NASA Astrophysics Data System (ADS)
Frantziskonis, George N.; Gur, Sourav
2017-06-01
Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.
Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network
NASA Astrophysics Data System (ADS)
Zhu, J.
2017-12-01
A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.
NASA Astrophysics Data System (ADS)
Stone, T. W.; Horstemeyer, M. F.
2012-09-01
The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.
Mesoscopic Length Scale Controls the Rheology of Dense Suspensions
NASA Astrophysics Data System (ADS)
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-01
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Mesoscopic length scale controls the rheology of dense suspensions.
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-03
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Scale effects in crystal plasticity
NASA Astrophysics Data System (ADS)
Padubidri Janardhanachar, Guruprasad
The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.
Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors
NASA Astrophysics Data System (ADS)
Adib, George A.; Sabry, Yasser M.; Khalil, Diaa
2018-02-01
A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.
Effect of length scale on mechanical properties of Al-Cu eutectic alloy
NASA Astrophysics Data System (ADS)
Tiwary, C. S.; Roy Mahapatra, D.; Chattopadhyay, K.
2012-10-01
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales.
End-monomer Dynamics in Semiflexible Polymers
Hinczewski, Michael; Schlagberger, Xaver; Rubinstein, Michael; Krichevsky, Oleg; Netz, Roland R.
2009-01-01
Spurred by an experimental controversy in the literature, we investigate the end-monomer dynamics of semiflexible polymers through Brownian hydrodynamic simulations and dynamic mean-field theory. Precise experimental observations over the last few years of end-monomer dynamics in the diffusion of double-stranded DNA have given conflicting results: one study indicated an unexpected Rouse-like scaling of the mean squared displacement (MSD) 〈r2(t)〉 ~ t1/2 at intermediate times, corresponding to fluctuations at length scales larger than the persistence length but smaller than the coil size; another study claimed the more conventional Zimm scaling 〈r2(t)〉 ~ t2/3 in the same time range. Using hydrodynamic simulations, analytical and scaling theories, we find a novel intermediate dynamical regime where the effective local exponent of the end-monomer MSD, α(t) = d log〈r2(t)〉/d log t, drops below the Zimm value of 2/3 for sufficiently long chains. The deviation from the Zimm prediction increases with chain length, though it does not reach the Rouse limit of 1/2. The qualitative features of this intermediate regime, found in simulations and in an improved mean-field theory for semiflexible polymers, in particular the variation of α(t) with chain and persistence lengths, can be reproduced through a heuristic scaling argument. Anomalously low values of the effective exponent α are explained by hydrodynamic effects related to the slow crossover from dynamics on length scales smaller than the persistence length to dynamics on larger length scales. PMID:21359118
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
NASA Astrophysics Data System (ADS)
Zhao, Bo; Liu, Jinhu; Song, Junjie; Cao, Liang; Dou, Shuozeng
2017-11-01
Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.
NASA Astrophysics Data System (ADS)
Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.
2014-05-01
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.
Kilbourne, Brandon M
2014-01-01
In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses - thigh, shank, pes, tarsometatarsal segment, and digits - from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel's λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel's λ) and increasing or decreasing rates of trait change over time (i.e., Pagel's δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so.
2014-01-01
Introduction In spite of considerable work on the linear proportions of limbs in amniotes, it remains unknown whether differences in scale effects between proximal and distal limb segments has the potential to influence locomotor costs in amniote lineages and how changes in the mass proportions of limbs have factored into amniote diversification. To broaden our understanding of how the mass proportions of limbs vary within amniote lineages, I collected data on hindlimb segment masses – thigh, shank, pes, tarsometatarsal segment, and digits – from 38 species of neognath birds, one of the most speciose amniote clades. I scaled each of these traits against measures of body size (body mass) and hindlimb size (hindlimb length) to test for departures from isometry. Additionally, I applied two parameters of trait evolution (Pagel’s λ and δ) to understand patterns of diversification in hindlimb segment mass in neognaths. Results All segment masses are positively allometric with body mass. Segment masses are isometric with hindlimb length. When examining scale effects in the neognath subclade Land Birds, segment masses were again positively allometric with body mass; however, shank, pedal, and tarsometatarsal segment masses were also positively allometric with hindlimb length. Methods of branch length scaling to detect phylogenetic signal (i.e., Pagel’s λ) and increasing or decreasing rates of trait change over time (i.e., Pagel’s δ) suffer from wide confidence intervals, likely due to small sample size and deep divergence times. Conclusions The scaling of segment masses appears to be more strongly related to the scaling of limb bone mass as opposed to length, and the scaling of hindlimb mass distribution is more a function of scale effects in limb posture than proximo-distal differences in the scaling of limb segment mass. Though negative allometry of segment masses appears to be precluded by the need for mechanically sound limbs, the positive allometry of segment masses relative to body mass may underlie scale effects in stride frequency and length between smaller and larger neognaths. While variation in linear proportions of limbs appear to be governed by developmental mechanisms, variation in mass proportions does not appear to be constrained so. PMID:24876886
Creation of current filaments in the solar corona
NASA Technical Reports Server (NTRS)
Mikic, Z.; Schnack, D. D.; Van Hoven, G.
1989-01-01
It has been suggested that the solar corona is heated by the dissipation of electric currents. The low value of the resistivity requires the magnetic field to have structure at very small length scales if this mechanism is to work. In this paper it is demonstrated that the coronal magnetic field acquires small-scale structure through the braiding produced by smooth, randomly phased, photospheric flows. The current density develops a filamentary structure and grows exponentially in time. Nonlinear processes in the ideal magnetohydrodynamic equations produce a cascade effect, in which the structure introduced by the flow at large length scales is transferred to smaller scales. If this process continues down to the resistive dissipation length scale, it would provide an effective mechanism for coronal heating.
Scale effects between body size and limb design in quadrupedal mammals.
Kilbourne, Brandon M; Hoffman, Louwrens C
2013-01-01
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties--limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency--were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.
Scale Effects between Body Size and Limb Design in Quadrupedal Mammals
Kilbourne, Brandon M.; Hoffman, Louwrens C.
2013-01-01
Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties – limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency – were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass0.40); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass1.0), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry. PMID:24260117
NASA Astrophysics Data System (ADS)
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Winterhalter, Wade E.
2011-09-01
Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less
Persistence length of collagen molecules based on nonlocal viscoelastic model.
Ghavanloo, Esmaeal
2017-12-01
Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.
The prospects of transition metal dichalcogenides for ultimately scaled CMOS
NASA Astrophysics Data System (ADS)
Thiele, S.; Kinberger, W.; Granzner, R.; Fiori, G.; Schwierz, F.
2018-05-01
MOSFET gate length scaling has been a main source of progress in digital electronics for decades. Today, researchers still spend considerable efforts on reducing the gate length and on developing ultimately scaled MOSFETs, thereby exploring both new device architectures and alternative channel materials beyond Silicon such as two-dimensional TMDs (transition metal dichalcogenide). On the other hand, the envisaged scaling scenario for the next 15 years has undergone a significant change recently. While the 2013 ITRS edition required a continuation of aggressive gate length scaling for at least another 15 years, the 2015 edition of the ITRS suggests a deceleration and eventually a levelling off of gate length scaling and puts more emphasis on alternative options such as pitch scaling to keep Moore's Law alive. In the present paper, future CMOS scaling is discussed in the light of emerging two-dimensional MOSFET channel, in particular two-dimensional TMDs. To this end, the scaling scenarios of the 2013 and 2015 ITRS editions are considered and the scaling potential of TMD MOSFETs is investigated by means of quantum-mechanical device simulations. It is shown that for ultimately scaled MOSFETs as required in the 2013 ITRS, the heavy carrier effective masses of the Mo- and W-based TMDs are beneficial for the suppression of direct source-drain tunneling, while to meet the significantly relaxed scaling targets of the 2016 ITRS heavy-effective-mass channels are not needed.
Scaling Effects on Materials Tribology: From Macro to Micro Scale.
Stoyanov, Pantcho; Chromik, Richard R
2017-05-18
The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.
Scaling Effects on Materials Tribology: From Macro to Micro Scale
Stoyanov, Pantcho; Chromik, Richard R.
2017-01-01
The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale. PMID:28772909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.
2014-05-28
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less
NASA Astrophysics Data System (ADS)
Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew
2017-04-01
OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.
Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows
NASA Astrophysics Data System (ADS)
Assouline, S.; Lehmann, P. G.; Or, D.
2015-12-01
Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.
NASA Astrophysics Data System (ADS)
Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.
2018-02-01
The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.
NASA Astrophysics Data System (ADS)
Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew
2018-03-01
The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.
Universality from disorder in the random-bond Blume-Capel model
NASA Astrophysics Data System (ADS)
Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.
2018-04-01
Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.
Diffusion-limited mixing by incompressible flows
NASA Astrophysics Data System (ADS)
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.
1987-01-01
A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.
Experiments on integral length scale control in atmospheric boundary layer wind tunnel
NASA Astrophysics Data System (ADS)
Varshney, Kapil; Poddar, Kamal
2011-11-01
Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Minimal Length Scale Scenarios for Quantum Gravity.
Hossenfelder, Sabine
2013-01-01
We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Vogel, J.R.; Brown, G.O.
2003-01-01
Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.
Liu, Meihua
2017-06-01
The present research explored the effects of cultural, affective, and linguistic variables on adult Chinese as a second language learners' willingness to communicate in Chinese. One hundred and sixty-two Chinese as a second language learners from a Chinese university answered the Willingness to Communicate in Chinese Scale, the Intercultural Sensitivity Scale, Chinese Speaking Anxiety Scale, Chinese Learning Motivation Scale, Use of Chinese Profile, as well as the Background Questionnaire. The major findings were as follows: (1) the Willingness to Communicate in Chinese Scales were significantly negatively correlated with Chinese Speaking Anxiety Scale but positively correlated with length of stay in China and (2) Chinese Speaking Anxiety Scale was a powerful negative predictor for the overall willingness to communicate in Chinese and the Willingness to Communicate in Chinese Scales, followed by length of stay in China, Chinese Learning Motivation Scale, interaction attentiveness, and Chinese proficiency level. Apparently, students' willingness to communicate in Chinese is largely determined by their Chinese Speaking Anxiety Scale level and length of stay in China, mediated by other variables such as Chinese proficiency level and intercultural communication sensitivity level.
Electropolishing effect on roughness metrics of ground stainless steel: a length scale study
NASA Astrophysics Data System (ADS)
Nakar, Doron; Harel, David; Hirsch, Baruch
2018-03-01
Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (<0.1 µm) to stylus and optical profilometry in the micro- and mesoscales (0.1 µm-1 mm). This paper presents an experimental length scale study of the surface texture of ground stainless steel followed by an electropolishing process in the micro and meso lateral scales. Both stylus and optical profilometers are used, and multiple cut-off lengths of the standard Gaussian filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.
The electrostatic persistence length of polymers beyond the OSF limit.
Everaers, R; Milchev, A; Yamakov, V
2002-05-01
We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.
NASA Astrophysics Data System (ADS)
Repko, Timothy William
A novel film cooling hole geometry for use in gas turbine engines has been investigated numerically by solving the Reynolds Averaged Navier-Stokes equations in a commercial CFD code (STAR-CCM+) with varying turbulence intensity and length scale using the k-o SST turbulence model. Both steady and unsteady results were considered in order to investigate the effects of freestream turbulence intensity and length scale on this novel anti-vortex hole (AVH) concept. The AVH geometry utilizes two side holes, one on each side of the main hole, to attempt to mitigate the vorticity from the jet from the main hole. The AVH concept has been shown by past research to provide a substantial improvement over conventional film cooling hole designs. Past research has been limited to low turbulence intensity and small length scales that are not representative of the turbulent flow exiting the combustor. Three turbulence intensities (Tu = 5, 10 and 20%) and three length scales normalized by the main cooling hole diameter (Λ x/dm = 1, 3, 6) were considered in this study for a total of nine turbulence conditions. The highest intensity, largest length scale turbulence case (Tu = 20, Λx/dm = 6) is considered most representative of engine conditions and was shown to have the best cooling performance. Results show that the turbulence in the hot gases exiting the combustor can aid in the film cooling for the AVH geometry at high blowing ratios (BR = 2.0), where the blowing ratio is essentially the ratio of the jet-to-mainstream mass flux ratios. Length scale was shown to have an insignificant effect on the cooling performance at low turbulence intensity and a moderate effect at higher turbulence intensities. The adiabatic film cooling effectiveness was shown to increase as the turbulence intensity was elevated. The convective heat transfer coefficient was also shown to increase at the turbulence intensity was elevated. An increase in the heat transfer coefficient is a deleterious effect and must be weighed against the improvements in the adiabatic cooling effectiveness. The net heat flux reduction (NHFR) is the parameter used to quantify the net benefit of film cooling. As a general trend, the NHFR was shown to increase with the turbulence intensity in all cases.
Length scales and pinning of interfaces
Tan, Likun
2016-01-01
The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068
Asymptotic Expansion Homogenization for Multiscale Nuclear Fuel Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, J. D.; Tonks, M. R.; Chockalingam, K.
2015-03-01
Engineering scale nuclear fuel performance simulations can benefit by utilizing high-fidelity models running at a lower length scale. Lower length-scale models provide a detailed view of the material behavior that is used to determine the average material response at the macroscale. These lower length-scale calculations may provide insight into material behavior where experimental data is sparse or nonexistent. This multiscale approach is especially useful in the nuclear field, since irradiation experiments are difficult and expensive to conduct. The lower length-scale models complement the experiments by influencing the types of experiments required and by reducing the total number of experiments needed.more » This multiscale modeling approach is a central motivation in the development of the BISON-MARMOT fuel performance codes at Idaho National Laboratory. These codes seek to provide more accurate and predictive solutions for nuclear fuel behavior. One critical aspect of multiscale modeling is the ability to extract the relevant information from the lower length-scale sim- ulations. One approach, the asymptotic expansion homogenization (AEH) technique, has proven to be an effective method for determining homogenized material parameters. The AEH technique prescribes a system of equations to solve at the microscale that are used to compute homogenized material constants for use at the engineering scale. In this work, we employ AEH to explore the effect of evolving microstructural thermal conductivity and elastic constants on nuclear fuel performance. We show that the AEH approach fits cleanly into the BISON and MARMOT codes and provides a natural, multidimensional homogenization capability.« less
2012-04-01
Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain
Size effects on miniature Stirling cycle cryocoolers
NASA Astrophysics Data System (ADS)
Yang, Xiaoqin; Chung, J. N.
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.
Generating and controlling homogeneous air turbulence using random jet arrays
NASA Astrophysics Data System (ADS)
Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo
2016-12-01
The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.
Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert
2016-01-01
We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866
NASA Astrophysics Data System (ADS)
Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.
2018-04-01
Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.
Fire Hazards from Combustible Ammunition, Methodology Development. Phase I
1980-06-01
5.3 Flame Length , Flame Diameter and Mass Burning Rate 37 5.4 Flame Emissive Power 41 5.5 Fire Plume Axial Gas Velocity 41 5.6 Flame Temperature...B.2 Exit Velocity 93 B.3 Rate of Energy Flow 93 B.4 Chamber Characteristics 94 B.5 Flame Length 95 B.6 Flame Lift Angle 95 B.7 Summary 97...Viewing Flame in Test Series 5 17. Flame Length Scaling 18. Scaling Trends for Mass Burning Rate 19. Effective Flame Emissive Power versus Flame
Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi
2012-06-01
Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.
Effects of axisymmetric contractions on turbulence of various scales
NASA Technical Reports Server (NTRS)
Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.
1980-01-01
Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.
Time and length scales within a fire and implications for numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
TIESZEN,SHELDON R.
2000-02-02
A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less
Structure and dynamics of a silica melt in neutral confinement
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2017-04-01
We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.
Structure and dynamics of a silica melt in neutral confinement.
Geske, Julian; Drossel, Barbara; Vogel, Michael
2017-04-07
We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.
Cooperative and noncooperative magnetization reversal in alnicos
Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...
2017-02-08
Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.
Vertical length scale selection for pancake vortices in strongly stratified viscous fluids
NASA Astrophysics Data System (ADS)
Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul
2004-04-01
The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on the late evolution of stratified flows where the decay is observed to be independent of the buoyancy frequency N.
Inflation of the screening length induced by Bjerrum pairs.
Zwanikken, Jos; van Roij, René
2009-10-21
Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.
Novel mechanisms for self-assembled pattern formation in nanoscopic metal films
NASA Astrophysics Data System (ADS)
Kalyanaraman, R.; Trice, J.; Favazza, C.; Thomas, D.; Sureshkumar, R.
2007-03-01
Classical hydrodynamic theory of dewetting of spinodally unstable thin films (Vrij, Disc. farad. Soc. 1966) predicts a monotonic increase in patterning length scales with increasing film thickness. We verified this effect for nanoscopic Co metal films following melting by ns laser pulses for thickness regime h<=hc˜8,m (Favazza et al. Nanotechnology, 2006). However, a dramatic change is observed beyond this thickness hc, with length scales decreasing with increasing h. This novel behavior arises from strong thickness dependence of heating by ultrafast laser light resulting in thermocapillary effects, whose magnitude and sign are thickness dependent. We modified the classical theory, according to which the instability occurs when the stabilizing capillary force is overcome by destabilizing attractive long-range interactions, to include thermocapillary effects. The modified theory accurately predicts the experimentally observed trend. This result suggests that a variety of new length scales can be accessed by robust self-assembly via dewetting of metal films under ultrafast light.
Scale effects in wind tunnel modeling of an urban atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kozmar, Hrvoje
2010-03-01
Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Anh Khoa Augustin; IMEC, 75 Kapeldreef, B-3001 Leuven; Pourtois, Geoffrey
2016-01-25
The impact of the scaling of the channel length on the performances of metal-oxide-semiconductor field effect transistors, based on two-dimensional (2D) channel materials, is theoretically investigated, using density functional theory combined with the non-equilibrium Green's function method. It is found that the scaling of the channel length below 10 nm leads to strong device performance degradations. Our simulations reveal that this degradation is essentially due to the tunneling current flowing between the source and the drain in these aggressively scaled devices. It is shown that this electron tunneling process is modulated by the effective mass of the 2D channel material, andmore » sets the limit of the scaling in future transistor designs.« less
Design and test of a prototype scale ejector wing
NASA Technical Reports Server (NTRS)
Mefferd, L. A.; Alden, R. E.; Bevilacqua, P. M.
1979-01-01
A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65.
Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid
2014-01-01
Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
2017-12-05
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
Correspondence: Reply to ‘Phantom phonon localization in relaxors’
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.
The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less
Coppard, Nicholas; Cooper, Jonathon M.; Delatycki, Martin B.; Dürr, Alexandra; Di Prospero, Nicholas A.; Giunti, Paola; Lynch, David R.; Schulz, J. B.; Rummey, Christian; Meier, Thomas
2013-01-01
The aim of this cross-sectional study was to analyse disease progression in Friedreich’s ataxia as measured by the International Cooperative Ataxia Rating Scale. Single ratings from 603 patients with Friedreich’s ataxia were analysed as a function of disease duration, age of onset and GAA repeat lengths. The relative contribution of items and subscales to the total score was studied as a function of disease progression. In addition, the scaling properties were assessed using standard statistical measures. Average total scale progression per year depends on the age of disease onset, the time since diagnosis and the GAA repeat length. The age of onset inversely correlates with increased GAA repeat length. For patients with an age of onset ≤14 years associated with a longer repeat length, the average yearly rate of decline was 2.5 ± 0.18 points in the total International Cooperative Ataxia Rating Scale for the first 20 years of disease duration, whereas patients with a later onset progress more slowly (1.8 ± 0.27 points/year). Ceiling effects in posture, gait and lower limb scale items lead to a reduced sensitivity of the scale in the severely affected population with a total score of >60 points. Psychometric scaling analysis shows generally favourable properties for the total scale, but the subscale grouping could be improved. This cross-sectional study provides a detailed characterization of the International Cooperative Ataxia Rating Scale. The analysis further provides rates of change separated for patients with early and late disease onset, which is driven by the GAA repeat length. Differences in the subscale dynamics merit consideration in the design of future clinical trials applying this scale as a neurological assessment instrument in Friedreich’s ataxia. PMID:23365101
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
Universal dimer–dimer scattering in lattice effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Universal dimer–dimer scattering in lattice effective field theory
Elhatisari, Serdar; Katterjohn, Kris; Lee, Dean; ...
2017-03-14
We consider two-component fermions with short-range interactions and large scattering length. This system has universal properties that are realized in several different fields of physics. In the limit of large fermion–fermion scattering length a ff and zero-range interaction, all properties of the system scale proportionally with a ff. For the case with shallow bound dimers, we calculate the dimer–dimer scattering phase shifts using lattice effective field theory. We extract the universal dimer–dimer scattering length a dd/a ff=0.618(30) and effective range r dd/a ff=-0.431(48). This result for the effective range is the first calculation with quantified and controlled systematic errors. Wemore » also benchmark our methods by computing the fermion–dimer scattering parameters and testing some predictions of conformal scaling of irrelevant operators near the unitarity limit.« less
Infrared length scale and extrapolations for the no-core shell model
Wendt, K. A.; Forssén, C.; Papenbrock, T.; ...
2015-06-03
In this paper, we precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the A-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of A nucleons in the NCSM space to that of A nucleons in a 3(A-1)-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for 6Li. We apply our result and perform accurate IR extrapolations for bound statesmore » of 4He, 6He, 6Li, and 7Li. Finally, we also attempt to extrapolate NCSM results for 10B and 16O with bare interactions from chiral effective field theory over tens of MeV.« less
Effect of the cosmological constant on halo size
NASA Astrophysics Data System (ADS)
Kulchoakrungsun, Ekapob; Lam, Adrian; Lowe, David A.
2018-04-01
In this work, we consider the effect of the cosmological constant on galactic halo size. As a model, we study the general relativistic derivation of orbits in the Schwarzschild-de Sitter metric. We find that there exists a length scale rΛ corresponding to a maximum size of a circular orbit of a test mass in a gravitationally bound system, which is the geometric mean of the cosmological horizon size squared and the Schwarzschild radius. This agrees well with the size of a galactic halo when the effects of dark matter are included. The size of larger structures such as galactic clusters and superclusters are also well-approximated by this scale. This model provides a simplified approach to computing the size of such structures without the usual detailed dynamical models. Some of the more detailed approaches that appear in the literature are reviewed, and we find the length scales agree to within a factor of order one. Finally, we note the length scale associated with the effects of MOND or Verlinde’s emergent gravity, which offer explanations of the flattening of galaxy rotation curves without invoking dark matter, may be expressed as the geometric mean of the cosmological horizon size and the Schwarzschild radius, which is typically 100 times smaller than rΛ.
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
Magnetic field line random walk in two-dimensional dynamical turbulence
NASA Astrophysics Data System (ADS)
Wang, J. F.; Qin, G.; Ma, Q. M.; Song, T.; Yuan, S. B.
2017-08-01
The field line random walk (FLRW) of magnetic turbulence is one of the important topics in plasma physics and astrophysics. In this article, by using the field line tracing method, the mean square displacement (MSD) of FLRW is calculated on all possible length scales for pure two-dimensional turbulence with the damping dynamical model. We demonstrate that in order to describe FLRW with the damping dynamical model, a new dimensionless quantity R is needed to be introduced. On different length scales, dimensionless MSD shows different relationships with the dimensionless quantity R. Although the temporal effect affects the MSD of FLRW and even changes regimes of FLRW, it does not affect the relationship between the dimensionless MSD and dimensionless quantity R on all possible length scales.
Electrokinetic energy conversion in a finite length superhydrophobic microchannel
NASA Astrophysics Data System (ADS)
Malekidelarestaqi, M.; Mansouri, A.; Chini, S. F.
2018-07-01
We investigated the effect of superhydrophobic walls on electrokinetics phenomena in a finite-length microchannel with superhydrophobic walls (in both transient and steady-state). We implemented the effect of superhydrophobicity using Navier's slip-length. To include the importance of the electric double-layer, we scaled the slip-length with respect to Debye-length (κ-1). By increasing the slip-length from 0 to 144 nm (1.5κ-1), streaming-current, streaming-potential, flow-rate and electrokinetic energy conversion increased by 2.55, 2.44, 1.8, and 3.4 folds, accordingly. The electrokinetic energy conversion of each microchannel was in the order of picowatt. To produce more energy, an array of microchannels should be used.
Fabrication of biomimetic nanomaterials and their effect on cell behavior
NASA Astrophysics Data System (ADS)
Porri, Teresa Jane
Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.
Rouse mode analysis of chain relaxation in homopolymer melts
Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...
2014-09-15
We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less
NASA Astrophysics Data System (ADS)
Mundra, Manish K.
2005-03-01
It is well known that the glass transition temperatures, Tgs, of supported polystyrene (PS) films decrease dramatically with decreasing film thickness below 60-80 nm. However, a detailed understanding of the cause of this effect is lacking. We have investigated the impact of several parameters, including polymer molecular weight (MW), repeat unit structure, and the length scale of cooperatively rearranging regions in bulk. There is no significant effect of PS MW on the Tg-confinement effect over a range of 5,000 to 3,000,000 g/mol. In contrast, the strength of the Tg reduction and the onset of the confinement effect increase dramatically upon changing the polymer from PS to poly(4-tert-butylstyrene) (PTBS), with PTBS exhibiting a Tg reduction relative to bulk at a thickness of 300-400 nm. PTBS also shows a Tg reduction relative to bulk of 47 K in a 21-nm-thick film, more than twice that observed in a PS film of identical thickness. Characterization of the length scale of cooperatively rearranging regions has been done by differential scanning calorimetry but reveals at best a limited correlation with the confinement effect.
A phenomenological description of space-time noise in quantum gravity.
Amelino-Camelia, G
2001-04-26
Space-time 'foam' is a geometric picture of the smallest size scales in the Universe, which is characterized mainly by the presence of quantum uncertainties in the measurement of distances. All quantum-gravity theories should predict some kind of foam, but the description of the properties of this foam varies according to the theory, thereby providing a possible means of distinguishing between such theories. I previously showed that foam-induced distance fluctuations would introduce a new source of noise to the measurements of gravity-wave interferometers, but the theories are insufficiently developed to permit detailed predictions that would be of use to experimentalists. Here I propose a phenomenological approach that directly describes space-time foam, and which leads naturally to a picture of distance fluctuations that is independent of the details of the interferometer. The only unknown in the model is the length scale that sets the overall magnitude of the effect, but recent data already rule out the possibility that this length scale could be identified with the 'string length' (10-34 m < Ls < 10-33 m). Length scales even smaller than the 'Planck length' (LP approximately 10-35 m) will soon be probed experimentally.
Diffusion and scaling during early embryonic pattern formation.
Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F
2005-12-20
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.
2016-01-01
In our recent work, a multi-length-scale room-temperature material model for SiC/SiC ceramic-matrix composites (CMCs) was derived and parameterized. The model was subsequently linked with a finite-element solver so that it could be used in a general room-temperature, structural/damage analysis of gas-turbine engine CMC components. Due to its multi-length-scale character, the material model enabled inclusion of the effects of fiber/tow (e.g., the volume fraction, size, and properties of the fibers; fiber-coating material/thickness; decohesion properties of the coating/matrix interfaces; etc.) and ply/lamina (e.g., the 0°/90° cross-ply versus plain-weave architectures, the extent of tow crimping in the case of the plain-weave plies, cohesive properties of the inter-ply boundaries, etc.) length-scale microstructural/architectural parameters on the mechanical response of the CMCs. One of the major limitations of the model is that it applies to the CMCs in their as-fabricated conditions (i.e., the effect of prolonged in-service environmental exposure and the associated material aging-degradation is not accounted for). In the present work, the model is upgraded to include such in-service environmental-exposure effects. To demonstrate the utility of the upgraded material model, it is used within a finite-element structural/failure analysis involving impact of a toboggan-shaped turbine shroud segment by a foreign object. The results obtained clearly revealed the effects that different aspects of the in-service environmental exposure have on the material degradation and the extent of damage suffered by the impacted CMC toboggan-shaped shroud segment.
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
Smith, Alexander M; Lee, Alpha A; Perkin, Susan
2016-06-16
According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
Cold Ion Demagnetization near the X-line of Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Toledo-Redondo, Serio; Andre, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Walsh, Andrew; Li, Wenya; Graham, Daniel B.; Lavraud, Benoit; Masson, Arnaud; Aunai, Nicolas;
2016-01-01
Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earths magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10 keV), and magnetosheath (1 keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (approx. 15 km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E x B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.
Cold ion demagnetization near the X-line of magnetic reconnection
NASA Astrophysics Data System (ADS)
Toledo-Redondo, Sergio; André, Mats; Khotyaintsev, Yuri V.; Vaivads, Andris; Walsh, Andrew; Li, Wenya; Graham, Daniel B.; Lavraud, Benoit; Masson, Arnaud; Aunai, Nicolas; Divin, Andrey; Dargent, Jeremy; Fuselier, Stephen; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Avanov, Levon; Pollock, Craig; Saito, Yoshifumi; Moore, Thomas E.; Coffey, Victoria; Chandler, Michael O.; Lindqvist, Per-Arne; Torbert, Roy; Russell, Christopher T.
2016-07-01
Although the effects of magnetic reconnection in magnetospheres can be observed at planetary scales, reconnection is initiated at electron scales in a plasma. Surrounding the electron diffusion region, there is an Ion-Decoupling Region (IDR) of the size of the ion length scales (inertial length and gyroradius). Reconnection at the Earth's magnetopause often includes cold magnetospheric (few tens of eV), hot magnetospheric (10 keV), and magnetosheath (1 keV) ions, with different gyroradius length scales. We report observations of a subregion inside the IDR of the size of the cold ion population gyroradius (˜15 km) where the cold ions are demagnetized and accelerated parallel to the Hall electric field. Outside the subregion, cold ions follow the E × B motion together with electrons, while hot ions are demagnetized. We observe a sharp cold ion density gradient separating the two regions, which we identify as the cold and hot IDRs.
2014-11-16
related to identification of the type and the extent of data generated at a finer length scale to the adjacent coarser length scale, as well as seamless ...data generated at a finer length scale to the adjacent coarser length scale, as well as seamless integration of different length scales into a unified...composite laminate consisting of 32 laminae and impacted (at a 0° obliquity angle and an incident velocity of 500 m/s) by a 0.30 caliber steel
Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades
Aluie, Hussein
2017-02-21
Here, we formulate a coarse-graining approach to the dynamics of magnetohydrodynamic (MHD) fluids at a continuum of length-scales. In this methodology, effective equations are derived for the observable velocity and magnetic fields spatially-averaged at an arbitrary scale of resolution. The microscopic equations for the bare velocity and magnetic fields are renormalized by coarse-graining to yield macroscopic effective equations that contain both a subscale stress and a subscale electromotive force (EMF) generated by nonlinear interaction of eliminated fields and plasma motions. At large coarse-graining length-scales, the direct dissipation of invariants by microscopic mechanisms (such as molecular viscosity and Spitzer resistivity) ismore » shown to be negligible. The balance at large scales is dominated instead by the subscale nonlinear terms, which can transfer invariants across scales, and are interpreted in terms of work concepts for energy and in terms of topological flux-linkage for the two helicities. An important application of this approach is to MHD turbulence, where the coarse-graining length ℓ lies in the inertial cascade range. We show that in the case of sufficiently rough velocity and/or magnetic fields, the nonlinear inter-scale transfer need not vanish and can persist to arbitrarily small scales. Although closed expressions are not available for subscale stress and subscale EMF, we derive rigorous upper bounds on the effective dissipation they produce in terms of scaling exponents of the velocity and magnetic fields. These bounds provide exact constraints on phenomenological theories of MHD turbulence in order to allow the nonlinear cascade of energy and cross-helicity. On the other hand, we show that the forward cascade of magnetic helicity to asymptotically small scales is impossible unless 3rd-order moments of either velocity or magnetic field become infinite.« less
Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence
NASA Technical Reports Server (NTRS)
Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.
1998-01-01
A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.
Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes
NASA Astrophysics Data System (ADS)
Antonaglia, James; van Anders, Greg; Glotzer, Sharon
Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.
Electron inertia and quasi-neutrality in the Weibel instability
NASA Astrophysics Data System (ADS)
Camporeale, Enrico; Tronci, Cesare
2017-06-01
While electron kinetic effects are well known to be of fundamental importance in several situations, the electron mean-flow inertia is often neglected when length scales below the electron skin depth become irrelevant. This has led to the formulation of different reduced models, where electron inertia terms are discarded while retaining some or all kinetic effects. Upon considering general full-orbit particle trajectories, this paper compares the dispersion relations emerging from such models in the case of the Weibel instability. As a result, the question of how length scales below the electron skin depth can be neglected in a kinetic treatment emerges as an unsolved problem, since all current theories suffer from drawbacks of different nature. Alternatively, we discuss fully kinetic theories that remove all these drawbacks by restricting to frequencies well below the plasma frequency of both ions and electrons. By giving up on the length scale restrictions appearing in previous works, these models are obtained by assuming quasi-neutrality in the full Vlasov-Maxwell system.
The small length scale effect for a non-local cantilever beam: a paradox solved.
Challamel, N; Wang, C M
2008-08-27
Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.
Scale effect of slip boundary condition at solid–liquid interface
Nagayama, Gyoko; Matsumoto, Takenori; Fukushima, Kohei; Tsuruta, Takaharu
2017-01-01
Rapid advances in microelectromechanical systems have stimulated the development of compact devices, which require effective cooling technologies (e.g., microchannel cooling). However, the inconsistencies between experimental and classical theoretical predictions for the liquid flow in microchannel remain unclarified. Given the larger surface/volume ratio of microchannel, the surface effects increase as channel scale decreases. Here we show the scale effect of the boundary condition at the solid–liquid interface on single-phase convective heat transfer characteristics in microchannels. We demonstrate that the deviation from classical theory with a reduction in hydraulic diameters is due to the breakdown of the continuum solid–liquid boundary condition. The forced convective heat transfer characteristics of single-phase laminar flow in a parallel-plate microchannel are investigated. Using the theoretical Poiseuille and Nusselt numbers derived under the slip boundary condition at the solid–liquid interface, we estimate the slip length and thermal slip length at the interface. PMID:28256536
Hydrogen effects in corrosion: discussion
NASA Astrophysics Data System (ADS)
Stopher, Miles A.; Simpson, E. Luke
2017-06-01
This session contained talks on the characterization of hydrogen-enhanced corrosion of steels and nickel-based alloys, emphasizing the different observations across length scales, from atomic-scale spectrographic to macro-scale fractographic examinations. This article is part of the themed issue 'The challenges of hydrogen and metals'.
