel alteration and maintenance appears to trigger this enlargement.

  3. Effect of channel coupling on the elastic scattering of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Suhara, T.; Itagaki, N.

    2018-04-01

    Herein, we investigated the channel coupling (CC) effect on the elastic scatterings of lithium (Li) isotopes (A =6 -9) for 12C and 28Si targets at E /A =50 -60 MeV. The wave functions of the Li isotopes were obtained using the stochastic multi-configuration mixing method based on the microscopic-cluster model. The proton radii of the 7Li, 8Li, and 9Li nuclei became smaller as the number of valence neutrons increased. The valence neutrons in the 8Li and 9Li nuclei exhibited a glue-like behavior, thereby attracting the α and t clusters. Based on the transition densities derived from these microscopic wave functions, the elastic-scattering cross section was calculated using a microscopic coupled-channel method with a complex G -matrix interaction. The existing experimental data for the elastic scatterings of the Li isotopes and 10Be nuclei were well reproduced. The Li isotope elastic cross sections were demonstrated for the 12C and 28Si targets at E /A =53 MeV. The glue-like effect of the valence neutrons on the Li isotope was clearly demonstrated by the CC effect on elastic scattering. Finally, we realize that the valence neutrons stabilized the bindings of the core parts and the CC effect related to core excitation was indeed reduced.

  4. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    PubMed

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Nonlinear effects of hyperpolarizing shifts in activation of mutant Nav1.7 channels on resting membrane potential

    PubMed Central

    Estacion, Mark

    2017-01-01

    The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. PMID

  6. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets

    PubMed Central

    Noujaim, Sami F.; Stuckey, Jeanne A.; Ponce-Balbuena, Daniela; Ferrer-Villada, Tania; López-Izquierdo, Angelica; Pandit, Sandeep; Calvo, Conrado J.; Grzeda, Krzysztof R.; Berenfeld, Omer; Sánchez Chapula, José A.; Jalife, José

    2010-01-01

    Atrial and ventricular tachyarrhythmias can be perpetuated by up-regulation of inward rectifier potassium channels. Thus, it may be beneficial to block inward rectifier channels under conditions in which their function becomes arrhythmogenic (e.g., inherited gain-of-function mutation channelopathies, ischemia, and chronic and vagally mediated atrial fibrillation). We hypothesize that the antimalarial quinoline chloroquine exerts potent antiarrhythmic effects by interacting with the cytoplasmic domains of Kir2.1 (IK1), Kir3.1 (IKACh), or Kir6.2 (IKATP) and reducing inward rectifier potassium currents. In isolated hearts of three different mammalian species, intracoronary chloroquine perfusion reduced fibrillatory frequency (atrial or ventricular), and effectively terminated the arrhythmia with resumption of sinus rhythm. In patch-clamp experiments chloroquine blocked IK1, IKACh, and IKATP. Comparative molecular modeling and ligand docking of chloroquine in the intracellular domains of Kir2.1, Kir3.1, and Kir6.2 suggested that chloroquine blocks or reduces potassium flow by interacting with negatively charged amino acids facing the ion permeation vestibule of the channel in question. These results open a novel path toward discovering antiarrhythmic pharmacophores that target specific residues of the cytoplasmic domain of inward rectifier potassium channels.—Noujaim, S. F., Stuckey, J. A., Ponce-Balbuena, D., Ferrer-Villada, T., López-Izquierdo, A., Pandit, S., Calvo, C. J., Grzeda, K. R., Berenfeld, O., Sánchez Chapula, J. A., Jalife, J. Specific residues of the cytoplasmic domains of cardiac inward rectifier potassium channels are effective antifibrillatory targets. PMID:20585026

  7. Economic effects of immigrants on native and foreign-born workers: complementarity, substitutability, and other channels of influence.

    PubMed

    Greenwood, M J; Hunt, G L

    1995-04-01

    The authors use Standard Metropolitan Statistical Area (SMSA) data constructed from 1980 census microdata files and other sources to estimate a structural model of native/foreign-born labor demand and labor supply which distinguishes the effects upon real wages of each type of labor and on the employment of natives. The authors specify, econometrically estimate, and simulate the structural model which incorporates not only a production structure channel through which immigrants influence area real wages and employment, but also demand and native labor supply channels. It is noted that while these are not the only channels through which immigrants may affect native workers, the model nonetheless constitutes a step in the direction of a general equilibrium approach. In the production structure channel, immigrants and natives are found to be substitutes in production. Immigration lowers foreign-born wage rates and leads to lower wages for natives. The negative effects of the production channel usually are ameliorated through the demand channel. Further, immigrants add to local demand through their earnings and potentially through non-labor income, while also lowering unit costs and local prices which enhances real incomes and potentially net exports, and thus the demands for local output and area labor. The author discusses findings of interest from the simulation results based upon an analysis of all areas.

  8. Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1998-05-01

    In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less

  9. Mechanism of allosteric activation of TMEM16A/ANO1 channels by a commonly used chloride channel blocker

    PubMed Central

    Ta, Chau M; Adomaviciene, Aiste; Rorsman, Nils J G; Garnett, Hannah

    2016-01-01

    Background and Purpose Calcium‐activated chloride channels (CaCCs) play varied physiological roles and constitute potential therapeutic targets for conditions such as asthma and hypertension. TMEM16A encodes a CaCC. CaCC pharmacology is restricted to compounds with relatively low potency and poorly defined selectivity. Anthracene‐9‐carboxylic acid (A9C), an inhibitor of various chloride channel types, exhibits complex effects on native CaCCs and cloned TMEM16A channels providing both activation and inhibition. The mechanisms underlying these effects are not fully defined. Experimental Approach Patch‐clamp electrophysiology in conjunction with concentration jump experiments was employed to define the mode of interaction of A9C with TMEM16A channels. Key Results In the presence of high intracellular Ca2+, A9C inhibited TMEM16A currents in a voltage‐dependent manner by entering the channel from the outside. A9C activation, revealed in the presence of submaximal intracellular Ca2+ concentrations, was also voltage‐dependent. The electric distance of A9C inhibiting and activating binding site was ~0.6 in each case. Inhibition occurred according to an open‐channel block mechanism. Activation was due to a dramatic leftward shift in the steady‐state activation curve and slowed deactivation kinetics. Extracellular A9C competed with extracellular Cl−, suggesting that A9C binds deep in the channel's pore to exert both inhibiting and activating effects. Conclusions and Implications A9C is an open TMEM16A channel blocker and gating modifier. These effects require A9C to bind to a region within the pore that is accessible from the extracellular side of the membrane. These data will aid the future drug design of compounds that selectively activate or inhibit TMEM16A channels. PMID:26562072

  10. Slip Effects on Mixed Convective Peristaltic Transport of Copper-Water Nanofluid in an Inclined Channel

    PubMed Central

    Abbasi, Fahad Munir; Hayat, Tasawar; Ahmad, Bashir; Chen, Guo-Qian

    2014-01-01

    Peristaltic transport of copper-water nanofluid in an inclined channel is reported in the presence of mixed convection. Both velocity and thermal slip conditions are considered. Mathematical modelling has been carried out using the long wavelength and low Reynolds number approximations. Resulting coupled system of equations is solved numerically. Quantities of interest are analyzed through graphs. Numerical values of heat transfer rate at the wall for different parameters are obtained and examined. Results showed that addition of copper nanoparticles reduces the pressure gradient, axial velocity at the center of channel, trapping and temperature. Velocity slip parameter has a decreasing effect on the velocity near the center of channel. Temperature of nanofluid increases with increase in the Grashoff number and channel inclination angle. It is further concluded that the heat transfer rate at the wall increases considerably in the presence of copper nanoparticles. PMID:25170908

  11. Electron mobility in InGaN channel heterostructure field effect transistor structures with different barriers

    NASA Astrophysics Data System (ADS)

    Xie, J.; Leach, J. H.; Ni, X.; Wu, M.; Shimada, R.; Özgür, Ü.; Morkoç, H.

    2007-12-01

    InGaN possesses higher electron mobility and velocity than GaN, and therefore is expected to lead to relatively better performances for heterostructure field effect transistors (HFETs). However, the reported mobilities for AlGaN /InGaN HFETs are lower than GaN channel HFETs. To address this issue, we studied the effect of different barriers on the Hall mobility for InGaN channel HFETs grown by metal organic chemical vapor deposition. Unlike the conventional AlGaN barrier, the AlInN barrier can be grown at the same temperature as the InGaN channel layer, alleviating some of the technological roadblocks. Specifically, this avoids possible degradation of the thin InGaN channel during AlGaN growth at high temperatures; and paves the way for better interfaces. An undoped In0.18Al0.82N/AlN/In0.04Ga0.96N HFET structure exhibited a μH=820cm2/Vs, with a ns=2.12×1013cm-2 at room temperature. Moreover, with an In-doped AlGaN barrier, namely, Al0.24In0.01Ga0.75N, grown at 900°C, the μH increased to 1230cm2/Vs with a ns of 1.09×1013cm-2 for a similar InGaN channel. Furthermore, when the barrier was replaced by Al0.25Ga0.75N grown at 1030°C, μH dropped to 870cm2/Vs with ns of 1.26×1013cm-2 at room temperature. Our results suggest that to fully realize the potential of the InGaN channel HFETs, AlInN or AlInGaN should be used as the barrier instead of the conventional AlGaN barrier.

  12. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    PubMed

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  13. Pharmacological enhancement of calcium-activated potassium channel function reduces the effects of repeated stress on fear memory

    PubMed Central

    Atchley, Derek; Hankosky, Emily R.; Gasparotto, Kaylyn; Rosenkranz, J. Amiel

    2012-01-01

    Repeated stress impacts emotion, and can induce mood and anxiety disorders. These disorders are characterized by imbalance of emotional responses. The amygdala is fundamental in expression of emotion, and is hyperactive in many patients with mood or anxiety disorders. Stress also leads to hyperactivity of the amygdala in humans. In rodent studies, repeated stress causes hyperactivity of the amygdala, and increases fear conditioning behavior that is mediated by the basolateral amygdala (BLA). Calcium-activated potassium (KCa) channels regulate BLA neuronal activity, and evidence suggests reduced small conductance KCa (SK) channel function in male rats exposed to repeated stress. Pharmacological enhancement of SK channels reverses the BLA neuronal hyperexcitability caused by repeated stress. However, it is not known if pharmacological targeting of SK channels can repair the effects of repeated stress on amygdala-dependent behaviors. The purpose of this study was to test whether enhancement of SK channel function reverses the effects of repeated restraint on BLA-dependent auditory fear conditioning. We found that repeated restraint stress increased the expression of cued conditioned fear in male rats. However, 1-EBIO (1 or 10 mg/kg) or CyPPA (5 mg/kg) administered 30 minutes prior to testing of fear expression brought conditioned freezing to control levels, with little impact on fear expression in control handled rats. These results demonstrate that enhancement of SK channel function can reduce the abnormalities of BLA-dependent fear memory caused by repeated stress. Furthermore, this indicates that pharmacological targeting of SK channels may provide a novel target for alleviation of psychiatric symptoms associated with amygdala hyperactivity. PMID:22487247

  14. Effect of channel width variation on sediment transport in mixed alluvial-bedrock rivers - from case study to concept

    NASA Astrophysics Data System (ADS)

    Cook, Kristen; Turowski, Jens; Hovius, Niels

    2017-04-01

    In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes, bedrock-controlled changes in channel width, and the shape of the hydrograph. Local hydraulics and therefore bedload transport capacity depend on discharge and channel geometry, typically quantified by channel width and bed slope. However, the influence of channel width on total bedload transport capacity depends on discharge. For a given slope, narrow channels are more efficient than wide ones at low discharges, while wider channels are more efficient at higher discharges. Therefore, abrupt changes in downstream channel width may affect bedload flux through a channel and have important influences on channel behavior. We use the model sedFlow (Heimann et al., 2014) to explore this effect. We ran the model in a 4.5 km long channel, the center of which contains a 1 km gorge section with a width of 15 m, bounded upstream and downstream by sections with widths of 50 m. We imposed a discharge time series with a random sequence of floods of different size. The channel responds to the imposed floods in complex ways. At high discharges, the gorge reach transports less total sediment than the wide reaches, leading to aggradation in the upper part of the gorge and upstream and erosion in the lower part of the gorge and downstream. At lower discharges, the gorge becomes more efficient at transporting sediment and the trends reverse. The channel may experience both of these regimes during the peak and recession periods of a single flood, leading to a highly dynamic channel bed. This is consistent with observations from the Daan River gorge in western Taiwan, where we observe substantial intra-flood variations in channel bed elevation. Our modeling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need

  15. [Effects of phoxim and fenvalerate on TTX-S and TTX-R sodium channels in the DRG neurons of adult rat].

    PubMed

    Wang, X; Xiao, H; Dai, X; Liu, X; Yu, X; Wu, J

    2000-05-01

    To study the joint neurotoxic effects of phoxim (Pho) and fenvalerate (Fen) on tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) currents in dorsal root ganglion (DRG) neurons of adult rat. Whole cell patch clamp technique was used to test the effects of Pho and Fen on TTX-S and TTX-R sodium currents in DRG neurons. The inactivation of TTX-R sodium channel was obviously slowed down by Fen. The tau(Na) of peak currents at doses of 10, 50 and 100 micromol/L Fen and control groups were (8.10 +/- 2.41) ms, (11.78 +/- 2.76) ms, P < 0.01, (8.76 +/-1.94) ms, P < 0.05 and (6.41 +/- 1.32) ms respectively. The inactivation of TTX-R sodium channel tail currents was also significantly delayed by Fen. The tau(Na) of the tail currents at doses of 10, 50, 100 micromol/L Fen and control groups were 6.11 +/- 0.52 (P < 0.05), 7.82 +/- 0.82 (P < 0.05), 7.23 +/- 1.09 (P < 0.05) and (4.91 +/- 0.97) ms separately. As compared with TTX-R sodium channel, the TTX-S sodium channel was less responsive to Fen exposure, which only led to slowly decay TTX-S sodium tail currents. There was no any effect of Pho on the TTX-S and TTX-R sodium channels. The mixed treatment of a Pho and Fen did not show joint effect on the sodium currents. Both the peak and tail currents are changed by Fen, however, Fen has more remarkable effects on TTX-R than on TTX-S sodium channel. The combined exposure to Pho and Fen shows no joint effect on the sodium channel.

  16. Killing K channels with TEA+.

    PubMed

    Khodakhah, K; Melishchuk, A; Armstrong, C M

    1997-11-25

    Tetraethylammonium (TEA+) is widely used for reversible blockade of K channels in many preparations. We noticed that intracellular perfusion of voltage-clamped squid giant axons with a solution containing K+ and TEA+ irreversibly decreased the potassium current when there was no K+ outside. Five minutes of perfusion with 20 mM TEA+, followed by removal of TEA+, reduced potassium current to < 5% of its initial value. The irreversible disappearance of K channels with TEA+ could be prevented by addition of > or = 10 mM K+ to the extracellular solution. The rate of disappearance of K channels followed first-order kinetics and was slowed by reducing the concentration of TEA+. Killing is much less evident when an axon is held at -110 mV to tightly close all of the channels. The longer-chain TEA+ derivative decyltriethylammonium (C10+) had irreversible effects similar to TEA+. External K+ also protected K channels against the irreversible action of C10+. It has been reported that removal of all K+ internally and externally (dekalification) can result in the disappearance of K channels, suggesting that binding of K+ within the pore is required to maintain function. Our evidence further suggests that the crucial location for K+ binding is external to the (internal) TEA+ site and that TEA+ prevents refilling of this location by intracellular K+. Thus in the absence of extracellular K+, application of TEA+ (or C10+) has effects resembling dekalification and kills the K channels.

  17. Two-Channel Kondo Effect in a Modified Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Oreg, Yuval; Goldhaber-Gordon, David

    2003-04-01

    We suggest a simple system of two electron droplets which should display two-channel Kondo behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point requires fine control of the electrochemical potential in each droplet, which can be achieved by adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener­alization to the multichannel Kondo case.

  18. External pH effects on the depolarization-activated K channels in guard cell protoplasts of Vicia faba

    PubMed Central

    1994-01-01

    Previous studies reveal that the pH of the apoplastic solution in the guard cell walls may vary between 7.2 and 5.1 in closed and open stomata, respectively. During these aperture and pH changes, massive K+ fluxes cross the cellular plasma membrane driving the osmotic turgor and volume changes of guard cells. Therefore, we examined the effect of extracellular pH on the depolarization-activated K channels (KD channels), which constitute the K+ efflux pathway, in the plasma membrane of Vicia faba guard cell protoplasts. We used patch clamp, both in whole cells as well as in excised outside-out membrane patches. Approximately 500 KD channels, at least, could be activated by depolarization in one protoplast (density: approximately 0.6 micron-2). Acidification from ph 8.1 to 4.4 decreased markedly the whole-cell conductance, GK, of the KD channels, shifted its voltage dependence, GK- EM, to the right on the voltage axis, slowed the rate of activation and increased the rate of deactivation, whereas the single channel conductance was not affected significantly. Based on the GK-EM shifts, the estimated average negative surface charge spacing near the KD channel is 39 A. To quantify the effects of protons on the rates of transitions between the hypothesized conformational states of the channels, we fitted the experimental macroscopic steady state conductance-voltage relationship and the voltage dependence of time constants of activation and deactivation, simultaneously, with a sequential three-state model CCO. In terms of this model, protonation affects the voltage-dependent properties via a decrease in localized, rather than homogeneous, surface charge sensed by the gating moieties. In terms of either the CO or CCO model, the protonation of a site with a pKa of 4.8 decreases the voltage-independent number of channels, N, that are available for activation by depolarization. PMID:8035163

  19. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.

    PubMed Central

    Vivaudou, M; Forestier, C

    1995-01-01

    1. The molecular mechanisms underlying pH regulation of skeletal muscle ATP-sensitive K+ (KATP) channels were studied using the patch clamp technique in the inside-out configuration. Two effects of intracellular protons were studied in detail: the decrease in magnitude of single-channel currents and the increase in open probability (Po) of nucleotide-inhibited channels. 2. The pH dependence of inward unit currents under different ionic conditions was in poor agreement with either a direct block of the pore by protons or an indirect proton-induced conformational change, but was compatible with the protonation of surface charges located near the cytoplasmic entrance of the pore. This latter electrostatic mechanism was modelled using Gouy-Chapman-Stern theory, which predicted the data accurately with a surface charge density of about 0.1 negative elementary charges per square nanometre and a pK (pH value for 50% effect) value for protonation of these charges of 6.25. The same mechanism, i.e. neutralization of negative surface charges by cation binding, could also account for the previously reported reduction of inward unit currents by Mg2+. 3. Intracellular alkalization did not affect Po of the KATP channels. Acidification increased Po. In the presence of 0.1 mM ATP (no Mg2+), the channel activation vs. pH relationship could be fitted with a sigmoid curve with a Hill coefficient slightly above 2 and a pK value of 6. This latter value was dependent on the ATP concentration, decreasing from 6.3 in 30 microM ATP to 5.3 in 1 microM ATP. 4. Conversely, the channel inhibition vs. ATP concentration curve was shifted to the right when the pH was lowered. At pH 7.1, the ATP concentration causing half-maximal inhibition was about 10 microM. At pH 5.4, it was about 400 microM. The Hill coefficient values remained slightly below 2. Similar effects were observed when ADP was used as the inhibitory nucleotide. 5. These results confirm that a reciprocal competitive link exists

  20. Some effects of electron channeling on electron energy loss spectroscopy.

    PubMed

    Kirkland, Earl J

    2005-02-01

    As an electron beam (of order 100 keV) travels through a crystalline solid it can be channeled down a zone axis of the crystal to form a channeling peak centered on the atomic columns. The channeling peak can be similar in size to the outer atomic orbitals. Electron energy loss spectroscopy (EELS) measures the losses that the electron experiences as it passes through the solid yielding information about the unoccupied density of states in the solid. The interaction matrix element for this process typically produces dipole selection rules for small angle scattering. In this paper, a theoretical calculation of the EELS cross section in the presence of strong channeling is performed for the silicon L23 edge. The presence of channeling is found to alter both the intensity and selection rules for this EELS signal as a function of depth in the solid. At some depths in the specimen small but significant non-dipole transition components can be produced, which may influence measurements of the density of states in solids.

  1. Compact and cost-effective multi-channel optical spectrometer for fine FBG sensing in IoT technology

    NASA Astrophysics Data System (ADS)

    Konishi, Tsuyoshi; Yamasaki, Yu

    2018-02-01

    Optical fiber sensor networks have attracted much attention in IoT technology and a fiber Bragg grating is one of key sensor devices there because of their advantages in a high affinity for optical fiber networks, compactness, immunity to electromagnetic interference and so on. Nevertheless, its sensitivity is not always satisfactory so as to be usable together with widespread cost-effective multi-channel spectrometers. In this paper, we introduce a new cost-effective approach for a portable multi-channel spectrometer with high spectral resolution and demonstrates some preliminary experimental results for fine FBG sensing.

  2. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    PubMed

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  3. State-dependent block of CNG channels by dequalinium.

    PubMed

    Rosenbaum, Tamara; Gordon-Shaag, Ariela; Islas, León D; Cooper, Jeremy; Munari, Mika; Gordon, Sharona E

    2004-03-01

    Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.

  4. Investigation of airflow effects on the dielectric barrier discharge with single/double discharge channel arrangement

    NASA Astrophysics Data System (ADS)

    Fan, Zhihui; Yan, Huijie; Liu, Yidi; Guo, Hongfei; Wang, Yuying; Ren, Chunsheng

    2018-05-01

    Atmospheric-pressure dielectric barrier discharge (DBD) with airflow participation has been widely used in recent years. In this paper, effects of airflow on DBD characteristics are experimentally investigated by single/double pin-to-plate DBD arrangements with an AC exciting source. The discharge electrical characteristics and the movements of discharge channels in airflow are investigated with a single pin electrode arrangement. The current intensities increase in positive cycles and decrease in negative cycles with the increase in airflow velocity. The transition from a filamentary discharge to a diffuse discharge is observed under certain airflow conditions, and the discharge channels move with the airflow with a movement velocity less than the corresponding airflow velocity. In the cases of double pin electrode arrangements, the repulsion between double pin discharge channels is apparent at a 10 mm distance but is not obvious at a 20 mm distance. When the airflow is introduced into the discharge gap, not as in the case of single pin electrode arrangement, the movements of discharge channels in airflow are affected by adjacent discharge channels. The corresponding reasons are analyzed in the paper.

  5. Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels

    PubMed Central

    Townsend, Claire; Horn, Richard

    1997-01-01

    Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate. PMID:9234168

  6. Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Zahir, Hina; Tanveer, Anum; Alsaedi, Ahmed

    2018-03-01

    An analysis has been arranged to study the magnetohydrodynamics (MHD) peristaltic flow of Prandtl fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Simultaneous effects of heat and mass transfer with thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects are considered. Convective conditions for heat and mass transfer in the formulation are adopted. Ordinary differential systems using low Reynolds number and long wavelength approximation are obtained. Resulting equations have been solved numerically. The discussion of axial and secondary velocities, temperature, concentration and heat transfer coefficient with respect to emerging parameters embedded in the flow model is presented after sketching plots.

  7. The effects of the putative potassium channel activator WAY-120,491 on 86Rb efflux from the rabbit aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodge, N.J.; Cohen, R.B.; Havens, C.N.

    1991-02-01

    WAY-120,491 ((-)-(3S-trans)-2-(3,4-dihydro-3-hydroxy-2,2-dimethyl-6-(trifluoromet hox y)- 2H-1-benzopyran-4-yl)-2,3-dihydro-1H-isoindol-1-one) is a novel antihypertensive agent. We have investigated the effects of this compound on contractile force and 86Rb efflux, using the rabbit aorta, in order to assess its K channel activator properties. K channel blockers and ionic conditions thought to modulate specific K channel types have been used to provide insight into the K channel(s) affected by this compound. WAY-120,491 evoked relaxation of precontracted rabbit aortic rings and increased the rate of 86Rb efflux from strips of rabbit aorta; both effects occurring in a concentration-dependent manner. The WAY-120,491 (1 microM)-induced 86Rb efflux was inhibited bymore » tetraethylammonium (IC50 = 0.38 mM), indicating that the increased efflux was mediated by K channels. Glyburide completely blocked the WAY-120,491 (1 microM)-evoked 86Rb efflux with 50% block occurring at a concentration of 0.48 microM. Glyburide also antagonized the WAY-120,491-induced relaxation of aortic rings. Omission of Ca from the solution bathing the aorta did not inhibit the WAY-120,491 induced 86Rb efflux but rather caused an augmentation of the response. It is concluded that WAY-120,491 may be classified as a K channel opener. Furthermore, the K channel upon which WAY-120,491 acts exhibits some characteristics normally associated with the ATP regulated K channel although the involvement of other K channel types has not been ruled out.« less

  8. Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases

    PubMed Central

    Chen, Qijin

    2016-01-01

    BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875

  9. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    PubMed Central

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  10. In vitro chronic effects on hERG channel caused by the marine biotoxin Azaspiracid-2

    PubMed Central

    Ferreiro, Sara F.; Vilariño, Natalia; Louzao, M.Carmen; Nicolaou, K. C.; Frederick, Michael O.; Botana, Luis M.

    2014-01-01

    Azaspiracids (AZAs) are marine biotoxins produced by the dinoflagellate Azadinium spinosum that accumulate in many shellfish species. Azaspiracid poisoning caused by AZA-contaminated seafood consumption is primarily manifested by diarrhea in humans. To protect human health, AZA-1, AZA-2 and AZA-3 content in seafood has been regulated by food safety authorities in many countries. Recently AZAs have been reported as a low/moderate hERG channel blockers. Furthermore AZA-2 has been related to arrhythmia appearance in rats, suggesting potential heart toxicity. In this study AZA-2 in vitro effects on hERG channel after chronic exposure are analyzed to further explore potential cardiotoxicity. The amount of hERG channel in the plasma membrane, hERG channel trafficking and hERG currents were evaluated up to 12 h of toxin exposure. In these conditions AZA-2 caused an increase of hERG levels in the plasma membrane, probably related to hERG retrograde trafficking impairment. Although this alteration did not translate into an increase of hERG channel-related current, more studies will be necessary to understand its mechanism and to know what consequences could have in vivo. These findings suggest that azaspiracids might have chronic cardiotoxicity related to hERG channel trafficking and they should not be overlooked when evaluating the threat to human health. PMID:25286396

  11. Effects of elevated line sources on turbulent mixing in channel flow

    NASA Astrophysics Data System (ADS)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2016-11-01

    Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.

  12. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    USDA-ARS?s Scientific Manuscript database

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  13. A novel double gate MOSFET by symmetrical insulator packets with improved short channel effects

    NASA Astrophysics Data System (ADS)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-03-01

    In this article, we study a novel double-gate SOI MOSFET structure incorporating insulator packets (IPs) at the junction between channel and source/drain (S/D) ends. The proposed MOSFET has great strength in inhibiting short channel effects and OFF-state current that are the main problems compared with conventional one due to the significant suppressed penetrations of both the lateral electric field and the carrier diffusion from the S/D into the channel. Improvement of the hot electron reliability, the ON to OFF drain current ratio, drain-induced barrier lowering, gate-induced drain leakage and threshold voltage over conventional double-gate SOI MOSFETs, i.e. without IPs, is displayed with the simulation results. This study is believed to improve the CMOS device reliability and is suitable for the low-power very-large-scale integration circuits.

  14. Effect of surface bilayer charges on the magnetic field around ionic channels

    NASA Astrophysics Data System (ADS)

    Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  15. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  16. Effective pore size and radius of capture for K(+) ions in K-channels.

    PubMed

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-02-02

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.

  17. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  18. Fully nonlinear Goertler vortices in constricted channel flows and their effect on the onset of separation

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1992-01-01

    The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.

  19. Mobility of Protozoa through Narrow Channels

    PubMed Central

    Wang, Wei; Shor, Leslie M.; LeBoeuf, Eugene J.; Wikswo, John P.; Kosson, David S.

    2005-01-01

    Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 μm s−1 (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 μm s−1. Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment. PMID:16085857

  20. Sterol Regulation of Voltage-Gated K+ Channels.

    PubMed

    Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan

    2017-01-01

    Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.