Magnetized cosmological perturbations in the post-recombination era
NASA Astrophysics Data System (ADS)
Vasileiou, Hera; Tsagas, Christos G.
2016-01-01
We study inhomogeneous magnetized cosmologies through the post-recombination era in the framework of Newtonian gravity and the ideal-magnetohydrodynamic limit. The non-linear kinematic and dynamic equations are derived and linearized around the Newtonian counterpart of the Einstein-de Sitter universe. This allows for a direct comparison with the earlier relativistic treatments of the issue. Focusing on the evolution of linear density perturbations, we provide new analytic solutions which include the effects of the magnetic pressure as well as those of the field's tension. We confirm that the pressure of field inhibits the growth of density distortions and can induce a purely magnetic Jeans length. On scales larger than the aforementioned characteristic length the inhomogeneities grow, though slower than in non-magnetized universes. Wavelengths smaller than the magnetic Jeans length typically oscillate with decreasing amplitude. We also identify a narrow range of scales, just below the Jeans length, where the perturbations exhibit a slower power-law decay. In all cases, the effect of the field is proportional to its strength and increases as we move to progressively smaller lengths.
Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
NASA Astrophysics Data System (ADS)
Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin
2015-01-01
The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.
NASA Astrophysics Data System (ADS)
Alberts, Samantha J.
The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.
NASA Astrophysics Data System (ADS)
Alagirisamy, Pasupathy S.; Jeronimidis, George; Le Moàl, Valerie
2009-08-01
Viscous coupling between filiform hair sensors of insects and arthropods has gained considerable interest recently. Study of viscous coupling between hairs at micro scale with current technologies is proving difficult and hence the hair system has been physically scaled up by a factor of 100. For instance, a typical filiform hair of 10 μm diameter and 1000 μm length has been physically scaled up to 1 mm in diameter and 100mm in length. At the base, a rotational spring with a bonded strain gauge provides the restoring force and measures the angle of deflection of the model hair. These model hairs were used in a glycerol-filled aquarium where the velocity of flow and the fluid properties were determined by imposing the Reynolds numbers compatible with biological system. Experiments have been conducted by varying the separation distance and the relative position between the moveable model hairs, of different lengths and between the movable and rigid hairs of different lengths for the steady velocity flow with Reynolds numbers of 0.02 and 0.05. In this study, the viscous coupling between hairs has been characterised. The effect of the distance from the physical boundaries, such as tank walls has also been quantified (wall effect). The purpose of this investigation is to provide relevant information for the design of MEMS systems mimicking the cricket's hair array.
The scaling structure of the global road network
Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J.; Rinaldo, Andrea
2017-01-01
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions. PMID:29134071
The scaling structure of the global road network.
Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea
2017-10-01
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.
Effective Debye length in closed nanoscopic systems: a competition between two length scales.
Tessier, Frédéric; Slater, Gary W
2006-02-01
The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.
Investigation of scale effects in the TRF determined by VLBI
NASA Astrophysics Data System (ADS)
Wahl, Daniel; Heinkelmann, Robert; Schuh, Harald
2017-04-01
The improvement of the International Terrestrial Reference Frame (ITRF) is of great significance for Earth sciences and one of the major tasks in geodesy. The translation, rotation and the scale-factor, as well as their linear rates, are solved in a 14-parameter transformation between individual frames of each space geodetic technique and the combined frame. In ITRF2008, as well as in the current release ITRF2014, the scale-factor is provided by Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) in equal shares. Since VLBI measures extremely precise group delays that are transformed to baseline lengths by the velocity of light, a natural constant, VLBI is the most suitable method for providing the scale. The aim of the current work is to identify possible shortcomings in the VLBI scale contribution to ITRF2008. For developing recommendations for an enhanced estimation, scale effects in the Terrestrial Reference Frame (TRF) determined with VLBI are considered in detail and compared to ITRF2008. In contrast to station coordinates, where the scale is defined by a geocentric position vector, pointing from the origin of the reference frame to the station, baselines are not related to the origin. They are describing the absolute scale independently from the datum. The more accurate a baseline length, and consequently the scale, is estimated by VLBI, the better the scale contribution to the ITRF. Considering time series of baseline length between different stations, a non-linear periodic signal can clearly be recognized, caused by seasonal effects at observation sites. Modeling these seasonal effects and subtracting them from the original data enhances the repeatability of single baselines significantly. Other effects influencing the scale strongly, are jumps in the time series of baseline length, mainly evoked by major earthquakes. Co- and post-seismic effects can be identified in the data, having a non-linear character likewise. Modeling the non-linear motion or completely excluding affected stations is another important step for an improved scale determination. In addition to the investigation of single baseline repeatabilities also the spatial transformation, which is performed for determining parameters of the ITRF2008, are considered. Since the reliability of the resulting transformation parameters is higher the more identical points are used in the transformation, an approach where all possible stations are used as control points is comprehensible. Experiments that examine the scale-factor and its spatial behavior between control points in ITRF2008 and coordinates determined by VLBI only showed that the network geometry has a large influence on the outcome as well. Introducing an unequally distributed network for the datum configuration, the correlations between translation parameters and the scale-factor can become remarkably high. Only a homogeneous spatial distribution of participating stations yields a maximally uncorrelated scale-factor that can be interpreted independent from other parameters. In the current release of the ITRF, the ITRF2014, for the first time, non-linear effects in the time series of station coordinates are taken into account. The present work shows the importance and the right direction of the modification of the ITRF calculation. But also further improvements were found which lead to an enhanced scale determination.
On effects of topography in rotating flows
NASA Astrophysics Data System (ADS)
Burmann, Fabian; Noir, Jerome; Jackson, Andrew
2017-11-01
Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).
Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.
Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R
2010-07-01
Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...
Shape dependence of slip length on patterned hydrophobic surfaces
NASA Astrophysics Data System (ADS)
Gu, Xiaokun; Chen, Min
2011-08-01
The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.
NASA Astrophysics Data System (ADS)
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment
Li, J.; Hu, S. X.; Ren, C.
2017-02-28
Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less
NASA Astrophysics Data System (ADS)
Simón-Moral, Andres; Santiago, Jose Luis; Krayenhoff, E. Scott; Martilli, Alberto
2014-06-01
A Reynolds-averaged Navier-Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.
Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Hu, S. X.; Ren, C.
Laser-plasma instabilities and hydro evolution of the coronal plasma in an OMEGA EP long-scale-length experiment with planar targets were studied with particle-in-cell (PIC) and hydrodynamic simulations. Plasma and laser conditions were first obtained in a two-dimensional DRACO hydro simulation with only inverse-bremsstrahlung absorption. Using these conditions, an OSIRIS PIC simulation was performed to study laser absorption and hot-electron generation caused by laser-plasma instabilities (LPIs) near the quarter-critical region. The obtained PIC information was subsequently coupled to another DRACO simulation to examine how the LPIs affect the overall hydrodynamics. Lastly, the results showed that the LPI-induced laser absorption increased the electronmore » temperature but did not significantly change the density scale length in the corona.« less
Diffusion and scaling during early embryonic pattern formation
Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.
2005-01-01
Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710
Some factors influencing radiation of sound from flow interaction with edges of finite surfaces
NASA Technical Reports Server (NTRS)
Hayden, R. E.; Fox, H. L.; Chanaud, R. C.
1976-01-01
Edges of surfaces which are exposed to unsteady flow cause both strictly acoustic effects and hydrodynamic effects, in the form of generation of new hydrodynamic sources in the immediate vicinity of the edge. An analytical model is presented which develops the explicit sound-generation role of the velocity and Mach number of the eddy convection past the edge, and the importance of relative scale lengths of the turbulence, as well as the relative intensity of pressure fluctuations. The Mach number (velocity) effects show that the important paramater is the convection Mach number of the eddies. The effects of turbulence scale lengths, isotropy, and spatial density (separation) are shown to be important in determining the level and spectrum of edge sound radiated for the edge dipole mechanism. Experimental data is presented which provides support for the dipole edge noise model in terms of Mach number (velocity) scaling, parametric dependence on flow field parameter, directivity, and edge diffraction effects.
NASA Astrophysics Data System (ADS)
Gat, Amir; Friedman, Yonathan
2017-11-01
The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.
Plot-scale effects on runoff and erosion along a slope degradation gradient
NASA Astrophysics Data System (ADS)
Moreno-de Las Heras, Mariano; Nicolau, José M.; Merino-MartíN, Luis; Wilcox, Bradford P.
2010-04-01
In Earth and ecological sciences, an important, crosscutting issue is the relationship between scale and the processes of runoff and erosion. In drylands, understanding this relationship is critical for understanding ecosystem functionality and degradation processes. Recent work has suggested that the effects of scale may differ depending on the extent of degradation. To test this hypothesis, runoff and sediment yield were monitored during a hydrological year on 20 plots of various lengths (1-15 m). These plots were located on a series of five reclaimed mining slopes in a Mediterranean-dry environment. The five slopes exhibited various degrees of vegetative cover and surface erosion. A general decrease of unit area runoff was observed with increasing plot scale for all slopes. Nevertheless, the amount of reinfiltrated runoff along each slope varied with the extent of degradation, being highest at the least degraded slope and vice versa. In other words, unit area runoff decreased the least on the most disturbed site as plot length increased. Unit area sediment yield declined with increasing plot length for the undisturbed and moderately disturbed sites, but it actually increased for the highly disturbed sites. The different scaling behavior of the most degraded slopes was especially clear under high-intensity rainfall conditions, when flow concentration favored rill erosion. Our results confirm that in drylands, the effects of scale on runoff and erosion change with the extent of degradation, resulting in a substantial loss of soil and water from disturbed systems, which could reinforce the degradation process through feedback mechanisms with vegetation.
Recent assimilation developments of FOAM the Met Office ocean forecast system
NASA Astrophysics Data System (ADS)
Lea, Daniel; Martin, Matthew; Waters, Jennifer; Mirouze, Isabelle; While, James; King, Robert
2015-04-01
FOAM is the Met Office's operational ocean forecasting system. This system comprises a range of models from a 1/4 degree resolution global to 1/12 degree resolution regional models and shelf seas models at 7 km resolution. The system is made up of the ocean model NEMO (Nucleus for European Modeling of the Ocean), the Los Alomos sea ice model CICE and the NEMOVAR assimilation run in 3D-VAR FGAT mode. Work is ongoing to transition to both a higher resolution global ocean model at 1/12 degrees and to run FOAM in coupled models. The FOAM system generally performs well. One area of concern however is the performance in the tropics where spurious oscillations and excessive vertical velocity gradients are found after assimilation. NEMOVAR includes a balance operator which in the extra-tropics uses geostrophic balance to produce velocity increments which balance the density increments applied. In the tropics, however, the main balance is between the pressure gradients produced by the density gradient and the applied wind stress. A scheme is presented which aims to maintain this balance when increments are applied. Another issue in FOAM is that there are sometimes persistent temperature and salinity errors which are not effectively corrected by the assimilation. The standard NEMOVAR has a single correlation length scale based on the local Rossby radius. This means that observations in the extra tropics have influence on the model only on short length-scales. In order to maximise the information extracted from the observations and to correct large scale model biases a multiple correlation length-scale scheme has been developed. This includes a larger length scale which spreads observation information further. Various refinements of the scheme are also explored including reducing the longer length scale component at the edge of the sea ice and in areas with high potential vorticity gradients. A related scheme which varies the correlation length scale in the shelf seas is also described.
Estimation of effective aerodynamic roughness with altimeter measurements
NASA Technical Reports Server (NTRS)
Menenti, M.; Ritchie, J. C.
1992-01-01
A new method is presented for estimating the aerodynamic roughness length of heterogeneous land surfaces and complex landscapes using elevation measurements performed with an airborne laser altimeter and the Seasat radar altimeter. Land surface structure is characterized at increasing length scales by considering three basic landscape elements: (1) partial to complete canopies of herbaceous vegetation; (2) sparse obstacles (e.g., shrubs and trees); and (3) local relief. Measured parameters of land surface geometry are combined to obtain an effective aerodynamic roughness length which parameterizes the total atmosphere-land surface stress.
Ocean Research Enabled by Underwater Gliders.
Rudnick, Daniel L
2016-01-01
Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.
NASA Astrophysics Data System (ADS)
Moayedi, S. K.; Setare, M. R.; Khosropour, B.
2013-11-01
In the 1990s, Kempf and his collaborators Mangano and Mann introduced a D-dimensional (β, β‧)-two-parameter deformed Heisenberg algebra which leads to an isotropic minimal length (\\triangle Xi)\\min = \\hbar √ {Dβ +β '}, \\forall i\\in \\{1, 2, ..., D\\}. In this work, the Lagrangian formulation of a magnetostatic field in three spatial dimensions (D = 3) described by Kempf algebra is presented in the special case of β‧ = 2β up to the first-order over β. We show that at the classical level there is a similarity between magnetostatics in the presence of a minimal length scale (modified magnetostatics) and the magnetostatic sector of the Abelian Lee-Wick model in three spatial dimensions. The integral form of Ampere's law and the energy density of a magnetostatic field in the modified magnetostatics are obtained. Also, the Biot-Savart law in the modified magnetostatics is found. By studying the effect of minimal length corrections to the gyromagnetic moment of the muon, we conclude that the upper bound on the isotropic minimal length scale in three spatial dimensions is 4.42×10-19 m. The relationship between magnetostatics with a minimal length and the Gaete-Spallucci nonlocal magnetostatics [J. Phys. A: Math. Theor. 45, 065401 (2012)] is investigated.
Matching Microscopic and Macroscopic Responses in Glasses.
Baity-Jesi, M; Calore, E; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz-Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D
2017-04-14
We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly, we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)].PRLTAO0031-900710.1103/PhysRevLett.118.157203 The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, nonlinear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.
NASA Astrophysics Data System (ADS)
Rowe, Jeffrey D.; Baird, James K.
2007-06-01
A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.
Gil-Duran, S; Arola, D; Ossa, E A
2016-03-01
This paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail). Results showed that the scales are composed of collagen and hydroxyapatite, and these constituents are distributed within three well-defined layers from the bottom to the top of the scale. The proportion of these layers with respect to the total scale thickness varies radially. The collagen fibers are arranged in plies with different orientations and with preferred orientation in the longitudinal direction of the fish. Results from the tensile tests showed that scales from Megalops Atlanticus exhibit variations in the elastic modulus as a function of body position. Additional testing performed with and without the highly mineralized top layers of the scale revealed that the mechanical behavior is anisotropic and that the highest strength was exhibited along the fish length. Furthermore, removing the top mineralized layers resulted in an increase in the tensile strength of the scale. Copyright © 2015 Elsevier Ltd. All rights reserved.
A flow resistance model for assessing the impact of vegetation on flood routing mechanics
NASA Astrophysics Data System (ADS)
Katul, Gabriel G.; Poggi, Davide; Ridolfi, Luca
2011-08-01
The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud
2016-04-01
This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.
NASA Technical Reports Server (NTRS)
Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.
2002-01-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L
2002-06-01
We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).
NASA Astrophysics Data System (ADS)
Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos
2018-05-01
Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.
NASA Astrophysics Data System (ADS)
Sandbach, S. D.; Lane, S. N.; Hardy, R. J.; Amsler, M. L.; Ashworth, P. J.; Best, J. L.; Nicholas, A. P.; Orfeo, O.; Parsons, D. R.; Reesink, A. J. H.; Szupiany, R. N.
2012-12-01
Recent technological advances in remote sensing have enabled investigation of the morphodynamics and hydrodynamics of large rivers. However, measuring topography and flow in these very large rivers is time consuming and thus often constrains the spatial resolution and reach-length scales that can be monitored. Similar constraints exist for computational fluid dynamics (CFD) studies of large rivers, requiring maximization of mesh- or grid-cell dimensions and implying a reduction in the representation of bedform-roughness elements that are of the order of a model grid cell or less, even if they are represented in available topographic data. These "subgrid" elements must be parameterized, and this paper applies and considers the impact of roughness-length treatments that include the effect of bed roughness due to "unmeasured" topography. CFD predictions were found to be sensitive to the roughness-length specification. Model optimization was based on acoustic Doppler current profiler measurements and estimates of the water surface slope for a variety of roughness lengths. This proved difficult as the metrics used to assess optimal model performance diverged due to the effects of large bedforms that are not well parameterized in roughness-length treatments. However, the general spatial flow patterns are effectively predicted by the model. Changes in roughness length were shown to have a major impact upon flow routing at the channel scale. The results also indicate an absence of secondary flow circulation cells in the reached studied, and suggest simpler two-dimensional models may have great utility in the investigation of flow within large rivers.
Carbon nanotube circuit integration up to sub-20 nm channel lengths.
Shulaker, Max Marcel; Van Rethy, Jelle; Wu, Tony F; Liyanage, Luckshitha Suriyasena; Wei, Hai; Li, Zuanyi; Pop, Eric; Gielen, Georges; Wong, H-S Philip; Mitra, Subhasish
2014-04-22
Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology projected to achieve over an order of magnitude improvement in energy-delay product, a metric of performance and energy efficiency, compared to silicon-based circuits. However, due to substantial imperfections inherent with CNTs, the promise of CNFETs has yet to be fully realized. Techniques to overcome these imperfections have yielded promising results, but thus far only at large technology nodes (1 μm device size). Here we demonstrate the first very large scale integration (VLSI)-compatible approach to realizing CNFET digital circuits at highly scaled technology nodes, with devices ranging from 90 nm to sub-20 nm channel lengths. We demonstrate inverters functioning at 1 MHz and a fully integrated CNFET infrared light sensor and interface circuit at 32 nm channel length. This demonstrates the feasibility of realizing more complex CNFET circuits at highly scaled technology nodes.
Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran
2017-04-01
Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.
2016-04-01
AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales
Turbulent Premixed Hydrogen/Air Flames.
1991-02-15
velocity components i K Kolmogorov scale LC flame length based on a time-averaged unreactedness of 0.5 O-/(0 2 +N2) volumetric fraction of 02 in nonfuel...such effects were observed can be seen directly from the flame lengths , Lc, summarized in Table 2, clearly, L., is consistently shorter for the unstable...al., 1990). Aside from the flame length observations discussed in connection with Table 2, the flame surfaces for stable conditions were much
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Ching, Chang Y.
1994-01-01
The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.
Neuropsychological exploration of alleged mold neurotoxicity.
Reinhard, Matthew J; Satz, Paul; Scaglione, Cris A; D'Elia, Louis F; Rassovsky, Yuri; Arita, Anthony A; Hinkin, Charles H; Thrasher, Delaney; Ordog, Gary
2007-05-01
Cognitive and emotional correlates of toxic mold exposure and potential dose-response effects for both outcomes were investigated. Self-reported length of exposure, time since last exposure, and serum immunoglobulin (IgG) levels were assessed. Despite CNS complaints often seen with mold exposed individuals, overall results did not uncover concomitant cognitive deficits suggested in previous studies or a significant reduction in intellectual functioning. Fewer subjects were excluded as result of failing effort/motivation assessment than expected. Correlations of IgG and cognitive function are discussed. A dose-effect for self-reported length of exposure and cognitive outcome was not seen. The sample's overall Minnesota Multiphasic Personality Inventory II (MMPI-2) profile indicated elevations on scales 1, 2, 3, 7 and 8. MMPI-2 clinical scales 1 and 3 were significantly correlated with length of exposure. The MMPI-2 may be sensitive to increasing physical and emotional sequelae as length of exposure increases. A potential subgroup of cognitively impaired outliers within mold exposure litigants is explored. Limitations of self-reported and objective measurements for mold exposure and exploratory statistical methodology are discussed.
From coupled elementary units to the complexity of the glass transition.
Rehwald, Christian; Rubner, Oliver; Heuer, Andreas
2010-09-10
Supercooled liquids display fascinating properties upon cooling such as the emergence of dynamic length scales. Different models strongly vary with respect to the choice of the elementary subsystems as well as their mutual coupling. Here we show via computer simulations of a glass former that both ingredients can be identified via analysis of finite-size effects within the continuous-time random walk framework. The subsystems already contain complete information about thermodynamics and diffusivity, whereas the coupling determines structural relaxation and the emergence of dynamic length scales.
NASA Astrophysics Data System (ADS)
Akbarzadeh Khorshidi, M.; Shariati, M.
2017-07-01
The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.
Turbulent Channel Flow Measurements with a Nano-scale Thermal Anemometry Probe
NASA Astrophysics Data System (ADS)
Bailey, Sean; Witte, Brandon
2014-11-01
Using a Nano-scale Thermal Anemometry Probe (NSTAP), streamwise velocity was measured in a turbulent channel flow wind tunnel at Reynolds numbers ranging from Reτ = 500 to Reτ = 4000 . Use of these probes results in the a sensing-length-to-viscous-length-scale ratio of just 5 at the highest Reynolds number measured. Thus measured results can be considered free of spatial filtering effects. Point statistics are compared to recently published DNS and LDV data at similar Reynolds numbers and the results are found to be in good agreement. However, comparison of the measured spectra provide further evidence of aliasing at long wavelengths due to application of Taylor's frozen flow hypothesis, with increased aliasing evident with increasing Reynolds numbers. In addition to conventional point statistics, the dissipative scales of turbulence are investigated with focus on the wall-dependent scaling. Results support the existence of a universal pdf distribution of these scales once scaled to account for large-scale anisotropy. This research is supported by KSEF Award KSEF-2685-RDE-015.
Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella
2015-08-28
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2018-02-01
Disequilibrium chemical processes significantly affect the spectra of substellar objects. To study these effects, dynamical disequilibrium has been parameterized using the quench and eddy diffusion approximations, but little work has been done to explore how these approximations perform under realistic planetary conditions in different dynamical regimes. As a first step toward addressing this problem, we study the localized, small-scale convective dynamics of planetary atmospheres by direct numerical simulation of fully compressible hydrodynamics with reactive tracers using the Dedalus code. Using polytropically stratified, plane-parallel atmospheres in 2D and 3D, we explore the quenching behavior of different abstract chemical species as a function of the dynamical conditions of the atmosphere as parameterized by the Rayleigh number. We find that in both 2D and 3D, chemical species quench deeper than would be predicted based on simple mixing-length arguments. Instead, it is necessary to employ length scales based on the chemical equilibrium profile of the reacting species in order to predict quench points and perform chemical kinetics modeling in 1D. Based on the results of our simulations, we provide a new length scale, derived from the chemical scale height, that can be used to perform these calculations. This length scale is simple to calculate from known chemical data and makes reasonable predictions for our dynamical simulations.
NASA Astrophysics Data System (ADS)
Akbar, Ruzbeh; Short Gianotti, Daniel; McColl, Kaighin A.; Haghighi, Erfan; Salvucci, Guido D.; Entekhabi, Dara
2018-03-01
The soil water content profile is often well correlated with the soil moisture state near the surface. They share mutual information such that analysis of surface-only soil moisture is, at times and in conjunction with precipitation information, reflective of deeper soil fluxes and dynamics. This study examines the characteristic length scale, or effective depth Δz, of a simple active hydrological control volume. The volume is described only by precipitation inputs and soil water dynamics evident in surface-only soil moisture observations. To proceed, first an observation-based technique is presented to estimate the soil moisture loss function based on analysis of soil moisture dry-downs and its successive negative increments. Then, the length scale Δz is obtained via an optimization process wherein the root-mean-squared (RMS) differences between surface soil moisture observations and its predictions based on water balance are minimized. The process is entirely observation-driven. The surface soil moisture estimates are obtained from the NASA Soil Moisture Active Passive (SMAP) mission and precipitation from the gauge-corrected Climate Prediction Center daily global precipitation product. The length scale Δz exhibits a clear east-west gradient across the contiguous United States (CONUS), such that large Δz depths (>200 mm) are estimated in wetter regions with larger mean precipitation. The median Δz across CONUS is 135 mm. The spatial variance of Δz is predominantly explained and influenced by precipitation characteristics. Soil properties, especially texture in the form of sand fraction, as well as the mean soil moisture state have a lesser influence on the length scale.
NASA Astrophysics Data System (ADS)
Kwon, Sungchul; Kim, Jin Min
2015-01-01
For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.
Evaluation of a strain-sensitive transport model in LES of turbulent nonpremixed sooting flames
NASA Astrophysics Data System (ADS)
Lew, Jeffry K.; Yang, Suo; Mueller, Michael E.
2017-11-01
Direct Numerical Simulations (DNS) of turbulent nonpremixed jet flames have revealed that Polycyclic Aromatic Hydrocarbons (PAH) are confined to spatially intermittent regions of low scalar dissipation rate due to their slow formation chemistry. The length scales of these regions are on the order of the Kolmogorov scale or smaller, where molecular diffusion effects dominate over turbulent transport effects irrespective of the large-scale turbulent Reynolds number. A strain-sensitive transport model has been developed to identify such species whose slow chemistry, relative to local mixing rates, confines them to these small length scales. In a conventional nonpremixed ``flamelet'' approach, these species are then modeled with their molecular Lewis numbers, while remaining species are modeled with an effective unity Lewis number. A priori analysis indicates that this strain-sensitive transport model significantly affects PAH yield in nonpremixed flames with essentially no impact on temperature and major species. The model is applied with Large Eddy Simulation (LES) to a series of turbulent nonpremixed sooting jet flames and validated via comparisons with experimental measurements of soot volume fraction.
NASA Astrophysics Data System (ADS)
Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander
2017-11-01
Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.
Inherent length-scales of periodic solar wind number density structures
NASA Astrophysics Data System (ADS)
Viall, N. M.; Kepko, L.; Spence, H. E.
2008-07-01
We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.
Jarrold, Christopher; Danielsson, Henrik; Wang, Xiaoli
2015-01-01
Previous studies of the development of phonological similarity and word length effects in children have shown that these effects are small or absent in young children, particularly when measured using visual presentation of the memoranda. This has often been taken as support for the view that young children do not rehearse. The current paper builds on recent evidence that instead suggests that absent phonological similarity and word length effects in young children reflects the same proportional cost of these effects in children of all ages. Our aims are to explore the conditions under which this proportional scaling account can reproduce existing developmental data, and in turn suggest ways that future studies might measure and model phonological similarity and word length effects in children. To that end, we first fit a single mathematical function through previously reported data that simultaneously captures absent and negative proportional effects of phonological similarity in young children plus constant proportional similarity effects in older children. This developmental function therefore provides the benchmark that we seek to re-produce in a series of subsequent simulations that test the proportional scaling account. These simulations reproduce the developmental function well, provided that they take into account the influence of floor effects and of measurement error. Our simulations suggest that future empirical studies examining these effects in the context of the development of rehearsal need to take into account proportional scaling. They also provide a demonstration of how proportional costs can be explored, and of the possible developmental functions associated with such an analysis. PMID:25852615
Drivers of protogynous sex change differ across spatial scales.
Taylor, Brett M
2014-01-22
The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.
Emergence of a turbulent cascade in a quantum gas
NASA Astrophysics Data System (ADS)
Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran
2016-11-01
A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.
Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...
2015-06-24
Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less
Yucel, Ufuk; Kucuksen, Sami; Cingoz, Havva T; Anliacik, Emel; Ozbek, Orhan; Salli, Ali; Ugurlu, Hatice
2013-12-01
Plantar fasciitis often leads to disability. Optimal treatment for this clinical condition is still unknown. To compare the effectiveness of wearing a full-length silicone insole with ultrasound-guided corticosteroid injection in the management of plantar fasciitis. Randomized clinical trial. Forty-two patients with chronic unilateral plantar fasciitis were allocated randomly to have an ultrasound-guided corticosteroid injection or wear a full-length silicone insole. Data were collected before the procedure and 1 month after. The primary outcome measures included first-step heel pain via Visual Analogue Scale and Heel Tenderness Index. Other outcome measures were the Foot and Ankle Outcome Score and ultrasonographic thickness of the plantar fascia. After 1 month, a significant improvement was shown in Visual Analogue Scale, Heel Tenderness Index, Foot and Ankle Outcome Score, and ultrasonographic thickness of plantar fascia in both groups. Visual Analogue Scale scores, Foot and Ankle Outcome Score pain, Foot and Ankle Outcome Score for activities of daily living, Foot and Ankle Outcome Score for sport and recreation function, and plantar fascia thickness were better in injection group than in insole group (p < 0.05). Although both ultrasound-guided corticosteroid injection and wearing a full-length silicone insole were effective in the conservative treatment of plantar fasciitis, we recommend the use of silicone insoles as a first line of treatment for persons with plantar fasciitis.
Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.
Berkovits, Richard
2012-04-27
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams
NASA Astrophysics Data System (ADS)
Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.
2013-11-01
Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.
NASA Astrophysics Data System (ADS)
Silaev, Mihail; Winyard, Thomas; Babaev, Egor
2018-05-01
The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N +1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N +1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.
Multiscale Constitutive Modeling of Asphalt Concrete
NASA Astrophysics Data System (ADS)
Underwood, Benjamin Shane
Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also found that the maximum aggregate size of the FAM is mixture dependent, but consistent with a gradation parameter from the Baily Method of mixture design. Mechanistic modeling of these different length scales reveals that although many consider asphalt concrete to be a LVE material, it is in fact only quasi-LVE because it shows some tendencies that are inconsistent with LVE theory. Asphalt FAM and asphalt mastic show similar nonlinear tendencies although the exact magnitude of the effect differs. These tendencies can be ignored for damage modeling in the mixture and FAM scales as long as the effects are consistently ignored, but it is found that they must be accounted for in mastic and binder damage modeling. The viscoelastic continuum damage (VECD) model is used for damage modeling in this research. To aid in characterization and application of the VECD model for cyclic testing, a simplified version (S-VECD) is rigorously derived and verified. Through the modeling efforts at each scale, various factors affecting the fundamental and engineering properties at each scale are observed and documented. A microstructure association model that accounts for particle interaction through physico-chemical processes and the effects of aggregate structuralization is developed to links the moduli at each scale. This model is shown to be capable of upscaling the mixture modulus from either the experimentally determined mastic modulus or FAM modulus. Finally, an initial attempt at upscaling the damage and nonlinearity phenomenon is shown.
Scaling behavior of fully spin-coated TFT
NASA Astrophysics Data System (ADS)
Mondal, Sandip; Kumar, Arvind; Rao, K. S. R. Koteswara; Venkataraman, V.
2017-05-01
We studied channel scaling behavior of fully spin coated, low temperature solution processed thin film transistor (TFT) fabricated on p++ - Si (˜1021 cm-3) as bottom gate. The solution processed, spin coated 40 nm thick amorphous Indium Gallium Zinc Oxide (a-IGZO) and 50 nm thick amorphous zirconium di-oxide (a-ZrO2) has been used as channel and low leakage dielectric at 350°C respectively. The channel scaling effect of the TFT with different width/length ratio (W/L= 2.5, 5 and 15) for same channel length (L = 10 μm) has been demonstrated. The lowest threshold voltage (Vth) is 6.25 V for the W/L=50/10. The maximum field effect mobility (μFE) has been found to be 0.123 cm2/Vs from W/L of 50/10 with the drain to source voltage (VD) of 10V and 20V gate to source voltage (VG). We also demonstrated that there is no contact resistance effect on the mobility of the fully sol-gel spin coated TFT.
The Snakelike Chain Character of Unstructured RNA
Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.
2013-01-01
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2016-02-01
Superhydrophobic surfaces can significantly reduce hydrodynamic skin drag by accommodating large slip velocity near the surface due to entrapment of air bubbles within their micro-scale roughness elements. While there are many Stokes flow solutions for flows near superhydrophobic surfaces that describe the relation between effective slip length and surface geometry, such relations are not fully known in the turbulent flow limit. In this work, we present a phenomenological model for the kinematics of flow near a superhydrophobic surface with periodic post-patterns at high Reynolds numbers. The model predicts an inverse square root scaling with solid fraction, and a cube root scaling of the slip length with pattern size, which is different from the reported scaling in the Stokes flow limit. A mixed model is then proposed that recovers both Stokes flow solution and the presented scaling, respectively, in the small and large texture size limits. This model is validated using direct numerical simulations of turbulent flows over superhydrophobic posts over a wide range of texture sizes from L+ ≈ 6 to 310 and solid fractions from ϕs = 1/9 to 1/64. Our report also embarks on the extension of friction laws of turbulent wall-bounded flows to superhydrophobic surfaces. To this end, we present a review of a simplified model for the mean velocity profile, which we call the shifted-turbulent boundary layer model, and address two previous shortcomings regarding the closure and accuracy of this model. Furthermore, we address the process of homogenization of the texture effect to an effective slip length by investigating correlations between slip velocity and shear over pattern-averaged data for streamwise and spanwise directions. For L+ of up to O(10), shear stress and slip velocity are perfectly correlated and well described by a homogenized slip length consistent with Stokes flow solutions. In contrast, in the limit of large L+, the pattern-averaged shear stress and slip velocity become uncorrelated and thus the homogenized boundary condition is unable to capture the bulk behavior of the patterned surface.
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...
2017-04-07
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.
Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less
Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels
NASA Astrophysics Data System (ADS)
Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik
2002-11-01
The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.
Asserive Training in Groups Using Video Feedback
ERIC Educational Resources Information Center
Galassi, John P.; And Others
1974-01-01
The study investigated the effectiveness of group assertive training with nonassertive college students. Significant differences were found between experimental and control subjects on the College Self-Expression Scale, the Subjective Unit of Disturbance Scale, eye contact, length of scene, and assertive content but not on response latency.…
NASA Astrophysics Data System (ADS)
Khosropour, B.
2016-07-01
In this work, we consider a D-dimensional ( β, β^' -two-parameters deformed Heisenberg algebra, which was introduced by Kempf et al. The angular-momentum operator in the presence of a minimal length scale based on the Kempf-Mann-Mangano algebra is obtained in the special case of β^' = 2β up to the first order over the deformation parameter β . It is shown that each of the components of the modified angular-momentum operator, commutes with the modified operator {L}2 . We find the magnetostatic field in the presence of a minimal length. The Zeeman effect in the deformed space is studied and also Lande's formula for the energy shift in the presence of a minimal length is obtained. We estimate an upper bound on the isotropic minimal length.
Numerical study of axial turbulent flow over long cylinders
NASA Technical Reports Server (NTRS)
Neves, J. C.; Moin, P.; Moser, R. D.
1991-01-01
The effects of transverse curvature are investigated by means of direct numerical simulations of turbulent axial flow over cylinders. Two cases of Reynolds number of about 3400 and layer-thickness-to-cylinder-radius ratios of 5 and 11 were simulated. All essential turbulence scales were resolved in both calculations, and a large number of turbulence statistics were computed. The results are compared with the plane channel results of Kim et al. (1987) and with experiments. With transverse curvature the skin friction coefficient increases and the turbulence statistics, when scaled with wall units, are lower than in the plane channel. The momentum equation provides a scaling that collapses the cylinder statistics, and allows the results to be interpreted in light of the plane channel flow. The azimuthal and radial length scales of the structures in the flow are of the order of the cylinder diameter. Boomerang-shaped structures with large spanwise length scales were observed in the flow.
How much a galaxy knows about its large-scale environment?: An information theoretic perspective
NASA Astrophysics Data System (ADS)
Pandey, Biswajit; Sarkar, Suman
2017-05-01
The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A
2010-03-01
The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul
2018-01-21
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations
NASA Astrophysics Data System (ADS)
Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul
2018-01-01
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
On the structural properties of small-world networks with range-limited shortcut links
NASA Astrophysics Data System (ADS)
Jia, Tao; Kulkarni, Rahul V.
2013-12-01
We explore a new variant of Small-World Networks (SWNs), in which an additional parameter (r) sets the length scale over which shortcuts are uniformly distributed. When r=0 we have an ordered network, whereas r=1 corresponds to the original Watts-Strogatz SWN model. These limited range SWNs have a similar degree distribution and scaling properties as the original SWN model. We observe the small-world phenomenon for r≪1, indicating that global shortcuts are not necessary for the small-world effect. For limited range SWNs, the average path length changes nonmonotonically with system size, whereas for the original SWN model it increases monotonically. We propose an expression for the average path length for limited range SWNs based on numerical simulations and analytical approximations.
Coarsening of stripe patterns: variations with quench depth and scaling.
Tripathi, Ashwani K; Kumar, Deepak
2015-02-01
The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.
Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth
2010-03-01
The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
NASA Astrophysics Data System (ADS)
Meneveau, C. V.; Bai, K.; Katz, J.
2011-12-01
The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.
Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
2016-09-01
This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less
Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys
NASA Astrophysics Data System (ADS)
Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri
2016-12-01
The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.
NASA Astrophysics Data System (ADS)
Li, Wanli; Vicente, C. L.; Xia, J. S.; Pan, W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-05-01
The quantum Hall-plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with κ=0.42 was observed from 1.2 K down to 12 mK. This perfect scaling terminates sharply at a saturation temperature of Ts˜10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (Lϕ∝T-p/2) reaches the sample size (W) of millimeter scale. From a size dependent study, Ts∝W-1 was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured κ and p, is ν=2.38, and the dynamic critical exponent z=1.
On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah
2018-01-01
In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.
Scaling and percolation in the small-world network model
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Watts, D. J.
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
Transport of light, trace impurities in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.
2012-10-01
Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaotong; Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn
We carefully examine the depolarization feature of blazars in the optical and near-infrared bands using the sample of Mead et al. Magnetohydrodynamics turbulence could be one possible reason for the depolarization of optical/infrared blazars when we apply the theoretical analysis of Lazarian and Pogosyan. We further identify in the sample that the depolarization results shown in most blazars roughly obey the form of the three-dimensional anisotropic Kolmogorov scaling. The effective Faraday rotation window length scale is not small enough to resolve the polarization correlation length scale in the blazar sample. The depolarization and the related turbulent features show diversities inmore » different blazar sources. We suggest more simultaneous observations in both the optical/infrared and the high-energy bands for the study of the blazar polarization.« less
The snakelike chain character of unstructured RNA.
Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A
2013-12-03
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method
NASA Astrophysics Data System (ADS)
Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui
2018-05-01
In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.
NASA Astrophysics Data System (ADS)
Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Collins, T. J. B.; Turnbull, D. P.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.
2015-11-01
Results from the first experiments at the National Ignition Facility (NIF) to probe two-plasmon -decay (TPD) hot-electron production at scale lengths relevant to polar-direct-drive (PDD) ignition are reported. The irradiation on one side of a planar CH foil generated a plasma at the quarter-critical surface with a predicted density gradient scale length of Ln ~ 600 μm , a measured electron temperature of Te ~ 3 . 5 to 4.0 keV, an overlapped laser intensity of I ~ 6 ×1014 W/cm2, and a predicted TPD threshold parameter of η ~ 4 . The hard x-ray spectrum and the Kα emission from a buried Mo layer were measured to infer the hot-electron temperature and the fraction of total laser energy converted to TPD hot electrons. Optical emission at ω/2 correlated with the time-dependent hard x-ray signal confirms that TPD is responsible for the hot-electron generation. The effect of laser beam angle of incidence on TPD hot-electron generation was assessed, and the data show that the beam angle of incidence did not have a strong effect. These results will be used to benchmark simulations of TPD hot-electron production at conditions relevant to PDD ignition-scale implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar
2017-03-01
Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.
NASA Astrophysics Data System (ADS)
Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar
2017-04-01
Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.
Taming active turbulence with patterned soft interfaces.
Guillamat, P; Ignés-Mullol, J; Sagués, F
2017-09-15
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
NASA Astrophysics Data System (ADS)
Schumaker, Stephen Alexander
Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The effective density ratio was measured which allowed the flame lengths to be collapsed to the nonreacting scaling relation. The equivalence principle of Tacina and Dahm was utilized to compare the theoretical and measured effective density ratios.
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-06-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-01-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael
2015-01-01
A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
Wang, Xiang; Lee, Jae-Hyeok; Li, Ruibin; Liao, Yu-Pei; Kang, Joohoon; Chang, Chong Hyun; Guiney, Linda M; Mirshafiee, Vahid; Li, Linjiang; Lu, Jianqin; Xia, Tian; Hersam, Mark C; Nel, André E
2018-06-01
Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1β (IL-1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor-β1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ahn, Kyung H.
1994-01-01
The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2018-03-01
One recently proposed new method for accurately determining wetting temperature is applied to the wetting transition occurring in a single component nonpolar neutral molecule system near a neutral planar substrate with roughness produced by cosinusoidal modulation(s). New observations are summarized into five points: (i) for a planar substrate superimposed with one cosinusoidal modulation, with increasing of the periodicity length or the surface attraction force field, or decreasing of the amplitude, wetting temperature T_W drops accordingly and the three parameters show multiplication effect; moreover, both the periodicity length and amplitude effect curves display pole phenomena and saturation phenomena, and the T_W saturation occurs at small (for case of large amplitude) or large (for case of small amplitude) periodicity length side, respectively. (ii) In the case of the planar substrate superimposed with two cosinusoidal modulations with equal periodicity length, the initial phase difference is critical issue that influences the T_W, which decreases with the initial phase difference. (iii) In the case of the planar substrate superimposed with two cosinusoidal modulations with zero phase difference, change of the T_W with one periodicity length under the condition of another periodicity length unchanged is non-monotonous. (iv) When the parameters are chosen such that the T_W draws ever closer to the bulk critical temperature, wetting transition on the roughness substrate eventually does not occur. (v) The present microscopic calculation challenges traditional macroscopic theory by confirming that the atomic length scale roughness always renders the surface less hydrophilic and whereas the mesoscopical roughness renders the surface more hydrophilic. All of these observations summarized can be reasonably explained by the relative strength of the attraction actually enjoyed by the surface gas molecules to the attraction the gas molecules can get when in bulk.
NASA Astrophysics Data System (ADS)
Tedford, E. W.; MacIntyre, S.; Miller, S. D.; Czikowsky, M. J.
2013-12-01
The actively mixing layer, or surface layer, is the region of the upper mixed layer of lakes, oceans and the atmosphere directly influenced by wind, heating and cooling. Turbulence within the surface mixing layer has a direct impact on important ecological processes. The Monin-Obukhov length scale (LMO) is a critical length scale used in predicting and understanding turbulence in the actively mixed layer. On the water side of the air-water interface, LMO is defined as: LMO=-u*^3/(0.4 JB0) where u*, the shear velocity, is defined as (τ/rho)^0.5 where τ is the shear stress and rho is the density of water and JBO is the buoyancy flux at the surface. Above the depth equal to the absolute value of the Monin-Obukhov length scale (zMO), wind shear is assumed to dominate the production of turbulent kinetic energy (TKE). Below zMO, the turbulence is assumed to be suppressed when JB0 is stabilizing (warming surface waters) and enhanced when the buoyancy flux is destabilizing (cooling surface waters). Our observed dissipations were well represented using the canonical similarity scaling equations. The Monin-Obukhov length scale was generally effective in separating the surface-mixing layer into two regions: an upper region, dominated by wind shear; and a lower region, dominated by buoyancy flux. During both heating and cooling and above a depth equal to |LMO|, turbulence was dominated by wind shear and dissipation followed law of the wall scaling although was slightly augmented by buoyancy flux during both heating and cooling. Below a depth equal to |LMO| during cooling, dissipation was nearly uniform with depth. Although distinguishing between an upper region of the actively mixing layer dominated by wind stress and a lower portion dominated by buoyancy flux is typically accurate the most accurate estimates of dissipation include the effects of both wind stress and buoyancy flux throughout the actively mixed layer. We demonstrate and discuss the impact of neglecting the non-dominant forcing (buoyancy flux above zMO and wind stress below zMO) above and below zMO.
Micron-scale lens array having diffracting structures
Goldberg, Kenneth A
2013-10-29
A novel micron-scale lens, a microlens, is engineered to concentrate light efficiently onto an area of interest, such as a small, light-sensitive detector element in an integrated electronic device. Existing microlens designs imitate the form of large-scale lenses and are less effective at small sizes. The microlenses described herein have been designed to accommodate diffraction effects, which dominate the behavior of light at small length scales. Thus a new class of light-concentrating optical elements with much higher relative performance has been created. Furthermore, the new designs are much easier to fabricate than previous designs.
a Fractal Network Model for Fractured Porous Media
NASA Astrophysics Data System (ADS)
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
Size effects in olivine control strength in low-temperature plasticity regime
NASA Astrophysics Data System (ADS)
Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.
2017-12-01
The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.
A numerical study of Coulomb interaction effects on 2D hopping transport.
Kinkhabwala, Yusuf A; Sverdlov, Viktor A; Likharev, Konstantin K
2006-02-15
We have extended our supercomputer-enabled Monte Carlo simulations of hopping transport in completely disordered 2D conductors to the case of substantial electron-electron Coulomb interaction. Such interaction may not only suppress the average value of hopping current, but also affect its fluctuations rather substantially. In particular, the spectral density S(I)(f) of current fluctuations exhibits, at sufficiently low frequencies, a 1/f-like increase which approximately follows the Hooge scaling, even at vanishing temperature. At higher f, there is a crossover to a broad range of frequencies in which S(I)(f) is nearly constant, hence allowing characterization of the current noise by the effective Fano factor [Formula: see text]. For sufficiently large conductor samples and low temperatures, the Fano factor is suppressed below the Schottky value (F = 1), scaling with the length L of the conductor as F = (L(c)/L)(α). The exponent α is significantly affected by the Coulomb interaction effects, changing from α = 0.76 ± 0.08 when such effects are negligible to virtually unity when they are substantial. The scaling parameter L(c), interpreted as the average percolation cluster length along the electric field direction, scales as [Formula: see text] when Coulomb interaction effects are negligible and [Formula: see text] when such effects are substantial, in good agreement with estimates based on the theory of directed percolation.
Empirical scaling of the length of the longest increasing subsequences of random walks
NASA Astrophysics Data System (ADS)
Mendonça, J. Ricardo G.
2017-02-01
We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.
Quantifying adsorption-induced deformation of nanoporous materials on different length scales
Morak, Roland; Braxmeier, Stephan; Ludescher, Lukas; Hüsing, Nicola; Reichenauer, Gudrung
2017-01-01
A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors. PMID:29021735
Kinetic feature of dipolarization fronts produced by interchange instability in the magnetotail
NASA Astrophysics Data System (ADS)
Lyu, Haoyu
2017-04-01
A two-dimensional extended MHD simulation is performed to study the kinetic feature of depolarization fronts (DF) in the scale of the ion inertial length / ion Larmor radius. The interchange instability, arising due to the force imbalance between the tailward gradient of thermal pressure and Earthward magnetic curvature force, self-consistently produces the DF in the near-Earth region. Numerical investigations indicate that the DF is a tangential discontinuity, which means that the normal plasma velocity across the DF should be zero in the reference system that is static with the DF structure. The electric system, including electric field and current, is determined by Hall effect arising in the scale of ion inertial length. Hall effect not only mainly contributes on the electric field normal to the tangent plane of the DF, increases the current along the tangent plane of the DF, but also makes the DF structure asymmetric. The drifting motion of the large-scale DF structure is determined by the FLR effect arising in the scale of ion Larmor radius. The ion magnetization velocity induced by the FLR effect is towards to duskward at the subsolar point of the DF, but the y component of velocity in the region after the DF, which dominantly results in the drifting motion of the whole mushroom structure towards the dawn.
NASA Astrophysics Data System (ADS)
Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; Kail, J.; Marchese, E.; Marcinkowski, P.; Okruszko, T.; Paillex, A.; Schirmer, M.; Stelmaszczyk, M.; Surian, N.
2018-01-01
The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.
Belletti, B; Nardi, L; Rinaldi, M; Poppe, M; Brabec, K; Bussettini, M; Comiti, F; Gielczewski, M; Golfieri, B; Hellsten, S; Kail, J; Marchese, E; Marcinkowski, P; Okruszko, T; Paillex, A; Schirmer, M; Stelmaszczyk, M; Surian, N
2018-01-01
The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.
Tip vortices in the actuator line model
NASA Astrophysics Data System (ADS)
Martinez, Luis; Meneveau, Charles
2017-11-01
The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.
Quantifying precision of in situ length and weight measurements of fish
Gutreuter, S.; Krzoska, D.J.
1994-01-01
We estimated and compared errors in field-made (in situ) measurements of lengths and weights of fish. We made three measurements of length and weight on each of 33 common carp Cyprinus carpio, and on each of a total of 34 bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus. Maximum total lengths of all fish were measured to the nearest 1 mm on a conventional measuring board. The bluegills and black crappies (85–282 mm maximum total length) were weighed to the nearest 1 g on a 1,000-g spring-loaded scale. The common carp (415–600 mm maximum total length) were weighed to the nearest 0.05 kg on a 20-kg spring-loaded scale. We present a statistical model for comparison of coefficients of variation of length (Cl ) and weight (Cw ). Expected Cl was near zero and constant across mean length, indicating that length can be measured with good precision in the field. Expected Cw decreased with increasing mean length, and was larger than expected Cl by 5.8 to over 100 times for the bluegills and black crappies, and by 3 to over 20 times for the common carp. Unrecognized in situ weighing errors bias the apparent content of unique information in weight, which is the information not explained by either length or measurement error. We recommend procedures to circumvent effects of weighing errors, including elimination of unnecessary weighing from routine monitoring programs. In situ weighing must be conducted with greater care than is common if the content of unique and nontrivial information in weight is to be correctly identified.
Intraradicular Appearances Affect Radiographic Interpretation of the Periapical Area.
Biscontine, Ana C; Diliberto, Adam J; Hatton, John F; Woodmansey, Karl F
2017-12-01
No research exists evaluating the influences of specific variables such as obturation length, radiodensity, or the presence of voids on interpretation of periradicular area. The purpose of this study was to evaluate the effects of obturation length, radiodensity, and the presence of voids on the radiographic interpretations of periapical areas. In a Web-based survey, 3 test image groups of variable obturation lengths, radiodensities, and numbers of voids were presented to observers for evaluation of the periapical areas. Intracanal areas of the images were altered by using Adobe Photoshop to create 3 test image groups. Each observer reviewed 2 control images and 1 image from each test image group. Responses were recorded in a 5-point Likert-type scale. Within each test image group, the periapical areas were identical. Kruskal-Wallis, Mann-Whitney U, and Cliff's delta statistical tests were used to analyze results. A total of 748 observer responses were analyzed. Significant differences (P ≤ .01) in the median Likert-type scale responses were identified between the following paired groups: 3 mm short and 1 mm short, 3 mm short and flush, lower radiodensity and higher radiodensity, lower radiodensity and intermediate radiodensity, no voids and several voids, and several voids and single void. Effect sizes ranged from 0.19 to 0.41. Significant differences were noted within all 3 test image groups: length, radiodensity, and presence of voids. Length of obturation had the largest effect on interpretation of the periapical area, with the 3 mm short radiographic obturation length image interpreted less favorably. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
A'yun, Q.; Takarina, N. D.
2017-07-01
Growth and survival of fishes can be influenced by temperature [1]. Variation among size like weight and length could be the preference how temperature works on growth of fishes [2]. This could be key factor in determining in production as well as market demand since people like heavy and large fishes. The main purpose of this study was to determine the effects of temperature on the growth of milkfish (Chanos Chanos) on weight and length parameters in fish farms Blanakan. This study conducted to assess the optimal temperature for the growth of fish of different sizes to optimize the culture conditions for raising milkfishes in scale cultivation in Blanakan, West Java. Milkfishes were reared in the aquaculture Blanakan ponds because they can adapt very well. The weight and length of milkfishes were measured together with water temperature. The results showed the temperature min (tmin) and max (tmax) were ranged from 29-35 °C. Based on the result, there were significant differences in mean weight (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean weight (99.87±11.51 g) and fish reared in tmin group having the highest mean weight (277.17±33.76 g). Likewise, the significant differences were also observed in mean length (p = 0.00) between temperature with the fish reared in tmax group having the lowest mean length (176.50±12.50 mm) and fish reared in tmin group having the highest mean length (183.60±23.86 mm). Therefore, this paper confirmed the significant effects of temperature on the fish growth reared in aquaculture ponds. More, maintaining aquaculture to lower temperature can be considered as way to keep growth of milkfish well.
Swelling of biological and semiflexible polyelectrolytes.
Dobrynin, Andrey V; Carrillo, Jan-Michael Y
2009-10-21
We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).
Developing Higher-Order Materials Knowledge Systems
NASA Astrophysics Data System (ADS)
Fast, Anthony Nathan
2011-12-01
Advances in computational materials science and novel characterization techniques have allowed scientists to probe deeply into a diverse range of materials phenomena. These activities are producing enormous amounts of information regarding the roles of various hierarchical material features in the overall performance characteristics displayed by the material. Connecting the hierarchical information over disparate domains is at the crux of multiscale modeling. The inherent challenge of performing multiscale simulations is developing scale bridging relationships to couple material information between well separated length scales. Much progress has been made in the development of homogenization relationships which replace heterogeneous material features with effective homogenous descriptions. These relationships facilitate the flow of information from lower length scales to higher length scales. Meanwhile, most localization relationships that link the information from a from a higher length scale to a lower length scale are plagued by computationally intensive techniques which are not readily integrated into multiscale simulations. The challenge of executing fully coupled multiscale simulations is augmented by the need to incorporate the evolution of the material structure that may occur under conditions such as material processing. To address these challenges with multiscale simulation, a novel framework called the Materials Knowledge System (MKS) has been developed. This methodology efficiently extracts, stores, and recalls microstructure-property-processing localization relationships. This approach is built on the statistical continuum theories developed by Kroner that express the localization of the response field at the microscale using a series of highly complex convolution integrals, which have historically been evaluated analytically. The MKS approach dramatically improves the accuracy of these expressions by calibrating the convolution kernels in these expressions to results from previously validated physics-based models. These novel tools have been validated for the elastic strain localization in moderate contrast dual-phase composites by direct comparisons with predictions from finite element model. The versatility of the approach is further demonstrated by its successful application to capturing the structure evolution during spinodal decomposition of a binary alloy. Lastly, some key features in the future application of the MKS approach are developed using the Portevin-le Chaterlier effect. It has been shown with these case studies that the MKS approach is capable of accurately reproducing the results from physics based models with a drastic reduction in computational requirements.
Modeling of Ceiling Fire Spread and Thermal Radiation.
1981-10-01
under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peebles, J.; Wei, M. S.; Arefiev, A. V.
A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less
Peebles, J.; Wei, M. S.; Arefiev, A. V.; ...
2017-02-02
A series of experiments studying pre-plasma’s effect on electron generation and transport due to a high intensity laser were conducted on the OMEGA-EP laser facility. A controlled pre-plasma was produced in front of an aluminum foil target prior to the arrival of the high intensity short pulse beam. Energetic electron spectra were characterized with magnetic and bremsstrahlung spectrometers. Preplasma and pulse length were shown to have a large impact on the temperature of lower energy, ponderomotive scaling electrons. Furthermore, super-ponderomotive electrons, seen in prior pre-plasma experiments with shorter pulses, were observed without any initial pre-plasma in our experiment. 2D particle-in-cellmore » and radiation-hydrodynamic simulations shed light on and validate these experimental results.« less
Modeling and Simulation of Nanoindentation
NASA Astrophysics Data System (ADS)
Huang, Sixie; Zhou, Caizhi
2017-11-01
Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.
Graphene Statistical Mechanics
NASA Astrophysics Data System (ADS)
Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko
2015-03-01
Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794
Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment
NASA Astrophysics Data System (ADS)
Weed, Jonathan Robert
The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.
Mesoscale Models of Fluid Dynamics
NASA Astrophysics Data System (ADS)
Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.
During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.
Electronegativity effects and single covalent bond lengths of molecules in the gas phase.
Lang, Peter F; Smith, Barry C
2014-06-07
This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.
Attosecond-resolution Hong-Ou-Mandel interferometry.
Lyons, Ashley; Knee, George C; Bolduc, Eliot; Roger, Thomas; Leach, Jonathan; Gauger, Erik M; Faccio, Daniele
2018-05-01
When two indistinguishable photons are each incident on separate input ports of a beamsplitter, they "bunch" deterministically, exiting via the same port as a direct consequence of their bosonic nature. This two-photon interference effect has long-held the potential for application in precision measurement of time delays, such as those induced by transparent specimens with unknown thickness profiles. However, the technique has never achieved resolutions significantly better than the few-femtosecond (micrometer) scale other than in a common-path geometry that severely limits applications. We develop the precision of Hong-Ou-Mandel interferometry toward the ultimate limits dictated by statistical estimation theory, achieving few-attosecond (or nanometer path length) scale resolutions in a dual-arm geometry, thus providing access to length scales pertinent to cell biology and monoatomic layer two-dimensional materials.
Mach Number effects on turbulent superstructures in wall bounded flows
NASA Astrophysics Data System (ADS)
Kaehler, Christian J.; Bross, Matthew; Scharnowski, Sven
2017-11-01
Planer and three-dimensional flow field measurements along a flat plat boundary layer in the Trisonic Wind Tunnel Munich (TWM) are examined with the aim to characterize the scaling, spatial organization, and topology of large scale turbulent superstructures in compressible flow. This facility is ideal for this investigation as the ratio of boundary layer thickness to test section spanwise extent ratio is around 1/25, ensuring minimal sidewall and corner effects on turbulent structures in the center of the test section. A major difficulty in the experimental investigation of large scale features is the mutual size of the superstructures which can extend over many boundary layer thicknesses. Using multiple PIV systems, it was possible to capture the full spatial extent of large-scale structures over a range of Mach numbers from Ma = 0.3 - 3. To calculate the average large-scale structure length and spacing, the acquired vector fields were analyzed by statistical multi-point methods that show large scale structures with a correlation length of around 10 boundary layer thicknesses over the range of Mach numbers investigated. Furthermore, the average spacing between high and low momentum structures is on the order of a boundary layer thicknesses. This work is supported by the Priority Programme SPP 1881 Turbulent Superstructures of the Deutsche Forschungsgemeinschaft.
Power and weight considerations in small, agile quadrotors
NASA Astrophysics Data System (ADS)
Mulgaonkar, Yash; Whitzer, Michael; Morgan, Brian; Kroninger, Christopher M.; Harrington, Aaron M.; Kumar, Vijay
2014-06-01
The development of autonomous Micro Aerial Vehicles (MAVs) is significantly constrained by their size, weight and power consumption. In this paper, we explore the energetics of quadrotor platforms and study the scaling of mass, inertia, lift and drag with their characteristic length. The effects of length scale on masses and inertias associated with various components are also investigated. Additionally, a study of Lithium Polymer battery performance is presented in terms of specific power and specific energy. Finally, we describe the power and energy consumption for different quadrotors and explore the dependence on size and mass for static hover tests as well as representative maneuvers.
NASA Astrophysics Data System (ADS)
Kempf, A.; Chatwin-Davies, A.; Martin, R. T. W.
2013-02-01
While a natural ultraviolet cutoff, presumably at the Planck length, is widely assumed to exist in nature, it is nontrivial to implement a minimum length scale covariantly. This is because the presence of a fixed minimum length needs to be reconciled with the ability of Lorentz transformations to contract lengths. In this paper, we implement a fully covariant Planck scale cutoff by cutting off the spectrum of the d'Alembertian. In this scenario, consistent with Lorentz contractions, wavelengths that are arbitrarily smaller than the Planck length continue to exist. However, the dynamics of modes of wavelengths that are significantly smaller than the Planck length possess a very small bandwidth. This has the effect of freezing the dynamics of such modes. While both wavelengths and bandwidths are frame dependent, Lorentz contraction and time dilation conspire to make the freezing of modes of trans-Planckian wavelengths covariant. In particular, we show that this ultraviolet cutoff can be implemented covariantly also in curved spacetimes. We focus on Friedmann Robertson Walker spacetimes and their much-discussed trans-Planckian question: The physical wavelength of each comoving mode was smaller than the Planck scale at sufficiently early times. What was the mode's dynamics then? Here, we show that in the presence of the covariant UV cutoff, the dynamical bandwidth of a comoving mode is essentially zero up until its physical wavelength starts exceeding the Planck length. In particular, we show that under general assumptions, the number of dynamical degrees of freedom of each comoving mode all the way up to some arbitrary finite time is actually finite. Our results also open the way to calculating the impact of this natural UV cutoff on inflationary predictions for the cosmic microwave background.
Seismic imaging in hardrock environments: The role of heterogeneity?
NASA Astrophysics Data System (ADS)
Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian
2012-10-01
We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a mitigation strategy for incorporation into the seismic data processing sequence when imaging in hardrock settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less
Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.; ...
2017-05-31
Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less
Inviscid criterion for decomposing scales
NASA Astrophysics Data System (ADS)
Zhao, Dongxiao; Aluie, Hussein
2018-05-01
The proper scale decomposition in flows with significant density variations is not as straightforward as in incompressible flows, with many possible ways to define a "length scale." A choice can be made according to the so-called inviscid criterion [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009]. It is a kinematic requirement that a scale decomposition yield negligible viscous effects at large enough length scales. It has been proved [Aluie, Physica D 24, 54 (2013), 10.1016/j.physd.2012.12.009] recently that a Favre decomposition satisfies the inviscid criterion, which is necessary to unravel inertial-range dynamics and the cascade. Here we present numerical demonstrations of those results. We also show that two other commonly used decompositions can violate the inviscid criterion and, therefore, are not suitable to study inertial-range dynamics in variable-density and compressible turbulence. Our results have practical modeling implication in showing that viscous terms in Large Eddy Simulations do not need to be modeled and can be neglected.
Large increase in fracture resistance of stishovite with crack extension less than one micrometer
Yoshida, Kimiko; Wakai, Fumihiro; Nishiyama, Norimasa; Sekine, Risako; Shinoda, Yutaka; Akatsu, Takashi; Nagoshi, Takashi; Sone, Masato
2015-01-01
The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials. PMID:26051871
NASA Technical Reports Server (NTRS)
Saether, Erik; Glaessgen, Edward H.
2009-01-01
Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.
Body size and scaling of the hands and feet of prosimian primates.
Lemelin, Pierre; Jungers, William L
2007-06-01
The hands and feet of primates fulfill a variety of biological roles linked with food acquisition and positional behavior. Current explanations of shape differences in cheiridial morphology among prosimians are closely tied to body size differences. Although numerous studies have examined the relationships between body mass and limb morphology in prosimians, no scaling analysis has specifically considered hand and foot dimensions and intrinsic proportions. In this study, we present such an analysis for a sample of 270 skeletal specimens distributed over eight prosimian families. The degree of association between size and shape was assessed using nonparametric correlational techniques, while the relationship between each ray element length and body mass (from published data and a body mass surrogate) was tested for allometric scaling. Since tarsiers and strepsirrhines encompass many taxa of varying degrees of phylogenetic relatedness, effective degrees of freedom were calculated, and comparisons between families were performed to partially address the problem of statistical nonindependence and "phylogenetic inertia." Correlational analyses indicate negative allometry between relative phalangeal length (as reflected by phalangeal indices) and body mass, except for the pollex and hallux. Thus, as size increases, there is a significant decrease in the relative length of the digits when considering all prosimian taxa sampled. Regression analyses show that while the digital portion of the rays scales isometrically with body mass, the palmar/plantar portion of the rays often scales with positive allometry. Some but not all of these broadly interspecific allometric patterns remain statistically significant when effective degrees of freedom are taken into account. As is often the case in interspecific scaling, comparisons within families show different scaling trends in the cheiridia than those seen across families (i.e., lorisids, indriids, and lemurids exhibit rather different allometries). The interspecific pattern of positive allometry that appears to best characterize the metapodials of prosimians, especially those of the foot, parallels differences found in the morphology of the volar skin. Indeed, relatively longer metapodials appear to covary with flatter and more coalesced volar pads, which in turn slightly improve frictional force for animals that are at a comparative disadvantage while climbing because of their larger mass. Despite the essentially isometric relationship found between digit length and body mass across prosimians, examination of the residual variation reveals that tarsiers and Daubentonia possess, relative to their body sizes, remarkably long fingers. Such marked departures between body size and finger length observed in these particular primates are closely linked with specialized modes of prey acquisition and manipulation involving the hands.
Rahbari, A; Montazerian, H; Davoodi, E; Homayoonfar, S
2017-02-01
The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.
NASA Astrophysics Data System (ADS)
Wolterbeek, T. K. T.; Raoof, A.; Peach, C. J.; Spiers, C. J.
2016-12-01
Defects present at casing-cement interfaces in wellbores constitute potential pathways for CO2 to migrate from geological storage systems. It is essential to understand how the transport properties of such pathways evolve when penetrated by CO2-rich fluids. While numerous studies have explored this problem at the decimetre length-scale, the 1-10-100 m scales relevant for real wellbores have received little attention. The present work addresses the effects of long-range reactive transport on a length scale of 1-6 m. This is done by means of a combined experimental and modelling study. The experimental work consisted of flow-through tests, performed on cement-filled steel tubes, 1-6 m in length, containing artificially debonded cement-interfaces. Four tests were performed, at 60-80 °C, imposing flow-through of CO2-rich fluid at mean pressures of 10-15 MPa, controlling the pressure difference at 0.12-4.8 MPa, while measuring flow-rate. In the modelling work, we developed a numerical model to explore reactive transport in CO2-exposed defects on a similar length scale. The formulation adopted incorporates fluid flow, advective and diffusive solute transport, and CO2-cement chemical reactions. Our results show that long-range reactive transport strongly affects the permeability evolution of CO2-exposed defects. In the experiments, sample permeability decreased by 2-4 orders, which microstructural observations revealed was associated with downstream precipitation of carbonates, possibly aided by migration of fines. The model simulations show precipitation in initially open defects produces a sharp decrease in flow rate, causing a transition from advection to diffusion-dominated reactive transport. While the modelling results broadly reproduce the experimental observations, it is further demonstrated that non-uniformity in initial defect aperture has a profound impact on self-sealing behaviour and system permeability evolution on the metre scale. The implication is that future reactive transport models and wellbore scale analyses must include defects with variable aperture in order to obtain reliable upscaling relations.
Predictors of length of stay in a ward for demented elderly: gender differences.
Ono, Toshiyuki; Tamai, Akira; Takeuchi, Daisuke; Tamai, Yuzuru; Iseki, Hidenori; Fukushima, Hiromi; Kasahara, Sumie
2010-09-01
In our previous studies, we found both gender differences among care recipients and predictors that influenced outcomes after discharge from a ward for demented elderly. Here, we investigate predictors that influence the length of stay for each sex. We studied the data of 390 patients with dementia who were hospitalized in a ward for demented elderly between 1 April 2000 and 31 March 2008, and treated until 31 March 2009. The patients were divided into groups classified by gender. We analyzed the gender differences of characteristics and evaluated the predictors that influenced the length of stay in the ward for demented elderly using Cox's proportional hazards model. A model using the initial scores of the Revised Hasegawa Dementia Scale (HDS-R), Assessment Scale for Symptoms of Dementia (ASSD) and Nishimura's activity of daily living scale (N-ADL), which were examined on admission, was named Model 1. In Model 1, we checked the effect of each patient's characteristics, except for complications and destinations, on their length of stay. Model 2 used the final scores of HDS-R, ASSD and N-ADL including complications and destinations. There was a clear gender difference in the length of stay. The length of stay of women was longer than that of men. It was difficult to predict the length of stay in Model 1. Age was the only predictor in women and no predictor was identified in men. In Model 2, complications and the final HDS-R and N-ADL scores were predictors of the length of stay in men. Age, complications and destinations were predictors of the length of stay in women. It was observed that there were gender differences among predictors of the length of stay. However, it was difficult to predict the length of stay on admission. Retrospectively, the length of stay was determined by physical and psychological conditions, not by the social variables in men. In women, it was supposed that the caregiver's wish to give care at home reduced the length of stay. Besides, complication was a common predictor of the extension of stay in each sex. We have to decrease the number of complications as much as possible to reduce the length of stay. © 2010 The Authors. Psychogeriatrics © 2010 Japanese Psychogeriatric Society.
Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer
NASA Astrophysics Data System (ADS)
Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.
2017-09-01
Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.
Bindawas, Saad M; Vennu, Vishal; Moftah, Emad
2017-01-01
to examine the effects of inpatient rehabilitation programs on function and length of stay in older adults with strokeMETHODS: A total of five electronic databases were searched for relevant randomized controlled trials that examined the effects of inpatient rehabilitation programs on functional recovery, as measured by the functional independence measure and length of stay, which was measured in days. We included full-text articles written in English, and no time limit. The methodological quality and risk of bias were assessed using the Physiotherapy Evidence Database Scale and the Cochrane collaboration tools respectively. The effect sizes and confidence intervals were estimated using fixed-effect modelsRESULTS: Eight randomized controlled trials involving 1,910 patients with stroke were included in the meta-analysis showed that patients who participated in the inpatient rehabilitation programs had significantly (p less than 0.05) higher functional independence measure scores (effect size = 0.10; 95 percent confidence interval = 0.01, 0.22) and shorter length of stay (effect size = 0.14; 95 percent confidence interval = 0.03, 0.22). This systematic review provided evidence that inpatient rehabilitation programs have beneficial effects, improving functionality and reducing length of stay for older adults with stroke.