  1. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum

    PubMed Central

    Dobrev, Dobromir; Milde, Alexander S; Andreas, Klaus; Ravens, Ursula

    1999-01-01

    The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to ω-conotoxin GVIA (ω-CTx-GVIA), ω-agatoxin IVA (ω-Aga-IVA) and ω-conotoxin MVIIC (ω-CTx-MVIIC), respectively.KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 μM). It was significantly blocked by ω-CTx-GVIA (1 μM), ω-Aga-IVA (30 nM) and was confirmed to be abolished by ω-CTx-MVIIC (3 μM), indicating involvement of N-, P- and Q-type channel subtypes.Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 μM) were fully additive to the effect of ω-CTx-GVIA (1 μM), whereas co-application with ω-Aga-IVA (30 nM) produced similar effects to those of ω-Aga-IVA alone.As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 μM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 μM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 μM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved.Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only. PMID:10385261

  2. Photonic channels for quantum communication

    PubMed

    van Enk SJ; Cirac; Zoller

    1998-01-09

    A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.

  3. Effectiveness of a multi-channel volumetric air receiver for a solar power tower

    NASA Astrophysics Data System (ADS)

    Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon

    2013-08-01

    In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.

  4. Effects of caffeine on cytoplasmic free Ca2+ concentration in pancreatic beta-cells are mediated by interaction with ATP-sensitive K+ channels and L-type voltage-gated Ca2+ channels but not the ryanodine receptor.

    PubMed Central

    Islam, M S; Larsson, O; Nilsson, T; Berggren, P O

    1995-01-01

    In the pancreatic beta-cell, an increase in the cytoplasmic free Ca2+ concentration ([Ca2+]i) by caffeine is believed to indicate mobilization of Ca2+ from intracellular stores, through activation of a ryanodine receptor-like channel. It is not known whether other mechanisms, as well, underlie caffeine-induced changes in [Ca2+]i. We studied the effects of caffeine on [Ca2+]i by using dual-wavelength excitation microfluorimetry in fura-2-loaded beta-cells. In the presence of a non-stimulatory concentration of glucose, caffeine (10-50 mM) consistently increased [Ca2+]i. The effect was completely blocked by omission of extracellular Ca2+ and by blockers of the L-type voltage-gated Ca2+ channel, such as D-600 or nifedipine. Depletion of agonist-sensitive intracellular Ca2+ pools by thapsigargin did not inhibit the stimulatory effect of caffeine on [Ca2+]i. Moreover, this effect of caffeine was not due to an increase in cyclic AMP, since forskolin and 3-isobutyl-1-methylxanthine (IBMX) failed to raise [Ca2+]i in unstimulated beta-cells. In beta-cells, glucose and sulphonylureas increase [Ca2+]i by causing closure of ATP-sensitive K+ channels (KATP channels). Caffeine also caused inhibition of KATP channel activity, as measured in excised inside-out patches. Accordingly, caffeine (> 10 mM) induced insulin release from beta-cells in the presence of a non-stimulatory concentration of glucose (3 mM). Hence, membrane depolarization and opening of voltage-gated L-type Ca2+ channels were the underlying mechanisms whereby the xanthine drug increased [Ca2+]i and induced insulin release. Paradoxically, in glucose-stimulated beta-cells, caffeine (> 10 mM) lowered [Ca2+]i. This effect was due to the fact that caffeine reduced depolarization-induced whole-cell Ca2+ current through the L-type voltage-gated Ca2+ channel in a dose-dependent manner. Lower concentrations of caffeine (2.5-5.0 mM), when added after glucose-stimulated increase in [Ca2+]i, induced fast oscillations in [Ca2

  5. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    PubMed

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  6. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection.

    PubMed

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2004-01-01

    1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.

  7. Effect of open channel filter on particle emissions of modern diesel engine.

    PubMed

    Heikkilä, Juha; Rönkkö, Topi; Lähde, Tero; Lemmetty, Mikko; Arffman, Anssi; Virtanen, Annele; Keskinen, Jorma; Pirjola, Liisa; Rothe, Dieter

    2009-10-01

    Particle emissions of modern diesel engines are of a particular interest because of their negative health effects. The special interest is in nanosized solid particles. The effect of an open channel filter on particle emissions of a modern heavy-duty diesel engine (MAN D2066 LF31, model year 2006) was studied. Here, the authors show that the open channel filter made from metal screen efficiently reduced the number of the smallest particles and, notably, the number and mass concentration of soot particles. The filter used in this study reached 78% particle mass reduction over the European Steady Cycle. Considering the size-segregated number concentration reduction, the collection efficiency was over 95% for particles smaller than 10 nm. The diffusion is the dominant collection mechanism in small particle sizes, thus the collection efficiency decreased as particle size increased, attaining 50% at 100 nm. The overall particle number reduction was 66-99%, and for accumulation-mode particles the number concentration reduction was 62-69%, both depending on the engine load.

  8. On channel interactions in nested Hall thrusters

    NASA Astrophysics Data System (ADS)

    Cusson, S. E.; Georgin, M. P.; Dragnea, H. C.; Dale, E. T.; Dhaliwal, V.; Boyd, I. D.; Gallimore, A. D.

    2018-04-01

    Nested Hall thrusters use multiple, concentric discharge channels to increase thrust density. They have shown enhanced performance in multi-channel operation relative to the superposition of individual channels. The X2, a two-channel nested Hall thruster, was used to investigate the mechanism behind this improved performance. It is shown that the local pressure near the thruster exit plane is an order of magnitude higher in two-channel operation. This is due to the increased neutral flow inherent to the multi-channel operation. Due to the proximity of the discharge channels in nested Hall thrusters, these local pressure effects are shown to be responsible for the enhanced production of thrust during multi-channel operation via two mechanisms. The first mechanism is the reduction of the divergence angle due to an upstream shift of the acceleration region. The displacement of the acceleration region was detected using laser induced fluorescence measurements of the ion velocity profile. Analysis of the change in beam divergence indicates that, at an operating condition of 150 V and 30 A, this effect increases the thrust by 8.7 ± 1.2 mN. The second mechanism is neutral ingestion from the adjacent channel resulting in a 2.0 + 0/-0.2 mN increase in thrust. Combined, these mechanisms are shown to explain, within uncertainty, the 17 ± 6.2 mN improvement in thrust during dual channel operation of the X2.

  9. Downstream effects of the Pelton-Round Butte hydroelectric project on bedload, transport, channel morphology, and channel-bed texture, lower Deschutes River, Oregon.

    Treesearch

    Heidi Fassnacht; Ellen M. McClure; Gordon E. Grant; Peter C. Klingeman

    2003-01-01

    Field, laboratory, and historical data provide the basis for interpreting the effects of the Pelton-Round Butte dam complex on the surface water hydrology and geomorphology of the lower Deschutes River, Oregon, USA. The river's response to upstream impoundment and flow regulation is evaluated in terms of changes in predicted bedload transport rates, channel...

  10. Loperamide: A positive modulator for store-operated calcium channels?

    PubMed Central

    Harper, Jacquie L.; Shin, Yangmee; Daly, John W.

    1997-01-01

    The depletion of inositol trisphosphate-sensitive intracellular pools of calcium causes activation of store-operated calcium (SOC) channels. Loperamide at 10–30 μM has no effect on intracellular calcium levels alone, but augments calcium levels in cultured cells when SOC channels have been activated. In HL-60 leukemic cells, the apparent positive modulatory effect of loperamide on SOC channels occurs when these channels have been activated after ATP, thapsigargin, or ionomycin-elicited depletion of calcium from intracellular storage sites. Loperamide has no effect when levels of intracellular calcium are elevated through a mechanism not involving SOC channels by using sphingosine. Loperamide caused augmentation of intracellular calcium levels after activation of SOC channels in NIH 3T3 fibroblasts, astrocytoma 1321N cells, smooth muscle DDT-MF2 cells, RBL-2H3 mast cells, and pituitary GH4C1 cells. Only in astrocytoma cells did loperamide cause an elevation in intracellular calcium in the absence of activation of SOC channels. The augmentation of intracellular calcium elicited by loperamide in cultured cells was dependent on extracellular calcium and was somewhat resistant to agents (SKF 96365, miconazole, clotrimazole, nitrendipine, and trifluoperazine) that in the absence of loperamide effectively blocked SOC channels. It appears that loperamide augments influx of calcium through activated SOC channels. PMID:9405713

  11. Biphasic Effect of Nitric Oxide on the Cardiac Voltage-dependent Anion Channel

    PubMed Central

    Cheng, Qunli; Sedlic, Filip; Pravdic, Danijel; Bosnjak, Zeljko J.; Kwok, Wai-Meng

    2010-01-01

    Nitric oxide (NO˙) effects on the cardiac mitochondrial voltage-dependent anion channel (VDAC) are unknown. The effects of exogenous NO˙ on VDAC purified from rat hearts were investigated in this study. When incorporated into lipid bilayers, VDAC was inhibited directly by an NO˙ donor, PAPA NONOate, in a concentration-dependent biphasic manner. This was prevented by an NO˙ scavenger, PTIO. The effect paralleled that of NO˙ in delaying the opening of the mitochondrial permeability transition (PT) pore. These biphasic effects on the cardiac VDAC and the PT pore reveal a tandem impact of NO˙ on the two mitochondrial entities. PMID:21156174

  12. [Effect of calcium channel blockers on developing nervous syndrome of high pressure and nitrogen narcosis in mice].

    PubMed

    Sledkov, A I

    1997-01-01

    In the experiments conducted on mice which prior to compression in a heliox environment have been injected the blockers of various types of calcium channels (flunarezine, verapramil and nifedipine) as well as bemethyl (actoprotector) and oxymethacye (antioxidant) there escaped detection of noticeable effect of these drugs on developing the high pressure nervous syndrome (HPNS). On exposure to the hyperbaric nitrogen-oxygen environment verapromil (phenylalkulamine blocker of L-type calcium channels) had a protection effect with respect to a convulsive component of the nitrogen narcosis.

  13. Effects of channel constriction on upstream steering of flow around Locke Island, Columbia River, Washington

    NASA Astrophysics Data System (ADS)

    Loy, G. E.; Furbish, D. J.; Covey, A.

    2010-12-01

    Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness

  14. Ideal Channel Field Effect Transistors

    DTIC Science & Technology

    2010-03-01

    well as on /?-GaAs/w-GaAs homojunctions grown by molecular beam epitaxy (MBE). The diode I-Vs at reverse bias are plotted below. The measured breakdown...transistors and composite channel InAlAs/InGaAs/lnP/InAlAs high electron mobility transistors ( HEMTs ), which have taken the full advantage of the matched...result in a large number of dislocations in GaAs films epitaxially grown on wurtzite GaN. In this work, we have successfully integrated GaAs with GaN

  15. Large fraction of crystal directions leads to ion channeling

    NASA Astrophysics Data System (ADS)

    Nordlund, K.; Djurabekova, F.; Hobler, G.

    2016-12-01

    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  16. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  17. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor.

    PubMed

    Sultan, Tipu

    2016-07-01

    This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  19. In vitro electrocardiographic and cardiac ion channel effects of (-)-epigallocatechin-3-gallate, the main catechin of green tea.

    PubMed

    Kang, Jiesheng; Cheng, Hsien; Ji, Junzhi; Incardona, Josephine; Rampe, David

    2010-08-01

    Epigallocatechin-3-gallate (EGCG) is the major catechin found in green tea. EGCG is also available for consumption in the form of concentrated over-the-counter nutritional supplements. This compound is currently undergoing clinical trials for the treatment of a number of diseases including multiple sclerosis, and a variety of cancers. To date, few data exist regarding the effects of EGCG on the electrophysiology of the heart. Therefore, we examined the effects of EGCG on the electrocardiogram recorded from Langendorff-perfused guinea pig hearts and on cardiac ion channels using patch-clamp electrophysiology. EGCG had no significant effects on the electrocardiogram at concentrations of 3 and 10 microM. At 30 microM, EGCG prolonged PR and QRS intervals, slightly shortened the QT interval, and altered the shape of the ST-T-wave segment. The ST segment merged with the upstroke of the T wave, and we noted a prolongation in the time from the peak of the T wave until the end. Patch-clamp studies identified the KvLQT1/minK K(+) channel as a target for EGCG (IC(50) = 30.1 microM). In addition, EGCG inhibited the cloned human cardiac Na(+) channel Na(v)1.5 in a voltage-dependent fashion. The L-type Ca(2+) channel was inhibited by 20.8% at 30 microM, whereas the human ether-a-go-go-related gene and Kv4.3 cardiac K(+) channels were less sensitive to inhibition by EGCG. ECGC has a number of electrophysiological effects in the heart, and these effects may have clinical significance when multigram doses of this compound are used in human clinical trials or through self-ingestion of large amounts of over-the-counter products enriched in EGCG.

  20. Connexin channels and phospholipids: association and modulation

    PubMed Central

    Locke, Darren; Harris, Andrew L

    2009-01-01

    Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to

  1. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    NASA Astrophysics Data System (ADS)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  2. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating

    PubMed Central

    1996-01-01

    Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is

  3. Effects of DO cencentration on growth of juvenile channel catfish

    USDA-ARS?s Scientific Manuscript database

    Dissolved oxygen (DO) concentration has a major impact on feed consumption of channel catfish when raised in ponds; as DO concentration falls below 3.0 mg/L at night, feed consumption is negatively impacted. Channel catfish fry may experience a wide range of oxygen conditions in the hatchery depend...

  4. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello

    2015-12-01

    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  5. NPPB structure-specifically activates TRPA1 channels.

    PubMed

    Liu, Kun; Samuel, Manoj; Ho, Melisa; Harrison, Richard K; Paslay, Jeff W

    2010-07-01

    TRPA1 channels have been found to play an important role in mammalian pain sensation, especially when the pain is caused by chemicals on site of inflammation. A large number of structurally diverse chemicals are found to activate TRPA1 channels, implicating a potential chemosensor in neuronal nociception. Identification of the channel activation by cysteine modification through covalent chemical reaction provides arguments for the diversity of the agonist structures. However, it is largely unknown how nonreactive compounds activate TRPA1 channels. Here, we report that NPPB, a classic Cl(-) channel blocker, potently activated human TRPA1 channels overexpressed in mammalian HEK-293 cells. This effect was confirmed in Ca(2+) imaging assay, patch clamp whole cell and single channel recordings. The NPPB response was quick, fully reversible and replicable, contrary to the effect of covalent modification by AITC. The mutagenesis studies revealed a refreshed look at several mutations known to be critical for the actions of AITC and menthol. The blocking profile of NPPB on these mutants showed that the NPPB activation was similar to that of FTS and different from AITC and menthol. The results indicated a possible close interaction between S5 and N-terminal domains of the channel. We also tested a group of NPPB analogs on TRPA1 channel activities. The results demonstrated that NPPB activation was tightly associated with chemical structure. None of the single chemical group was sufficient to activate the channel, indicating that NPPB activated TRPA1 through a structure-specific mechanism. (c) 2010 Elsevier Inc. All rights reserved.

  6. Channeling through Bent Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump,more » thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used

  7. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek; Novakovic, Bozidar; Tan, Yaohua; Klimeck, Gerhard; Rahman, Rajib

    2016-08-01

    Scaling transistors’ dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

  8. Effect of channel size on sweet potato storage root enlargement in the Tuskegee University hydroponic nutrient film system

    NASA Technical Reports Server (NTRS)

    Morris, Carlton E.; Martinez, Edwin; Bonsi, C. K.; Mortley, Desmond G.; Hill, Walter A.; Ogbuehi, Cyriacus R.; Loretan, Phil A.

    1989-01-01

    The potential of the sweet potato as a food source for future long term manned space missions is being evaluated for NASA's Controlled Ecological Life Support Systems (CELSS) program. Sweet potatoes have been successfully grown in a specially designed Tuskegee University nutrient film technique (TU NFT) system. This hydroponic system yielded storage roots as high as 1790 g/plant fresh weight. In order to determine the effect of channel size on the yield of sweet potatoes, the width and depth of the growing channels were varied in two separate experiments. Widths were studied using the rectangular TU NFT channels with widths of 15 cm (6 in), 30 cm (12 in) and 45 cm (18 in). Channel depths of 5 cm (2 in), 10 cm (4 in), and 15 cm (6 in) were studied using a standard NASA fan shaped Biomass Production Chamber (BPC) channel. A comparison of preliminary results indicated that, except for storage root number, the growth and yield of sweet potatoes were not affected by channel width. Storage root yield was affected by channel depth although storage root number and foliage growth were not. Both experiments are being repeated.

  9. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation—A Computational Study

    NASA Astrophysics Data System (ADS)

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-01

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment.

  10. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation—A Computational Study

    PubMed Central

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-01

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment. PMID:28084429

  11. The Effect of a Transcranial Channel as a Skull/Brain Interface in High-Definition Transcranial Direct Current Stimulation-A Computational Study.

    PubMed

    Seo, Hyeon; Kim, Hyoung-Ihl; Jun, Sung Chan

    2017-01-13

    A transcranial channel is an interface between the skull and brain; it consists of a biocompatible and highly conductive material that helps convey the current induced by transcranial direct current stimulation (tDCS) to the target area. However, it has been proposed only conceptually, and there has been no concrete study of its efficacy. In this work, we conducted a computational investigation of this conceptual transcranial model with high-definition tDCS, inducing focalized neuromodulation to determine whether inclusion of a transcranial channel performs effectively. To do so, we constructed an anatomically realistic head model and compartmental pyramidal neuronal models. We analyzed membrane polarization by extracellular stimulation and found that the inclusion of a transcranial channel induced polarization at the target area 11 times greater than conventional HD-tDCS without the transcranial channel. Furthermore, the stimulation effect of the transcranial channel persisted up to approximately 80%, even when the stimulus electrodes were displaced approximately 5 mm from the target area. We investigated the efficacy of the transcranial channel and found that greatly improved stimulation intensity and focality may be achieved. Thus, the use of these channels may be promising for clinical treatment.

  12. The apoptotic effect of Zoledronic acid on the nasopharyngeal carcinoma cells via ROS mediated chloride channel activation.

    PubMed

    Wang, Liang; Gao, Hong; Yang, Xiaoya; Liang, Xiechou; Tan, Qiuchan; Chen, Zhanru; Zhao, Chan; Gu, Zhuoyu; Yu, Meisheng; Zheng, Yanfang; Huang, Yanqing; Zhu, Linyan; Jacob, Tim J C; Wang, Liwei; Chen, Lixin

    2018-06-08

    Zoledronic acid (ZA), a third-generation bisphosphonate, has been applied for treatment of bone metastases caused by malignant tumors. Recent studies have found its anti-cancer effects on various tumor cells. One of the mechanisms of anti-cancer effects of ZA is induction of apoptosis. However, the mechanisms of ZA-induced apoptosis in tumor cells have not been clarified clearly. In this study, we investigated the roles of chloride channels in ZA-induced apoptosis in nasopharyngeal carcinoma CNE-2Z cells. Apoptosis and chloride current were induced by ZA and suppressed by chloride channel blockers. After the knockdown of ClC-3 expression by ClC-3 siRNA, ZA-induced chloride current and apoptosis were significantly suppressed, indicating that the chloride channel participated in ZA-induced apoptosis may be ClC-3. When reactive oxygen species (ROS) generation was inhibited by the antioxidant N-acetyl-L-cysteine (L-NAC), ZA-induced apoptosis and chloride current were blocked accordingly, suggesting that ZA induces apoptosis through promoting ROS production and subsequently activating chloride channel. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Sumatriptan Inhibits TRPV1 Channels in Trigeminal Neurons

    PubMed Central

    Evans, M. Steven; Cheng, Xiangying; Jeffry, Joseph A.; Disney, Kimberly E.; Premkumar, Louis S.

    2011-01-01

    Objective To understand a possible role for transient potential receptor vanilloid 1 (TRPV1) ion channels in sumatriptan relief of pain mediated by trigeminal nociceptors. Background TRPV1 channels are expressed in small nociceptive sensory neurons. In dorsal root ganglia (DRG), TRPV1-containing nociceptors mediate certain types of inflammatory pain. Neurogenic inflammation of cerebral dura and blood vessels in the trigeminal nociceptive system is thought to be important in migraine pain, but the ion channels important in transducing migraine pain are not known. Sumatriptan is an agent effective in treatment of migraine and cluster headache. We hypothesized that sumatriptan might modulate activity of TRPV1 channels found in the trigeminal nociceptive system. Methods We used immunohistochemistry to detect the presence of TRPV1 channel protein, whole cell recording in acutely dissociated trigeminal ganglia (TG) to detect functionality of TRPV1 channels, and whole cell recording in trigeminal nucleus caudalis (TNC) to detect effects on release of neurotransmitters from trigeminal neurons onto second order sensory neurons. Effects specifically on TG neurons that project to cerebral dura were assessed by labeling dural nociceptors with DiI. Results Immunohistochemistry demonstrated that TRPV1 channels are present in cerebral dura, trigeminal ganglion, and in the trigeminal nucleus caudalis. Capsaicin, a TRPV1 agonist, produced depolarization and repetitive action potential firing in current clamp recordings and large inward currents in voltage clamp recordings from acutely dissociated TG neurons, demonstrating that TRPV1 channels are functional in trigeminal neurons. Capsaicin increased spontaneous excitatory postsynaptic currents (sEPSCs) in neurons of layer II in TNC slices, showing that these channels have a physiological effect on central synaptic transmission. Sumatriptan (10 μM), a selective anti-migraine drug inhibited TRPV1-mediated inward currents in TG. and

  14. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  15. Bovine chromaffin cells possess FTX-sensitive calcium channels.

    PubMed

    Gandía, L; Albillos, A; García, A G

    1993-07-30

    The effects of the synthetic analogue of the toxin from the venom of the funnel-web spider Agenelopsis aperta (sFTX) on whole-cell Ba2+ currents through Ca2+ channels were studied in cultured bovine chromaffin cells. sFTX selectively and reversibly blocked a significant component (55 +/- 3%) of the whole-cell IBa. Effects of sFTX were additive to those of omega-conotoxin GVIA, a selective blocker of N-type Ca2+ channels, and those of furnidipine, a novel dihydropyridine L-type Ca2+ channel blocker. We conclude that the cultured bovine chromaffin cells, in addition to N- and L-type Ca2+ channels, possess a P-type component in their whole-cell currents through their Ca2+ channels.

  16. Suppressing effect of C a2 + blips on puff amplitudes by inhibiting channels to prevent recovery

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Qi, Hong; Li, Xiang; Cai, Meichun; Chen, Xingqiang; Liu, Wen; Shuai, Jianwei

    2016-08-01

    As local signals, calcium puffs arise from the concerted opening of a few nearby inositol 1,4,5-trisphospate receptor channels to release C a2 + ions from the endoplasmic reticulum. Although C a2 + puffs have been well studied, little is known about the modulation of cytosolic basal C a2 + concentration ([Ca2 +] Basal) on puff dynamics. In this paper we consider a puff model to study how the statistical properties of puffs are modulated by [Ca2 +] Basal. The puff frequency and lifetime trivially increase with the increasing [Ca2 +] Basal, but an unexpected result is that the puff amplitude and the maximum open-channel number of the puff show decreasing relationship with the increasing [Ca2 +] Basal. The underlying dynamics is related not only to the increasing puff frequency which gives a shorter recovery time, but also to the increasing frequency of blips with only one channel open. We indicate that C a2 + blips cause the channels to be inhibited and prevent their recovery during interpuff intervals, resulting in the suppressing effect on puff amplitudes. With increasing [Ca2 +] Basal, more blips occur to cause more channels to be inhibited, leaving fewer channels available for puff events. This study shows that the blips may play relevant functions in global C a2 + waves through modulating puff dynamics.

  17. Redox-Dependent Modulation of T-Type Ca(2+) Channels in Sensory Neurons Contributes to Acute Anti-Nociceptive Effect of Substance P.

    PubMed

    Huang, Dongyang; Huang, Sha; Gao, Haixia; Liu, Yani; Qi, Jinlong; Chen, Pingping; Wang, Caixue; Scragg, Jason L; Vakurov, Alexander; Peers, Chris; Du, Xiaona; Zhang, Hailin; Gamper, Nikita

    2016-08-10

    Neuropeptide substance P (SP) is produced and released by a subset of peripheral sensory neurons that respond to tissue damage (nociceptors). SP exerts excitatory effects in the central nervous system, but peripheral SP actions are still poorly understood; therefore, here, we aimed at investigating these peripheral mechanisms. SP acutely inhibited T-type voltage-gated Ca(2+) channels in nociceptors. The effect was mediated by neurokinin 1 (NK1) receptor-induced stimulation of intracellular release of reactive oxygen species (ROS), as it can be prevented or reversed by the reducing agent dithiothreitol and mimicked by exogenous or endogenous ROS. This redox-mediated T-type Ca(2+) channel inhibition operated through the modulation of CaV3.2 channel sensitivity to ambient zinc, as it can be prevented or reversed by zinc chelation and mimicked by exogenous zinc. Elimination of the zinc-binding site in CaV3.2 rendered the channel insensitive to SP-mediated inhibition. Importantly, peripherally applied SP significantly reduced bradykinin-induced nociception in rats in vivo; knock-down of CaV3.2 significantly reduced this anti-nociceptive effect. This atypical signaling cascade shared the initial steps with the SP-mediated augmentation of M-type K(+) channels described earlier. Our study established a mechanism underlying the peripheral anti-nociceptive effect of SP whereby this neuropeptide produces ROS-dependent inhibition of pro-algesic T-type Ca(2+) current and concurrent enhancement of anti-algesic M-type K(+) current. These findings will lead to a better understanding of mechanisms of endogenous analgesia. SP modulates T-type channel activity in nociceptors by a redox-dependent tuning of channel sensitivity to zinc; this novel modulatory pathway contributes to the peripheral anti-nociceptive effect of SP. Antioxid. Redox Signal. 25, 233-251.

  18. Charge-Transfer-Induced p-Type Channel in MoS2 Flake Field Effect Transistors.

    PubMed

    Min, Sung-Wook; Yoon, Minho; Yang, Sung Jin; Ko, Kyeong Rok; Im, Seongil

    2018-01-31

    The two-dimensional transition-metal dichalcogenide semiconductor MoS 2 has received extensive attention for decades because of its outstanding electrical and mechanical properties for next-generation devices. One weakness of MoS 2 , however, is that it shows only n-type conduction, revealing its limitations for homogeneous PN diodes and complementary inverters. Here, we introduce a charge-transfer method to modify the conduction property of MoS 2 from n- to p-type. We initially deposited an n-type InGaZnO (IGZO) film on top of the MoS 2 flake so that electron charges might be transferred from MoS 2 to IGZO during air ambient annealing. As a result, electron charges were depleted in MoS 2 . Such charge depletion lowered the MoS 2 Fermi level, which makes hole conduction favorable in MoS 2 when optimum source/drain electrodes with a high work function are selected. Our IGZO-supported MoS 2 flake field effect transistors (FETs) clearly display channel-type conversion from n- to p-channel in this way. Under short- and long-annealing conditions, n- and p-channel MoS 2 FETs are achieved, respectively, and a low-voltage complementary inverter is demonstrated using both channels in a single MoS 2 flake.