Gate length variation effect on performance of gate-first self-aligned In₀.₅₃Ga₀.₄₇As MOSFET.
Mohd Razip Wee, Mohd F; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y
2013-01-01
A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.
Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET
Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.
2013-01-01
A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548
ERIC Educational Resources Information Center
Benjamin, Aaron S.; Tullis, Jonathan G.; Lee, Ji Hae
2013-01-01
Rating scales are a standard measurement tool in psychological research. However, research has suggested that the cognitive burden involved in maintaining the criteria used to parcel subjective evidence into ratings introduces "decision noise" and affects estimates of performance in the underlying task. There has been debate over whether…
Toward spanning the quality chasm: an examination of team functioning measures.
Strasser, Dale C; Burridge, Andrea Backscheider; Falconer, Judith A; Uomoto, Jay M; Herrin, Jeph
2014-11-01
To examine the effect of 5 measures of team functioning on patient outcomes. Observational, exploratory, measurement. Team functioning surveys and patient outcomes collected 1 year apart in a clinical trial were analyzed. The findings are discussed in context of the domains of team functioning, team effectiveness, and quality improvement. 27 Veterans Affairs medical centers. Staff (t1: N=356; t2: N=273) on inpatient teams and patients (t1: N=4266; t2: N=3213) treated by the teams. Not applicable. Five measures of team functioning (Physician Engagement, Shared Leadership, Supervisor Team Support, Teamness, and Team Effectiveness scales) and 3 measures of patient outcomes (functional improvement, discharge destination, and length of stay) were assessed at 2 time points with hierarchical generalized linear models to evaluate the association between team functioning measures and changes in patient outcomes. Associations (P<.05) between team functioning measures and patient outcomes were found for 3 of the 15 analyses over the study period. Higher Physician Engagement scale score was associated with lower length of stay (P=.017), and increased scores on Teamness and Team Effectiveness scales correlated with higher rates of community discharge (P=.044 and .049, respectively). This exploratory analysis revealed trends that team functioning corresponds with patient outcomes in clinically relevant patterns. An increase in community discharge and a decrease in length of stay were associated with higher scores of team functioning. Here, we find evidence that modifiable attributes of team functioning have a measurable effect on patient outcomes. Such findings are promising and support the need for further research on team effectiveness. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models
NASA Astrophysics Data System (ADS)
Chen, Yun; Zhu, Zong-Hong; Xu, Lixin; Alcaniz, J. S.
2011-04-01
Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r=ct=3/|Λ|. Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/rΛ2(t)=3/(c2tΛ2(t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ. We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled “Union2 compilation” which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015⩽z⩽1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.
NASA Astrophysics Data System (ADS)
Ghannam, K.; Katul, G. G.; Chamecki, M.
2016-12-01
The scale-wise properties of turbulent flow statistics are conventionally quantified using the structure function D_ss (r)= <〖(Δs)〗^2 > describing velocity (s=u) or scalar (s=c) concentration increments Δs=s(x+r)-s(x) at various scales or separation distances r, where <.> is Reynolds averaging over coordinates of statistical homogeneity. For locally homogeneous and isotropic turbulence, the structure function can unfold statistical invariance of the form D_ss (βr)=β^p D_ss (r) as has been demonstrated by Kolmogorov's theory for the inertial subrange in the absence of intermittency corrections. For scales larger than inertial, scale invariance need not hold though universal scaling properties can still emerge provided an appropriate length and velocity scales are identified. One recent study on the structure function of the streamwise velocity (s=u) in smooth and rough wall-bounded flows argued that a logarithmic scaling of the form D_ss/(u_*^2 )=A+B ln(r/l_ɛ ) exists at any height z above the wall (or roughness elements), with,l_ɛ,〖 u〗_*, A and B being a dissipation length scale, the friction velocity, and two similarity constants to be determined. Whether this scaling is valid across all atmospheric stability regimes in the roughness sublayer (RSL) and the possible co-existence of length scales other than l_ɛ that collapse D_ss (r) for velocity and temperature frames the scope of this work. Using year-round field measurements within and above an Amazonian canopy, the work here explores the aforementioned scaling for the streamwise (s=u) and vertical velocity (s=w) components, along with its extension to active scalars (s=T, the air temperature) inside canopies and in the RSL above canopies. While the premise is that a length scale such as l_ɛ may serve as a master closure length scale for turbulent momentum and heat flux budgets, the role of the vorticity thickness, the Obukhov length, the adjustment length scale, and height z are also explored for various scale (or r) regimes. Because the RSL blends D_ss (r) from its form inside the canopy to its form in the well-studied atmospheric surface layer, the scaling laws derived here offer a new perspective on the thickness of the RSL for momentum and scalars and its variations with atmospheric stability.
Constant Stress Drop Fits Earthquake Surface Slip-Length Data
NASA Astrophysics Data System (ADS)
Shaw, B. E.
2011-12-01
Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.
Effects of shock strength on shock turbulence interaction
NASA Technical Reports Server (NTRS)
Lee, Sangsan
1993-01-01
Direct numerical simulation (DNS) and linear analysis (LIA) of isotropic turbulence interacting with a shock wave are performed for several upstream shock normal Mach numbers (M(sub 1)). Turbulence kinetic energy (TKE) is amplified across the shock wave, but this amplification tends to saturate beyond M(sub 1) = 3.0. TKE amplification and Reynolds stress anisotropy obtained in DNS are consistent with LIA predictions. Rapid evolution of TKE immediate downstream of the shock wave persists for all shock strengths and is attributed to the transfer between kinetic and potential modes of turbulence energy through acoustic fluctuations. Changes in energy spectra and various length scales across the shock wave are predicted by LIA, which is consistent with DNS results. Most turbulence length scales decrease across the shock. Dissipation length scale (rho-bar q(exp 3) / epsilon), however, increases slightly for shock waves with M(sub 1) less than 1.65. Fluctuations in thermodynamic variables behind the shock wave stay nearly isentropic for M(sub 1) less than 1.2 and deviate significantly from isentropy for the stronger shock waves due to large entropy fluctuation generated through the interaction.
Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel
2012-01-01
Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America
Silva, Kathleen M; Gross, Thomas J; Silva, Francisco J
2015-03-01
In two experiments, we examined the effect of modifications to the features of a stick-and-tube problem on the stick lengths that adult humans used to solve the problem. In Experiment 1, we examined whether people's tool preferences for retrieving an out-of-reach object in a tube might more closely resemble those reported with laboratory crows if people could modify a single stick to an ideal length to solve the problem. Contrary to when adult humans have selected a tool from a set of ten sticks, asking people to modify a single stick to retrieve an object did not generally result in a stick whose length was related to the object's distance. Consistent with the prior research, though, the working length of the stick was related to the object's distance. In Experiment 2, we examined the effect of increasing the scale of the stick-and-tube problem on people's tool preferences. Increasing the scale of the task influenced people to select relatively shorter tools than had selected in previous studies. Although the causal structures of the tasks used in the two experiments were identical, their results were not. This underscores the necessity of studying physical cognition in relation to a particular causal structure by using a variety of tasks and methods.
Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.
Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O
2018-04-01
Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Large-scale evidence of dependency length minimization in 37 languages
Futrell, Richard; Mahowald, Kyle; Gibson, Edward
2015-01-01
Explaining the variation between human languages and the constraints on that variation is a core goal of linguistics. In the last 20 y, it has been claimed that many striking universals of cross-linguistic variation follow from a hypothetical principle that dependency length—the distance between syntactically related words in a sentence—is minimized. Various models of human sentence production and comprehension predict that long dependencies are difficult or inefficient to process; minimizing dependency length thus enables effective communication without incurring processing difficulty. However, despite widespread application of this idea in theoretical, empirical, and practical work, there is not yet large-scale evidence that dependency length is actually minimized in real utterances across many languages; previous work has focused either on a small number of languages or on limited kinds of data about each language. Here, using parsed corpora of 37 diverse languages, we show that overall dependency lengths for all languages are shorter than conservative random baselines. The results strongly suggest that dependency length minimization is a universal quantitative property of human languages and support explanations of linguistic variation in terms of general properties of human information processing. PMID:26240370
Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanossi, A.; Ro''der, J.; Bishop, A. R.
2001-01-01
We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less
Brillouin Scattering of Picosecond Laser Pulses in Preformed, Short-Scale-Length Plasmas
NASA Astrophysics Data System (ADS)
Gaeris, A. C.; Fisher, Y.; Delettrez, J. A.; Meyerhofer, D. D.
1996-11-01
Brillouin scattering (BS) has been studied in short-scale-length, preformed plasmas. The backscattered and specularly reflected light resulting from the interaction of high-power picosecond pulses with preformed silicon plasmas has been measured. A first laser pulse forms a short-scale-length plasma -- without significant BS -- while a second delayed pulse interacts with an expanded, drifting underdense region of the plasma with density scale length (0 <= Ln <= 600 λ _L). The pulses are generated at λ L = 1054 nm, with intensities up to 10^16 W/cm^2. The backscattered light spectra, threshold intensities, and enhanced reflectivities have been determined for different plasma-density scale lengths and are compared to Liu, Rosenbluth, and White's(C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974).) WKB treatment of stimulated Brillouin scattering in inhomogeneous drifting plasmas. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
The Role of Free Stream Turbulence on the Aerodynamic Performance of a Wind Turbine Blade
NASA Astrophysics Data System (ADS)
Maldonado, Victor; Thormann, Adrien; Meneveau, Charles; Castillo, Luciano
2014-11-01
Effects of free stream turbulence with large integral scale on the aerodynamic performance of an S809 airfoil-based wind turbine blade at low Reynolds number are studied using wind tunnel experiments. A constant chord (2-D) S809 airfoil wind turbine blade model with an operating Reynolds number of 208,000 based on chord length was tested for a range of angles of attack representative of fully attached and stalled flow as encountered in typical wind turbine operation. The smooth-surface blade was subjected to a quasi-laminar free stream with very low free-stream turbulence as well as to elevated free-stream turbulence generated by an active grid. This turbulence contained large-scale eddies with levels of free-stream turbulence intensity of up to 6.14% and an integral length scale of about 60% of chord-length. The pressure distribution was acquired using static pressure taps and the lift was subsequently computed by numerical integration. The wake velocity deficit was measured utilizing hot-wire anemometry to compute the drag coefficient also via integration. In addition, the mean flow was quantified using 2-D particle image velocimetry (PIV) over the suction surface of the blade. Results indicate that turbulence, even with very large-scale eddies comparable in size to the chord-length, significantly improves the aerodynamic performance of the blade by increasing the lift coefficient and overall lift-to-drag ratio, L/D for all angles tested except zero degrees.
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.
1994-01-01
The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.
Reynolds number scaling of straining motions in turbulence
NASA Astrophysics Data System (ADS)
Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.
2017-11-01
Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.
Continuous Mass Measurement on Conveyor Belt
NASA Astrophysics Data System (ADS)
Tomobe, Yuki; Tasaki, Ryosuke; Yamazaki, Takanori; Ohnishi, Hideo; Kobayashi, Masaaki; Kurosu, Shigeru
The continuous mass measurement of packages on a conveyor belt will become greatly important. In the mass measurement, the sequence of products is generally random. An interesting possibility of raising throughput of the conveyor line without increasing the conveyor belt speed is offered by the use of two or three conveyor belt scales (called a multi-stage conveyor belt scale). The multi-stage conveyor belt scale can be created which will adjust the conveyor belt length to the product length. The conveyor belt scale usually has maximum capacities of less than 80kg and 140cm, and achieves measuring rates of more than 150 packages per minute and more. The output signals from the conveyor belt scale are always contaminated with noises due to vibrations of the conveyor and the product to be measured in motion. In this paper an employed digital filter is of Finite Impulse Response (FIR) type designed under the consideration on the dynamics of the conveyor system. The experimental results on the conveyor belt scale suggest that the filtering algorithms are effective enough to practical applications to some extent.
Unsteady density and velocity measurements in the 6 foot x 6 foot wind tunnel
NASA Technical Reports Server (NTRS)
Rose, W. C.; Johnson, D. A.
1980-01-01
The methods used and the results obtained in four aero-optic tests are summarized. It is concluded that the rather large values of density fluctuation appear to be the result of much higher Mach number than freestream and the violent turbulence in the flow as it separates from the turret. A representative comparison of fairing on-fairing off rms density fluctuation indicates essentially no effect at M = 0.62 and a small effect at M = 0.95. These data indicate that some slight improvement in optical quality can be expected with the addition of a fairing, although at M = 0.62 its effect would be nil. Fairings are very useful in controlling pressure loads on turrets, but will not have first order effects on optical quality. Scale sizes increase dramatically with increasing azimuth angle for a reprensentative condition. Since both scale sizes and fluctuation levels increase (total turbulence path length also increases) with azimuth angle, substantial optical degradation might be expected. For shorter wave lengths, large degradations occur.
Estimation of Particle Flux and Remineralization Rate from Radioactive Disequilibrium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael P. Bacon; Roger Francois
2004-05-24
Reactive radionuclides, such as the thorium isotopes, show measurable deficiencies in the oceanic water column because of their removal by chemical scavenging due to the particle flux. Measurement of the deficiency, coupled with measurement of the radionuclide concentration in particles, allows a determination of the effective particle sinking velocity. Results to date suggest that the effective particle sinking velocity is remarkably invariant with depth. This leads to the tentative suggestion that POC concentration profiles may, to a good approximation, be used directly to determine length scales for the remineralization of sinking organic matter. Further measurements are in progress to testmore » this idea and to evaluate its limitations. Knowledge of the remineralization length scale is essential to an evaluation of the efficiency of the biological pump as a means for deep sequestering of carbon in the ocean.« less
Hua, Yun; Qiu, Rong; Yao, Wen-Yan; Zhang, Qin; Chen, Xiao-Li
2015-10-01
It has been demonstrated that patients with chronic wounds experience the most pain during dressing changes. Currently, researchers focus mostly on analgesics and appropriate dressing materials to relieve pain during dressing changes of chronic wounds. However, the effect of nonpharmacologic interventions, such as virtual reality distraction, on pain management during dressing changes of pediatric chronic wounds remains poorly understood. To investigate the effect of virtual reality distraction on alleviating pain during dressing changes in children with chronic wounds on their lower limbs. A prospective randomized study. A pediatric center in a tertiary hospital. Sixty-five children, aged from 4 to 16 years, with chronic wounds on their lower limbs. Pain and anxiety scores during dressing changes were recorded by using the Wong-Baker Faces picture scale, visual analogue scale, and pain behavior scale, as well as physiological measurements including pulse rate and oxygen saturation. Time length of dressing change was recorded. Virtual reality distraction significantly relieved pain and anxiety scores during dressing changes and reduced the time length for dressing changes as compared to standard distraction methods. The use of virtual reality as a distraction tool in a pediatric ward offered superior pain reduction to children as compared to standard distractions. This device can potentially improve clinical efficiency by reducing length time for dressing changes. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Macher, W.; Oswald, T. H.
2011-02-01
In the investigation of antenna systems which consist of one or several monopoles, a realistic modeling of the monopole radii is not always feasible. In particular, physical scale models for electrolytic tank measurements of effective length vectors (rheometry) of spaceborne monopoles are so small that a correct scaling of monopole radii often results in very thin, flexible antenna wires which bend too much under their own weight. So one has to use monopoles in the model which are thicker than the correct scale diameters. The opposite case, where the monopole radius has to be modeled too thin, appears with certain numerical antenna programs based on wire grid modeling. This problem arises if the underlying algorithm assumes that the wire segments are much longer than their diameters. In such a case it is eventually not possible to use wires of correct thickness to model the monopoles. In order that these numerical and experimental techniques can be applied nonetheless to determine the capacitances and effective length vectors of such monopoles (with an inaccurate modeling of monopole diameters), an analytical correction method is devised. It enables one to calculate the quantities for the real antenna system from those obtained for the model antenna system with wrong monopole radii. Since a typical application of the presented formalism is the analysis of spaceborne antenna systems, an illustration for the monopoles of the WAVES experiment on board the STEREO-A spacecraft is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deporcel, Lilian
2001-04-02
The XXVI SLAC Summer Institute on Particle Physics was held from August 3 to August 14, 1998. The topic, ''Gravity--from the Hubble Length to the Planck Length,'' brought together 179 physicists from 13 countries. The lectures in this volume cover the seven-day school portion of the Institute, which took us from the largest scales of the cosmos, to the Planck length at which gravity might be unified with the other forces of nature. Lectures by Robert Wagoner, Clifford Will, and Lynn Cominsky explored the embedding of gravity into general relativity and the confrontation of this idea with experiments in themore » laboratory and astrophysical settings. Avishai Deckel discussed observations and implications of the large-scale structure of the universe, and Tony Tyson presented the gravitational lensing effect and its use in the ongoing search for signatures of the unseen matter of the cosmos. The hunt for the wave nature of gravity was presented by Sam Finn and Peter Saulson, and Joe Polchinski showed us what gravity might look like in the quantum limit at the Planck scale. The lectures were followed by afternoon discussion sessions, where students could further pursue questions and topics with the day's lecturers. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment from around the world of elementary particle physics and cosmology; its proceedings are also presented in this volume.« less
Effect of double layers on magnetosphere-ionosphere coupling
NASA Technical Reports Server (NTRS)
Lysak, Robert L.; Hudson, Mary K.
1987-01-01
The dynamic aspects of auroral current structures are reviewed with emphasis on consequences for models of microscopic turbulence (MT). A number of models of MT are introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. The effect of a double layer (DL) electric field which scales with the plasma temperature and the Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is shown that the DL model is less diffusive than the resistive model, indicating the possibility of narrow intense current structures.
Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Gur, Sourav
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.
Size effects on magnetoelectric response of multiferroic composite with inhomogeneities
NASA Astrophysics Data System (ADS)
Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.
2015-12-01
This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.
Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae
2017-11-01
This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.
A limit on the variation of the speed of light arising from quantum gravity effects
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-10-28
A cornerstone of Einstein's special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l Planck ≈ 1.62 x 10 -33 cm or E Planck = M Planckc 2 ≈ 1.22 x 10 19 GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale.more » A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. In this paper, we report the detection of emission up to ~31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E Planck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l Planck/1.2 on the length scale of the effect). Finally, our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.« less
A limit on the variation of the speed of light arising from quantum gravity effects.
Abdo, A A; Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Bloom, E D; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burgess, J M; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaplin, V; Charles, E; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Fishman, G; Focke, W B; Foschini, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Gibby, L; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Grupe, D; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hoversten, E A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Mészáros, P; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Petrosian, V; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Toma, K; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Uehara, T; Usher, T L; van der Horst, A J; Vasileiou, V; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M
2009-11-19
A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
Engineering Nanowire n-MOSFETs at L_{g}<8 nm
NASA Astrophysics Data System (ADS)
Mehrotra, Saumitra R.; Kim, SungGeun; Kubis, Tillmann; Povolotskyi, Michael; Lundstrom, Mark S.; Klimeck, Gerhard
2013-07-01
As metal-oxide-semiconductor field-effect transistors (MOSFET) channel lengths (Lg) are scaled to lengths shorter than Lg<8 nm source-drain tunneling starts to become a major performance limiting factor. In this scenario a heavier transport mass can be used to limit source-drain (S-D) tunneling. Taking InAs and Si as examples, it is shown that different heavier transport masses can be engineered using strain and crystal orientation engineering. Full-band extended device atomistic quantum transport simulations are performed for nanowire MOSFETs at Lg<8 nm in both ballistic and incoherent scattering regimes. In conclusion, a heavier transport mass can indeed be advantageous in improving ON state currents in ultra scaled nanowire MOSFETs.
Rayleigh instability at small length scales.
Gopan, Nandu; Sathian, Sarith P
2014-09-01
The Rayleigh instability (also called the Plateau-Rayleigh instability) of a nanosized liquid propane thread is investigated using molecular dynamics (MD). The validity of classical predictions at small length scales is verified by comparing the temporal evolution of liquid thread simulated by MD against classical predictions. Previous works have shown that thermal fluctuations become dominant at small length scales. The role and influence of the stochastic nature of thermal fluctuations in determining the instability at small length scale is also investigated. Thermal fluctuations are seen to dominate and accelerate the breakup process only during the last stages of breakup. The simulations also reveal that the breakup profile of nanoscale threads undergo modification due to reorganization of molecules by the evaporation-condensation process.
Bounds on neutrino mass in viscous cosmology
NASA Astrophysics Data System (ADS)
Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank
2018-05-01
Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).
Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael
2013-01-15
A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.
Supernova explosions in magnetized, primordial dark matter haloes
NASA Astrophysics Data System (ADS)
Seifried, D.; Banerjee, R.; Schleicher, D.
2014-05-01
The first supernova explosions are potentially relevant sources for the production of the first large-scale magnetic fields. For this reason, we present a set of high-resolution simulations studying the effect of supernova explosions on magnetized, primordial haloes. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependences of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 1051 erg and more violent pair instability supernovae with 1053 erg are able to disrupt haloes with masses up to about 106 and 107 M⊙, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales, the magnetic energy decreases at the cost of the energy on large scales resulting in a well-ordered magnetic field with a strength up to ˜10-8 G depending on the initial conditions. The coherence length of the magnetic field inferred from the spectra reaches values up to 250 pc in agreement with those obtained from autocorrelation functions. We find the coherence length to be as large as 50 per cent of the radius of the supernova bubble. Extrapolating this relation to later stages, we suggest that significantly strong magnetic fields with coherence lengths as large as 1.5 kpc could be created. We discuss possible implications of our results on processes like recollapse of the halo, first galaxy formation, and the magnetization of the intergalactic medium.
Crystallization-driven assembly of conjugated-polymer-based nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayward, Ryan C.
2016-10-15
The goal of this project has been to improve our ability to simultaneously control the organization, and therefore the opto-electronic properties, of conjugated-polymer based materials across three different length-scales: 1) the molecular scale, in the sense of controlling growth and functionalization of highly crystalline semiconducting organic materials capable of efficient charge transport, 2) the nanoscale, in terms of positioning n- and p-type materials with domain sizes comparable to exciton diffusion lengths (~ 10 nm) to facilitate charge separation, and 3) the colloidal scale, such that well-defined crystalline nanoscale building blocks can be hierarchically organized into device layers. As described inmore » more detail below, the project was successful in generating powerful new approaches to, and improved fundamental understanding of, processing and self-assembly of organic and hybrid semiconducting materials across all three length-scales. Although the goals of the project were formulated with primarily photovoltaic architectures in mind, the outcomes of the project have significant implications for a variety of conjugated-polymer-based devices including field-effect-transistors for sensors and logic devices, as well as potentially thermoelectrics and battery electrode materials. The project has resulted in 10 peer-reviewed publications to date [1-10], with several additional manuscripts currently in preparation.« less
Scaling effects of a graphene field effect transistor for radiation detection
NASA Astrophysics Data System (ADS)
Shollar, Zachary Frank
Radiation detectors based on graphene is a burgeoning research topic within the immense field of graphene research. Although papers continue to parse out their mysteries, the devices remain simplistic and small. New fabrication techniques have allowed for millimeter scale and larger monolayer graphene sheets to be grown with increasingly better quality. It is the goal of this thesis to investigate the scaling effects of millimeter scale graphene for radiation detection purposes. To this end, chemical vapor deposition grown monolayer graphene was purchased and transferred to Si/SiO2 substrates. The devices were patterned into simple rectangular strips varying in size from 3000 x 500 mum, 600 x 100 mum, 300 x 50 mum, and 60 x 11 mum. Four metal contacts were patterned onto each strip for electrical characterization. Two probe resistance measurements were performed on all four sizes, at three different lengths along the graphene. Using the field effect, the graphene resistance response was measured at 0 V back-gate voltage to obtain graphene resistivity on SiO2, which showed an increase in resistivity as the graphene strip size increased. Further, the response was measured for varying back-gate sweep ranges and speeds. This lead to the conclusion that strong p-doping was inherent in the graphene strips, as evidenced by charge neutral points located above +50 V. Strong hysteresis observed in those tests alluded to trapped charge having a major effect on voltage sweeps. Mobility values for the graphene strips were extracted from the back-gate voltage sweeps and fixed gate voltage stabilization curves. Mobility values overall were less than 400 cm2 V-1 s-1, and showed a modest increase in mobility as graphene length increased. Lastly, the largest graphene strip had a light response and radiation response measured. Light response showed a dependence on gate voltage magnitude that favored positive gate voltages, on an n-type Silicon substrate. A saturation effect above +15 V seemed apparent with a resistance increase of only 0.61% +/- 0.062% for +15 V to 0.69% +/- 0.097% for the +50 V back-gate. Response of the largest graphene strip size to forward facing alpha irradiation showed a modest 0.32% +/- 0.082% increase in response, for a -15 V back- gate. Overall, millimeter scale graphene field effect devices showed a light and radiation response, proving their viability. However, results showed fabricated samples had numerous defects and were far from pristine. Fabrication of pristine graphene strips at millimeter scales is of concern. Further work into large scale GFET patterning, testing at more length and width dimensions, and further investigating metal contact and carrier transport in millimeter scales is needed.
Excess entropy scaling for the segmental and global dynamics of polyethylene melts.
Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C
2014-11-28
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.
Alcohol's Effects on Lipid Bilayer Properties
Ingólfsson, Helgi I.; Andersen, Olaf S.
2011-01-01
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475
Energetic benefits and adaptations in mammalian limbs: Scale effects and selective pressures.
Kilbourne, Brandon M; Hoffman, Louwrens C
2015-06-01
Differences in limb size and shape are fundamental to mammalian morphological diversity; however, their relevance to locomotor costs has long been subject to debate. In particular, it remains unknown if scale effects in whole limb morphology could partially underlie decreasing mass-specific locomotor costs with increasing limb length. Whole fore- and hindlimb inertial properties reflecting limb size and shape-moment of inertia (MOI), mass, mass distribution, and natural frequency-were regressed against limb length for 44 species of quadrupedal mammals. Limb mass, MOI, and center of mass position are negatively allometric, having a strong potential for lowering mass-specific locomotor costs in large terrestrial mammals. Negative allometry of limb MOI results in a 40% reduction in MOI relative to isometry's prediction for our largest sampled taxa. However, fitting regression residuals to adaptive diversification models reveals that codiversification of limb mass, limb length, and body mass likely results from selection for differing locomotor modes of running, climbing, digging, and swimming. The observed allometric scaling does not result from selection for energetically beneficial whole limb morphology with increasing size. Instead, our data suggest that it is a consequence of differing morphological adaptations and body size distributions among quadrupedal mammals, highlighting the role of differing limb functions in mammalian evolution. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Scaling in Free-Swimming Fish and Implications for Measuring Size-at-Time in the Wild
Broell, Franziska; Taggart, Christopher T.
2015-01-01
This study was motivated by the need to measure size-at-age, and thus growth rate, in fish in the wild. We postulated that this could be achieved using accelerometer tags based first on early isometric scaling models that hypothesize that similar animals should move at the same speed with a stroke frequency that scales with length-1, and second on observations that the speed of primarily air-breathing free-swimming animals, presumably swimming ‘efficiently’, is independent of size, confirming that stroke frequency scales as length-1. However, such scaling relations between size and swimming parameters for fish remain mostly theoretical. Based on free-swimming saithe and sturgeon tagged with accelerometers, we introduce a species-specific scaling relationship between dominant tail beat frequency (TBF) and fork length. Dominant TBF was proportional to length-1 (r2 = 0.73, n = 40), and estimated swimming speed within species was independent of length. Similar scaling relations accrued in relation to body mass-0.29. We demonstrate that the dominant TBF can be used to estimate size-at-time and that accelerometer tags with onboard processing may be able to provide size-at-time estimates among free-swimming fish and thus the estimation of growth rate (change in size-at-time) in the wild. PMID:26673777
He, J; Gao, H; Xu, P; Yang, R
2015-12-01
Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grest, Gary S.
2017-09-01
Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less
NASA Astrophysics Data System (ADS)
Tvergaard, Viggo
2007-01-01
This special issue constitutes the Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, held at the Technical University of Denmark, 21-25 May 2006. The purpose of this symposium was to gather a group of leading scientists working in areas of importance to length scale dependent plasticity. This includes work on phenomenological strain gradient plasticity models, studies making use of discrete dislocation models, and even atomic level models. Experimental investigations are central to all this, as all the models focus on developing an improved understanding of real observed phenomena. The opening lecture by Professor N A Fleck, Cambridge University, discussed experimental as well as theoretical approaches. Also, recent results for the surface roughness at grain boundaries were presented based on experiments and crystal plasticity modelling. A number of presentations focused on experiments for metals at a small length scale, e.g. using indenters or a small single crystal compression test. It was found that there are causes of the size effects other than the geometrically necessary dislocations related to strain gradients. Several lectures on scale dependent phenomenological plasticity theories discussed different methods of incorporating the characteristic material length. This included lower order plasticity theories as well as higher order theories, within standard plasticity models or crystal plasticity. Differences in the ways of incorporating higher order boundary conditions were the subject of much discussion. Various methods for discrete dislocation modelling of plastic deformation were used in some of the presentations to obtain a more detailed understanding of length scale effects in metals. This included large scale computations for dislocation dynamics as well as new statistical mechanics approaches to averaging of dislocation plasticity. Furthermore, at a somewhat larger length scale, applications of scale dependent plasticity to granular media and to cellular solids were discussed. The symposium consisted of thirty-six lectures, all of which were invited based on strong expertise in the area. Some of the lectures are not represented in this special issue, mainly because of prior commitments to publish elsewhere. The international Scientific Committee responsible for the symposium comprised the following: Professor V Tvergaard (Chairman) Denmark Professor A Benallal France Professor N A Fleck UK Professor L B Freund (IUTAM Representative) USA Professor E van der Giessen The Netherlands Professor J W Hutchinson USA Professor A Needleman USA Professor B Svendsen Germany The Committee gratefully acknowledges financial support for the symposium from the International Union of Theoretical and Applied Mechanics, from Novo Nordisk A/S and from the Villum Kann Rasmussen Foundation. In the organization of all parts of the symposium the enthusiastic participation of Dr C F Niordson and Dr P Redanz was invaluable. The smooth running of the symposium also owes much to the efforts and organizational skills of Bente Andersen.
Energy Spectra of Higher Reynolds Number Turbulence by the DNS with up to 122883 Grid Points
NASA Astrophysics Data System (ADS)
Ishihara, Takashi; Kaneda, Yukio; Morishita, Koji; Yokokawa, Mitsuo; Uno, Atsuya
2014-11-01
Large-scale direct numerical simulations (DNS) of forced incompressible turbulence in a periodic box with up to 122883 grid points have been performed using K computer. The maximum Taylor-microscale Reynolds number Rλ, and the maximum Reynolds number Re based on the integral length scale are over 2000 and 105, respectively. Our previous DNS with Rλ up to 1100 showed that the energy spectrum has a slope steeper than - 5 / 3 (the Kolmogorov scaling law) by factor 0 . 1 at the wavenumber range (kη < 0 . 03). Here η is the Kolmogorov length scale. Our present DNS at higher resolutions show that the energy spectra with different Reynolds numbers (Rλ > 1000) are well normalized not by the integral length-scale but by the Kolmogorov length scale, at the wavenumber range of the steeper slope. This result indicates that the steeper slope is not inherent character in the inertial subrange, and is affected by viscosity.
Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
2016-02-05
Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
Geometry of tracer trajectories in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Alards, Kim; Rajaei, Hadi; Kunnen, Rudie; Toschi, Federico; Clercx, Herman
2016-11-01
In Rayleigh-Bénard convection rotation is known to cause transitions in flow structures and to change the level of anisotropy close to the horizontal plates. To analyze this effect of rotation, we collect curvature and torsion statistics of passive tracer trajectories in rotating Rayleigh-Bénard convection, using both experiments and direct numerical simulations. In previous studies, focusing on homogeneous isotropic turbulence (HIT), curvature and torsion PDFs are found to reveal pronounced power laws. In the center of the convection cell, where the flow is closest to HIT, we recover these power laws, regardless of the rotation rate. However, near the top plate, where we expect the flow to be anisotropic, the scaling of the PDFs deviates from the HIT prediction for lower rotation rates. This indicates that anisotropy clearly affects the geometry of tracer trajectories. Another effect of rotation is observed as a shift of curvature and torsion PDFs towards higher values. We expect this shift to be related to the length scale of typical flow structures. Using curvature and torsion statistics, we can characterize how these typical length scales evolve under rotation and moreover analyze the effect of rotation on more complicated flow characteristics, such as anisotropy.
Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions.
Yamazaki, T; Aoki, Y; Blum, T; Lin, H W; Lin, M F; Ohta, S; Sasaki, S; Tweedie, R J; Zanotti, J M
2008-05-02
We present results for the nucleon axial charge g{A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16;{3} x 32 and 24;{3} x 64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_{pi} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{pi}=330 MeV. We also find a scaling with the single variable m{pi}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{A}=1.20(6)(4) at the physical pion mass, m_{pi}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V>or=(2.4 fm);{3}. We argue this is a dynamical quark effect.
Superparamagnetic enhancement of thermoelectric performance.
Zhao, Wenyu; Liu, Zhiyuan; Sun, Zhigang; Zhang, Qingjie; Wei, Ping; Mu, Xin; Zhou, Hongyu; Li, Cuncheng; Ma, Shifang; He, Danqi; Ji, Pengxia; Zhu, Wanting; Nie, Xiaolei; Su, Xianli; Tang, Xinfeng; Shen, Baogen; Dong, Xiaoli; Yang, Jihui; Liu, Yong; Shi, Jing
2017-09-13
The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.
Current sheet extension and reconnection scaling in collisionless, hyperresistive, Hall MHD
NASA Astrophysics Data System (ADS)
Sullivan, B. P.; Bhattacharjee, A.; Huang, Y. M.
2009-11-01
We present Sweet-Parker type scaling arguments in the context of collisionless, hyper-resistive, Hall magnetohyrdodynamics (MHD). The predicted steady state scalings are consistent with those found by Chac'on et al. [PRL 99, 235001 (2007)], and Uzdensky, [PoP 16, 040702 (2009)], though our methods differ slightly. As with those studies, no prediction of electron dissipation region length is made. Numerical experiments confirm that both cusp like & extended geometries are realizable. Importantly, the length of the electron dissipation region (taken as a parameter by several recent studies) is found to depend on the level of hyper-resistivity. Although hyper-resistivity can produce modestly extended dissipation regions, the dissipation regions observed here are much shorter than those seen in many kinetic studies. The thickness of the dissipation region scales in a similar way as the length,so that the reconnection rate is not strongly sensitive to the level of hyperresistivity. The length of the electron dissipation region depends on electron inertia as well.The limitations of scaling theories that do not predict the length of the electron dissipation region are emphasized.