  19. HCN1 Channels Contribute to the Effects of Amnesia and Hypnosis But Not Immobility of Volatile Anesthetics

    PubMed Central

    Liu, Jin; Ke, Bowen; Wang, Xiaojia; Li, Fengshan; Li, Tao; Bayliss, Douglas A.; Chen, Xiangdong

    2015-01-01

    Background HCN1 channels have been identified as targets of ketamine to produce hypnosis. Volatile anesthetics also inhibit HCN1 channels. However, the effects of HCN1 channels on volatile anesthetics in vivo is still elusive. This study uses global and conditional HCN1 knockout mice to evaluate how HCN1 channels affect the actions of volatile anesthetics. Methods Minimum alveolar concentrations (MAC) of isoflurane and sevoflurane that induced immobility (MAC of immobility) and/or hypnosis (MAC of hypnosis) were determined in wild-type (WT) mice, global HCN1 channel knockout mice (HCN1−/−), floxed HCN1 channel gene (HCN1f/f) mice and forebrain-selective HCN1 channel knockout (HCN1f/f: cre) mice. Immobility of mice was defined as no purposeful reactions to tail-clamping stimulus and hypnosis was defined as loss of righting reflex (LORR). The amnestic effects of isoflurane and sevoflurane were evaluated by fear-potentiated startle in these four strains of mice. Results All MAC values were expressed as mean ± SEM. For MAC of immobility of isoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~1.24-1.29% isoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for isoflurane (each ~1.05% isoflurane) were significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (0.86±0.03%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (0.84±0.03%, P<0.001); no significant difference was found between HCN1−/− and HCN1f/f: cre mice. For MAC of immobility of sevoflurane, no significant difference was found among wild-type, HCN1−/−, HCN1f/f and HCN1f/f: cre mice (all ~2.6-2.7% sevoflurane). For both HCN1−/− and HCN1f/f: cre mice, the MAC of hypnosis for sevoflurane (each ~1.90% sevoflurane) was significantly increased over their nonknockout controls: HCN1−/− vs. wild-type (1.58±0.05%, P<0.001) and HCN1f/f: cre vs. HCN1f/f mice (1.56±0.05%, P<0.001). No significant

  20. Coupling of laser energy into plasma channels

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-04-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  1. Effectiveness of diaphragmatic stimulation with single-channel electrodes in rabbits*

    PubMed Central

    Ghedini, Rodrigo Guellner; Espinel, Julio de Oliveira; Felix, Elaine Aparecida; Paludo, Artur de Oliveira; Mariano, Rodrigo; Holand, Arthur Rodrigo Ronconi; Andrade, Cristiano Feijó

    2013-01-01

    Every year, a large number of individuals become dependent on mechanical ventilation because of a loss of diaphragm function. The most common causes are cervical spinal trauma and neuromuscular diseases. We have developed an experimental model to evaluate the performance of electrical stimulation of the diaphragm in rabbits using single-channel electrodes implanted directly into the muscle. Various current intensities (10, 16, 20, and 26 mA) produced tidal volumes above the baseline value, showing that this model is effective for the study of diaphragm performance at different levels of electrical stimulation PMID:24068272

  2. Further characterization of the effect of ethanol on voltage-gated Ca(2+) channel function in developing CA3 hippocampal pyramidal neurons.

    PubMed

    Morton, Russell A; Valenzuela, C Fernando

    2016-02-15

    Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the third trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca(2+) channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca(2+) channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca(2+) channels in CA3 pyramidal neurons using Ca(2+) imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca(2+) channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca(2+) channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca(2+) channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3(rd) trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca(2+) channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Drivers and effects of Karenia mikimotoi blooms in the western English Channel

    NASA Astrophysics Data System (ADS)

    Barnes, Morvan K.; Tilstone, Gavin H.; Smyth, Timothy J.; Widdicombe, Claire E.; Gloël, Johanna; Robinson, Carol; Kaiser, Jan; Suggett, David J.

    2015-09-01

    Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL-1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

  4. Sniffer Channel Selection for Monitoring Wireless LANs

    NASA Astrophysics Data System (ADS)

    Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling

    Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.

  5. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  6. Flavonoid Regulation of HCN2 Channels*

    PubMed Central

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  7. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  8. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  9. Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon. Voltage and temperature effects.

    PubMed Central

    Correa, A M; Bezanilla, F; Latorre, R

    1992-01-01

    The gating kinetics of batrachotoxin-modified Na+ channels were studied in outside-out patches of axolemma from the squid giant axon by means of the cut-open axon technique. Single channel kinetics were characterized at different membrane voltages and temperatures. The probability of channel opening (Po) as a function of voltage was well described by a Boltzmann distribution with an equivalent number of gating particles of 3.58. The voltage at which the channel was open 50% of the time was a function of [Na+] and temperature. A decrease in the internal [Na+] induced a shift to the right of the Po vs. V curve, suggesting the presence of an integral negative fixed charge near the activation gate. An increase in temperature decreased Po, indicating a stabilization of the closed configuration of the channel and also a decrease in entropy upon channel opening. Probability density analysis of dwell times in the closed and open states of the channel at 0 degrees C revealed the presence of three closed and three open states. The slowest open kinetic component constituted only a small fraction of the total number of transitions and became negligible at voltages greater than -65 mV. Adjacent interval analysis showed that there is no correlation in the duration of successive open and closed events. Consistent with this analysis, maximum likelihood estimation of the rate constants for nine different single-channel models produced a preferred model (model 1) having a linear sequence of closed states and two open states emerging from the last closed state. The effect of temperature on the rate constants of model 1 was studied. An increase in temperature increased all rate constants; the shift in Po would be the result of an increase in the closing rates predominant over the change in the opening rates. The temperature study also provided the basis for building an energy diagram for the transitions between channel states. PMID:1318096

  10. A unified analytical drain current model for Double-Gate Junctionless Field-Effect Transistors including short channel effects

    NASA Astrophysics Data System (ADS)

    Raksharam; Dutta, Aloke K.

    2017-04-01

    In this paper, a unified analytical model for the drain current of a symmetric Double-Gate Junctionless Field-Effect Transistor (DG-JLFET) is presented. The operation of the device has been classified into four modes: subthreshold, semi-depleted, accumulation, and hybrid; with the main focus of this work being on the accumulation mode, which has not been dealt with in detail so far in the literature. A physics-based model, using a simplified one-dimensional approach, has been developed for this mode, and it has been successfully integrated with the model for the hybrid mode. It also includes the effect of carrier mobility degradation due to the transverse electric field, which was hitherto missing in the earlier models reported in the literature. The piece-wise models have been unified using suitable interpolation functions. In addition, the model includes two most important short-channel effects pertaining to DG-JLFETs, namely the Drain Induced Barrier Lowering (DIBL) and the Subthreshold Swing (SS) degradation. The model is completely analytical, and is thus computationally highly efficient. The results of our model have shown an excellent match with those obtained from TCAD simulations for both long- and short-channel devices, as well as with the experimental data reported in the literature.

  11. Performance improvement in novel germanium-tin/germanium heterojunction-enhanced p-channel tunneling field-effect transistor

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Liu, Yan; Liu, Mingshan; Zhang, Qingfang; Zhang, Chunfu; Ma, Xiaohua; Zhang, Jincheng; Hao, Yue; Han, Genquan

    2015-07-01

    We design a novel GeSn-based heterojunction-enhanced p-channel tunneling field-effect transistor (HE-PTFET) with a Ge0.92Sn0.08/Ge heterojunction located in channel region, at a distance of LT-H from the Ge0.92Sn0.08 source-channel tunneling junction (TJ). HE-PTFETs demonstrate the negative shift of onset voltage VONSET, the steeper subthreshold swing S, and the improved on-state current ION compared to Ge0.92Sn0.08 homo-PTFET. At low VGS, the suppression of BTBT due to the widening of the tunneling barrier caused by the heterojunction leads to a negative shift of VONSET in HE-PTFETs. At high VGS, ION enhancement in HE-PTFETs is achieved over the homo device, which is attributed to the confinement of BTBT in Ge0.92Sn0.08 source-channel TJ region by the heterojunction, where the short tunneling paths lead to a high tunneling probability. Due to the steeper average S, HE-PTFET with a 6 nm LT-H achieves a 4 times higher ION compared to homo device at a VDD of -0.3 V.

  12. Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective.

    PubMed

    Wang, Lihong; He, Jingfang; Xia, Ao; Cheng, Mengzhu; Yang, Qing; Du, Chunlei; Wei, Haiyan; Huang, Xiaohua; Zhou, Qing

    2017-08-01

    The wide applications cause a large amount of rare earth elements (REEs) to be released into the environment, and ultimately into the human body through food chain. Toxic effects of REEs on humans have been extensively studied, but their toxic effects and binding targets in cells are not understood. Delayed outward potassium channels (K + channels) are good targets for exogenous substances or clinical drugs. To evaluate cellular toxicities of REEs and clarify toxic mechanisms, the toxicities of REEs on the K + channel and their structural basis were investigated. The results showed that delayed outward potassium channels on the plasma membrane are the targets of REEs acting on living organisms, and the changes in the thermodynamic and kinetic characteristics of the K + channel are the reasons of diseases induced by REEs. Two types of REEs, a light REE La 3+ and a heavy REE Tb 3+ , displayed different intensity of toxicities on the K + channel, in which the toxicity of Tb 3+ was stronger than that of La 3+ . More interestingly, in comparison with that of heavy metal Cd 2+ , the cytotoxicities of the light and heavy REEs showed discriminative differences, and the cytotoxicity of Tb 3+ was higher than that of Cd 2+ , while the cytotoxicity of La 3+ was lower than that of Cd 2+ . These different cytotoxicities of La 3+ , Tb 3+ and Cd 2+ on human resulted from the varying binding abilities of the metals to this channel protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of egg quality and method of incubation on the hatching success of channel X blue hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the effects of egg quality of stripped eggs from channel catfish (Ictalurus punctatus) and method of incubation of fertilized hybrid catfish eggs on hatching success. Stripped eggs from 17 channel catfish females were evaluated in a 2 x 2 factorial...

  14. BAD and KATP channels regulate neuron excitability and epileptiform activity

    PubMed Central

    Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L

    2018-01-01

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690

  15. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  16. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  17. Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.

    PubMed

    Davidson, Christian; Xuan, Xiangchun

    2008-03-01

    A thermo-electro-hydro-dynamic model is developed to analytically account for the effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels. The optimum electrokinetic devices performance is dependent on a figure of merit, in which the Stern layer conductance appears as a nondimensional Dukhin number. Such surface conductance is found to significantly reduce the figure of merit and thus the efficiency and power output. This finding may explain why the recently measured electrokinetic devices performances are far below the theoretical predictions where the effects of Stern layer conductance have been ignored.

  18. Effects of natural-channel-design restoration on habitat quality in Catskill Mountain streams, New York

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark

    2010-01-01

    Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.

  19. Contrasting effects of phosphatidylinositol 4,5‐bisphosphate on cloned TMEM16A and TMEM16B channels

    PubMed Central

    Ta, Chau M; Acheson, Kathryn E; Rorsman, Nils J G; Jongkind, Remco C

    2017-01-01

    Background and Purpose Ca2+‐activated Cl− channels (CaCCs) are gated open by a rise in intracellular Ca2+ concentration ([Ca2+]i), typically provoked by activation of Gq‐protein coupled receptors (GqPCR). GqPCR activation initiates depletion of plasmalemmal phosphatidylinositol 4,5‐bisphosphate (PIP2). Here, we determined whether PIP2 acts as a signalling lipid for CaCCs coded by the TMEM16A and TMEM16B genes. Experimental Approach Patch‐clamp electrophysiology, in conjunction with genetically encoded systems to control cellular PIP2 content, was used to define the mechanism of action of PIP2 on TMEM16A and TMEM16B channels. Key Results A water‐soluble PIP2 analogue (diC8‐PIP2) activated TMEM16A channels by up to fivefold and inhibited TMEM16B by ~0.2‐fold. The effects of diC8‐PIP2 on TMEM16A currents were especially pronounced at low [Ca2+]i. In contrast, diC8‐PIP2 modulation of TMEM16B channels did not vary over a broad [Ca2+]i range but was only detectable at highly depolarized membrane potentials. Modulation of TMEM16A and TMEM16B currents was due to changes in channel gating, while single channel conductance was unaltered. Co‐expression of TMEM16A or TMEM16B with a Danio rerio voltage‐sensitive phosphatase (DrVSP), which degrades PIP2, led to reduction and enhancement of TMEM16A and TMEM16B currents respectively. These effects were abolished by an inactivating mutation in DrVSP and antagonized by simultaneous co‐expression of a phosphatidylinositol‐4‐phosphate 5‐kinase that catalyses PIP2 formation. Conclusions and Implications PIP2 acts as a modifier of TMEM16A and TMEM16B channel gating. Drugs interacting with PIP2 signalling may affect TMEM16A and TMEM16B channel gating and have potential uses in basic science and implications for therapy. PMID:28616863

  20. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  1. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    USDA-ARS?s Scientific Manuscript database

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  2. Calcium channel antagonists in the treatment of hypertension.

    PubMed

    Weber, Michael A

    2002-01-01

    Calcium channel antagonists are widely used antihypertensive agents. Their popularity among primary care physicians is not only due to their blood pressure-lowering effects, but also because they appear to be effective regardless of the age or ethnic background of the patients. The first available calcium channel antagonists utilized immediate-release formulations which, although effective in patients with angina pectoris, were not approved by the US FDA for use in hypertension. When long-acting once-daily formulations were approved in this indication, the short-acting preparations--which had by then become generic and inexpensive--retained some residual unapproved use for hypertension. An observational case-controlled trial, based on such usage, noted that these agents were associated with a greater risk of myocardial infarctions than conventional agents such as diuretics and beta-adrenoceptor antagonists. Further case-controlled trials showed, in fact, that the dangers of calcium channel antagonists were confined to the short-acting agents and that approved long-acting agents were at least as well tolerated and effective as other antihypertensive drugs. Cardiovascular outcomes during treatment with calcium channel antagonists have been examined in randomized, controlled trials. Compared with placebo, the calcium channel antagonists clearly prevented strokes and other cardiovascular events and reduced mortality. The effects of these agents on survival and clinical outcomes were similar to those with other antihypertensive drugs. There is a slight tendency for the calcium channel antagonists to be more effective than other drug types in preventing stroke, but slightly less effective in preventing coronary events. These observations extend to high-risk patients with hypertension including those with diabetes mellitus. Even so, patients with evidence of nephropathy should not receive monotherapy with calcium channel antagonists. Such patients are optimally treated

  3. Geometric effects on mixing performance in a novel passive micromixer with trapezoidal-zigzag channels

    NASA Astrophysics Data System (ADS)

    Le The, Hai; Ta, Bao Quoc; Le Thanh, Hoa; Dong, Tao; Nguyen Thoi, Trung; Karlsen, Frank

    2015-09-01

    A novel passive micromixer, called a trapezoidal-zigzag micromixer (TZM), is reported. A TZM is composed of trapezoidal channels in a zigzag and split-recombine arrangement that enables multiple mixing mechanisms, including splitting-recombining, twisting, transversal flows, vortices, and chaotic advection. The effects of geometric parameters of the TZM on mixing performance are systematically investigated by the Taguchi method and numerical simulations in COMSOL Multiphysics. The number of mixing units, the slope angle of the trapezoidal channel, the height of the constriction element, and the width ratio between the middle-trapezoidal channel and the side-trapezoidal channel are the four parameters under study. The mixing performance of the TZM is investigated at three different Reynolds number (Re) values of 0.5, 5, and 50. The results showed that a TZM with six mixing units, a trapezoidal slope angle of 75°, a constricting height of 100 µm, and a width ratio of 0.5 has the highest mixing efficiency. This optimal TZM has a mixing efficiency greater than 85% for Re values from 0.1 to 80. In particular, for Re  ⩽  0.9 and Re  ⩾  20, the mixing efficiency of the optimal TZM is greater than 90%. The proposed TZM has a higher mixing efficiency and a smaller footprint than previously reported micromixers.

  4. Sidedness of Carbamazepine Accessibility to Voltage-Gated Sodium Channels

    PubMed Central

    Jo, Sooyeon

    2014-01-01

    Voltage-gated sodium channels are inhibited by many local anesthetics, antiarrhythmics, and antiepileptic drugs. The local anesthetic lidocaine appears to be able to access its binding site in the sodium channel only from the membrane phase or from the internal face of the channel. In contrast, the antiepileptic drug carbamazepine was found to inhibit voltage-gated sodium channels only with external, but not internal, application, implying a major difference. We investigated this point using both whole-cell and inside-out patch recordings from human Nav1.7 channels in a stable cell line. In the whole-cell configuration, carbamazepine inhibited sodium current within seconds when applied externally, but had little or no effect when applied internally for up to 15 minutes, confirming previous results. However, carbamazepine inhibited sodium channels effectively and rapidly when applied to the internal face of the membrane using inside-out patch recording. We found that lidocaine also has little or no effect when applied intracellularly in whole-cell recording, but blocks effectively and rapidly when applied to the internal surface using inside-out patches. In contrast, the cationic lidocaine derivative QX-314 (N-ethyl-lidocaine) blocks effectively when applied internally with whole-cell dialysis, as well as when applied to inside-out patches. We conclude that carbamazepine and lidocaine access the sodium channel in similar ways and hypothesize that their lack of effect with internal dialysis in whole-cell recording reflects rapid exit through membrane near the pipette recording site. This effect likely limits the ability of any compound with significant membrane permeability to be applied intracellularly by whole-cell dialysis. PMID:24319110

  5. Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels.

    PubMed

    Kopeikin, Z; Yuksek, Z; Yang, H-Y; Bompadre, S G

    2014-09-01

    The most common cystic fibrosis-associated mutation, the deletion of phenylalanine 508 (F508del), results in channels with poor membrane expression and impaired function. VX-770, a clinically approved drug for treatment of CF patients carrying the G551D mutation, and VX-809, a corrector shown in vitro to increase membrane expression of mutant channels, are currently undergoing clinical trials, but functional data at the molecular level is still lacking. The effect of VX-770 and VX-809 on the multiple functional defects of F508del-CFTR was assessed via excised inside-out patch-clamp experiments. VX-770 completely restores the low opening-rate of F508del-CFTR, with smaller open-time increase, in temperature-corrected and VX-809-treated channels. The shorter locked-open time of hydrolysis-deficient F508del-CFTR is also prolonged by VX-770. VX-809 does not improve channel function by itself as previously reported. The results from these studies can be interpreted as an equilibrium shift toward the open-channel conformation of F508del-CFTR channels. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  6. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  7. Effects of maize cultivation on nitrogen and phosphorus loadings to drainage channels in Central Chile.

    PubMed

    Corradini, Fabio; Nájera, Francisco; Casanova, Manuel; Tapia, Yasna; Singh, Ranvir; do Salazar, Osval

    2015-11-01

    There are concerns about the impact of maize cultivation with high applications of nitrogen (N) and phosphorus (P) on water quality in surface waters in Mediterranean Central Chile. This study estimated the contribution of N and P from maize fields to nearby drainage channels and evaluated the effects in water quality. An N and P budget was drawn up for three fields managed with a maize-fallow system, El Maitén (20.7 ha), El Naranjal (14.9 ha) and El Caleuche (4.2 ha), and water quality variables (pH, EC, dissolved oxygen, total solids, turbidity, NO3-N, NH4-N, PO4(3-), COD, total N, total P and sulphate) were monitored in nearby drainage channels. The N and P balances for the three fields indicated a high risk of N and P non-point source pollution, with fertiliser management, soil texture and climate factors determining the temporal variations in water quality parameters. Elevated levels of NH4-N and PO4(3-) in the drainage channels were usually observed during the winter period, while NO3- concentrations did not show a clear tendency. The results suggest that excessive slurry application during winter represents a very high risk of N and P runoff to drainage channels. Overall, great emphasis must be placed on good agronomic management of fields neighbouring drainage channels, including accurately calculating N and P fertiliser rates and establishing mitigation measures.

  8. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  9. The effect of flow data resolution on sediment yield estimation and channel design

    NASA Astrophysics Data System (ADS)

    Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.

    2016-07-01

    The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.

  10. Novel ion channel targets in atrial fibrillation.

    PubMed

    Hancox, Jules C; James, Andrew F; Marrion, Neil V; Zhang, Henggui; Thomas, Dierk

    2016-08-01

    Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel β subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.

  11. Model microswimmers in channels with varying cross section

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Stark, Holger

    2017-05-01

    We study different types of microswimmers moving in channels with varying cross section and thereby interacting hydrodynamically with the channel walls. Starting from the Smoluchowski equation for a dilute suspension, for which interactions among swimmers can be neglected, we derive analytic expressions for the lateral probability distribution between plane channel walls. For weakly corrugated channels, we extend the Fick-Jacobs approach to microswimmers and thereby derive an effective equation for the probability distribution along the channel axis. Two regimes arise dominated either by entropic forces due to the geometrical confinement or by the active motion. In particular, our results show that the accumulation of microswimmers at channel walls is sensitive to both the underlying swimming mechanism and the geometry of the channels. Finally, for asymmetric channel corrugation, our model predicts a rectification of microswimmers along the channel, the strength and direction of which strongly depends on the swimmer type.

  12. Separate-channel analysis of two-channel microarrays: recovering inter-spot information.

    PubMed

    Smyth, Gordon K; Altman, Naomi S

    2013-05-26

    Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most

  13. A two-dimensional analytical modeling for channel potential and threshold voltage of short channel triple material symmetrical gate Stack (TMGS) DG-MOSFET

    NASA Astrophysics Data System (ADS)

    Tripathi, Shweta

    2016-10-01

    In the present work, a two-dimensional (2D) analytical framework of triple material symmetrical gate stack (TMGS) DG-MOSFET is presented in order to subdue the short channel effects. A lightly doped channel along with triple material gate having different work functions and symmetrical gate stack structure, showcases substantial betterment in quashing short channel effects to a good extent. The device functioning amends in terms of improved exemption to threshold voltage roll-off, thereby suppressing the short channel effects. The encroachments of respective device arguments on the threshold voltage of the proposed structure are examined in detail. The significant outcomes are compared with the numerical simulation data obtained by using 2D ATLAS™ device simulator to affirm and formalize the proposed device structure.

  14. Modulation of Gardos channel activity by oxidants and oxygen tension: effects of 1-chloro-2,4-dinitrobenzene and phenazine methosulphate.

    PubMed

    Gibson, John S; Muzyamba, Morris C

    2004-05-01

    We compare the effects of 1-chloro-2,4-dinitrobenzene (CDNB) and phenazine methosulphate (PMS) on Gardos channel activity in normal human red cells. Both stimulate channel activity, both are dependent on the presence of extracellular Ca2+, and neither is affected by inhibitors of protein (de)phosphorylation. Of the two, PMS has a considerably greater effect. In addition, a major difference is that whilst CDNB has a greater stimulatory effect in oxygenated cells, by contrast, PMS is more effective in deoxygenated cells. These actions are correlated with ca. 30% inhibition of the plasma membrane Ca2+ pump (PMCA) and an increased sensitivity of the Gardos channel to Ca2+ (EC50 falling to about 150 nM). These findings are important in understanding how oxidants alter red cell cation permeability and may be relevant to the abnormal permeability phenotype shown by deoxygenated sickle cells.

  15. Evaluation of the inhibitory effect of dihydropyridines on N-type calcium channel by virtual three-dimensional pharmacophore modeling.

    PubMed

    Ogihara, Takuo; Kano, Takashi; Kakinuma, Chihaya

    2009-01-01

    Currently, a new type of calcium channel blockers, which can inhibit not only L-type calcium channels abundantly expressed in vascular smooth muscles, but also N-type calcium channels that abound in the sympathetic nerve endings, have been developed. In this study, analysis on a like-for-like basis of the L- and N-type calcium channel-inhibitory activity of typical dihydropyridine-type calcium-channel blockers (DHPs) was performed. Moreover, to understand the differences of N-type calcium channel inhibition among DHPs, the binding of DHPs to the channel was investigated by means of hypothetical three-dimensional pharmacophore modeling using multiple calculated low-energy conformers of the DHPs. All of the tested compounds, i.e. cilnidipine (CAS 132203-70-4), efonidipine (CAS 111011-76-8), amlodipine (CAS 111470-99-6), benidipine (CAS 85387-35-5), azelnidipine (CAS 123524-52-7) and nifedipine (CAS 21829-25-4), potently inhibited the L-type calcium channel, whereas only cilnidipine inhibited the N-type calcium channel (IC50 value: 51.2 nM). A virtual three-dimensional structure of the N-type calcium channel was generated by using the structure of the peptide omega-conotoxin GVIA, a standard inhibitor of the channel, and cilnidipine was found to fit well into this pharmacophore model. Lipophilic potential maps of omega-conotoxin GVIA and cilnidipine supported this finding. Conformational overlay of cilnidipine and the other DHPs indicated that amlodipine and nifedipine were not compatible with the pharmacophore model because they did not contain an aromatic ring that was functionally equivalent to Tyr13 of omega-conotoxin GVIA. Azelnidipine, benidipine, and efonidipine, which have this type of aromatic ring, were not positively identified due to intrusions into the excluded volume. Estimation of virtual three-dimensional structures of proteins, such as ion channels, by using standard substrates and/or inhibitors may be a useful method to explore the mechanisms of

  16. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  17. On a quantum particle in laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Frolov, E. N.; Dabagov, S. B.

    2018-02-01

    In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.

  18. L-type calcium channel blockade attenuates morphine withdrawal: in vivo interaction between L-type calcium channels and corticosterone.

    PubMed

    Esmaeili-Mahani, Saeed; Fathi, Yadollah; Motamedi, Fereshteh; Hosseinpanah, Farhad; Ahmadiani, Abolhassan

    2008-02-01

    Both opioids and calcium channel blockers could affect hypothalamic-pituitary-adrenal (HPA) axis function. Nifedipine, as a calcium channel blocker, can attenuate the development of morphine dependence; however, the role of the HPA axis in this effect has not been elucidated. We examined the effect of nifedipine on the induction of morphine dependency in intact and adrenalectomized (ADX) male rats, as assessed by the naloxone precipitation test. We also evaluated the effect of this drug on HPA activity induced by naloxone. Our results showed that despite the demonstration of dependence in both groups of rats, nifedipine is more effective in preventing of withdrawal signs in ADX rats than in sham-operated rats. In groups that received morphine and nifedipine concomitantly, naloxone-induced corticosterone secretion was attenuated. Thus, we have shown the involvement of the HPA axis in the effect of nifedipine on the development of morphine dependency and additionally demonstrated an in vivo interaction between the L-type Ca2+ channels and corticosterone.

  19. Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP-sensitive potassium channels.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H

    2000-01-15

    The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.

  20. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations

    PubMed Central

    Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.

    2015-01-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669

  1. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation.

    PubMed

    Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz

    2017-01-01

    In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  2. Channelized subglacial drainage over a deformable bed

    USGS Publications Warehouse

    Walder, J.S.; Fowler, A.

    1994-01-01

    We develop theoretically a description of a possible subglacial drainage mechanism for glaciers and ice sheets moving over saturated, deformable till. The model is based on the plausible assumption that flow of water in a thin film at the ice-till interface is unstable to the formation of a channelized drainage system, and is restricted to the case in which meltwater cannot escape through the till to an underlying aquifer. In describing the physics of such channelized drainage, we have generalized and extended Rothlisberger's model of channels cut into basal ice to include "canals' cut into the till, paying particular attention to the role of sediment properties and the mechanics of sediment transport. We show that sediment-floored Rothlisberger (R) channels can exist for high effective pressures, and wide, shallow, ice-roofed canals cut into the till for low effective pressures. Canals should form a distributed, non-arborescent system, unlike R channels. Geologic evidence derived from land forms and deposits left by the Pleistocene ice sheets in North America and Europe is consistent with predictions of the model. -from Authors

  3. Effect of Multivalent Ions on Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi; Conlisk, A. Terrence

    2002-11-01

    In this work, the effect of multivalent ions on electroosmotic flow is investigated. Applications in biomedical engineering are numerous, including design of drug delivery systems, rapid molecular analysis and lab-on-a-chip. We specifically consider incorporating Ca^2+ and HPO4^2- and other monovalent ions, such as K^+ and H2PO4^-, into an aqueous NaCl solution. All previous work has been for the case where the mixture contains a pair of ionic species of equal valence. Electrochemical equilibrium considerations are used in determining the boundary conditions. The results can be applied to rectangular channels for which the height is on the nanometer scale up to the micrometer scale. The classical electroosmotic velocity profile is obtained at larger channel heights for fixed electrolyte concentration where an analytic solution for the velocity, potential and mole fractions may be obtained. The theory is valid for an arbitrary number of ionic species.

  4. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining

  5. Effects of Nanotexture on Electrical Profiling of Single Tumor Cell and Detection of Cancer from Blood in Microfluidic Channels

    PubMed Central

    Islam, Muhymin; Motasim Bellah, Mohammad; Sajid, Adeel; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.

    2015-01-01

    Microfluidic channels have been implemented to detect cancer cells from blood using electrical measurement of each single cell from the sample. Every cell provided characteristic current profile based on its mechano-physical properties. Cancer cells not only showed higher translocation time and peak amplitude compared to blood cells, their pulse shape was also distinctively different. Prevalent microfluidic channels are plain but we created nanotexture on the channel walls using micro reactive ion etching (micro-RIE). The translocation behaviors of the metastatic renal cancer cells through plain and nanotextured PDMS microchannels showed clear differences. Nanotexture enhanced the cell-surface interactions and more than 50% tumor cells exhibited slower translocation through nanotextured channels compared to plain devices. On the other hand, most of the blood cells had very similar characteristics in both channels. Only 7.63% blood cells had slower translocation in nanotextured microchannels. The tumor cell detection efficiency from whole blood increased by 14% in nanotextured microchannels compared to plain channels. This interesting effect of nanotexture on translocation behavior of tumor cells is important for the early detection of cancer. PMID:26373820

  6. On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect.

    PubMed

    Siódmiak, Jacek; Uher, Jan J; Santamaría-Holek, Ivan; Kruszewska, Natalia; Gadomski, Adam

    2007-08-01

    A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.