Some tests on small-scale rectangular throat ejector. [thrust augmentation for V/STOL aircraft
NASA Technical Reports Server (NTRS)
Dean, W. N., Jr.; Franke, M. E.
1979-01-01
A small scale rectangular throat ejector with plane slot nozzles and a fixed throat area was tested to determine the effects of diffuser sidewall length, diffuser area ratio, and sidewall nozzle position on thrust and mass augmentation. The thrust augmentation ratio varied from approximately 0.9 to 1.1. Although the ejector did not have good thrust augmentation performance, the effects of the parameters studied are believed to indicate probable trends in thrust augmenting ejectors.
A new length scale for quantum gravity: A resolution of the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Singh, Tejinder P.
We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.
A review of finite size effects in quasi-zero dimensional superconductors.
Bose, Sangita; Ayyub, Pushan
2014-11-01
Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.
NASA Astrophysics Data System (ADS)
Li, M. P.; Sun, Q. P.
2018-01-01
We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
NASA Astrophysics Data System (ADS)
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
NASA Astrophysics Data System (ADS)
Xun, Zhi-Peng; Tang, Gang; Han, Kui; Hao, Da-Peng; Xia, Hui; Zhou, Wei; Yang, Xi-Quan; Wen, Rong-Ji; Chen, Yu-Ling
2010-07-01
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Avik; Mallik, Abhijit; Omura, Yasuhisa
2015-06-01
A gate-on-germanium source (GoGeS) tunnel field-effect transistor (TFET) shows great promise for low-power (sub-0.5 V) applications. A detailed investigation, with the help of a numerical device simulator, on the effects of variation in different structural parameters of a GoGeS TFET on its electrical performance is reported in this paper. Structural parameters such as κ-value of the gate dielectric, length and κ-value of the spacer, and doping concentrations of both the substrate and source are considered. A low-κ symmetric spacer and a high-κ gate dielectric are found to yield better device performance. The substrate doping influences only the p-i-n leakage floor. The source doping is found to significantly affect performance parameters such as OFF-state current, ON-state current and subthreshold swing, in addition to a threshold voltage shift. Results of the investigation on the gate length scaling of such devices are also reported in this paper.
Pizzuto, James; Schenk, Edward R.; Hupp, Cliff R.; Gellis, Allen; Noe, Greg; Williamson, Elyse; Karwan, Diana L.; O'Neal, Michael; Marquard, Julia; Aalto, Rolf E.; Newbold, Denis
2014-01-01
Watershed Best Management Practices (BMPs) are often designed to reduce loading from particle-borne contaminants, but the temporal lag between BMP implementation and improvement in receiving water quality is difficult to assess because particles are only moved downstream episodically, resting for long periods in storage between transport events. A theory is developed that describes the downstream movement of suspended sediment particles accounting for the time particles spend in storage given sediment budget data (by grain size fraction) and information on particle transit times through storage reservoirs. The theory is used to define a suspended sediment transport length scale that describes how far particles are carried during transport events, and to estimate a downstream particle velocity that includes time spent in storage. At 5 upland watersheds of the mid-Atlantic region, transport length scales for silt-clay range from 4 to 60 km, while those for sand range from 0.4 to 113 km. Mean sediment velocities for silt-clay range from 0.0072 km/yr to 0.12 km/yr, while those for sand range from 0.0008 km/yr to 0.20 km/yr, 4–6 orders of magnitude slower than the velocity of water in the channel. These results suggest lag times of 100–1000 years between BMP implementation and effectiveness in receiving waters such as the Chesapeake Bay (where BMPs are located upstream of the characteristic transport length scale). Many particles likely travel much faster than these average values, so further research is needed to determine the complete distribution of suspended sediment velocities in real watersheds.
Multi-Subband Ensemble Monte Carlo simulations of scaled GAA MOSFETs
NASA Astrophysics Data System (ADS)
Donetti, L.; Sampedro, C.; Ruiz, F. G.; Godoy, A.; Gamiz, F.
2018-05-01
We developed a Multi-Subband Ensemble Monte Carlo simulator for non-planar devices, taking into account two-dimensional quantum confinement. It couples self-consistently the solution of the 3D Poisson equation, the 2D Schrödinger equation, and the 1D Boltzmann transport equation with the Ensemble Monte Carlo method. This simulator was employed to study MOS devices based on ultra-scaled Gate-All-Around Si nanowires with diameters in the range from 4 nm to 8 nm with gate length from 8 nm to 14 nm. We studied the output and transfer characteristics, interpreting the behavior in the sub-threshold region and in the ON state in terms of the spatial charge distribution and the mobility computed with the same simulator. We analyzed the results, highlighting the contribution of different valleys and subbands and the effect of the gate bias on the energy and velocity profiles. Finally the scaling behavior was studied, showing that only the devices with D = 4nm maintain a good control of the short channel effects down to the gate length of 8nm .
On Efficient Multigrid Methods for Materials Processing Flows with Small Particles
NASA Technical Reports Server (NTRS)
Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael
2004-01-01
Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
NASA Astrophysics Data System (ADS)
Tabaka, Marcin; Kalwarczyk, Tomasz; Szymanski, Jedrzej; Hou, Sen; Hołyst, Robert
2014-09-01
We discuss a quantitative influence of macromolecular crowding on biological processes: motion, bimolecular reactions, and gene expression in prokaryotic and eukaryotic cells. We present scaling laws relating diffusion coefficient of an object moving in a cytoplasm of cells to a size of this object and degree of crowding. Such description leads to the notion of the length scale dependent viscosity characteristic for all living cells. We present an application of the length-scale dependent viscosity model to the description of motion in the cytoplasm of both eukaryotic and prokaryotic living cells. We compare the model with all recent data on diffusion of nanoscopic objects in HeLa, and E. coli cells. Additionally a description of the mobility of molecules in cell nucleus is presented. Finally we discuss the influence of crowding on the bimolecular association rates and gene expression in living cells.
Feng, Shen; Wenhan, Jiang
2002-06-10
Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.
Solar potential scaling and the urban road network topology
NASA Astrophysics Data System (ADS)
Najem, Sara
2017-01-01
We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.
Gradient plasticity for thermo-mechanical processes in metals with length and time scales
NASA Astrophysics Data System (ADS)
Voyiadjis, George Z.; Faghihi, Danial
2013-03-01
A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.
Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Majetich, Sara
2009-03-01
Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).
Coherence length saturation at the low temperature limit in two-dimensional hole gas
NASA Astrophysics Data System (ADS)
Shan, Pujia; Fu, Hailong; Wang, Pengjie; Yang, Jixiang; Pfeiffer, L. N.; West, K. W.; Lin, Xi
2018-05-01
The plateau-plateau transition in the integer quantum Hall effect is studied in three Hall bars with different widths. The slopes of the Hall resistance as a function of magnetic field follow the scaling power law as expected in the plateau-plateau transition, and saturate at the low temperature limit. Surprisingly, the saturation temperature is irrelevant with the Hall bar size, which suggests that the saturation of the coherence length is intrinsic.
The scaling of oblique plasma double layers
NASA Technical Reports Server (NTRS)
Borovsky, J. E.
1983-01-01
Strong oblique plasma double layers are investigated using three methods, i.e., electrostatic particle-in-cell simulations, numerical solutions to the Poisson-Vlasov equations, and analytical approximations to the Poisson-Vlasov equations. The solutions to the Poisson-Vlasov equations and numerical simulations show that strong oblique double layers scale in terms of Debye lengths. For very large potential jumps, theory and numerical solutions indicate that all effects of the magnetic field vanish and the oblique double layers follow the same scaling relation as the field-aligned double layers.
Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah
2009-01-01
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.
Scaling of plasma-body interactions in low Earth orbit
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2017-04-01
This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.
The influence of idealized surface heterogeneity on virtual turbulent flux measurements
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Mauder, Matthias
2018-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy partitioning on the tower location. For the hectometer scale, we do not notice such a clear dependence. Finally, we seek correlators for the energy balance ratio in the simulations. The correlation with the friction velocity is less pronounced than previously found, but this is likely due to our concentration on effectively strongly to freely convective conditions.
A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry.
Falk, Bryan G; Snow, Ray W; Reed, Robert N
2017-01-01
Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of 'true' body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.
A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry
Falk, Bryan; Snow, Ray W.; Reed, Robert N.
2017-01-01
Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of ‘true’ body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.
A variable mixing-length ratio for convection theory
NASA Technical Reports Server (NTRS)
Chan, K. L.; Wolff, C. L.; Sofia, S.
1981-01-01
It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.
Coster, Wendy J; Haley, Stephen M; Ni, Pengsheng; Dumas, Helene M; Fragala-Pinkham, Maria A
2008-04-01
To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the self-care and social function scales of the Pediatric Evaluation of Disability Inventory compared with the full-length version of these scales. Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children's homes. Children with disabilities (n=469) and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Not applicable. Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length self-care and social function scales; time (in seconds) to complete assessments and respondent ratings of burden. Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (r range, .94-.99). Using computer simulation of retrospective data, discriminant validity, and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared with over 16 minutes to complete the full-length scales. Self-care and social function score estimates from CAT administration are highly comparable with those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time.
NASA Technical Reports Server (NTRS)
Kerschen, E. J.; Gliebe, P. R.
1980-01-01
An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.
The dynamics of oceanic fronts. Part 1: The Gulf Stream
NASA Technical Reports Server (NTRS)
Kao, T. W.
1970-01-01
The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.
Thermal transport in Si and Ge nanostructures in the `confinement' regime
NASA Astrophysics Data System (ADS)
Kwon, Soonshin; Wingert, Matthew C.; Zheng, Jianlin; Xiang, Jie; Chen, Renkun
2016-07-01
Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.
Thermal transport in Si and Ge nanostructures in the 'confinement' regime.
Kwon, Soonshin; Wingert, Matthew C; Zheng, Jianlin; Xiang, Jie; Chen, Renkun
2016-07-21
Reducing semiconductor materials to sizes comparable to the characteristic lengths of phonons, such as the mean-free-path (MFP) and wavelength, has unveiled new physical phenomena and engineering capabilities for thermal energy management and conversion systems. These developments have been enabled by the increasing sophistication of chemical synthesis, microfabrication, and atomistic simulation techniques to understand the underlying mechanisms of phonon transport. Modifying thermal properties by scaling physical size is particularly effective for materials which have large phonon MFPs, such as crystalline Si and Ge. Through nanostructuring, materials that are traditionally good thermal conductors can become good candidates for applications requiring thermal insulation such as thermoelectrics. Precise understanding of nanoscale thermal transport in Si and Ge, the leading materials of the modern semiconductor industry, is increasingly important due to more stringent thermal conditions imposed by ever-increasing complexity and miniaturization of devices. Therefore this Minireview focuses on the recent theoretical and experimental developments related to reduced length effects on thermal transport of Si and Ge with varying size from hundreds to sub-10 nm ranges. Three thermal transport regimes - bulk-like, Casimir, and confinement - are emphasized to describe different governing mechanisms at corresponding length scales.
Numerical study on dusty shock reflection over a double wedge
NASA Astrophysics Data System (ADS)
Yin, Jingyue; Ding, Juchun; Luo, Xisheng
2018-01-01
The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.
Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be.
Ghosh, Arijit; Paria, Debadrita; Rangarajan, Govindan; Ghosh, Ambarish
2014-01-02
Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.
Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
NASA Astrophysics Data System (ADS)
Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica
2007-06-01
We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.
Roughness of stylolites: implications of 3D high resolution topography measurements.
Schmittbuhl, J; Renard, F; Gratier, J P; Toussaint, R
2004-12-03
Stylolites are natural pressure-dissolution surfaces in sedimentary rocks. We present 3D high resolution measurements at laboratory scales of their complex roughness. The topography is shown to be described by a self-affine scaling invariance. At large scales, the Hurst exponent is zeta(1) approximately 0.5 and very different from that at small scales where zeta(2) approximately 1.2. A crossover length scale at around L(c)=1 mm is well characterized. Measurements are consistent with a Langevin equation that describes the growth of a stylolitic interface as a competition between stabilizing long range elastic interactions at large scales or local surface tension effects at small scales and a destabilizing quenched material disorder.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
Microphase separation of comb copolymers with two different lengths of side chains
NASA Astrophysics Data System (ADS)
Aliev, M. A.; Kuzminyh, N. Yu.
2009-10-01
The phase behavior of the monodisperse AB comb copolymer melt contained the macromolecules of special architecture is discussed. Each macromolecule is assumed to be composed of two comb blocks which differ in numbers of side chains and numbers of monomer units in these chains. It is shown (by analysis of the structure factor of the melt) that microphase separation at two different length scales in the melt is possible. The large and small length scales correspond to separation between comb blocks and separation between monomer units in repeating fragments of blocks, respectively. The classification diagrams indicated which length scale is favored for a given parameters of chemical structure of macromolecules are constructed.
Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies
NASA Astrophysics Data System (ADS)
Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.
2017-09-01
Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.
GINGER simulations of short-pulse effects in the LEUTL FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Z.; Fawley, W.M.
While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less
Micro-mechanical properties of the tendon-to-bone attachment.
Deymier, Alix C; An, Yiran; Boyle, John J; Schwartz, Andrea G; Birman, Victor; Genin, Guy M; Thomopoulos, Stavros; Barber, Asa H
2017-07-01
The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue with features at a numerous scales that dissipate stress concentrations between compliant tendon and stiff bone. At the micrometer scale, the enthesis exhibits gradients in collagen and mineral composition and organization. However, the physiological mechanics of the enthesis at this scale remained unknown due to difficulty in preparing and testing micrometer scale samples. This study is the first to measure the tensile mechanical properties of the enthesis at the micrometer scale. Results demonstrated considerably enhanced mechanical performance at the micrometer length scale compared to the millimeter tissue length scale and identified a high-compliance zone near the mineralized gradient of the attachment. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue. Copyright © 2017. Published by Elsevier Ltd.
High flexibility of DNA on short length scales probed by atomic force microscopy.
Wiggins, Paul A; van der Heijden, Thijn; Moreno-Herrero, Fernando; Spakowitz, Andrew; Phillips, Rob; Widom, Jonathan; Dekker, Cees; Nelson, Philip C
2006-11-01
The mechanics of DNA bending on intermediate length scales (5-100 nm) plays a key role in many cellular processes, and is also important in the fabrication of artificial DNA structures, but previous experimental studies of DNA mechanics have focused on longer length scales than these. We use high-resolution atomic force microscopy on individual DNA molecules to obtain a direct measurement of the bending energy function appropriate for scales down to 5 nm. Our measurements imply that the elastic energy of highly bent DNA conformations is lower than predicted by classical elasticity models such as the worm-like chain (WLC) model. For example, we found that on short length scales, spontaneous large-angle bends are many times more prevalent than predicted by the WLC model. We test our data and model with an interlocking set of consistency checks. Our analysis also shows how our model is compatible with previous experiments, which have sometimes been viewed as confirming the WLC.
Ultrashort Channel Length Black Phosphorus Field-Effect Transistors.
Miao, Jinshui; Zhang, Suoming; Cai, Le; Scherr, Martin; Wang, Chuan
2015-09-22
This paper reports high-performance top-gated black phosphorus (BP) field-effect transistors with channel lengths down to 20 nm fabricated using a facile angle evaporation process. By controlling the evaporation angle, the channel length of the transistors can be reproducibly controlled to be anywhere between 20 and 70 nm. The as-fabricated 20 nm top-gated BP transistors exhibit respectable on-state current (174 μA/μm) and transconductance (70 μS/μm) at a VDS of 0.1 V. Due to the use of two-dimensional BP as the channel material, the transistors exhibit relatively small short channel effects, preserving a decent on-off current ratio of 10(2) even at an extremely small channel length of 20 nm. Additionally, unlike the unencapsulated BP devices, which are known to be chemically unstable in ambient conditions, the top-gated BP transistors passivated by the Al2O3 gate dielectric layer remain stable without noticeable degradation in device performance after being stored in ambient conditions for more than 1 week. This work demonstrates the great promise of atomically thin BP for applications in ultimately scaled transistors.
Entrainment effects in periodic forcing of the flow over a backward-facing step
NASA Astrophysics Data System (ADS)
Berk, T.; Medjnoun, T.; Ganapathisubramani, B.
2017-07-01
The effect of the Strouhal number on periodic forcing of the flow over a backward-facing step (height, H ) is investigated experimentally. Forcing is applied by a synthetic jet at the edge of the step at Strouhal numbers ranging from 0.21
NASA Astrophysics Data System (ADS)
Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul
2015-10-01
The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.
Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Smith, Stephen J.; Bandler, SImon R.; Chervenak, James A.; Clem, John R.
2009-01-01
We have found experimentally that the critical current of a square superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. The observed behavior has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. We have observed the proximity effect in these devices over extraordinarily long lengths exceeding 100 microns.
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
Accurate aging of juvenile salmonids using fork lengths
Sethi, Suresh; Gerken, Jonathon; Ashline, Joshua
2017-01-01
Juvenile salmon life history strategies, survival, and habitat interactions may vary by age cohort. However, aging individual juvenile fish using scale reading is time consuming and can be error prone. Fork length data are routinely measured while sampling juvenile salmonids. We explore the performance of aging juvenile fish based solely on fork length data, using finite Gaussian mixture models to describe multimodal size distributions and estimate optimal age-discriminating length thresholds. Fork length-based ages are compared against a validation set of juvenile coho salmon, Oncorynchus kisutch, aged by scales. Results for juvenile coho salmon indicate greater than 95% accuracy can be achieved by aging fish using length thresholds estimated from mixture models. Highest accuracy is achieved when aged fish are compared to length thresholds generated from samples from the same drainage, time of year, and habitat type (lentic versus lotic), although relatively high aging accuracy can still be achieved when thresholds are extrapolated to fish from populations in different years or drainages. Fork length-based aging thresholds are applicable for taxa for which multiple age cohorts coexist sympatrically. Where applicable, the method of aging individual fish is relatively quick to implement and can avoid ager interpretation bias common in scale-based aging.
Eyelashes divert airflow to protect the eye
Amador, Guillermo J.; Mao, Wenbin; DeMercurio, Peter; Montero, Carmen; Clewis, Joel; Alexeev, Alexander; Hu, David L.
2015-01-01
Eyelashes are ubiquitous, although their function has long remained a mystery. In this study, we elucidate the aerodynamic benefits of eyelashes. Through anatomical measurements, we find that 22 species of mammals possess eyelashes of a length one-third the eye width. Wind tunnel experiments confirm that this optimal eyelash length reduces both deposition of airborne particles and evaporation of the tear film by a factor of two. Using scaling theory, we find this optimum arises because of the incoming flow's interactions with both the eye and eyelashes. Short eyelashes create a stagnation zone above the ocular surface that thickens the boundary layer, causing shear stress to decrease with increasing eyelash length. Long eyelashes channel flow towards the ocular surface, causing shear stress to increase with increasing eyelash length. These competing effects result in a minimum shear stress for intermediate eyelash lengths. This design may be employed in creating eyelash-inspired protection for optical sensors. PMID:25716186
Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija
2017-05-01
Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.
Coster, Wendy J.; Haley, Stephen M.; Ni, Pengsheng; Dumas, Helene M.; Fragala-Pinkham, Maria A.
2009-01-01
Objective To examine score agreement, validity, precision, and response burden of a prototype computer adaptive testing (CAT) version of the Self-Care and Social Function scales of the Pediatric Evaluation of Disability Inventory (PEDI) compared to the full-length version of these scales. Design Computer simulation analysis of cross-sectional and longitudinal retrospective data; cross-sectional prospective study. Settings Pediatric rehabilitation hospital, including inpatient acute rehabilitation, day school program, outpatient clinics; community-based day care, preschool, and children’s homes. Participants Four hundred sixty-nine children with disabilities and 412 children with no disabilities (analytic sample); 38 children with disabilities and 35 children without disabilities (cross-validation sample). Interventions Not applicable. Main Outcome Measures Summary scores from prototype CAT applications of each scale using 15-, 10-, and 5-item stopping rules; scores from the full-length Self-Care and Social Function scales; time (in seconds) to complete assessments and respondent ratings of burden. Results Scores from both computer simulations and field administration of the prototype CATs were highly consistent with scores from full-length administration (all r’s between .94 and .99). Using computer simulation of retrospective data, discriminant validity and sensitivity to change of the CATs closely approximated that of the full-length scales, especially when the 15- and 10-item stopping rules were applied. In the cross-validation study the time to administer both CATs was 4 minutes, compared to over 16 minutes to complete the full-length scales. Conclusions Self-care and Social Function score estimates from CAT administration are highly comparable to those obtained from full-length scale administration, with small losses in validity and precision and substantial decreases in administration time. PMID:18373991
Multi-Scale Effects in the Strength of Ceramics
Cook, Robert F.
2016-01-01
Multiple length-scale effects are demonstrated in indentation-strength measurements of a range of ceramic materials under inert and reactive conditions. Meso-scale effects associated with flaw disruption by lateral cracking at large indentation loads are shown to increase strengths above the ideal indentation response. Micro-scale effects associated with toughening by microstructural restraints at small indentation loads are shown to decrease strengths below the ideal response. A combined meso-micro-scale analysis is developed that describes ceramic inert strength behaviors over the complete indentation flaw size range. Nano-scale effects associated with chemical equilibria and crack velocity thresholds are shown to lead to invariant minimum strengths at slow applied stressing rates under reactive conditions. A combined meso-micro-nano-scale analysis is developed that describes the full range of reactive and inert strength behaviors as a function of indentation load and applied stressing rate. Applications of the multi-scale analysis are demonstrated for materials design, materials selection, toughness determination, crack velocity determination, bond-rupture parameter determination, and prediction of reactive strengths. The measurements and analysis provide strong support for the existence of sharp crack tips in ceramics such that the nano-scale mechanisms of discrete bond rupture are separate from the larger scale crack driving force mechanics characterized by continuum-based stress-intensity factors. PMID:27563150
Multiple scales in metapopulations of public goods producers
NASA Astrophysics Data System (ADS)
Bauer, Marianne; Frey, Erwin
2018-04-01
Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.
Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene
2011-11-01
The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.
On the physics of electron ejection from laser-irradiated overdense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thévenet, M.; Vincenti, H.; Faure, J.
2016-06-15
Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less
NASA Astrophysics Data System (ADS)
Crave, A.; Davy, P.
1997-01-01
We present a statistical analysis on two watersheds in French Brittany whose drainage areas are about 10,000 and 2000 km2. The channel system was analysed from the digitised blue lines of the 1:100,000 map and from a 250-m DEM. Link lengths follow an exponential distribution, consistent with the Markovian model of channel branching proposed by Smart (1968). The departure from the exponential distribution for small lengths, that has been extensively discussed before, results from a statistical effect due to the finite number of channels and junctions. The Strahler topology applied on channels defines a self-similar organisation whose similarity dimension is about 1.7, that is clearly smaller than the value of 2 expected for a random organisation. The similarity dimension is consistent with an independent measurement of the Horton ratios of stream numbers and lengths. The variables defined by an upstream integral (drainage area, mainstream length, upstream length) follow power-law distributions limited at large scales by a finite size effect, due to the finite area of the watersheds. A special emphasis is given to the exponent of the drainage area, aA, that has been previously discussed in the context of different aggregation models relevant to channel network growth. We show that aA is consistent with 4/3, a value that was obtained and analytically demonstrated from directed random walk aggregating models, inspired by the model of Scheidegger (1967). The drainage density and mainstream length present no simple scaling with area, except at large areas where they tend to trivial values: constant density and square root of drainage area, respectively. These asymptotic limits necessarily imply that the space dimension of channel networks is 2, equal to the embedding space. The limits are reached for drainage areas larger than 100 km2. For smaller areas, the asymptotic limit represents either a lower bound (drainage density) or an upper bound (mainstream length) of the distributions. Because the fluctuations of the drainage density slowly converge to a finite limit, the system could be adequately described as a fat fractal, where the average drainage density is the sum of a constant plus a fluctuation decreasing as a power law with integrating area. A fat fractal hypothesis could explain why the similarity dimension is not equal to the fractal capacity dimension, as it is for thin fractals. The physical consequences are not yet really understood, but we draw an analogy with a directed aggregating system where the growth process involves both stochastic and deterministic growth. These models are known to be fat fractals, and the deterministic growth, which constitutes a fundamental ingredient of these models, could be attributed in river systems to the role of terrestrial gravity.
Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.
2014-01-01
The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525
NASA Astrophysics Data System (ADS)
Carter, Alex B.; Davies, Campbell R.; Mapstone, Bruce D.; Russ, Garry R.; Tobin, Andrew J.; Williams, Ashley J.
2014-09-01
Batch fecundity of female Plectropomus leopardus, a coral reef fish targeted by commercial and recreational fishing, was compared between reefs open to fishing and reefs within no-take marine reserves within three regions of the Great Barrier Reef (GBR), Australia. Length, weight, and age had positive effects on batch fecundity of spawners from northern and central reefs but negligible effects on spawners from southern reefs. Females were least fecund for a given length, weight, and age in the southern GBR. Batch fecundity of a 500-mm fork length female was 430 % greater on central reefs and 207 % greater on northern reefs than on southern reefs. The effects of length and age on batch fecundity did not differ significantly between reserve and fished reefs in any region, but weight-specific fecundity was 100 % greater for large 2.0 kg females on reserve reefs compared with fished reefs in the central GBR. We hypothesize that regional variation in batch fecundity is likely driven by water temperature and prey availability. Significant regional variation in batch fecundity highlights the need for understanding spatial variation in reproductive output where single conservation or fishery management strategies cover large, potentially diverse, spatial scales.
Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, L. K.; Zhang, P.
This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulsemore » length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.« less
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow
Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi
2017-01-01
Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica
Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.
Jouladeh-Roudbar, Arash; Eagderi, Soheil; Ghanavi, Hamid Reza; Doadrio, Ignacio
2017-01-01
Abstract A new species of algae-scraping cyprinid of the genus Capoeta Valenciennes, 1842 is described from the Kheyroud River, located in the southern part of the Caspian Sea basin in Iran. The species differs from other members of this genus by a combination of the following characters: one pair of barbels; predorsal length equal to postdorsal length; maxillary barbel slightly smaller than eye’s horizontal diameter and reach to posterior margin of orbit; intranasal length slightly shorter than snout length; lateral line with 46–54 scales; 7–9 scales between dorsal-fin origin and lateral line, and 6–7 scales between anal-fin origin and lateral line. PMID:28769726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene; Zolnierczuk, Piotr A.; Ohl, Michael E.
Using neutron spin-echo and backscattering spectroscopy, we have found that at low temperatures water molecules in an aqueous solution engage in center-of-mass dynamics that are different from both the main structural relaxations and the well-known localized motions in the transient cages of the nearest neighbor molecules. While the latter localized motions are known to take place on the picosecond time scale and Angstrom length scale, the slower motions that we have observed are found on the nanosecond time scale and nanometer length scale. They are associated with the slow secondary relaxations, or excess wing dynamics, in glass-forming liquids. Our approach,more » therefore, can be applied to probe the characteristic length scale of the dynamic entities associated with slow dynamics in glass-forming liquids, which presently cannot be studied by other experimental techniques.« less
Correlation lengths in hydrodynamic models of active nematics.
Hemingway, Ewan J; Mishra, Prashant; Marchetti, M Cristina; Fielding, Suzanne M
2016-09-28
We examine the scaling with activity of the emergent length scales that control the nonequilibrium dynamics of an active nematic liquid crystal, using two popular hydrodynamic models that have been employed in previous studies. In both models we find that the chaotic spatio-temporal dynamics in the regime of fully developed active turbulence is controlled by a single active scale determined by the balance of active and elastic stresses, regardless of whether the active stress is extensile or contractile in nature. The observed scaling of the kinetic energy and enstrophy with activity is consistent with our single-length scale argument and simple dimensional analysis. Our results provide a unified understanding of apparent discrepancies in the previous literature and demonstrate that the essential physics is robust to the choice of model.
Diffusion of isolated DNA molecules: dependence on length and topology.
Robertson, Rae M; Laib, Stephan; Smith, Douglas E
2006-05-09
The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.
NASA Astrophysics Data System (ADS)
Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard
2014-12-01
In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-05-01
Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.
The length of the world's glaciers - a new approach for the global calculation of center lines
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-09-01
Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.
A Thermal Model for Carbon Nanotube Interconnects
Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay
2013-01-01
In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters. PMID:28348333
Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach
NASA Astrophysics Data System (ADS)
Di Palma, P. R.; Guyennon, N.; Heße, F.; Romano, E.
2017-04-01
Macroscopic properties of flow through porous media can be directly computed by solving the Navier-Stokes equations at the scales related to the actual flow processes, while considering the porous structures in an explicit way. The aim of this paper is to investigate the effects of the pore-scale spatial distribution on seepage velocity through numerical simulations of 3D fluid flow performed by the lattice Boltzmann method. To this end, we generate multiple random Gaussian fields whose spatial correlation follows an assigned semi-variogram function. The Exponential and Gaussian semi-variograms are chosen as extreme-cases of correlation for short distances and statistical properties of the resulting porous media (indicator field) are described using the Matèrn covariance model, with characteristic lengths of spatial autocorrelation (pore size) varying from 2% to 13% of the linear domain. To consider the sensitivity of the modeling results to the geostatistical representativeness of the domain as well as to the adopted resolution, porous media have been generated repetitively with re-initialized random seeds and three different resolutions have been tested for each resulting realization. The main difference among results is observed between the two adopted semi-variograms, indicating that the roughness (short distances autocorrelation) is the property mainly affecting the flux. However, computed seepage velocities show additionally a wide variability (about three orders of magnitude) for each semi-variogram model in relation to the assigned correlation length, corresponding to pore sizes. The spatial resolution affects more the results for short correlation lengths (i.e., small pore sizes), resulting in an increasing underestimation of the seepage velocity with the decreasing correlation length. On the other hand, results show an increasing uncertainty as the correlation length approaches the domain size.
Two-Scale Simulation of Drop-Induced Failure of Polysilicon MEMS Sensors
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Martini, Roberto; Simoni, Barbara
2011-01-01
In this paper, an industrially-oriented two-scale approach is provided to model the drop-induced brittle failure of polysilicon MEMS sensors. The two length-scales here investigated are the package (macroscopic) and the sensor (mesoscopic) ones. Issues related to the polysilicon morphology at the micro-scale are disregarded; an upscaled homogenized constitutive law, able to describe the brittle cracking of silicon, is instead adopted at the meso-scale. The two-scale approach is validated against full three-scale Monte-Carlo simulations, which allow for stochastic effects linked to the microstructural properties of polysilicon. Focusing on inertial MEMS sensors exposed to drops, it is shown that the offered approach matches well the experimentally observed failure mechanisms. PMID:22163885
Multi-Scale Structure of Coacervates formed by Oppositely Charged Polyelectrolytes
NASA Astrophysics Data System (ADS)
Rubinstein, Michael
We develop a scaling model of coacervates formed by oppositely charged polyelectrolytes and demonstrate that they self-organize into multi-scale structures. The intramolecular electrostatic interactions in dilute polyanion or polycation solutions are characterized by the electrostatic blobs with size D- and D+ respectively, that repel neighboring blobs on the same chains with electrostatic energy on the order of thermal energy kT . After mixing, electrostatic intramolecular repulsion of polyelectrolytes with higher charged density, say polyanions, keeps these polyanions in coacervates aligned into stretched arrays of electrostatic blobs of size D-
NASA Astrophysics Data System (ADS)
Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.
2018-02-01
In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.
Configuration memory in patchwork dynamics for low-dimensional spin glasses
NASA Astrophysics Data System (ADS)
Yang, Jie; Middleton, A. Alan
2017-12-01
A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.
NASA Astrophysics Data System (ADS)
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
NASA Technical Reports Server (NTRS)
Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.
2012-01-01
A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.
Wormlike Chain Theory and Bending of Short DNA
NASA Astrophysics Data System (ADS)
Mazur, Alexey K.
2007-05-01
The probability distributions for bending angles in double helical DNA obtained in all-atom molecular dynamics simulations are compared with theoretical predictions. The computed distributions remarkably agree with the wormlike chain theory and qualitatively differ from predictions of the subelastic chain model. The computed data exhibit only small anomalies in the apparent flexibility of short DNA and cannot account for the recently reported AFM data. It is possible that the current atomistic DNA models miss some essential mechanisms of DNA bending on intermediate length scales. Analysis of bent DNA structures reveal, however, that the bending motion is structurally heterogeneous and directionally anisotropic on the length scales where the experimental anomalies were detected. These effects are essential for interpretation of the experimental data and they also can be responsible for the apparent discrepancy.
Path Length Entropy Analysis of Diastolic Heart Sounds
Griffel, B.; Zia, M. K.; Fridman, V.; Saponieri, C.; Semmlow, J. L.
2013-01-01
Early detection of coronary artery disease (CAD) using the acoustic approach, a noninvasive and cost-effective method, would greatly improve the outcome of CAD patients. To detect CAD, we analyze diastolic sounds for possible CAD murmurs. We observed diastolic sounds to exhibit 1/f structure and developed a new method, path length entropy (PLE) and a scaled version (SPLE), to characterize this structure to improve CAD detection. We compare SPLE results to Hurst exponent, Sample entropy and Multi-scale entropy for distinguishing between normal and CAD patients. SPLE achieved a sensitivity-specificity of 80%–81%, the best of the tested methods. However, PLE and SPLE are not sufficient to prove nonlinearity, and evaluation using surrogate data suggests that our cardiovascular sound recordings do not contain significant nonlinear properties. PMID:23930808
A depolarization and attenuation experiment using the COMSTAR and CTS satellites
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Kauffman, S. R.; Manus, E. A.; Marshall, R. E.; Overstreet, W. P.; Persinger, R. R.; Stutzman, W. L.; Wiley, P. H.
1978-01-01
An experiment for measuring precipitation attenuation and depolarization on the CTS 11.7 and the COMSTAR 19.04 and 28.56 GHz downlinks is described. Attenuation scaling, effective path length, and the relationship between isolation and attenuation are discussed. Attenuation and effective path data are presented for the months of July, August, and September, 1977.