  7. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma.

    PubMed

    Ganekal, Sunil; Dorairaj, Syril; Jhanji, Vishal; Kudlu, Krishnaprasad

    2014-01-01

    To evaluate the effect of 0.125% verapamil and 0.5% diltiazem eye drops on intraocular pressure (IOP) in steroid-induced glaucoma in rabbit eyes. A total of 18 rabbits with steroid-induced glaucoma were divided into three groups (A, B and C; n = 6 each). Right eyes in groups A, B and C received 0.5% diltiazem, 0.125% verapamil and 0.5% timolol eye drops twice daily for 12 days, respectively; whereas, left eyes received distilled water. IOP was measured with Tono-pen XL at baseline, day 4, day 8, and day 12 of treatment. Both 0.5% diltiazem and 0.125% verapamil eye drops significantly reduced IOP compared to control eyes (p < 0.05). Reduction of IOP by 0.5% diltiazem, 0.125% verapamil eye drops were comparable to 0.5% timolol. No surface toxicity or systemic side effects were noted during the study period. Calcium channel blockers, verapamil, and diltia-zem significantly reduced IOP in rabbiteyes. This group of drugs may have a potential role in treatment of glaucoma How to cite this article: Ganekal S, Dorairaj S, Jhanji V, Kudlu K. Effect of Topical Calcium Channel Blockers on Intraocular Pressure in Steroid-induced Glaucoma. J Current Glau Prac 2014;8(1):15-19.

  8. Spectrally Shaped DP-16QAM Super-Channel Transmission with Multi-Channel Digital Back-Propagation

    PubMed Central

    Maher, Robert; Xu, Tianhua; Galdino, Lidia; Sato, Masaki; Alvarado, Alex; Shi, Kai; Savory, Seb J.; Thomsen, Benn C.; Killey, Robert I.; Bayvel, Polina

    2015-01-01

    The achievable transmission capacity of conventional optical fibre communication systems is limited by nonlinear distortions due to the Kerr effect and the difficulty in modulating the optical field to effectively use the available fibre bandwidth. In order to achieve a high information spectral density (ISD), while simultaneously maintaining transmission reach, multi-channel fibre nonlinearity compensation and spectrally efficient data encoding must be utilised. In this work, we use a single coherent super-receiver to simultaneously receive a DP-16QAM super-channel, consisting of seven spectrally shaped 10GBd sub-carriers spaced at the Nyquist frequency. Effective nonlinearity mitigation is achieved using multi-channel digital back-propagation (MC-DBP) and this technique is combined with an optimised forward error correction implementation to demonstrate a record gain in transmission reach of 85%; increasing the maximum transmission distance from 3190 km to 5890 km, with an ISD of 6.60 b/s/Hz. In addition, this report outlines for the first time, the sensitivity of MC-DBP gain to linear transmission line impairments and defines a trade-off between performance and complexity. PMID:25645457

  9. Local anesthetic inhibition of a bacterial sodium channel

    PubMed Central

    Lee, Sora; Goodchild, Samuel J.

    2012-01-01

    Recent structural breakthroughs with the voltage-gated sodium channel from Arcobacter butzleri suggest that such bacterial channels may provide a structural platform to advance the understanding of eukaryotic sodium channel gating and pharmacology. We therefore set out to determine whether compounds known to interact with eukaryotic NaVs could also inhibit the bacterial channel from Bacillus halodurans and NaChBac and whether they did so through similar mechanisms as in their eukaryotic homologues. The data show that the archetypal local anesthetic (LA) lidocaine inhibits resting NaChBac channels with a dissociation constant (Kd) of 260 µM, and channels displayed a left-shifted steady-state inactivation gating relationship in the presence of the drug. Extracellular application of QX-314 to expressed NaChBac channels had no effect on sodium current, whereas internal exposure via injection of a bolus of the quaternary derivative rapidly reduced sodium conductance, consistent with a hydrophilic cytoplasmic access pathway to an internal binding site. However, the neutral derivative benzocaine applied externally inhibited NaChBac channels, suggesting that hydrophobic pathways can also provide drug access to inhibit channels. Alternatively, ranolazine, a putative preopen state blocker of eukaryotic NaVs, displayed a Kd of 60 µM and left-shifted the NaChBac activation-voltage relationship. In each case, block enhanced entry into the inactivated state of the channel, an effect that is well described by a simple kinetic scheme. The data suggest that although significant differences exist, LA block of eukaryotic NaVs also occurs in bacterial sodium channels and that NaChBac shares pharmacological homology to the resting state of vertebrate NaV homologues. PMID:22641643

  10. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    PubMed

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  11. Quantum channels from reflections on moving mirrors.

    PubMed

    Gianfelici, Giulio; Mancini, Stefano

    2017-11-16

    Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.

  12. Computational model based approach to analysis ventricular arrhythmias: Effects of dysfunction calcium channels

    NASA Astrophysics Data System (ADS)

    Gulothungan, G.; Malathi, R.

    2018-04-01

    is in dysfunction resting potential state in the range -83 mV and ventricular sheet at time 295 ms is goes to 65% dysfunction resting state. Therefore we concluded that shorter APD, instability resting potential and affected calcium induced calcium release (CICR) due to dysfunction Ca2+ channels is potentially have a substantial effect on cardiac contractility and relaxation. Computational study on ventricular tissue AP and its underlying ionic channel currents could help to elucidate possible arrhythmogenic mechanism on a cellular level.

  13. The Future of Professional Learning

    ERIC Educational Resources Information Center

    Burns, Mary

    2013-01-01

    What will technology-based teacher professional development look like in the next few years? In this article, teacher training curriculum designer Mary Burns presents her 5 top picks from the professional learning technologies now emerging around the world: (1) IPTV; (2) Immersive Environments; (3) Video; (4) Social Media; and (5) Mobile…

  14. Effective channel estimation and efficient symbol detection for multi-input multi-output underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Ling, Jun

    Achieving reliable underwater acoustic communications (UAC) has long been recognized as a challenging problem owing to the scarce bandwidth available and the reverberant spread in both time and frequency domains. To pursue high data rates, we consider a multi-input multi-output (MIMO) UAC system, and our focus is placed on two main issues regarding a MIMO UAC system: (1) channel estimation, which involves the design of the training sequences and the development of a reliable channel estimation algorithm, and (2) symbol detection, which requires interference cancelation schemes due to simultaneous transmission from multiple transducers. To enhance channel estimation performance, we present a cyclic approach for designing training sequences with good auto- and cross-correlation properties, and a channel estimation algorithm called the iterative adaptive approach (IAA). Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, we present sparse learning via iterative minimization (SLIM) and demonstrate that SLIM gives similar performance to IAA but at a much lower computational cost. Furthermore, an extension of the SLIM algorithm is introduced to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). Regarding symbol detection, a linear minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. We show that RELAX-BLAST can be implemented efficiently by making use of the conjugate gradient method and diagonalization properties of circulant matrices. This fast implementation approach requires only simple fast Fourier transform operations and facilitates parallel implementations. The effectiveness of the proposed MIMO schemes

  15. Hall effects on peristaltic flow of couple stress fluid in a vertical asymmetric channel

    NASA Astrophysics Data System (ADS)

    Maninaga Kumar, P.; Kavitha, A.; Saravana, R.

    2017-11-01

    The influence of Hall effect on peristaltic transport of a couple stress fluid in a vertical asymmetric channel is examined. The problem is solved under the assumptions of low Reynolds number and long wavelength. The velocity, temperature and concentration are obtained by using analytical solutions. Effect of Hall parameter, couple stress fluid parameter, Froude number, Hartmann number and the phase difference on the pumping characteristics, temperature and concentration are discussed graphically.

  16. Mechanosensitive cation channels in human leukaemia cells: calcium permeation and blocking effect

    PubMed Central

    Staruschenko, Alexandr V; Vedernikova, Elena A

    2002-01-01

    Cell-attached and inside-out patch-clamp methods were employed to identify and characterize mechanosensitive (MS) ionic channels in the plasma membrane of human myeloid leukaemia K562 cells. A reversible activation of gadolinium-blockable mechanogated currents in response to negative pressure application was found in 58 % of stable patches (n = 317). I-V relationships measured with a sodium-containing pipette solution showed slight inward rectification. Data analysis revealed the presence of two different populations of channels that were distinguishable by their conductance properties (17.2 ± 0.3 pS and 24.5 ± 0.5 pS), but were indistinguishable with regard to their selective and pharmacological properties. Ion-substitution experiments indicated that MS channels in leukaemia cells were permeable to cations but not to anions and do not discriminate between Na+ and K+. The channels were fully impermeable to large organic cations such as Tris+ and N-methyl-d-glucamine ions (NMDG+). Ca2+ permeation and blockade of MS channels were examined using pipettes containing different concentrations of Ca2+. In the presence of 2 mm CaCl2, when other cations were impermeant, both outward and inward single-channel currents were observed; the I-V relationship showed a unitary conductance of 7.7 ± 1.0 pS. The relative permeability value, PCa/PK, was equal to 0.75, as estimated at physiological Ca2+ concentrations. Partial or full inhibition of inward Ca2+ currents through MS channels was observed at higher concentrations of external Ca2+ (10 or 20 mm). No MS channels were activated when using a pipette containing 90 mm CaCl2. Monovalent mechanogated currents were not significantly affected by extracellular Ca2+ at concentrations within the physiological range (0-2 mm), and at some higher Ca2+ concentrations. PMID:12015421

  17. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans.

    PubMed

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane).

  18. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  19. Performance analysis of SOI MOSFET with rectangular recessed channel

    NASA Astrophysics Data System (ADS)

    Singh, M.; Mishra, S.; Mohanty, S. S.; Mishra, G. P.

    2016-03-01

    In this paper a two dimensional (2D) rectangular recessed channel-silicon on insulator metal oxide semiconductor field effect transistor (RRC-SOI MOSFET), using the concept of groove between source and drain regions, which is one of the channel engineering technique to suppress the short channel effect (SCE). This suppression is mainly due to corner potential barrier of the groove and the simulation is carried out by using ATLAS 2D device simulator. To have further improvement of SCE in RRC-SOI MOSFET, three more devices are designed by using dual material gate (DMG) and gate dielectric technique, which results in formation of devices i.e. DMRRC-SOI,MLSMRRC-SOI, MLDMRRC-SOI MOSFET. The effect of different structures of RRC-SOI on AC and RF parameters are investigated and the importance of these devices over RRC MOSFET regarding short channel effect is analyzed.

  20. The effect of ratio between rigid plant height and water depth on the manning’s coefficient in open channel

    NASA Astrophysics Data System (ADS)

    Rizalihadi, M.; Ziana; Shaskia, Nina; Asharly, H.

    2018-05-01

    One of the important factors in channel dimension is the Manning’s coefficient ( n ). This coefficient is influenced not only by the channel roughness but also by the presence of plants in the channel. The aim of the study is to see the effect of the ratio between the height of the rigid plant and water depth on the Manning’s coefficient (n) in open channel. The study was conducted in open channel with 15.5 m long, 0.5 m wide and 1.0 m high, in which at the center of the channel is planted with the rigid plants with a density of 42 plants/m2. The flow was run with a discharge of 0.013 m3/s at 6 ratios of Hplants/Hwater, namely: 0; 0.2; 0.6; 0.8; 1,0 and 1,2, to obtain the velocity and water profiles. Then the value of n is analyzed using Manning’s equation. The results showed that the mean velocity becomes decrease 17.81-34.01% as increase the ratio of Hplants/Hwater. This results in increasing n value to become 1.22-1.52 times compared to the unplanted channel ( no =0.038). So, it can be concluded that the ratio between the rigid plant’s height and water depth in the open channel can affect the value of Manning coefficient.

  1. Exact outage analysis of the effect of co-channel interference on secured multi-hop relaying networks

    NASA Astrophysics Data System (ADS)

    Quang Nguyen, Sang; Kong, Hyung Yun

    2016-11-01

    In this article, the presence of multi-hop relaying, eavesdropper and co-channel interference (CCI) in the same system model is investigated. Specifically, the effect of CCI on a secured multi-hop relaying network is studied, in which the source communicates with the destination via multi-relay-hopping under the presence of an eavesdropper and CCI at each node. The optimal relay at each cluster is selected to help forward the message from the source to the destination. We apply two relay selection approaches to such a system model, i.e. the optimal relay is chosen based on (1) the maximum channel gain from the transmitter to all relays in the desired cluster and (2) the minimum channel gain from the eavesdropper to all relays in each cluster. For the performance evaluation and comparison, we derived the exact closed form of the secrecy outage probability of the two approaches. That analysis is verified by Monte Carlo simulation. Finally, the effects of the number of hops, the transmit power at the source, relays and the external sources, the distance between the external sources and each node in the system, and the location of the eavesdropper are presented and discussed.

  2. Slow and fast visual motion channels have independent binocular-rivalry stages.

    PubMed Central

    van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.

    2001-01-01

    We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442

  3. Free-space optical channel simulator for weak-turbulence conditions.

    PubMed

    Bykhovsky, Dima

    2015-11-01

    Free-space optical (FSO) communication may be severely influenced by the inevitable turbulence effect that results in channel gain fluctuations and fading. The objective of this paper is to provide a simple and effective simulator of the weak-turbulence FSO channel that emulates the influence of the temporal covariance effect. Specifically, the proposed model is based on lognormal distributed samples with a corresponding correlation time. The simulator is based on the solution of the first-order stochastic differential equation (SDE). The results of the provided SDE analysis reveal its efficacy for turbulent channel modeling.

  4. Co-culture of channel catfish with hybrid catfish facilitates 'herd effect' to improve production performance

    USDA-ARS?s Scientific Manuscript database

    Herd effect is an epidemiological phenomenon, where the presence or proximity of a certain proportion of improved (superior) individuals improve the performance of less improved (normal) individuals. Channel catfish, Ictalurus puntatus is the single largest aquaculture species cultured in US. Ho...

  5. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    PubMed

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Gender Representation on Gender-Targeted Television Channels: A Comparison of Female- and Male-Targeted TV Channels in the Netherlands.

    PubMed

    Daalmans, Serena; Kleemans, Mariska; Sadza, Anne

    2017-01-01

    The current study investigated the differences in the representation of gender on male- and female-targeted channels with regard to recognition (i.e., the actual presence of men and women) and respect (i.e., the nature of that representation or portrayal). To this end, the presence of men and women on two female- and two male-targeted Dutch channels ( N  = 115 programs, N  = 1091 persons) were compared via content analysis. The expectation that men's channels would portray a less equal and more traditional image of gender than women's channels was generally supported by the results. Regardless of genre as well as country of origin of the program, women were underrepresented on men's channels, while gender distribution on women's channels was more equal. The representation of women in terms of age and occupation was more stereotypical on men's channels than on women's channels, whereas men were represented in more contra-stereotypical ways (e.g., performing household tasks) on women's channels. Since television viewing contributes to the learning and maintenance of stereotyped perceptions, the results imply that it is important to strengthen viewers' defenses against the effects of gender stereotyping when watching gendered television channels, for instance through media literacy programs in schools.

  7. Optical Communications Channel Combiner

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  8. Channel interaction limits melodic pitch perception in simulated cochlear implants

    PubMed Central

    Crew, Joseph D.; Galvin, John J.; Fu, Qian-Jie

    2012-01-01

    In cochlear implants (CIs), melodic pitch perception is limited by the spectral resolution, which in turn is limited by the number of spectral channels as well as interactions between adjacent channels. This study investigated the effect of channel interaction on melodic contour identification (MCI) in normal-hearing subjects listening to novel 16-channel sinewave vocoders that simulated channel interaction in CI signal processing. MCI performance worsened as the degree of channel interaction increased. Although greater numbers of spectral channels may be beneficial to melodic pitch perception, the present data suggest that it is also important to improve independence among spectral channels. PMID:23145706

  9. Skyrmion-based multi-channel racetrack

    NASA Astrophysics Data System (ADS)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  10. Assessing and Testing Hydrokinetic Turbine Performance and Effects on Open Channel Hydrodynamics: An Irrigation Canal Case Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunawan, Budi; Neary, Vincent Sinclair; Mortensen, Josh

    Hydrokinetic energy from flowing water in open channels has the potential to support local electricity needs with lower regulatory or capital investment than impounding water with more conventional means. MOU agencies involved in federal hydropower development have identified the need to better understand the opportunities for hydrokinetic (HK) energy development within existing canal systems that may already have integrated hydropower plants. This document provides an overview of the main considerations, tools, and assessment methods, for implementing field tests in an open-channel water system to characterize current energy converter (CEC) device performance and hydrodynamic effects. It describes open channel processes relevantmore » to their HK site and perform pertinent analyses to guide siting and CEC layout design, with the goal of streamlining the evaluation process and reducing the risk of interfering with existing uses of the site. This document outlines key site parameters of interest and effective tools and methods for measurement and analysis with examples drawn from the Roza Main Canal, in Yakima, WA to illustrate a site application.« less

  11. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

    PubMed

    De Petrocellis, L; Orlando, P; Moriello, A Schiano; Aviello, G; Stott, C; Izzo, A A; Di Marzo, V

    2012-02-01

    Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other 'thermo-TRP's', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract. TRP activity was assessed by evaluating elevation of [Ca(2+)](i) in rat recombinant TRPV3- and TRPV4-expressing HEK-293 cells. TRP channel mRNA expression was measured by quantitative RT-PCR in the jejunum and ileum of mice treated with vehicle or the pro-inflammatory agent croton oil. (i) CBD and tetrahydrocannabivarin (THCV) stimulated TRPV3-mediated [Ca(2+)](i) with high efficacy (50-70% of the effect of ionomycin) and potency (EC(50∼) 3.7 μm), whereas cannabigerovarin (CBGV) and cannabigerolic acid (CBGA) were significantly more efficacious at desensitizing this channel to the action of carvacrol than at activating it; (ii) cannabidivarin and THCV stimulated TRPV4-mediated [Ca(2+)](i) with moderate-high efficacy (30-60% of the effect of ionomycin) and potency (EC(50) 0.9-6.4 μm), whereas CBGA, CBGV, cannabinol and cannabigerol were significantly more efficacious at desensitizing this channel to the action of 4-α-phorbol 12,13-didecanoate (4α-PDD) than at activating it; (iii) CBC reduced TRPV1β, TRPV3 and TRPV4 mRNA in the jejunum, and TRPV3 and TRPV4 mRNA in the ileum of croton oil-treated mice. Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  12. An electrostatic potassium channel opener targeting the final voltage sensor transition

    PubMed Central

    Börjesson, Sara I.

    2011-01-01

    Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability. PMID:21624947

  13. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    NASA Astrophysics Data System (ADS)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect

  14. Effect of oblique channel on discharge characteristics of 200-W Hall thruster

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren

    2017-02-01

    In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.

  15. Understanding channel and contact effects on transport in 1-dimensional nanotransistors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartzentruber, Brian S.; Delker, Collin James; Yoo, Jinkyoung

    Nanowire transistors are generally formed by metal contacts to a uniformly doped nanowire. The transistor can be modeled as a series combination of resistances from both the channel and the contacts. In this study, a simple model is proposed consisting of a resistive channel in series with two Schottky metal-semiconductor contacts modeled using the WKB approximation. This model captures several phenomena commonly observed in nanowire transistor measurements, including the mobility as a function of gate potential, mobility reduction with respect to bulk mobility, and non-linearities in output characteristics. For example, the maximum measured mobility as a function of gate voltagemore » in a nanowire transistor can be predicted based on the semiconductor bulk mobility in addition to barrier height and other properties of the contact. The model is then extended to nanowires with axial p-n junctions having an inde- pendent gate over each wire segment by splitting the channel resistance into a series component for each doping segment. Finally, the contact-channel model is applied to low-frequency noise analysis in nanowire devices, where the noise can be generated in both the channel and the contacts. Because contacts play a major, yet often neglected, role in nanowire transistor operation, they must be accounted for in order to extract meaningful parameters from I-V and noise measurements.« less

  16. Location of Framework Al Atoms in the Channels of ZSM-5: Effect of the (Hydrothermal) Synthesis.

    PubMed

    Pashkova, Veronika; Sklenak, Stepan; Klein, Petr; Urbanova, Martina; Dědeček, Jiří

    2016-03-14

    (27) Al 3Q MAS NMR and UV/Vis spectroscopy with bare Co(II) ions as probes of Al pairs in the zeolite framework were employed to analyze the location of framework Al atoms in the channel system of zeolite ZSM-5. Furthermore, the effect of Na(+) ions together with tetrapropylammonium cation (TPA(+)) in the ZSM-5 synthesis gel on the location of Al in the channel system was investigated. Zeolites prepared using exclusively TPA(+) as a structure-directing agent (i.e., in the absence of Na(+) ions) led to 55-90% of Al atoms located at the channel intersection, regardless the presence or absence of Al pairs [Al-O-(Si-O)2 -Al sequences in one ring] in the zeolite framework. The presence of Na(+) ions in the synthesis gel did not modify the Al location at the channel intersection (55-95% of Al atoms) and led only to changes in i) the distribution of framework Al atoms between Al pairs (decrease) and single isolated Al atoms (increase), and ii) the siting of Al in distinguishable framework tetrahedral sites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The human role in changing river channels

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.

    2006-09-01

    Direct consequences of the human role, where human activity affects river channels through engineering works including channelization, dam construction, diversion and culverting, have been long recognised [Marsh, G.P., 1864. Man and Nature or Physical Geography as Modified by Human Action. Charles Scribner, New York; Thomas Jr., W.L., (ed.) 1956. Man's Role in Changing the Face of the Earth. Chicago, University of Chicago Press, Chicago.]. The less obvious indirect effects of point and reach changes occurring downstream and throughout the basin, however, are much more recently appreciated, dating from key contributions by Strahler [Strahler, A.N., 1956. The nature of induced erosion and aggradation. In W. L. Thomas (Ed.), Man's Role in Changing the Face of the Earth. University of Chicago Press, Chicago, 621-638.], Wolman [Wolman, M.G., 1967. A cycle of sedimentation and erosion in urban river channels. Geografiska Annaler 49A, 385-95.], Schumm [Schumm, S.A., 1969. River metamorphosis. Proceedings American Society of Civil Engineers, Journal Hydraulics Division 95, 255-73.], and Graf [Graf, W.L., 1977. The rate law in fluvial geomorphology. American Journal of Science, 277, 178-191.]. These are complemented by effects of alterations of land use, such as deforestation, intensive agriculture and incidence of fire, with the most extreme effects produced by building activity and urbanisation. Changing river channels are most evident in the channel cross-section where changes of size, shape and composition are now well-established, with up to tenfold increases or decreases illustrated by results from more than 200 world studies. In addition the overall channel planform, the network and the ecology have changed. Specific terms have become associated with changing river channels including enlargement, shrinkage and metamorphosis. Although the scope of adjustment has been established, it has not always been possible to predict what will happen in a particular location

  18. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  19. Impact of source height on the characteristic of U-shaped channel tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Yang, Zhaonian; Zhang, Yue; Yang, Yuan; Yu, Ningmei

    2017-11-01

    Tunnel field-effect transistor (TFET) is very attractive in replacing a MOSFET, particularly for low-power nanoelectronic circuits. The U-shaped channel TFET (U-TFET) was proposed to improve the drain-source current with a reduced footprint. In this work, the impact of the source height (HS) on the characteristic of the U-shaped channel tunnel field-effect transistor (U-TFET) is investigated by using TCAD simulation. It is found that with a fixed gate height (HG) the drain-source current has a negative correlation with HS. This is because when the gate region is deeper than the source region, the electric field near the corner of the tunneling junction can be enhanced and the tunneling rate is increased. When HS becomes very thin, the drain-source current is limited by the source region volume. The U-TFET with an n+ pocket is also studied and the same trend is observed.

  20. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda

    PubMed Central

    2010-01-01

    Background In Uganda, long-lasting insecticidal nets (LLIN) have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC) services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Methods Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY). These effects were calculated for the total number of LLINs delivered and for those retained and used. Results After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja) and 99% (ANC Adjumani) were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja). Economic cost for ANC distribution were considerably higher (USD 2.27) compared to campaign costs (USD 1.23) in Adjumani. Conclusions Targeted campaigns and routine ANC services can both

  1. Costs and effects of two public sector delivery channels for long-lasting insecticidal nets in Uganda.

    PubMed

    Kolaczinski, Jan H; Kolaczinski, Kate; Kyabayinze, Daniel; Strachan, Daniel; Temperley, Matilda; Wijayanandana, Nayantara; Kilian, Albert

    2010-04-20

    In Uganda, long-lasting insecticidal nets (LLIN) have been predominantly delivered through two public sector channels: targeted campaigns or routine antenatal care (ANC) services. Their combination in a mixed-model strategy is being advocated to quickly increase LLIN coverage and maintain it over time, but there is little evidence on the efficiency of each system. This study evaluated the two delivery channels regarding LLIN retention and use, and estimated the associated costs, to contribute towards the evidence-base on LLIN delivery channels in Uganda. Household surveys were conducted 5-7 months after LLIN distribution, combining questionnaires with visual verification of LLIN presence. Focus groups and interviews were conducted to further investigate determinants of LLIN retention and use. Campaign distribution was evaluated in Jinja and Adjumani while ANC distribution was evaluated only in the latter district. Costs were calculated from the provider perspective through retrospective analysis of expenditure data, and effects were estimated as cost per LLIN delivered and cost per treated-net-year (TNY). These effects were calculated for the total number of LLINs delivered and for those retained and used. After 5-7 months, over 90% of LLINs were still owned by recipients, and between 74% (Jinja) and 99% (ANC Adjumani) were being used. Costing results showed that delivery was cheapest for the campaign in Jinja and highest for the ANC channel, with economic delivery cost per net retained and used of USD 1.10 and USD 2.31, respectively. Financial delivery costs for the two channels were similar in the same location, USD 1.04 for campaign or USD 1.07 for ANC delivery in Adjumani, but differed between locations (USD 0.67 for campaign delivery in Jinja). Economic cost for ANC distribution were considerably higher (USD 2.27) compared to campaign costs (USD 1.23) in Adjumani. Targeted campaigns and routine ANC services can both achieve high LLIN retention and use among

  2. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  3. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    PubMed Central

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  4. Effects of benzocaine on the kinetics of normal and batrachotoxin-modified Na channels in frog node of Ranvier.

    PubMed Central

    Schneider, M F; Dubois, J M

    1986-01-01

    The effects of benzocaine (0.5-1 mM) on normal Na currents, and on Na current and gating charge movement (Q) of batrachotoxin (BTX)-modified Na channels were analyzed in voltage-clamped frog node of Ranvier. Without BTX treatment the decay of Na current during pulses to between -40 and 0 mV could be decomposed into two exponential components both in the absence and in the presence of benzocaine. Benzocaine did not significantly alter the inactivation time constant of either component, but reduced both their amplitudes. The amplitude of the slow inactivating component was more decreased by benzocaine than the amplitude of the fast one, leading to an apparently faster decline of the overall Na current. After removal of Na inactivation and charge movement immobilization by BTX, benzocaine decreased the amplitude of INa with no change in time course. INa, QON, and QOFF were all reduced by the same factor. The results suggest that the rate of reaction of benzocaine with its receptor is slow compared to the rates of channel activation and inactivation. The differential effects of benzocaine on the two components of Na current inactivation in normal channels can be explained assuming two types of channel with different rates of inactivation and different affinities for the drug. PMID:2428413

  5. Semiblind channel estimation for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Sheng; Song, Jyu-Han

    2012-12-01

    This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.

  6. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  7. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals.