Li, Weinan; Kong, Yanjun; Cong, Xiangyu
2016-01-01
Using multi-fractal detrended fluctuation analysis (MF-DFA), the scaling features of wind speed time series (WSTS) could be explored. In this paper, we discuss the influence of sub-daily variation, which is a natural feature of wind, in MF-DFA of WSTS. First, the choice of the lower bound of the segment length, a significant parameter of MF-DFA, was studied. The results of expanding the lower bound into sub-daily scope shows that an abrupt declination and discrepancy of scaling exponents is caused by the inability to keep the whole diel process of wind in one single segment. Additionally, the specific value, which is effected by the sub-daily feature of local meteo-climatic, might be different. Second, the intra-day temporal order of wind was shuffled to determine the impact of diel variation on scaling exponents of MF-DFA. The results illustrate that disregarding diel variation leads to errors in scaling. We propose that during the MF-DFA of WSTS, the segment length should be longer than 1 day and the diel variation of wind should be maintained to avoid abnormal phenomena and discrepancy in scaling exponents. PMID:26741491
Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions
NASA Astrophysics Data System (ADS)
Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz
2017-11-01
Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).
Perspectives on integrated modeling of transport processes in semiconductor crystal growth
NASA Technical Reports Server (NTRS)
Brown, Robert A.
1992-01-01
The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.
DeGiuli, Eric; Laversanne-Finot, Adrien; Düring, Gustavo; Lerner, Edan; Wyart, Matthieu
2014-08-14
Connectedness and applied stress strongly affect elasticity in solids. In various amorphous materials, mechanical stability can be lost either by reducing connectedness or by increasing pressure. We present an effective medium theory of elasticity that extends previous approaches by incorporating the effect of compression, of amplitude e, allowing one to describe quantitative features of sound propagation, transport, the boson peak, and elastic moduli near the elastic instability occurring at a compression ec. The theory disentangles several frequencies characterizing the vibrational spectrum: the onset frequency where strongly-scattered modes appear in the vibrational spectrum, the pressure-independent frequency ω* where the density of states displays a plateau, the boson peak frequency ωBP found to scale as , and the Ioffe-Regel frequency ωIR where scattering length and wavelength become equal. We predict that sound attenuation crosses over from ω(4) to ω(2) behaviour at ω0, consistent with observations in glasses. We predict that a frequency-dependent length scale ls(ω) and speed of sound ν(ω) characterize vibrational modes, and could be extracted from scattering data. One key result is the prediction of a flat diffusivity above ω0, in agreement with previously unexplained observations. We find that the shear modulus does not vanish at the elastic instability, but drops by a factor of 2. We check our predictions in packings of soft particles and study the case of covalent networks and silica, for which we predict ωIR ≈ ωBP. Overall, our approach unifies sound attenuation, transport and length scales entering elasticity in a single framework where disorder is not the main parameter controlling the boson peak, in agreement with observations. This framework leads to a phase diagram where various glasses can be placed, connecting microscopic structure to vibrational properties.
The Efficacy of a Silicone Sheet in Postoperative Scar Management.
Kim, Jin Sam; Hong, Joon Pio; Choi, Jong Woo; Seo, Dong Kyo; Lee, Eun Sook; Lee, Ho Seong
2016-09-01
Silicone gel sheeting has been introduced to prevent scarring, but objective evidence for its usefulness in scar healing is limited. Therefore, the authors' objective was to examine the effectiveness of silicone gel sheeting by randomly applying it to only unilateral scars from a bilateral hallux valgus surgery with symmetrical closure. In a prospective randomized, blinded, intraindividual comparison study, the silicone gel sheeting was applied to 1 foot of a hallux valgus incision scar (an experiment group) for 12 weeks upon removal of the stitches, whereas the symmetrical scar from the other foot was left untreated (a control group). The scars were evaluated at 4 and 12 weeks after the silicon sheet application. The Vancouver Scar Scale was used to measure the vascularity, pigmentation, pliability, height, and length of the scars. Adverse effects were also evaluated, and they included pain, itchiness, rash, erythema, and skin softening. At weeks 4 and 12, the experiment group scored significantly better on the Vancouver Scar Scale in all items, except length (P < .05 for all except the length of scar), compared with the control group. In all items, adverse effects of the experiment group were significantly lower than those of the control group at week 12, suggesting that direct attachment of the silicone sheet does not cause adverse effects (P < .05). To the authors' knowledge, this is one of the first models to minimize bias related to scar evaluation by using symmetrical scars. The early silicone sheet application did show a significant improvement in prevention of postoperative scarring.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Prenatal dysthymia versus major depression effects on the neonate.
Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria
2008-04-01
Depressed pregnant women were classified as dysthymic or major depression disorder based on the Structured Clinical Interview for Depression and followed to the newborn period. The newborns of dysthymic versus major depression disorder mothers had a significantly shorter gestational age, a lower birthweight, shorter birth length and less optimal obstetric complications scores. The neonates of dysthymic mothers also had lower orientation and motor scores and more depressive symptoms on the Brazelton Neonatal Behavioral Assessment Scale. These findings were not surprising given the elevated cortisol levels and the inferior fetal measures including lower fetal weight, fetal length, femur length and abdominal circumference noted in our earlier study on fetuses of dysthymic pregnant women.
Prenatal Dysthymia versus Major Depression Effects on the Neonate
Field, Tiffany; Diego, Miguel
2008-01-01
Depressed pregnant women were classified as dysthymic or major depression disorder based on the Structured Clinical Inventory for Depression and followed to the newborn period. The newborns of dysthymic versus major depression disorder mothers had a significantly shorter gestational age, a lower birthweight, shorter birth length and less optimal obstetric complications scores. The neonates of dysthymic mothers also had lower orientation and motor scores and more depressive symptoms on the Brazelton Neonatal Behavioral Assessment Scale. These findings were not surprising given the elevated cortisol levels and the inferior fetal measures including lower fetal weight, fetal length, femur length and abdominal circumference noted in our earlier study on fetuses of dysthymic pregnant women PMID:18037494
Fully Coupled Simulation of Lithium Ion Battery Cell Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulatedmore » and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.« less
Fragmentation under the Scaling Symmetry and Turbulent Cascade with Intermittency
NASA Technical Reports Server (NTRS)
Gorokhovski, M.
2003-01-01
Fragmentation plays an important role in a variety of physical, chemical, and geological processes. Examples include atomization in sprays, crushing of rocks, explosion and impact of solids, polymer degradation, etc. Although each individual action of fragmentation is a complex process, the number of these elementary actions is large. It is natural to abstract a simple 'effective' scenario of fragmentation and to represent its essential features. One of the models is the fragmentation under the scaling symmetry: each breakup action reduces the typical length of fragments, r (right arrow) alpha r, by an independent random multiplier alpha (0 < alpha < 1), which is governed by the fragmentation intensity spectrum q(alpha), integral(sup 1)(sub 0) q(alpha)d alpha = 1. This scenario has been proposed by Kolmogorov (1941), when he considered the breakup of solid carbon particle. Describing the breakup as a random discrete process, Kolmogorov stated that at latest times, such a process leads to the log-normal distribution. In Gorokhovski & Saveliev, the fragmentation under the scaling symmetry has been reviewed as a continuous evolution process with new features established. The objective of this paper is twofold. First, the paper synthesizes and completes theoretical part of Gorokhovski & Saveliev. Second, the paper shows a new application of the fragmentation theory under the scale invariance. This application concerns the turbulent cascade with intermittency. We formulate here a model describing the evolution of the velocity increment distribution along the progressively decreasing length scale. The model shows that when the turbulent length scale gets smaller, the velocity increment distribution has central growing peak and develops stretched tails. The intermittency in turbulence is manifested in the same way: large fluctuations of velocity provoke highest strain in narrow (dissipative) regions of flow.
Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers
NASA Astrophysics Data System (ADS)
Wu, David
At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Length-dependent mechanical properties of gold nanowires
NASA Astrophysics Data System (ADS)
Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun
2012-12-01
The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.
A multi-scale approach to designing therapeutics for tuberculosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje
Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less
A multi-scale approach to designing therapeutics for tuberculosis
Linderman, Jennifer J.; Cilfone, Nicholas A.; Pienaar, Elsje; ...
2015-04-20
Approximately one third of the world’s population is infected with Mycobacterium tuberculosis. Limited information about how the immune system fights M. tuberculosis and what constitutes protection from the bacteria impact our ability to develop effective therapies for tuberculosis. We present an in vivo systems biology approach that integrates data from multiple model systems and over multiple length and time scales into a comprehensive multi-scale and multi-compartment view of the in vivo immune response to M. tuberculosis. Lastly, we describe computational models that can be used to study (a) immunomodulation with the cytokines tumor necrosis factor and interleukin 10, (b) oralmore » and inhaled antibiotics, and (c) the effect of vaccination.« less
Granato, Enzo
2008-07-11
Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.
Shock-Induced Turbulence and Acoustic Loading on Aerospace Structures
2015-08-22
aerospace structures. Pulsating flows featuring unsteadiness attributed to SWTBLI can lead to fatigue and structural damages1. Advancing our understanding...transformed system of coordinates in order to minimize scaling effects that appear in stencils consisting of elements of different sizes, as well as to...preceding the separation bubble as the 5th-order MUSCL. An integral length scale of 2Δx in the streamwise direction was chosen for the digital filter
Thermal diffusivity study of aged Li-ion batteries using flash method
NASA Astrophysics Data System (ADS)
Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim
Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.
Cosmological horizons, uncertainty principle, and maximum length quantum mechanics
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2017-05-01
The cosmological particle horizon is the maximum measurable length in the Universe. The existence of such a maximum observable length scale implies a modification of the quantum uncertainty principle. Thus due to nonlocality of quantum mechanics, the global properties of the Universe could produce a signature on the behavior of local quantum systems. A generalized uncertainty principle (GUP) that is consistent with the existence of such a maximum observable length scale lmax is Δ x Δ p ≥ℏ2/1/1 -α Δ x2 where α =lmax-2≃(H0/c )2 (H0 is the Hubble parameter and c is the speed of light). In addition to the existence of a maximum measurable length lmax=1/√{α }, this form of GUP implies also the existence of a minimum measurable momentum pmin=3/√{3 } 4 ℏ√{α }. Using appropriate representation of the position and momentum quantum operators we show that the spectrum of the one-dimensional harmonic oscillator becomes E¯n=2 n +1 +λnα ¯ where E¯n≡2 En/ℏω is the dimensionless properly normalized n th energy level, α ¯ is a dimensionless parameter with α ¯≡α ℏ/m ω and λn˜n2 for n ≫1 (we show the full form of λn in the text). For a typical vibrating diatomic molecule and lmax=c /H0 we find α ¯˜10-77 and therefore for such a system, this effect is beyond the reach of current experiments. However, this effect could be more important in the early Universe and could produce signatures in the primordial perturbation spectrum induced by quantum fluctuations of the inflaton field.
Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction
NASA Astrophysics Data System (ADS)
Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.
2017-12-01
We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.
NASA Astrophysics Data System (ADS)
Zhao, Chenyi; Zhong, Donglai; Qiu, Chenguang; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao
2018-01-01
In this letter, we explore the vertical scaling-down behavior of carbon nanotube (CNT) network film field-effect transistors (FETs) and show that by using a high-efficiency gate insulator, we can substantially improve the subthreshold swing (SS) and its uniformity. By using an HfO2 layer with a thickness of 7.3 nm as the gate insulator, we fabricated CNT network film FETs with a long channel (>2 μm) that exhibit an SS of approximately 60 mV/dec. The preferred thickness of HfO2 as the gate insulator in a CNT network FET is between 7 nm and 10 nm, simultaneously yielding an excellent SS (<80 mV/decade) and low gate leakage. However, because of the statistical fluctuations of the network CNT channel, the lateral scaling of CNT network film-based FETs is more difficult than that of conventional FETs. Experiments suggest that excellent SS is difficult to achieve statistically in CNT network film FETs with a small channel length (smaller than the mean length of the CNTs), which eventually limits the further scaling down of this kind of CNT FET to the sub-micrometer regime.
NASA Technical Reports Server (NTRS)
Burley, Richard K.; Adams, James F.
1987-01-01
Indentations made by typing on lead tape. Lead scales for inclusion in x-radiographs as length and position references created by repeatedly imprinting character like upper-case I, L, or V, or lower-case L into lead tape with typewriter. Character pitch of typewriter serves as length reference for scale. Thinning of tape caused by impacts of type shows up dark in radiograph.
Length and area equivalents for interpreting wildland resource maps
Elliot L. Amidon; Marilyn S. Whitfield
1969-01-01
Map users must refer to an appropriate scale in interpreting wildland resource maps. Length and area equivalents for nine map scales commonly used have been computed. For each scale a 1-page table consists of map-to-ground equivalents, buffer strip or road widths, and cell dimensions required for a specified acreage. The conversion factors are stored in a Fortran...
Sardo, Pedro Miguel Garcez; Simões, Cláudia Sofia Oliveira; Alvarelhão, José Joaquim Marques; Simões, João Filipe Fernandes Lindo; Melo, Elsa Maria de Oliveira Pinheiro de
2016-08-01
The Morse Fall Scale is used in several care settings for fall risk assessment and supports the implementation of preventive nursing interventions. Our work aims to analyze the Morse Fall Scale scores of Portuguese hospitalized adult patients in association with their characteristics, diagnoses and length of stay. Retrospective cohort analysis of Morse Fall Scale scores of 8356 patients hospitalized during 2012. Data were associated to age, gender, type of admission, specialty units, length of stay, patient discharge, and ICD-9 diagnosis. Elderly patients, female, with emergency service admission, at medical units and/or with longer length of stays were more frequently included in the risk group for falls. ICD-9 diagnosis may also be an important risk factor. More than a half of hospitalized patients had "medium" to "high" risk of falling during the length of stay, which determines the implementation and maintenance of protocoled preventive nursing interventions throughout hospitalization. There are several fall risk factors not assessed by Morse Fall Scale. There were no statistical differences in Morse Fall Scale score between the first and the last assessment. Copyright © 2015 Elsevier Inc. All rights reserved.
Relationship between interpersonal sensitivity and leukocyte telomere length.
Suzuki, Akihito; Matsumoto, Yoshihiko; Enokido, Masanori; Shirata, Toshinori; Goto, Kaoru; Otani, Koichi
2017-10-10
Telomeres are repetitive DNA sequences located at the ends of chromosomes, and telomere length represents a biological marker for cellular aging. Interpersonal sensitivity, excessive sensitivity to the behavior and feelings of others, is one of the vulnerable factors to depression. In the present study, we examined the effect of interpersonal sensitivity on telomere length in healthy subjects. The subjects were 159 unrelated healthy Japanese volunteers. Mean age ± SD (range) of the subjects was 42.3 ± 7.8 (30-61) years. Interpersonal sensitivity was assessed by the Japanese version of the Interpersonal Sensitivity Measure (IPSM). Leukocyte telomere length was determined by a quantitative real-time PCR method. Higher scores of the total IPSM were significantly (β = -0.163, p = 0.038) related to shorter telomere length. In the sub-scale analysis, higher scores of timidity were significantly (β = -0.220, p = 0.044) associated with shorter telomere length. The present study suggests that subjects with higher interpersonal sensitivity have shorter leukocyte telomere length, implying that interpersonal sensitivity has an impact on cellular aging.
Progress in long scale length laser plasma interactions
NASA Astrophysics Data System (ADS)
Glenzer, S. H.; Arnold, P.; Bardsley, G.; Berger, R. L.; Bonanno, G.; Borger, T.; Bower, D. E.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S. C.; Campbell, K.; Chrisp, M. P.; Cohen, B. I.; Constantin, C.; Cooper, F.; Cox, J.; Dewald, E.; Divol, L.; Dixit, S.; Duncan, J.; Eder, D.; Edwards, J.; Erbert, G.; Felker, B.; Fornes, J.; Frieders, G.; Froula, D. H.; Gardner, S. D.; Gates, C.; Gonzalez, M.; Grace, S.; Gregori, G.; Greenwood, A.; Griffith, R.; Hall, T.; Hammel, B. A.; Haynam, C.; Heestand, G.; Henesian, M.; Hermes, G.; Hinkel, D.; Holder, J.; Holdner, F.; Holtmeier, G.; Hsing, W.; Huber, S.; James, T.; Johnson, S.; Jones, O. S.; Kalantar, D.; Kamperschroer, J. H.; Kauffman, R.; Kelleher, T.; Knight, J.; Kirkwood, R. K.; Kruer, W. L.; Labiak, W.; Landen, O. L.; Langdon, A. B.; Langer, S.; Latray, D.; Lee, A.; Lee, F. D.; Lund, D.; MacGowan, B.; Marshall, S.; McBride, J.; McCarville, T.; McGrew, L.; Mackinnon, A. J.; Mahavandi, S.; Manes, K.; Marshall, C.; Menapace, J.; Mertens, E.; Meezan, N.; Miller, G.; Montelongo, S.; Moody, J. D.; Moses, E.; Munro, D.; Murray, J.; Neumann, J.; Newton, M.; Ng, E.; Niemann, C.; Nikitin, A.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rekow, V.; Rinnert, R.; Riordan, B.; Rhodes, M.; Roberts, V.; Robey, H.; Ross, G.; Sailors, S.; Saunders, R.; Schmitt, M.; Schneider, M. B.; Shiromizu, S.; Spaeth, M.; Stephens, A.; Still, B.; Suter, L. J.; Tietbohl, G.; Tobin, M.; Tuck, J.; Van Wonterghem, B. M.; Vidal, R.; Voloshin, D.; Wallace, R.; Wegner, P.; Whitman, P.; Williams, E. A.; Williams, K.; Winward, K.; Work, K.; Young, B.; Young, P. E.; Zapata, P.; Bahr, R. E.; Seka, W.; Fernandez, J.; Montgomery, D.; Rose, H.
2004-12-01
The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3ω) with a total intensity of 2 × 1015 W cm-2. The targets were filled with 1 atm of CO2 producing up to 7 mm long homogeneously heated plasmas with densities of ne = 6 × 1020 cm-3 and temperatures of Te = 2 keV. The high energy in an NIF quad of beams of 16 kJ, illuminating the target from one direction, creates unique conditions for the study of laser-plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x-rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last ~1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 3% for the smallest length (~2 mm), increasing to 10-12% for ~7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modelling of the laser-plasma interactions at ignition-size scale lengths.
Spatial Resolution Effect on Forest Road Gradient Calculation and Erosion Modelling
NASA Astrophysics Data System (ADS)
Cao, L.; Elliot, W.
2017-12-01
Road erosion is one of the main sediment sources in a forest watershed and should be properly evaluated. With the help of GIS technology, road topography can be determined and soil loss can be predicted at a watershed scale. As a vector geographical feature, the road gradient should be calculated following road direction rather than hillslope direction. This calculation might be difficult with a coarse (30-m) DEM which only provides the underlying topography information. This study was designed to explore the effect of road segmentation and DEM resolution on the road gradient calculation and erosion prediction at a watershed scale. The Water Erosion Prediction Project (WEPP) model was run on road segments of 9 lengths ranging from 40m to 200m. Road gradient was calculated from three DEM data sets: 1m LiDAR, and 10m and 30m USGS DEMs. The 1m LiDAR DEM calculated gradients were very close to the field observed road gradients, so we assumed the 1m LiDAR DEM predicted the true road gradient. The results revealed that longer road segments skipped detail topographical undulations and resulted in lower road gradients. Coarser DEMs computed steeper road gradients as larger grid cells covered more adjacent areas outside road resulting in larger elevation differences. Field surveyed results also revealed that coarser DEM might result in more gradient deviation in a curved road segment when it passes through a convex or concave slope. As road segment length increased, the gradient difference between three DEMs was reduced. There were no significant differences between road gradients of different segment lengths and DEM resolution when segments were longer than 100m. For long segments, the 10m DEM calculated road gradient was similar to the 1m LiDAR gradient. When evaluating the effects of road segment length, the predicted erosion rate decreased with increasing length when road gradient was less than 3%. In cases where the road gradients exceed 3% and rill erosion dominates, predicted erosion rates exponentially increased with segment length. At the watershed scale, most of the predicted soil loss occurred on segments with gradients ranging from 3% to 9%. Based on the road gradient calculated with the 10-m and 30-m DEMs, soil loss was overestimated when compared to the 1m LiDAR DEM. Both the 10m and 30m DEM result in similar total road soil loss.
Deng, Mingge; Li, Xuejin; Liang, Haojun; Caswell, Bruce; Karniadakis, George Em
2013-01-01
Fabrication of functionalized surfaces using polymer brushes is a relatively simple process and parallels the presence of glycocalyx filaments coating the luminal surface of our vasculature. In this paper, we perform atomistic-like simulations based on dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx filaments subject to shear flow, and we apply mean-field theory to extract useful scaling arguments on their response. For polymer brushes, a weak shear flow has no effect on the brush density profile or its height, while the slip length is independent of the shear rate and is of the order of the brush mesh size as a result of screening by hydrodynamic interactions. However, for strong shear flow, the polymer brush is penetrated deeper and is deformed, with a corresponding decrease of the brush height and an increase of the slip length. The transition from the weak to the strong shear regime can be described by a simple ‘blob’ argument, leading to the scaling γ̇0 ∝ σ3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density. Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of individual polymers, causing a reversal in the direction of surface flow. To study the glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly, we find that, at low Reynolds number, the slip length decreases with the mean flow velocity, unlike the behaviour of polymer brushes, for which the slip length remains constant under similar conditions. (The slip length and brush height are measured with respect to polymer mesh size and polymer contour length, respectively.) We also performed additional DPD simulations of blood flow in a tube with walls having a glycocalyx layer and with the deformable red blood cells modelled accurately at the spectrin level. In this case, a plasma cell-free layer is formed, with thickness more than three times the glycocalyx layer. We then find our scaling arguments based on the homogeneous flow assumption to be valid for this physiologically correct case as well. Taken together, our findings point to the opposing roles of conformational entropy and bending rigidity – dominant effects for the brush and glycocalyx, respectively – which, in turn, lead to different flow characteristics, despite the apparent similarity of the two systems. PMID:24353347
NASA Astrophysics Data System (ADS)
Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.
2012-03-01
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. Electronic supplementary information (ESI) available: Includes methods and transmission spectra of nanowire films. See DOI: 10.1039/c2nr30126a
Fundamental Scaling Laws in Nanophotonics
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-01-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159
Fundamental Scaling Laws in Nanophotonics.
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J
2016-11-21
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
Fundamental Scaling Laws in Nanophotonics
NASA Astrophysics Data System (ADS)
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-11-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.
NASA Astrophysics Data System (ADS)
Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.
2016-04-01
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang
2014-11-07
This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO 2 were derived for both intrinsic conditions and under irradiation. The importance of the large X eU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequencemore » of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.« less
NASA Astrophysics Data System (ADS)
Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David
2017-12-01
The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.
Carl, Adrian; Bannuscher, Anne; von Klitzing, Regine
2015-02-10
Nanoparticles can be efficient foaming agents. Yet, the detailed mechanisms of foam stabilization by these particles remain unclear. In most cases, the foamability and foam stability of a system have to be determined empirically. We used a multiscale approach to reveal how the microscopic properties of the nanoparticle dispersion are translated into their foaming behavior at the macroscopic scale. As a model system we used silica nanoparticles that were hydrophobized by the in situ adsorption of short-chain alkylamines of chain length C5 to C8. We used fluorescence spectroscopy and electrophoretic mobility measurements to characterize the bulk behavior of the nanoparticles with adsorbed amines. The interfacial behavior was probed by compressing particle monolayers while monitoring the surface tension. The macroscopic foamability and foam stability were evaluated. There are strong correlations between the system properties at all length scales. The most prominent effects are observed at a critical bulk concentration of amines at which the nanoparticles start to aggregate due to hydrophobic interactions. Our study shows how the foam properties are related to the features of the bulk dispersions and to the ordering of particles at the air/water interface. The present results help to understand the surfactant concentration dependent stages of foaming behavior of in situ hydrophobized nanoparticles.
Self-similar mixing in stratified plane Couette flow for varying Prandtl number
NASA Astrophysics Data System (ADS)
Caulfield, C. P.; Zhou, Qi; Taylor, John
2017-11-01
We investigate fully developed turbulence in statically stable stratified plane Couette flows (the flow between two horizontal plates a distance 2 h apart moving at velocities +/-U0 and held at densities ρa -/+ρ0) using direct numerical simulations at a range of Prandtl numbers Pr ≡ ν / κ ∈ { 0.7 , 7 , 70 } and Reynolds numbers Re ≡U0 h / ν ∈ [ 865 , 280000 ] . We observe significant effects of Pr on the heat and momentum fluxes across the channel gap and on the mean temperature and velocity profile, which can be described through a mixing length model using Monin-Obukhov (M-O) similarity theory. We employ M-O theory to formulate similarity scalings for various flow diagnostics in the gap interior. The mid-channel-gap gradient Richardson number Rig is determined by the length scale ratio h / L , where L is the Obukhov length scale. When h / L >> 1 , Rig asymptotes to a maximum characteristic value of approximately 0.2, for very high Re and for a range of Pr and bulk Richardson number Ri = gρ0 h /(ρaU02) . The flux Richardson number Rif = Rig , implying that such turbulent flows do not access the (strongly) `layered anisotropic stratified turbulence' regime, and that the turbulent Prandtl number is approximately one.
Spatial patterns of frequent floods in Switzerland
NASA Astrophysics Data System (ADS)
Schneeberger, Klaus; Rössler, Ole; Weingartner, Rolf
2017-04-01
Information about the spatial characteristics of high and extreme streamflow is often needed for an accurate analysis of flood risk and effective co-ordination of flood related activities, such as flood defence planning. In this study we analyse the spatial dependence of frequent floods in Switzerland across different scales. Firstly, we determine the average length of high and extreme flow events for 56 runoff time series of Swiss rivers. Secondly, a dependence measure expressing the probability that streamflow peaks are as high as peaks at a conditional site is used to describe and map the spatial extend of joint occurrence of frequent floods across Switzerland. Thirdly, we apply a cluster analysis to identify groups of sites that are likely to react similarly in terms of joint occurrence of high flow events. The results indicate that a time interval with a length of 3 days seems to be most appropriate to characterise the average length of high streamflow events across spatial scales. In the main Swiss basins, high and extreme streamflows were found to be asymptotically independent. In contrast, at the meso-scale distinct flood regions, which react similarly in terms of occurrence of frequent flood, were found. The knowledge about these regions can help to optimise flood defence planning or to estimate regional flood risk properly.
NASA Astrophysics Data System (ADS)
Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei
2018-04-01
Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.
Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; ...
2016-02-03
The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, whichmore » is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.« less
NASA Astrophysics Data System (ADS)
Nikolov, N.; Avdjieva, T.; Altaparmakov, I.
2014-06-01
Some specially designed metallic alloys crystallize during process of rapid quenching which aims their amorphization. Nevertheless, change in their mechanical properties could be seen compared to these obtained during conventional technological regimes of cooling. That attracts the attention in this elaboration. Full 3-D numerical simulations of nanoindentation process of two material models are performed. The models reflect equivalent elastic and different plastic material properties. The plastic behaviour of the first one is subjected to yield criterion of Dracker-Prager and this of the second one to yield criterion of Mises. The reported numerical results depending on the nanoindentation scale length of 1000 nanometers, suggest different adequacy of the two yield criteria to the data obtained experimentally with a Zr-Al-Cu-Ni-Mo alloy. It could be speculated that the different effects developed depending on the indenter travel of 1000 nanometers and taken into account in the two yield criteria stand behind this fact and determinate three structural levels of plastic deformation.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Interaction of nanoparticles with lipid membranes: a multiscale perspective
NASA Astrophysics Data System (ADS)
Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora
2014-05-01
Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon. Electronic supplementary information (ESI) available: All the experimental details, figures and tables. See DOI: 10.1039/c4nr00838c
A modification in the technique of computing average lengths from the scales of fishes
Van Oosten, John
1953-01-01
In virtually all the studies that employ scales, otollths, or bony structures to obtain the growth history of fishes, it has been the custom to compute lengths for each individual fish and from these data obtain the average growth rates for any particular group. This method involves a considerable amount of mathematical manipulation, time, and effort. Theoretically it should be possible to obtain the same information simply by averaging the scale measurements for each year of life and the length of the fish employed and computing the average lengths from these data. This method would eliminate all calculations for individual fish. Although Van Oosten (1929: 338) pointed out many years ago the validity of this method of computation, his statements apparently have been overlooked by subsequent investigators.
NASA Technical Reports Server (NTRS)
Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.
Investigation of Short Channel Effects on Device Performance for 60nm NMOS Transistor
NASA Astrophysics Data System (ADS)
Chinnappan, U.; Sanudin, R.
2017-08-01
In the aggressively scaled complementary metal oxide semiconductor (CMOS) devices, shallower p-n junctions and low sheet resistances are essential for short-channel effect (SCE) control and high device performance. The SCE are attributed to two physical phenomena that are the limitation imposed on electron drift characteristics in channel and the modification of the threshold voltage (Vth) due to the shortening channel length. The decrement of Vth with decrement in gate length is a well-known attribute in SCE known as “threshold voltage roll-off’. In this research, the Technology Computer Aided Design (TCAD) was used to model the SCE phenomenon effect on 60nm n-type metal oxide semiconductor (NMOS) transistor. There are three parameters being investigated, which are the oxide thickness (Tox), gate length (L), acceptor concentration (Na). The simulation data were used to visualise the effect of SCE on the 60nm NMOS transistor. Simulation data suggest that all three parameters have significant effect on Vth, and hence on the transistor performance. It is concluded that there is a trade-off among these three parameters to obtain an optimized transistor performance.
A nomograph for the computation of the growth of fish from scale measurements
Hile, Ralph
1950-01-01
Directions are given for the construction and operation of a nomograph that can be employed for the computation of the growth of fish from scale measurements regardless of the nature of the body-scale relationship, so long as that relationship is known. The essential feature of the nomograph that makes rapid calculations possible is a ruler on which the graduations are in terms of length with the distance of each length graduation from the O graduation equal to the corresponding theoretical scale measurement. The chief advantage of the nomograph lies in the fact that the calculation of the lengths for all years of life of an individual fish requires only one setting of the single movable part.
Probing sub-alveolar length scales with hyperpolarized-gas diffusion NMR
NASA Astrophysics Data System (ADS)
Miller, Wilson; Carl, Michael; Mooney, Karen; Mugler, John; Cates, Gordon
2009-05-01
Diffusion MRI of the lung is a promising technique for detecting alterations of normal lung microstructure in diseases such as emphysema. The length scale being probed using this technique is related to the time scale over which the helium-3 or xenon-129 diffusion is observed. We have developed new MR pulse sequence methods for making diffusivity measurements at sub-millisecond diffusion times, allowing one to probe smaller length scales than previously possible in-vivo, and opening the possibility of making quantitative measurements of the ratio of surface area to volume (S/V) in the lung airspaces. The quantitative accuracy of simulated and experimental measurements in microstructure phantoms will be discussed, and preliminary in-vivo results will be presented.
SPM investigation of local aging effects in glassy polymers
NASA Astrophysics Data System (ADS)
Crider, Philip
2005-03-01
We investigate the cooperative and heterogeneous nature of glassy dynamics by nanometer-scale probing in a glassy polymer, Polyvinyl-Actetate (PVAc), with a Scanning Force Microscope (SFM). Using ultra-high-vacuum (UHV) Scanning Capacitive Force Microscopy techniques, nanometer-scale capacitive responses are probed. Dielectric relaxation near the glass transition is investigated, and scanning capabilities are utilized to analyze spatial response on a nanometer scale. The results of these studies may yield insight into the understanding of temperature-dependent cooperative length scales, local aging properties, and energy landscape properties of evolving dipole clusters on a mesoscopic scale. Results are used to test the validity and relevance of current models of glassy dynamics.
Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadlier, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.
2009-01-01
We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.
Dressing effects on the occurrence scattering time retardation and advance in a dusty plasma
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae; Hanyang Plasma Team
2017-10-01
The dressing effects on the occurrence scattering time for the dust-dust interaction are investigated in a complex plasma. The first-order eikonal analysis is applied to obtain the scattering amplitude and the occurrence scattering time for the dust-dust interaction. The result shows that dressing effect enhances the retardation phenomena of the occurrence scattering time in the forward scattering domain. It is shown that the oscillatory behavior of the scaled occurrence scattering time is getting more significant with an increase of the Debye length. It is also found that the retardation domain of the occurrence scattering time increases with a decrease of the Debye length. The variation of the occurrence scattering time retardation and advance due to the dressing effect is also discussed.
Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.
2010-01-01
We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.
Fried, Eliot; Gurtin, Morton E
2007-05-01
We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.
Engineering behavior of small-scale foundation piers constructed from alternative materials
NASA Astrophysics Data System (ADS)
Prokudin, Maxim Mikhaylovich
Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.
The Effect of Contact Area on the Fluid Flow-Fracture Specific Stiffness Relationship
NASA Astrophysics Data System (ADS)
Petrovitch, C.; Pyrak-Nolte, L. J.; Nolte, D. D.
2009-12-01
The integrity of subsurface CO2 sequestration sites can be compromised by the presence of mechanical discontinuities such as fractures, joints and faults. The ability to detect, seismically, and determine whether a discontinuity poses a risk, requires an understanding of the interrelationships among the mechanical, hydraulic and seismic properties of fractures rock. We performed a computational study to investigate the effect of fracture geometry on the relationship between fluid flow and fracture specific stiffness. The form of this relationship and the ability to scale it among different sample sizes provides a key link between the hydraulic and seismic response of fractures. In this study, model fracture topologies were simulated using the stratified continuum percolation method. This method constructs a hierarchical aperture distribution with a tunable spatial correlation length. Fractures with correlated and uncorrelated aperture distributions were used. The contact area across the fracture plane ranged from approximately 5% to 40%. The fracture specific stiffness was calculated by deforming each fracture numerically under a normal load and extracting the stiffness from the displacement-stress curves. Single-phase flow was calculated for each increment of stress by modeling the fracture topology as a network of elliptical pipes and solving the corresponding linear system of equations. We analyzed the relationship between fracture displacement and contact area and found that the correlation length associated with the contact area distribution enables a scaling relationship between displacement and contact area. The collapse of the fluid flow - stress relationship required use of standard percolation functional forms that use average aperture (cubic law), the void area fraction, and the correlation length of the contact area clusters. A final scaling relationship between fluid flow and fracture specific was found for the class of correlated fractures while a separate relationship was found for the uncorrelated fractures. By expanding the scaling parameters to include additional length scales, it may be possible to unify all of the flow-stiffness relationships, independent of geometry. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08), the GeoMathematical Imaging Group at Purdue University and from the Computer Research Institute At Purdue University.