    PubMed

    Protti, D A; Uchitel, O D

    1997-08-01

    The identity of the voltage-dependent calcium channels (VDCC), which trigger the Ca2+-gated K+ currents (IK(Ca)) in mammalian motor nerve terminals, was investigated by means of perineurial recordings. The effects of Ca2+ chelators with different binding kinetics on the activation of IK(Ca) were also examined. The calcium channel blockers of the P/Q family, omega-agatoxin IVA (omega-Aga-IVA) and funnel-web spider toxin (FTX), have been shown to exert a strong blocking effect on IK(Ca). In contrast, nitrendipine and omega-conotoxin GVIA (omega-CgTx) did not affect the Ca2+-activated K+ currents. The intracellular action of the fast Ca2+ buffers BAPTA and DM-BAPTA prevented the activation of the IK(Ca), while the slow Ca2+ buffer EGTA was ineffective at blocking it. These data indicate that P/Q-type VDCC mediate the Ca2+ influx which activates IK(Ca). The spatial association between Ca2+ and Ca2+-gated K+ channels is discussed, on the basis of the differential effects of the fast and slow Ca2+ chelators.

  8. Flame balls dynamics in divergent channel

    NASA Astrophysics Data System (ADS)

    Fursenko, R.; Minaev, S.

    2011-12-01

    A three-dimensional reaction-diffusion model for lean low-Lewis-number premixed flames with radiative heat losses propagating in divergent channel is studied numerically. Effects of inlet gas velocity and heat-loss intensity on flame structure at low Lewis numbers are investigated. It is found that continuous flame front exists at small heat losses and the separate flame balls settled within restricted domain inside the divergent channel at large heat losses. It is shown that the time averaged flame balls coordinate may be considered as important characteristic analogous to coordinate of continuous flame stabilized in divergent channel.

  9. Effects of Levetiracetam, Carbamazepine, Phenytoin, Valproate, Lamotrigine, Oxcarbazepine, Topiramate, Vinpocetine and Sertraline on Presynaptic Hippocampal Na(+) and Ca(2+) Channels Permeability.

    PubMed

    Sitges, María; Chiu, Luz María; Reed, Ronald C

    2016-04-01

    Ion channels are targets of various antiepileptic drugs. In cerebral presynaptic nerve endings Na(+) and Ca(2+) channels are particularly abundant, as they control neurotransmitter release, including the release of glutamate (Glu), the most concentrated excitatory amino acid neurotransmitter in the brain. Several pre-synaptic channels are implicated in the mechanism of action of the pro-convulsive agent, 4-aminopyridine (4-AP). In the present study the effects of levetiracetam and other established and newer (vinpocetine) anti-epileptic drugs, as well as of the anti-depressant, sertraline on the increase in Ca(2+) induced by 4-AP in hippocampal isolated nerve endings were investigated. Also the effects of some of the anti-seizure drugs on the selective increase in Ca(2+) induced by high K(+), or on the selective increase in Na(+) induced by veratridine were tested. Sertraline and vinpocetine effectively inhibited the rise in Ca(2+) induced by 4-AP, which was dependent on the out-in Na(+) gradient and tetrodotoxin sensitive. Carbamazepine, phenytoin, lamotrigine and oxcarbazepine inhibited the rise in Ca(2+) induced by 4-AP too, but at higher concentrations than sertraline and vinpocetine, whereas levetiracetam, valproic acid and topiramate did not. The three latter antiepileptic drugs also failed in modifying other responses mediated by the activation of brain presynaptic Na(+) or Ca(2+) channels, including Glu release. This indicates that levetiracetam, valproic acid and topiramate mechanisms of action are unrelated with a decrease in presynaptic Na(+) or Ca(2+) channels permeability. It is concluded that depolarized cerebral isolated nerve endings represent a useful tool to unmask potential antiepileptic drugs targeting presynaptic Na(+) and/or Ca(2+) channels in the brain; such as vinpocetine or the anti-depressant sertraline, which high effectiveness to control seizures in the animal in vivo has been demonstrated.

  10. Channel nut tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Marvin

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  11. Quantum mechanical calculations of charge effects on gating the KcsA channel.

    PubMed

    Kariev, Alisher M; Znamenskiy, Vasiliy S; Green, Michael E

    2007-05-01

    A series of ab initio (density functional) calculations were carried out on side chains of a set of amino acids, plus water, from the (intracellular) gating region of the KcsA K(+) channel. Their atomic coordinates, except hydrogen, are known from X-ray structures [D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait, R. MacKinnon, The structure of the potassium channel: molecular basis of K(+) conduction and selectivity, Science 280 (1998) 69-77; R. MacKinnon, S.L. Cohen, A. Kuo, A. Lee, B.T. Chait, Structural conservation in prokaryotic and eukaryotic potassium channels, Science 280 (1998) 106-109; Y. Jiang, A. Lee, J. Chen, M. Cadene, B.T. Chait, R. MacKinnon, The open pore conformation of potassium channels. Nature 417 (2001) 523-526], as are the coordinates of some water oxygen atoms. The 1k4c structure is used for the starting coordinates. Quantum mechanical optimization, in spite of the starting configuration, places the atoms in positions much closer to the 1j95, more tightly closed, configuration. This state shows four water molecules forming a "basket" under the Q119 side chains, blocking the channel. When a hydrated K(+) approaches this "basket", the optimized system shows a strong set of hydrogen bonds with the K(+) at defined positions, preventing further approach of the K(+) to the basket. This optimized structure with hydrated K(+) added shows an ice-like 12 molecule nanocrystal of water. If the water molecules exchange, unless they do it as a group, the channel will remain blocked. The "basket" itself appears to be very stable, although it is possible that the K(+) with its hydrating water molecules may be more mobile, capable of withdrawing from the gate. It is also not surprising that water essentially freezes, or forms a kind of glue, in a nanometer space; this agrees with experimental results on a rather different, but similarly sized (nm dimensions) system [K.B. Jinesh, J.W.M. Frenken, Capillary condensation in

  12. Modeling of dislocation channel width evolution in irradiated metals

    NASA Astrophysics Data System (ADS)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2018-02-01

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel

  13. The effects of temperature and magnetic flux on electron transport through a four-channel DNA model

    NASA Astrophysics Data System (ADS)

    Lee, Sunhee; Hedin, Eric; Joe, Yong

    2010-03-01

    The temperature dependence of the conductivity of lambda phage DNA has been measured by Tran et al [1] experimentally, where the conductivity displayed strong (weak) temperature dependence above (below) a threshold temperature. In order to understand the temperature effects of electron transport theoretically, we study a two-dimensional and four-channel DNA model using a tight-binding (TB) Hamiltonian. The thermal effects within a TB model are incorporated into the hopping integral and the relative twist angle from its equilibrium value between base-pairs. Since these thermal structural fluctuations localize the electronic wave functions in DNA, we examine a temperature-dependent localization length, a temperature-driven transmission, and current-voltage characteristics in this system. In addition, we incorporate magnetic field effects into the analysis of the transmission through DNA in order to modulate the quantum interference between the electron paths that comprise the 4-channel structure. [1] P. Tran, B. Alavi, and G. Gruner, PRL 85, 1564 (2000).

  14. Inhibitory Effects of Honokiol on the Voltage-Gated Potassium Channels in Freshly Isolated Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Sheng, Anqi; Zhang, Yan; Li, Guang; Zhang, Guangqin

    2018-02-01

    Voltage-gated potassium (K V ) currents, subdivided into rapidly inactivating A-type currents (I A ) and slowly inactivating delayed rectifier currents (I K ), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on K V currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC 50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K + channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.

  15. Modeling Paragenesis: Erosion Opposite to Gravity in Cave Channels

    NASA Astrophysics Data System (ADS)

    Cooper, M. P.; Covington, M. D.

    2017-12-01

    Sediment plays an important role in bedrock channels, providing both tools and cover that influence patterns of bed erosion. It has also been shown that sediment load influences bedrock channel width, with increased sediment leading to wider channels. A variety of models have been developed to explore these effects. In caves, it is hypothesized that sediments covering the floors of fully flooded channels that are forming beneath the water table (phreatic zone) can force dissolution upwards towards the water table, leading to upward erosion balanced by gradual deposition of sediment within the channel bottom. This strange process is termed paragenesis, and while there are conceptual and experimental models of the process, no prior mathematical models of cave passage evolution has captured these effects. Consequently, there is little quantitative understanding of the processes that drive paragenesis and how they link to the morphology of the cave channels that develop. We adapt a previously developed algorithm for estimating boundary shear stress within channels with free-surface flows to enable calculation of boundary shear stress in pipe-full conditions. This model successfully duplicates scaling relationships in surface channels, and geometries of caves formed in the phreatic zone such as phreatic tubes. Once sediment flux is incorporated the model successfully duplicates the hypothesized processes of paragenetic gallery formation: the cover effect prevents dissolution in the direction of gravity; passages are enlarged upwards reducing the sediment transport capacity; sediment is deposited and the process drives a continuing feedback loop. Simulations reveal that equilibrium paragenetic channel widths scale with both sediment flux and discharge. Unlike in open channel settings, increased sediment load actually narrows paragenetic channels. The cross section evolution model also reveals that the existence of equilibrium widths in such galleries requires erosion to

  16. Role of mixed ion channel effects in the cardiovascular safety assessment of the novel anti-MRSA fluoroquinolone JNJ-Q2.

    PubMed

    Eichenbaum, G; Pugsley, M K; Gallacher, D J; Towart, R; McIntyre, G; Shukla, U; Davenport, J M; Lu, H R; Rohrbacher, J; Hillsamer, V

    2012-07-01

    JNJ-Q2, a novel broad-spectrum fluoroquinolone with anti-methicillin-resistant Staphylococcus aureus activity, was evaluated in a comprehensive set of non-clinical and clinical cardiovascular safety studies. The effect of JNJ-Q2 on different cardiovascular parameters was compared with that of moxifloxacin, sparfloxacin and ofloxacin. Through comparisons with these well-known fluoroquinolones, the importance of effects on compensatory ion channels to the cardiovascular safety of JNJ-Q2 was investigated. JNJ-Q2 and comparator fluoroquinolones were evaluated in the following models/test systems: hERG-transfected HEK293 cells sodium channel-transfected CHO cells, guinea pig right atria, arterially perfused rabbit left ventricular wedge preparations and in vivo studies in anaesthetized guinea pigs, anaesthetized and conscious telemetered dogs, and a thorough QT study in humans. The trend for effects of JNJ-Q2 on Tp-Te, QT, QRS and PR intervals in the non-clinical models and the plateau in QTc with increasing plasma concentration in humans are consistent with offsetting sodium and calcium channel activities that were observed in the non-clinical studies. These mixed ion channel activities result in the less pronounced or comparable increase in QTc interval for JNJ-Q2 compared with moxifloxacin and sparfloxacin despite its greater in vitro inhibition of I(Kr). Based on the non-clinical and clinical cardiovascular safety assessment, JNJ-Q2 has a safe cardiovascular profile for administration in humans with comparable or reduced potential to prolong QT intervals, compared with moxifloxacin. The results demonstrate the importance of compensatory sodium and calcium channel activity in offsetting potassium channel activity for compounds with a fluoroquinolone core. © 2012 Janssen Pharmaceutical Companies of Johnson & Johnson. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Numerical modelling of channel processes and analysis of possible channel improvement measures on the Lena River near city Yakutsk

    NASA Astrophysics Data System (ADS)

    Krylenko, Inna; Belikov, Vitaly; Zavadskii, Aleksander; Borisova, Natalya; Golovlyov, Pavel; Rumyantsev, Alexey

    2017-04-01

    variants of channel improvement measures, including different dam constructions, river bed dredging, closing of some river branches were considered and included into modelling scenarios. Analyses of results of modelling has allowed to reveal, that more expensive big dams which are partitioning off a part the main channel are not so effective, because their construction lead to significant increasing of flow velocities and corresponding increasing in sediment transport. Local channel regulations measures (small dam at Ponomarev island near Yakutsk and bed dredging) can give some effect in a few years due to formation of the new line of the depths maximum near water intake structure and Yakutsk port. For improving of the navigation conditions near Ghatay port closing of the small channel branch Ghataiskaya can be effective.

  18. AVHRR channel selection for land cover classification

    USGS Publications Warehouse

    Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.

    2002-01-01

    Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more

  19. Binding and effects of KATP channel openers in the vascular smooth muscle cell line, A10

    PubMed Central

    Russ, Ulrich; Metzger, Friedrich; Kickenweiz, Elisabeth; Hambrock, Annette; Krippeit-Drews, Peter; Quast, Ulrich

    1997-01-01

    The ATP-sensitive K+ channel (KATP channel) in A10 cells, a cell line derived from rat thoracic aorta, was characterized by binding studies with the tritiated KATP channel opener, [3H]-P1075, and by electrophysiological techniques. Saturation binding experiments gave a KD value of 9.2±5.2 nM and a binding capacity (BMax) of 140±40 fmol mg−1 protein for [3H]-P1075 binding to A10 cells; from the BMax value a density of binding sites of 5–10 per μm2 plasmalemma was estimated. KATP channel modulators such as the openers P1075, pinacidil, levcromakalim and minoxidil sulphate and the blocker glibenclamide inhibited [3H]-P1075 binding. The extent of inhibition at saturation depended on the compound, levcromakalim inhibiting specific [3H]-P1075 binding by 85%, minoxidil sulphate and glibenclamide by 70%. The inhibition constants were similar to those determined in strips of rat aorta. Resting membrane potential, recorded with microelectrodes, was −51±1 mV. P1075 and levcromakalim produced a concentration-dependent hyperpolarization by up to −25 mV with EC50 values of 170±40 nM and 870±190 nM, respectively. The hyperpolarization induced by levcromakalim (3 μM) was completely reversed by glibenclamide with an IC50 value of 86±17 nM. Voltage clamp experiments were performed in the whole cell configuration under a physiological K+ gradient. Levcromakalim (10 μM) induced a current which reversed around −80 mV; the current-voltage relationship showed considerable outward rectification. Glibenclamide (3 μM) abolished the effect of levcromakalim. Analysis of the noise of the levcromakalim (10 μM)-induced current at −40 and −20 mV yielded estimates of the channel density, the single channel conductance and the probability of the channel to be open of 0.14 μm−2, 8.8 pS and 0.39, respectively. The experiments showed that A10 cells are endowed with functional KATP channels which resemble those in vascular tissue; hence, these

  20. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    PubMed

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  1. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  2. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show

  3. Synergistic Effect of Fluconazole and Calcium Channel Blockers against Resistant Candida albicans

    PubMed Central

    Liu, Shuyuan; Yue, Longtao; Gu, Wenrui; Li, Xiuyun; Zhang, Liuping; Sun, Shujuan

    2016-01-01

    Candidiasis has increased significantly recently that threatens patients with low immunity. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of fungal resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapy is one of the most widely used and effective strategy to alleviate this problem. In this paper, we were aimed to evaluate the combined antifungal effects of four CCBs (calcium channel blockers), amlodipine (AML), nifedipine (NIF), benidipine (BEN) and flunarizine (FNZ) with fluconazole against C. albicans by checkerboard and time-killing method. In addition, we determined gene (CCH1, MID1, CNA1, CNB1, YVC1, CDR1, CDR2 and MDR1) expression by quantitative PCR and investigated the efflux pump activity of resistant candida albicans by rhodamine 6G assay to reveal the potential mechanisms. Finally, we concluded that there was a synergy when fluconazole combined with the four tested CCBs against resistant strains, with fractional inhibitory concentration index (FICI) <0.5, but no interaction against sensitive strains (FICI = 0.56 ~ 2). The mechanism studies revealed that fluconazole plus amlodipine caused down-regulating of CNA1, CNB1 (encoding calcineurin) and YVC1 (encoding calcium channel protein in vacuole membrane). PMID:26986478

  4. A Simple Water Channel

    ERIC Educational Resources Information Center

    White, A. S.

    1976-01-01

    Describes a simple water channel, for use with an overhead projector. It is run from a water tap and may be used for flow visualization experiments, including the effect of streamlining and elementary building aerodynamics. (MLH)

  5. Capacity of Pulse-Position Modulation (PPM) on Gaussian and Webb Channels

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.; Hamkins, J.; Pollara, F.

    2000-01-01

    This article computes the capacity of various idealized soft-decision channels modeling an optical channel using an avalanche photodiode detector (APD) and pulse-position modulation (PPM). The capacity of this optical channel depends in a complicated way on the physical parameters of the APD and the constraints imposed by the PPM orthogonal signaling set. This article attempts to identify and separate the effects of several fundamental parameters on the capacity of the APD-detected optical PPM channel. First, an overall signal-to-noise ratio (SNR) parameter is de ned such that the capacity as a function of a bit-normalized version of this SNR drops precipitously toward zero at quasi-brick-wall limits on bit SNR that are numerically the same as the well-understood brick-wall limits for the standard additive white Gaussian noise (AWGN) channel. A second parameter is used to quantify the effects on capacity of one unique facet of the optical PPM channel (as compared with the standard AWGN channel) that causes the noise variance to be higher in signal slots than in nonsignal slots. This nonuniform noise variance yields interesting capacity effects even when the channel model is AWGN. A third parameter is used to measure the effects on capacity of the difference between an AWGN model and a non-Gaussian model proposed by Webb (see reference in [2]) for approximating the statistics of the APD-detected optical channel. Finally, a fourth parameter is used to quantify the blending of a Webb model with a pure AWGN model to account for thermal noise. Numerical results show that the capacity of M-ary orthogonal signaling on the Webb channel exhibits the same brick-wall Shannon limit, (M ln 2)=(M 1), as on the AWGN channel ( 1:59 dB for large M). Results also compare the capacity obtained by hard- and soft-output channels and indicate that soft-output channels o er a 3-dB advantage.

  6. Impact of Hyperpolarization-activated, Cyclic Nucleotide-gated Cation Channel Type 2 for the Xenon-mediated Anesthetic Effect: Evidence from In Vitro and In Vivo Experiments.

    PubMed

    Mattusch, Corinna; Kratzer, Stephan; Buerge, Martina; Kreuzer, Matthias; Engel, Tatiana; Kopp, Claudia; Biel, Martin; Hammelmann, Verena; Ying, Shui-Wang; Goldstein, Peter A; Kochs, Eberhard; Haseneder, Rainer; Rammes, Gerhard

    2015-05-01

    The thalamus is thought to be crucially involved in the anesthetic state. Here, we investigated the effect of the inhaled anesthetic xenon on stimulus-evoked thalamocortical network activity and on excitability of thalamocortical neurons. Because hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are key regulators of neuronal excitability in the thalamus, the effect of xenon on HCN channels was examined. The effects of xenon on thalamocortical network activity were investigated in acutely prepared brain slices from adult wild-type and HCN2 knockout mice by means of voltage-sensitive dye imaging. The influence of xenon on single-cell excitability in brain slices was investigated using the whole-cell patch-clamp technique. Effects of xenon on HCN channels were verified in human embryonic kidney cells expressing HCN2 channels. Xenon concentration-dependently diminished thalamocortical signal propagation. In neurons, xenon reduced HCN channel-mediated Ih current amplitude by 33.4 ± 12.2% (at -133 mV; n = 7; P = 0.041) and caused a left-shift in the voltage of half-maximum activation (V1/2) from -98.8 ± 1.6 to -108.0 ± 4.2 mV (n = 8; P = 0.035). Similar effects were seen in human embryonic kidney cells. The impairment of HCN channel function was negligible when intracellular cyclic adenosine monophosphate level was increased. Using HCN2 mice, we could demonstrate that xenon did neither attenuate in vitro thalamocortical signal propagation nor did it show sedating effects in vivo. Here, we clearly showed that xenon impairs HCN2 channel function, and this impairment is dependent on intracellular cyclic adenosine monophosphate levels. We provide evidence that this effect reduces thalamocortical signal propagation and probably contributes to the hypnotic properties of xenon.

  7. Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow.

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.; Halleen, R. M.; Lezius, D. K.

    1972-01-01

    Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-

  8. Channel Responses and Hydromodification in Southern California

    NASA Astrophysics Data System (ADS)

    Hawley, R. J.; Dust, D. W.; Bledsoe, B. P.

    2007-12-01

    Hydromodification (changes in watershed hydrologic characteristics, and the resulting hydraulics and channel forms due to urbanization) is ubiquitous in Southern California. In this region, the effects of hydromodification are driven and compounded by the arid/semiarid climate, high relief, erodible soils, high urbanization rates, and relatively low frequency of retention/detention. We conducted a preliminary survey of over 50 stream reaches along a gradient from least disturbed to fully urbanized. All stages of the Channel Evolution Model (CEM) of Schumm et al. (1984) were observed, from stable to degrading, widening, aggrading, and quasi-equilibrium channels. Several sites have CEM stages II through V in close proximity due to headcutting, hardpoints, and infrastructure. We also observed channels in undeveloped watersheds impacted by downstream urbanization via headcutting. A range of intervention measures was observed, with the frequent evolutionary endpoint as a concrete engineered flood control channel. We also observed multiple channel evolution sequences that deviate from the CEM for single-thread, incising channels. An alternative channel response, particularly on smaller urbanized streams is a stabilized, vegetation encroached low-flow channel with regular baseflow supplied by residential irrigation runoff. The limited cases of unimpacted streams that remain tend to be high gradient, high energy systems that are naturally proximate to the transition between braided and meandering form for a given sediment size.

  9. Groundwater controls on river channel pattern

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a

  10. Active Brownian motion in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  11. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  12. TRPV1 channels in cardiovascular system: A double edged sword?

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Apart from modulating nociception, there is vital role of TRPV 1 channels in modulating atherosclerosis, congestive heart failure, systemic hypertension, pulmonary hypertension, hemorrhagic shock and vascular remodeling. TRPV 1 channel activation has shielding effect against the development of atherosclerosis and systemic hypertension. TRPV 1 channel activation alleviates the formation of atherosclerotic lesions via increasing the expression of cholesterol efflux regulatory protein, UCP 2 and enhancing autophagy. Furthermore, activation of these channels enhances Na + excretion and NO release to reduce the blood pressure. TRPV 1 channel activation in the cardiac sensory neurons and subsequent CGRP release reduces ischemia-reperfusion injury. Activation of these channels during conditioning enhances CGRP and SP release from the sensory nerve fibers innervating the heart to induce cardioprotection. However, activation of these channels may elicit detrimental effects in pulmonary hypertension, hemorrhage and vascular remodeling. Activation of TRPV 1 channels enhances smooth muscle cell proliferation to promote pulmonary hypertension. Moreover, TRPV 1 channel inhibition reduces massive catecholamine release, improves survival during hemorrhage. Activation of these channels enhances vascular remodeling via enhancing NO release. Furthermore, dual role of TRPV 1 channels has been reported in the perpetuation of congestive heart failure. On one hand, TRPV 1 channel activation increases the expression of UCP2, PPAR- δ and mitochondrial sirtuin 3 to decrease oxidative stress and reduce heart injury. On the other hand, activation of these channels may enhance the expression of hypertrophic fibrotic proteins viz. GATA4, MMP to promote cardiac fibrosis. The present review discusses the dual role of activation of TRPV 1 channels in diseases associated with cardiovascular system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors

    DTIC Science & Technology

    2013-11-25

    a ballistic one-dimensional conductor is / = £>(£) ■ VgiE)[fR(E) - fdEME , (1) where Vg(E) is the group velocity, D(E) is the density of states... AEROSPACE REPORT NO. ATR-2013-01138 Electrical Transport and Channel Length Modulation in Semiconducting Carbon Nanotube Field-Effect Transistors...SCIENCES LABORATORIES The Aerospace Corporation functions as an "architect-engineer" for national security programs, specializing in advanced military

  14. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. © 2016 Elsevier Inc. All rights reserved.

  15. Can p-channel tunnel field-effect transistors perform as good as n-channel?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhulst, A. S., E-mail: anne.verhulst@imec.be; Pourghaderi, M. A.; Collaert, N.

    2014-07-28

    We show that bulk semiconductor materials do not allow perfectly complementary p- and n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the most promising TFET materials, phonon-assisted tunneling to this subband degrades the subthreshold swing and leads to at least 10× smaller on-current than the desired ballistic on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling orthogonal to the gate, made out of InP, In{sub 0.53}Ga{sub 0.47}As, InAs,more » and a modified version of In{sub 0.53}Ga{sub 0.47}As with an artificially increased conduction-band density-of-states. We further show that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a tensily strained line-tunneling configuration.« less

  16. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  17. Amortized entanglement of a quantum channel and approximately teleportation-simulable channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2018-01-01

    This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of ν-freely-simulable channels, connecting these concepts in an operational way as well.

  18. Effects of calcium channel blockers on the kinetics of voltage-dependent changes in synaptosomal calcium concentrations.

    PubMed

    Thomas, M M; Puligandla, P S; Dunn, S M

    1994-01-28

    Synaptosomal preparations from rat cerebral cortex have been used in stopped-flow fluorescence studies to measure rapid changes in intrasynaptosomal calcium concentrations upon depolarization. Synaptosomes were loaded with the fluorescent calcium chelating dye, Fura-2, by incubation with the membrane permeant acetoxymethyl ester derivative. Depolarization by elevated external K+ concentration resulted in a rapid increase in cytoplasmic Ca2+ as measured by a quench in Fura-2 fluorescence when excited at 390 nm. The fluorescence change could be reasonably fit by a single exponential process with an apparent rate of 10-15 s-1 and the magnitude of the response was voltage-dependent, increasing with increasing external K+ over the range of 5-30 mM. The observed quench was blocked by micromolar concentrations of the inorganic calcium channel blockers, Cd2+, Co2+ and La3+. Nimodipine, a dihydropyridine which blocks L-type calcium channels, inhibited only 10-15% of the flux response while nitrendipine had no consistent effect. omega-Conotoxin GVIA, a blocker of N-type channels in many species, had only a small inhibitory effect at high (1-10 microM) concentrations. The response was, however, inhibited by pre-incubation of the synaptosomes with venom of the funnel web spider. Agelenopsis aperta (0.1-300 micrograms/ml). Inhibition was observed with both a purified polyamine fraction (FTX) from the venom (IC50 = 4 nl/ml) and a purified peptide toxin, omega-AgaIVA (IC50 = 30 nM). These results indicate that voltage-dependent Ca2+ uptake by mammalian nerve terminals is mediated primarily by channels that are insensitive to dihydropyridines and omega-conotoxin GVIA but are sensitive to components of funnel web spider venom.

  19. Effect of bait and gear type on channel catfish catch and turtle bycatch in a reservoir

    USGS Publications Warehouse

    Cartabiano, Evan C.; Stewart, David R.; Long, James M.

    2014-01-01

    Hoop nets have become the preferred gear choice to sample channel catfish Ictalurus punctatus but the degree of bycatch can be high, especially due to the incidental capture of aquatic turtles. While exclusion and escapement devices have been developed and evaluated, few have examined bait choice as a method to reduce turtle bycatch. The use of Zote™ soap has shown considerable promise to reduce bycatch of aquatic turtles when used with trotlines but its effectiveness in hoop nets has not been evaluated. We sought to determine the effectiveness of hoop nets baited with cheese bait or Zote™ soap and trotlines baited with shad or Zote™ soap as a way to sample channel catfish and prevent capture of aquatic turtles. We used a repeated-measures experimental design and treatment combinations were randomly assigned using a Latin-square arrangement. Eight sampling locations were systematically selected and then sampled with either hoop nets or trotlines using Zote™ soap (both gears), waste cheese (hoop nets), or cut shad (trotlines). Catch rates did not statistically differ among the gear–bait-type combinations. Size bias was evident with trotlines consistently capturing larger sized channel catfish compared to hoop nets. Results from a Monte Carlo bootstrapping procedure estimated the number of samples needed to reach predetermined levels of sampling precision to be lowest for trotlines baited with soap. Moreover, trotlines baited with soap caught no aquatic turtles, while hoop nets captured many turtles and had high mortality rates. We suggest that Zote™ soap used in combination with multiple hook sizes on trotlines may be a viable alternative to sample channel catfish and reduce bycatch of aquatic turtles.

  20. Maternal Transfer of Vitamin C in Channel Catfish (Ictalurus Punctatus) Effects Reproduction and Progeny Performance

    USDA-ARS?s Scientific Manuscript database

    Two routes of maternal transfer of vitamin C in channel catfish female broodfish prior to spawning were explored as a strategy to incorporate the vitamin to determine its effect on reproduction and subsequent performance of the progeny. Accumulation of vitamin C was higher (p<0.05) in ovarian tissu...

  1. Using $$X(3823)\\to J/\\psi\\pi^+\\pi^-$$ to Identify Coupled-Channel Effects

    DOE PAGES

    Wang, Bo; Xu, Hao; Liu, Xiang; ...

    2016-03-17

    Very recently, a new charmonium-like state X(3823) was observed by the Belle and BESIII experiments, which is a good candidate of D-wave charmonium ψ(13D2). Since the X(3872) is just below the DD¯ * threshold, the decay X(3823) → J/ψπ +π - can be a golden channel to test the significance of coupled-channel effects. In this work, this decay is considered including both the hidden-charm dipion and the usual QCDME contributions. The partial decay width, the dipion invariant mass spectrum distribution dΓ[X(3823) → J/ψπ +π - ]/dmπ +π - , and the corresponding dΓ[X(3823) → J/ψπ +π - ]/d cos θmore » distribution are computed. Many parameters are determined from existing experimental data, leaving the results mainly dependent on only one unknown phase between the QCDME and hidden-charm dipion amplitudes.« less

  2. 1/f-Noise of open bacterial porin channels.

    PubMed

    Wohnsland, F; Benz, R

    1997-07-01

    General diffusion pores and specific porin channels from outer membranes of gram-negative bacteria were reconstituted into lipid bilayer membranes. The current noise of the channels was investigated for the different porins in the open state and in the ligand-induced closed state using fast Fourier transformation. The open channel noise exhibited 1/f-noise for frequencies up to 200 Hz. The 1/f-noise was investigated using the Hooge formula (Hooge, Phys. Lett. 29A: 139-140 (1969)), and the Hooge parameter alpha was calculated for all bacterial porins used in this study. The 1/f-noise was in part caused by slow inactivation and activation of porin channels. However, when care was taken that during the noise measurement no opening or closing of porin channels occurred, the Hooge Parameter alpha was a meaningful number for a given channel. A linear relationship was observed between alpha and the single-channel conductance, g, of the different porins. This linear relation between single-channel conductance and the Hooge parameter alpha could be qualitatively explained by assuming that the passing of an ion through a bacterial porin channel is-to a certain extent-influenced by nonlinear effects between channel wall and passing ion.

  3. The Onset of Channelling in a Fluidized Mud Layer

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.

    2012-12-01

    Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q

  4. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  5. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and

  6. Organic field-effect transistors: a combined study on short-channel effects and the influence of substrate pre-treatment on ambient stability

    NASA Astrophysics Data System (ADS)

    Klug, A.; Meingast, A.; Wurzinger, G.; Blümel, A.; Schmoltner, K.; Scherf, U.; List, E. J. W.

    2011-10-01

    For high-performance low-cost applications based on organic field-effect transistors (OFETs) and corresponding sensors essential properties of the applied semiconducting materials include solution-processability, high field-effect mobility, compatibility with adjacent layers and stability with respect to ambient conditions. In this combined study regioregular poly(3-hexylthiophene)- and pentacene-based bottom-gate bottom-contact OFETs with various channel lengths are thoroughly investigated with respect to short-channel effects and the implications of dielectric surface modification with hexamethyldisilazane (HMDS) on device performance. In addition, the influences of oxygen, moisture and HMDStreatment on the ambient stability of the devices are evaluated in detail. While OFETs without surface modification exhibited the expected degradation behavior upon air exposure mainly due to oxygen/moisture-induced doping or charge-carrier trapping, the stability of the investigated semiconductors was found to be distinctly increased when the substrate surface was hydrophobized. The presented results thoroughly summarize important issues which have to be considered when selecting semiconducting materials for high-performance OFETs and OFET-based sensors.

  7. Flow and heat transfer in a curved channel

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  8. Diadenosine tetraphosphate (AP4A) mimics cardioprotective effect of ischemic preconditioning in the rat heart: contribution of KATP channel and PKC.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Ichikawa, H; Matsuda, H

    2000-06-01

    Diadenosine tetraphosphate (AP4A) administration is reported to mimic the effect of ischemic preconditioning (PC) via purine 2y receptors (P2yR) and adenosine receptors. This study was designed to test the contributions of the ATP-sensitive potassium channel (KATP channel) and protein kinase C (PKC), two of the main regulator in PC, to the effect of AP4A. Isolated buffer-perfused rat hearts were subjected to 20 min of global ischemia (37 degrees C) and 20 min of reperfusion. Three cycles of 1-min ischemia and 3-min reperfusion induced PC. Chemicals were administrated for 2 min before 20 min of ischemia. AP4A (10 microM) administration was as effective as PC in improving the recovery of post-ischemic contractile function and reducing creatine kinase leakage after reperfusion, whereas adenosine (10 and 100 microM) have not effect. AP4A had not effect on reperfusion-induced arrhythmia, whereas PC significantly prevented it. These effects of AP4A and PC were reversed by co-administration of glibenclimade (KATP channel blocker, 100 microM) and GF109203X (PKC inhibitor, 10 microM); the effects of AP4A but not PC were reversed by co-administration of reactive blue (P2yR antagonist, 13 nM). AP4A appears to activate the KATP channel and PKC via P2yR mimic the effects of PC in part. The role of P2yR indicated that trigger mechanism of the effect of PC and AP4A administration might differ in rat hearts.

  9. The neutron channeling phenomenon.

    PubMed

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials.

  10. Characterization of cocaine-induced block of cardiac sodium channels.

    PubMed

    Crumb, W J; Clarkson, C W

    1990-03-01

    Recent evidence suggests that cocaine can produce marked cardiac arrhythmias and sudden death. A possible mechanism for this effect is slowing of impulse conduction due to block of cardiac Na channels. We therefore investigated its effects on Na channels in isolated guinea pig ventricular myocytes using the whole-cell variant of the patch clamp technique. Cocaine (10-50 microM) was found to reduce Na current in a use-dependent manner. The time course for block development and recovery were characterized. At 30 microM cocaine, two phases of block development were defined: a rapid phase (tau = 5.7 +/- 4.9 ms) and a slower phase (tau = 2.3 +/- 0.7 s). Recovery from block at -140 mV was also defined by two phases: (tau f = 136 +/- 61 ms, tau s = 8.5 +/- 1.7 s) (n = 6). To further clarify the molecular mechanisms of cocaine action on cardiac Na channels, we characterized its effects using the guarded receptor model, obtaining estimated Kd values of 328, 19, and 8 microM for channels predominantly in the rested, activated, and inactivated states. These data indicate that cocaine can block cardiac Na channels in a use-dependent manner and provides a possible cellular explanation for its cardiotoxic effects.

  11. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  12. Photonic Integrated Circuits for Cost-Effective, High Port Density, and Higher Capacity Optical Communications Systems

    NASA Astrophysics Data System (ADS)

    Chiappa, Pierangelo

    Bandwidth-hungry services, such as higher speed Internet, voice over IP (VoIP), and IPTV, allow people to exchange and store huge amounts of data among worldwide locations. In the age of global communications, domestic users, companies, and organizations around the world generate new contents making bandwidth needs grow exponentially, along with the need for new services. These bandwidth and connectivity demands represent a concern for operators who require innovative technologies to be ready for scaling. To respond efficiently to these demands, Alcatel-Lucent is fast moving toward photonic integration circuits technologies as the key to address best performances at the lowest "bit per second" cost. This article describes Alcatel-Lucent's contribution in strategic directions or achievements, as well as possible new developments.

  13. N-Channel field-effect transistors with floating gates for extracellular recordings.

    PubMed

    Meyburg, Sven; Goryll, Michael; Moers, Jürgen; Ingebrandt, Sven; Böcker-Meffert, Simone; Lüth, Hans; Offenhäusser, Andreas

    2006-01-15

    A field-effect transistor (FET) for recording extracellular signals from electrogenic cells is presented. The so-called floating gate architecture combines a complementary metal oxide semiconductor (CMOS)-type n-channel transistor with an independent sensing area. This concept allows the transistor and sensing area to be optimised separately. The devices are robust and can be reused several times. The noise level of the devices was smaller than of comparable non-metallised gate FETs. In addition to the usual drift of FET devices, we observed a long-term drift that has to be controlled for future long-term measurements. The device performance for extracellular signal recording was tested using embryonic rat cardiac myocytes cultured on fibronectin-coated chips. The extracellular cell signals were recorded before and after the addition of the cardioactive isoproterenol. The signal shapes of the measured action potentials were comparable to the non-metallised gate FETs previously used in similar experiments. The fabrication of the devices involved the process steps of standard CMOS that were necessary to create n-channel transistors. The implementation of a complete CMOS process would facilitate the integration of the logical circuits necessary for signal pre-processing on a chip, which is a prerequisite for a greater number of sensor spots in future layouts.

  14. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen

  15. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis

    PubMed Central

    Springer, Shmuel; Vatine, Jean-Jacques; Lipson, Ronit; Wolf, Alon; Laufer, Yocheved

    2012-01-01

    The study objective was to assess the effect of functional electrical stimulation (FES) applied to the peroneal nerve and thigh muscles on gait performance in subjects with hemiparesis. Participants were 45 subjects (age 57.8 ± 14.8 years) with hemiparesis (5.37 ± 5.43 years since diagnosis) demonstrating a foot-drop and impaired knee control. Thigh stimulation was applied either to the quadriceps or hamstrings muscles, depending on the dysfunction most affecting gait. Gait was assessed during a two-minute walk test with/without stimulation and with peroneal stimulation alone. A second assessment was conducted after six weeks of daily use. The addition of thigh muscles stimulation to peroneal stimulation significantly enhanced gait velocity measures at the initial and second evaluation. Gait symmetry was enhanced by the dual-channel stimulation only at the initial evaluation, and single-limb stance percentage only at the second assessment. For example, after six weeks, the two-minute gait speed with peroneal stimulation and with the dual channel was 0.66 ± 0.30 m/sec and 0.70 ± 0.31 m/sec, respectively (P < 0.0001). In conclusion, dual-channel FES may enhance gait performance in subjects with hemiparesis more than peroneal FES alone. PMID:23097635

  16. Modeling the Effects of Connecting Side Channels to the Long Tom River, Oregon

    NASA Astrophysics Data System (ADS)

    Appleby, C.; McDowell, P. F.

    2015-12-01

    The lower Long Tom River is a heavily managed, highly modified stream in the southwestern Willamette Valley with many opportunities for habitat improvements and river restoration. In the 1940s and 1950s, the US Army Corps of Engineers dramatically altered this river system by constructing the Fern Ridge Dam and three, large drop structures, converting the River from a highly sinuous channel to a straight, channelized stream that is interrupted by these grade control structures, and removed the majority of the riparian vegetation. As a result, juvenile spring Chinook salmon are no longer found in the Watershed and the local population of coastal cutthroat trout face limited aquatic habitat. When the river was channelized, long sections of the historical channel were left abandoned on the floodplain. Reconnecting these historical channels as side channels may improve the quality and quantity of aquatic habitat and could allow fish passage around current barriers. However, such construction may also lead to undesirable threats to infrastructure and farmland. This study uses multiple HEC-RAS models to determine the impact of reconnecting two historical channels to the lower Long Tom River by quantifying the change in area of flood inundation and identifying infrastructure in jeapordy given current and post-restoration conditions for 1.5, 5, 10, and 25-year flood discharges. Bathymetric data from ADCP and RTK-GPS surveys has been combined with LiDAR-derived topographic data to create continuous elevation models. Several types of side channel connections are modeled in order to determine which type of connection will result in both the greatest quantity of accessible habitat and the fewest threats to public and private property. In the future, this study will also consider the change in the quantity of physical salmonid habitat and map the areas prone to sedimentation and erosion using CEASAR and PHABSIM tools.

  17. Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder.

    PubMed

    Takagi, Hiroaki; Hashitani, Hikaru

    2016-10-15

    The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effective dose of salmon GnRha for induction of ovulation in channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to determine the minimum effective salmon Gonadotropin Releasing Hormone analog (sGnRHa) dose to stimulate ovulation in channel catfish. Four doses of sGnRHa (0, 5, 10 and 25 µg /Kg) were compared with commonly used 100 µg mammalian Luteinizing Hormone Releasing Hor...

  19. Effect of geometrical configuration of sediment replenishment on the development of bed form patterns in a gravel bed channel

    NASA Astrophysics Data System (ADS)

    Battisacco, Elena; Franca, Mário J.; Schleiss, Anton J.

    2016-04-01

    Dams interrupt the longitudinal continuity of river reaches since they store water and trap sediment in the upstream reservoir. By the interruption of the sediment continuum, the transport capacity of downstream stretch exceeds the sediment supply, thus the flow becomes "hungry". Sediment replenishment is an increasingly used method for restoring the continuity in rivers and for re-establishing the sediment regime of such disturbed river reaches. This research evaluates the effect of different geometrical configurations of sediment replenishment on the evolution of the bed morphology by systematic laboratory experiments. A typical straight armoured gravel reach is reproduced in a laboratory flume in terms of slope, grain size and cross section. The total amount of replenished sediment is placed in four identical volumes on both channel banks, forming six different geometrical configurations. Both alternated and parallel combinations are studied. Preliminary studies demonstrate that a complete submergence condition of the replenishment deposits is most adequate for obtaining a complete erosion and a high persistence of the replenished material in the channel. The response of the channel bed morphology to replenishment is documented by camera and laser scanners installed on a moveable carriage. The parallel configurations create an initially strong narrowing of the channel section. The transport capacity is thus higher and most of the replenished sediments exit the channel. The parallel configurations result in a more spread distribution of grains but with no clear morphological pattern. Clear bed form patterns can be observed when applying alternated configurations. Furthermore, the wavelength of depositions correspond to the replenishment deposit length. These morphological forms can be assumed as mounds. In order to enhance channel bed morphology on an armoured bed by sediment replenishment, alternated deposit configurations are more favourable and effective. The

  20. Selective activation of vascular Kv7.4/Kv7.5 K+ channels by fasudil contributes to its vasorelaxant effect

    PubMed Central

    Zhang, Xuan; An, Hailong; Li, Junwei; Zhang, Yuanyuan; Liu, Yang; Jia, Zhanfeng; Zhang, Wei

    2016-01-01

    Background and Purpose Kv7 (Kv7.1–7.5) channels play an important role in the regulation of neuronal excitability and the cardiac action potential. Growing evidence suggests Kv7.4/Kv7.5 channels play a crucial role in regulating vascular smooth muscle contractility. Most of the reported Kv7 openers have shown poor selectivity across these five subtypes. In this study, fasudil – a drug used for cerebral vasospasm – has been found to be a selective opener of Kv7.4/Kv7.5 channels. Experimental Approach A perforated whole‐cell patch technique was used to record the currents and membrane potential. Homology modelling and a docking technique were used to investigate the interaction between fasudil and the Kv7.4 channel. An isometric tension recording technique was used to assess the vascular tension. Key Results Fasudil selectively and potently enhanced Kv7.4 and Kv7.4/Kv7.5 currents expressed in HEK293 cells, and shifted the voltage‐dependent activation curve in a more negative direction. Fasudil did not affect either Kv7.2 and Kv7.2/Kv7.3 currents expressed in HEK293 cells, the native neuronal M‐type K+ currents, or the resting membrane potential in small rat dorsal root ganglia neurons. The Val248 in S5 and Ile308 in S6 segment of Kv7.4 were critical for this activating effect of fasudil. Fasudil relaxed precontracted rat small arteries in a concentration‐dependent fashion; this effect was antagonized by the Kv7 channel blocker XE991. Conclusions and Implications These results suggest that fasudil is a selective Kv7.4/Kv7.5 channel opener and provide a new dimension for developing selective Kv7 modulators and a new prospective for the use, action and mechanism of fasudil. PMID:27677924

  1. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  2. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    PubMed

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  3. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S

    2018-01-01

    Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.

  4. Modeling of dislocation channel width evolution in irradiated metals

    DOE PAGES

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2017-11-08

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness

  5. Modeling of dislocation channel width evolution in irradiated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness

  6. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  7. Convolutional code performance in planetary entry channels

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.

    1974-01-01

    The planetary entry channel is modeled for communication purposes representing turbulent atmospheric scattering effects. The performance of short and long constraint length convolutional codes is investigated in conjunction with coherent BPSK modulation and Viterbi maximum likelihood decoding. Algorithms for sequential decoding are studied in terms of computation and/or storage requirements as a function of the fading channel parameters. The performance of the coded coherent BPSK system is compared with the coded incoherent MFSK system. Results indicate that: some degree of interleaving is required to combat time correlated fading of channel; only modest amounts of interleaving are required to approach performance of memoryless channel; additional propagational results are required on the phase perturbation process; and the incoherent MFSK system is superior when phase tracking errors are considered.

  8. Flume experimentation and simulation of bedrock channel processes

    NASA Astrophysics Data System (ADS)

    Thompson, Douglas; Wohl, Ellen

    Flume experiments can provide cost effective, physically manageable miniature representations of complex bedrock channels. The inherent change in scale in such experiments requires a corresponding change in the scale of the forces represented in the flume system. Three modeling approaches have been developed that either ignore the scaling effects, utilize the change in scaled forces, or assume similarity of process between scales. An understanding of the nonlinear influence of a change in scale on all the forces involved is important to correctly analyze model results. Similarly, proper design and operation of flume experiments requires knowledge of the fundamental components of flume systems. Entrance and exit regions of the flume are used to provide good experimental conditions in the measurement region of the flume where data are collected. To insure reproducibility, large-scale turbulence must be removed in the head of the flume and velocity profiles must become fully developed in the entrance region. Water-surface slope and flow acceleration effects from downstream water-depth control must also be isolated in the exit region. Statistical design and development of representative channel substrate also influence model results in these systems. With proper experimental design, flumes may be used to investigate bedrock channel hydraulics, sediment-transport relations, and morphologic evolution. In particular, researchers have successfully used flume experiments to demonstrate the importance of turbulence and substrate characteristics in bedrock channel evolution. Turbulence often operates in a self perpetuating fashion, can erode bedrock walls with clear water and increase the mobility of sediment particles. Bedrock substrate influences channel evolution by offering varying resistance to erosion, controlling the location or type of incision and modifying the local influence of turbulence. An increased usage of scaled flume models may help to clarify the remaining

  9. A study of small impact parameter ion channeling effects in thin crystals

    NASA Astrophysics Data System (ADS)

    Motapothula, Mallikarjuna Rao; Breese, Mark B. H.

    2018-03-01

    We have recorded channeling patterns produced by 1-2 MeV protons aligned with ⟨1 1 1⟩ axes in 55 nm thick silicon crystals which exhibit characteristic angular structure for deflection angles up to and beyond the axial critical angle, ψ a . Such large angular deflections are produced by ions incident on atomic strings with small impact parameters, resulting in trajectories which pass through several radial rings of atomic strings before exiting the thin crystal. Each ring may focus, steer or scatter the channeled ions in the transverse direction and the resulting characteristic angular structure beyond 0.6 ψ a at different depths can be related to peaks and troughs in the nuclear encounter probability. Such "radial focusing" underlies other axial channeling phenomena in thin crystals including planar channeling of small impact parameter trajectories, peaks around the azimuthal distribution at small tilts and large shoulders in the nuclear encounter probability at tilts beyond ψ a .

  10. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  11. Vitex negundo induces an anticonvulsant effect by inhibiting voltage gated sodium channels in murine Neuro 2A cell line.

    PubMed

    Khan, Faisal; Saify, Zafar Saeed; Jamali, Khawar Saeed; Naz, Saima; Hassan, Sohail; Siddiqui, Sonia

    2018-01-01

    Vitex negundo (Vn) extract is famous for the treatment of neurological diseases such as migraine and epilepsy. These neurological diseases have been associated with abnormally increased influx of sodium ions into the neurons. Drugs that inhibit voltage gated sodium channels can be used as potent anti-epileptics. Till now, the effects of Vn on sodium channels have not been investigated. Therefore, we have investigated the effects of methalonic fraction of Vn extract in Murine Neuro 2A cell line. Cells were cultured in a defined medium with or without the Vn extract (100 μg/ml). Sodium currents were recorded using whole-cell patch clamp method. The data show that methanolic extract of Vn inhibited sodium currents in a dose dependent manner (IC50 =161μg/ml). Vn (100 μg/ml) shifted the steady-state inactivation curve to the left or towards the hyper polarization state. However, Vn did not show any effects on outward rectifying potassium currents. Moreover, Vn (100 μg/ml) significantly reduced the sustained repetitive (48±4.8%, P<0.01) firing from neonatal hippocampal neurons at 12 DIV. Hence, our data suggested that inhibition of sodium channels by Vn may exert pharmacological effects in reducing pain and convulsions.

  12. Inhibition of Kv7/M Channel Currents by the Local Anesthetic Chloroprocaine.

    PubMed

    Zhang, Fan; Cheng, Yanxin; Li, Hong; Jia, Qingzhong; Zhang, Hailin; Zhao, Senming

    2015-01-01

    Chloroprocaine is a local ester anesthetic, producing excellent sensory block in clinical use. The Kv7/M potassium channel plays an important role in the control of neuronal excitability. In this study, we investigated the effects of the local anesthetic chloroprocaine on Kv7/M channels as well as the effect of retigabine on chloroprocaine-induced seizures. A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from rat dorsal root ganglion (DRG) neurons. Chloroprocaine produced a number of effects on Kv7.2/Kv7.3 currents, including a lowering of current amplitudes, a rightward shift in the voltage-dependent activation curves, and a slowing of channel activation. Chloroprocaine had a more selective inhibitory effect on the homomeric Kv7.3 and heteromeric Kv7.2/Kv7.3 channels than on the homomeric Kv7.2 channel. Chloroprocaine also inhibited native M channel currents and induced a depolarization of the DRG neuron membrane potential. Taken together, the findings indicate that chloroprocaine concentration dependently inhibited Kv7/M channel currents. © 2015 S. Karger AG, Basel.

  13. Improving Audience Learning from Television News through Between-Channel Redundancy.

    ERIC Educational Resources Information Center

    Reese, Stephen D.

    A study tested the effects of between-channel redundancy on television news learning. Redundancy, defined as shared information, was proposed as an explanatory variable that considers the relationship between information in three channels: the audio, the nonverbal pictorial, and visual-verbal print channel. It was hypothesized that pictures would…

  14. Interactive communication channel

    NASA Astrophysics Data System (ADS)

    Chan, R. H.; Mann, M. R.; Ciarrocchi, J. A.

    1985-10-01

    Discussed is an interactive communications channel (ICC) for providing a digital computer with high-performance multi-channel interfaces. Sixteen full duplex channels can be serviced in the ICC with the sequence or scan pattern being programmable and dependent upon the number or channels and their speed. A channel buffer system is used for line interface, and character exchange. The channel buffer system is on a byte basis. The ICC performs frame start and frame end functions, bit stripping and bit stuffing. Data is stored in a memory in block format (256 bytes maximum) by a program control and the ICC maintains byte address information and a block byte count. Data exchange with a memory is made by cycle steals. Error detection is also provided for using a cyclic redundancy check technique.

  15. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  16. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  17. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  18. PIP₂ modulation of Slick and Slack K⁺ channels.

    PubMed

    de los Angeles Tejada, Maria; Jensen, Lars Jørn; Klaerke, Dan A

    2012-07-27

    Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Ultrasteep Voltage Dependence in a Membrane Channel

    NASA Astrophysics Data System (ADS)

    Mangan, Patrick S.; Colombini, Marco

    1987-07-01

    A mechanism for regulating voltage-gated channels is presented. The treatment amplifies the effect of the applied membrane potential resulting in a dramatic increase in the channel's voltage dependence. Addition of a large polyvalent anion to the medium bathing a phospholipid bilayer containing the voltage-dependent channel from the mitochondrial outer membrane, VDAC, induced up to a 12-fold increase in the channel's voltage sensitivity. The highest polyvalent anion concentration tested resulted in an e-fold conductance change for a 0.36-mV change in membrane potential. On the low end, a concentration of 2 μ M resulted in a 50% increase in VDAC voltage dependence. A mechanism based on polyvalent anion accumulation in the access resistance region at the mouth of the pore is consistent with all findings. Perhaps the voltage dependence of voltage-gated channels is amplified in vivo by polyvalent ions. If so, the control of excitable phenomena may be under much finer regulation than that provided by membrane potential alone.

  20. Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1

    PubMed Central

    Thompson, Jill L; Shuttleworth, Trevor J

    2013-01-01

    Currently, Orai proteins are known to encode two distinct agonist-activated, highly calcium-selective channels: the store-operated Ca2+ release-activated Ca2+ (CRAC) channels, and the store-independent, arachidonic acid-activated ARC channels. Surprisingly, whilst the trigger for activation of these channels is entirely different, both depend on stromal interacting molecule 1 (STIM1). However, whilst STIM1 in the endoplasmic reticulum membrane is the critical sensor for the depletion of this calcium store that triggers CRAC channel activation, it is the pool of STIM1 constitutively resident in the plasma membrane that is essential for activation of the ARC channels. Here, using a variety of approaches, we show that the key domains within the cytosolic part of STIM1 identified as critical for the activation of CRAC channels are also key for activation of the ARC channels. However, examination of the actual steps involved in such activation reveal marked differences between these two Orai channel types. Specifically, loss of calcium from the EF-hand of STIM1 that forms the key initiation point for activation of the CRAC channels has no effect on ARC channel activity. Secondly, in marked contrast to the dynamic and labile nature of interactions between STIM1 and the CRAC channels, STIM1 in the plasma membrane appears to be constitutively associated with the ARC channels. Finally, specific mutations in STIM1 that induce an extended, constitutively active, conformation for the CRAC channels actually prevent activation of the ARC channels by arachidonic acid. Based on these findings, we propose that the likely role of arachidonic acid lies in inducing the actual gating of the channel. PMID:23690558

  1. Evaluate interference in digital channels

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Sumida, J.

    1985-01-01

    Any future mobile satellite service (MSS) which is to provide simultaneous mobile communications for a large number of users will have to make very efficient use of the spectrum. As the spectrum available for an MSS is limited, the system's channels should be packed as closely together as possible, with minimum-width guard bands. In addition the employment of frequency reuse schemes is an important factor. Difficulties regarding these solutions are related to the introduction of interference in the link. A balance must be achieved between the competing aims of spectrum conservation and low interference. While the interference phenomenon in narrowband FM voice channels is reasonably well understood, very little effort, however, has been devoted to the problem in digital radios. Attention is given to work, which illuminates the effects of cochannel and adjacent channel interference on digital FM (FSK) radios.

  2. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  3. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  4. Effects of slope smoothing in river channel modeling

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  5. n-Alcohols Inhibit Voltage-Gated Na+ Channels Expressed in Xenopus Oocytes

    PubMed Central

    Horishita, Takafumi; Harris, R. Adron

    2008-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of action potentials in excitable cells and are known as a target of local anesthetics. In addition, inhibition of sodium channels by volatile anesthetics has been proposed as a mechanism of general anesthesia. The n-alcohols produce anesthesia, and their potency increases with carbon number until a “cut-off” is reached. In this study, we examined effects of a range of n-alcohols on Nav1.2 subunits to determine the alcohol cut-off for this channel. We also studied the effect of a short-chain alcohol (ethanol) and a long-chain alcohol (octanol) on Nav1.2, Nav1.4, Nav1.6, and Nav1.8 subunits, and we investigated the effects of alcohol on channel kinetics. Ethanol and octanol inhibited sodium currents of all subunits, and the inhibition of the Nav1.2 channel by n-alcohols indicated a cut-off at nonanol. Ethanol and octanol produced open-channel block, which was more pronounced for Nav1.8 than for the other sodium channels. Inhibition of Nav1.2 was due to decreased activation and increased inactivation. These results suggest that sodium channels may have a hydrophobic binding site for n-alcohols and demonstrate the differences in the kinetic mechanisms of inhibition for n-alcohols and inhaled anesthetics. PMID:18434586

  6. The effect of luteinizing hormone releasing hormone analog regime and stage of oocyte maturity for induced ovulation of channel catfish Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The effective LHRHa (luteinizing hormone releasing hormone analog) dose based on the gonadal maturity of channel catfish, Ictalurus punctatus to optimize channel x blue hybrid catfish production was evaluated in 4 trials (twice in early part of the season and twice in the peak spawning season) in a ...

  7. N- and P-type Ca2+ channels are involved in acetylcholine release at a neuroneuronal synapse: only the N-type channel is the target of neuromodulators.