Huo, Yunlong; Choy, Jenny Susana; Wischgoll, Thomas; Luo, Tong; Teague, Shawn D; Bhatt, Deepak L; Kassab, Ghassan S
2013-04-06
Glagov's positive remodelling in the early stages of coronary atherosclerosis often results in plaque rupture and acute events. Because positive remodelling is generally diffused along the epicardial coronary arterial tree, it is difficult to diagnose non-invasively. Hence, the objective of the study is to assess the use of scaling power law for the diagnosis of positive remodelling of coronary arteries based on computed tomography (CT) images. Epicardial coronary arterial trees were reconstructed from CT scans of six Ossabaw pigs fed on a high-fat, high-cholesterol, atherogenic diet for eight months as well as the same number of body-weight-matched farm pigs fed on a lean chow (101.9±16.1 versus 91.5±13.1 kg). The high-fat diet Ossabaw pig model showed diffuse positive remodelling of epicardial coronary arteries. Good fit of measured coronary data to the length-volume scaling power law ( where L(c) and V(c) are crown length and volume) were found for both the high-fat and control groups (R(2) = 0.95±0.04 and 0.99±0.01, respectively). The coefficient, K(LV), decreased significantly in the high-fat diet group when compared with the control (14.6±2.6 versus 40.9±5.6). The flow-length scaling power law, however, was nearly unaffected by the positive remodelling. The length-volume and flow-length scaling power laws were preserved in epicardial coronary arterial trees after positive remodelling. K(LV) < 18 in the length-volume scaling relation is a good index of positive remodelling of coronary arteries. These findings provide a clinical rationale for simple, accurate and non-invasive diagnosis of positive remodelling of coronary arteries, using conventional CT scans.
BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnett, W. David; Meakin, Casey; Viallet, Maxime
2015-08-10
We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier–Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier–Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets ofmore » solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier–Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.« less
Beyond Mixing-length Theory: A Step Toward 321D
NASA Astrophysics Data System (ADS)
Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav
2015-08-01
We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier-Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier-Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier-Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.
Daley, Monica A; Birn-Jeffery, Aleksandra
2018-05-22
Birds provide an interesting opportunity to study the relationships between body size, limb morphology and bipedal locomotor function. Birds are ecologically diverse and span a large range of body size and limb proportions, yet all use their hindlimbs for bipedal terrestrial locomotion, for at least some part of their life history. Here, we review the scaling of avian striding bipedal gaits to explore how body mass and leg morphology influence walking and running. We collate literature data from 21 species, spanning a 2500× range in body mass from painted quail to ostriches. Using dynamic similarity theory to interpret scaling trends, we find evidence for independent effects of body mass, leg length and leg posture on gait. We find no evidence for scaling of duty factor with body size, suggesting that vertical forces scale with dynamic similarity. However, at dynamically similar speeds, large birds use relatively shorter stride lengths and higher stride frequencies compared with small birds. We also find that birds with long legs for their mass, such as the white stork and red-legged seriema, use longer strides and lower swing frequencies, consistent with the influence of high limb inertia on gait. We discuss the observed scaling of avian bipedal gait in relation to mechanical demands for force, work and power relative to muscle actuator capacity, muscle activation costs related to leg cycling frequency, and considerations of stability and agility. Many opportunities remain for future work to investigate how morphology influences gait dynamics among birds specialized for different habitats and locomotor behaviors. © 2018. Published by The Company of Biologists Ltd.
Modeling the effects of argument length and validity on inductive and deductive reasoning.
Rotello, Caren M; Heit, Evan
2009-09-01
In an effort to assess models of inductive reasoning and deductive reasoning, the authors, in 3 experiments, examined the effects of argument length and logical validity on evaluation of arguments. In Experiments 1a and 1b, participants were given either induction or deduction instructions for a common set of stimuli. Two distinct effects were observed: Induction judgments were more affected by argument length, and deduction judgments were more affected by validity. In Experiment 2, fluency was manipulated by displaying the materials in a low-contrast font, leading to increased sensitivity to logical validity. Several variants of 1-process and 2-process models of reasoning were assessed against the results. A 1-process model that assumed the same scale of argument strength underlies induction and deduction was not successful. A 2-process model that assumed separate, continuous informational dimensions of apparent deductive validity and associative strength gave the more successful account. (c) 2009 APA, all rights reserved.
Childhood adversity, social support, and telomere length among perinatal women.
Mitchell, Amanda M; Kowalsky, Jennifer M; Epel, Elissa S; Lin, Jue; Christian, Lisa M
2018-01-01
Adverse perinatal health outcomes are heightened among women with psychosocial risk factors, including childhood adversity and a lack of social support. Biological aging could be one pathway by which such outcomes occur. However, data examining links between psychosocial factors and indicators of biological aging among perinatal women are limited. The current study examined the associations of childhood socioeconomic status (SES), childhood trauma, and current social support with telomere length in peripheral blood mononuclear cells (PBMCs) in a sample of 81 women assessed in early, mid, and late pregnancy as well as 7-11 weeks postpartum. Childhood SES was defined as perceived childhood social class and parental educational attainment. Measures included the Childhood Trauma Questionnaire, Center for Epidemiologic Studies-Depression Scale, Multidimensional Scale of Perceived Social Support, and average telomere length in PBMCs. Per a linear mixed model, telomere length did not change across pregnancy and postpartum visits; thus, subsequent analyses defined telomere length as the average across all available timepoints. ANCOVAs showed group differences by perceived childhood social class, maternal and paternal educational attainment, and current family social support, with lower values corresponding with shorter telomeres, after adjustment for possible confounds. No effects of childhood trauma or social support from significant others or friends on telomere length were observed. Findings demonstrate that while current SES was not related to telomeres, low childhood SES, independent of current SES, and low family social support were distinct risk factors for cellular aging in women. These data have relevance for understanding potential mechanisms by which early life deprivation of socioeconomic and relationship resources affect maternal health. In turn, this has potential significance for intergenerational transmission of telomere length. The predictive value of markers of biological versus chronological age on birth outcomes warrants investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
Stimulus-dependent modulation of spike burst length in cat striate cortical cells.
DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B
1997-07-01
Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.
Parametrization of Drag and Turbulence for Urban Neighbourhoods with Trees
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Santiago, J.-L.; Martilli, A.; Christen, A.; Oke, T. R.
2015-08-01
Urban canopy parametrizations designed to be coupled with mesoscale models must predict the integrated effect of urban obstacles on the flow at each height in the canopy. To assess these neighbourhood-scale effects, results of microscale simulations may be horizontally-averaged. Obstacle-resolving computational fluid dynamics (CFD) simulations of neutrally-stratified flow through canopies of blocks (buildings) with varying distributions and densities of porous media (tree foliage) are conducted, and the spatially-averaged impacts on the flow of these building-tree combinations are assessed. The accuracy with which a one-dimensional (column) model with a one-equation (-) turbulence scheme represents spatially-averaged CFD results is evaluated. Individual physical mechanisms by which trees and buildings affect flow in the column model are evaluated in terms of relative importance. For the treed urban configurations considered, effects of buildings and trees may be considered independently. Building drag coefficients and length scale effects need not be altered due to the presence of tree foliage; therefore, parametrization of spatially-averaged flow through urban neighbourhoods with trees is greatly simplified. The new parametrization includes only source and sink terms significant for the prediction of spatially-averaged flow profiles: momentum drag due to buildings and trees (and the associated wake production of turbulent kinetic energy), modification of length scales by buildings, and enhanced dissipation of turbulent kinetic energy due to the small scale of tree foliage elements. Coefficients for the Santiago and Martilli (Boundary-Layer Meteorol 137: 417-439, 2010) parametrization of building drag coefficients and length scales are revised. Inclusion of foliage terms from the new parametrization in addition to the Santiago and Martilli building terms reduces root-mean-square difference (RMSD) of the column model streamwise velocity component and turbulent kinetic energy relative to the CFD model by 89 % in the canopy and 71 % above the canopy on average for the highest leaf area density scenarios tested: . RMSD values with the new parametrization are less than 20 % of mean layer magnitude for the streamwise velocity component within and above the canopy, and for above-canopy turbulent kinetic energy; RMSD values for within-canopy turbulent kinetic energy are negligible for most scenarios. The foliage-related portion of the new parametrization is required for scenarios with tree foliage of equal or greater height than the buildings, and for scenarios with foliage below roof height for building plan area densities less than approximately 0.25.
Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows
2015-06-01
sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994
Length distributions of nanowires: Effects of surface diffusion versus nucleation delay
NASA Astrophysics Data System (ADS)
Dubrovskii, Vladimir G.
2017-04-01
It is often thought that the ensembles of semiconductor nanowires are uniform in length due to the initial organization of the growth seeds such as lithographically defined droplets or holes in the substrate. However, several recent works have already demonstrated that most nanowire length distributions are broader than Poissonian. Herein, we consider theoretically the length distributions of non-interacting nanowires that grow by the material collection from the entire length of their sidewalls and with a delay of nucleation of the very first nanowire monolayer. The obtained analytic length distribution is controlled by two parameters that describe the strength of surface diffusion and the nanowire nucleation rate. We show how the distribution changes from the symmetrical Polya shape without the nucleation delay to a much broader and asymmetrical one for longer delays. In the continuum limit (for tall enough nanowires), the length distribution is given by a power law times an incomplete gamma-function. We discuss interesting scaling properties of this solution and give a recipe for analyzing and tailoring the experimental length histograms of nanowires which should work for a wide range of material systems and growth conditions.
Many-body localization transition: Schmidt gap, entanglement length, and scaling
NASA Astrophysics Data System (ADS)
Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl
2018-05-01
Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.
NASA Astrophysics Data System (ADS)
Steinhaus, Ben; Shen, Amy; Sureshkumar, Radhakrishna
2006-11-01
We investigate the effects of fluid elasticity and channel geometry on polymeric droplet pinch-off by performing systematic experiments using viscoelastic polymer solutions which possess practically shear rate-independent viscosity (Boger fluids). Four different geometric sizes (width and depth are scaled up proportionally at the ratio of 0.5, 1, 2, 20) are used to study the effect of the length scale, which in turn influences the ratio of elastic to viscous forces as well as the Rayleigh time scale associated with the interfacial instability of a cylindrical column of liquid. We observe a power law relationship between the dimensionless (scaled with respect to the Rayleigh time scale) capillary pinch-off time, T, and the elasticity number, E, defined as the ratio of the fluid relaxation time to the time scale of viscous diffusion. In general, T increases dramatically with increasing E. The inhibition of ``bead-on-a-string'' formation is observed for flows with effective Deborah number, De, defined as the ratio of the fluid relaxation time to the Rayleigh time scale becomes greater than 10. For sufficiently large values of De, the Rayleigh instability may be modified substantially by fluid elasticity.
Vertical Scales of Turbulence at the Mount Wilson Observatory
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Lowe, Stephen T.; Bester, Manfred; Danchi, William C.; Townes, Charles H.
1995-01-01
The vertical scales of turbulence at the Mount Wilson Observatory are inferred from data from the University of California at Berkeley Infrared Spatial Interferometer (ISI), by modeling path length fluctuations observed in the interferometric paths to celestial objects and those in instrumental ground-based paths. The correlations between the stellar and ground-based path length fluctuations and the temporal statistics of those fluctuations are modeled on various timescales to constrain the vertical scales. A Kolmogorov-Taylor turbulence model with a finite outer scale was used to simulate ISI data. The simulation also included the white instrumental noise of the interferometer, aperture-filtering effects, and the data analysis algorithms. The simulations suggest that the path delay fluctuations observed in the 1992-1993 ISI data are largely consistent with being generated by refractivity fluctuations at two characteristic vertical scales: one extending to a height of 45 m above the ground, with a wind speed of about 1 m/ s, and another at a much higher altitude, with a wind speed of about 10 m/ s. The height of the lower layer is of the order of the dimensions of trees and other structures near the interferometer, which suggests that these objects, including elements of the interferometer, may play a role in generating the lower layer of turbulence. The modeling indicates that the high- attitude component contributes primarily to short-period (less than 10 s) fluctuations, while the lower component dominates the long-period (up to a few minutes) fluctuations. The lower component turbulent height, along with outer scales of the order of 10 m, suggest that the baseline dependence of long-term interferometric, atmospheric fluctuations should weaken for baselines greater than a few tens of meters. Simulations further show that there is the potential for improving the seeing or astrometric accuracy by about 30%-50% on average, if the path length fluctuations in the lower component are directly calibrated. Statistical and systematic effects induce an error of about 15 m in the estimate of the lower component turbulent altitude.
Causality violations in Lovelock theories
NASA Astrophysics Data System (ADS)
Brustein, Ram; Sherf, Yotam
2018-04-01
Higher-derivative gravity theories, such as Lovelock theories, generalize Einstein's general relativity (GR). Modifications to GR are expected when curvatures are near Planckian and appear in string theory or supergravity. But can such theories describe gravity on length scales much larger than the Planck cutoff length scale? Here we find causality constraints on Lovelock theories that arise from the requirement that the equations of motion (EOM) of perturbations be hyperbolic. We find a general expression for the "effective metric" in field space when Lovelock theories are perturbed around some symmetric background solution. In particular, we calculate explicitly the effective metric for a general Lovelock theory perturbed around cosmological Friedman-Robertson-Walker backgrounds and for some specific cases when perturbed around Schwarzschild-like solutions. For the EOM to be hyperbolic, the effective metric needs to be Lorentzian. We find that, unlike for GR, the effective metric is generically not Lorentzian when the Lovelock modifications are significant. So, we conclude that Lovelock theories can only be considered as perturbative extensions of GR and not as truly modified theories of gravity. We compare our results to those in the literature and find that they agree with and reproduce the results of previous studies.
The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA.
Meroni, Alice; Mentegari, Elisa; Crespan, Emmanuele; Muzi-Falconi, Marco; Lazzaro, Federico; Podestà, Alessandro
2017-10-03
Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, H.; Li, L.
2017-12-01
This work develops a general rate law for magnesite dissolution in heterogeneous media under variable flow and length conditions, expanding the previous work under one particular flow and length conditions (Wen and Li, 2017). We aim to answer: 1) How does spatial heterogeneity influence the time and length scales to reach equilibrium? 2) How do relative timescales of advection, diffusion/dispersion, and reactions influence dissolution rates under variable flow and length conditions? We carried out 640 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix with heterogeneity characterized by permeability variance and correlation length under a range of length and flow velocity. A rate law Rhete = kAT(1-exp(τeq,m/τa))(1-exp(- Lβ))^α was developed. The former part is rates in equivalent homogeneous media kAT(1-exp(τeq,m/τa)), depending on rate constant k, magnesite surface area AT, and relative timescales of reactions τeq,m and advection τa. The latter term (1-exp(- Lβ))^α is the heterogeneity factor χ that quantifies the deviation of heterogeneous media from its homogeneous counterpart. The term has a scaling factor, called reactive transport number β=τa/(τad,r+τeq,m), for domain length L, and the geostatistical characteristics of heterogeneity α. The β quantifies the relative timescales of advection at the domain scale τa versus the advective-diffusive-dispersive transport time out of reactive zones τad,r and reaction time τeq,m. The χ is close to 1 and is insignificant under long residence time conditions (low flow velocity and / or long length) where the residence time is longer than the time needed for Mg to dissolve and transport out of reactive zones (τad,r+τeq,m) so that equilibrium is reached and homogenization occurs. In contrast, χ deviates from 1 and is significant only when β is small, which occurs at short length or fast flow where timescales of reactive transport in reactive zones are much longer than the global residence time so that reactive transport is the limiting step. These findings demonstrate that dissolution rates in heterogeneous media reach asymptotic values in homogeneous media at "sufficiently" long lengths. Wen, H. and Li, L. (2017) An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta 210, 289-305.
NASA Astrophysics Data System (ADS)
Hu, S. X.; Michel, D. T.; Edgell, D. H.; Froula, D. H.; Follett, R. K.; Goncharov, V. N.; Myatt, J. F.; Skupsky, S.; Yaakobi, B.
2013-03-01
Direct-drive-ignition designs with plastic CH ablators create plasmas of long density scale lengths (Ln ≥ 500 μm) at the quarter-critical density (Nqc) region of the driving laser. The two-plasmon-decay (TPD) instability can exceed its threshold in such long-scale-length plasmas (LSPs). To investigate the scaling of TPD-induced hot electrons to laser intensity and plasma conditions, a series of planar experiments have been conducted at the Omega Laser Facility with 2-ns square pulses at the maximum laser energies available on OMEGA and OMEGA EP. Radiation-hydrodynamic simulations have been performed for these LSP experiments using the two-dimensional hydrocode draco. The simulated hydrodynamic evolution of such long-scale-length plasmas has been validated with the time-resolved full-aperture backscattering and Thomson-scattering measurements. draco simulations for CH ablator indicate that (1) ignition-relevant long-scale-length plasmas of Ln approaching ˜400 μm have been created; (2) the density scale length at Nqc scales as Ln(μm)≃(RDPP×I1/4/2); and (3) the electron temperature Te at Nqc scales as Te(keV)≃0.95×√I , with the incident intensity (I) measured in 1014 W/cm2 for plasmas created on both OMEGA and OMEGA EP configurations with different-sized (RDPP) distributed phase plates. These intensity scalings are in good agreement with the self-similar model predictions. The measured conversion fraction of laser energy into hot electrons fhot is found to have a similar behavior for both configurations: a rapid growth [fhot≃fc×(Gc/4)6 for Gc < 4] followed by a saturation of the form, fhot≃fc×(Gc/4)1.2 for Gc ≥ 4, with the common wave gain is defined as Gc=3 × 10-2×IqcLnλ0/Te, where the laser intensity contributing to common-wave gain Iqc, Ln, Te at Nqc, and the laser wavelength λ0 are, respectively, measured in [1014 W/cm2], [μm], [keV], and [μm]. The saturation level fc is observed to be fc ≃ 10-2 at around Gc ≃ 4. The hot-electron temperature scales roughly linear with Gc. Furthermore, to mitigate TPD instability in long-scale-length plasmas, different ablator materials such as saran and aluminum have been investigated on OMEGA EP. Hot-electron generation has been reduced by a factor of 3-10 for saran and aluminum plasmas, compared to the CH case at the same incident laser intensity. draco simulations suggest that saran might be a better ablator for direct-drive-ignition designs as it balances TPD mitigation with an acceptable hydro-efficiency.
Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films
NASA Astrophysics Data System (ADS)
Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi
2017-07-01
We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.
NASA Astrophysics Data System (ADS)
Burant, Alex; Antonacci, Michael; McCallister, Drew; Zhang, Le; Branca, Rosa Tamara
2018-06-01
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Zhang, Yongfeng; Chakraborty, Pritam
2014-09-01
This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at themore » scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.« less
Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry
NASA Technical Reports Server (NTRS)
El-Gabry, Lamyaa A.; Thurman, Douglas R.; Poinsatte, Philip E.
2014-01-01
Hotwire anemometers are used to measure instantaneous velocity from which the mean velocity and the velocity fluctuation can be determined. Using a hotwire system, it is possible to deduce not only the velocity components and their fluctuation but to also analyze the energy spectra and from that the turbulence length scales. In this experiment, hotwire anemometry is used to measure the flow field turbulence for an array of film cooling holes. The objective of this paper is to document the procedure that is used to reduce the instantaneous velocity measurements to determine the turbulence length scales using data from the film-cooling experiments to illustrate the procedure.
Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.
Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W
2017-07-21
We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
Davoren, Mary; Byrne, Orla; O'Connell, Paul; O'Neill, Helen; O'Reilly, Ken; Kennedy, Harry G
2015-11-23
Patients admitted to a secure forensic hospital are at risk of a long hospital stay. Forensic hospital beds are a scarce and expensive resource and ability to identify the factors predicting length of stay at time of admission would be beneficial. The DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale are designed to assess need for therapeutic security and urgency of that need while the HCR-20 predicts risk of violence. We hypothesized that items on the DUNDRUM-1 and DUNDRUM-2 scales, rated at the time of pre-admission assessment, would predict length of stay in a medium secure forensic hospital setting. This is a prospective study. All admissions to a medium secure forensic hospital setting were collated over a 54 month period (n = 279) and followed up for a total of 66 months. Each patient was rated using the DUNDRUM-1 triage security scale and DUNDRUM-2 triage urgency scale as part of a pre-admission assessment (n = 279) and HCR-20 within 2 weeks of admission (n = 187). Episodes of harm to self, harm to others and episodes of seclusion whilst an in-patient were collated. Date of discharge was noted for each individual. Diagnosis at the time of pre-admission assessment (adjustment disorder v other diagnosis), predicted legal status (sentenced v mental health order) and items on the DUNDRUM-1 triage security scale and the DUNDRUM-2 triage urgency scale, also rated at the time of pre-admission assessment, predicted length of stay in the forensic hospital setting. Need for seclusion following admission also predicted length of stay. These findings may form the basis for a structured professional judgment instrument, rated prior to or at time of admission, to assist in estimating length of stay for forensic patients. Such a tool would be useful to clinicians, service planners and commissioners given the high cost of secure psychiatric care.
Scale Effects in the Flow of a Shear-Thinning Fluid in Geological Fractures
NASA Astrophysics Data System (ADS)
Meheust, Y.; Roques, C.; Le Borgne, T.; Selker, J. S.
2017-12-01
Subsurface flow processes involving non-Newtonian fluids play a major role in many engineering applications, from in-situ remediation to enhanced oil recovery. The fluids of interest in such applications (f.e., polymers in remediation) often present shear-thinning properties, i.e., their viscosity decreases as a function of the local shear rate. We investigate how fracture wall roughness impacts the flow of a shear-thinning fluid. Numerical simulations of flow in 3D geological fractures are carried out by solving a modified Navier-Stokes equation incorporating the Carreau viscous-shear model. The numerical fractures consist of two isotropic self-affine surfaces which are correlated with each other above a characteristic scale (thecorrelation length of Méheust et al. PAGEOPH 2003). Perfect plastic closing is assumed when the surfaces are in contact. The statistical parameters describing a fracture are the standard deviation of the wall roughness, the mean aperture, the correlation length, and the fracture length, the Hurst exponent being fixed (equal to 0.8). The objective is to investigate how varying the correlation length impacts the flow behavior, for different degrees of closure, and how this behavior diverges from what is known for Newtonian fluids. The results from the 3D simulations are also compared to 2D simulations based on the lubrication theory, which we have developed as an extension of the Reynolds equation for Newtonian fluids. These 2D simulations run orders of magnitude faster, which allows considering a significant statistics of fractures of identical statistical parameters, and therefore draw general conclusions despite the large stochasticity of the media. We also discuss the implications of our results for solute transport by such flows. References:Méheust, Y., & Schmittbuhl, J. (2003). Scale effects related to flow in rough fractures. Pure and Applied Geophysics, 160(5-6), 1023-1050.
Laso, Manuel; Karayiannis, Nikos Ch
2008-05-07
We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.
2016-12-01
The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien
2018-05-21
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.
2013-03-01
of coarser-scale materials and structures containing Kevlar fibers (e.g., yarns, fabrics, plies, lamina, and laminates ). Journal of Materials...Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar -Fiber-Reinforced Polymer-Matrix Composites M. Grujicic, B. Pandurangan, J.S...extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar fiber
Underscreening in concentrated electrolytes.
Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan
2017-07-01
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
Scaling and functional morphology in strigiform hind limbs
Madan, Meena A.; Rayfield, Emily J.; Bright, Jen A.
2017-01-01
Strigiformes are an order of raptorial birds consisting exclusively of owls: the Tytonidae (barn owls) and the Strigidae (true owls), united by a suite of adaptations aiding a keen predatory lifestyle, including robust hind limb elements modified for grip strength. To assess variation in hind limb morphology, we analysed how the dimensions of the major hind limb elements in subfossil and modern species scaled with body mass. Comparing hind limb element length, midshaft width, and robusticity index (RI: ratio of midshaft width to maximum length) to body mass revealed that femoral and tibiotarsal width scale with isometry, whilst length scales with negative allometry, and close to elastic similarity in the tibiotarsus. In contrast, tarsometatarsus width shows strong positive allometry with body mass, whilst length shows strong negative allometry. Furthermore, the tarsometatarsi RI scales allometrically to mass0.028, whilst a weak relationship exists in femora (mass0.004) and tibiotarsi (mass0.004). Our results suggest that tarsometatarsi play a more substantial functional role than tibiotarsi and femora. Given the scaling relationship between tarsometatarsal width and robusticity to body mass, it may be possible to infer the body mass of prehistoric owls by analysing tarsometatarsi, an element that is frequently preserved in the fossil record of owls. PMID:28327549
Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.
2016-01-01
Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758
Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Richardson, J. D.; Liu, W.
2007-01-01
When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.
Yoo, Ha-Na; Chung, Eunjung; Lee, Byoung-Hee
2013-07-01
[Purpose] The purpose of this study was to determine the effects of augmented reality-based Otago exercise on balance, gait, and falls efficacy of elderly women. [Subjects] The subjects were 21 elderly women, who were randomly divided into two groups: an augmented reality-based Otago exercise group of 10 subjects and an Otago exercise group of 11 subjects. [Methods] All subjects were evaluated for balance (Berg Balance Scale, BBS), gait parameters (velocity, cadence, step length, and stride length), and falls efficacy. Within 12 weeks, Otago exercise for muscle strengthening and balance training was conducted three times, for a period of 60 minutes each, and subjects in the experimental group performed augmented reality-based Otago exercise. [Results] Following intervention, the augmented reality-based Otago exercise group showed significant increases in BBS, velocity, cadence, step length (right side), stride length (right side and left side) and falls efficacy. [Conclusion] The results of this study suggest the feasibility and suitability of this augmented reality-based Otago exercise for elderly women.
Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors
NASA Astrophysics Data System (ADS)
Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.
2016-11-01
In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.
The dynamics of magnetic flux rings
NASA Technical Reports Server (NTRS)
Deluca, E. E.; Fisher, G. H.; Patten, B. M.
1993-01-01
The evolution of magnetic fields in the presence of turbulent convection is examined using results of numerical simulations of closed magnetic flux tubes embedded in a steady 'ABC' flow field, which approximate some of the important characteristics of a turbulent convecting flow field. Three different evolutionary scenarios were found: expansion to a steady deformed ring; collapse to a compact fat flux ring, separated from the expansion type of behavior by a critical length scale; and, occasionally, evolution toward an advecting, oscillatory state. The work suggests that small-scale flows will not have a strong effect on large-scale, strong fields.
A comprehensive allometric analysis of 2nd digit length to 4th digit length in humans.
Lolli, Lorenzo; Batterham, Alan M; Kratochvíl, Lukáš; Flegr, Jaroslav; Weston, Kathryn L; Atkinson, Greg
2017-06-28
It has been widely reported that men have a lower ratio of the 2nd and 4th human finger lengths (2D : 4D). Size-scaling ratios, however, have the seldom-appreciated potential for providing biased estimates. Using an information-theoretic approach, we compared 12 candidate models, with different assumptions and error structures, for scaling untransformed 2D to 4D lengths from 154 men and 262 women. In each hand, the two-parameter power function and the straight line with intercept models, both with normal, homoscedastic error, were superior to the other models and essentially equivalent to each other for normalizing 2D to 4D lengths. The conventional 2D : 4D ratio biased relative 2D length low for the generally bigger hands of men, and vice versa for women, thereby leading to an artefactual indication that mean relative 2D length is lower in men than women. Conversely, use of the more appropriate allometric or linear regression models revealed that mean relative 2D length was, in fact, greater in men than women. We conclude that 2D does not vary in direct proportion to 4D for both men and women, rendering the use of the simple 2D : 4D ratio inappropriate for size-scaling purposes and intergroup comparisons. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Slater, L. D.; Robinson, J.; Weller, A.; Keating, K.; Robinson, T.; Parker, B. L.
2017-12-01
Geophysical length scales determined from complex conductivity (CC) measurements can be used to estimate permeability k when the electrical formation factor F describing the ratio between tortuosity and porosity is known. Two geophysical length scales have been proposed: [1] the imaginary conductivity σ" normalized by the specific polarizability cp; [2] the time constant τ multiplied by a diffusion coefficient D+. The parameters cp and D+ account for the control of fluid chemistry and/or varying minerology on the geophysical length scale. We evaluated the predictive capability of two recently presented CC permeability models: [1] an empirical formulation based on σ"; [2] a mechanistic formulation based on τ;. The performance of the CC models was evaluated against measured permeability; this performance was also compared against that of well-established k estimation equations that use geometric length scales to represent the pore scale properties controlling fluid flow. Both CC models predict permeability within one order of magnitude for a database of 58 sandstone samples, with the exception of those samples characterized by high pore volume normalized surface area Spor and more complex mineralogy including significant dolomite. Variations in cp and D+ likely contribute to the poor performance of the models for these high Spor samples. The ultimate value of such geophysical models for permeability prediction lies in their application to field scale geophysical datasets. Two observations favor the implementation of the σ" based model over the τ based model for field-scale estimation: [1] the limited range of variation in cp relative to D+; [2] σ" is readily measured using field geophysical instrumentation (at a single frequency) whereas τ requires broadband spectral measurements that are extremely challenging and time consuming to accurately measure in the field. However, the need for a reliable estimate of F remains a major obstacle to the field-scale implementation of either of the CC permeability models for k estimation.
NASA Astrophysics Data System (ADS)
McKeen, S. A.; Angevine, W. M.; Ahmadov, R.; Frost, G. J.; Kim, S. W.; Cui, Y.; McDonald, B.; Trainer, M.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Gambacorta, A.; Barnet, C. D.; Smith, N.; Pierce, R. B.
2016-12-01
This study presents preliminary comparisons of satellite, aircraft, and model variance spectra for meteorological, thermodynamic and gas-phase species collected during the 2013 Southeastern Nexus Air Quality Experiment (SENEX). Fourier analysis of 8 constituents collected at 1 Hz by the NOAA W-P3 aircraft in the 25 to 200 km length-scale range exhibit properties consistent with previous scale dependence studies: when spectra are averaged over several 500 mb flight legs, very linear dependence is found on log-log plots of spectral density versus inverse length-scale. Derived slopes for wind speed, temperature, H2O, CO, CO2, CH4, NOy and O3 all fall within ±30% and close to the slope of -5/3 predicted from dimensional scaling theory of isotropic turbulence. Qualitative differences are seen when a similar analysis, without quality control, is applied to a preliminary set of NUCAPS satellite retrievals over the continental U.S. during SENEX. While 500mb water vapor and column integrated water show slopes close to the -5/3 value in the 200 to 1000 km length-scale range, other quantities show significantly shallower slopes, suggesting the need for rigorous quality control. Results from WRF-Chem regional air quality model simulations at 500mb show the model is unable to account for variance on length-scales less than 6ΔX, where ΔX is the model horizontal resolution (12km). Comparisons with satellite data in the 200 to 1000km range show slopes consistent with the -5/3 power law for species such as CO, CH4 and CO2 that do not undergo reinitialization, suggesting potential for future application.
Chua, Y Z; Zorn, R; Holderer, O; Schmelzer, J W P; Schick, C; Donth, E
2017-03-14
The aim of this paper is to decide which of the two possible thermodynamic expressions for the cooperativity length in glass forming liquids is the correct one. In the derivation of these two expressions, the occurrence of temperature fluctuations in the considered nanoscale subsystems is either included or neglected. Consequently, our analysis gives also an answer to the widely discussed problem whether temperature fluctuations have to be generally accounted for in thermodynamics or not. To this end, the characteristic length-scales at equal times and temperatures for propylene glycol were determined independently from AC calorimetry in both the above specified ways and from quasielastic neutron scattering (QENS), and compared. The result shows that the cooperative length determined from QENS coincides most consistently with the cooperativity length determined from AC calorimetry measurements for the case that the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that-accounting for temperature fluctuations-the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at glass transition and that temperature does fluctuate in small systems.
NASA Astrophysics Data System (ADS)
Chua, Y. Z.; Zorn, R.; Holderer, O.; Schmelzer, J. W. P.; Schick, C.; Donth, E.
2017-03-01
The aim of this paper is to decide which of the two possible thermodynamic expressions for the cooperativity length in glass forming liquids is the correct one. In the derivation of these two expressions, the occurrence of temperature fluctuations in the considered nanoscale subsystems is either included or neglected. Consequently, our analysis gives also an answer to the widely discussed problem whether temperature fluctuations have to be generally accounted for in thermodynamics or not. To this end, the characteristic length-scales at equal times and temperatures for propylene glycol were determined independently from AC calorimetry in both the above specified ways and from quasielastic neutron scattering (QENS), and compared. The result shows that the cooperative length determined from QENS coincides most consistently with the cooperativity length determined from AC calorimetry measurements for the case that the effect of temperature fluctuations is incorporated in the description. This conclusion indicates that—accounting for temperature fluctuations—the characteristic length can be derived by thermodynamic considerations from the specific parameters of the liquid at glass transition and that temperature does fluctuate in small systems.
Scrivener, Katharine; Jones, Taryn; Schurr, Karl; Graham, Petra L; Dean, Catherine M
2015-04-01
In adults undergoing inpatient rehabilitation, does additional after-hours rehabilitation decrease length of stay and improve functional outcome, activities of daily living performance and physical activity? Systematic review with meta-analysis of randomised trials. Adults participating in an inpatient rehabilitation program. Additional rehabilitation provided after hours (evening or weekend). Function was measured with tests such as the Motor Assessment Scale, 10-m walk test, the Timed Up and Go test, and Berg Balance Scale. Performance on activities of daily living was measured with the Barthel index or the Functional Independence Measure. Length of stay was measured in days. Physical activity levels were measured as number of steps or time spent upright. Standardised mean differences (SMD) or mean differences (MD) were used to combine these outcomes. Adverse events were summarised using relative risks (RR). Study quality was assessed using PEDro scores. Seven trials were included in the review. All trials had strong methodological quality, scoring 8/10 on the PEDro scale. Among the measures of function, only balance showed a significant effect: the MD was 14 points better (95% CI 5 to 23) with additional after-hours rehabilitation on a 0-to-56-point scale. The improvement in activities of daily living performance with additional after-hours rehabilitation was of borderline statistical significance (SMD 0.10, 95% CI 0.00 to 0.21). Hospital length of stay did not differ significantly (MD -1.8 days, 95% CI -5.1 to 1.6). Those receiving additional rehabilitation had significantly higher step counts and spent significantly more time upright. Overall, the risk of adverse events was not increased by the provision of after-hours or weekend rehabilitation (RR 0.87, 95% CI 0.70 to 1.10). Additional after-hours rehabilitation can increase physical activity and may improve activities of daily living, but does not seem to affect the hospital length of stay. PROSPERO CRD42014007648. [Scrivener K, Jones T, Schurr K, Graham PL, Dean CM (2015) After-hours or weekend rehabilitation improves outcomes and increases physical activity but does not affect length of stay: a systematic review.Journal of Physiotherapy61: 61-67]. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Effect of microneedles on transdermal permeation enhancement of amlodipine.