    PubMed Central

    Fossier, P; Baux, G; Tauc, L

    1994-01-01

    Cholinergic transmission in an identified neuro-neuronal synapse of the Aplysia buccal ganglion was depressed by application of a partially purified extract of the funnel-web-spider venom (FTx) or of its synthetic analog (sFTx). This specific blocker of voltage-dependent P-type Ca2+ channels did not interfere with the effect of the N-type Ca2+ channel blocker omega-conotoxin, which could further decrease synaptic transmission after a previous application of FTx. Similar results were obtained when the reversal order of application of these two Ca2+ channel blockers was used. Both P- and N-type Ca2+ currents trigger acetylcholine release in the presynaptic neuron. The neuromodulatory effects of FMRF-amide, histamine, and buccalin on transmitter release disappeared after the blockade of the N-type Ca2+ channels but remained still effective in the presence of FTx. These results indicate that only N-type Ca2+ channels appear to be sensitive to the neuromodulators we have identified. PMID:7910963

  8. N- and P-type Ca2+ channels are involved in acetylcholine release at a neuroneuronal synapse: only the N-type channel is the target of neuromodulators.

    PubMed

    Fossier, P; Baux, G; Tauc, L

    1994-05-24

    Cholinergic transmission in an identified neuro-neuronal synapse of the Aplysia buccal ganglion was depressed by application of a partially purified extract of the funnel-web-spider venom (FTx) or of its synthetic analog (sFTx). This specific blocker of voltage-dependent P-type Ca2+ channels did not interfere with the effect of the N-type Ca2+ channel blocker omega-conotoxin, which could further decrease synaptic transmission after a previous application of FTx. Similar results were obtained when the reversal order of application of these two Ca2+ channel blockers was used. Both P- and N-type Ca2+ currents trigger acetylcholine release in the presynaptic neuron. The neuromodulatory effects of FMRF-amide, histamine, and buccalin on transmitter release disappeared after the blockade of the N-type Ca2+ channels but remained still effective in the presence of FTx. These results indicate that only N-type Ca2+ channels appear to be sensitive to the neuromodulators we have identified.

  9. Enhanced Performance of Field-Effect Transistors Based on Black Phosphorus Channels Reduced by Galvanic Corrosion of Al Overlayers.

    PubMed

    Lee, Sangik; Yoon, Chansoo; Lee, Ji Hye; Kim, Yeon Soo; Lee, Mi Jung; Kim, Wondong; Baik, Jaeyoon; Jia, Quanxi; Park, Bae Ho

    2018-06-06

    Two-dimensional (2D)-layered semiconducting materials with considerable band gaps are emerging as a new class of materials applicable to next-generation devices. Particularly, black phosphorus (BP) is considered to be very promising for next-generation 2D electrical and optical devices because of its high carrier mobility of 200-1000 cm 2 V -1 s -1 and large on/off ratio of 10 4 to 10 5 in field-effect transistors (FETs). However, its environmental instability in air requires fabrication processes in a glovebox filled with nitrogen or argon gas followed by encapsulation, passivation, and chemical functionalization of BP. Here, we report a new method for reduction of BP-channel devices fabricated without the use of a glovebox by galvanic corrosion of an Al overlayer. The reduction of BP induced by an anodic oxidation of Al overlayer is demonstrated through surface characterization of BP using atomic force microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy along with electrical measurement of a BP-channel FET. After the deposition of an Al overlayer, the FET device shows a significantly enhanced performance, including restoration of ambipolar transport, high carrier mobility of 220 cm 2 V -1 s -1 , low subthreshold swing of 0.73 V/decade, and low interface trap density of 7.8 × 10 11 cm -2 eV -1 . These improvements are attributed to both the reduction of the BP channel and the formation of an Al 2 O 3 interfacial layer resulting in a high- k screening effect. Moreover, ambipolar behavior of our BP-channel FET device combined with charge-trap behavior can be utilized for implementing reconfigurable memory and neuromorphic computing applications. Our study offers a simple device fabrication process for BP-channel FETs with high performance using galvanic oxidation of Al overlayers.

  10. Cirrus Heterogeneity Effects on Cloud Optical Properties Retrieved with an Optimal Estimation Method from MODIS VIS to TIR Channels.

    NASA Technical Reports Server (NTRS)

    Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.

    2016-01-01

    This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.

  11. Quantifying the effects of stream channels on storm water quality in a semi-arid urban environment

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Lohse, Kathleen A.; Brooks, Paul D.; McIntosh, Jennifer C.; Meixner, Thomas; McLain, Jean E. T.

    2012-11-01

    SummaryStormwater drainage systems can have a large effect on urban runoff quality, but it is unclear how ephemeral urban streams alter runoff hydrochemistry. This problem is particularly relevant in semi-arid regions, where urban storm runoff is considered a renewable water resource. Here we address the question: how do stream channels alter urban runoff hydrochemistry? We collected synoptic stormwater samples during three rainfall-runoff events from nine ephemeral streams reaches (three concrete or metal, three grass, three gravel) in Tucson, Arizona. We identified patterns of temporal and spatial (longitudinal) variability in concentrations of conservative (chloride and isotopes of water) and reactive solutes (inorganic-N, soluble reactive phosphorous, sulfate-S, dissolved organic carbon (DOC) and nitrogen, and fecal indicator bacteria). Water isotopes and chloride (Cl) concentrations indicate that solute flushing and evapoconcentration alter temporal patterns in runoff hydrochemistry, but not spatial hydrochemical responses. Solute concentrations and stream channel solute sourcing and retention during runoff were significantly more variable at the grass reaches (CV = 2.3 - 144%) than at the concrete or metal (CV = 1.6 - 107%) or gravel reaches (CV = 1.9 - 60%), which functioned like flow-through systems. Stream channel soil Cl and DOC decreased following a runoff event (Cl: 12.1-7.3 μg g-1 soil; DOC: 87.7-30.1 μg g-1 soil), while soil fecal indicator bacteria counts increased (55-215 CFU g-1 soil). Finding from this study suggest that the characteristics of the ephemeral stream channel substrate control biogeochemical reactions between runoff events, which alter stream channel soil solute stores and the hydrochemistry of subsequent runoff events.

  12. Basolateral K channels in an insect epithelium. Channel density, conductance, and block by barium

    PubMed Central

    Hanrahan, JW; Wills, NK; Phillips, JE; Lewis, SA

    1986-01-01

    K channels in the basolateral membrane of insect hindgut were studied using current fluctuation analysis and microelectrodes. Locust recta were mounted in Ussing-type chambers containing Cl-free saline and cyclic AMP (cAMP). A transepithelial K current was induced by raising serosal [K] under short-circuit conditions. Adding Ba to the mucosal (luminal) side under these conditions had no effect; however, serosal Ba reversibly inhibited the short-circuit current (Isc), increased transepithelial resistance (Rt), and added a Lorentzian component to power density spectra of the Isc. A nonlinear relationship between corner frequency and serosal [Ba] was observed, which suggests that the rate constant for Ba association with basolateral channels increased as [Ba] was elevated. Microelectrode experiments revealed that the basolateral membrane hyperpolarized when Ba was added: this change in membrane potential could explain the nonlinearity of the 2 pi fc vs. [Ba] relationship if external Ba sensed about three-quarters of the basolateral membrane field. Conventional microelectrodes were used to determine the correspondence between transepithelially measured current noise and basolateral membrane conductance fluctuations, and ion-sensitive microelectrodes were used to measure intracellular K activity (acK). From the relationship between the net electrochemical potential for K across the basolateral membrane and the single channel current calculated from noise analysis, we estimate that the conductance of basolateral K channels is approximately 60 pS, and that there are approximately 180 million channels per square centimeter of tissue area. PMID:2420918

  13. Bladder contractility is modulated by Kv7 channels in pig detrusor.

    PubMed

    Svalø, Julie; Bille, Michala; Parameswaran Theepakaran, Neeraja; Sheykhzade, Majid; Nordling, Jørgen; Bouchelouche, Pierre

    2013-09-05

    Kv7 channels are involved in smooth muscle relaxation, and accordingly we believe that they constitute potential targets for the treatment of overactive bladder syndrome. We have therefore used myography to examine the function of Kv7 channels in detrusor, i.e. pig bladder, with a view to determining the effects of the following potassium channel activators: ML213 (Kv7.2/Kv7.4 channels) and retigabine (Kv7.2-7.5 channels). Retigabine produced a concentration-dependent relaxation of carbachol- and electric field-induced contractions. The potency was similar in magnitude to that of ML213-induced relaxation, suggesting that Kv7.2 and/or Kv7.4 channels constitute the subtypes that are relevant to bladder contractility. The effects of retigabine and ML213 were attenuated by pre-incubation with 10µM XE991 (Kv7.1-7.5 channel blocker) (P<0.05), which in turn confirmed Kv7 channel selectivity. Subtype-selective effects were further investigated by incubating the detrusor with 10µM chromanol 293B (Kv7.1 channel blocker). Regardless of the experimental protocol, this did not cause a further increase in the evoked contraction. In contrast, the addition of XE991 potentiated the KCl-induced contractions, but not those induced by carbachol or electric field, indicating the presence of a phosphatidyl-inositol-4,5-biphosphate-dependent mechanism amongst the Kv7 channels in detrusor. qRT-PCR studies of the mRNA transcript level of Kv7.3-7.5 channels displayed a higher level of Kv7.4 transcript in detrusor compared to that present in brain cortex and heart tissues. Thus, we have shown that Kv7.4 channels are expressed and functionally active in pig detrusor, and that the use of selective Kv7.4 channel modulators in the treatment of detrusor overactivity seems promising. © 2013 Elsevier B.V. All rights reserved.

  14. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.

    1989-01-01

    A research program to study the effect of enhancement devices on flow boiling heat transfer in coolant channels, which are heated either from the top side or uniformly, is discussed. Freon 11 is the working fluid involved. The specific objectives are: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls, (2) examine the effect channel diameter (and the length-to-diameter aspect ratio) variations for the smooth wall channel, and (3) develop an improved data reduction analysis.

  15. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Sharma, B. S.; Jain, Archana; Jaiman, N. K.; Gupta, D. N.; Jang, D. G.; Suk, H.; Kulagin, V. V.

    2014-02-01

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃1019 W/cm2) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  16. Effect of an N-terminus deletion on voltage-dependent gating of the ClC-2 chloride channel

    PubMed Central

    Varela, Diego; Niemeyer, María Isabel; Cid, L Pablo; Sepúlveda, Francisco V

    2002-01-01

    ClC-2, a chloride channel widely expressed in mammalian tissues, is activated by hyperpolarisation and extracellular acidification. Deletion of amino acids 16–61 in rat ClC-2 abolishes voltage and pH dependence in two-electrode voltage-clamp experiments in amphibian oocytes. These results have been interpreted in terms of a ball-and-chain type of mechanism in which the N-terminus would behave as a ball that is removed from an inactivating site upon hyperpolarisation. We now report whole-cell patch-clamp measurements in mammalian cells showing hyperpolarization-activation of rClC-2Δ16–61 differing only in presenting faster opening and closing kinetics than rClC-2. The lack of time and voltage dependence observed previously was reproduced, however, in nystatin-perforated patch experiments. The behaviour of wild-type rClC-2 did not differ between conventional and nystatin-perforated patches. Similar results were obtained with ClC-2 from guinea-pig. One possible explanation of the results is that some diffusible component is able to lock the channel in an open state but does so only to the mutated channel. Alternative explanations involving the osmotic state of the cell and cytoskeleton structure are also considered. Low extracellular pH activates the wild-type channel but not rClC-2Δ16–61 when expressed in oocytes, a result that had been interpreted to suggest that protons affect the ball-and-chain mechanism. In our experiments no difference was seen in the effect of extracellular pH upon rClC-2 and rClC-2Δ16–61 in either recording configuration, suggesting that protons act independently from possible effects of the N-terminus on gating. Our observations of voltage-dependent gating of the N-terminal deleted ClC-2 are an argument against a ball-and-chain mechanism for this channel. PMID:12381811

  17. Kv7 (KCNQ) channel openers induce hypothermia in the mouse.

    PubMed

    Kristensen, Line V; Sandager-Nielsen, Karin; Hansen, Henrik H

    2011-01-20

    Kv7 channels, encoded by corresponding kcnq genes, are expressed both centrally and peripherally where they serve to dampen neuronal activity. While Kv7 channel openers have shown efficacy in neurological and neuropsychiatric disease models, the impact of Kv7 channel activation on physiological endpoint markers have not been addressed in detail. In this study we assessed the effect of a range of Kv7 channel openers with different affinity for neuronal Kv7.2-5 channel subunits on body temperature regulation in mice. Female NMRI mice were acutely exposed to vehicle (10% Tween-80, i.p.), retigabine (3-30 mg/kg, i.p., pan-Kv7 channel opener), (S)BMS-204352 (60-240 mg/kg, i.p., Kv7.4/5 channel-preferring opener), ICA-27243 (1-10mg/kg, i.p., Kv7.2/3 channel-preferring opener), or S-(1) (10-60 mg/kg, i.p., Kv7.2/3 channel-preferring opener), and rectal body temperature was measured 15-120 min post-injection. Retigabine (>10mg/kg), ICA-27243 (≥ 10 mg/kg), and S-(1) (≥ 30 mg/kg) dose-dependently lowered rectal body temperature with maximal doses of each Kv7 channel opener inducing a marked drop (>4°C) in rectal temperature. The Kv7 channel openers showed differential temporal pharmacodynamics, which likely reflects their different pharmacokinetic profiles. Pretreatment with the pan-Kv7 channel blocker XE-991 (1.0mg/kg, i.p.) completely reversed the hypothermic effect of the pan-Kv7 opener, retigabine (15 mg/kg), whereas ICA-27243-induced hypothermia (10mg/kg) could only be partially prevented by XE-991. Because ICA-27743 and S-(1) are Kv7.2/3 channel subunit-preferring compounds, this suggests that the Kv7.2/3 channel isoform is the predominant substrate for Kv7 channel opener-evoked hypothermia. These data indicate the physiological relevance of Kv7 channel function on body temperature regulation which may potentially reside from central inhibitory Kv7 channel activity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Reconstructive techniques for creation of catheterizable channels: tunneled and nipple valve channels

    PubMed Central

    Levy, Mya E.

    2016-01-01

    Cutaneous catheterizable channels allow for continent bladder emptying when an alternate route is desired. The goals of channel creation in the neurogenic bladder population are successful urine elimination, renal preservation, continence and lastly cosmesis. In addition to a particular surgeon’s comfort and experience with a given procedure, individual patient factors such as medical comorbidities, anatomic factors, and occupational function should be central to the selection of a surgical approach. An ideal channel is one that is short, straight, and well supported by associated blood supply and surrounding adventitia, so as to minimize difficulty with catheterization. Two types of channel continence mechanisms are discussed at length in this review—the tunneled channel, and the nipple valve. The appendicovesicostomy (Mitrofanoff), and reconfigured ileum (Yang-Monti) are both tunneled channels. The ileocecal valve is a commonly used nipple valve and provides continence when reinforced. The continent catheterizable ileal cecocystoplasty (CCIC) is an example of this channel technique. This method couples a tapered ileal limb as a catheterizable channel, the ileocecal valve as the continence mechanism, and the cecum and ascending colon as a bladder augmentation. While this procedure has higher perioperative complications relative to a simple tunneled channel, it has increased channel length flexibility and is also coupled with a bladder augment, which is completely performed using one bowel segment. Continent channel creation in adults can improve quality of life and minimize morbidity associated with neurogenic bladder. However, the decision to proceed with creation of a catheterizable channel should be made only after careful consideration of the patient’s medical comorbidities, physical abilities social support, and surgeon experience. PMID:26904419

  19. Regulation of Connexin-Based Channels by Fatty Acids

    PubMed Central

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  20. Modulation of the olfactory CNG channel by Ptdlns(3,4,5)P3.

    PubMed

    Zhainazarov, A B; Spehr, M; Wetzel, C H; Hatt, H; Ache, B W

    2004-09-01

    Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.

  1. Single-channel autocorrelation functions: the effects of time interval omission.

    PubMed Central

    Ball, F G; Sansom, M S

    1988-01-01

    We present a general mathematical framework for analyzing the dynamic aspects of single channel kinetics incorporating time interval omission. An algorithm for computing model autocorrelation functions, incorporating time interval omission, is described. We show, under quite general conditions, that the form of these autocorrelations is identical to that which would be obtained if time interval omission was absent. We also show, again under quite general conditions, that zero correlations are necessarily a consequence of the underlying gating mechanism and not an artefact of time interval omission. The theory is illustrated by a numerical study of an allosteric model for the gating mechanism of the locust muscle glutamate receptor-channel. PMID:2455553

  2. Results of Buoyancy-gravity Effects in ITER Cable-in- Conduit Conductor with Dual Channel

    NASA Astrophysics Data System (ADS)

    Bruzzone, P.; Stepanov, B.; Zanino, R.; Richard, L. Savoldi

    2006-04-01

    The coolant in the ITER cable-in-conduit conductors (CICC) flows at significant higher speed in the central channel than in the strand bundle region due to the large difference of hydraulic impedance. When energy is deposited in the bundle region, e.g. by ac loss or radiation, the heat removal in vertically oriented dual channel CICC with the coolant flowing downward is affected by the reduced density of helium (buoyancy) in the bundle region, which is arising from the temperature gradient due to poor heat exchange between the two channels. At large deposited power, flow stagnation and back-flow can cause in the strand bundle area a slow temperature runaway eventually leading to quench. A new test campaign of the thermal-hydraulic behavior was carried out in the SULTAN facility on an instrumented section of the ITER Poloidal Field Conductor Insert (PFIS). The buoyancy-gravity effect was investigated using ac loss heating, with ac loss in the cable calibrated in separate runs. The extent of upstream temperature increase was explored over a broad range of mass flow rate and deposited power. The experimental behavior is partly reproduced by numerical simulations. The results from the tests are extrapolated to the likely operating conditions of the ITER Toroidal Field conductor with the inboard leg cooled from top to bottom and heat deposited by nuclear radiation from the burning plasma.

  3. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  4. Alpha Channeling in Open-System Magnetic Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisch, Nathaniel

    The Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, is a continuation of the Grant DE-FG02-06ER54851, Alpha Channeling in Mirror Machines. In publications funded by DE-SC0000736, the grant DE-FG02-06ER54851 was actually credited. The key results obtained under Grant DE-SC0000736, Alpha Channeling in Open-System Magnetic Devices, appear in a series of publications. The earlier effort under DE-FG02- 06ER54851 was the subject of a previous Final Report. The theme of this later effort has been unusual confinement effects, or de-confinement effects, in open-field magnetic confinement devices. First, the possibilities in losing axisymmetry were explored. Then a number of issues in rotating plasmamore » were addressed. Most importantly, a spinoff application to plasma separations was recognized, which also resulted in a provisional patent application. (That provisional patent application, however, was not pursued further.) Alpha channeling entails injecting waves into magnetically confined plasma to release energy from one particular ion while ejecting that ion. The ejection of the ion is actually a concomitant effect in releasing energy from the ion to the wave. In rotating plasma, there is the opportunity to store the energy in a radial electric field rather than in waves. In other words, the ejected alpha particle loses its energy to the radial potential, which in turn produces plasma rotation. This is a very useful effect, since producing radial electric fields by other means are technologically more difficult. In fact, one can heat ions, and then eject them, to produce the desired radial field. In each case, there is a separation effect of different ions, which generalizes the original alpha-channeling concept of separating alpha ash from hydrogen. In a further generalization of the separation concept, a double-well filter represents a new way to produce high-throughput separations of ions, potentially useful for nuclear waste remediation.« less

  5. Thin walled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less

  6. Effects of spatial constraints on channel network topology: Implications for geomorphological inference

    NASA Astrophysics Data System (ADS)

    Cabral, Mariza Castanheira De Moura Da Costa

    In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide

  7. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  8. Streambed adjustment and channel widening in eastern Nebraska

    USGS Publications Warehouse

    Rus, David L.; Dietsch, Benjamin J.; Simon, Andrew

    2003-01-01

    In eastern Nebraska, stream straightening and dredging efforts since the 1890s have disturbed the natural equilibrium of stream channels and have led to streambed adjustment by degradation and subsequent channel widening. This report describes a study to evaluate the effect these disturbances have had on stream channels in eastern Nebraska. Two sets of survey data were collected approximately 2 years apart during 1996-99 at 151 primary sites. Additionally, historical streambed-elevation data (dating back to the 1890s) were compiled from several sources for the primary sites and 45 supplemental sites, and relevant disturbances were identified for each of eight basin groupings. Streambed-elevation data sets were used to estimate the amount of change to the streambed at the sites over the time period of the data. Recent channel widening was documented for 73 of the primary sites by comparing the two survey sets. The majority of observed streambed-gradation responses appear to be related to the various straightening efforts and to the effects of grade-control structures in the study area. Channel responses were complicated by the presence of multiple disturbances. However, in many cases, the streambed-elevation data sets provide a reliable representation of the past streambed gradation, with some sites showing 6 to 7 meters of degradation since they were straightened. Many sites that had been straightened showed considerable degradation following the disturbance. This indicates that eastern Nebraska stream channels can regain equilibrium mainly through the slope adjustment process of head-ward-progressing degradation. Bank failures were documented at sites in all eight of the basin groupings analyzed, and widening rates were computed at 64 of 73 sites. Observed bank widening in the Big Blue River Basin, a relatively unstraightened basin, indicates that other disturbances besides stream-channel straightening may be causing channel responses in the basin and possibly in

  9. Effect of Cavβ Subunits on Structural Organization of Cav1.2 Calcium Channels

    PubMed Central

    Duong, Son Q.; Thomas, Sam; Harry, Jo Beth; Patel, Chirag; Lao, Qi Zong; Soldatov, Nikolai M.

    2009-01-01

    Background Voltage-gated Cav1.2 calcium channels play a crucial role in Ca2+ signaling. The pore-forming α1C subunit is regulated by accessory Cavβ subunits, cytoplasmic proteins of various size encoded by four different genes (Cavβ1 - β4) and expressed in a tissue-specific manner. Methods and Results Here we investigated the effect of three major Cavβ types, β1b, β2d and β3, on the structure of Cav1.2 in the plasma membrane of live cells. Total internal reflection fluorescence microscopy showed that the tendency of Cav1.2 to form clusters depends on the type of the Cavβ subunit present. The highest density of Cav1.2 clusters in the plasma membrane and the smallest cluster size were observed with neuronal/cardiac β1b present. Cav1.2 channels containing β3, the predominant Cavβ subunit of vascular smooth muscle cells, were organized in a significantly smaller number of larger clusters. The inter- and intramolecular distances between α1C and Cavβ in the plasma membrane of live cells were measured by three-color FRET microscopy. The results confirm that the proximity of Cav1.2 channels in the plasma membrane depends on the Cavβ type. The presence of different Cavβ subunits does not result in significant differences in the intramolecular distance between the termini of α1C, but significantly affects the distance between the termini of neighbor α1C subunits, which varies from 67 Å with β1b to 79 Å with β3. Conclusions Thus, our results show that the structural organization of Cav1.2 channels in the plasma membrane depends on the type of Cavβ subunits present. PMID:19492014

  10. Effect of graded InGaN drain region and 'In' fraction in InGaN channel on performances of InGaN tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoling; Zhang, Jincheng; Wang, Shulong; Quan, Rudai; Hao, Yue

    2017-12-01

    An InGaN-based graded drain region tunnel field-effect transistor (GD-TFET) is proposed to suppress the ambipolar behavior. The simulation results with the trade-off between on-state current (Ion) and ambipolar current (Iambipolar) show decreased Iambipolar (1.9 × 10-14 A/μm) in comparison with that of conventional TFETs (2.0 × 10-8 A/μm). Furthermore, GD-TFET with high 'In' fraction InxGa1-xN source-side channel (SC- GD-TFET) is explored and exhibits 5.3 times Ion improvement and 60% average subthreshold swing (SSavg) reduction in comparison with GD-TFET by adjusting 'In' fraction in the InxGa1-xN source-side channel. The improvement is attributed to the confinement of BTBT in the source-side channel by the heterojunction. And then, the optimum value for source-side channel length (Lsc) is researched by DC performances results, which shows it falls into the range between Lsc = 10 nm and 20 nm.

  11. Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.

    PubMed

    Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H

    2015-01-27

    The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.

  12. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Crowd counting via region based multi-channel convolution neural network

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoguang; Gao, Siqi; Bai, Xiangzhi

    2017-11-01

    This paper proposed a novel region based multi-channel convolution neural network architecture for crowd counting. In order to effectively solve the perspective distortion in crowd datasets with a great diversity of scales, this work combines the main channel and three branch channels. These channels extract both the global and region features. And the results are used to estimate density map. Moreover, kernels with ladder-shaped sizes are designed across all the branch channels, which generate adaptive region features. Also, branch channels use relatively deep and shallow network to achieve more accurate detector. By using these strategies, the proposed architecture achieves state-of-the-art performance on ShanghaiTech datasets and competitive performance on UCF_CC_50 datasets.

  14. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    PubMed

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational

  15. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  16. Conserved Kv4 N-terminal domain critical for effects of Kv channel-interacting protein 2.2 on channel expression and gating.

    PubMed

    Bähring, R; Dannenberg, J; Peters, H C; Leicher, T; Pongs, O; Isbrandt, D

    2001-06-29

    Association of Kv channel-interacting proteins (KChIPs) with Kv4 channels leads to modulation of these A-type potassium channels (An, W. F., Bowlby, M. R., Betty, M., Cao, J., Ling, H. P., Mendoza, G., Hinson, J. W., Mattsson, K. I., Strassle, B. W., Trimmer, J. S., and Rhodes, K. J. (2000) Nature 403, 553-556). We cloned a KChIP2 splice variant (KChIP2.2) from human ventricle. In comparison with KChIP2.1, coexpression of KChIP2.2 with human Kv4 channels in mammalian cells slowed the onset of Kv4 current inactivation (2-3-fold), accelerated the recovery from inactivation (5-7-fold), and shifted Kv4 steady-state inactivation curves by 8-29 mV to more positive potentials. The features of Kv4.2/KChIP2.2 currents closely resemble those of cardiac rapidly inactivating transient outward currents. KChIP2.2 stimulated the Kv4 current density in Chinese hamster ovary cells by approximately 55-fold. This correlated with a redistribution of immunoreactivity from perinuclear areas to the plasma membrane. Increased Kv4 cell-surface expression and current density were also obtained in the absence of KChIP2.2 when the highly conserved proximal Kv4 N terminus was deleted. The same domain is required for association of KChIP2.2 with Kv4 alpha-subunits. We propose that an efficient transport of Kv4 channels to the cell surface depends on KChIP binding to the Kv4 N-terminal domain. Our data suggest that the binding is necessary, but not sufficient, for the functional activity of KChIPs.

  17. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    PubMed Central

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-01-01

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416

  18. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.

    PubMed

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-05-04

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  19. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  20. Simulation of electrokinetic flow in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Sabur, Romena; Matin, M.

    2005-08-01

    Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.

  1. Riparian vegetation controls on channels formed in non-cohesive sediment

    NASA Astrophysics Data System (ADS)

    Gran, K.; Tal, M.; Paola, C.

    2002-05-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments

  2. Effect of unsteady oscillatory MHD flow through a porous medium in porous vertical channel with chemical reaction and concentration

    NASA Astrophysics Data System (ADS)

    Chitra, M.; Suhasini, M.

    2018-04-01

    In this paper, we investigate the effect of chemical reaction on the unsteady oscillatory MHD flow through porous medium in a porous vertical channel in the presence of suction velocity. The flow is assumed to be incompressible electrically conducting and radiating viscoelastic fluid in the presence of uniform magnetic flied applied perpendicular to the plane of the plates of the channel. The closed forms of analytical solution are obtained for the momentum, energy and concentration equation. The effect of various flow parameters like Schmidt number, chemical radiation parameter, Grashof number, solutal Grashof number on velocity profile, temperature, concentration, wall shear stress, and the rate of heat and mass transfer are obtained and their behaviour are discussed graphically.

  3. Operator-sum representation for bosonic Gaussian channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivan, J. Solomon; Sabapathy, Krishna Kumar; Simon, R.

    2011-10-15

    Operator-sum or Kraus representations for single-mode bosonic Gaussian channels are developed, and several of their consequences explored. The fact that the two-mode metaplectic operators acting as unitary purification of these channels do not, in their canonical form, mix the position and momentum variables is exploited to present a procedure which applies uniformly to all families in the Holevo classification. In this procedure the Kraus operators of every quantum-limited Gaussian channel can be simply read off from the matrix elements of a corresponding metaplectic operator. Kraus operators are employed to bring out, in the Fock basis, the manner in which themore » antilinear, unphysical matrix transposition map when accompanied by injection of a threshold classical noise becomes a physical channel, denoted D({kappa}) in the Holevo classification. The matrix transposition channels D({kappa}), D({kappa}{sup -1}) turn out to be a dual pair in the sense that their Kraus operators are related by the adjoint operation. The amplifier channel with amplification factor {kappa} and the beam-splitter channel with attenuation factor {kappa}{sup -1} turn out to be mutually dual in the same sense. The action of the quantum-limited attenuator and amplifier channels as simply scaling maps on suitable quasiprobabilities in phase space is examined in the Kraus picture. Consideration of cumulants is used to examine the issue of fixed points. The semigroup property of the amplifier and attenuator families leads in both cases to a Zeno-like effect arising as a consequence of interrupted evolution. In the cases of entanglement-breaking channels a description in terms of rank 1 Kraus operators is shown to emerge quite simply. In contradistinction, it is shown that there is not even one finite rank operator in the entire linear span of Kraus operators of the quantum-limited amplifier or attenuator families, an assertion far stronger than the statement that these are not entanglement

  4. The secret life of ion channels: Kv1.3 potassium channels and proliferation.

    PubMed

    Pérez-García, M Teresa; Cidad, Pilar; López-López, José R

    2018-01-01

    Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.

  5. Two-ply channels for faster wicking in paper-based microfluidic devices.

    PubMed

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  6. A study for bank effect on ship traffic in narrow water channels using cellular automata

    NASA Astrophysics Data System (ADS)

    Sun, Zhuo; Cong, Shuang; Pan, Junnan; Zheng, Jianfeng

    2017-12-01

    In narrow water channels, bank might affect nearby ships due to hydrodynamic forces (bank effect). To avoid accidents, different sailing rules (i.e., lane-changing, speed control) are required. In this paper, a two-lane cellular automata model is proposed to evaluate such phenomena. Numerical experiments show that ships will form a “slow-moving chunk” in the bank area, which will significantly block the flux. As further study demonstrated to alleviate bank effect, ship speed and bank length should be controlled.

  7. The Psychology of Channeling.

    ERIC Educational Resources Information Center

    Corey, Michael A.

    1988-01-01

    Theoretically analyzes phenomenon of channeling from perspective of C. G. Jung's analytic psychology. Hypothesizes that contact with otherworldly spiritual beings claimed by channelers is actually projected contact with contents of channeler's own unconscious mind. Suggests that channelers seek more constructive ways of contacting their…

  8. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  9. Exhumation rates of high pressure metamorphic rocks in subduction channels: The effect of Rheology

    NASA Astrophysics Data System (ADS)

    Gerya, T. V.; Stöckhert, B.

    2002-04-01

    Exhumation of high-pressure metamorphic rocks can take place with typical plate velocities of cm/year. This is consistent with a model of forced flow in a subduction channel. The (micro)structural record of exhumed metamorphic rocks indicates that stresses are generally too low to drive deformation of the bulk material by dislocation creep, according to a power-law rheology. Instead deformation appears to be localized in low-strength shear zones, and is dominated by dissolution precipitation creep or fluid assisted granular flow, implying a Newtonian rheology. 1D modeling shows that the effective rheology of the material in the subduction channel has a significant influence on the rate of exhumation. When the subduction flux either equals or exceeds the return flux, the maximum exhumation rate for Newtonian behavior of the material is at least twice as high (~1/3 of the subduction burial rate) compared to that for power-law creep (~1/6 of the subduction burial rate).

  10. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    PubMed

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  11. Generic theory for channel sinuosity.

    PubMed

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.

  12. Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels

    NASA Astrophysics Data System (ADS)

    Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun

    2017-12-01

    As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.

  13. Red-green opponent channel mediation of control of human ocular accommodation.

    PubMed Central

    Kotulak, J C; Morse, S E; Billock, V A

    1995-01-01

    1. It has been hypothesized, but not verified empirically, that the control of human ocular accommodation is mediated by either the red-green or yellow-blue colour channels. Our goal was to determine experimentally whether the red-green channel by itself could influence the accommodative response. 2. To find out, we isolated the red-green channel through chromatic bandpass filtering and measured accommodation under dynamic and static conditions. The effect of this filtering was to modulate the red-green channel without disturbing either the yellow-blue or luminance channels. 3. Accommodative gain (ratio of response to stimulus amplitude) declined monotonically with decreasing bandwidth under dynamic conditions. Because the outputs of both the luminance and yellow-blue colour channels did not vary with bandwidth, the only explanation is that the red-green opponent process was responsible for the effect. 4. Under static conditions, however, accommodation was independent of bandwidth. This may be attributable to the decreased sensitivity to chromatic contrast that occurs at low temporal frequencies. PMID:7738858

  14. Bayesian sparse channel estimation

    NASA Astrophysics Data System (ADS)

    Chen, Chulong; Zoltowski, Michael D.

    2012-05-01

    In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.

  15. Direct and indirect effects of channel catfish (Ictalurus punctatus) on native crayfishes (Cambaridae) in experimental tanks

    Treesearch

    Susan B. Adams

    2006-01-01

    For The incised, sand-bed streams of northcentral Mississippi, USA, fish predation is one plausible mechanism to explain both relatively low crayfish densities and differences in stream size occupied by various native crayfishes. I conducted two mesocosm experiments to test effects of a fish predator (channel catfish, Ictalurus punctahls) on the...

  16. Modulation of inward rectifier potassium channel by toosendanin, a presynaptic blocker.

    PubMed

    Wang, Z F; Shi, Y L

    2001-07-01

    The effect of toosendanin, a presynaptic blocker, on the inward rectifier potassium channel (K(Kir)) of hippocampal CA1 pyramidal neurons of rats was studied by the single-channel patch-clamp technique. The results showed that toosendanin had an inhibitory effect on K(Kir) in an excised inside-out patch of the neuron under a symmetrical 150 mM K(+) condition. By decreasing the slower open time constant and increasing the slower close time constant, toosendanin (1x10(-6)-1x10(-4) g/ml) significantly reduced the open probability of the channel in a concentration-dependent manner. Meanwhile, a dose-dependent reduction in unitary conductance of the channel was also detected after toosendanin application. These data offer an explanation for toosendanin-induced facilitation of neurotransmitter release and antibotulismic effect of the drug.

  17. Phosphorus Doping Effect in a Zinc Oxide Channel Layer to Improve the Performance of Oxide Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Han, Dong-Suk; Moon, Yeon-Keon; Lee, Sih; Kim, Kyung-Taek; Moon, Dae-Yong; Lee, Sang-Ho; Kim, Woong-Sun; Park, Jong-Wan

    2012-09-01

    In this study, we fabricated phosphorus-doped zinc oxide-based thin-film transistors (TFTs) using direct current (DC) magnetron sputtering at a relatively low temperature of 100°C. To improve the TFT device performance, including field-effect mobility and bias stress stability, phosphorus dopants were employed to suppress the generation of intrinsic defects in the ZnO-based semiconductor. The positive and negative bias stress stabilities were dramatically improved by introducing the phosphorus dopants, which could prevent turn-on voltage ( V ON) shift in the TFTs caused by charge trapping within the active channel layer. The study showed that phosphorus doping in ZnO was an effective method to control the electrical properties of the active channel layers and improve the bias stress stability of oxide-based TFTs.

  18. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  19. Role of aquaporin and sodium channel in pleural water movement.

    PubMed

    Jiang, Jinjun; Hu, Jie; Bai, Chunxue

    2003-12-16

    The role of the ENaC sodium channel and aquaporin-1 (AQP1) water channel on pleural fluid dynamics in mice was investigated. 0.25 ml of hypertonic or isosmolar fluid was infused into the pleural space in anesthetized wildtype and AQP1 null mice. Pleural fluid was sampled at specified times to quantify the osmolality and volume. The sodium channel activator terbutaline increased isosmolar fluid clearance by 90% while the sodium channel inhibitor amiloride decreased it by 15%, but had no effect on osmotically driven water transport. AQP1 deletion significantly decreased osmotic water transport in pleural space by twofold, but it had no effect on isosmolar fluid clearance. Pretreatment with dexamethasone increased pleural osmotic fluid entry by 25%, while intravenous injection of HgCl2 decreased osmotic pleural water movement by 43%. These results provided evidence for a role of a sodium channel in pleural fluid absorption; AQP1 plays a major role in osmotic liquid transport but it does not affect isosmolar fluid clearance.

  20. Tamoxifen Inhibition of Kv7.2/Kv7.3 Channels

    PubMed Central

    Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S.; Tristani-Firouzi, Martin; Sanchez-Chapula, José A.

    2013-01-01

    KCNQ genes encode five Kv7 K+ channel subunits (Kv7.1–Kv7.5). Four of these (Kv7.2–Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels. PMID:24086693

  1. Tamoxifen inhibition of kv7.2/kv7.3 channels.

    PubMed

    Ferrer, Tania; Aréchiga-Figueroa, Ivan Arael; Shapiro, Mark S; Tristani-Firouzi, Martin; Sanchez-Chapula, José A

    2013-01-01

    KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which regulates neuronal excitability. In this study, we demonstrate that tamoxifen, an estrogen receptor antagonist used in the treatment of breast cancer, inhibits Kv7.2/Kv7.3 currents heterologously expressed in human embryonic kidney HEK-293 cells. Current inhibition by tamoxifen was voltage independent but concentration-dependent. The IC50 for current inhibition was 1.68 ± 0.44 µM. The voltage-dependent activation of the channel was not modified. Tamoxifen inhibited Kv7.2 homomeric channels with a higher potency (IC50 = 0.74 ± 0.16 µM). The mutation Kv7.2 R463E increases phosphatidylinositol- 4,5-bisphosphate (PIP2) - channel interaction and diminished dramatically the inhibitory effect of tamoxifen compared with that for wild type Kv7.2. Conversely, the mutation Kv7.2 R463Q, which decreases PIP2 -channel interaction, increased tamoxifen potency. Similar results were obtained on the heteromeric Kv7.2 R463Q/Kv7.3 and Kv7.2 R463E/Kv7.3 channels, compared to Kv7.2/Kv7.3 WT. Overexpression of type 2A PI(4)P5-kinase (PIP5K 2A) significantly reduced tamoxifen inhibition of Kv7.2/Kv7.3 and Kv7.2 R463Q channels. Our results suggest that tamoxifen inhibited Kv7.2/Kv7.3 channels by interfering with PIP2-channel interaction because of its documented interaction with PIP2 and the similar effect of tamoxifen on various PIP2 sensitive channels.

  2. Effect of a dual inlet channel on cell loading in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2014-11-01

    Unwanted sedimentation and attachment of a number of cells onto the bottom channel often occur on relatively large-scale inlets of conventional microfluidic channels as a result of gravity and fluid shear. Phenomena such as sedimentation have become recognized problems that can be overcome by performing microfluidic experiments properly, such as by calculating a meaningful output efficiency with respect to real input. Here, we present a dual-inlet design method for reducing cell loss at the inlet of channels by adding a new " upstream inlet " to a single main inlet design. The simple addition of an upstream inlet can create a vertically layered sheath flow prior to the main inlet for cell loading. The bottom layer flow plays a critical role in preventing the cells from attaching to the bottom of the channel entrance, resulting in a low possibility of cell sedimentation at the main channel entrance. To provide proof-of-concept validation, we applied our design to a microfabricated flow cytometer system (μFCS) and compared the cell counting efficiency of the proposed μFCS with that of the previous single-inlet μFCS and conventional FCS. We used human white blood cells and fluorescent microspheres to quantitatively evaluate the rate of cell sedimentation in the main inlet and to measure fluorescence sensitivity at the detection zone of the flow cytometer microchip. Generating a sheath flow as the bottom layer was meaningfully used to reduce the depth of field as well as the relative deviation of targets in the z-direction (compared to the x-y flow plane), leading to an increased counting sensitivity of fluorescent detection signals. Counting results using fluorescent microspheres showed both a 40% reduction in the rate of sedimentation and a 2-fold higher sensitivity in comparison with the single-inlet μFCS. The results of CD4(+) T-cell counting also showed that the proposed design results in a 25% decrease in the rate of cell sedimentation and a 28% increase in

  3. Voltage gated sodium channels as drug discovery targets

    PubMed Central

    Bagal, Sharan K; Marron, Brian E; Owen, Robert M; Storer, R Ian; Swain, Nigel A

    2015-01-01

    Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter. PMID:26646477

  4. Pharmacology of P2X channels.

    PubMed

    Gever, Joel R; Cockayne, Debra A; Dillon, Michael P; Burnstock, Geoffrey; Ford, Anthony P D W

    2006-08-01

    Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.

  5. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less

  6. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence onmore » the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.« less

  7. Performance of convolutionally encoded noncoherent MFSK modem in fading channels

    NASA Technical Reports Server (NTRS)

    Modestino, J. W.; Mui, S. Y.

    1976-01-01

    The performance of a convolutionally encoded noncoherent multiple-frequency shift-keyed (MFSK) modem utilizing Viterbi maximum-likelihood decoding and operating on a fading channel is described. Both the lognormal and classical Rician fading channels are considered for both slow and time-varying channel conditions. Primary interest is in the resulting bit error rate as a function of the ratio between the energy per transmitted information bit and noise spectral density, parameterized by both the fading channel and code parameters. Fairly general upper bounds on bit error probability are provided and compared with simulation results in the two extremes of zero and infinite channel memory. The efficacy of simple block interleaving in combatting channel memory effects are thoroughly explored. Both quantized and unquantized receiver outputs are considered.

  8. Monitoring Single-channel Water Permeability in Polarized Cells*

    PubMed Central

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-01-01

    So far the determination of unitary permeability (pf) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability pf as a function of the incremental water permeability (Pf,c) and the number (n) of water channels that contributed to Pf,c. Although the unitary conductance of ion channels is measured in the native environment of the channel, pf is so far derived from reconstituted channels or channels expressed in oocytes. To determine the pf of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both Pf,c and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the pf of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on pf. PMID:21940624

  9. Flow of quasi-two dimensional water in graphene channels

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  10. Nearly ideal binary communication in squeezed channels

    NASA Astrophysics Data System (ADS)

    Paris, Matteo G.

    2001-07-01

    We analyze the effect of squeezing the channel in binary communication based on Gaussian states. We show that for coding on pure states, squeezing increases the detection probability at fixed size of the strategy, actually saturating the optimal bound already for moderate signal energy. Using Neyman-Pearson lemma for fuzzy hypothesis testing we are able to analyze also the case of mixed states, and to find the optimal amount of squeezing that can be effectively employed. It results that optimally squeezed channels are robust against signal mixing, and largely improve the strategy power by comparison with coherent ones.

  11. Monte Carlo simulation of a noisy quantum channel with memory.

    PubMed

    Akhalwaya, Ismail; Moodley, Mervlyn; Petruccione, Francesco

    2015-10-01

    The classical capacity of quantum channels is well understood for channels with uncorrelated noise. For the case of correlated noise, however, there are still open questions. We calculate the classical capacity of a forgetful channel constructed by Markov switching between two depolarizing channels. Techniques have previously been applied to approximate the output entropy of this channel and thus its capacity. In this paper, we use a Metropolis-Hastings Monte Carlo approach to numerically calculate the entropy. The algorithm is implemented in parallel and its performance is studied and optimized. The effects of memory on the capacity are explored and previous results are confirmed to higher precision.

  12. Contribution of the AIRS Shortwave Sounding Channels to Retrieval Accuracy

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis

    2006-01-01

    AIRS contains 2376 high spectral resolution channels between 650/cm and 2665/cm, including channels in both the 15 micron (near 667/cm) and 4.2 micron (near 2400/cm) COP sounding bands. Use of temperature sounding channels in the 15 micron CO2 band has considerable heritage in infra-red remote sensing. Channels in the 4.2 micron CO2 band have potential advantages for temperature sounding purposes because they are essentially insensitive to absorption by water vapor and ozone, and also have considerably sharper lower tropospheric temperature sounding weighting functions than do the 15 micron temperature sounding channels. Potential drawbacks with regard to use of 4.2 micron channels arise from effects on the observed radiances of solar radiation reflected by the surface and clouds, as well as effects of non-local thermodynamic equilibrium on shortwave observations during the day. These are of no practical consequences, however, when properly accounted for. We show results of experiments performed utilizing different spectral regions of AIRS, conducted with the AIRS Science Team candidate Version 5 algorithm. Experiments were performed using temperature sounding channels within the entire AIRS spectral coverage, within only the spectral region 650/cm to 1614 /cm; and within only the spectral region 1000/cm-2665/cm. These show the relative importance of utilizing only 15 micron temperature sounding channels, only the 4.2 micron temperature sounding channels, and both, with regards to sounding accuracy. The spectral region 2380/cm to 2400/cm is shown to contribute significantly to improve sounding accuracy in the lower troposphere, both day and night.

  13. Pharmacological preconditioning by diazoxide downregulates cardiac L-type Ca2+ channels

    PubMed Central

    González, G; Zaldívar, D; Carrillo, ED; Hernández, A; García, MC; Sánchez, JA

    2010-01-01

    BACKGROUND AND PURPOSE Pharmacological preconditioning (PPC) with mitochondrial ATP-sensitive K+ (mitoKATP) channel openers such as diazoxide, leads to cardioprotection against ischaemia. However, effects on Ca2+ homeostasis during PPC, particularly changes in Ca2+ channel activity, are poorly understood. We investigated the effects of PPC on cardiac L-type Ca2+ channels. EXPERIMENTAL APPROACH PPC was induced in isolated hearts and enzymatically dissociated cardiomyocytes from adult rats by preincubation with diazoxide. We measured reactive oxygen species (ROS) production and Ca2+ signals associated with action potentials using fluorescent probes, and L-type currents using a whole-cell patch-clamp technique. Levels of the α1c subunit of L-type channels in the cellular membrane were measured by Western blot. KEY RESULTS PPC was accompanied by a 50% reduction in α1c subunit levels, and by a reversible fall in L-type current amplitude and Ca2+ transients. These effects were prevented by the ROS scavenger N-acetyl-L-cysteine (NAC), or by the mitoKATP channel blocker 5-hydroxydecanoate (5-HD). PPC signficantly reduced infarct size, an effect blocked by NAC and 5-HD. Nifedipine also conferred protection against infarction when applied during the reperfusion period. Downregulation of the α1c subunit and Ca2+ channel function were prevented in part by the protease inhibitor leupeptin. CONCLUSIONS AND IMPLICATIONS PPC downregulated the α1c subunit, possibly through ROS. Downregulation involved increased degradation of the Ca2+ channel, which in turn reduced Ca2+ influx, which may attenuate Ca2+ overload during reperfusion. PMID:20636393

  14. Ca2+ channel blockers interact with alpha 2-adrenergic receptors in rabbit ileum.

    PubMed

    Homaidan, F R; Donowitz, M; Wicks, J; Cusolito, S; el Sabban, M E; Weiland, G A; Sharp, W G

    1988-04-01

    An interaction between Ca2+ channel blockers and alpha 2-adrenergic receptors has been demonstrated in rabbit ileum by studying the effect of clonidine on active electrolyte transport, under short-circuited conditions, in the presence and absence of several Ca2+ channel blocking agents. Clonidine, verapamil, diltiazem, cadmium, and nitrendipine all decrease short-circuit current and stimulate NaCl absorption to different extents with clonidine having the largest effect. Exposure to verapamil, diltiazem, and cadmium inhibited the effects of clonidine on transport, whereas nitrendipine had no such effect. Verapamil, diltiazem, and cadmium, but not nitrendipine, also decreased the specific binding of [3H]alpha 2-adrenergic agents to a preparation of ileal basolateral membranes explaining the observed decrease in the transport effects of clonidine. The effective concentrations of the Ca2+ channel blockers that inhibited the effects of clonidine on transport were fairly similar to the concentrations needed to inhibit its specific binding. The displacement of clonidine by calcium channel blockers is ascribed to a nonspecific effect of these agents, although the possibility that their effects are exerted via their binding to the calcium channels is not excluded.

  15. Alterations by glyburide of effects of BRL 34915 and P 1060 on contraction, 86Rb efflux and the maxi-K+ channel in rat portal vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S.L.; Kim, H.S.; Okolie, P.

    1990-05-01

    Effects of the K+ channel blocking agent, glyburide, on the actions of two K+ channel openers, BRL 34915 (cromakalim) and P 1060 (Leo), a potent pinacidil derivative (N-(t-butyl)-N{double prime}-cyano-N{prime}-3-pyridyl-guanidine), were ascertained. Tension responses and {sup 86}Rb fluxes in rat portal vein strips and single channel electrophysiological recordings in enzymatically dissociated rat portal vein cells were obtained. Glyburide (0.3 microM) increased spontaneous contractile activity and caused concentration-dependent shifts in the relaxation responses to BRL 34915 and P 1060. Increases in {sup 86}Rb efflux were obtained only at much higher concentrations of BRL 34915 or P 1060, and these increases were blockedmore » only at higher concentrations of glyburide (5.0 microM). BRL 34915 and P 1060 specifically increase the open-state probability of the Ca+(+)-activated K+ (maxi-K+) channel, and these actions are blocked by glyburide and also by charybdotoxin. Changes in single channel activity and contractile responsiveness occur at similar concentrations of agonists and antagonists. Thus, the membrane channel in rat portal vein affected by glyburide, BRL 34915 and P 1060 appears to be the Ca+(+)-activated maxi-K+ channel (that does not show ATP dependence under the conditions of these experiments). Concentrations of agonists and antagonists effective on maxi-K+ channel activity correspond to those affecting contractile responsiveness and are lower than those eliciting changes in {sup 86}Rb flux.« less

  16. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  17. Vertebrate rod photoreceptors express both BK and IK calcium-activated potassium channels, but only BK channels are involved in receptor potential regulation.

    PubMed

    Pelucchi, Bruna; Grimaldi, Annalisa; Moriondo, Andrea

    2008-01-01

    In salamander rods, Ca(2+)-activated K(+) current (I(KCa)) provides an effective "clamp" of the dark membrane potential to its normal resting level. By a combination of electrophysiological, pharmacological, and immunohistochemical approaches, we show that salamander rods functionally express large-conductance Ca(2+)- and voltage-dependent potassium (BK) channel and intermediate-conductance Ca(2+)-dependent potassium (IK) channel, but not small-conductance Ca(2+)-dependent potassium channel (SK) subtypes. Application of 100 nM iberiotoxin and 100 nM clotrimazole reduced net I(KCa) to 36% and 63%, respectively, whereas the current was unaffected by application of 1 microM apamin. Consistently, anti- SK1, -SK2, and -SK3 antibodies were unable to stain rod photoreceptors, whereas both anti-BK and -SK4/ IK1 antibodies heavily stained the ellipsoid region of the inner segments of the rods. Moreover, by using current-clamp experiments, it was clearly seen that the strong clamping effect of the total I(KCa) was lost when IbTx, but not CLTZ, was applied to the bath. This behavior strongly suggests that of BK and IK channels, only the former are responsible for the clamping effect on the photoreceptor membrane potential.

  18. Effects of large floods on channel width: recent insights from Italian rivers

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Righini, Margherita; Amponsah, William; Crema, Stefano; Ciccarese, Giuseppe; Nardi, Laura; Zoccatelli, Davide; Borga, Marco; Cavalli, Marco; Comiti, Francesco; Corsini, Alessandro; Marchi, Lorenzo; Rinaldi, Massimo; Surian, Nicola

    2017-04-01

    Variations of channel morphology occurring during large flood events (recurrence interval > 50-100 years.) are very often the cause of damages to buildings and infrastructures, as well as of casualties. However, our knowledge of such processes remains poor, as is our capability to predict them. Post-event campaigns documenting channel changes and linking them to hydrological and morphological factors thus bear an enormous value for both the scientific community and river management agencies. We present the results of an analysis on the geomorphic response associated to 4 large floods that occurred between October 2011 and September 2015, affecting several catchments in Northern Italy (Magra-Vara, Trebbia, Nure rivers) and Sardinia (Posada and Mannu di Bitti rivers), characterized by different climatic, lithological and geomorphological settings. The analysis considered more than 400 channel reaches characterized by a drainage area ranging from 39 to 1,100 km2 and featuring a wide range of lateral confinement, mostly within the partly- and unconfined conditions. The approach to flood analysis encompassed: (i) hydrological and hydraulic analysis; (ii) analysis of sediment delivery by landslides to the channel network; (iii) GIS-based and field assessment of morphological channel modifications. For the Nure River flood event (September 2015) a quantitative assessment on average bed level variations was also carried out. Return period for maximum hourly rainfall intensities and peak water discharges exceeded in all basins 100 yr, in some cases even 300 yr. Very high unit peak discharges were estimated, reaching 8.8 m3 s-1km-2 in the Nure River (205 km2) and up to 30 m3 s-1km-2in few Magra River tributaries (5-10 km2). Notable channel widening (post-flood width / pre-flood width > 1.1) occurred in 83% of studied reaches, and it was found more relevant in the channels with narrower initial width, i.e. along the relatively steep tributaries. For these tributaries, the

  19. Vasodilatory effect of asafoetida essential oil on rat aorta rings: The role of nitric oxide, prostacyclin, and calcium channels.

    PubMed

    Esmaeili, Hassan; Sharifi, Mozhdeh; Esmailidehaj, Mansour; Rezvani, Mohammad Ebrahim; Hafizibarjin, Zeynab

    2017-12-01

    Asafoetida is an oleo-gum resin mainly obtained from Ferula assa-foetida L. species in the apiaceae family. Previous studies have shown that it has antispasmodic effects on rat's and pig's ileums. The main goals of this study were to assess the vasodilatory effect of asafoetida essential oil (AEO) on the contractile response of rat's aorta rings and to find the role of nitric oxide, cyclooxygenase, and calcium channels. Thoracic aorta rings were stretched under a steady-state tension of 1 g in an organ bath apparatus for 1 h and then precontracted by KCl (80 mM) in the presence and absence of AEO. L-NAME (blocker of nitric oxide synthase) and indomethacin (blocker of cyclooxygenase) were used to assess the role of nitric oxide (NO) and prostacyclin in the vasodilatory effect of AEO. Also, the effect of AEO on the influx of calcium through the cell membrane calcium channels was determined. Data showed that AEO had vasodilatory effects on aorta rings with both intact (IC 50  = 1.6 µl/l) or denuded endothelium (IC 50  = 19.2 µl/l) with a significantly higher potency in intact endothelium rings. The vasodilatory effects of AEO were reduced, but not completely inhibited, in the presence of L-NAME or indomethacin. Adding AEO to the free-calcium medium also significantly reduced the CaCl 2 -induced contractions. The results indicated that AEO has a potent vasodilatory effect that is endothelium-dependent and endothelium-independent. Also, it reduced the influx of calcium into the cell through plasma membrane calcium channels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. The Effects of Dams on Downstream Channel Characteristics in Pennsylvania and Maryland: Assessing the Potential Consequences of Dam Removal

    NASA Astrophysics Data System (ADS)

    Skalak, K. J.; Pizzuto, J. E.; Jenkins, P.

    2003-12-01

    The potential downstream effects of dam removal were assessed on fifteen sites of varying dam size and characteristics in Pennsylvania and Maryland. The dams ranged in size from a 30 cm high fish weir to a water supply dam 57 m high. Stream order ranged from 1 to 4. The dams are located in watersheds with varying degrees of human disturbance and urbanization. The dams are also operated differently, with significant consequences for hydraulic residence time and downstream flow variability. Most streams were alluvial, but 6 of the reaches were clearly bedrock channels. We hypothesize that the channel upstream, which is unaffected by the dam, will provide an accurate model for the channel downstream of the dam long after dam removal. Therefore, reaches upstream and downstream of the dam were compared to determine the effects of the dam as well as the condition of the stream that will ultimately develop decades after dam removal. Surprisingly, the dams had no consistent influence on channel morphology. However, the percentage of sand is significantly lower downstream than upstream: the mean % sand downstream is 11.47%, while the mean % sand upstream is 21.39%. The coarser fractions of the bed, as represented by the 84th percentile grain diameter, are unaffected by the presence of the dam. These results imply that decades after dam removal, the percentage of sand on the bed will increase, but the coarse fraction of the bed will remain relatively unchanged.