Nalluri, Buchi N; Uppuluri, Chandrateja; Devineni, Jyothirmayee; Nayak, Atul; Nair, Karthik J; Whiteside, Benjamin R; Das, Diganta B
2017-06-01
The present study aimed to investigate the effect of microneedle (MN) geometry parameters like length, density, shape and type on transdermal permeation enhancement of amlodipine (AMLO). Two types of MN devices viz. AdminPatch® arrays (ADM) (0.6, 1.2 and 1.5 mm lengths) and laboratory-fabricated polymeric MNs (PM) of 0.6 mm length were employed. In the case of PMs, arrays were applied thrice at different places within a 1.77-cm 2 skin area (PM-3) to maintain the MN density closer to 0.6 mm ADM. Scaling analyses were done using dimensionless parameters like concentration of AMLO (C t /C s ), thickness (h/L) and surface area of the skin (Sa/L 2 ). Microinjection moulding technique was employed to fabricate PM. Histological studies revealed that the PM, owing to their geometry/design, formed wider and deeper microconduits when compared to ADM of similar length. Approximately 6.84- and 6.11-fold increase in the cumulative amount (48 h) of AMLO permeated was observed with 1.5 mm ADM and PM-3 treatments respectively, when compared to passive permeation amounts. Good correlations (R 2 > 0.89) were observed between different dimensionless parameters with scaling analyses. The enhancement in AMLO permeation was found to be in the order of 1.5 mm ADM ≥ PM-3 > 1.2 mm ADM > 0.6 mm ADM ≥PM-1 > passive. The study suggests that MN application enhances the AMLO transdermal permeation and the geometrical parameters of MNs play an important role in the degree of such enhancement.
Romantic Relationship Quality in the Digital Age: A Study with Young Adults.
Sánchez, Virginia; Muñoz-Fernández, Noelia; Ortega-Ruiz, Rosario
2017-05-03
Recent studies suggest that the online and offline behaviors young people display in romantic relationships are closely related. However, the differential effects of the dimensions of couple quality in the online context have not yet been explored in depth. The aim of this study was to explore online couple quality in young-adult relationships, and its association with romantic relationship satisfaction, also looking at effects of gender, age, and length of the relationship. 431 university students currently in a romantic relationship (68.2% females; mean age = 21.57) participated in this study. They completed different self-report measures to tap the online quality of their romantic relationships (online intimacy, control, jealousy, intrusiveness, cyberdating practices, and communication strategies) and level of satisfaction with those relationships. Results showed that participants more often reported online intimacy (M men = 2.49; M women = 2.38) than the negative scales of online quality (mean ranged from .43 to 1.50), and all the online quality scales decreased with age (correlations ranged from -.12 to -.30) and relationship length (correlations ranged from -.02 to -.20). Linear regression analyses indicated that online intimacy (b = .32, p = .001) and intrusiveness (b = .11, p = .035) were positively related to relationship satisfaction, while cyberdating practices (b = -.20, p = .001) and communication strategies (b = -.34, p = .001) were negatively correlated with relationship satisfaction. Moreover, gender and relationship length moderated some of these associations. Results indicate that while online quality and relationship satisfaction are related, the impact of different online quality dimensions on relationship satisfaction differs depending on a participant's sex, age, and relationship length.
Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak
NASA Astrophysics Data System (ADS)
Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.
2017-10-01
Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.
The correlation function for density perturbations in an expanding universe. I - Linear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.
Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes
NASA Astrophysics Data System (ADS)
Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan
2017-04-01
When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh the contributions of the property values that are used to calculate the cross-gradients. In a first series of synthetic-data tests, we examined the mesh dependency of the cross-gradients operators. Compared to operators that are only defined in the direct neighbourhood of a cell, the dependency on the cell size of the cross-gradients calculation is markedly reduced when using operators with larger footprints. A second test with synthetic models focussed on the effect of small-scale variabilities of the parameter value on the cross-gradients calculation. Small-scale variabilities that are superimposed on a global trend of the property value can potentially degrade the cross-gradients calculation and destabilize joint inversion. We observe that the cross-gradients from operators with footprints larger than the length scale of the variabilities are less affected compared to operators with a small footprint. In joint inversions on unstructured meshes, we thus expect the correlation-based coupling operators to ensure robust coupling on a physically meaningful scale.
Effects of Mirror Therapy Using a Tablet PC on Central Facial Paresis in Stroke Patients.
Kang, Jung-A; Chun, Min Ho; Choi, Su Jin; Chang, Min Cheol; Yi, You Gyoung
2017-06-01
To investigate the effects of mirror therapy using a tablet PC for post-stroke central facial paresis. A prospective, randomized controlled study was performed. Twenty-one post-stroke patients were enrolled. All patients performed 15 minutes of orofacial exercise twice daily for 14 days. The mirror group (n=10) underwent mirror therapy using a tablet PC while exercising, whereas the control group (n=11) did not. All patients were evaluated using the Regional House-Brackmann Grading Scale (R-HBGS), and the length between the corner of the mouth and the ipsilateral earlobe during rest and smiling before and after therapy were measured bilaterally. We calculated facial movement by subtracting the smile length from resting length. Differences and ratios between bilateral sides of facial movement were evaluated as the final outcome measure. Baseline characteristics were similar for the two groups. There were no differences in the scores for the basal Modified Barthel Index, the Korean version of Mini-Mental State Examination, National Institutes of Health Stroke Scale, R-HBGS, and bilateral differences and ratios of facial movements. The R-HBGS as well as the bilateral differences and ratios of facial movement showed significant improvement after therapy in both groups. The degree of improvement of facial movement was significantly larger in the mirror group than in the control group. Mirror therapy using a tablet PC might be an effective tool for treating central facial paresis after stroke.
Effects of Mirror Therapy Using a Tablet PC on Central Facial Paresis in Stroke Patients
2017-01-01
Objective To investigate the effects of mirror therapy using a tablet PC for post-stroke central facial paresis. Methods A prospective, randomized controlled study was performed. Twenty-one post-stroke patients were enrolled. All patients performed 15 minutes of orofacial exercise twice daily for 14 days. The mirror group (n=10) underwent mirror therapy using a tablet PC while exercising, whereas the control group (n=11) did not. All patients were evaluated using the Regional House–Brackmann Grading Scale (R-HBGS), and the length between the corner of the mouth and the ipsilateral earlobe during rest and smiling before and after therapy were measured bilaterally. We calculated facial movement by subtracting the smile length from resting length. Differences and ratios between bilateral sides of facial movement were evaluated as the final outcome measure. Results Baseline characteristics were similar for the two groups. There were no differences in the scores for the basal Modified Barthel Index, the Korean version of Mini-Mental State Examination, National Institutes of Health Stroke Scale, R-HBGS, and bilateral differences and ratios of facial movements. The R-HBGS as well as the bilateral differences and ratios of facial movement showed significant improvement after therapy in both groups. The degree of improvement of facial movement was significantly larger in the mirror group than in the control group. Conclusion Mirror therapy using a tablet PC might be an effective tool for treating central facial paresis after stroke. PMID:28758071
Manipulating polymers and composites from the nanoscopic to microscopic length scales
NASA Astrophysics Data System (ADS)
Gupta, Suresh
2008-10-01
This thesis focuses on the manipulation of polymers and composites on length scales ranging from the nanoscopic to microscopic. In particular, on the microscopic length scale electric fields were used to produce instabilities at the air surface and at polymer interfaces that lead to novel three dimensional structures and patterns. On the nanoscopic length scale, the interaction of ligands attached to nanoparticles and polymer matrix were used to induce self-assembly processes that, in turn, lead to systems that self-heal, self-corral, or are patterned. For manipulation at the micron length scale, electrohydrodynamic instabilities were used in trilayer system composed of a layer of poly(methyl methacrylate) (PMMA), a second layer of polystyrene (PS) and a third layer of air. Dewetting of the polymer at the substrate at the polymer/polymer interface under an applied electric field was used to generate novel three dimensional structures. Also, electrohydrodynamic instabilities were used to pattern thin polymer films in conjunction with ultrasonic vibrations and patterned upper electrodes. Self-assembly processes involving polymers and nanoparticles offer a unique means of generating pattern materials or materials that self heal. Simple polymer/nanoparticle composites were investigated. Here, in the absence of interactions between the poly(ethylene oxide) ligands attached to the nanoparticles and PMMA polymer matrix, the opportunity to generate self-healing systems was opened. The size of the nanoparticle was varied and the effect on diffusion of nanoparticle in the polymer matrix was studied. CdSe nanorods were also assembled on a substrate templated with or guided by microphase separated diblock copolymers. The nanorods were incorporated in the diblock copolymer thin films by spin coating the co-solution of nanorods and polymer, surface adsorption of nanorods on to the patterned diblock copolymer films and surface reconstruction of PS/PMMA diblock copolymer thin film. Further, the interactions between the PMMA polymer matrix and the tri n-octyl phosphine oxide ligands attached to an anisotropic nanoparticle, i.e. nanorods, were used to influence the dispersion of the nanorods in the polymer. This led to a novel assembly, termed self-corralling where under an applied electric field highly oriented, highly ordered arrays of nanorods form. Further, self corralling of nanorods was directed by chemically patterned substrates.
Self-folding and aggregation of amyloid nanofibrils
NASA Astrophysics Data System (ADS)
Paparcone, Raffaella; Cranford, Steven W.; Buehler, Markus J.
2011-04-01
Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of amyloidnanostructures, filling a gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and much larger micrometre-scale amyloid aggregates. Via direct simulation of large-scale amyloid aggregates consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact on their structure and mechanical properties, where the critical fibril length-scale derived from our analysis of self-folded nanorackets and nanorings defines the structure of amyloid aggregates. A multi-scale modeling approach as used here, bridging the scales from Angstroms to micrometres, opens a wide range of possible nanotechnology applications by presenting a holistic framework that balances mechanical properties of individual fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the design of de novoamyloid materials.
NASA Astrophysics Data System (ADS)
Sangireddy, H.; Passalacqua, P.; Stark, C. P.
2013-12-01
Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.
Detection of submicron scale cracks and other surface anomalies using positron emission tomography
Cowan, Thomas E.; Howell, Richard H.; Colmenares, Carlos A.
2004-02-17
Detection of submicron scale cracks and other mechanical and chemical surface anomalies using PET. This surface technique has sufficient sensitivity to detect single voids or pits of sub-millimeter size and single cracks or fissures of millimeter size; and single cracks or fissures of millimeter-scale length, micrometer-scale depth, and nanometer-scale length, micrometer-scale depth, and nanometer-scale width. This technique can also be applied to detect surface regions of differing chemical reactivity. It may be utilized in a scanning or survey mode to simultaneously detect such mechanical or chemical features over large interior or exterior surface areas of parts as large as about 50 cm in diameter. The technique involves exposing a surface to short-lived radioactive gas for a time period, removing the excess gas to leave a partial monolayer, determining the location and shape of the cracks, voids, porous regions, etc., and calculating the width, depth, and length thereof. Detection of 0.01 mm deep cracks using a 3 mm detector resolution has been accomplished using this technique.
Generalized theory of semiflexible polymers.
Wiggins, Paul A; Nelson, Philip C
2006-03-01
DNA bending on length scales shorter than a persistence length plays an integral role in the translation of genetic information from DNA to cellular function. Quantitative experimental studies of these biological systems have led to a renewed interest in the polymer mechanics relevant for describing the conformational free energy of DNA bending induced by protein-DNA complexes. Recent experimental results from DNA cyclization studies have cast doubt on the applicability of the canonical semiflexible polymer theory, the wormlike chain (WLC) model, to DNA bending on biologically relevant length scales. This paper develops a theory of the chain statistics of a class of generalized semiflexible polymer models. Our focus is on the theoretical development of these models and the calculation of experimental observables. To illustrate our methods, we focus on a specific, illustrative model of DNA bending. We show that the WLC model generically describes the long-length-scale chain statistics of semiflexible polymers, as predicted by renormalization group arguments. In particular, we show that either the WLC or our present model adequately describes force-extension, solution scattering, and long-contour-length cyclization experiments, regardless of the details of DNA bend elasticity. In contrast, experiments sensitive to short-length-scale chain behavior can in principle reveal dramatic departures from the linear elastic behavior assumed in the WLC model. We demonstrate this explicitly by showing that our toy model can reproduce the anomalously large short-contour-length cyclization factors recently measured by Cloutier and Widom. Finally, we discuss the applicability of these models to DNA chain statistics in the context of future experiments.
Multiple scales and phases in discrete chains with application to folded proteins
NASA Astrophysics Data System (ADS)
Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.
2018-05-01
Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.
Allometry of sexual size dimorphism in turtles: a comparison of mass and length data.
Regis, Koy W; Meik, Jesse M
2017-01-01
The macroevolutionary pattern of Rensch's Rule (positive allometry of sexual size dimorphism) has had mixed support in turtles. Using the largest carapace length dataset and only large-scale body mass dataset assembled for this group, we determine (a) whether turtles conform to Rensch's Rule at the order, suborder, and family levels, and (b) whether inferences regarding allometry of sexual size dimorphism differ based on choice of body size metric used for analyses. We compiled databases of mean body mass and carapace length for males and females for as many populations and species of turtles as possible. We then determined scaling relationships between males and females for average body mass and straight carapace length using traditional and phylogenetic comparative methods. We also used regression analyses to evalutate sex-specific differences in the variance explained by carapace length on body mass. Using traditional (non-phylogenetic) analyses, body mass supports Rensch's Rule, whereas straight carapace length supports isometry. Using phylogenetic independent contrasts, both body mass and straight carapace length support Rensch's Rule with strong congruence between metrics. At the family level, support for Rensch's Rule is more frequent when mass is used and in phylogenetic comparative analyses. Turtles do not differ in slopes of sex-specific mass-to-length regressions and more variance in body size within each sex is explained by mass than by carapace length. Turtles display Rensch's Rule overall and within families of Cryptodires, but not within Pleurodire families. Mass and length are strongly congruent with respect to Rensch's Rule across turtles, and discrepancies are observed mostly at the family level (the level where Rensch's Rule is most often evaluated). At macroevolutionary scales, the purported advantages of length measurements over weight are not supported in turtles.
Disordered artificial spin ices: Avalanches and criticality (invited)
NASA Astrophysics Data System (ADS)
Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles
2015-05-01
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.
Disordered artificial spin ices: Avalanches and criticality (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles
2015-05-07
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less
NASA Astrophysics Data System (ADS)
Dell, Zachary E.; Schweizer, Kenneth S.
A unified, microscopic, theoretical understanding of polymer dynamics in concentrated liquids from segmental to macromolecular scales remains an open problem. We have formulated a statistical mechanical theory for this problem that explicitly accounts for intra- and inter-molecular forces at the Kuhn segment level. The theory is self-consistently closed at the level of a matrix of dynamical second moments of a tagged chain. Two distinct regimes of isotropic transient localization are predicted. In semidilute solutions, weak localization is predicted on a mesoscopic length scale between segment and chain scales which is a power law function of the invariant packing length. This is consistent with the breakdown of Rouse dynamics and the emergence of entanglements. The chain structural correlations in the dynamically arrested state are also computed. In dense melts, strong localization is predicted on a scale much smaller than the segment size which is weakly dependent on chain connectivity and signals the onset of glassy dynamics. Predictions of the dynamic plateau shear modulus are consistent with the known features of emergent rubbery and glassy elasticity. Generalizations to treat the effects of chemical crosslinking and physical bond formation in polymer gels are possible.
NASA Astrophysics Data System (ADS)
Stige, Leif Chr.; Langangen, Øystein; Yaragina, Natalia A.; Vikebø, Frode B.; Bogstad, Bjarte; Ottersen, Geir; Stenseth, Nils Chr.; Hjermann, Dag Ø.
2015-05-01
Understanding the causes of the large interannual fluctuations in the recruitment to many marine fishes is a key challenge in fisheries ecology. We here propose that the combination of mechanistic and statistical modelling of the pelagic early life stages (ELS) prior to recruitment can be a powerful approach for improving our understanding of local-scale and population-scale dynamics. Specifically, this approach allows separating effects of ocean transport and survival, and thereby enhances the knowledge of the processes that regulate recruitment. We analyse data on the pelagic eggs, larvae and post-larvae of Northeast Arctic cod and on copepod nauplii, the main prey of the cod larvae. The data originate from two surveys, one in spring and one in summer, for 30 years. A coupled physical-biological model is used to simulate the transport, ambient temperature and development of cod ELS from spawning through spring and summer. The predictions from this model are used as input in a statistical analysis of the summer data, to investigate effects of covariates thought to be linked to growth and survival. We find significant associations between the local-scale ambient copepod nauplii concentration and temperature in spring and the local-scale occurrence of cod (post)larvae in summer, consistent with effects on survival. Moreover, years with low copepod nauplii concentrations and low temperature in spring are significantly associated with lower mean length of the cod (post)larvae in summer, likely caused in part by higher mortality leading to increased dominance of young and hence small individuals. Finally, we find that the recruitment at age 3 is strongly associated with the mean body length of the cod ELS, highlighting the biological significance of the findings.
New insights on the interaction between atmospheric flow and a full-scale 2.5 MW wind turbine
NASA Astrophysics Data System (ADS)
Chamorro, L. P.; Lee, S.; Olsen, D.; Milliren, C.; Marr, J.; Arndt, R.; Sotiropoulos, F.
2012-12-01
Power fluctuations and fatigue loads are among the most significant problems that wind turbines face throughout their lifetime. Atmospheric turbulence is the common driving mechanism that triggers instabilities on these quantities. Reducing the effects of the fluctuating flow on wind turbines is quite challenging due to the wide variety of length scales present in the boundary layer flow. Each group of these scales, which range from the order of a millimeter to kilometer and larger, plays a characteristic and distinctive role on the performance and structural reliability of wind turbines. This study seeks to contribute toward the understanding on the complex scale-to-scale interaction between wind turbine and flow turbulence. Novel insights into the physical mechanisms that govern the flow/turbine interaction will be discussed. To tackle the problem, we investigate the unsteady behavior of a full-scale 2.5 MW wind turbine under nearly neutral thermal stratification. The study is performed in the Eolos Wind Energy Research Field Station of the University of Minnesota. An instrumented 130 meter meteorological tower located upstream of a Clipper Liberty C96 wind turbine is used to characterize the turbulent flow and atmospheric conditions right upstream of the wind turbine. High resolution and synchronous measurements of the approach wind velocity at several heights, turbine power and strain at the tower foundation are used to determine the scale-to-scale interaction between flow and the wind turbine performance and its physical structure. The spectral distribution of the fluctuating turbine power and instantaneous stresses will be discussed in detail. Characteristic length scales playing a key role on the dynamics of the wind turbine as well as the distinctive effects of flow coherent motions and strong intermittent gusts will also be addressed. Funding was provided by the U.S. Department of Energy (DE-EE0002980) and Xcel Energy through the Renewable Development Fund (grant RD3-42).
A mechanical model of bacteriophage DNA ejection
NASA Astrophysics Data System (ADS)
Arun, Rahul; Ghosal, Sandip
2017-08-01
Single molecule experiments on bacteriophages show an exponential scaling for the dependence of mobility on the length of DNA within the capsid. It has been suggested that this could be due to the ;capstan mechanism; - the exponential amplification of friction forces that result when a rope is wound around a cylinder as in a ship's capstan. Here we describe a desktop experiment that illustrates the effect. Though our model phage is a million times larger, it exhibits the same scaling observed in single molecule experiments.
VizieR Online Data Catalog: CALIFA galaxies observational hints (Ruiz-Lara+, 2017)
NASA Astrophysics Data System (ADS)
Ruiz-Lara, T.; Perez, I.; Florido, E.; Sanchez-Blazquez, P.; Mendez-Abreu, J.; Sanchez-Menguiano, L.; Sanchez, S. F.; Lyubenova, M.; Falcon-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Caceres, A.; Catalan-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; Garcia-Benito, R.; Husemann, B.; Kehrig, C.; Marquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegle, B.; Califa Team
2017-05-01
Characterisation of the sample of galaxies under analysis in the paper. The sample comprises 214 galaxies from the CALIFA survey. For each galaxy the name, equatorial coordinates, morphological type, presence of a bar, surface brightness profile type, inner disc scale length (kpc), outer disc scale length (kpc), and break radius in units of the inner disc scale length are given. Columns (1), (2), (3), and (4) from the CALIFA general sample characterisation (Walcher et al., 2014A&A...569A...1W). Columns (5), (6), (7), (8), (9), and (10) from the 2D decomposition performed in Mendez-Abreu et al. (2017, Cat. J/A+A/598/A32). (1 data file).
Fabbris, G.; Hücker, M.; Gu, G. D.; ...
2016-07-14
Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La 1.875Ba 0.125CuO 4, in which the response of electronic order tomore » pressure can only be understood by probing the structure at the relevant length scales.« less
Nano-scaled graphene platelets with a high length-to-width aspect ratio
Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.
2010-09-07
This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.
An Experimental Investigation of Unsteady Surface Pressure on an Airfoil in Turbulence
NASA Technical Reports Server (NTRS)
Mish, Patrick F.; Devenport, William J.
2003-01-01
Measurements of fluctuating surface pressure were made on a NACA 0015 airfoil immersed in grid generated turbulence. The airfoil model has a 2 ft chord and spans the 6 ft Virginia Tech Stability Wind Tunnel test section. Two grids were used to investigate the effects of turbulence length scale on the surface pressure response. A large grid which produced turbulence with an integral scale 13% of the chord and a smaller grid which produced turbulence with an integral scale 1.3% of the chord. Measurements were performed at angles of attack, alpha from 0 to 20 . An array of microphones mounted subsurface was used to measure the unsteady surface pressure. The goal of this measurement was to characterize the effects of angle of attack on the inviscid response. Lift spectra calculated from pressure measurements at each angle of attack revealed two distinct interaction regions; for omega(sub r) = omega b / U(sub infinity) is less than 10 a reduction in unsteady lift of up to 7 decibels (dB) occurs while an increase occurs for omega(sub r) is greater than 10 as the angle of attack is increased. The reduction in unsteady lift at low omega(sub r) with increasing angle of attack is a result that has never before been shown either experimentally or theoretically. The source of the reduction in lift spectral level appears to be closely related to the distortion of inflow turbulence based on analysis of surface pressure spanwise correlation length scales. Furthermore, while the distortion of the inflow appears to be critical in this experiment, this effect does not seem to be significant in larger integral scale (relative to the chord) flows based on the previous experimental work of McKeough suggesting the airfoils size relative to the inflow integral scale is critical in defining how the airfoil will respond under variation of angle of attack. A prediction scheme is developed that correctly accounts for the effects of distortion when the inflow integral scale is small relative to the airfoil chord. This scheme utilizes Rapid Distortion Theory to account for the distortion of the inflow with the distortion field modeled using a circular cylinder.
Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime
NASA Astrophysics Data System (ADS)
Swami, Yashu; Rai, Sanjeev
2017-02-01
The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).
Multiresolution analysis of characteristic length scales with high-resolution topographic data
NASA Astrophysics Data System (ADS)
Sangireddy, Harish; Stark, Colin P.; Passalacqua, Paola
2017-07-01
Characteristic length scales (CLS) define landscape structure and delimit geomorphic processes. Here we use multiresolution analysis (MRA) to estimate such scales from high-resolution topographic data. MRA employs progressive terrain defocusing, via convolution of the terrain data with Gaussian kernels of increasing standard deviation, and calculation at each smoothing resolution of (i) the probability distributions of curvature and topographic index (defined as the ratio of slope to area in log scale) and (ii) characteristic spatial patterns of divergent and convergent topography identified by analyzing the curvature of the terrain. The MRA is first explored using synthetic 1-D and 2-D signals whose CLS are known. It is then validated against a set of MARSSIM (a landscape evolution model) steady state landscapes whose CLS were tuned by varying hillslope diffusivity and simulated noise amplitude. The known CLS match the scales at which the distributions of topographic index and curvature show scaling breaks, indicating that the MRA can identify CLS in landscapes based on the scaling behavior of topographic attributes. Finally, the MRA is deployed to measure the CLS of five natural landscapes using meter resolution digital terrain model data. CLS are inferred from the scaling breaks of the topographic index and curvature distributions and equated with (i) small-scale roughness features and (ii) the hillslope length scale.
Length scales involved in decoherence of trapped bosons by buffer-gas scattering
NASA Astrophysics Data System (ADS)
Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.
2014-05-01
We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.
NASA Astrophysics Data System (ADS)
Rengel, Raul; Pardo, Daniel; Martin, Maria J.
2004-05-01
In this work, we have performed an investigation of the consequences of dowscaling the bulk MOSFET beyond the 100 nm range by means of a particle-based Monte Carlo simulator. Taking a 250 nm gate-length ideal structure as the starting point, the constant field scaling rules (also known as "classical" scaling) are considered and the high-frequency dynamic and noise performance of transistors with 130 nm, 90 nm and 60 nm gate-lengths are studied in depth. The analysis of internal quantities such as electric fields, velocity and energy of carriers or conduction band profiles shows the increasing importance of electrostatic two-dimensional effects due to the proximity of source and drain regions even when the most ideal bias conditions are imposed. As a consequence, a loss of the transistor action for the smallest MOSFET and the degradation of the most important high-frequency figures of merit is observed. Whereas the comparative values of intrinsic noise sources (SID, SIG) are improved when reducing the dimensions and the bias voltages, the poor dynamic performance yields an overall worse noise behaviour than expected (especially for Rn and Gass), limiting at the same time the useful bias ranges and conditions for a proper low-noise configuration.
High-Z Coating Experiments on Omega EP
NASA Astrophysics Data System (ADS)
Karasik, Max; Oh, J.; Stoeckl, C.; Schmitt, A. J.; Aglitskiy, Y.; Obenschain, S. P.
2016-10-01
Previous experiments on Nike KrF laser (λ=248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the target is effective in suppressing broadband imprint. Implementation of this technique on the tripled Nd:glass (351nm) NIF would enable higher uniformity direct-drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. On Nike, a low-intensity, highly smooth prepulse heats and pre-expands the low thermal mass metallic coating to 100 um scale length. This likely improves imprint reduction for longer spatial scales because of increased distance between laser absorption and the ablation surface. The 3 ω beams of Omega EP do not have this feature due to nonlinear harmonic conversion. We introduced a means of pre-expanding the high-Z coating to similar length scale on Omega EP using a soft x-ray prepulse, generated by irradiating an auxiliary Au foil 1cm in front of the main target tens of ns prior to the main target drive. Coating dynamics are measured using side-on radiography. The effectiveness of pre-expansion on imprint reduction will be assessed by measurements of the RT-amplified imprint using monochromatic curved crystal radiography. Work supported by the Department of Energy/NNSA.
Optimal Length Scale for a Turbulent Dynamo.
Sadek, Mira; Alexakis, Alexandros; Fauve, Stephan
2016-02-19
We demonstrate that there is an optimal forcing length scale for low Prandtl number dynamo flows that can significantly reduce the required energy injection rate. The investigation is based on simulations of the induction equation in a periodic box of size 2πL. The flows considered are the laminar and turbulent ABC flows forced at different forcing wave numbers k_{f}, where the turbulent case is simulated using a subgrid turbulence model. At the smallest allowed forcing wave number k_{f}=k_{min}=1/L the laminar critical magnetic Reynolds number Rm_{c}^{lam} is more than an order of magnitude smaller than the turbulent critical magnetic Reynolds number Rm_{c}^{turb} due to the hindering effect of turbulent fluctuations. We show that this hindering effect is almost suppressed when the forcing wave number k_{f} is increased above an optimum wave number k_{f}L≃4 for which Rm_{c}^{turb} is minimum. At this optimal wave number, Rm_{c}^{turb} is smaller by more than a factor of 10 than the case forced in k_{f}=1. This leads to a reduction of the energy injection rate by 3 orders of magnitude when compared to the case where the system is forced at the largest scales and thus provides a new strategy for the design of a fully turbulent experimental dynamo.
Multi-window PIV measurements around a breathing manikin
NASA Astrophysics Data System (ADS)
Marr, David
2005-11-01
The presented work includes multi-scale measurements via a stereo article Image Velocimetry (PIV) system to view a pair of two-component windows of dissimilar scale using a varied focal length. These measurements are taken in the breathing zone of an isothermal breathing manikin (from mouth) in an environmental chamber of average office cubicle dimensions without ventilation and are analogous to an oscillatory jet. From these phase-averaged measurements, we can extract information concerning length scales, turbulence quantities and low dimensional information in order to both determine correlation between data at different length scales as well as continuing research in exposure assessment for the indoor environment. In this talk we will present these turbulence quantities and interpret their influence on the breathing zone. While the largest scale is that of the room itself, we find that the relevant spatial scales associated with the breathing zone are much lower in magnitude. In future experiments, we will expand the multi window PIV technique to include PIV window configured to obtain scales of order the cubicle simultaneously with those of the breathing zone. This will aid in our understanding of the combined impact of these multiple scales on occupant exposure in the indoor environment.
NASA Technical Reports Server (NTRS)
Kuchar, A. P.; Chamberlin, R.
1983-01-01
As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.
Amplified fragment length polymorphism (AFLP) markers can be developed more quickly and at a lower cost than microsatellite and single nucleotide polymorphism markers, which makes them ideal markers for large-scale studies of understudied taxa — such as species at risk. However,...
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.
Temporal length-scale cascade and expansion rate on planar liquid jet instability
NASA Astrophysics Data System (ADS)
Sirignano, William; Zandian, Arash; Hussain, Fazle
2016-11-01
Using the local radius of curvature of the surface and the local transverse dimension of the two-phase (i.e., spray) domain as length scales, we obtained two PDFs over a wide range of length-scales at different times and for different Reynolds and Weber (We) numbers. The PDFs were developed via post-processing of DNS Navier-Stokes results for a 3D planar liquid sheet segment with level-set and Volume-of-Fluid surface tracking, giving better statistical data for the length scales compared to the former methods. The radius PDF shows that, with increasing We , the average radius of curvature decreases, number of small droplets increases, and cascade occurs at a faster rate. In time, the mean of the radius PDF decreases while the rms increases. The other PDF represents the spray expansion in a more realistic and meaningful form, showing that the spray angle is larger at higher We and density-ratios. Both the mean and the rms of the spray-size PDF increase with time. The PDFs also track the transitions between symmetric and anti-symmetric modes.
Flow field topology of transient mixing driven by buoyancy
NASA Technical Reports Server (NTRS)
Duval, Walter M B.
2004-01-01
Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.
Accurate atomistic potentials and training sets for boron-nitride nanostructures
NASA Astrophysics Data System (ADS)
Tamblyn, Isaac
Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.
NASA Astrophysics Data System (ADS)
Madsen, A.; Als-Nielsen, J.; Hallmann, J.; Roth, T.; Lu, W.
2016-07-01
β -brass exhibits an archetypical example of an order-disorder transition with a critical behavior that was previously investigated by neutron scattering. The data were well described by the three-dimensional (3d) Ising model but the relatively crude experimental resolution prevented an in-depth examination of the single-length scaling hypothesis, a cornerstone in the theory of critical phenomena. With the development of synchrotron x-ray experiments, high-resolution data could be recorded and surprisingly it was found that the single-length scaling did not hold in most critical systems, possibly due to strain originating from surface defects and/or impurities. In this paper we demonstrate single-length critical behavior using high-resolution x-ray scattering in β -brass. The investigations confirm that β -brass behaves like a 3d Ising system over a wide range of length scales comprising correlated clusters of millions of atoms. To vary the surface sensitivity, experiments have been performed both in Bragg reflection and Laue transmission geometries but without any substantial differences observed in the scaling and critical behavior.
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
NASA Astrophysics Data System (ADS)
Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.
2015-08-01
Beaver dams affect hydrologic processes, channel complexity, and stream temperature in part by inundating riparian areas, influencing groundwater-surface water interactions, and changing fluvial processes within stream systems. We explored the impacts of beaver dams on hydrologic and temperature regimes at different spatial and temporal scales within a mountain stream in northern Utah over a 3-year period spanning pre- and post-beaver colonization. Using continuous stream discharge, stream temperature, synoptic tracer experiments, and groundwater elevation measurements, we documented pre-beaver conditions in the first year of the study. In the second year, we captured the initial effects of three beaver dams, while the third year included the effects of ten dams. After beaver colonization, reach-scale (~ 750 m in length) discharge observations showed a shift from slightly losing to gaining. However, at the smaller sub-reach scale (ranging from 56 to 185 m in length), the discharge gains and losses increased in variability due to more complex flow pathways with beaver dams forcing overland flow, increasing surface and subsurface storage, and increasing groundwater elevations. At the reach scale, temperatures were found to increase by 0.38 °C (3.8 %), which in part is explained by a 230 % increase in mean reach residence time. At the smallest, beaver dam scale (including upstream ponded area, beaver dam structure, and immediate downstream section), there were notable increases in the thermal heterogeneity where warmer and cooler niches were created. Through the quantification of hydrologic and thermal changes at different spatial and temporal scales, we document increased variability during post-beaver colonization and highlight the need to understand the impacts of beaver dams on stream ecosystems and their potential role in stream restoration.
NASA Astrophysics Data System (ADS)
Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal
2017-04-01
Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; ...
2016-08-01
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale fracture networks has been under debate for a long time, since the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We addressmore » this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P 32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. The recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate kilometer scale DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time, , and cumulative retention, , are calculated along particles streamlines. As a result, it is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture aperture variability than the tails of travel time distributions, where no significant effect of the in-fracture aperture variations and spatial correlation length is observed.« less
Seagrass blade motion under waves and its impact on wave decay
NASA Astrophysics Data System (ADS)
Luhar, M.; Infantes, E.; Nepf, H.
2017-05-01
The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).
NASA Technical Reports Server (NTRS)
Rudy, D. H.; Bushnell, D. M.
1973-01-01
Prandtl's basic mixing length model was used to compute 22 test cases on free turbulent shear flows. The calculations employed appropriate algebraic length scale equations and single values of mixing length constant for planar and axisymmetric flows, respectively. Good agreement with data was obtained except for flows, such as supersonic free shear layers, where large sustained sensitivity changes occur. The inability to predict the more gradual mixing in these flows is tentatively ascribed to the presence of a significant turbulence-induced transverse static pressure gradient which is neglected in conventional solution procedures. Some type of an equation for length scale development was found to be necessary for successful computation of highly nonsimilar flow regions such as jet or wake development from thick wall flows.
Secondary pool boiling effects
NASA Astrophysics Data System (ADS)
Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.
2016-02-01
A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.